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Abstract 

Problem statement 

Rising global temperatures along with increased frequency of hot days, warm nights, 

and more frequent and severe heatwaves, are of concern to the scientific 

community, policy makers, and the general public. The mortality and morbidity rates 

in the community often rise on hot days, and during heatwave events. The most 

vulnerable population subgroups include the elderly and the young, those with 

chronic conditions, and workers. 

Some workers spend a considerable amount of time in environments that are hot 

due to radiant heat or ambient heat. The generation of metabolic heat from physical 

exertion adds to the personal heat exposure. Heat-related illnesses (HRIs) arise 

when the thermoregulatory system is overwhelmed and the balance between heat 

gain and heat loss is impaired. While HRI is the well documented direct effect of 

heat on workers’ health, research has also shown that exposure to hot environments 

reduces worker productivity and increases the likelihood of work-related injuries 

(WRIs). The phenomenon of heat-related injuries may be attributable to heat-

induced physiological and behavioural factors interacting with existing workplace 

hazards. As an indirect effect, the link between hot conditions and WRIs may not be 

fully appreciated. That said, workplace injury represents a major public health 

burden in Australia and worldwide, and new insights into injury reduction attract 

considerable interest. 

There exists a need to better understand the heat-work injury phenomenon and the 

underlying determinants, and the profile of workers at risk. This improved 
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understanding of injuries associated with work in hot conditions will inform evidence-

based adaptive strategies, practical guidelines, and tailored interventions to reduce 

the risk. Such research is also timely given that an increasing number of workers 

will be exposed to higher temperatures more often in the future, resulting in a greater 

burden on workers’ health and safety in a warmer climate. 

Research gap and opportunity 

Following a systematised literature review, it was evident that hot conditions 

increase the risk of WRIs and HRIs in many industry sectors. However, despite 

Australia’s generally hot climate, evidence concerning the relationship between high 

temperatures and WRI is limited. Furthermore, little is also known about the 

underlying determinants of these injuries and the prevention practices adopted by 

workplaces in response to heat exposure. Therefore, the body of research in this 

thesis is designed to provide important new data and perspectives on injury 

prevention in hot environments, with potential implications for workers, supervisors, 

industry representatives, professionals and government. 

Purpose statement 

The goal of this research is to obtain a better understanding of the heat-work injury 

phenomenon, thereby contributing to new knowledge that may be useful in reducing 

the frequency and incidence of workplace injuries. The project aims to achieve this 

goal by: (1) systematically examining the association between ambient heat and 

WRI in Australia; (2) exploring the underlying determinants of heat-related work 

injuries; and (3) exploring stakeholder perspectives regarding prevention and 

management. 
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Research questions 

1. What is the epidemiology of heat-related injury and how does it vary across 

Australia? 

2. What are the stakeholders’ perceptions and experiences of occupational 

injuries and adaptive strategies adopted to prevent WRI from occurring 

during hot weather? 

Methodology 

There are two distinct parts to this research to address the abovementioned 

research questions. Part 1 consists of the analysis of workers’ compensation (WC) 

claims data and Part 2 consists of surveys of stakeholders. 

Part 1. Analysis of workers’ compensation claims data 

A group of four studies was conducted in Part 1 of the research to investigate the 

effects of heat on the occurrence of workplace injuries in four Australian cities, 

namely, Adelaide, Brisbane, Melbourne, and Perth using daily ambient temperature 

and heatwaves as exposure metrics. Workplace injuries were identified from WC 

claims data which were obtained from SafeWork SA for data pertaining to Adelaide 

(2003–2013), and from Safe Work Australia for the other three cities (2005–2016). 

The WC data were transformed into a daily time-series format and merged with 

exposure data obtained from the Bureau of Meteorology. Climate data included daily 

maximum temperature (Tmax) and heatwave severity categories defined using the 

Excess Heat Factor (EHFsev: low-intensity, moderate/high-severity). Additionally, 

thermal composite indices of heat stress such as humidex and apparent 

temperature that combine relative humidity and temperature, and wet-bulb globe 

temperature and universal thermal comfort index incorporating relative humidity, 
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wind speed, solar radiation and temperature, were also used in the estimation of 

injury risk. 

City-specific exposure-response curves summarising the relationship between 

ambient temperatures and WRI were generated utilising a time-stratified case-

crossover design combined with a distributed lag-nonlinear model (DLNM) after 

adjusting for confounding factors such as day of the week and public holidays. 

Relative risks (RRs) of WRI at moderately hot (90th percentile) and extremely hot 

(99th percentile) temperatures, compared with a reference temperature were 

calculated. Finally, attributable fractions were derived to quantify the risk burden of 

WRI due to ambient temperatures. 

Similarly, city-specific associations between heatwaves of varying severity and WRI 

(restricted to the warm season) were estimated using time-stratified case-crossover 

design with generalised linear models. Comparisons were made between WRI 

occurring on heatwave days (defined using EHFsev heatwave categories) and non-

heatwave days. Analyses were stratified by worker, work, work environment, and 

injury characteristics to identify at-risk subpopulations and types of injuries related 

to heat exposure (Tmax and EHFsev). 

Part 2. Surveys of stakeholders 

A group of two studies was conducted in Part 2 of the research which comprised 

two national online cross-sectional surveys investigating perceptions of key 

stakeholders (such as health and safety professionals (HSPs) and health and safety 

representatives (HSRs)) on heat-associated injury risks, determinants, 

management and prevention. Collected data included perspectives on injury 

experiences, current preventive measures, workplace training, policies and 
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guidelines, barriers and suggestions for prevention, and productivity loss. 

Descriptive analysis and log-Poisson regression models were conducted to identify 

risk factors associated with the reported frequency of injury experience. 

Main findings 

Part 1. Ambient temperature and WRI 

In Adelaide, as the daily Tmax rose above 25 °C, the risk of WRI also increased. 

Compared with 25 °C, there was an 8% (RR 1.08; 95% CI: 1.05–1.12) and 30% (RR 

1.30; 95% CI: 1.18–1.44) increase in WRI associated with moderately hot 

temperatures and extremely high temperatures (defined above), respectively. The 

proportion of WRI attributable to hot temperatures was 2.1% (95% CI: 1.21–2.98%) 

with moderately hot temperatures responsible for a higher fraction than extremely 

hot temperatures (1.5% vs 0.6%). 

Findings varied for the other three cities. In Melbourne, there was a 5% (RR 1.05; 

95% CI: 0.99–1.10) and 14% increase in WRI (RR 1.14; 95% CI: 1.03–1.25) 

associated with moderately and extremely hot temperatures compared with the 

median Tmax of 20 °C, respectively. On the other hand, there were no observed 

effects in Brisbane or Perth, with the exception of traumatic injuries that increased 

by 17% (RR 1.17; 95% CI: 1.03–1.35) during extreme heat in Perth. Nevertheless, 

in all three cities there was a decreased injury risk at cooler temperatures which was 

greater in Brisbane resulting in a higher attributable fraction of WRI due to 

temperatures in Brisbane (26.5%) than in Perth (5.7%) and Melbourne (1.9%). 
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Who is affected? 

Associations between extreme heat and WRI were observed among several groups 

of workers in Adelaide. These included males and females, and both young workers 

(15–24 years), and experienced workers. Specific occupations affected included 

food service and warehouse workers, workers in medium-strength (somewhat 

physically demanding) occupations, workers in regulated indoor climates, and 

industries such as ‘electricity, gas and water’ and ‘transport and storage’. In 

Melbourne, young workers, female workers, workers in regulated indoor climates, 

and workers ‘in a vehicle/cab’, workers in medium-strength occupations, and those 

in indoor industries were identified to be at-risk of heat-related injuries. 

What types of injuries occur in hot conditions? 

The types of injuries that significantly increased in Adelaide during moderate and 

extreme heat were: burns, wounds, lacerations and amputations, along with injuries 

resulting from vehicle incidents, ‘heat, electricity and other environmental factors’ 

and ‘chemical and other substances’. In Melbourne, the types of injuries associated 

with heat exposure were: traumatic injuries and injuries from ‘being hit by moving 

objects’. Injuries attributed to ‘heat, electricity and other environmental’ factors and 

‘mental stresses’ also increased at extremely high temperatures in Melbourne. 

Part 1. Heatwaves and WRI 

Uniform impacts of heatwaves were observed in Brisbane (subtropical climate) and 

Melbourne, Perth and Adelaide (temperate climates). For three cities (Brisbane, 

Melbourne and Perth), there was either a small-reduction in risk or a null effect 

during heatwaves of low-intensity. However, injury risk increased consistently 

across the four cities during moderate/high-severity heatwaves with the highest 
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effect estimate evident in Brisbane (RR 1.45; 95% CI: 1.42–1.48), followed by 

Adelaide (RR 1.31; 95% CI: 1.28–1.34), Perth (RR 1.26; 95% CI: 1.24–1.29) and 

Melbourne (RR 1.25; 95% CI: 1.22–1.28). 

Who is affected during heatwaves? 

Stratified analysis by worker characteristics identified highest associations between 

heatwaves of moderate/high-severity and the risk of WRI among male workers, 

workers aged up to 24 years, apprentice/trainee workers, new workers, and workers 

working through labour hire firms. When physical demands of the occupation were 

taken into account, workers employed in the medium-strength and heavy-strength 

(physically demanding) occupations were at increased risk of WRI during 

moderate/high-severity heatwaves. Workers in regulated indoor climates and ‘in a 

vehicle or cab’ environments were also at risk of WRI. Stratified analyses according 

to industrial sectors identified positive associations in both outdoor and indoor 

industries. 

What types of injuries occur during heatwaves? 

Injury claims that significantly increased across the four cities during moderate/high-

severity heatwaves included those for traumatic injuries, ‘mental health’ and injuries 

from ‘body stressing’, ‘chemicals and other substances’ and ‘falls, trips, and slips of 

a person’. 

Part 2. Stakeholder perceptions 

In total there were 307 HSPs who completed the first survey, the majority (74%) of 

whom acknowledged the potential for increased risk of occupational injuries in hot 

weather. A variety of injury types and mechanisms were reported, including manual 
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handling injuries, hand injuries, wounds or lacerations, loss of control of power tools, 

fatigue, and dehydration. 

Work factors significantly associated with reported injuries included problems with 

heat-retentive personal protective equipment (PPE); lack of shade for workers; 

inadequate hydration and rest breaks, and problems with supervision. Whereas 

ceasing outdoor work when temperatures are extreme can be a preventive 

measure, only 54% of HSPs reported this occurring in workplaces they visited or 

managed. Furthermore, less than half (42%) stated the availability of adequate heat 

training for staff. Reported barriers for prevention included: lack of awareness by 

workers and supervisors of injury risks, and management concerns about 

productivity loss and/or deadlines. 

A second survey was conducted among workplace HSRs. In total, 222 HSRs 

completed the survey. Overall, 43% of respondent reported that injuries or incidents 

caused by hot/very humid weather occur sometimes/often in their workplace. 

Factors found to be associated with these injuries included ‘the wearing of PPE’, 

‘inadequate resources and facilities’ and being a new worker. For outdoor workers, 

the most frequently adopted preventive measures were provision of PPE, sunscreen 

and access to cool drinking water. HSRs reported more injuries if certain preventive 

measures (i.e. rescheduling work to cooler times and shaded rest/work areas) were 

adopted never/rarely/sometimes. Access to cool drinking water and provision of 

PPE were the most frequently adopted preventive measures for indoor workers. 

HSRs reported that more injuries occurred if self-pacing, shielding of heat sources 

and adequate ventilation were adopted never/rarely/sometimes. 
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Implications of findings 

Part 1. Ambient temperature and WRI 

The findings from this research show that WRI do not only occur in extreme 

temperatures but also during moderate temperatures and that the risks apply to both 

outdoor and some indoor workers. Interestingly, in Adelaide which had the greatest 

risks, the burden of WRI was substantially higher during moderate hot temperatures 

than extremes. This finding suggests that while extremely hot temperatures that 

rarely occur are dangerous for workers, the risks during the more common hot days 

should not be ignored. On the other hand, a higher burden of WRI was seen in 

Brisbane than in Melbourne and Perth. This finding has implications for the future 

as extreme hot days become more frequent. This study clearly indicates that 

increasing exposure to higher temperatures poses a risk for workers’ health and 

safety. 

Part 1. Heatwaves and WRI 

The consistency in the impacts of moderate/high-severity heatwaves on WRI across 

study sites suggest that it is not only severe heatwaves (during which work may 

cease) that are cause for concern. Forecasts for moderate-severity heatwaves, 

based on EHF, should also signal the need for heightened heat awareness and 

preventive measures, to minimise the risks to workers in Australian workplaces. 

Part 2. Stakeholder perceptions 

The stakeholder evidence suggest that the burden of heat-related work injuries 

could be reduced by wider adoption of prevention measures such as work 

rescheduling, self-pacing, provision of shade and adequate ventilation. There 
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should also be an increased awareness of heat as an occupational hazard, 

particularly with regard to injury occurrence and modifiable risk factors. 

The integration of multiple lines of evidence (Parts 1 and 2) suggests that underlying 

mechanisms of injuries in hot weather are complex and multi-factorial. 

Strengths and weaknesses 

There are a number of strengths of this research. Firstly, the research has evaluated 

the risk and susceptibility of workers and quantified the associated attributable 

burden of heat and WRI across four Australian cities with diverse climate and worker 

profiles. This is the first time such an extensive multi-city study has been conducted 

in Australia on heat-related work injuries and their determinants. A unique multiple 

data source approach was used to address the research questions, combining both 

complex statistical models incorporating administrative data, and surveys of key 

stakeholders. A novel standard heatwave definition across the study sites, and 

classifications of indoor/outdoor workers by occupation, were incorporated in the 

estimation of injury risk, adding to the rigour of the study methods. The multiple data 

source approach yielded a triangulation of findings with the outcomes of surveys 

supporting and supplementing the major findings of the analysis of the WC data. 

This research also has a number of limitations. The WC data have inherent 

limitations in the identification of WRI, as not all workers who are injured lodge a 

claim. Therefore these data can underestimate the true burden of WRI due to under-

reporting. Weather data were assessed at an aggregate level using data from only 

one monitoring station per study site. Additionally, being an ecological study, 

personal exposures could not be ascertained. These factors can therefore introduce 

exposure misclassification. Similarly, surveys may produce biased results if only 
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certain sections of stakeholders (such as those particularly interested in the topic) 

respond. Furthermore, self-reported responses may introduce recall or reporting 

bias. Nevertheless, this study has added considerably to the body of knowledge of 

heat and WRI and may provide valuable evidence for policymakers and workplaces 

moving forward as heat exposure becomes a greater hazard for exposed workers. 

Novelty 

This is the first Australian investigation to utilise a multiple data source approach to 

systematically examine the epidemiology and specific determinants of heat-related 

work-injury occurrence. 

Conclusions 

The findings showed while the highest extreme temperatures have the greatest risk, 

WRI can also occur on moderate-hot days which are more common and therefore 

have the greatest burden. The findings also identified a range of modifiable risk 

factors for injuries. These can be associated with the work (e.g. PPE, no shade), 

the worker (e.g. lack of awareness) and organisational issues (e.g. poor supervision 

and lack of training). 

Recommendations 

Based on the findings from this body of research, it is evident that a holistic approach 

is needed to address the risks of injuries associated with work in hot conditions. The 

following recommendations are made for jurisdictional safety regulators and policy 

makers, employers, and manufacturers of PPE. 
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 It is recommended that there be awareness raising at both the employer and 

the worker levels, that the health risks of working in hot environments 

includes injuries as well as HRIs. 

 It is recommended that workplaces be aware of forecasted heatwaves 

(moderate or severe) so that plans, policies and preventive measures can be 

enacted in advance to minimise risks to the health and safety of workers. 

 It is recommended that workplaces examine the potential interaction between 

existing hazards and heat induced physiological and behavioural effects. 

 As some PPE can impair heat loss, and alter behaviour, it is recommended 

that that research is done on improving PPE comfort and suitability for hot 

conditions. 
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Presentation: Varghese BM. The effects of daily maximum temperature and 

heatwaves on worker injury risks and perspectives from workplace health and safety 

representatives and professionals. Heat and Work Injury National Workshop, 

Adelaide, Australia, 2018. 

The resulting outcome from the workshop was summarised in the Workshop 

Proceedings document circulated to all attendees. 
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Output: Pisaniello DL, Hansen AL, Varghese BM & Williams S. Understanding 

and preventing injuries in hot working conditions. Proceedings of a National 

Workshop on Heat and Work Injury, Adelaide, Australia, 2018. 

https://figshare.com/articles/Proceedings_of_National_Heat_and_Work_Injury_Wo

rkshop_Adelaide_October_17_2018/7451387  

Media coverage 

Research findings from two of my studies (Chapters 4 and 6) were covered in this 

media story by the Advertiser, a daily tabloid format newspaper published in 

Adelaide, South Australia, 2019. https://www.adelaidenow.com.au/news/south-

australia/university-of-adelaide-research-to-help-authorities-get-the-heatwave-

message-across/news-story/6500d8af51dacaf86d4873b839da87fb    

  

https://figshare.com/articles/Proceedings_of_National_Heat_and_Work_Injury_Workshop_Adelaide_October_17_2018/7451387
https://figshare.com/articles/Proceedings_of_National_Heat_and_Work_Injury_Workshop_Adelaide_October_17_2018/7451387
https://www.adelaidenow.com.au/news/south-australia/university-of-adelaide-research-to-help-authorities-get-the-heatwave-message-across/news-story/6500d8af51dacaf86d4873b839da87fb
https://www.adelaidenow.com.au/news/south-australia/university-of-adelaide-research-to-help-authorities-get-the-heatwave-message-across/news-story/6500d8af51dacaf86d4873b839da87fb
https://www.adelaidenow.com.au/news/south-australia/university-of-adelaide-research-to-help-authorities-get-the-heatwave-message-across/news-story/6500d8af51dacaf86d4873b839da87fb
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Other invited presentations 

1. Varghese BM. The effects of daily maximum temperature and heatwaves on 

worker injury risks in Adelaide.  

a. Presentation to the Bachelor of Health and Medical Science third year 

students, The University of Adelaide, Australia, 2017. 

b. Presented at the Heat and Injury Seminar, National Safe Work Month, 

Safe Work SA, Adelaide, Australia, 2017. 

c. Presented at the SA Health Data Analysis Group (DAG) Meeting, 

Adelaide, Australia, 2018. 

2. Varghese BM. Heat and work injury research.  

a. Presentation to the Master of Public Health students. The University 

of Adelaide, Australia, 2019. 

b. Presented to the study group at the Department of Public Health, 

University of Helsinki, Helsinki, Finland, 2019. 
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Australasian Epidemiological 
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Chapter 1: Introduction 

1.1 PREFACE 

It has long been recognised that excessive heat exposure can cause harm to 

workers. Work in hot conditions can lead to heat-related illnesses (HRIs) and in 

severe cases, deaths. Besides these direct effects, there is now increasing evidence 

that occupational heat stress is strongly associated with injuries. As an indirect effect 

of heat exposure, the occurrence of occupational injuries in hot weather conditions 

may not be fully recognised. That said, workplace injury represents a major public 

health burden in Australia and worldwide, and new insights into injury reduction 

attract considerable interest. Therefore, understanding this important phenomenon 

and developing relevant preventive/adaptive strategies represents the basis of this 

research. 

This chapter outlines the background to the body of research underpinning this 

thesis and summarises the health impacts of heat exposure in the community and 

on workers. Furthermore, this chapter discusses the need to investigate heat-

associated occupational injuries in the context of a changing climate and global 

warming. The chapter concludes by outlining the overarching aims and the structure 

of the thesis.  
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1.2 BACKGROUND 

‘Whoever would study medicine aright must learn of the following subjects. First, he must consider 

the effect of each of the seasons of the year and the differences between them. Secondly, he must 

study the warm and the cold winds, both those which are common to every country and those 

peculiar to a particular locality....’  

Hippocrates, ‘Airs, Waters, Places’, 400 BC1 

 

These words written by Hippocrates, the father of modern medicine, more than 2500 

years ago which, even then highlighted the need to understand the influence of 

environmental factors on the health of populations in a locality.2 Some 24 centuries 

later there is still great interest among scientists, health professionals, public 

policymakers and the general public, in unpacking the impacts of temperature on 

health.2 This interest is continually growing with concerns associated with increasing 

global average temperatures and temperature extremes due to climate change 

(discussed in Section 1.5). The next section provides a summary of health impacts 

experienced due to heat exposure, both at a population and at an occupational level. 

1.2.1 Heat impacts on health 

Humans are homeothermic, meaning that their internal core body temperature is 

regulated to keep it nearly stable within a very narrow range around 37 °C. Changes 

in body temperature can occur from hour to hour and even day-to-day due to the 

impact of heat produced as a result of work performed or that gained from external 

environmental conditions. However, these fluctuations are usually not more than 

1 °C as under normal circumstances, the increase in core body temperature is 

managed by the body up to a limit through a process called thermoregulation 

(elaborated on more detail in Chapter 2).3 Briefly, this process involves the 



Chapter 1 

4 

exchange of heat input and output between the body and the environment, ensuring 

a balance. This can be described mathematically using the heat balance equation: 

M–W=E+R+C+K+S 

On one side of the equation are factors contributing to heat gain (M: metabolic rate 

and W: mechanical work). On the other side of the equation are factors related to 

heat loss (E: evaporation, C: convection, K: conduction, R: radiation) and the rate 

of heat storage (S). When balance is achieved between heat gained and heat lost, 

the rate of heat storage becomes zero and body temperature remains stable.3 

Generally, the health impacts of extreme heat arise when the body fails to regulate 

its temperature and when the heat balance is impaired.3 HRIs such as heat cramps, 

syncope, fatigue, heat exhaustion, and heat stroke are well-known and documented 

direct adverse effects of heat exposure.4 Some of these outcomes may initially 

manifest as feeling of discomfort and may progress further with the intensity of 

exposure. Besides HRIs, exposure to high temperatures can exacerbate chronic 

conditions and diseases such as, diabetes-related conditions, cardiovascular, renal, 

respiratory, and cerebrovascular diseases, as well as mental health conditions. 

Epidemiological studies have shown that mortality/morbidity rates in the community 

rise progressively with temperature and decrease at temperatures within a ‘comfort 

zone' (i.e. between 15 °C and 25 °C).5-7 This relationship between ambient 

temperature and risk of health outcomes is often described as a U, V, or J-shaped 

curve. However, the nadir of the curve or ‘comfort zone’ is place-specific and varies 

geographically with a greater heat effect in cooler locations and a greater cold effect 

in warmer locations.8-10 This variation depends on the climate and the local 
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population’s adaptation to the typical range of temperatures through physiological, 

behavioural, cultural, and technological responses. 

While everyone in the population is vulnerable to extreme heat, some are more so 

than others, depending on the level of exposure, individual susceptibility, and levels 

of resilience.11 People at both ends of the age spectrum, those of lower socio-

economic status and from culturally and linguistically diverse groups, those with 

disability, pre-existing and chronic morbidities (respiratory, cardiovascular, renal, 

and mental), and residents of cities have a higher risk of heat-related morbidity and 

mortality.5, 12-15 Furthermore, research has also shown that mortality and morbidity 

rates increase during extended periods of hot weather or heatwave events.16, 17 

Several heatwaves have attracted public interest due to the adverse impacts they 

imposed on health. Examples include major heatwaves in Chicago (1995), across 

Europe (2003), Australia (2009, 2014), and Russia (2010).18-23 These heatwave 

events have led to the development of interventions and strategies targeted at the 

previously mentioned vulnerable sub-populations. 

As many workers can be exposed to high environmental temperatures as part of 

their job, they are a subgroup who can also be impacted by increasing temperatures 

and heatwaves.24-26 The heat-related injury risk to these workers is the central focus 

of this thesis. Concomitant with the importance of studying the impact of heat 

exposure on population health, research around the impacts on occupational health 

is gaining in importance. 

1.2.2 Impacts of heat on occupational health 

As mentioned previously, the recognition that heat can harm workers’ health is not 

new, and for many occupations, it remains a clear and significant safety hazard.4, 26-
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32 Unlike the general population, some workers are more vulnerable to the impacts 

of rising heat due to the considerable amount of time they spend in hot environments 

and the nature of their jobs.26 These hot environments can be due to ambient heat, 

or the heat generated from machinery, or a combination of both.33 The generation 

of metabolic heat from physical exertion further adds to personal heat exposure. 

Additionally, poorly designed workplaces and the clothing requirements for certain 

occupations also pose risks for some workers.29 The nature of work carried out may 

influence whether or not the individual worker is able to adopt behavioural protective 

measures such as taking rest, self-pace, seeking shade, or drinking water.32 

Industrial sectors such as agriculture, forestry, fisheries, utility, transportation, and 

construction are places where workers are exposed to a combination of higher 

outside temperatures, radiant heat, humidity, and heavy physical labour, making 

them particularly vulnerable.33-36 Furthermore, those working in hot indoor 

environments without air-conditioning such as manufacturing, smelting plants, 

bakeries, laundries, and restaurant kitchens can also be affected.25, 33 

The potential health effects arising from environmental heat exposure can be 

classified as direct and indirect and may be acute or chronic in nature.24 Examples 

of direct impacts include renal diseases in workers manifesting as acute kidney 

injury37, 38 or chronic kidney disease 39 which have been identified among agricultural 

workers and manual labourers in Central America. Research has also shown that 

exposure to high ambient temperatures reduces worker productivity,40 mental task 

capacity,41 and increases the risk of occupational injuries,42-45 which are examples 

of indirect effects of workplace heat exposure. 
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1.3 WORK-RELATED INJURIES 

Injuries that arise during employment, known as work-related injuries (WRIs), are a 

substantial public health burden in Australia and worldwide. According to the 

International Labour Organization (ILO), WRI is experienced by 153 workers 

worldwide, every 15 seconds.46 This equates to about 6400 deaths from WRI and 

860,000 being injured on the job every day amounting to over 2.3 million lives lost. 

In Australia, it was estimated that the total economic cost of WRIs was 4.1% of the 

GDP ($61.8 billion) for the 2012–2013 financial year.47 

Several factors including the nature of work, workplace hazards (i.e. physical, work 

organisation, and psychosocial) along with individual factors such as age, gender, 

and health status, contribute to the risk of WRI.48 However, WRI are often 

preventable if safety control measures are in place. Therefore, identification of 

hazards and assessment of associated risks and vulnerable workers remains crucial 

so that appropriate prevention strategies can be adopted. 

1.4 HOW DO WORK-RELATED INJURIES OCCUR IN HOT WEATHER? 

As physical workplace hazards are a risk factor for WRI, it is plausible that exposure 

to hot weather may lead to increased risk. Although a direct biological mechanism 

is not present, it is possible that WRI can occur in hot weather as a part of the 

progression of health effects along a continuum. Figure 1.1 shows that there are 

many cases of initial signs of heat stress due to heat exposure and progressively 

fewer incidences of more serious consequences such as heat stroke and ultimately 

death. When a worker is heat stressed, they can become fatigued and lethargic 

resulting in a reduction in fine motor skills, coordination, alertness and general 

productivity. These effects can lead to a loss of concentration, alter behaviour, and 
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increase the rate of mistakes resulting in injuries, such as, falls and traffic 

accidents.49 Workers may also reduce their use of personal protective equipment 

(PPE) because of discomfort, and there may be changed work practices due to hot 

surfaces/equipment, and grip loss or visibility problems due to perspiration.50 In hot 

conditions WRI can occur in addition to, secondary to, or even before, HRI.50 

However, more information is needed to better understand the heat-WRI 

phenomenon which can inform evidence-based adaptive strategies and 

interventions to reduce the risk. 

 

Figure 1.1 Progression of health effects of heat-related illness and work-related injuries from minor 

symptoms to death. 

Source: Adapted and redrawn from Corletto RD.51 

1.4.1 Extent of the work-related injury problem in hot weather 

Reports from three countries (United States [US], Canada, and Australia) provide 

some indication of the extent of the issue of injury associated with work in hot 

conditions. 
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Firstly, according to the US Bureau of Labor Statistics (BLS), there have been 1,113 

worker deaths in the US between 1992 and 2017 associated with ‘contact with 

temperature extremes’, a category encompassing exposure to environmental heat 

and cold, and contact with hot objects and cold objects.52-67 However, the majority 

of the deaths (815 deaths) were due to exposure to environmental heat (Figure 

1.2A). The corresponding figures in Canada and Australia were 69 deaths (1996–

2017)68 and 53 deaths (2003–2016),69 respectively, with the majority due to ‘contact 

with hot objects’. 

Besides fatalities, non-fatal occupational injuries and illnesses that involved lost 

days of work associated with temperature extremes have also been documented, 

ranging from 41,374 in Australia (1996–2017)70-72 to over 600,000 in the US (1992–

2017) 52-67, 73-98. The majority of these non-fatal injuries in these three countries were 

due to ‘contact with hot objects’ (Figure 1.2B). Combined, these deaths and injuries 

represent less than 2% of total fatalities and claims associated with temperature 

extremes, with the proportion attributed to ‘exposure to environmental heat’ 

constituting less than 1%. 

However, it is possible that the issue of WRI related to heat is under-recognised. 

This is because of the multi-factorial aetiology whereby the phenomenon of heat-

related injuries may be attributable to heat-induced physiological and behavioural 

factors interacting with existing workplace hazards as discussed earlier in Section 

1.4.50 For example, if a heat-stressed worker has a fall on a hot day the cause will 

most likely to be recorded as a slip with no mention of the underlying symptoms of 

heat stress that may have contributed to the fall. As a result, the relative incidence 

or attributable burden of heat-related WRI is unknown.
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Figure 1.2 Fatal (A) and non-fatal (B) cases of occupational injuries and illnesses by event or exposure (temperature extremes—US and Canada) and 

mechanism of injury (‘heat, electricity and other environmental factors’—Australia). 

Sources: Data were extracted and drawn from US BLS (1992–2017);52-67, 73-98 Canada AWCB (1996–2017);68 Safe Work Australia (SWA, fatal data: 2003–2016; non-fatal data: 1996–2017).69-71, 99 

A B 
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1.5 INFLUENCE OF GLOBAL WARMING ON OCCUPATIONAL HEALTH 

The previous sections have shown that workers’ health and safety can be affected 

by hot weather conditions. Given that the climate is warming it is now of growing 

importance to understand the influences of heat on occupational health. 

1.5.1 Global assessment of a changing climate 

The World Health Organization (WHO) has recognised ‘climate change as one of 

the leading global health threats of the 21st century’.100 According to the 

Intergovernmental Panel on Climate change (IPCC) report, the occurrence of 

extreme weather events (e.g. heat, floods, cyclone, and droughts) has increased in 

frequency, intensity, duration and timing in recent decades.101 Among all the intense 

weather events, the most robust observed evidence is regarding extreme heat 

events which have increased since the 1950s.102 

Human actions such as deforestation and the burning of fossil fuels have increased 

the proportion of greenhouse gases in the atmosphere resulting in heat being 

trapped in the lower atmosphere.103 As a result the global average temperatures 

have risen about 0.85 °C over the last 100 years (Figure 1.3) and projections based 

on a trajectories of greenhouse gas concentrations (i.e. representative 

concentration pathways) suggest that this temperature rise will reach 1.8 °C–4 °C 

by 2100.104 With a greater than 90% probability, the IPCC notes that there has been 

an increase in the overall number of warm days and nights and a decrease in the 

number of cold days and nights observed globally since the 1950s.101 At a 

continental scale, most of these impacts have occurred in North America, Europe, 

and Australia. 
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Figure 1.3 Global annual mean temperature anomaly (1880–2018). 

Source: Australian BOM105 (used under Creative Commons Attribution Australia Licence). 

1.5.2 Australian assessment of a changing climate 

Consistent with the global trend, the mean surface air temperature across Australia 

has warmed by over 1.1 °C since 1910 and this trend has become more evident 

since the 1970s (Figure 1.4). As future temperatures depend on greenhouse gas 

emissions, projections by the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) and Bureau of Meteorology (BOM) indicate that by 2030, 

Australian temperatures could rise by 0.6 °C–1.5 °C compared to the climate of 

1980–1999. Temperatures are projected to be 1.0 °C–2.5 °C under low greenhouse 

gas emissions scenarios and 2.2 °C–5 °C for high greenhouse gas emissions by 

2070.106 
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Figure 1.4 Australian annual mean temperature anomaly (1910–2018). 

Source: Australian BOM107, 108 (used under Creative Commons Attribution Australia Licence). 

Consistent with the global trend, there has been a decline in the frequency of cooler 

months (cooler days and cold nights) and increase in hot days and warm nights in 

Australia since the 1980s. Indications suggest that this trend of increasing numbers 

of hot days will continue into the future. For example, Figure 1.5 shows the 

projections of the average number of days per year (>35 °C and >40 °C) by 2030 

and 2090 for each of Australia’s capital cities.  
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Figure 1.5 Current and future projections of number of days above 35 °C (A) and 40 °C (B) for 

each Australian capital city by 2030–2090 under different representative concentration pathways 

(RCP) scenarios. 

Source: Based on data from Webb LB and Hennessy K.109 

Summer temperatures are now continuing into autumn, with the recent BOM climate 

statement indicating the increasingly widespread warmth throughout the year.108 

Notably, nine out of ten of Australia’s warmest years on record have occurred since 

2005 with January 2019 recorded as the hottest month on record with mean 

temperatures exceeding 30 °C. Several all-time temperature records were also 

broken in the 2019 summer. For example, temperatures reached 47.7 °C on 

24 January 2019 in Adelaide making it the hottest Australian capital city, topping the 

previous record of 46.4 °C in Melbourne in 2009. 
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Besides rising temperatures and increased frequency of hot days, heatwaves have 

become more frequent, intense, and longer in duration.103 With adverse effects on 

human health, heatwaves can be ‘silent killers’ as they have taken more lives than 

any other natural disasters combined.110 

The increasing number of hot days associated with climate change and heatwaves 

could pose a serious threat to Australia and the health of vulnerable populations. In 

particular, workers will be exposed to more hot days affecting not only their health 

and safety, but also work capacity and productivity. Indeed, a Western Australian 

study predicts that by 2070 it will be dangerous to perform manual labour tasks on 

15–26 days per year compared to 1 day per year at present, even for those 

acclimatised to the conditions; whereas for the unacclimatised this figure 

approximately doubles.111 This highlights the need to better understand the impacts 

of heat on workers and the development of prevention and adaptation strategies to 

reduce the risk to health and safety in the face of a warming climate. 

1.6 THESIS AIM 

The overall purpose of this research was to obtain a better understanding of the 

heat-work injury phenomenon in Australia, thereby contributing to new knowledge 

that may be useful in reducing the frequency and incidence of WRI. The goal of this 

thesis is to present the findings of the research which was conducted in six studies. 

Studies 1–4 systematically examined the association between ambient heat and 

WRI in Australia using statistical reviews of workers’ compensation (WC) claims 

data. Studies 5 and 6 investigated a range of stakeholder perceptions towards heat-

related injury, its prevention, and management using survey data collected de novo. 
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The main research questions, and aims and objectives of the research, are detailed 

in Chapter 3. 

1.7 THESIS OUTLINE 

This thesis is presented as a ‘thesis by publication’ and is formulated in five sections. 

A concept map illustrating the thesis structure is shown in Figure 1.6. 

Section A consists of two chapters: a literature review (Chapter 2) and the study 

design and methodology (Chapter 3). Chapter 2 presents a comprehensive 

systematised review of the current state of knowledge about the effects of heat 

exposure on WRI. The published review is supplemented by a review of relevant 

literature on stakeholder perceptions, followed by gaps in the existing literature that 

this thesis aims to address. Chapter 3 outlines the aims and objectives of the study, 

research questions extrapolated from the knowledge gaps summarised in Chapter 

2, and the conceptual framework underpinning the studies that constitute this thesis. 

Furthermore, Chapter 3 also discusses the study design, study population, data 

collection and management, and the overall analytical approach used. 

Section B comprises two chapters (Chapters 4 and 5) covering the first two studies 

(Studies 1 and 2, respectively), investigating the effects of ambient temperatures on 

WRI in four Australian cities: namely, Adelaide (Study 1), and Brisbane, Melbourne, 

and Perth (Study 2). Accordingly, both these chapters have been published in peer-

reviewed journals. 

Section C consists of two chapters (Chapters 6 and 7) which specifically focus on 

the details of two studies examining the effects of heatwaves on WRI in the 



Chapter 1 

17 

previously mentioned four cities. Chapters 6 (Study 3) and 7 (Study 4) have also 

been published as articles in peer-reviewed journals. 

Section D focusses on injury experiences, management, and prevention from 

stakeholders’ points of view, and consists of two chapters (Chapters 8 and 9). The 

details of the final two studies are presented in this section. Chapter 8 (Study 5) 

explores the perceptions of health and safety professionals (HSPs), whereas 

Chapter 9 (Study 6) presents perceptions from health and safety representatives 

(HSRs). Both these chapters prepared in manuscript form have been submitted for 

publication. 

Section E brings together the multiple lines of evidence arising from the six studies 

presented in Sections B through D. This section consists of two chapters (Chapters 

10 and 11). Chapter 10 summarises and discusses the key findings from Chapters 

4–9, along with the strengths, limitations and overall significance of the work 

undertaken. The public health implications of this research and suggestions for 

research areas warranting attention and further investigation are also articulated in 

Chapter 10. Chapter 11 draws an overall conclusion for the study and concludes 

the thesis with recommendations based on the research findings. 

As mentioned previously, the format of this thesis is by publication, and as such to 

aid the reader, clear navigation links have been included across sections and 

chapters. Each section begins with an overview that outlines the chapters in that 

respective section and ends with a section summary. Similarly, each chapter begins 

with a preface and ends with a chapter synopsis. The published articles and 

manuscripts are formatted such as that, subsections, figures and table numbers are 

consecutive throughout the thesis to align with those in other chapters. The list of 
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references at the end of the thesis includes those cited in all chapters and papers 

included in the thesis. 

 

Figure 1.6 Flowchart illustrating the thesis structure. 

Notes: Sections are denoted as A, B, C, D, and E. Published papers and manuscripts prepared for publication were drawn 

from Chapters 4 to 9.
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Overview of Section A 

Section A of the thesis consists of two chapters, Chapters 2 and 3, which provide 

the basis, background, and design for the research conducted in this thesis. 

Chapter 2 presents a literature review that ascertains the current state of knowledge 

regarding the effects of high temperatures and heatwaves on the risk of 

occupational injuries, and covers the major aspects of this research. Literature 

covering epidemiological evidence and stakeholder perceptions is also reviewed. 

This chapter also presents the research gap leading to the studies conducted and 

presented in this thesis. 

Chapter 3 presents the aims and objectives, research questions, and conceptual 

framework of the study. A broad outline of the study design, description of the data 

sources used, and the overall methodological framework and analytical approach 

used in this research is also provided in Chapter 3. 
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Chapter 2: Literature Review 

2.1 PREFACE 

This chapter is divided into five sections. Section 2.3 presents a comprehensive 

epidemiological review of published studies up to 2017, examining the relationship 

between heat exposure and WRI. This review was published in April 2018 

(Varghese et al. Are workers at risk of occupational injuries due to heat exposure? 

A comprehensive literature review. Safety Science. 2018. 110, Part A: 380–92. 

doi:10.1016/j.ssci.2018.04.027) and provides the foundation upon which this 

research was conducted. The published review article is presented in the form 

accepted for publication, with the exception of minor differences in formatting, such 

as the referencing style, section, figure, and table numbering. 

Section 2.4 provides an update of relevant epidemiological studies published from 

February 2017 to April 2019. Section 2.5 provides an additional review of the 

literature pertaining to stakeholder perceptions of heat-related work injuries. Finally, 

Section 2.6 discusses research gaps in the existing literature, and Section 2.7 is a 

summary of the information covered in this chapter. 
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2.3 PUBLICATION 

2.3.1 Abstract 

Rationale: There is increasing concern about occupational illness, injury and 

productivity losses due to hot weather in a changing climate. Most of the current 

understanding appears to relate to heat-induced illness, and relatively little 

regarding injuries. 

Objectives: This paper sought to summarise the evidence on the relationship 

between heat exposure and injuries, to describe aetiological mechanisms and to 

provide policy suggestions and further research directions. 

Methods: A literature review was conducted using a systematic search for 

published and grey-literature using Embase, PubMed, Scopus, CINAHL, Science 

Direct and Web of Science databases as well as relevant websites. 

Results and Conclusions: There was a diversity of studies in terms of occupations, 

industries and methods utilised. The evidence suggests an imprecise but positive 

relationship between hot weather and occupational injuries, and the most likely 

mechanism involves fatigue, reduced psychomotor performance, loss of 

concentration and reduced alertness. The findings reflect an increased awareness 

of injury risk during hot weather and the economic benefits associated with averting 

injury, poor health outcomes and lost productivity. 

Implications: More work is required to characterise specific injuries and the workers 

at risk. Policymakers and employers should be aware that heat exposure can lead 

to occupational injuries with information and training resources developed to aid 

prevention.  
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2.3.2 Introduction 

Global average temperatures have risen about 0.85 °C over the last 100 years with 

temperatures further projected to increase by an estimated average of 3 °C by 2100 

to reach 1.8 °C–4 °C above pre-industrial times.104 As a result, extremely hot days 

and warm nights have increased in number over recent decades and indications 

suggest that this trend will continue.104, 112 

In addition to the adverse effects of heat exposure on the general population, 

occupational health and safety (OHS) is also affected.5, 12, 13 Workers in industrial 

sectors such as agriculture, forestry, fisheries and construction are exposed to 

outside temperatures and solar heat load making them vulnerable to the adverse 

health effects of heat exposure in hot weather.34, 36 Furthermore, those working in 

hot indoor environments without air-conditioning—such as manufacturing, smelting 

plants, bakeries, laundries, and restaurant kitchens—can also be affected.34-36 

Heat-related illnesses (HRIs) such as heat cramps, heat syncope, fatigue, heat 

exhaustion, heat stroke and heat shock are often the well-known and documented 

adverse direct effects of heat on health.113 These outcomes have been reported in 

the occupational setting among, for example, surface mine workers,114, 115 

construction workers,116 agricultural workers117-120 and radiation decontamination 

workers.121 

There is now increasing evidence that occupational heat stress is strongly 

associated with injuries, as an indirect effect of heat exposure.7, 42, 43, 122-125 Work-

related injuries (WRIs)/accidents in hot conditions can be caused by physical 

discomfort and altered behaviour, fatigue, declining psychomotor performance, loss 

of concentration and reduced alertness.113 However, the extent of injury occurrence 
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in hot weather is poorly characterised and understood, and may represent a notable 

human and economic cost when combined with HRI. 

In the United States (US),  the National Institute for Occupational Safety and Health 

(NIOSH) estimated in 1986 that around 5–10 million workers worked in hot weather 

conditions for at least part of the year.32 According to the US Bureau of Labor 

Statistics (BLS) Census of Fatal occupational injuries report, 144 worker deaths and 

around 14,022 non-fatal work injuries and illnesses involving lost days of work were 

reported between 2011 and 2014 due to environmental heat exposure.126 These 

figures provide little information about the scale of the problem and are also unlikely 

to include statistics on injuries that could be attributed to heat such as falls or traffic 

accidents. As a result, the relative incidence of heat-related occupational injuries is 

unknown. 

In order to summarise current literature on hot weather and occupational injuries, a 

comprehensive literature search was conducted. Initially, we present a systematised 

review of studies on heat exposure and injuries, followed by a discussion of the 

potential pathways to injuries. 

2.3.3 Methods 

Search strategy 

Published literature on heat exposure and injuries were obtained by systematically 

searching PubMed, Embase, Scopus, CINAHL, Science Direct and Web of Science 

databases. A search strategy using a combination of controlled vocabulary [Mesh, 

EMTREE] and key words was developed for each of the above databases (see 

Table B1, Appendix B1-supplementary file for detailed search strategy). The 

following keywords along with their synonyms and closely related words were used: 
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‘heat’, ‘heat stress’, ‘hot weather’, ‘high temperature’, ‘climate change’; combined 

with ‘injury’, ‘occupation’, ‘workers’, ‘work-related’ and ‘epidemiology’. Searches 

were not limited to year of publication and references cited in identified papers were 

used as a further source of literature. Additionally, unpublished studies 

(articles/reports/academic-theses/conference presentations) were searched in 

internet search engines and web-based searches for ‘grey literature’. 

Inclusion and exclusion criteria 

The published studies included in the review met the following criteria: 

 Original research articles in English published until 31 January 2017. 

 Studies which investigated the association between heat exposures and 

WRIs/accidents. 

Excluded were studies not focussing on injuries occurring in workplaces due to heat 

exposure, and literature reviews investigating the general population health impacts 

of heat. All titles and abstracts from the literature search were evaluated against the 

inclusion criteria for possible relevance and those references judged to be relevant 

were included as part of the review. 

2.3.4 Results 

Twenty-six studies (22 published and 4 unpublished) from 1922 to 2017 were 

selected as part of this review. Figure 2.1 illustrates the study selection process for 

this review. 
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Figure 2.1 Flowchart of selection process for published studies. 

Figure 2.2 shows the study location and design employed by the included studies. 

Most studies have been undertaken in developed countries such as North America 

and Australia, with fewer in developing and tropical parts of India and Thailand. The 

study populations were from general and specific occupational settings (n=24) and 

the military (n=2). The weather variables used in the studies included maximum 
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temperature (Tmax, n=7), minimum temperature (Tmin, n=1), and indexes combining 

relative humidity and temperature, such as Apparent Temperature (AT, n=1), Heat 

Index (HI, n=1), Humidex (HX, n=1) and Wet Bulb Globe Temperature (WBGT, 

n=2). 

The methods to evaluate the association between heat exposure variables and the 

risk of occupational injury used in the studies were ecological time-series studies 

(TS, n=5), case-crossover studies (CCO, n=3) correlational studies (n=10) and 

cross-sectional questionnaire surveys (n=8). The TS/CCO and correlational studies 

involved both non-parametric regression models such as generalised estimating 

equations (GEEs), generalised additive models (GAMs) and negative binomial 

regression (NBR) and parametric regression models. The models of the TS and 

CCO studies were adjusted for key potential confounders such as relative humidity 

(n=2), seasonal and long-term trends (day of week, year, month, n=4), weekends 

and public holidays (n=5) and used labour force estimates as offset (n=1). However, 

none of the TS or CCO studies included effects of air-pollution, a variable normally 

included in the temperature-health relationship analysis models.(27) The summary of 

the included studies (study description, methods and key findings) is provided in 

Table 2.1.
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Figure 2.2 Distribution of studies assessing heat exposure and occupational injuries by study country and study design. 

Notes: TS: time series; EC: ecological correlation; CS: cross-sectional; CCO: case-crossover; CO: cohort study. Colour indicates the number of publications per country.
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Risk of accidents/injuries 

The relationships between temperature and occurrence of workplace 

injuries/accidents have been examined by several studies. Consistent with the 

literature on heat effects on morbidity and mortality, this association between heat 

exposure and occurrence of injury/accidents is typically described as a U-, V-, or J-

shaped curve whereby injuries increase up to a certain threshold (e.g. around 30 °C 

depending on each individual study) following which they decline, possibly due to 

workers modifying work practices at extreme temperatures.42, 43, 45, 122, 127, 128 The 

associations between heat and injuries among different occupational categories are 

discussed below. 

Heat-associated injuries in the workforce 

A relationship between heat exposure and occurrence of injury/accidents was first 

established by Osborne et al. in 1922.129 They found that fewer accidents occurred 

in three British munitions factories when temperatures were around 19 °C–20 °C, 

while higher frequencies of accidents occurred at both higher and lower 

temperatures.129 However, in 1971, a study of 2,367 accidents in four industrial 

workshops in the United Kingdom (UK) found no significant increase in accidents at 

higher temperatures while in half the workshops more accidents occurred at 

temperatures below 20 °C.130 

In a 2005 study by Fogleman et al.43 conducted at a US aluminium smelter, a 

significant increase in acute injury rates was observed (Odds Ratio (OR)=2.3) when 

the HI was above 32 °C. Bernard and Fogleman131 categorised ‘heat stress levels’ 

(HSL) as being ‘low’ when the WGBT was 0 °C–3 °C above the threshold limit value 

(TLV) of 29 °C WBGT and ‘high’ when the HSL was 3 °C WGBT above TLV. They 
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reported an increase in the rate of acute musculoskeletal disorders at both low and 

high HSL with corresponding ORs of 1.8 (95% CI: 1.1–2.9) and 2.4 (95% CI: 1.4–

4.3) respectively.131 Significantly increased rates of acute injuries were found at high 

TLV (OR=1.7 95% CI: 1–2.9) compared to low TLV (OR=1.4 95% CI: 0.9–2.2).131 

Moreover, in a study of hospital admissions in Tuscany, Italy, Morabito and co-

workers122 found that the peak occupational accident rate occurred on days 

characterised by high, but not extreme thermal conditions. No association was found 

for outdoor workers such as those employed in construction, land and forestry 

occupations but a significant increase in injuries occurred between the 10th and 

90th percentile of temperature range.122 Similarly, Xiang et al.45 conducted a study 

assessing the association between high temperature and WRIs in Adelaide, South 

Australia, during 2001–2010, and found that injuries occur in moderately hot 

conditions when workers can suffer from impaired mental judgment and 

concentration. The authors found a reversed U-shaped relationship between Tmax 

and total workers’ injury claims. This divergence in the shape of the relationship was 

attributed to adaptive behaviours at extreme temperatures resulting in the decline 

of WRIs.45 The absence of denominator data for calculating WRI rates was noted. 

The study reported that a 1 °C increase in Tmax was associated with 0.2% increase 

in injury claims up to 37 °C, after which injury risk significantly dropped.45 A log-

linear relationship was reported between outdoor temperatures and injury claims in 

Quebec, Canada.127 The findings were similar to those of Xiang et al.45 in that a 

0.2% increase in daily injury claims was observed with each 1 °C increase in daily 

Tmax.127 Both the Adelaide and Quebec studies identified key vulnerable groups that 

included: males, younger workers (<24 years), outdoor, physical occupations and 
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industries, tradespersons, and workers in small- and medium-sized businesses.45, 

127 

Another study in Melbourne, Australia also reported positive associations between 

temperature and injuries using a CCO approach.132 The authors did not find any 

evidence of non-linearity in the relationship between Tmax and injuries which 

contrasts with the studies in Adelaide45 and Italy.122 Compared to other studies 

mentioned previously, the authors used daily Tmin as the exposure metric and found 

a stronger curvi-linear relationship with injuries—a finding unique in this literature.132 

Female workers, young workers (aged 25–35 years) and older workers (>55 years), 

those engaged in light and limited physical demand work, and those working in 

regulated indoor climates, vehicle or cabs, were found to be at risk when daily Tmin 

was high.132 The key vulnerable groups identified using daily Tmax were similar to 

those reported by Xiang et al.45 and Adam-Poupart et al.127 but also included 

workers engaged in heavy physical work.132 

Higher estimates of work-related occupational accidents and injuries associated 

with ambient temperatures were reported in a 20-year US (unpublished) study of 

71,218 occupational injuries and fatalities from 1990 to 2010 targeted at 

‘temperature-sensitive industries’ such as construction, agriculture, forestry and 

utilities servicing industries.133, 134 It was reported that on days with Tmax between 

32 °C and 37 °C, accident rates increased by 8.2%, and by 30% on days with Tmax 

above 37 °C. Injuries were associated with a 4% increase on days with Tmax 

between 21 °C and 27 °C, and 30% for days above 37 °C.133, 134 Relative to days of 

Tmax between 15 °C and 21 °C, rates were higher when temperatures were 

extremely high or low.133, 134 Several recent studies by Spector et al.135, Hiles136  and 
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Garzon-Villalba et al.44 using other meteorological indices such as HX and WBGT 

have also shown that increases in injuries occur at higher temperatures. 

Two studies were also conducted amongst military personnel. A study of US army 

combat trainees found that the incidence of injuries was higher in summer than in 

fall, with a dose-response relationship observed between incidence and average 

daily Tmax.137 In a study of national guard troops involved in disaster relief work 

(sandbagging), days with highest Tmax translated into higher HRI rates with higher 

rates observed in females (relative risk, RR=3.1) than in males.138 The authors 

concluded that high ambient temperature, high humidity and prolonged exertion can 

be the determinants of injuries.138 

Apart from the evidence from ecological studies, eight cross-sectional studies that 

investigated heat exposure as a risk factor for occupational injuries were also 

identified. These studies relying on self-reported injury data obtained through 

surveys, covered a range of workers from general (all workers) to workers in specific 

industries (both outdoors and indoors) where heat exposure was a known risk factor 

(e.g. miners, construction, iron and steel and textile industry workers). One study of 

textile industry workers in India showed a higher prevalence of injuries during 

summer months when outdoor ambient temperatures ranged between 42 °C and 

48 °C.139 Similar findings were also reported in other cross-sectional studies 

conducted in India, France and Australia where injury prevalence among workers 

exposed to high temperatures ranged from 9.2% to 49%.116, 140-144 Additionally, a 

large national cohort study of 58,495 workers in Thailand provided substantial and 

statistically significant evidence of the relationship between heat stress and 

occupational injuries.42 In this study, occupational heat stress was prevalent in 20% 
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of the surveyed workers who also had a greater odds of serious occupational 

injuries. Interestingly, this study adjusted for several important covariates such as 

age, income, education, account of existing illness, alcohol consumption, smoking 

status, sleeping hours, job location and nature of the work.42 

Effects of heatwaves 

Heatwaves are prolonged periods of excessively hot weather with impacts that can 

differ from those of single high temperature days. In a study from Adelaide, South 

Australia, Xiang et al.145 found no significant difference in overall workers’ 

compensation (WC) claims during heatwaves compared to non-heatwaves but 

noted that wounds, lacerations, amputations and burns were the types of injuries 

strongly associated with heatwaves.145 In a CCO study of construction worker claims 

in Adelaide, Rameezdeen and Elmualim146 found that the severity of work-related 

accidents/injuries is governed by worker characteristics, type of work, work 

environment and the direct cause of the injury (i.e. agency of accident).They 

reported that during heatwaves, workers in the civil engineering sub-sector, older 

workers and those employed in small-sized companies were at higher risk of severe 

accidents.146 

Types of occupational injuries associated with heat exposure 

Most of the reviewed studies have reported on total occupational injuries (both acute 

and serious), while some ecological and cross-sectional studies42, 116, 127, 135, 140, 145 

have focussed on specific types of injuries sustained in hot conditions. 

Notwithstanding, some studies have mentioned increased risks for injuries arising 

from ‘slips, trips and falls’, ‘exposure to harmful substances’, ‘contact with 

objects/equipment’, ‘by hitting objects’, ‘blunt forces’, ‘wounds, lacerations and 
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amputations’, ‘burns’, ‘minor cuts’, ‘scrapes’, ‘being hit by moving objects’, 

‘contusions’ and ‘fractures’ in association with heat exposure.42, 145 



 
Chapter 2 

 38 

Table 2.1 Characteristics of studies on the association between heat exposure and work-related injuries (WRI). 

Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Ramsay et al. 
(1983)147 

Manufacturing 
plant and foundry 
workers 

WBGT Unsafe behaviour 
index (UBI) 

n=17,841 

n=1,734 as UBI 

ANOVA, quadratic model 
controlled for workers’ 
metabolic workload, job 
risk group, time of day and 
day of week 

U-shaped relationship minimum UBI occurred between 17 °C–
23 °C WBGT. 

Metabolic workload is also significantly related to UBI. 

Dellinger AM 
et al. 
(1996)138 

National guard 
troops 

Tmax Medical claims of 
illness and injuries 
(HRI) 

Illness (n=95) 

Injuries (n=119) 

Fisher exact tests Overall 19.3% injuries; males: 16% and females: 42%. 

Women greater risk for HRI than men. 

(RR=3.07; 95% CI: 1.09–8.68). 

Days with Tmax coincided with highest HRI rates and higher HRI 
rates at the beginning of the relief work declining over time. 

Knapik JJ et 
al. (2001)137 

US army 
subjects 
attending basic 
combat training 

Average Tmax 
and minimal 
dry bulb 

Retrospective injury 
data post training 

Injury categories: 

–All injuries 

–Overuse injury 

–Traumatic injuries 

–Time-loss injuries 

Pearson chi-square test, 
logistic regression and 
Pearson product moment 
correlation coefficients 

Higher incidence of injury during summer (30.8 °C–36.1 °C) 
than fall (14.5 °C–26.1 °C). 

Men had twice higher risk of all injuries and time-loss injuries in 
summer than women. 

Dose-response relationship identified between injury incidence 
and average Tmax (between 16.2 °C and 34.2 °C) with 
correlations ranging from 0.92 to 0.97 for time-loss injuries and 
all injuries respectively. 

Nag PK and 
Nag A 
(2001)139 

Textile industry 
workers 

Heat exposure 
as risk factor 

Questionnaire data 
containing accident 
reports n=4,125 

Descriptive The prevalence of accidents were significantly higher in summer 
months (May–June) when outdoor temperatures were between 
42 °C and 48 °C. 
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Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Fogleman et 
al. (2005)43 

Aluminium 
smelter 

HI–11 thermal 
categories, 
considered 
relative 
humidity 

Acute injury 
(lacerations, 
punctures and 
musculoskeletal 
disorders—strains, 
sprains and 
hernias) 

n=557 cases 

Ratio of number of 
accidents using number of 
acute injury cases and 
person-hours 

Poisson regression, 
Logistic regression 

Modified U-shaped relationship between thermal category and 
the occurrence of acute injuries. 

Higher odds ratios (OR) occurred below −7 °C and above 32 °C. 

Between 33 °C and 38 °C; OR=2.28 (95% CI:1.49–3.49). 

Over 38 °C; OR=3.52 (95% CI:1.86–6.67). 

Young workers—high risk of acute injuries. 

Morabito M et 
al. (2006)122 

Hospital 
admissions 

AT [Daily AT 
max, AT24 and 
AT day] 
percentiles: 

<25th  

25–50th  

50–75th  

>75th  

Work-related 
accidents 

n=835 

Mann–Whitney U Test and 
Kruskal–Wallis Test 

Lags up to 1 day 

Excluded holidays and 
weekends 

Peak accidents on current days (lag=0) characterised by high 
and not extreme thermal conditions (3rd quartile—average AT 

day=24.8 °C–27.5 °C). 

Bhattacherjee 
A et al. 
(2007)142 

Coal miners Heat exposure 
as risk factor 

Occupational 
injuries 

Chi-square independence 
test and logistic regression 

28.5% of occupational injuries were due to heat exposure with a 
crude RR of 1.35 (95% CI: 1.03–1.78). 

Chau N et al. 
(2008)141 

All workers Heat exposure 
as risk factor 

Occupational 
injuries 

Association analysed by 
crude OR and 95% CI 

Heat exposure was observed in 18.6% of occupational injuries 
making it a risk factor (OR=2.29; 95% CI: 1.73–3.01). 
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Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Tawatsupa B 
et al. (2013)42 

All workers Heat stress 
measure: 
‘never’, 
‘sometimes’ 
and ‘often’ 

Frequency of 
occupational 
injuries occurring in 
workplace both 
agricultural and 
non-agricultural 
(none, once, twice, 
thrice and more 
than four times) 

Logistic regression Statistically association of heat with occupational injury (OR 
2.12, 95% CI: 1.87–2.42 for males and 1.89, 95% CI: 1.64–2.18 
for females). 

Type of injuries: blunt force (24%), stab-cut (21%), fall (18%). 

Males were more likely to have stab-cut or blunt force injury 
while falls were more observed in females. 

Socio-economic factors (income, job location-rural), health 
behaviours and status (smoking, drinking, less sleep, obesity, 
existing illness) and nature of work (fast paced) had strong and 
significant influence on the relationship between heat stress and 
occupational injury. 

Xiang et al. 
(2014)45 

All workers Daily Tmax 

Daily Tmin 

Work injury claims 

(n=125, 267) 

GEE with negative 
binomial distribution 

Piece wise linear spline 
function 

Restrictions to warm 
season (October–March) 

Weekdays 

Model adjusted for: 

Day of week, calendar 
month and long-term 
trends 

Reversed U-shaped relationship between daily Tmax and overall 
workers’ injury claims. 

0.2% increase in injuries per 1 °C increase in Tmax for up to 
37.7 °C. 

No delayed effects of temperature above threshold. 

Vulnerable groups: male workers, younger workers aged below 
24 years, and those working in the ‘construction’, ‘agriculture, 
forestry and fishing’ and ‘electricity, gas and water’ industries. 
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Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Xiang et al. 
(2014)145 

All workers Daily Tmax 

Daily Tmin 

Heatwave: 
Tmax ≥35 °C for 
three or more 
consecutive 
days 

Work injury claims 

(n=125, 267) 

GEE models with negative 
binomial distribution 

Restrictions to warm 
season (October–March) 

Weekdays 

Model adjusted for: 

Day of week, calendar 
month and long-term 
trends 

A 6.2% increase in compensation claims was observed for 
outdoor industry workers during heatwaves. 

Workers in ‘agriculture, forestry and fishing’ and ‘electricity, gas 
and water’ had significant increase in injury claims. 

Type of injuries: being hit by moving objects (9.7%), chemicals 
and other substances (20%) and heat, electricity and other 
environmental factors (39%) contributed to the increased injury 
claims during heatwaves. 

Biswas MJ et 
al. (2014)143 

Iron and steel 
workers 

Heat exposure 
as risk factor 

Questionnaire and 
interview of workers 
history of injuries 

Exposed group: 

–Steel melting 

–Rolling mill 

–Quality control 

Non-exposed: 

–Maintenance and 
administration 
department 

Descriptive analysis Injuries were reported in 18.7% of workers with higher 
prevalence in exposed group than non-exposed group (94.6% 
vs 5.3%). 
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Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Adam-Popart 
A et al. 
(2015)127 

All workers Daily Tmax 

Considered 
relative 
humidity 

WRI 

(n=374, 078) 

Generalised linear model 
with negative binomial 
distributions 

Lag effects considered 
(lags 1 and 2; mean of 
lags 0–1 and mean of lags 
0–1–2) 

Model adjusted for: 

Day, month, year, 2-week 
holiday in construction 
sector, public holidays, 
relative humidity and 
monthly working 
population 

Log-linear relationship between temperature and injuries. 

0.2% increase in daily compensation claims with each increase 
in Tmax. 

Statistically significant incidence rate ratios (IRRs) were found 
for industrial sectors involving both outside and inside work. 

Types of injuries: slips, trips and falls, contact with 
objects/equipment, exposure to harmful substances 

Jain AA et al. 
(2015)144 

Iron and steel 
workers 

Heat exposure 
as risk factor 

Questionnaire data 
supplemented by 
clinical examination 
and review of 
medical records 

(n=200) 

Chi-square test Out of 127 workers exposed to high temperatures, 98 (77.2%) 
had history of injury. 

Significant statistical association was found between injury and 
exposure to heat (X2=33.97, df=1, p<0.0001. 

Dutta P et al. 
(2015)116 

Construction 
workers 

Heat exposure 
as risk factor 

Cross-sectional 
survey with 
anthropometric 
measurements 
(n=219) and focus 
groups (n=4) 

Descriptive analysis 12.8% workers reported injured at work of which 9.2% of injuries 
were in summer compared to 14.7% in winter. However, new 
workers with <36 months of experience reported injuries in 
summer. 

Types of injuries: minor cuts/scrapes/minor injuries, 
fractures/falls. 
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Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Xiang J et al. 
(2016)140 

Outdoor 
industrial workers 

Heat exposure 
as risk factor 

Questionnaire 
survey among 
apprentices, 
trainees (n=511) 
and established 
workers (n=238) 

Descriptive analysis 25.9% workers reported experiencing heat-related injuries at 
work during very hot weather. 

Types of injuries: burns (54.1%), falls, slips and trips (44.3%), 
by hitting objects (27.8%), by being hit by moving objects 
(10.3%). 

25.2% of workers reported witnessed injuries to co-worker 
during hot weather. Most injuries were due to falls, slips and 
trips (55%) and burns (42.3%). 

Spector JT et 
al. (2016)135 

Outdoor 
agricultural 
workers 

Maximum daily 
humidex (HX) 
categories: 

<25 

25–29 

30–33 

>34 

Traumatic injury 
claims 

(n=12,213) 

Conditional logistic 
regression 

Increasing risk of traumatic injuries with maximum daily humidex 
value up to 33. 

Compared to HX (reference = <25): 

25–29: OR=1.14 (95% CI: 1.06–1.22). 

30–33: OR=1.15 (95% CI: 1.06–1.25). 

>34: OR=1.10 (95% CI: 1.01–1.20). 

High risk of traumatic injuries for cherry harvest duties occurring 
during June–July. 

McInnes J et 
al. (2016)132 

All workers Daily Tmax and 
Tmin, 

Included 
relative 
humidity 

WRI claims 

(n=46,940) 

Conditional logistic 
regression 

Restricted to warm months 
(November–March) 

Positive associations between temperature and injuries. 

Tmax and injuries: non-linear relationship. 

Tmin and injuries: curvilinear (U-shaped). 

Overall vulnerable groups: young workers, males, physically 
demanding occupation. 

Garzon-
Villalba XP et 
al. (2016)44 

BP deep water 
horizon oil spill 
clean-up workers 

WBGTmax Occurrence of 
exertion heat illness 
(EHI) and acute 
injuries (AI) 

AI=1,619 

EHI=1,707 

Descriptive, Poisson 
regression model 

Statistically significant increase of EHI and AI above WBGTmax 
of 20 °C (RR 1.40 and RR 1.06/ °C). 

13% increase of AI was observed with a 1 °C increase of 
WBGT. 

Severity of event was statistically significant for AI as the RR 
increased from 1.13 to 1.15 and significant cumulative effect 
from prior day’s WBGTmax for EHI was significant. 
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Studya Population Heat 
exposure 
indicator 

Outcome indicator Methods Main results 

Rameez-deen 
R and 
Elmualim A. 
(2017)146 

Construction 
workers 

Daily Tmax 

Daily Tmin 

Heatwave: 

Tmax ≥35 °C for 
three or more 
consecutive 
days 

WRI 

(n=29,438) 

Descriptive, Chi-square 
statistics 

Slight over-representation but no statistically significant 
association with number of accidents. 

Expenditure in major accidents was more than twice among >55 
years and higher for new workers during heatwaves. 

Vulnerable groups: experienced workers, male workers, those 
aged <35 years and >55 years, those working in small- and 
medium-sized companies, in the civil sub-sector and employed 
as bricklayer, carpenter, electrician, mechanics and plant 
operator. 

Notes: a These studies are ordered by date of publication. Tmax: maximum temperature; Tmin: minimum temperature; WBGT: Wet Bulb Globe Temperature; AT: apparent temperature; HI: heat index; 
HX: humidex; EHI: exertional heat illness; AI: acute injuries; UBI: unsafe behaviour index; HRI: heat-related illness; WRI: work-related injuries. 
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Potential pathways to injuries 

It is unclear how heat exposure exacerbates the risk of physical injury. However, 

studies included in this review have shown that injuries can be in addition or 

secondary to, HRIs and can be caused by physiological, psychological, personal 

behavioural and organisational (work-related) factors as summarised in Figure 2.3. 

To better understand the physiological factors, it is important to know how the body 

maintains its heat balance and how it reacts in hot environments. Humans are 

homoeothermic and internal body temperature varies only slightly within a very 

narrow range around the 37 °C ‘set point’.3, 148-150 Although changes in body 

temperature can occur from hour to hour and even day-to-day, these fluctuations 

are usually not more than about 1 °C as the body is well equipped to regulate 

internal temperature with dual control systems operating at the neural and hormonal 

level.3, 148-150 Thermoregulation controlled by the hypothalamus in the brain ensures 

heat balance via heat loss mechanisms such as radiation, convection, conduction 

and evaporation of sweat (Figure 2.4). Serious health risks can arise when the heat 

burden exceeds heat loss and the core body temperature rises to 39 °C or more. 

The heat burden imposed on the body can be from the combination of expended 

energy; external environmental sources including high air temperature, high relative 

humidity, lack of air movement, radiation from the sun or hot surfaces/sources, and 

non-climatic parameters such as internal heat generation and clothing.120, 151 
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Figure 2.3 Schematic illustration of factors leading to occupational heat stress, heat strain, illness, and injuries. 

Sources: Adapted from Makinen TM and Hassi J152, Kjellstrom T et al.29 and ILO Encyclopaedia of Occupational Health and Safety153.
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Figure 2.4 Normal thermoregulatory mechanism. 

Sources: Modified from Parsons K3 , Sherwood L148 , Kenney WL, Wilmore J, Costill D149 , Astrand P-0150 and Powers SK 

HE154 .  

The physiological factors that pre-dispose an individual to physical injury correspond 

to the thermoregulatory system’s capability to deal with temperatures above or 

below the set-point. Firstly, changes in blood circulation due to the inability of skin 

surfaces to lose heat results in pooling of blood in the lower extremities.3 This in turn 

means that there is less blood supply to the vital organs including the brain, causing 

problems such as dizziness and fainting potentially leading to an injury (e.g. falls).3 

Secondly, while radiation, conduction and convection work effectively when the 

surrounding temperature is lower than skin temperature, at higher temperatures the 

body’s salt and water stores can be depleted due to continuous sweating. This 

results in an electrolyte imbalance that leads to heat cramps and dehydration if the 

lost body fluids are not continuously replenished.154 These effects can overwhelm 

the body’s thermoregulatory systems resulting in symptoms of HRI. The progression 

of these symptoms may impair workers’ ability to work safely, increasing the 
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incidence of workplace injuries124 that occur due to loss of concentration, decreased 

postural stability, cognitive function and perceptual motor skills.24, 135, 155-157 

Thirdly, the nature of work can play a role in causing injury. As metabolic rate is 

associated with muscular work, the total amount of heat produced is proportional to 

the intensity of work performed.131 Muscle fatigue can occur if the blood pH level 

drops due to the increased muscle glycogen degradation, the rise of carbohydrate 

metabolism and lactate accumulation.154, 158 Furthermore, highly-reactive molecules 

such as ‘free-radicals’ can be increased in the skeletal muscles. As a result, muscle 

strength can decline and affect workers’ performance, eventually pre-disposing 

them to injuries.154, 158 

The physiological effects experienced by workers during hot weather conditions 

may be psychologically linked to increased risk taking behaviour which may 

translate into accidents/injuries. Ramsay147 used a measure for risky behaviour 

termed the ‘Unsafe Behaviour Index’ (UBI), and identified a U-shaped relationship 

between unsafe work behaviours and thermal exposure whereby UBI was minimum 

between 17 °C–23 °C WGBT, but increased above 23 °C WBGT. The depletion of 

cognitive function due to heat as explained by the ‘psychological zone of maximal 

adaptability’ validates and further explains this U-shaped relationship.159 In this 

model an individual’s performance is affected as their attention and concentration 

to their task declines with heat, resulting in unsafe behaviours. Interestingly, the 

decline in cognitive functions starts with minor elevations of the body temperature 

and the ability to perform tasks and productivity can be affected before a 

diagnosable heat-related disorder occurs.159-163 A review of 160 studies assessed 

workers undertaking basic/mental tasks such as arithmetic, writing, coding, time 
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estimation and reaction time and tasks requiring demanding perceptual motor skills 

including: tracking, vigilance, machine operation and complex/dual tasks. Significant 

decrements in the perceptual motor skills among workers engaged in such tasks 

compared to those engaged in basic/mental tasks was observed at temperature 

ranges of 30 °C–33 °C WGBT.41 

Lastly, organisational and personal behavioural factors can also lead to injuries. 

These include reduced use of personal protective equipment (PPE) due to 

discomfort in the heat, and slippery palms, grip loss or visibility problems due to 

sweating.113, 117, 120, 123, 164 Other influencing factors can be requirement to wear 

impermeable protective clothing, and lack of supervision and training in heat stress 

prevention. 

Preventative strategies and barriers 

The adverse effects of heat strain are preventable. A range of organisations have 

promulgated occupational criteria on heat health hazard recognition, evaluation and 

control.165-168 Reducing heat exposure for outdoor workers can involve increasing 

ventilation, modifying clothing, or providing shields/shade against radiant heat/solar 

radiation.165-168 In addition to these, safer-work practices such as provision of 

drinking water, acclimatisation, suitable work-rest intervals, rearrangement of work 

tasks to cooler parts of the day, education and training on the hazards of work in hot 

environments, and awareness of HRI symptoms, are also key in reducing workplace 

heat exposure.165-168 These critical health and safety strategies for working in hot 

weather are also mentioned in the regulations and guidelines of different countries 

such as US, UK, Canada, Australia, New Zealand, Hong Kong, Japan, and China. 

It is noted however, that there are few or no specific regulations and codes for heat 
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stress prevention in developing countries such as Thailand, India, Costa Rica, and 

South Africa.169, 170 

Despite many standards that refer to a ‘general duty of care provision’, the health 

hazards of working in hot weather are not specifically addressed in current OHS 

legislation and policies.171, 172 As a result, less conscientious employers may be 

more likely to be non-compliant with these standards and guidelines for different 

reasons. A recent study in Adelaide found that accidents in small-sized businesses 

increased with daily Tmax
45 and WC claims from small-sized construction companies 

are over-represented during heatwaves146 possibly due to their lack of compliance/ 

management of current OHS policies. The authors recommend that small-sized 

businesses be targeted for ‘policies and practice of adaptation and preventative 

measures’.45, 146 

In Canada, 7 out of 13 provinces require employers to implement administrative and 

engineering controls for both indoor and outdoor workers to reduce heat exposure.24 

Although tough heat-specific laws protecting workers from heat exposure were 

enacted in the state of California and Washington (US) in 2010, poor compliance of 

heat standards by employers was reported in 2012 during inspector audits.173 In a 

recent survey of workers in Adelaide, about 56% of workers suggested the need for 

more heat-related training, while 64% suggested the need for heat-related 

regulations and guidelines.140 Although heat stress management policies 

sometimes entail a cessation of work when temperatures are extreme, whether 

workplaces comply with this guideline is unknown. Only 20% of workers surveyed 

in a South Australia study selected ‘ceasing work’ as a heat prevention measure.140, 

174 
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2.3.5 Discussion 

This review summarises evidence published to date regarding the role of 

meteorological elements, particularly hot temperature, in occupational injury 

causation. Despite differences in study design and analysis strategies, evidence 

presented in this review indicates an association between heat and WRIs. 

Vulnerable subpopulations identified include male workers, younger workers aged 

15–24 years, outdoor and indoor workers.45, 127, 132, 135 Increased risk of occupational 

injuries was found among the ‘electricity’, ‘manufacturing’, ‘utilities’, ‘transport’, 

‘agriculture’, ‘fishing’ and ‘construction’ industries.45, 127 As well as heat stress, the 

kinds of injuries sustained during hot weather included ‘wounds, lacerations and 

amputations’, ‘burns’, ‘falls’, ‘cuts’, ‘fractures’, ‘slips’, and ‘trips’.42, 145 Although 

associations were established, the mechanism underlying occupational injuries 

attributed to hot weather remains unclear. However, in this review we have identified 

both direct and in-direct risk factors (Figure 2.3) by which exposure to heat may lead 

to occupational injuries. This needs to be further investigated in future studies to 

explain the underlying mechanism. 

It is known that cognitive and physical performance can be affected by exposure to 

excess heat. The likelihood of unsafe behaviours leading to injuries and illnesses 

are higher when factors such as judgement, concentration, coordination, 

endurance, strength, vision and comfort are influenced by physiological changes 

induced by heat and dehydration.159, 175-177 Physical workload was considered in 

only two studies127, 132 that found significant associations between Tmax and heavy 

physical work and Tmin and light and medium strength occupations. 
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Apart from these factors, many studies have also attempted to hypothesise a long 

list of other factors that may pre-dispose an individual to experience a higher risk of 

workplace injuries in hot conditions. These include: sweaty palms, fogged up safety 

glasses, accidental contact with hot surfaces, physical demanding work, lack of 

training and skills, ageing-induced dysfunctional thermoregulatory mechanisms, use 

of heavy impermeable PPEs, workplace pressures, poor hydration behaviours and 

attitudes to strenuous work.33, 45, 120, 132, 178 A cohort study undertaken in Thailand, 

though limited on its reliance on qualitative measures of occupational injuries and 

heat exposure as reported by participants, provided important evidence of heat 

stress risk by taking into account several of the above factors.42 Future quantitative 

studies also need to investigate specific at-risk occupations as type of work, body 

posture and movement also determine an individual’s response to heat stress.168 

Apart from standard climate descriptors such as maximum and minimum 

temperature that are used to assess workplace heat risks by policy makers, 

supervisors and safety professionals, other metrics such as AT, HI, HX, and WBGT 

can also be used.168 WBGT is a heat stress metric that was developed for US 

military in the 1950s and is now used more broadly in industrial and sporting sectors, 

incorporating air temperature, humidity, wind speed and solar radiation.179, 180 HI 

(also known as AT or HX) is a combined metric of air temperature and humidity.181 

These thermal composite indices provide a more comprehensive picture of the 

hazards posed by heat to an individual or group of workers than air temperature 

alone. Hence, studies using a more comprehensive index may provide more robust 

estimates of thermal comfort and risk of heat stress. Importantly, behavioural 

factors, clothing and PPE; levels of physical exertion and personal factors (age, 

health, medications etc.) also influence how our bodies react to heat.168 
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Apart from studies using onsite heat stress measurements, most of the included 

studies have relied on weather data from fixed-site monitoring stations, thus raising 

the issue of bias from exposure misclassification as they may not adequately 

capture individual exposures to temperatures recorded at central monitoring 

stations. This limitation of ecological study designs can only be addressed by 

empirical studies using individual measurements across a range of industries and 

in hazardous locations (such as construction sites) that would give more precise 

exposure estimates than ecological studies. However, the impracticality and 

expense involved in conducting these studies justifies the use of administrative 

databases such as WC data covering many types of work, workers and workplaces, 

and spanning extended periods of time advantageous to public health researchers. 

Ideally, using the number of workers on a given day as the denominator would 

produce precise estimates of rates of injury risk in an industry or occupation type. 

At present this has only been undertaken in onsite studies44, 136 that have used 

workplace injury records provided by employers. Access to reliable and meaningful 

population denominators in broader spatial scale studies such as those using worker 

compensation databases at a city/regional level is difficult, as raised by Xiang et 

al.45 Adam-Poupart et al.127 used the log of regional monthly working populations as 

an offset in their generalised linear model to estimate the association between 

temperature and injury risks. Two studies132, 135 have attempted to overcome this 

limitation by employing a CCO study design whereby each case is its own control. 

Despite these caveats, evidence is growing of the relationship between heat and 

impaired worker health and safety. As suggested by one study, providing 

information on risk factors and appropriate training and awareness to prevent such 
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incidents is highly crucial to tackle this issue effectively.45 This lends support to the 

argument that reducing exposure to heat by implementation of appropriate 

engineering and preventative control strategies may result in a reduction in the 

number of workplace accidents/injuries. Guidance documents have been released 

by various health and occupational groups and government authorities that provide 

guidelines and recommendations for workers (for detailed review, see McInnes et 

al.171). However, at present, there is little focus specifically on injury prevention in 

moderately hot, as distinct from extremely hot, thermal conditions. Hence, 

modifications to OHS policies and design of evidence-based training plans for 

workers and supervisors may be needed. 

There are some limitations in this study. Although multiple databases were searched 

using a number of keywords, the possibility of missing studies reporting negative 

associations between hot weather and WRIs cannot be ignored. We have 

addressed publication bias to an extent in this review with the inclusion of both 

published and unpublished studies. Gaps identified in this review warrant further 

investigation to elucidate the complex mechanisms involved, and better 

characterise workers at risk based on occupations, physical activity level 

(sedentary/moderate/heavy) and co-morbidities. Further research is needed to 

examine how other factors mentioned previously (behavioural, personal and 

climatic) may modify/confound the already established relationship between 

temperature and workplace injuries to get a more accurate picture of the effect. This 

is particularly important with projections of further rises in global temperatures that 

range between 1 °C and 5 °C by 2070 (depending on the greenhouse gas 

emissions) may increase the risk of heat-associated injuries and illnesses for those 

employed outdoors. 
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The lag-effects of temperature on the occurrence of injuries also needs to be further 

investigated as injuries may not potentially occur on the same day as the heat 

exposure. Further work is also required to look at impacts of heatwaves in terms of 

intensity and duration using newly proposed metrics such as the Excess Heat Factor 

(EHF).182 There also exists limited research on the economic impact of heat on the 

occurrence of occupational injuries and the cost to the health sector and more work 

is needed. Practical economic implications could be associated with improved 

worker safety through averted injuries, poor health outcomes and lost productivity. 

2.3.6 Conclusion 

This review presents an evidence base addressing hot weather hazards and 

associated direct and in-direct risk factors for occupational injury. The need for 

targeted interventions and workplace policies focussed on preventative strategies 

is highlighted. Results from studies included in this review indicate a strong but 

variable relationship between outdoor temperature and risk of workplace injuries 

that vary by worker demographics (age, gender, occupations and industries). 

However, the mechanisms underlying the occurrence of these injuries remain 

unclear. With the influence of global warming resulting in higher temperatures and 

more hot days, we might expect to see a rise in occupational accidents and injuries 

and associated productivity losses, the impact of which may be reduced by 

adaptation of specific behavioural and workplace controls among workers of 

vulnerable occupational groups and industries. 

  



Chapter 2 

56 

Acknowledgements 

The authors would like to acknowledge funding from the Australian Government 

through the Australian Research Council (ARC Discovery Project Grant—

DP160103059). BMV is supported by the University of Adelaide Faculty of Health 

and Medical Sciences Divisional Scholarship. 

*****End of published paper***** 

  



Chapter 2 

57 

2.4 UPDATE: REVIEW OF MORE RECENT LITERATURE 

In April 2019 a literature search was conducted using the aforementioned search 

strategy to identify heat and WRI studies subsequently published since the 

publication of the above article in April 2018. Eight studies were identified and a brief 

overview of these studies is presented below, with the additional details summarised 

in Table 2.2. 

In total, five studies183-187 utilised TS study designs and three studies188-190 used 

time-stratified CCO study designs to examine the effects of high temperatures (n=5) 

and heatwaves (n=3) on WRI sourced from WC claims data. In regard to study 

populations, some studies investigated specific outdoor workers such as those in 

agriculture (n=1), construction (n=1) or mining (n=1), while others focussed on a 

range of workers (n=5) including migrant workers (n=1). 

In terms of location, there were two studies each from Italy184, 186, US187, 189 and 

China,183, 190 respectively; and one study from Australia188 and Spain.185 The studies 

were spread across climate zones defined using the Köppen–Geiger 

classification191 (Figure 2.5), the locations varying from an oceanic temperate 

climate,188 warm temperate climate,184, 186 humid subtropical climate183, 187, 190 and a 

combination of different climates (warm/hot-summer Mediterranean, warm/hot 

humid continental, cold desert/semi-arid).185, 189 In regard to the geographical area 

covered, studies were based at the city,183, 188, 190 state184, 186, 187, 189 or country-wide 

level.185, 187
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Figure 2.5 Distribution of heat and work-injury studies across five Köppen Geiger climate zones (A-E). References on the map show the locations of the 

studies referred to in Table 2.2. 

Source: Peel et al.192 (used with permission). 
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A range of temperature metrics were used in these studies as exposure indicators. 

These were: Tmax (n=5),184-186, 188, 190 Tmean (n=3),184, 186, 187 Tmin (n=2),188, 190 HX 

(n=1)189 and WBGT (n=1).183 The analytical models used included logistic 

regression (n=1),186 Poisson regression (n=1),184 conditional logistic regression 

(n=2),188, 189 conditional Poisson regression (n=1),190 and distributed lag-nonlinear 

models (DLNM, n=2),183, 185 the latter of which considers both the non-linearity and 

the lagged effect of the relationship. 

In general, the findings of these studies showed a positive association between high 

temperatures/heatwaves and WRI in all the eight studies with varying effect sizes 

depending on the methods and metrics of temperature measure used. For example, 

two studies189, 190 presented the effect estimates per 1 °C increase in daily 

temperature, while six studies183-187 reported effect estimates (RR/OR) relative to a 

reference temperature or temperature category. The percentage change in injury 

risks per unit increase in temperature ranged from 0.4% to 1.4%.189, 190 

Overall these recent studies show similar findings to those published up to 2017. A 

study by Martinez-Solanas et al.185 covering 50 provinces and approximately 15 

million records of injuries in Spain identified that extremely high temperatures (99th 

percentile) were associated with a 10% increase in injury risks. In contrast to other 

studies45, 122, 135 that found a reverse U-shaped exposure-response relationship 

between high temperatures and overall injuries as discussed previously in Section 

2.3, most studies published since 2017183-185, 187, 189, 190 reported that the risk of 

injuries increases with temperature without any decline at the extremes. This 

discrepancy may be due to the statistical methods used. For example, the studies 

which incorporated the number of workers (denominator data) in TS modelling185, 
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187 or in CCO design188-190 resulted in U-shaped exposure-response curves as 

typically seen in heat-associated mortality/morbidity studies5 and other occupational 

heat exposure studies.43, 44, 127, 132, 183-185, 187, 189, 190 

Several reviews5-7, 193-195 on temperature-health outcomes in the general population 

have indicated that people living in areas where higher ambient temperatures are 

less common have stronger heat effects compared to those in warmer areas. In 

agreement with this observation is the finding by Calkins et al. 189 who found a larger 

effect of high temperatures on traumatic injury risk in construction workers in 

Western Washington state with a cooler climate than Eastern Washington with 

hotter summers. In contrast, Martinez-Solanas et al.185 found higher heat effects in 

the hotter southern and eastern provinces of Spain, while Dillender187 found no 

evidence for a higher heat effect on injury rates among mining workers in cooler 

climates than in warmer climates across the US. 

Besides examining the relationship between temperature and work injuries, two of 

the recent studies quantified the burden of injury claims attributable to temperature. 

This ranged from 2.5% in Spain185 using Tmax, to 4.8% in Guangzhou, China183 using 

WBGT. Two of the studies also examined productivity loss associated with 

occupational heat exposure. One found that heat accounted for an annual loss of 

36 workdays per 1,000 workers in Spain.185 Furthermore, heat accounted for 87% 

of the total annual cost of lost working days due to extreme temperatures (€320 

million) with moderate heat contributing the most (€298 million).185 Similarly, a study 

in China found that 4.1% of the insurance payouts for WRIs were attributed to high 

temperatures (i.e. WBGT above 25 °C).183 These two studies183, 185 demonstrate the 

significant economic burden of WRIs attributable to workplace heat exposure. 
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Consistent with previous studies42, 45, 127, 132 (see Section 2.3), the more recent 

studies identified similar subgroups vulnerable to injury (comparing hot days to cool 

conditions), i.e. males185, 190 and young workers.185, 188, 189 Interestingly, overall injury 

risks were not limited to outdoor industries (i.e. agriculture, construction, waste 

collection)185, 190 or manual workers185 alone, but also included some indoor 

industries (i.e. manufacturing, hotel industry, finance, property and business 

services)185, 190 and non-manual workers.185 Additionally, the studies reported that 

females,185 middle-aged workers,188, 190 older workers,189 workers with less 

experience,189 those with low educational attainment,183 and from small- and 

medium-sized businesses183, 190 and migrant workers186 were also at risk. The latter 

group of workers are commonly found to work in at-risk industries such as 

agriculture and construction,196 and cultural and religious aspects as well as 

adaptation barriers also contribute to their increase in safety risks.197 

Taken together, the findings of these eight studies are in agreement with the majority 

of the studies identified earlier in this chapter, in that WRI risk increases with rising 

temperatures and during heatwave periods.
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Table 2.2 Characteristics of recently published studies on the association between heat exposure and work-related injuries (WRI). 

Studya Population Heat exposure indicator Outcome 
indicator 

Methods Main results 

McInnes J et al. 
(2018)188 

All workers Daily Tmax and Tmin 

Used a range of 
temperature percentiles 
(60th to 95th) of daily Tmax 
and Tmin to define two and 
three consecutive hot days 
and two and three hot 
nights, respectively. 

Included relative humidity 

WRI claims 

(n=46,288) 

Conditional logistic regression 

Restricted to warm months 
(November–March) 

Positive associations between exposures of two and three 
consecutive days of hot weather and risk of WRI were found 
with the effect apparent at low daily Tmax of 27.6 °C up to the 
90th percentile. No significant association between 
exposures and risk of WRI for either 2 or three consecutive 
days at the 95th percentile. 

Higher risks observed for three-day exposures than for two-
day exposures (OR 1.15, 95% CI: 1.01–1.30 vs 1.07, 95% 
CI: 1.02–1.12). 

No relationship identified between consecutive hot nights 
and risk of WRI. 

Vulnerable groups: young workers (<35 years), middle age 
groups (35–49 years), workers in regulated indoor climate, 
and working in vehicle or cab. 

Sheng R et al. 
(2018)190 

All workers Daily Tmax and Tmin WRI claims 

(n=5418) 

Conditional Poisson regression 

Restricted to warm months (May–
October) 

Increase in 1 °C  in Tmax  and Tmin was associated with 1.4% 
and 1.7% increased risk of WRI, respectively. 

Vulnerable groups: males, middle-aged workers, small- and 
medium-sized enterprises, manufacturing, finance, property 
and business services. 

Ricco M 
(2018)184 

Agriculture 
workers 

Daily Tmax and Tmean 

Three exposure groups 
based on temperature 
percentiles: 

<75th  

75–95th  

>95th  

Heatwaves: Tmax ≥35 °C for 
three or more consecutive 
days 

WRI claims 

(n=7,325) 

Poisson regression model 

<75th percentile of Tmax and Tmean 
were defined as the referent 
category 

Controlled for age, sex, ethnicity, 
and time period (month and day of 
week) 

Restricted to warm months (May–
September) 

Considered three time lags (0–2) 

A positive relationship was identified on days with 
temperatures higher than the 95th percentiles compared 
those with less than 75th percentile of Tmax and Tmean. 

During heatwaves, higher daily rates of WRI were found 
compared to non-heatwave days (IRR 1.09, 95% CI: 1.02–
1.17). 
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Studya Population Heat exposure indicator Outcome 
indicator 

Methods Main results 

Martinez-Solanas 
E et al. (2018)185 

All workers Daily Tmax and Tmin WRI claims 

(n=15,992,310) 

DLNM and multivariate meta-
regression model to pool the 
results across 50 provinces 

Controlled for seasonality and 
long-term trends using natural 
cubic B-spline of time (8 df/year), 
indicator for day of week, 
holidays, month and number of 
workers as an offset term 

Considered four time lags (0–3) 

Calculated the attributable risk 
and fraction to cold and heat 

A U-shaped curve was found for the relationship between 
temperature and risk of WRI. 

Extremely high temperatures were associated with a 10% 
increase in WRI while cold days were associated with 4% 
increase in WRI. 

Overall, 2.4% of all WRI were attributed to heat with 
moderate heat accounting for the greatest fraction of WRI 
(2.2%). 

Heat accounted for an annual loss of 36 workdays per 1000 
workers. 

In terms of economic losses, loss of working days due to 
heat had an annual cost of about €320 million. 

Vulnerable groups: men, women, younger workers, 
agriculture, construction, waste collection, transport, hotel 
industry, manufacturing, and extractive industries. 

Types of injuries: superficial injuries, bone fractures, strains, 
burns, and multiple injuries. 

Calkins M et al. 
(2019)189 

Construction 
workers 

Daily HX Work-related 
traumatic injury 
claims 

(n=63,720) 

Conditional logistic regression 
with linear splines 

Restricted to warm months 
(March–October) 

A 1 oC increase in HX was associated with a 0.5% increase 
in odds of traumatic injuries. A nearly linear association was 
observed in the spline analyses. 

Vulnerable groups: young workers (18–24 years), older 
workers (>54 years), workers with less experience, smaller 
employers, workers working in Western Washington, and 
workers with lower extremity injuries. 

Ma et al. 
(2019)183 

All workers Daily WBGT WRI claims 

(n=9,550) 

Quasi-Poisson regression with 
DLNM 

There was a 15% increase in WRI at 30 °C WBGT 
compared to median WBGT (24 °C). Temperatures above 
25 °C were attributed to 4.8% and 4.1% of WRI and 
insurance payouts. 

Vulnerable groups: male workers, small enterprises, and 
those with low educational attainment. 
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Studya Population Heat exposure indicator Outcome 
indicator 

Methods Main results 

Ricco M et al. 
(2019)186 

All workers 
(EMRO 
migrant 
workers and 
EURO 
natives) 

Daily Tmax and Tmean 

Calendar days categorised 
by Tmin and Tmax as: 

 frost days (days with Tmin 
<0 °C) 

 summer days (days with 
Tmax >25 °C) 

 summer days/tropical 
nights (days with Tmax 
>25 °C and Tmin >20 °C) 

 neutral days (Tmin >0 °C, 
Tmax <25 °C) 

Heatwaves: Tmax ≥35 °C for 
three or more consecutive 
days 

WRI claims 

(n=147,024) 

Islamic Holiday 
(IH) time 
period=13,150 

Multivariate logistic regression. 

Adjusted for sex and age of the 
workers. 

Relative humidity, atmospheric 
pressure, wind speed and solar 
radiation included as covariates. 

An increased risk of WRI was found in EMRO migrant 
workers during the warm season (OR 1.41, 95% CI: 1.01–
1.84). 

Increased risk of WRI in EMRO migrant workers during 
Islamic holiday period occurring during the hottest hours of 
the summer days, particularly during heatwave time periods 
(OR 1.74, 95% CI: 1.01–3.01). 

A reduced occurrence of WRI was found in EMRO migrant 
workers on ‘summer days’ occurring during the Islamic 
holiday period (OR 0.74, 95% CI: 0.59–0.92), while no 
significant increase was found on summer days with tropical 
nights (OR 1.21, 95% CI: 0.31–4.60). 

Dillender 
(2019)187 

All workers in 
Texas 

 

 

Mining 
workers 
across US 

Daily Tmean WRI claims 

(n=1,916,590) 

 

 

Daily WRI 
rates from 
mining sites 

(n=44,124) 

Fixed effect models 

Controlled for day fixed effects, 
year-month fixed effects, 
precipitation indicator variables 

 

Fixed effect models 

Controlled for precipitation, 
weather of the previous three 
days and proceeding two days, 
site-year-month fixed effects, and 
day fixed effects 

As temperatures rose above 21 °C, there was an increase in 
WRI rates. A day of temperatures above 30 °C–31 °C 
increases same-day claim rates by 7.6–8.2% and 3-day 
claim rates by 2.1–2.8% and that above 37 °C increases by 
3.5–3.7%, relative to days with temperature of 15 °C–16 °C. 

Types of injuries: traumatic injuries. 

A day with temperatures above 37 °C increases WRI rates 
by 6.9 per 100,000 workers or 67% relative to days with 
temperature of 15 °C–16 °C. 

Higher heat effects were found in warmer climates than in 
cooler climates among workers in the mining industry. It was 
found that an additional day above 32 °C resulted in more 
decline in weekly hours worked in cooler climates than in 
warmer climates. 

Notes: a These studies are ordered by date of publication. Tmax: maximum temperature; Tmin: minimum temperature; Tmean: mean temperature; WBGT: Wet Bulb Globe Temperature; AT: apparent 
temperature; HI: heat index; HX: humidex; EHI: exertional heat illness; AI: acute injuries; UBI: unsafe behaviour index; HRI: heat-related illness; EMRO: Regional Office for the Eastern Mediterranean; 
WRI: work-related injuries. 
 



Chapter 2 

65 

2.5 REVIEW OF LITERATURE CONCERNING STAKEHOLDER PERCEPTIONS 

The literature concerning the determinants of heat-related work injuries from 

stakeholder perspectives is addressed below. The rationale that underpins the 

development, analysis and interpretation of study methods presented in Chapters 8 

and 9 (Section D) is also outlined. 

The vulnerability to the health effects of heat exposure i.e. HRI and WRI depends 

on three factors: the levels of actual exposure, individual sensitivity, and the 

adaptation capacity of the worker.198 As a result, actions taken in workplaces to 

prevent HRIs and/or WRIs due to hot weather is therefore likely to be determined 

by the perception of risks that individuals, supervisors, managers, and employers, 

associate with heat exposure. Understanding the knowledge and perceptions of 

stakeholders (including the health and safety representatives and safety 

professionals who are at the ‘coalface in controlling hazards’) can thus inform policy 

making, risk information and communication. 

A targeted literature search was conducted in 2016 aiming to identify literature 

specific to the health effects of workplace heat exposure from a stakeholder point of 

view. The key search words used for this literature review were the same as those 

used in the previous review in Section 2.3, plus ‘safety and health representatives, 

safety and health management, safety and health professionals, OHS 

professionals, inspectors, safety managers, safety advisors, supervisors, and trade 

unions and safety’ and ‘perceptions’. The search revealed that literature specific to 

perceptions of these stakeholders was virtually non-existent. 
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An update to this search conducted in April 2019 yielded only two studies199, 200 both 

of which used cross-sectional study designs, one targeting industrial hygienists and 

other specialists, and the other targeting workplace supervisors. These two studies 

are described below. 

A study conducted by Xiang et al.199 sought to examine hygienists’ perceptions of 

extremely hot weather management in a warming climate and the current 

preparedness of workplaces for extreme heat. A survey was conducted of industrial 

hygienists attending the 2014 Australian Institute of Occupational Hygienists (AIOH) 

Inc. conference in Adelaide.199 The findings showed that of the 180 participants, 

nearly 90% were at least moderately concerned about workplace extreme heat 

exposure; however 53% of participants were not willing to change their 

recommendations to management or companies.199 While 90% of participants 

reported having heard workers express concerns over heat during hot weather, 53% 

reported having investigated injuries or illnesses attributed to extreme heat. Half 

(50%) of the participants were satisfied or strongly satisfied with current heat 

prevention measures adopted in workplaces, indicating that more needs to be done 

for better prevention. The study also indicated that lack of awareness, training, 

management commitment and low compliance of heat prevention policies were 

major barriers for heat prevention and adaptation.199 

In contrast to the above-mentioned study the second study200 was conducted in a 

developing country context. This study in Ghana assessed the perceptions of 

supervisors and other stakeholders in the mining industry, on climate change, 

occupational heat stress risks, and adaptation strategies.200 The study utilised a 

concurrent mixed-methods approach involving questionnaires and interviews with 
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19 respondents. Findings showed that 56% of the participants were concerned 

about heat-stress morbidity and mortality. Some 87% of the mining supervisors 

reported having heard of workers’ concerns about workplace heat exposure during 

hot weather conditions. More than half (56%) of the supervisors indicated that 

workers had heat-related injury concerns and that 37% of supervisors had 

witnessed injuries to mining workers, with the extent of injury being described as 

minor. The most common types of injuries reported by supervisors included burns 

from hot objects/surfaces and falls, trips and slips due to fainting, fatigue and 

dizziness.200 This study also reported that adaptation strategies in mining sites 

included work breaks and rest, drinking water, using cooling systems and wearing 

loose and light-coloured clothing.200 

Together, these two studies have gauged perceptions of stakeholders such as 

industrial hygienists and supervisors on workplace heat exposure risks. However, 

there are limitations to these studies such as the relatively smaller sample size and 

the purposive convenience sampling method employed which potentially limits the 

generalisability of the results.199, 200 Moreover, these studies were not focussed on 

understanding the circumstances underpinning injury occurrence in hot weather 

which has implications for the design of preventive strategies aimed at reducing 

workplace injuries. 

Additionally, it should not be overlooked that workers are also stakeholders. A 

combination of qualitative methods involving focus group discussions and interviews 

and quantitative methods involving cross-sectional surveys have been used to 

assess workers’ heat awareness, knowledge and behaviours and risk factors for 

working in hot weather.140, 201-204 These studies cover a wide range of workers 
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including outdoor labourers,140, 170, 205, 206 firefighters,207, 208 farmers,117-120, 204, 209-222 

miners,115, 202, 223 transport workers,221 hotel and accommodation workers,221 

foundry workers,221, 224, 225 manufacturing,221 construction workers116, 140, 206, 221 and 

oil-spill workers.226 However, all these studies which focus on HRIs alone and not 

on heat-related work injuries, show that while workers may have good 

understanding of the heat and risks of HRIs overall,140, 204 there is an element of 

normalisation of the risks, particularly in warmer locations where heat exposure is 

considered as ‘routine’ and as ‘part of the job’.203 This normal acceptance of the 

risks by workers along with lack of awareness among supervisors and employers 

may mean that without interventions heat-related incidents, injuries, and deaths will 

continue to occur. 

In summary, this section has highlighted that there is limited information available 

from stakeholder perspectives concerning the determinants of heat-related work 

injuries and prevention practices adopted in workplaces during hot weather. 

2.6 GAP ANALYSIS 

Together, Sections 2.3, 2.4 and 2.5 present a comprehensive review of current 

literature related to the effects of heat exposure on the risk of WRI and the risk 

factors from stakeholder perspectives. However, at the commencement of this 

research in February 2016 and from the original literature search, several gaps in 

evidence were identified, providing justification for the research presented in this 

thesis. Eleven identified gaps in evidence are outlined below. 
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1. There is a small body of previous research and lack of evidence in Australia. 

Prior to 2016, a small body of epidemiological research42, 43, 45, 122, 145 had 

investigated the relationship between high temperatures and WRI. While Adelaide, 

Australia was the location of two studies,45, 145 there was a lack of evidence from 

other Australian cities with diverse climates, therefore warranting further research. 

2. Why and how do occupational injuries occur during hot weather? 

Studies45, 122, 127, 132, 135 examining the link between WRI and hot weather had found 

that injuries occur in moderately and extremely hot conditions. However, there 

remained the need to elucidate the underlying reasons or potential mechanisms as 

to why these injuries occur. This is because while physiological explanations existed 

for HRIs, a direct biological mechanism for WRI was lacking. Varghese et al. 

(2018)50 (see Section 2.3) identified that a range of factors including physiological, 

psycho-behavioural, organisational and work-related factors are likely to contribute 

to injury risks in workers during hot weather. However, there was a gap in knowledge 

about factors which are determinants of injury risks. By understanding the 

mechanisms behind injury risks, there is the potential to inform prevention practices 

both at the workplace and the worker-level. 

3. Refining exposures for indoor/outdoor workers beyond the indoor/outdoor 

industrial classification. 

There is a need to obtain a more refined measure of workers’ potential environments 

of exposures as being simply ‘outdoors’ or ‘indoors’ based at the occupational level. 

This is because a number of studies45, 127, 145 have defined work environments using 

a ‘binary’ category of either ‘indoor’ versus ‘outdoor’45, 145 or ‘mostly indoor’ versus 

‘mostly outdoor’,127 both based at the industrial classification. However, defining 
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exposure this way introduces misclassification if workers work outdoors only some 

of the time or not at all. For example, the construction industry comprises a range 

of occupations including civil engineers, carpenters, plumbers, electricians, 

labourers, concreters, and administration staff (e.g. clerks, office staff). Some of 

these occupations are more likely to be frequently exposed to outdoor temperatures 

than others who may be occasionally or rarely exposed. This misclassification due 

to the heterogeneity in exposures within industry187 is therefore likely to bias the 

comparisons between ‘outdoor/indoor’ workers towards the null as the exposed 

group is diluted with unexposed workers. Therefore, it is important to refine 

exposures for indoor/outdoor workers at the occupational level. 

As administrative data sources such as the WC data that have been extensively 

used in previous studies45, 127, 132, 135, 145 do not contain information on physical work 

conditions, the ability of epidemiological studies to assess exposure is limited. 

However, the US BLS Occupational Information Network (O*NET) tool227 and the 

Canadian National Occupation Classification (NOC) codes228 provide work context 

information in terms of the physical work conditions as to ‘how often an occupation 

is required to work outdoors exposed to all weather conditions or under cover and 

indoors in controlled or non-controlled environments’. This information can be 

ascertained by conducting ‘cross-walks’ between the occupational codes and 

O*NET or NOC codes. The utility of either of these tools to Australian occupational 

codes have been documented in studies229-232 assessing other workplace issues, 

and only one study132 has used the NOC codes to refine exposures for 

indoor/outdoor workers. Although O*NET and the NOC codes provide more detail 

in the proportion of time a worker spends outdoors, it is important to note that these 
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are still job exposure matrices, and the issue of misclassification still applies since 

all people in one job receive the same exposure assessment. 

4. Comprehensive assessment of a range of risk factors to better characterise 

workers at risk in Australia. 

Published literature prior to 2017 primarily examined the effect of factors such as 

gender,42, 45, 127, 132, 145 age,42, 45, 127, 132, 145 industry,45, 127, 145 occupations,42, 45, 145 and 

business size145 for all workers combined. However, there was a gap in knowledge 

about how these factors affect the occurrence of heat-related injury risks in an 

Australian context. 

Furthermore, gaps also existed in the understanding of the heat and work-injury 

risks in terms of: (a) workers’ characteristics (e.g. experience, ethnicity and 

educational level); (b) work factors (e.g. physical demands, potential workplace 

temperature exposure, PPE); (c) workplace factors (e.g. location of workplace); and 

(d) organisational and prevention issues (e.g. policies, supervision, rest breaks, 

water, shade). 

Furthermore, only two studies had examined mechanisms of injury127, 145 and the 

nature of heat-associated work injuries145 and gaps existed regarding other 

characteristics such as the agency of injury, body location of injury, and time of 

injury. A more comprehensive understanding of these injury characteristics together 

with the aforementioned risk factors constituting the worker, work, and work 

environment dimension as presented in Section 2.3 would be useful for risk 

assessment purposes. 
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5. Use of thermal indices in estimation of injury risk. 

As indicated earlier in Section 2.3,50 most studies had used temperature (e.g. 

Tmax/Tmin/Tmean) as a measure of heat exposure and very few had used thermal 

indices such as AT,122 HI,43 HX135 and WBGT44 that account for humidity, wind 

speed, solar radiation and air temperature. This is an important aspect to consider 

as the air temperature is only one among the many environmental factors which 

impact on workers’ health and safety.31 As such there is a need to use multi-variate 

thermal indices that summarise the influence of thermal environment stressors on 

WRI for an appropriate assessment of the problem and to get a clearer picture of 

the actual exposure in an Australian context. 

6. Lack of denominator data. 

It is known from occupational health studies that day-to-day variations in workforce 

participation across demographic, industrial and occupational settings are likely to 

influence WRI rates.132 Indeed, the lack of appropriate denominator data (i.e. the 

number of people working on a particular day) to calculate and model WRI rates 

with heat exposure has been raised as a limitation by previous studies.45, 133, 134 

The use of denominator data—either the number of workers or the hours worked—

is a key determinant of the shape of the exposure-response curve. For example, 

some studies45, 122, 135 have observed a reverse-U-shaped curve whereby the 

injuries only increase up to a certain point and then decline at extremely high 

temperatures. Other studies43, 127, 132, 147 have found a U-shaped curve whereby 

injuries rise with increasing temperatures. This difference in the shape of the 

relationship between studies has been attributed to the lack of denominator data. 

Hence the decline in injuries at higher temperatures may not reflect the true 
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reductions in risk, but rather could be an artefact of the possible reduction in the 

number of workers working during extreme heat. This may be due to work ceasing 

due to workplace heat policies or if the high temperature days coincide with summer 

vacations or public holidays. However, when denominator data are unavailable, the 

use of CCO study design, a commonly and extensively used method in 

environmental epidemiological studies is recommended. Only two studies132, 135 

were identified to have used the CCO design before 2017 and there is a need for 

more studies using this methodology to assess the association between heat and 

WRI while accounting for the lack of denominator data. 

7. Use of modelling techniques to address non-linearity and lagged effects. 

There is a need for studies to address the non-linearity and lagged effects of 

temperature on WRI as effects may be delayed rather than acute. Studies45, 127, 132, 

135, 188, 189 have utilised standard Poisson regression models with piecewise linear 

regression or flexible splines45 and quadratic polynomials132 to describe the shape 

of the temperature-WRI relationship. Furthermore, lagged variables of exposure are 

typically used in the models as sequential single individual lags. While these are 

valid methods in TS designs, with limitations,233 DLNM models have been 

increasingly used in temperature-health studies in the general population. The 

advantage of the DLNM model is that it can simultaneously model the non-linear 

and lagged effects of temperature.234 However, no occupational health studies using 

DLNM were identified from the review presented in Section 2.3. 

8. Quantification of the burden of occupational heat-related injuries. 

Published studies42, 44, 45, 127, 132, 135 have typically quantified the effects of heat 

exposure on injuries using measures of association such as RRs, IRRs or ORs. 
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While these measures are useful to assess the strength of the relationships, other 

measures of impact such as the ‘attributable fraction’ or ‘population attributable 

fraction’ can be used to estimate the proportion of WRI attributed to the exposure, 

or that would be prevented if the exposure was avoided or minimised, respectively. 

These may be useful to measure the preventable public health burden and inform 

the development and implementation of strategies to prevent or control WRI caused 

by hot weather.235-237 However, as indicated previously,50 none of the studies 

presented in Section 2.3 had quantified the burden of heat-associated work-injuries 

this way, suggesting the need for further studies. Additionally, heat stress is known 

to result in labour productivity losses through reduced work capacity and efficiency 

and an impairment in physical performance.238 More frequent occurrences of 

occupational injuries in hot weather is likely to therefore increase health service 

costs and reduced labour productivity, the impact of which had not yet been 

quantified. 

9. Impacts of heatwaves on occupational injuries. 

Evidence on the impacts of heatwaves on WRI is scarce and limited. Only two 

studies conducted in Adelaide145, 146 have examined the effects of heatwaves on 

WRI. Both these studies used a heatwave definition based at a threshold of Tmax of 

35 °C for three or more days. However this threshold temperature may not 

necessarily define heatwave events in different locations, making comparisons and 

extrapolations of findings difficult in other locations due to diverse demographic, 

socioeconomic and climatic factors. There is therefore a need for studies to use 

consistent heatwave definitions such as the EHF which considers local climate and 

population adaptation.17 
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10.  Alternative source of surveillance data. 

The majority of the heat-work injury studies45, 127, 132, 135, 145 based on surveillance 

data had used WC as the source of outcome data, while only one study122 used 

hospital records. While WC data are useful, their limitations in terms of coverage is 

a well-documented aspect in the literature.239, 240 Alternatively, occupational health 

studies241-246 have demonstrated the utility of other surveillance data sources such 

as physician records, ambulance call-outs, hospital admissions and emergency 

department presentations. These data sources may complement the WC data to 

obtain the full magnitude of WRI and their impact on health service usage. 

11.  Stakeholder perceptions of risks of workplace heat exposure? 

There is an identified lack of studies assessing risk factors for heat-related work 

injuries from a stakeholder perspective. Workplace health and safety professionals 

(HSPs) and health and safety representatives (HSRs) are key players in workplace 

safety management and the views of these stakeholders is key for developing and 

implementing effective prevention policies and programs to minimise the risk of WRI 

in hot weather. However, to date there have been no studies targeting the heat and 

work-injury perceptions of HSPs and HSRs. 

2.6.1 Recent literature addressing these gaps 

Subsequently, over the course of this research, some studies have addressed a 

number of the identified gaps in knowledge mentioned above. These studies183-190 

have been discussed in Section 2.4 where eight recently published studies are 

reviewed. Nevertheless, the majority of the studies identified from the original 

literature search43, 44, 122, 127, 135 and the recent studies183-185, 187, 189, 190 are based in 

other countries whereas evidence in Australia is limited.45, 132, 145 
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In this context, the research presented in this thesis (Chapters 4–9) addresses the 

identified research gaps and consequently serves two purposes. Firstly, it expands 

on previous research while contributing to the growing body of epidemiological 

evidence. Secondly, for Australia, a country known to be complacent about heat, it 

advances the knowledge base in WHS heat policy and management by filling gaps 

related to epidemiology, risk factors, and stakeholder perceptions, thus providing a 

comprehensive picture of the heat-work injury issue and informing prevention 

strategies. 

2.7 CHAPTER SYNOPSIS 

In summary, this chapter has provided the background underpinning the research 

presented in this thesis. This was accomplished by reviewing the existing literature 

on: (i) heat and WRI relationships and (ii) and the determinants of injury occurrence 

in hot weather from stakeholder perceptions. Sections 2.3 and 2.4 have provided an 

overview of existing literature concerning the effects of heat exposure on WRI. The 

results from studies discussed in these sections have confirmed that an association 

exists between workplace heat exposure and occupational injuries. Furthermore, 

the updated review in Section 2.4 indicates that the evidence base is growing as 

shown by the increasing number of recent studies. Section 2.5 has highlighted that 

studies pertaining to stakeholder perceptions on heat-related injuries, determinants, 

management and prevention is limited. Finally, Section 2.6 has outlined the 

research gaps confirming the need for studies to further examine the heat-work 

injury issue. In the following chapter, an overview of the study design and methods 

underpinning the research presented in this thesis is outlined. 
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Chapter 3: Study Design and Methodology 

3.1 PREFACE 

In this chapter, a brief background to the research project is provided in Section 3.2 

followed by the overall aims and specific objectives of this thesis in Section 3.3. The 

research questions used to address these aims and objectives are listed in Section 

3.4, followed by the description of the overall study setting, design and period in 

Section 3.5. 

Section 3.6 covers the conceptual framework of the studies conducted in this thesis, 

followed by Sections 3.7 through to 3.9 describing the data sources and aspects of 

data collection and data management. A brief overview of the analytical methods is 

described in Section 3.10, while detailed statistical methods linked to each of the six 

studies undertaken are described later. Although efforts have been made to 

minimise repetition between the details provided in this chapter and those outlined 

in each manuscript, some may still exist. 

3.2 BACKGROUND TO THIS RESEARCH 

The research conducted in this thesis was part of a national project ‘Workers’ health 

and safety at high temperatures: new perspectives on injury prevention’ funded by 

the Australian Research Council (ARC) Discovery Program. Led by the University 

of Adelaide, the project also involved researchers from the Queensland University 

of Technology, University of Western Australia, and Monash University. 
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The aims of the larger project were to (a) systematically examine the association 

between ambient heat and occupational injury in Australia; (b) investigate a range 

of stakeholder perceptions towards heat-related injury, its prevention, and 

management; (c) generate new evidence to inform national injury prevention policy 

and guidance and (d) facilitate the development of practical resources for use in 

industries to aid in the prevention of heat-related injury. 

The objectives were: 

1. To extend investigations of the association between ambient thermal 

parameters (hot weather) and recorded WRIs and illnesses in Adelaide, and 

also in a further three Australian cities. 

2. To characterise the recognition and management of heat-related injury, using 

a mixed-methods approach, incorporating a national online survey and a 

series of injury case studies. 

3. To engage stakeholders and experts in the review and design of evidence-

based preventive strategies. 

To achieve the above mentioned research aims and objectives, the national project 

consisted of four distinct parts (see Figure 3.1), with the research contained within 

this thesis embedded in Parts 1 and 2. 
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Figure 3.1 Project overview: study plan showing Parts 1–3 merging to inform Part 4, a platform for 

injury prevention. 

While Aims (a) and (b) and Objectives (1) and (2) became the focus of the PhD 

(discussed in detail below) resulting in six studies (Chapters 4–9), attention is also 

drawn to three other associated studies from the project, the findings from which 

complement this PhD research (see other relevant manuscripts in page xxxvii). 

3.3 AIMS AND OBJECTIVES OF THE RESEARCH WITHIN THIS THESIS 

3.3.1 Aims 

The overall aim of this research was to better understand the heat and work-injury 

phenomenon, and to: (1) quantify the relationship between ambient temperatures, 

and heatwaves, and the risk of WRI recorded in WC claims data; and (2) determine 

the underlying determinants of heat-related injuries, their management, and 
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prevention based on stakeholder perspectives from workplace HSRs and 

professionals. 

3.3.2 Objectives 

The aims of this thesis will be attained through addressing the following objectives 

which are: 

 To examine the effect of ambient temperatures and risk of WRI recorded in 

WC claims data from four Australian capital cities with diverse climates. 

 To assess to the extent to which heatwaves of varying severity affect the risk 

of WRI recorded in WC claims data from four Australian capital cities. 

 To identify the characteristics of workers at-risk during high temperatures and 

heatwaves. 

 To better understand the nature of heat-related injuries in Australian 

workplaces, the potential risk factors and prevention measures being 

employed to reduce the effects of heat stress; and to characterise the 

potential barriers faced in workplaces for injury prevention. 

3.4 RESEARCH QUESTIONS 

Overall the occupational impact of hot work environments is multi-faceted (i.e. with 

effects on productivity, health and safety, industry policy and education, 

occupational hygiene and professional practice), with potentially wide reaching 

consequences. To attain the overall aims and objectives presented above and 

address the highlighted knowledge gaps presented in Chapter 2, a quantitative 

approach is used to address the following two research questions: 
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 What is the epidemiology of occupational heat-related injury in Australian 

cities? 

 Is there a relationship between ambient temperatures and heatwaves and 

the risk of WRI identified from WC claims in Adelaide, Brisbane, 

Melbourne and Perth? 

 How does the relationship between ambient temperatures and heatwaves 

and the risk of WRI vary according to work, worker, and work environment 

characteristics? 

 What are the types of injuries sustained with ambient heat exposure (high-

temperatures and heatwaves)? 

 What are the stakeholders’ perceptions of occupational injuries occurring 

during hot weather? 

 How often do WRI occur in hot and/or humid weather and what types of 

injuries occur in workplaces where heat exposure could have been a 

(direct or in-direct) contributing factor? 

 What are the influencing organisational issues, work factors and hazards 

that are associated with heat-related injuries? 

 Which types of workers incur heat-related injuries? 

 What are the current prevention measures for indoor and outdoor workers 

and how often are these adopted in workplaces? 

 What are the levels of training, policies, risk assessment tools, and 

guidelines in relation to working in hot weather in workplaces? 
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 What are the potential barriers to the prevention of heat-related injuries in 

workplaces? 

 To what extent does hot weather contribute to productivity loss and what 

are the potential solutions to address this issue? 

3.5 STUDY SETTING 

This section introduces the study settings of this research. Part 1 (analysis of WC 

claims data) focussed on four major Australian capital cities: Adelaide, Brisbane, 

Melbourne, and Perth, the capitals of the states of South Australia, Queensland, 

Victoria and Western Australia, respectively. These study settings and their relevant 

climate zones are shown in Figure 3.2. Part 2 (survey of stakeholders) was 

conducted nationally. 
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Figure 3.2 Climate zone map of Australia showing the location of the four study cities. 

Source: Australian Building Codes Board (ABCB).247 

The rationale for selecting the four cities used in Part 1, is three-fold. Firstly, these 

cities represent four of Australia’s largest cities. Secondly, these cities have different 

climates which may influence an individual’s response to heat stress (described 

below). Third, Adelaide and Melbourne have experienced severe and extreme 

heatwaves in Australia in recent years, whereas Brisbane and Perth regularly 

experience high summer temperatures.248-250 Thus, workers in these four cities are 

likely to be faced with increased heat stress due to rising temperatures from climate 

change.251 

The Australian Statistical Geography Standard of Postal Areas (POAs)252 was used 

to define the central business district (CBD) and metropolitan areas in each of these 
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cities. In each state except Queensland the majority of the population live in the 

metropolitan areas of the capital cities. As such, the geographical area for the study 

was restricted to the metropolitan areas of the study cities. The section below briefly 

outlines the characteristics of these cities in terms of their climate, and workforce 

demographics. 

Adelaide, the capital city of the state of South Australia located in the southern part 

of Australia, is home to about 1.4 million people, making it the fifth largest city in 

Australia. According to the Koppen-Geiger climate classification,192, 253 Adelaide has 

a temperate climate (Zone 5, Figure 3.3) also referred to as Mediterranean, with 

relatively mild winters and very warm to hot dry summers. Mean monthly 

temperatures in Adelaide range from around 11.4 °C to 23.4 °C. Besides having 

more hot days (i.e. days when Tmax >35 °C) than Melbourne and Brisbane, in the 

last 30 years Adelaide has also experienced an average increase of 4.3 °C in the 

intensity of the peak day during heatwaves.254 In comparison to the other three study 

cities, Adelaide has low levels of relative humidity (37% during November–March). 

Adelaide has a workforce of 587,100 people (78.8% of the state’s employed 

workforce) according to the Australian Bureau of Statistics (ABS) 2016 Census, with 

most people working in the ‘health care and social assistance’, ‘retail trade’, 

‘education and training’, ‘construction’, and ‘public administration and safety’ 

industries.255
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Figure 3.3 Summary profile of study area: Adelaide.103, 109, 255-257 
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Brisbane, the capital city of Queensland is located on the east coast of Australia and 

is the third largest city in Australia with a population of 2.3 million people. It has a 

humid sub-tropical climate (Zone 2, Figure 3.4) with relatively high temperatures 

throughout the year. Mean monthly temperatures in Brisbane range from 15.1 °C to 

25 °C. Compared to the other three study cities, Brisbane has higher levels of 

humidity (58% during November–March).The city has an employed workforce of 1.2 

million people or 50.3% of the state’s employed workforce.255 The top five industry 

sectors of employment are ‘health care and social assistance’, ‘retail trade’, 

‘education and training’, ‘construction’ and ‘professional, scientific, and technical 

services’.255
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Figure 3.4 Summary profile of study area: Brisbane.103, 109, 255, 257, 258 
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Melbourne, the capital city of the state of Victoria, is located on the south coast of 

Australia and is home to more than 4.4 million people. Melbourne’s climate is mild 

temperate (Zone 6, Figure 3.5) with milder temperatures than the other three study 

cities in winter and moderate summer temperatures. Mean monthly temperatures in 

Melbourne range from 9.8 °C to 20.2 °C. In comparison to the other three study 

cities, Melbourne is known for its within-day changeable weather conditions. The 

city has an employed workforce of 2.1 million people or 77.4% of the state’s 

employed workforce with the top five industry sectors of employment being ‘health 

care and social assistance’, ‘retail trade’, ‘professional, scientific, and technical 

services’, ‘education and training’ and ‘construction’.255 
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Figure 3.5 Summary profile of study area: Melbourne.103, 109, 255, 257, 259
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Perth is the capital city of the state of Western Australia and is located on the west 

coast of Australia. It has a warm temperate climate or Mediterranean type climate 

(Zone 5, Figure 3.6), similar to Adelaide, but has more hot days (>35 °C) than the 

other three study cities. Mean monthly temperatures in Perth range from 13.1 °C to 

25 °C. The city has an employed workforce of 920,200 people (79.6% of the state’s 

employed workforce). The top five industry sectors of employment are ‘health care 

and social assistance’, ‘construction’ ‘retail trade’, ‘education and training’, and 

‘professional, scientific, and technical service’.255
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Figure 3.6 Summary profile of study area: Perth.103, 109, 255, 257, 260 
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3.6 FRAMEWORK OF THE STUDY 

This section describes the conceptual framework under-pinning the six studies 

conducted in this thesis as part of this research. To address the overall aims and 

proposed research questions, a multi-data approach was adopted, as the research 

questions posed cannot be appropriately answered using a single-data source. The 

utility of this approach is that different perspectives on the research problem under 

investigation can be obtained from multiple data sources, thus enabling a more 

comprehensive investigation. Two strands of data collection and analysis 

techniques were incorporated. These included data from existing databases and 

two online surveys, thereby enhancing the research validity and allowing a 

contextually rich dataset. Thus, the research methods applied in this thesis were 

largely quantitative, except for some open-ended survey questions (see Chapter 8). 

As illustrated in Figure 3.7, Part 1 of the research, pertaining to Studies 1–4 (i.e. 

Chapters 4–7), involved detailed analysis of roughly 10 years of WC claims data to 

examine the association between ambient temperatures and heatwaves, and WRI. 

This also enabled the identification of vulnerable subgroups by worker, work and 

work environment characteristics. Study areas as described earlier were restricted 

to the metropolitan areas of four Australian main capital cities. For logistical reasons 

the study periods varied in study locations. For Adelaide the study period was 2003–

2013, whereas for Brisbane, Melbourne and Perth the study period was 2005–2016. 

Studies 1–4 address the first research question of ‘the epidemiology of occupational 

heat-related injuries in Australian cities’ using principles of descriptive epidemiology, 

i.e. defining the ‘what’, ‘who’, ‘when’, and ‘where’ of the issue under investigation. 
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Part 2 of the research, comprising Studies 5 and 6 (i.e. Chapters 8 and 9), used 

responses from two national cross-sectional online surveys to elicit information on 

the underlying determinants of heat-related work-injuries, their management and 

prevention from a stakeholder point of view. Stakeholders surveyed included 

workplace HSPs and HSRs. 

HSPs have a health and safety qualification and perform a broad range of activities 

(Figure 3.7), including inspection of workplaces, providing training to workers, 

advising and supporting the management on health and safety issues, risk 

assessments and controls, and ensuring that the workplace complies with laws and 

regulations.261, 262 They have a broad range of roles and are usually employed in 

large-sized businesses or are employed by jurisdictional regulators as WHS 

inspectors. 

HSRs on the other hand have a health and safety responsibility in their own 

workplace. They are the key to safety in the workplace as they operate at the 

interface between workers and management, representing the health and safety 

interests and concerns of workers to the management.263-267 In Australia WHS 

legislations require that the employer consult with their workers on health and safety 

matters as ‘reasonably practicable’.268 This consultation usually occurs in most 

workplaces through either HSRs or committees, or both. 

In essence, a snapshot of the issue of heat-related work injuries at many worksites 

and those specific to a worksite can be obtained by surveying HSPs and HSRs, 

respectively. The use of stakeholder perception surveys extends the research and 

the understanding beyond the use of WC claims. Thus, Studies 5 and 6 (i.e. 

Chapters 8 and 9) address the second research question of ‘stakeholders’ 
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perceptions of occupational injuries occurring during hot weather’ by looking at the 

‘how’ and ‘why’ aspect of the issue under investigation. This part of the study 

provides a broad perspective on the views of key stakeholders from a workplace 

setting. 

Put together, the studies presented within this thesis progress in a hierarchical 

manner, by enabling a broader picture to be drawn from a macro-population level 

perspective identifying clear blackspots, through to uncovering the circumstances 

underlying injury occurrence at a workplace level. Figure 3.7 shows how the six 

studies from Part 1 and Part 2 of the research come together to facilitate a better 

understanding of the issue under investigation. The different perspectives offered 

by both these sources of data allows for a comprehensive investigation of the 

research questions. 
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Figure 3.7 Schematic diagram outlining the framework of the studies conducted and presented in this thesis.
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3.7 DATA SOURCES 

3.7.1 Meteorological data 

To examine the relationship between heat exposure and WRI, two exposure 

measures representing estimates of outdoor heat were used. These were daily Tmax, 

and EHF, the latter being used to define heatwave severity.182 Both these exposure 

measures were sourced from the Australian Bureau of Meteorology (BOM) with data 

from weather stations shown in Figure 3.8. For each city, data from one monitoring 

weather station identified to be representative of the city-specific metropolitan area 

by BOM, were chosen (see Table 3.1). 

 

Figure 3.8 Weather stations used in each of the study areas: (A) Adelaide; (B) Brisbane; (C) Perth; 

(D) Melbourne. 
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Table 3.1 Australian Bureau of Meteorology weather observation stations from which daily 
exposure data were sourced. 

City Site name and number Latitude Longitude Elevation 
(metres) 

Reference 

Adelaide Adelaide (Kent Town) 
(023090) 

−34.92 138.62 51 20, 21, 45, 145, 

269-275 

Brisbane Brisbane (040913) −27.48 153.04 8 248, 276-279 

Melbourne Melbourne Regional 
Office (086071) 

−37.81 144.97 31 275, 276, 280-284 

Perth Perth (09225) −31.93 115.98 15 282, 285-287 

 

The rationale for choosing Tmax as the main exposure metric in Studies 1 and 2 (i.e. 

Chapters 4 and 5) was two-fold. One, measures of temperature (Tmean/ Tmin/ Tmax)  

are highly correlated and therefore have similar predictive ability as demonstrated 

by previous studies.288 Two, according to the BOM, Tmax is the highest temperature 

for the 24 hours after 09:00 hours (usually occurring in mid-afternoon), thus 

characterising the utmost physiological stress experienced by workers at a time 

when they are most exposed and active on a given day.288, 289 

While Tmax was the selected exposure metric used in Chapters 4 and 5, other 

climatic data including daily Tmin, daily Tmean, relative humidity (Rh %), wind speed 

(m/s), global solar radiation (w/m2), and vapour pressure (hPa) were also obtained 

from the BOM. An example of the climatic data for seven consecutive days from one 

monitoring station in Adelaide provided by the BOM is shown in Table 3.2. These 

additional meteorological variables were used to calculate other thermal indices that 

incorporate air temperature and humidity, such as HI, HX, AT, Universal Thermal 

Comfort Index (UCTI), and WBGT (details provided in Appendix B.2-the 

supplementary material of Chapter 4). The thermal indices thus calculated were 

used in sensitivity analyses. 
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Table 3.2 An example of the data format of meteorological variables provided by Bureau of 
Meteorology for seven consecutive days from one monitoring station in Adelaide. 

Station ID Year Month Day SR Tmax Tmin Tmean DP WB Rh WS VP SP 

23090 2003 7 1 5.53 15.8 6.8 11.3 8.5 9.7 86.1 4.2 11.2 13.2 

23090 2003 7 2 7.79 16.4 5.8 11.1 7.9 9.2 84.9 4.8 10.7 13 

23090 2003 7 3 8.76 16.4 6.4 11.4 7.6 9.4 81.1 5.7 10.5 13.5 

23090 2003 7 4 6.22 16.5 9.1 12.8 9.8 11 87.1 8.1 12.1 14.1 

23090 2003 7 5 11.4 18.5 8.3 13.4 5 9.3 60.3 12.1 8.7 15.3 

23090 2003 7 6 10.6 18.7 10.7 14.7 2.3 8.9 45.1 18.9 7.2 16.3 

23090 2003 7 7 10.8 17.8 9.8 13.8 6.7 9.9 67 8.6 9.9 15 

Abbreviations: 
SR: Total daily global solar exposure—derived from satellite data in MJ.m-2 
Tmax: Maximum temperature in 24 hours after 9am (local time) in degrees Celsius 
Tmin: Minimum temperature in 24 hours before 9am (local time) in degrees Celsius 
Tmean: Mean temperature (using all available observations) in degrees Celsius 
DP: Average daily dew point temperature in degrees Celsius 
WB: Average daily wet bulb temperature in degrees Celsius 
Rh: Average daily relative humidity in percentage (%) 
WS: Mean daily wind speed in km/h 
VP: Average daily vapour pressure in hPa 
SP: Average daily saturated pressure in hPa 

Considering that there is no universal heatwave definition,16, 290 a newly proposed 

metric of heatwave severity used by the BOM in their national heatwave forecasting 

service, EHF was utilised across regions with different climates. EHF is a measure 

of heatwave severity that is relative to location factors in how ambient temperatures 

compare with the norm, and accounts for acclimatisation.182 The more unusual the 

heat the higher the EHF severity value, with positive EHF values signifying the 

presence of a heatwave event. The BOM classifies the severity levels of heatwave 

events into three categories: low-intensity event; severe event and extreme event. 

These heatwave severity categories (EHFsev) are location-specific as they are 

derived from the ratio of EHF to the historical 85th percentile of all positive EHF 

values at each location. Colour coded assessment and forecast maps produced by 

BOM and found on their website show the location, or predicted location, of 

heatwaves and their severity over a three-day period. An example of such a map is 

shown in Figure 3.9.291 
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Figure 3.9 Schematic illustration of heatwave definition currently used in the National Heatwave 

Forecasting and Assessment Service in Australia.291 

The EHF and EHFsev metrics for each of the study sites were obtained from the 

BOM which uses low-resolution (0.25°x0.25°, approximately 25 km x 20 km) 

operational daily temperature analyses as described by Nairn and Fawcett in the 

calculation of the metric.182 Additional details on how EHFsev is calculated is 

provided in the supplementary material of Chapter 7. Briefly, the following EHFsev 

categories were used in Chapters 6 and 7 to describe the intensity and severity of 

heatwaves: 

 No heatwave: daily EHFsev ≤0 

 Low intensity: daily EHFsev >0 and <1 

 Moderate severity: daily EHFsev ≥1 and <2 

 High severity: daily EHFsev ≥2 

These categories of EHFsev equate to the BOM’s ‘low’, ‘severe’ and ‘extreme’ 

categories although the few ‘extreme’ days were included within the ‘high’ severity 

category. As there were few days of high-severity (EHFsev ≥2) in Brisbane, 
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Melbourne and Perth, these days were included within the moderate-severity 

category to create a combined moderate/high-severity category (Chapter 7). 

3.7.2 Workers’ compensation (WC) claims 

In Australia, there are eleven WC systems, one from each of the eight state and 

territories, one representing workers employed by the Commonwealth or the 

Commonwealth Authority (Commonwealth Comcare), one representing seafarers 

(Commonwealth Seacare), and one representing members of the defence force 

(Commonwealth DVA).292 Together these WC systems cover the majority of 

workers (89–90% coverage of employed labour force) and are indeed an alternative 

source of injury data providing the most robust and more detailed information on 

workers who have incurred WRI under respective jurisdictions.293 The WC data files 

contain information on the claimant, their employer, job characteristics, injury or 

illness details, and claims outcomes. The occupational and industrial details of the 

injured worker are classified in accordance with the Australian and New Zealand 

Standard Classification of Occupations (ANZSCO) and the Australian and New 

Zealand Standard Industrial Classification (ANZSIC), respectively.294, 295 In the WC 

database, the injury details including the nature or type of the injury, event or 

exposure that led to the injury (mechanism of injury), body part or site affected, and 

the primary/secondary source of injury (agency of injury) are coded according to the 

Type of Occurrence Classifications System, Version 3.1 (TOOCS3.1) codes.296 The 

longitudinal nature of the data, population coverage, and comprehensive and robust 

level of detail available makes WC data attractive to use for research by 

occupational epidemiologists.239 
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The term ‘WRIs’ according to WC legislation includes physical injuries and illnesses 

and the aggravation or acceleration of pre-existing injuries ‘arising out of, or in the 

course of the worker’s employment’, all of which could be either acute or chronic in 

nature, respectively.297-300 Workplace heat exposure can contribute to acute injuries 

at a point in time and the cumulative exposure may also lead to chronic injuries and 

illnesses over a period of time. As such, WC data for all injuries and illnesses for 

which a claim was made and accepted by the regulator/insurance provider 

regardless of severity were considered in this research, as per the approach taken 

in previous similar studies.45, 145, 146, 301 It is acknowledged that the consideration of 

all claims as the outcome variable may possibly include illnesses resulting from 

long-term exposures, and this may introduce individual exposure classification 

errors. However, 90% of all accepted claims in Australia are due to injury and 

musculoskeletal disorders, both of which are reported as ‘WRIs’, while 10% of 

claims are for diseases with short-term and long-term latency periods.72 For the 

purposes of this thesis, the terms ‘all claims’ or ‘claims’ and ‘injuries’ or ‘injury’ have 

been used interchangeably to describe ‘WRIs and illnesses’ or ‘work-injuries’, 

respectively. 

Two sources of WC data were obtained, firstly from SafeWork SA (SWSA, Tabulator 

dataset) and Safe Work Australia (SWA, National Dataset for Compensation-Based 

Statistics, NDS3 dataset). Although both these sources of data capture information 

on WRI, the key difference is in their source: the first is a jurisdictional dataset (i.e. 

from South Australia) and the second is a dataset compiled using jurisdictional data 

from individual states and territories. The section below briefly describes these two 

data sources. 
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3.7.2.1 Workplace Health and Safety Tabulator (Tabulator) 

In Chapters 4 and 6, the WC data came from the Workplace Health and Safety 

Tabulator database provided by SWSA, the data custodian at the time when the 

research was conducted (now Return To WorkSA is the data custodian).146, 301-305 

The Tabulator database covers all claims for WRI over the period 1 July 2003–30 

June 2013 (2004–2013 financial years) that were accepted and compensated in 

South Australia.304, 306 In Chapters 4 and 6, the data were restricted to the claims 

that occurred in the Adelaide metropolitan area—defined as postcodes between 

5000 and 5200.146, 270, 273, 274, 307 The complete list of variables in the Tabulator 

dataset is provided in Table A1, Appendix A. Before using the data for statistical 

analysis, the tabulator dataset was updated thus: 

 Occupation codes assigned to each claims were upgraded from the previous 

Australian Standard Classification of Occupations (ASCO) codes to 

ANZSCO 3.1 which is the current and latest version of occupational 

classification. 

 Injury classification codes were upgraded from TOOCS2.0-TOOCS3.0-

TOOCS3.1 which is the current and latest version of injury classification. 

Prior to data analyses, the data were subject to a range of data cleaning procedures 

consistent with previous studies using the data.45, 293 Briefly, cases with missing 

industry or occupation codes, injury details, and those for persons under 15 years 

were excluded from the analysis (detailed flowchart of data preparation is shown in 

the supplementary material of Chapter 4, Figure B1, Appendix B2). 
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3.7.2.2 National Data Set for Compensation-Based Statistics (NDS) 

The NDS was developed and endorsed by the National Occupational Health and 

Safety Commission (NOHSC) in 1987 as a prime comprehensive source of 

information on WRIs and illnesses at a national level and for comparative purposes 

between jurisdictions. The dataset is compiled by SWA using data supplied by WC 

authorities from each state, territory and the Commonwealth Government.72, 308 In 

Chapters 5 and 7, WC data for claims lodged in Brisbane, Melbourne, and Perth 

were sourced from the third version of the NDS dataset (i.e. NDS3).308 Details on 

information collected in NDS3 are provided in Table A2, Appendix A. 

De-identified data on cases of accepted and compensated WRI occurring over the 

period 1 July 2005–30 June 2016 (2005–2016 financial years) was obtained from 

SWA upon receipt of jurisdictional approvals (see Appendix C for approvals) from: 

a. South Australia: Return to Work South Australia 

b. Queensland: Office of Industrial Relations—Queensland Treasury 

c. Western Australia: WorkCover Western Australia 

d. Victoria: Worksafe Victoria 

As with the Tabulator data, the NDS3 data were subject to a range of data cleaning 

procedures before use. Consistent with studies using NDS3,293, 309-314 claims with 

unlikely age ranges (i.e. <15 years and >100 years), abnormal weekly working hours 

prior to injury (i.e. <1 and >100 hours), those missing injury details, and/or 

occupation or industry codes, were excluded from the dataset. Also, a modified 

version of the TOOCS3.1 developed by researchers at the Monash University293, 313 

(see Table D1, Appendix D), was used to account for differences in injury coding 
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changes within jurisdictions over time and inconsistencies in coding between 

jurisdictions. Additionally, to ensure comparable jurisdictional datasets, claims 

arising from travel to and from work were also excluded as such claims are not 

compensable in Victoria and Western Australia.292 In order to consider the severity 

of the injuries, claims comprised minor and major claims. Minor claims were defined 

as claims where workers had an absence from work of less than one working week, 

while those with absences of one working week or more were classed as major 

claims. This definition of minor and major claims is based on the operational 

definition used by SWA.72 

3.7.3 Work-related ambulance call-outs 

An alternative source of health morbidity data, i.e. de-identified ambulance-call-outs 

data (excluding between hospital transfers) was sourced for the Adelaide 

metropolitan area from the South Australian Ambulance service (SAAS).20, 21, 269 

These data were used in the study outlined in Chapter 6. The study period was 

defined as 1 July 2003–30 June 2013, similar to that used in studies using the 

Tabulator dataset. For the purpose of this thesis, SAAS call-outs with a ‘work-

related/industrial’ code were selected from the pre-defined categories for 

ambulance call-out data. It should be noted that compared to the WC data, there 

was no information about the industry, occupation, and injury details of the injured 

worker in this dataset, but nevertheless this dataset provides useful additional data 

from an alternative source. Indeed, the value of using different data sources of WRI 

has been identified by other researchers.241-244, 315 
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3.8 DATA MANAGEMENT 

Due to the lack of information on the physical demands of occupations and workers’ 

potential temperature exposure in the WC data, a ‘cross-walk’ (merge between 

classifications) was performed between the ANZSCO and the Canadian NOC 

classification system. Using this method, the physical demands, potential 

temperature exposure (outdoors1/indoors2), and potential workplace hazard 

allocated to each occupational title could be assigned to each claimant’s ANZSCO 

coded occupation title. The process by which NOC codes are associated with each 

ANZSCO occupational title has been described elsewhere316, 317 and has been 

previously used for WC data and validated in the Australian context.132, 188, 231 

According to the NOC codes228, there are four categories of location where the work 

is performed assigned to each occupational group, and these were used to 

characterise the potential temperature exposure location in Chapters 4 to 7. These 

are: ‘regulated indoor climates’ (e.g. an office worker); ‘unregulated indoor climates’ 

(e.g. warehouse workers); ‘outside’ (e.g. road construction worker); and ‘in a vehicle 

or cab’ (e.g. transport workers).228  

After the addition of the above described variables, the WC data and work-related 

ambulance call-out data were transformed into a TS structure comprising of a series 

of the daily counts of WRI and weather exposures, both of which were aggregated 

at the city level. Such a transformation of individual-level data to a TS format is 

computationally less-intensive for analysis as demonstrated by other 

researchers.318-320 Other variables such as day of the week (1–7), day of the year, 

                                            
1 An outdoor work environment is defined as where worker is exposed to sun, wind, and rain. 
 
2 An indoor work environment is defined as being sheltered from sun and at least partially sheltered 
from wind and rain. 
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season (summer/non-summer), and public holidays were added to the TS 

transformed WC and work-related ambulance call-outs datasets. These variables 

are known to be potential confounders in the relationship between environmental 

exposures and health outcomes. Table 3.3 shows the list of public holidays included 

in the datasets. 

Table 3.3 List of Public Holidays in Australia.321 

National public holidays Jurisdiction-specific public holidays 

New Year’s Day 
 

Vic Qld WA SA 

Australia Day Easter Saturday ✔ ✔ ✔ ✔ 

Labour Day Melbourne Cup Day ✔ 
   

Good Friday Royal Show Day  ✔   

Easter Monday Adelaide Cup Day    ✔ 

ANZAC Day Foundation Day   ✔  

Queen’s Birthday      

Christmas Day 
     

 Boxing Day 
     

 

An overview of the relevant variables of interest from the WC datasets used in the 

final analysis is illustrated in Figure 3.10. 
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Figure 3.10 Variables of interest from the workers’ compensation datasets after data processing 

divided into worker, work, work environment and injury occurrence characteristics. 

3.9 STAKEHOLDER SURVEYS 

3.9.1 Study population 

As mentioned in Section 3.6, the study population for the surveys (Chapters 8 and 

9) consisted of two stakeholder groups: HSPs and HSRs. Only individuals with a 

main responsibility of health and safety (e.g. safety consultants, health and safety 

managers, and inspectors) were recruited for the survey of HSPs. Other individuals 

for whom health and safety is part of, but not their main role, such as union officials, 

site supervisors, health and safety delegates and members of health and safety 

committees were recruited for the survey of HSRs. Engaging with these 

stakeholders was considered important to gauge their perceptions on current and 

future risks posed to workers’ health and safety by high temperature days. 
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3.9.2 Data collection—participants and recruitment 

To streamline and facilitate the recruitment process, a webpage 

(http://www.adelaide.edu.au/oeh/heat/) was developed for the ARC-funded project. 

Potential respondents were directed to visit this website where the landing page 

contained information about the project and the information sheet about the surveys, 

along with the links to the two online questionnaire surveys. Recruitment was 

assisted by SWA, state-based jurisdictional authorities, WHS professional bodies 

(e.g. the Safety Institute of Australia and the Australian Institute of Occupational 

Hygienists), unions (e.g. the Australian Council of Trade Unions and OHSreps), and 

industry contacts. Additionally, HSR training providers assisted by placing notices 

inviting participation on their websites, and newsletters and organisational internal 

emails (see examples of some notices in Appendix E). An information pack 

(Appendix F) with the ‘general information about the research’, together with one-

page information sheets (Appendix G) were provided to these channels to dissipate 

the survey information to interested persons. Additionally, leaflets on the project and 

participation information sheets containing the links to the surveys were also placed 

at several OHS workshops/meetings/conferences. 

The two anonymous and voluntary national online surveys were hosted using 

SurveyMonkeyTM from March 2017 to early April 2018. Informed consent was 

provided by the respondents prior to completing the survey. Questions centred on 

heat-associated risks and direct and in-direct injury experience, how these risks 

were addressed, details of on-site training and heat health protection policies, and 

implications of heat on productivity loss. These questions were clearly structured 

under different sections. The final section had two open-ended questions so that 

participants could provide their comments related to recommendations for the 

http://www.adelaide.edu.au/oeh/heat/
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prevention of heat-related injuries. Due to the nature of participant recruitment and 

distribution of survey information, a response rate could not be calculated for the 

surveys. Full details of the survey questions and the complete questionnaire are 

provided in the supplementary material of Chapters 8 and 9 (Appendix B6 and B7). 

3.10 OVERVIEW OF ANALYTICAL METHODS 

3.10.1 Analysis of occupational surveillance data 

3.10.1.1 Study designs in existing literature 

Prior to describing the statistical models used in Chapters 4–7, a brief introduction 

to some of the epidemiological study designs and methods used in environmental 

epidemiology is outlined below. 

Descriptive,322 case-series or case-only,21, 323-327 case-control,328, 329 CCO319, 320, 330-

340 and TS9, 10, 16, 290, 341-352 are among a range of ecological study designs and 

models used in environmental epidemiological studies to assess and quantify the 

association between ambient temperature and health effects.5, 7 Among these, CCO 

and TS are the most commonly used ecological study designs which, after 

controlling for potential confounding variables such as seasonality and temporal 

trends,342, 353 aim to estimate the associations between exposure (daily 

temperatures) and health outcomes (daily counts of hospitalisations/deaths/ 

injuries). As mentioned in the literature review (Chapter 2), most previous studies44, 

45, 122, 127, 133, 134, 145, 183-185, 354 examining the effects of high temperatures on WRI 

have used TS designs. However, to precisely model the relationship, the number of 

workers (denominator) is to be taken into account and when such data are 

unavailable, the CCO design can be an alternate choice as discussed in Chapter 2. 
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3.10.1.2 Study design for this project 

A CCO study design was used to examine the relationship between the risk of daily 

WRI and Tmax (Chapters 4 and 5) and heatwave severity (Chapters 6 and 7). This 

design is a ‘special case of matched case-control study’ whereby the cases are 

matched with control days using a relatively small time window i.e. a calendar 

month, thus effectively controlling for both seasonal effects and secular long-term 

trends.355, 356 This design, developed by Maclure (1991) only samples cases and 

compares the changes in exposures during the risk-period and the control-period to 

examine the risk of acute health events.357 Figure 3.11 graphically illustrates the 

concept under-pinning the CCO study design. 

 

Figure 3.11 Case-crossover design conceptual diagram.358 

While the CCO design was originally used for individual level data,357 its useability 

in aggregated TS data318-320 and equivalence to TS analysis359-364 has also been 

demonstrated, especially as exposures measured at the ecological level (e.g. air 

temperature or pollution) are shared at the geographical level by the population 

under study.359-361 In the case of aggregated TS data as in this research, ‘cases’ on 
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the event day (day of the injury) are compared with their own ‘controls’ (day when 

the injury did not occur) on nearby days and it is the difference in exposures between 

the ‘case days’ and ‘control days’ that forms the basis of estimating the exposure-

response.319, 320 As ‘control days’ are chosen close to the ‘case-days’, by design, 

this implicitly controls for both known and unknown time-invariant individual 

confounding factors such as age, gender, fitness level, genetics, and occupational 

history which generally do not vary within a short time period.356 

The selection of control days relative to a case day can be made using different 

designs such as the uni-directional design,357 full-stratum bi-directional design,365 

symmetric bi-directional design,366, 367 semi-symmetric design,368 and the time-

stratified design.356 However, except for the time-stratified design, the potential for 

bias exists.369-373 Uni-directional and symmetric bidirectional designs do not 

adequately control for trends over time in exposure or outcomes and bidirectional 

designs do not control for seasonal patterns in exposure or outcome.370, 374 

The time-stratified method356 using a fixed and disjointed window, i.e. a calendar 

month where case days are compared with only control days from the same strata 

was chosen in this research. This method of control selection is known to perform 

well in terms of overcoming overlap bias, an issue for the semi-symmetric design 

which randomly selects a control day before or after the case day with a non-

disjointed strata.370 For studies 1–4 (Chapters 4–7), a relatively narrow seven-day 

window for the strata was chosen for two reasons: firstly to remove the seasonal 

patterns in exposure, and secondly to account for the weekly changes in the 

numbers of workers, which can have a marked effect on injury/accident numbers. 

Estimates of the number of current workers in an industry are available only on a 
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monthly level for the study areas. Hence, the CCO design avoids the need to use 

denominator data. 

This approach of a narrow strata differs to the more commonly used monthly strata 

of 28 or 30 days where control days are selected on the same day of the week as 

the case day for other weeks in the same calendar month.132, 188, 190 Hence, in this 

research a case day was compared to six other control or referent days within the 

same calendar week. For example, the temperature exposure for a worker injured 

on Wednesday is compared to temperature exposures on other days in the same 

week when the injury did not occur (Figure 3.12). 

 

Figure 3.12 Conceptual diagram for the time-stratified case-crossover design used in this thesis. 

In contrast to most CCO studies132, 135, 188, 189, 331, 332 using conditional logistic 

regression models to generate ORs as effect estimates, the CCO models used in 

this research were fitted using generalised linear models (GLMs) assuming a 

Poisson distribution, thus providing RR as effect estimates. This approach is similar 

to that used in other existing studies.190, 338 However, the choice of modelling 
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approach for studies in Chapters 4 and 5 was different from that of studies in 

Chapters 6 and 7 as briefly described below. 

3.10.1.3 Data analysis 

Relationship between ambient temperature and work-related injuries 

As mentioned in Chapters 1 and 2, the relationship between temperature (exposure) 

and health outcomes such as mortality/morbidity (response) has been described to 

be non-linear by numerous epidemiological studies, typically taking the functional 

form of a U, V or J-shaped curve.9, 10 Figure 3.13 provides examples of how these 

exposure-response curves may look graphically, whereby the increases in health 

risks expressed as RRs are observed as temperatures depart from an optimal range 

i.e. at both extremes of temperature with a zone in the middle of the curve where 

the risks are either null or minimal. 
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Figure 3.13 Common U-/V- or J- shapes shown in A-D, describing the relationship between 

ambient temperature and morbidity/mortality. 

The non-linearity of the relationship is therefore one aspect that needs to be 

considered in the choice of modelling. Another aspect that needs consideration is 

that the effects of temperature may not be limited to the day of exposure, as there 

can be a lagged or delayed effect. This may occur if a WRI occurs from the ongoing 

effects of hot days. The DLNM model234, 375 provides a modelling framework that 

simultaneously models the non-linear and lagged exposure-response relationships 

of temperature-health outcomes using a ‘cross-basis’ which is a bi-dimensional 

matrix combining two independent functions (predictor-temperature and lags).234 A 

reference value of the predictor is used to report the quantified associations as 

RR.234, 375 

Studies 1 and 2 (Chapters 4 and 5) therefore utilised the DLNM model combined 

with the CCO design to model the delayed and non-linear effect of temperature while 

A B 

C D 
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adjusting for temperature collinearity on neighbouring days.319, 320, 337, 338, 376 This 

modelling approach applied to the CCO design flexibly considers both the non-

linearity of the exposure-response relationship and the lagged effect234, 375 after 

controlling for temporal trends and seasonality by design.338 

To allow an expected U-shaped association, a natural cubic spline with three 

degrees of freedom (df) was used to model the non-linear temperature effects, while 

lagged effects were modelled using two df based on previous studies using 

DLNM.375, 377 A maximum lag of six days was used to fully capture lag patterns of 

temperature on WRI. Confounders such as days of the week and public holidays 

were controlled for in the models using indicator variables. 

The effects of temperature on WRI were quantified as RR with 95% confidence 

intervals (CIs) using a reference value for the cross-basis upon which the DLNM 

model was built. In Chapter 4, the lowest point of the exposure-response curve 

across the whole temperature spectrum during the study period was taken as the 

reference value, while the median value of temperature was taken as the reference 

value in Chapter 5. This difference was mainly because of the nature of the 

associations as identified in the relevant chapters. The rationale for the use of the 

median value of Tmax is that the 50th percentile of temperature represents a relatively 

typical temperature upon which other days could be compared.8, 338, 376, 378-385 Thus, 

RR of WRI, comparing the 99th percentile (extremely hot) to the reference value, 

and the 1st percentile (extremely cold) to the reference value were calculated. 

Additionally, RR comparing the 90th percentile (moderately hot) to the reference 

value and the 10th percentile (moderately cold) to the reference value were also 

calculated. These choices of percentiles were based on previous heat-health 
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studies using DLNM.9, 380, 381, 386-390 Further details are presented in Chapters 4 and 

5. 

All statistical analyses were conducted using the R statistical software version 3.2.3, 

with packages such as ‘dlnm’ and ‘season’ used to fit the DLNM model and the CCO 

design. 

Relationship between heatwaves and work-related injuries 

In Chapters 6 and 7 the time-stratified CCO design was used to assess the 

association between heatwave severity (defined using EHF) and the risk of WRI. 

The risk periods were pre-defined periods of heatwave days and the referent period 

was all non-heatwave days. For the heatwave studies, the analysis was restricted 

to the warm-season (October–March in Study 3 and November–March in Study 4) 

and confounders such as day of the week and public holidays were adjusted. The 

CCO design was fitted using a GLM model assuming a Poisson distribution. Results 

are presented as RR with 95% CIs during heatwave periods of low, moderate and 

high severity, compared with non-heatwave periods during the warm season. 

Further details are presented in Chapters 6 and 7. 

3.10.2 Stakeholder surveys 

3.10.2.1 Study design 

A cross-sectional descriptive design was used for the two national online surveys of 

HSPs and HSRs. 
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3.10.2.2 Data analysis 

All the data from the surveys were exported from SurveyMonkeyTM into an Excel 

database and later imported into a Stata 15 database (College Station, TX). The 

demographic distribution of the sample and responses to questions were 

summarised using descriptive statistics. The main outcome variables for both the 

surveys were derived from the perceived frequency of injury experience question. A 

detailed description of the outcome variables and the risk factors assessed is 

presented in Chapters 8 and 9. 

Bivariate regression analyses using log-Poisson models presented as prevalence 

ratio (PR) with 95% CI were used to examine the relationship between reported 

perceived frequency of injury experience and risk factors (work factors and hazards, 

organisational issues, type of workers, and frequency of preventive measures).118, 

391, 392 Response options to a question on injury experience (“In your workplace (s), 

would you say that injuries or incidents caused by (partly at least) hot/very humid 

weather occur?”) based on a 4-point Likert scale were combined to create a binary 

variable (never/rarely versus sometimes/often). The responses to a question on 

prevention measures (“How often are the following work practices adopted in your 

workplace(s)?”) based on 5-point Likert scale, were dichotomised into 

‘never/rarely/sometimes’ versus ‘often/always’.393-395 This was because the latter 

categories i.e. ‘often/always’ denote a relatively safer workplace as compared to 

one where prevention measures were used ‘never/rarely/sometimes’. Multiple 

response questions regarding risk factors were converted into multiple dichotomies, 

whereby each of the responses within a question were assigned separate variables 

in the data file with the variables coded as 0 for No (not selected) and 1 for Yes 
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(selected) with the counted value totalling 1.396 The survey responses were 

analysed using Stata 15 (College Station, TX).  

3.11 ETHICS 

Given the collaborative nature of this project involving researchers from different 

institutions and using data covering multiple jurisdictions, several ethical approvals 

were required and thus obtained from each participating research University. Ethics 

approval for the analysis of the WC claims data and the two national online surveys 

were obtained from the Human Research Ethics Committees of the following 

institutions: 

 The University of Adelaide (Ethics approval No: H-2016-085) (Appendix H1-

H3) 

 Queensland University of Technology (Ethics approval No: 1600000760) 

(Appendix H4) 

 The University of Western Australia (Ethics approval No: RA/4/1/8583) 

(Appendix H5)  

 Monash University (Ethics approval No: 0895) (Appendix H6) 

No worker was identifiable in any of the datasets provided by SWSA, SWA and SA 

Health as the data were supplied in a de-identified format. No personal details were 

captured and links to the surveys provided were generic links with no unique 

identifiers, thus ensuring the participant rights, privacy, and confidentiality. 

For the surveys, the ethical aspects were covered in the survey preamble which 

required the participants to provide a response whether they agree to continue with 

the survey or disagree with the information provided. Those selecting the agree to 
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continue option proceeded with the survey and this was considered as an implied 

consent to participate, while those selecting the disagree option exited the survey. 

On the whole, this research used de-identified data and only members of the 

research team had access to the data. 

3.12 CHAPTER SYNOPSIS 

This chapter has described the study region, framework, main data sources, and 

analytical approach of the study. 

Part 1: Workers’ compensation (WC) claims 

 Data on WRI among workers in Adelaide, Melbourne, and Perth (temperate 

climate) and Brisbane (sub-tropical climate) were sourced from two WC 

datasets: Tabulator (Adelaide data) and NDS3 (Brisbane, Melbourne, and 

Perth data). 

 Data on heat exposure (Tmax, and EHFsev-defined heatwave severity) at the 

study sites were accessed from the BOM. 

 Daily time-stratified CCO design combined with a DLNM model; and time-

stratified CCO design combined with a GLM model adjusting for confounders, 

were used to characterise the effects of ambient temperatures and heatwave 

severity on WRI risks, respectively. 

Part 2: Stakeholder surveys 

 Two national cross-sectional online questionnaire surveys were conducted 

between 31 March 2017 and 4 April 2018 among HSPs, and HSRs, to gauge 

their perceptions on determinants of heat-related work injuries. 
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 Survey data were analysed descriptively and log-Poisson regression models 

were used to examine associations between the frequency of reported injury 

experience and specific risk factors, and the frequency of prevention 

measures in workplaces of HSRs and workplaces visited/managed by HSPs.
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Summary of Section A 

This first section of the thesis, consisting of two chapters, provided the basis, 

background, and design for the research presented in this thesis. The 

comprehensive literature review presented in Chapter 2 summarised the current 

knowledge regarding the association between heat exposure and WRI and that 

concerning stakeholder perceptions. In brief, the review and its update yielded 34 

relevant yet diverse articles from countries across the world, albeit mainly from those 

in the Northern Hemisphere. The evidence showed a clear relationship between hot 

weather (also heatwaves) and a range of occupational injuries, with contributing 

factors to injury risk being fatigue due to the heat, loss of concentration and 

alertness, and reduced psychomotor performance. The review of stakeholder 

perceptions on heat and WRI identified only two studies while the majority were 

concerned with heat and HRIs, warranting the need for further studies. Finally, 

Chapter 3 outlined the study design, aims and objectives, research questions, 

conceptual framework of the study, main data sources, and rationale for the chosen 

study methods. The next section will focus on how ambient temperatures influence 

the risk of WRI. 
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SECTION B: AMBIENT TEMPERATURES 
AND WORK-RELATED INJURIES  
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Overview of Section B 

This second section of the thesis, consists of two chapters. Chapters 4 and 5 

collectively investigate the impacts of daily ambient temperatures on WRI. Chapter 

4 reports on the analysis of WC claims data in Adelaide, Australia, while Chapter 5 

reports on the analysis of the WC claims data in Brisbane, Melbourne and Perth. 

Together, these two chapters provide city-specific exposure-response curves and 

estimates in relation to daily ambient temperatures and WRI thereby providing an 

overview of the issue.
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Chapter 4: Effects of Ambient 
Temperatures on the Risk of Work-

Related Injuries and Illnesses: Evidence 
from Adelaide, Australia 2003–2013 

4.1 PREFACE 

The study (Study 1) presented in this chapter is the first of two studies that 

addresses the first and the third objective, and examines the effects of ambient 

temperatures on the risk of WRI in Adelaide, the capital city of South Australia with 

a temperate climate. 

This study is an expansion of findings from a previous study by Xiang and 

colleagues45 in Adelaide by not only examining the relationship between ambient 

temperatures and WRI but also quantifying the temperature-associated WRI burden 

at both moderate and extreme temperature ranges. 

A time-stratified CCO study design combined with a DLNM model was utilised to 

examine the associations between WRI and daytime daily Tmax. The CCO design 

controlling for season and secular trends, combined with DLNM accounting for the 

nonlinear and lagged effects of temperature on WRI, is a unique strength and novel 

aspect of this study. 

This chapter has been published in the journal of Environmental Research as: 

Varghese BM, Barnett AG, Hansen A et al. The effects of ambient temperatures on 

the risk of WRIs and illnesses: Evidence from Adelaide, Australia 2003–2013. 

Environmental Research. 2019; 170: 101–9. doi:10.1016/j.envres.2018.12.024. 
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4.3 PUBLICATION 

4.3.1 Abstract 

Background: The thermal environment can directly affect workers’ occupational 

health and safety, and act as a contributing factor to injury or illness. However, the 

literature addressing risks posed by varying temperatures on work-related injuries 

(WRIs) and illnesses is limited. 

Objectives: To examine the occupational injury and illness risk profiles for hot and 

cold conditions. 

Methods: Daily numbers of workers’ compensation (WC) claims in Adelaide, South 

Australia from 2003 to 2013 (n=224,631) were sourced together with daily weather 

data. The impacts of maximum daily temperature on the risk of WRIs and illnesses 

was assessed using a time-stratified case-crossover study design combined with a 

distributed lag non-linear model. 

Results: The minimum number of WC claims occurred when the maximum daily 

temperature was 25 °C. Compared with this optimal temperature, extremely hot 

temperatures (99th percentile) were associated with an increase in overall claims 

(RR: 1.30, 95% CI: 1.18–1.44) whereas a non-significant increase was observed 

with extremely cold temperatures (1st percentile, RR: 1.10 (95% CI: 0.99–1.21). 

Heat exposure had an acute effect on workers’ injuries whereas cold conditions 

resulted in delayed effects. Moderate temperatures were associated with a greater 

injury burden than extreme temperatures. 

Conclusion: Days of very high temperatures were associated with the greatest 

risks of occupational injuries; whereas moderate temperatures, which occur more 
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commonly, have the greatest burden. These findings suggest that the broader range 

of thermal conditions should be considered in workplace injury and illness 

prevention strategies. 

Keywords: Occupational Health; Temperature; Injuries; Case-crossover design; 

Attributable risk; Distributed lag non-linear model. 

4.3.2 Introduction 

The relationship between temperature extremes and adverse effects on population 

health is well documented, with increased risks for vulnerable groups such as the 

elderly, and those with chronic morbidities.5, 28 To date, most of the research has 

focussed on the general population while the occupational health impacts on 

workers have received less attention.25, 29, 30 Recent reviews50, 397, 398 indicate that 

while studies have considered the effects of either high or low temperatures on 

work-injuries, there is limited research on the effects of both heat and cold conditions 

on injury risks for workers, thus calling for more research in this area. 

In addition to heat or cold related illnesses, occupational injuries can occur when an 

individual’s coordination, strength, vision, endurance, or judgement are influenced 

by temperature-induced physiological changes.33, 163, 178, 399 A US study examining 

the association between temperature and injury risk found that compared to ambient 

temperatures of 10 °C–16 °C, the odds ratios (ORs) of acute injury risks in 

aluminium smelter workers were: 2.28 (95% CI:1.49–3.49) between 32 °C and 

38 °C; and 3.52 (95% CI: 1.86–6.67) above 38 °C.43 In Australia, studies in 

Melbourne,132 and Adelaide45 have also shown increased risks for workers in hot 

weather and during heatwaves. On the other hand, studies have also reported a 

strong relationship between workplace injuries and cold temperatures.185, 400-403 
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An understanding of increased injury risk is important in light of scenarios of 

increasing, and more variable temperatures worldwide. In Australia, there has been 

a 27% increase in the number of hot days over 35 °C with further indications that 

this trend will continue.404 Thus, while it is known that hot weather may pose an 

increasing threat to workers’ health and safety in Australia, risks of injury and the 

temperature associated injury burden at other temperature ranges have not been 

investigated. This study aims to: a) examine the relationship between ambient 

temperatures and work-related injuries (WRIs) and illnesses; b) identify susceptible 

worker subgroups by occupation and their working environment (outdoor vs indoor); 

and c) quantify the burden of WRIs and illnesses in association with hot and cold 

temperatures in Adelaide, South Australia. 

4.3.3 Materials and methods 

4.3.3.1 Study setting 

Adelaide (latitude 34°55'S, 138°35'E) is the capital city of South Australia and its 

population of more than 1.3 million comprises 78% of the state’s population. The 

labour force in Adelaide in 2016 was estimated to be 636,115 with most employed 

in the ‘health care and social assistance’, ‘retail trade’ and ‘manufacturing’ industry 

sectors.255 Adelaide has a Mediterranean climate with mild winters and warm to hot 

dry summers. Temperatures above 35 °C occur on average 17 days per year.405 

The warmest months are January and February with average daily maximum 

temperatures (Tmax) of 29 °C and heatwaves are quite common. During winter 

(June–August) the average daily Tmax is 15 °C–16 °C. 
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4.3.3.2 Data sources 

Workers compensation (WC) claims data 

Workers who have experienced a WRI or illness in South Australia can lodge a claim 

for compensation covering medical expenses and/or loss of wages.297 The criteria 

for workers compensation as stated by the Return to Work Act 2014 is that the 

injury/illness sustained by the worker must arise from their employment.297 All 

reported compensation claims in South Australia are aggregated and managed by 

the jurisdictional government-run regulator (SafeWork SA). Since 1987, surveillance 

of WRIs and diseases has been conducted using these data to identify target areas 

for prevention, as well as to evaluate safety improvement programs.304 Details of 

each claim are recorded according to the Type of Occurrence Classification System 

(TOOCS 3.1).296 WRIs were classified as those coded under the TOOCS3.1 nature 

of injury or disease code group A to group H and work-related illnesses were 

classified as those coded under the TOOCS3.1 nature of injury or disease code 

group I to group Q.72 It should be noted that 90% of all compensation claims in 

Australia are for WRIs.72 

The data for the period from 1 July 2003 to 30 June 2013 were drawn from a dataset 

of de-identified claimant information that included demographics (gender, age, 

industry sector, occupation), details of injury or illness (time, bodily location, type, 

mechanism and agency of injury) and outcome information (days lost from work and 

total expenditure). Information on the workers’ level of experience was also available 

in the dataset i.e. ‘new workers’ (operationally defined as <1 year of experience at 

the time of the injury/illness). Those not meeting this criterion were considered as 

‘experienced workers’. Only ‘active claims’ (88.4% of all claims) determined to be 
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valid claims by the regulator, were included in the analysis, while ‘pending’, 

‘withdrawn’, ‘rejected’ and ‘incident’ claims were excluded (details provided in Figure 

B1, Appendix B2). Data were aggregated and restricted to the Adelaide metropolitan 

area (postcodes 5000–5200).406 

Workers’ potential exposure to temperature in the workplace was examined at the 

industrial and occupational level. Consistent with previous research,45, 145 the 

following industries were classed as ‘outdoor industries’: ‘agriculture, forestry, 

fishing and hunting’; ‘electricity, gas and water’; ‘mining’; and ‘construction’, while 

other remaining industries were classed as ‘indoor industries’. Considering the 

heterogeneity in exposures among a range of occupations within any one industry, 

a ‘cross-walk’ (merge between two classifications) between the Australian and New 

Zealand Standard Classification of Occupations (ANZSCO) system294 and the 

Canadian National Occupational Classification (NOC) system228 was performed to 

extract information on potential locations where the main duties of an occupation 

are conducted (e.g. ‘regulated indoor climates’, ‘unregulated indoor climate’, 

‘outside’, ‘in a vehicle or cab’ and ‘multiple locations’). The process by which NOC 

codes are associated with each occupational title has been described elsewhere316, 

317 and validated in the Australian context.132, 231, 232 Additionally, occupational 

groups were further characterised (Table I1, Appendix I) according to the method of 

Carey et al.407 

4.3.3.3 Meteorological data 

Weather data including daily Tmax (highest temperature in the 24 hours after 09:00 

hours) and minimum temperatures (Tmin- lowest temperature in the 24 hours before 

09:00 hours), relative humidity, global solar radiation and vapour pressure were 
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obtained for a central Adelaide weather station from the Australian Bureau of 

Meteorology (BOM). 

4.3.3.4 Study design 

A time-stratified case-crossover (CCO) design was used to examine the relationship 

between the risk of daily WC claims (comprising WRIs and illnesses) and daily Tmax. 

This design controls for known and unknown time-invariant individual confounding 

factors such as age, gender and fitness level which generally do not vary within a 

short time period.357 The advantage of this study design is that it does not require 

denominator data (i.e. the number of workers) for which estimates were unavailable 

on a weekly basis. In this study, the ‘cases’ are accepted WC claims for a WRI or 

illness sustained by a worker aged above 15 years at a workplace situated in the 

Adelaide metropolitan area. To avoid overlap bias that can occur in uni- or bi-

directional design, a time-stratified CCO method was selected which uses a fixed 

and disjointed window where case days are compared with control days from the 

same strata.356 We used a seven-day strata as weekly changes in the number of 

workers (particularly over the summer and the festive season break) can have an 

effect on injury/claim numbers. Hence, the exposures on the case day (day of the 

injury) are compared with exposures on control days (other six days in the same 

calendar week when the injury did not occur). We fitted the CCO using a generalized 

linear model (GLM) assuming a Poisson distribution. 

4.3.3.5 Statistical modelling 

A distributed lag nonlinear model (DLNM) was used to model the delayed and 

nonlinear effect of temperature while making adjustments for temperature 

collinearity on neighboring days.234, 375 A natural cubic spline with three degrees of 
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freedom (df) was used to model the nonlinear temperature effects to allow for an 

expected U-shaped association, while lagged effects were modeled using two df. A 

maximum lag of six days was chosen. Days of the week were controlled for in the 

models using an independent binary variable for each seven-day window except 

Friday, which was the reference day. Effects of public holidays were also controlled 

for by creating indicator variables for 'Christmas Day’ and ‘New Year’s day’ (which 

occur during the Australian summer) and an indicator for all other public holidays. 

Residuals were plotted and assessed for approximate normality, outliers, and 

autocorrelations, and the variance inflation factor was used to check for collinearity 

in the predictor variables. Initial residual checks led to the modeling of New Year’s 

Day as a separate variable. 

The lowest point of the exposure-response curve across the whole temperature 

spectrum, i.e. the temperature at which the claim risk was lowest, was 25 °C (i.e. 

65th percentile of Tmax). This point, referred to as the optimal temperature (OT), was 

the reference value. We calculated the relative risks (RRs) of claims at moderately 

hot (90th percentile) and extremely hot (99th percentile) temperatures, and at 

moderately cold (10th percentile) and extremely cold (1st percentile) temperatures 

compared with the OT.185 Subgroup analyses by the worker, work, workplace and 

injury characteristics were conducted for the WC claims data to define factors with 

relatively strong associations with temperature. 

Tmax was selected as the exposure metric, although we also calculated other 

meteorological indices that incorporate air temperature and relative humidity (i.e. 

Apparent Temperature (AT), Humidex (HX), Heat Index (HI), Universal Thermal 
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Climate Index (UTCI) and Wet Bulb Globe Temperature (WBGT) for sensitivity 

analyses (details provided in the supplementary material, Appendix B2). 

4.3.3.6 Computation of attributable risk 

The burden of WC claims due to hot and cold temperatures was calculated using 

25 °C as the reference temperature. We used the ‘backward perspective’ approach 

where the series of past exposure events are attributed to the present risk of WRI 

and illness.236 The total attributable number (AN) of claims due to non-optimum 

temperatures was derived by adding the contributions from all days during the study 

period, and its proportion in the total number of claims provided the total attributable 

fraction (AF). The claims attributable to hot and cold temperatures were calculated 

by summing the claims from days with temperatures higher or lower than 25 °C, 

respectively. 

The overall temperature-related effect was further stratified into moderate and 

extreme conditions according to the method of Gasparrini and Leone (236) In line with 

previous studies,185, 236 temperatures between 25 °C and the 97.5th percentile and 

those higher than the 97.5th percentile were classified as moderate and extreme 

heat, respectively; and temperatures between the 2.5th percentile and 25 °C and 

those lower than the 2.5th percentile, were classified as moderate and extreme cold, 

respectively. Empirical 95% confidence intervals (CIs) were obtained for AF and AN 

using 5000 Monte Carlo simulations assuming a multivariate normal distribution of 

the reduced coefficients.236 

All statistical analyses were conducted using R statistical software version 3.2.3, 

with the packages ‘dlnm’ and ‘season’ to fit the DLNM model and the CCO 
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design.355, 375 The attributable risks (AF and AN) were calculated using the function 

‘attrdl’.236 

Ethics approval for the study was granted by the Human Research Ethics 

Committee of the University of Adelaide. 

4.3.4 Results 

4.3.4.1 Descriptive statistics 

Over the study period the daily Tmax in Adelaide ranged between 9.9 °C and 45.7 °C 

with a mean of 22.9 °C. There were 224,631 active claims submitted in the Adelaide 

metropolitan area during this period. On average, there were 61 claims per day, of 

which 55 were injury-related (TOOCS3.1 nature of injury/disease code Group A–

Group H) and 6 were illness-related (TOOCS3.1 nature of injury/disease code 

Group I–Group Q). The annual number of claims ranged from 17,745 and 28,834 

with a 38% reduction in the number of claims from 2003/04 to 2012/13 financial 

years (supplementary Figure B3, Appendix B2). About two-thirds of all claims 

occurred among males and about 48.6% occurred in people aged 35–54 years (see 

supplementary Tables B2-B4, Appendix B2). 

4.3.4.2 Exposure-response relationship 

Overall association 

The cumulative association between temperature and WC claims is shown in Figure 

4.1A. A J-shaped association was observed between all WC claims and daily Tmax, 

with significantly higher RR above 25 °C. The overall RR for moderately (90th 

percentile, 33.3 °C) and extremely hot temperatures (99th percentile, 40.6 °C) were 

1.08 (95% CI: 1.05, 1.12) and 1.30 (95% CI: 1.18–1.44), respectively. The increase 
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in injury claims at extremely hot temperatures was greater than that for illness claims 

(RR=1.48, 95% CI: 1.08–2.04 vs. RR=1.30, 95% CI: 1.17–1.44; Figure 4.1B). For 

moderately (10th percentile, 15 °C) and extremely cold temperatures (1st percentile, 

12.6 °C), the overall RRs were 1.08 (95% CI: 1.01–1.15) and 1.10 (95% CI: 0.99–

1.21), respectively. The effects of heat on WC claims were acute and immediate 

while that of cold were delayed (see supplementary Figure B4, Appendix B2). 
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Figure 4.1 Overall relative risks of varying daily maximum temperatures on workers’ compensation claims relative to 25 °C in the Adelaide metropolitan area, 

2003–2013: A) overall; B) by type of claims; C) by industry.
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Workers with increased risk of injury and illness at non-optimal temperatures 

Higher than optimum temperatures resulted in an increase in the numbers of WC 

claims. Total claims showed significant associations with moderately hot (90th 

percentile) and extremely hot temperatures (99th percentile) and the effects were 

comparable between genders, while no significant effects were seen at moderately 

cold (10th percentile) and extremely cold (1st percentile) temperatures (Table 4.1). 

Compared with 25 °C, extremely hot temperatures were associated with increase in 

claims for workers aged 15–24 years (RR 1.51, 95% CI: 1.19–1.92), 35–54 years 

(RR 1.39, 95% CI: 1.20–1.60) and experienced workers (RR 1.32, 95% CI: 1.18–

1.46). Significant increase in WC claims were seen among workers employed in 

‘medium’ and ‘heavy’ strength occupations and those working in ‘regulated indoor 

climates’ (Table 4.1). Specifically, the following occupations were vulnerable during 

extremely hot temperatures: ‘animal and horticultural workers’, ‘cleaners’, ‘food 

service workers’, ‘metal workers’ and ‘warehouse’ workers (Table 4.2). 

As with hot temperatures, cold temperatures had the greatest effect on workers 

aged 15–24 years and experienced workers (Table 4.1). A statistically significant 

increase in WC claims was seen in ‘food factory’ workers at (moderately and 

extremely) cold temperatures (Table 4.2). The highest effects of extremely cold 

temperatures were observed on workers in ‘light’ and ‘heavy’ strength occupations 

(Table 4.1). 

Stratification by industry characteristics 

There were significant relationships between Tmax and total WC claims in both 

outdoor and indoor industries (Table 4.1). During moderately hot temperatures the 

highest increase in total WC claims was observed for the ‘electricity, gas and water’ 
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industry (RR: 1.79, 95% CI: 1.19–2.67). During extremely hot temperatures the risk 

for this industry was 9.06 (95% CI: 2.86–28.7) and for other outdoor industries such 

as ‘agriculture, forestry, fishing and hunting’, ‘mining’, and ‘construction’ the RR 

were 4.01 (95% CI: 1.24–12.9); 3.86 (95% CI: 1.19–12.5), and 1.72 (95% CI: 1.18–

2.52), respectively. 

Among the indoor industries, ‘transport and storage’, ‘manufacturing’ and 

‘community services’ had increased RR at extremely hot temperatures. Compared 

with 25 °C, moderately and extremely hot temperatures were associated with an 

increase in claims in enterprises categorised by size as medium (20–199 

employees) and large-sized (≥200 employees). 

In contrast, at moderately cold and extremely cold temperatures, ‘manufacturing’ 

was the only industry with significant increase in total WC claims (Table 4.1).
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Table 4.1 Relative risks for workers’ compensation claims in hot and cold temperatures stratified by 
worker, work and work environment characteristics in Adelaide metropolitan area, 2003–2013 (RR 
with 95% CI). 

 Temperature categorya 

Claim characteristics Extreme coldb Moderate coldc Moderate hotd Extreme hote 

Gender 
    

Female 1.07 (0.91,1.25) 1.09 (0.98,1.21) 1.07 (1.01,1.14)* 1.36 (1.15,1.60)* 

Male 1.10 (0.97,1.24) 1.06 (0.98,1.15) 1.09 (1.05,1.14)* 1.28 (1.13,1.45)* 

Age group (years) 
    

15–24 1.32 (1.04,1.66)* 1.18 (1.02,1.38)* 1.16 (1.07,1.26)* 1.51 (1.19,1.92)* 

25–34 1.04 (0.84,1.28) 0.96 (0.84,1.11) 1.09 (1.01,1.17)* 1.08 (0.86,1.34) 

35–54 1.12 (0.97,1.28) 1.12 (1.03,1.23)* 1.08 (1.03,1.13)* 1.39 (1.20,1.60)* 

>55 0.80 (0.62,1.04) 0.92 (0.78,1.09) 1.01 (0.92,1.11) 1.19 (0.90,1.55) 

Worker experience 
    

Experienced worker 1.11 (1.00,1.23)* 1.08 (1.01,1.16)* 1.09 (1.05,1.13)* 1.32 (1.18,1.46)* 

New worker 1.03 (0.79,1.34) 1.05 (0.88,1.24) 1.05 (0.96,1.15) 1.24 (0.96,1.59) 

Industrial sectors 
    

Outdoor industries (sub-total) 0.95 (0.69,1.31) 1.12 (0.91,1.38) 1.18 (1.05,1.32)* 2.25 (1.62,3.14)* 

Agriculture, Forestry, Fishing & 
Hunting 

0.39 (0.13, 1.22) 0.78 (0.36,1.65) 1.24 (0.83,1.86) 4.01 (1.24,12.9)* 

Construction 1.06 (0.74, 1.52) 1.15 (0.90,1.46) 1.11 (0.97,1.26) 1.72 (1.18, 2.52)* 

Electricity, Gas & Water 0.54 (0.18,1.59) 0.83 (0.43,1.81) 1.79 (1.19,2.67)* 9.06 (2.86,28.7)* 

Mining 0.91 (0.30,2.72) 1.18 (0.7,2.41) 1.33 (0.89,1.99) 3.86 (1.19,12.5)* 

Indoor industries (sub-total) 1.10 (0.99, 1.22) 1.07 (0.99,1.14) 1.08 (1.04,1.11)* 1.24 (1.12,1.37)* 

Finance, Property & Business 
Services 

1.35 (0.86,2.10) 1.17 (0.87,1.57) 1.17 (0.99,1.37) 1.46 (0.93,2.27) 

Manufacturing 1.24 (1.01, 1.51)* 1.19 (1.04,1.36)* 1.05 (0.97,1.13) 1.28 (1.03,1.60)* 

Public Administration & Defence 0.81 (0.45,1.48) 0.91 (0.61,1.36) 0.90 (0.72,1.13) 0.82 (0.43,1.55) 

Recreation, Personal & Other 
Services 

1.27 (0.87, 1.84) 1.18 (0.91,1.51) 1.04 (0.90,1.18) 1.16 (0.78,1.70) 

Transport & Storage 0.86 (0.58, 1.29) 0.89 (0.68,1.16) 1.20 (1.04,1.37)* 1.50 (1.01, 2.25)* 

Wholesale & Retail Trade 1.15 (0.91,1.45) 1.09 (0.93,1.28) 1.07 (0.98,1.16) 1.21 (0.95,1.53) 

Communication 0.43 (0.01,26.5) 0.65 (0.04,9.64) 1.54 (0.43,5.44) 3.89 (0.14,108.0) 

Community Services 0.98 (0.83,1.16) 0.98 (0.88,1.10) 1.08 (1.01,1.14)* 1.20 (1.01,1.43)* 

Size of business 
    

Small (1–19 employees) 1.14 (0.88,1.46) 1.04 (0.87,1.22) 1.06 (0.97,1.16) 1.07 (0.82, 1.38) 

Medium (20–199 employees) 1.02 (0.85,1.20) 1.03 (0.91,1.15) 1.09 (1.03,1.16)* 1.33 (1.11,1.58)* 

Large (≥200 employees) 1.13 (0.99,1.29) 1.11 (1.02,1.21)* 1.08 (1.04,1.14)* 1.36 (1.19,1.56)* 

Physical demands of work 
    

Limited (≤5kg) 0.91 (0.74,1.12) 0.95 (0.83,1.09) 1.05 (0.97,1.14) 1.17 (0.93,1.45) 

Light (5–10kg) 1.38 (1.11,1.71)* 1.31 (1.13,1.51)* 0.98 (0.91,1.06) 1.16 (0.93,1.46) 

Medium (10–20kg) 0.97 (0.83,1.13) 1.00 (0.90,1.11) 1.14 (1.08,1.21)* 1.51 (1.29,1.77)* 

Heavy (>20 kg) 1.27 (1.03,1.56)* 1.13 (0.98,1.30) 1.09 (1.01,1.18)* 1.22 (0.97,1.52) 

Potential workplace temperature 
exposure 

    

Regulated indoors 1.11 (0.99,1.24) 1.08 (1.00,1.16) 1.07 (1.03,1.12)* 1.26 (1.12,1.41)* 

Unregulated indoors 1.23 (0.18,8.18) 1.67 (0.47,5.91) 0.47 (0.25,0.90)* 0.35 (0.06,1.96) 
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 Temperature categorya 

Claim characteristics Extreme coldb Moderate coldc Moderate hotd Extreme hote 

Outside 0.74 (0.24,2.27) 0.86 (0.41,1.82) 1.28 (0.85,1.93) 2.15 (0.63,7.21) 

In a vehicle or cab 0.76 (0.49,1.19) 0.82 (0.61,1.10) 1.06 (0.91,1.24) 1.08 (0.69,1.69) 

Multiple locations 1.11 (0.91,1.34) 1.10 (0.97,1.25) 1.12 (1.05,1.20)* 1.51 (1.23,1.84)* 

Abbreviations: CI: confidence interval; RR: relative risk. *p<0.05 
a. All temperatures were compared with the optimum temperature of 25.0 °C 
b. The 1st percentile of temperature (12.6 °C) 
c. The 10th percentile of temperature (15 °C) 
d. The 90th percentile of temperature (33.1 °C) 
e. The 99th percentile of temperature (40.6 °C) 
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Table 4.2 Relative risks in hot and cold temperatures for workers’ compensation by occupational 
groups in Adelaide metropolitan area, 2003–2013 (RR with 95% CI). 

 
Temperature categorya 

Occupational groups Extreme coldb Moderate coldc Moderate hotd Extreme hote 

Animal & Horticultural 1.18 (0.65,2.11) 1.16 (0.79,1.71) 1.21 (0.98,1.50) 1.95 (1.05,3.62)* 

Automobile Drivers 1.35 (0.44,4.05) 1.11 (0.53,2.34) 1.10 (0.73,1.66) 1.09 (0.31,3.78) 

Carpenters 0.85 (0.45,1.59) 0.98 (0.66,1.50) 1.09 (0.86,1.38) 1.55 (0.76,3.12) 

Cleaners 0.97 (0.57,1.66) 1.11 (0.78,1.58) 1.09 (0.90,1.32) 1.74 (1.01,3.00)* 

Construction 0.53 (0.25,1.15) 0.55 (0.33,0.92) 1.22 (0.92,1.60) 0.98 (0.43,2.21) 

Electrical 0.65 (0.36,1.20) 0.72 (0.48,1.09) 1.27 (1.02,1.58) 1.63 (0.86,3.07) 

Emergency Workers 0.84 (0.49,1.45) 0.88 (0.62,1.26) 1.02 (0.85,1.22) 0.99 (0.60,1.64) 

Engineers 2.01 (0.60, 6.74) 1.57 (0.71,3.46) 1.53 (0.96,2.44) 3.52 (0.89,13.80) 

Farmers 0.20 (0.01,3.53) 0.60 (0.09,4.00) 0.57 (0.21,1.51) 0.70 (0.05,9.2) 

Food Factory 2.70 (1.47,4.96)* 1.60 (1.07,2.40)* 1.20 (0.95,1.50) 1.20 (0.62,2.32) 

Food Service 1.11 (0.69,1.77) 1.23 (0.90,1.68) 1.15 (0.97,1.36) 2.13 (1.31,3.46)* 

Handypersons 0.95 (0.44,2.06) 0.97 (0.58,1.62) 1.21 (0.93,1.57) 1.71 (0.78,3.71) 

Health & Personal Support 0.89 (0.65,1.23) 0.94 (0.76,1.17) 1.01 (0.90,1.13) 1.05 (0.75,1.46) 

Heavy Vehicle Drivers 1.18 (0.78,1.80) 1.09 (0.82,1.43) 1.07 (0.92,1.23) 1.14 (0.74,1.75) 

Hospitality 1.19 (0.58,2.41) 1.07 (0.66,1.70) 1.03 (0.80,1.33) 0.98 (0.48,2.02) 

Machine Operators 1.26 (0.93,1.71) 1.22 (0.99,1.49) 1.00 (0.90,1.12) 1.17 (0.85,1.62) 

Metal Workers 1.28 (0.93,1.71) 1.19 (0.96,1.45) 1.12 (1.00,1.25)* 1.46 (1.05,2.03)* 

Miners 1.64 (0.34,7.83) 1.61 (0.56,4.58) 1.07 (0.62,1.84) 1.93 (0.39,9.42) 

Nurses 0.90 (0.60,1.36) 0.95 (0.72,1.26) 1.08 (0.93,1.26) 1.29 (0.84,1.98) 

Office 1.10 (0.85, 1.40) 1.07 (0.90,1.26) 1.03 (0.93,1.12) 1.11 (0.85,1.43) 

Other Health Professionals 2.13 (0.48,9.39) 1.59 (0.59,4.26) 0.78 (0.46,1.31) 0.51 (0.11,2.39) 

Outdoor Work NECf 1.20 (0.37,3.92) 1.11 (0.49,2.45) 1.09 (0.71,1.67) 1.25 (0.37,4.16) 

Painters 1.21 (0.18,7.77) 1.51 (0.43,5.22) 0.96 (0.50,1.86) 1.95 (0.29,12.80) 

Passenger Transport 0.44 (0.16,1.20) 0.59 (0.30,1.14) 1.03 (0.71,1.47) 0.97 (0.33,2.78) 

Plumbers 1.31 (0.71,2.40) 1.39 (0.93,2.07) 1.03 (0.82,1.27) 1.64 (0.88,3.05) 

Printers 2.05 (0.58,7.18) 1.71 (0.74,3.04) 1.34 (0.84,2.12) 2.93 (0.71,12.10) 

Scientists 1.99 (0.63,6.25) 1.21 (0.56,2.60) 0.89 (0.59,1.35) 0.41 (0.13,1.31) 

Teachers 0.85 (0.50,1.44) 0.92 (0.65,1.31) 1.01 (0.82,1.24) 1.07 (0.58,1.98) 

Vehicle Workers 0.70 (0.41,1.20) 0.77 (0.54,1.10) 1.10 (0.90,1.33) 1.14 (0.65,2.00) 

Warehousing 1.16 (0.78,1.73) 1.15 (0.88,1.50) 1.23 (1.06,1.41)* 1.99 (1.32,3.01)* 

Abbreviations: CI: confidence interval; RR: relative risk. *p<0.05 
a. All temperatures were compared with the optimum temperature of 25.0 °C 
b. The 1st percentile of temperature (12.6 °C) 
c. The 10th percentile of temperature (15 °C) 
d. The 90th percentile of temperature (33.1 °C) 
e. The 99th percentile of temperature (40.6 °C) 
f. NEC: not elsewhere classified
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Injury and Illness characteristics 

At moderately and extremely hot temperatures, injuries such as ‘fractures’ and 

‘traumatic joint/ligament injuries’ increased respectively; while ‘burn(s)’, ‘wounds, 

lacerations, amputations and internal organ damage’ increased both at moderately 

and extremely hot temperatures (Table 4.3). There was also an increase in injuries 

occurring as a result of ‘being hit by moving objects’, ‘body stressing’, ‘heat, 

electricity and other environmental factors’, ‘chemicals and other substances’ and 

‘vehicle incidents and other’ in extremely hot temperatures. Claims for illnesses 

involving ‘skin and subcutaneous tissue’ and ‘respiratory system diseases’ also 

increased at extremely hot temperatures (Table 4.3). 

At moderately cold temperatures, claims due to ‘traumatic joint/ligament injuries’ 

increased while ‘wounds, lacerations, amputations and internal organ damage’ 

increased at both moderately and extremely cold temperatures (Table 4.3). 
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Table 4.3 Relative risks in hot and cold temperatures for workers’ compensation claims by injury 
characteristics in Adelaide metropolitan area, 2003–2013 (RR with 95% CI). 

 
Temperature categorya 

Injury characteristics Extreme coldb Moderate coldc Moderate hotd Extreme hote 

Mechanism of injury 
    

Falls, trips and slips of a person 1.21 (0.95,1.52) 1.15 (0.98,1.34) 0.98 (0.90,1.07) 1.03 (0.80,1.32) 

Hitting objects with a part of the 
body 

1.13 (0.85,1.49) 1.00 (0.83,1.20) 1.14 (1.03,1.26)* 1.20 (0.90,1.60) 

Being hit by moving objects 1.33 (1.06,1.67)* 1.22 (1.05,1.42)* 1.13 (1.04,1.22)* 1.49 (1.18,1.88)* 

Body stressing 1.02 (0.87,1.18) 1.05 (0.94,1.15) 1.05 (0.99,1.11) 1.27 (1.08,1.48)* 

Heat, electricity and other 
environmental factors 

0.89 (0.49,1.63) 0.89 (0.60,1.32) 1.39 (1.14,1.69)* 2.18 (1.27,3.73)* 

Chemicals and other substances 0.61 (0.32,1.17) 0.74 (0.49,1.13) 1.24 (1.01,1.52)* 1.81 (1.00,3.27)* 

Mental stress 0.83 (0.50,1.40) 0.89 (0.63,1.26) 1.05 (0.87,1.26) 1.11 (0.64,1.92) 

Vehicle incidents and other 1.16 (0.70,1.90) 1.28 (0.92,1.77) 1.19 (0.99,1.41) 2.38 (1.44,3.95)* 

Nature of injury 
    

Group A: Intracranial injuries 1.43 (0.46,4.38) 1.30 (0.61,2.73) 0.80 (0.53,2.73) 0.62 (0.19,2.03) 

Group B: Fractures 0.86 (0.55,1.33) 0.86 (0.64,1.16) 1.21 (1.03,1.42)* 1.45 (0.91,2.31) 

Group C: Wounds, lacerations, 
amputations and internal organ 
damage 

1.38 (1.11, 1.71)* 1.21 (1.05,1.40)* 1.10 (1.02,1.18)* 1.30 (1.05,1.61)* 

Group D: Burn 0.47 (0.24,0.90) 0.66 (0.43,1.02) 1.32 (1.06,1.63)* 2.34 (1.27,4.31)* 

Group E: Injury to nerves and 
spinal cord 

1.35 (0.17,10.50) 0.69 (0.16,3.01) 1.48 (0.63,3.48) 0.73 (0.06,8.77) 

Group F: Traumatic joint/ligament 
and muscle/tendon injury 

1.13 (0.98,1.30) 1.12 (1.02,1.23)* 1.05 (0.99,1.10) 1.24 (1.06,1.44)* 

Group G: Other injuries 0.97 (0.63,1.52) 0.98 (0.74,1.31) 1.12 (0.96,1.30) 1.36 (0.89,2.06) 

Group H: Musculoskeletal and 
connective tissue diseases 

0.98 (0.75,1.27) 1.03 (0.86,1.22) 1.06 (0.96,1.16) 1.31 (0.99,1.71) 

Group I: Mental diseases 0.82 (0.49,1.37) 0.88 (0.63,1.25) 1.03 (0.85,1.24) 1.07 (0.62,1.84) 

Group J: Digestive system 
diseases 

1.07 (0.41,2.75) 1.15 (0.61,2.13) 1.05 (0.75,1.48) 1.47 (0.54,4.02) 

Group K: Skin and subcutaneous 
tissue diseases 

1.56 (0.71,3.41) 1.36 (0.80,2.28) 1.47 (1.12,1.92)* 3.15 (1.42,6.98)* 

Group L: Nervous system and 
sense organ diseases 

0.86 (0.50,1.48) 0.91 (0.63,1.32) 1.07 (0.87,1.30) 1.20 (0.67,2.15) 

Group M: Respiratory system 
diseases 

0.41 (0.05,3.19) 0.79 (0.22,2.73) 1.43 (0.80,2.56) 5.66 (1.06,30.31)* 

Group N: Circulatory system 
diseases 

5.33 (0.29,97.0) 2.74 (0.44,16.80) 1.18 (0.49,2.83) 1.59 (0.14,18.01) 

Group O: Infectious and parasitic 
diseases 

0.59 (0.10,3.56) 0.51 (0.16,1.63) 1.99 (1.00,3.95) 2.61 (0.35,19.01) 

Group R: Other claims 0.27 (0.04,1.71) 0.39 (0.11,1.37) 0.65 (0.36,1.20) 0.21 (0.04,0.99)* 

Abbreviations: CI: confidence interval; RR: relative risk. *p<0.05 
a. All temperatures were compared with the optimum temperature of 25.0 °C 
b. The 1st percentile of temperature (12.6 °C) 
c. The 10th percentile of temperature (15 °C) 
d. The 90th percentile of temperature (33.1 °C) 
e. The 99th percentile of temperature (40.6 °C) 
f. NEC: not elsewhere classified



Chapter 4 

148 

Attributable risk of occupational injury/illness due to temperature 

The estimated temperature-related burden on WC claims is shown in Table 4.4. 

Overall, 10,876 or 4.9% (95% CI: 2.5–7.2%) of the total claims were associated with 

hot and cold temperatures. The attributable fraction to heat (i.e. temperatures above 

the OT) was 2% (95% CI: 1.1–2.9%), while cold (i.e. temperatures below the OT) 

was responsible for most of the injury burden with a total attributable fraction of 3.3% 

(95% CI: 0.6–5.8%). Moderate heat and cold (i.e. temperatures between OT and 

the 97.5th percentile, and temperatures between OT and the 2.5th percentile, 

respectively) accounted for a higher fraction of injuries, while contributions by 

extreme temperatures (either hot or cold) were small. 

Table 4.4 Estimated attributable fractions (%) and associated 95% empirical confidence intervals 
(eCIs) for heat and cold effects on daily workers’ compensation claims due to injuries and illnesses 
over a lag of 6 days in Adelaide metropolitan area, 2003–2013. 

Claim characteristics All claims Injury claims Illness claims 

Temperature category Attributable 
Fraction (%) 

Attributable 
Fraction (%) 

Attributable 
Fraction (%) 

Overalla 4.85 (2.48,7.25) 5.31 (2.76,7.67) 2.62 (−5.89,10.29) 

Total coldb 2.74 (0.22,5.23) 3.28 (0.57,5.77) −0.79 (−9.83,7.30) 

Extreme coldc 0.24 (0.01,0.47) 0.29 (0.04,0.54) −0.12 (−0.95,0.61) 

Moderate coldd 2.49 (0.21,4.75) 2.99 (0.52,5.22) −0.67 (−8.88,6.68) 

Total heatb 2.11 (1.21,2.98) 2.03 (1.12,2.95) 3.42 (0.67,6.06) 

Moderate heatd 1.50 (0.83,2.16) 1.43 (0.75,2.14) 2.57 (0.50,4.58) 

Extreme heatc 0.60 (0.37,0.81) 0.59 (0.37,0.81) 0.84 (0.17,1.47) 

a Overall burden of claims is the sum of cold and heat contributions. 
b Total burden of claims is the sum of moderate and extreme contributions. 
c Extreme cold was defined as temperatures lower than 2.5th percentile; extreme heat was defined as temperatures greater 
than the 97.5th percentile. 
d Moderate heat was defined as temperatures between optimum temperature and the 97.5th percentile; moderate cold was 
defined as temperatures between optimum temperature and the 2.5th percentile. 

4.3.4.3 Sensitivity analyses 

Results similar to those found using Tmax were obtained using composite predictive 

thermal indices, i.e. AT, HX, UTCI and WBGT (Figure B5, Appendix B2). 
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4.3.5 Discussion 

Despite major advancements in workplace health and safety, limited research exists 

in Australia on how hot and cold temperatures affect injury occurrence in the 

workplace. This study has shown that: (i) ambient temperatures accounted for 

almost 5% of WC claims, with most of this burden attributable to cold temperatures; 

(ii) exposure to extreme temperatures (hot and cold) are associated with the 

greatest risk to occupational health and safety (OHS), but moderate temperatures 

(that are more common) have the greatest burden (i.e. highest proportion of 

injuries); and (iii) temperature-related risks apply to indoor as well as outdoor 

workers. 

As mechanisms of temperature exposure can lead to both acute and chronic 

outcomes,50, 152, 408 all compensation claims (accepted by the insurer) for both WRIs 

and illnesses were used in this study, consistent with similar studies.45, 145, 146 Our 

results support a non-linear relationship between daily Tmax and total WC claims 

best described as a J-shaped curve, such that the risk of combined injury and illness 

claims increases at both hot and cold temperatures with the effect being more 

apparent at higher temperatures. This is particularly evident for injuries and for 

outdoor industries. These findings are similar to those of previous studies.45, 122, 135, 

147, 184, 185, 401 This evidence of nonlinearity in our study is also consistent with 

findings from other Mediterranean climates185, 401 despite potential differences in 

labour markets and industries. In contrast to our study, some previous studies122, 135 

including one from Adelaide45 have described a reverse U-shaped relationship with 

a decline in injuries at extreme temperatures possibly due to the use of adaptive 

protective measures such as ‘ceasing work’ at a certain threshold temperatures in 

hot weather.45 However, compliance with such policies, in reality, is unknown as 



Chapter 4 

150 

there is no mandatory regulations or guidelines for maximum workplace 

temperatures in Australia.171 

The time lag for the effects of cold and heat in our study differed in that the effects 

of cold appeared after a three-day lag and lasted longer, while that of heat were 

acute and immediate. The delayed cold effects are in line with population health 

studies,6, 10 and our findings that heat exposure has immediate occupational health 

consequences align with previous findings.45, 127 

Albeit complex, the underlying explanations behind the occurrence of injury/illness 

in non-optimal thermal conditions is likely to be related to physiological mechanisms 

whereby the body is unable to cool or warm itself to maintain its internal 

temperature.3 Exposure to hot and cold temperatures can also cause thermal 

discomfort resulting in adverse behavioral effects, such as disorientation, impaired 

judgment, loss of concentration, reduced vigilance, carelessness and fatigue.50, 152 

This may affect workers’ physical, cognitive and psychomotor performance, and 

may reduce their capability to take protective measures such as staying hydrated or 

moving to shaded areas during hot weather, or adjustment of clothing during cold 

weather. The combination of this reduced performance and the ability to follow 

protective measures can increase the risk of occupational injuries.45, 132 Chronic 

conditions such as respiratory diseases and skin diseases can also be exacerbated 

by factors associated with extreme temperatures.152, 409 

Susceptibility to work-injuries/illness can be influenced by a range of factors related 

to the characteristics of the worker, the work being undertaken, and workplace 

characteristics. Our findings showed no gender differences for injury claims during 

hot temperatures whereas previous studies45, 127 have found significant associations 
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between high temperatures and injuries among male workers only. However, a 

study in Melbourne, Australia132 reported an association between injuries and Tmin 

for female workers. Females are highly represented in indoor industries with 

regulated environments and comprise less than 40% of the workforce in the male 

dominated ‘temperature-sensitive’ industries that mostly involve outdoor work.255 

Our findings showed young workers (15–24 years) had a higher risks of 

temperature-related claims, consistent with previous literature.45, 127, 145, 185 Several 

factors, including insufficient training, lack of competency in the tasks assigned and 

the strenuous nature of jobs assigned to these workers, may be contributing 

factors45 to the overall high risk of injuries in this age group. Young workers may 

also have limited experience which may contribute to their susceptibility to injuries. 

However, we also found that experienced workers (more than one year of 

experience) were also vulnerable to injuries at high temperatures. This may be due 

to their ‘self-confidence’ by which they ignore, underestimate or misjudge any 

hazards irrespective of their age.301 

We found an increased risk of WRIs and illnesses in both outdoor and indoor 

industries at moderately and extremely hot temperatures, with the pattern being 

more consistent for outdoor sectors. This is in line with the findings of previous 

studies127, 185, 190 while a study in Adelaide45 reported significant effects only in 

outdoor industries. Workers in some non-air conditioned indoor workplaces (e.g. 

foundries and kitchens) have process-generated heat exposure and high ambient 

temperatures may augment the temperature-related health risks. Unexpectedly, 

increased risks of WRIs and illnesses were also found during hot temperatures for 

occupations where work is carried out in regulated indoor climates, aligning with the 
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findings of a similar study.132 This could be due to the relatively lower levels of 

acclimatisation to heat which may render workers susceptible to hot conditions 

outdoors.410-412 

As for cold, our results showed an increased risk of WRIs and illnesses restricted to 

workers in the manufacturing industry and food factory workers, which supports 

previous evidence showing workers in these industries in other countries are at risk 

in cold temperatures.152, 185, 400, 408 

Approximately 5% of the total WC claims in this study could be attributed to 

temperature. This estimate is higher (2.7%) than those reported by Martinez-

Solanas et al. in Spain.185 Extremely hot or cold temperatures contributed to less 

than 1% of all injuries which is also consistent with Martinez-Solanas et al.185, while 

milder temperatures, which occurred on the majority of days, accounted for around 

4% of all injuries. Moderately cold temperatures accounted for 2.5% of all injuries. 

This is a unique finding as most research has focused heavily on the adverse effects 

of extreme heat on workers. Our findings suggest that the broader effects of 

temperature on OHS should be considered with injury prevention being a year round 

focus. 

There are limitations to this study. First, our results are specific to one city with a 

temperate climate, where the claim risk was lowest at 25 °C, and may not be 

generalisable to other locations. Second, we used data from one meteorological 

monitoring station which may not adequately cover the spatial variations of ambient 

temperatures within the study region. Ambient temperature was used as a surrogate 

of individual levels of heat exposure thus introducing ecological bias in the exposure 

estimates as workers’ actual exposure on the day of their injury is unknown. 



Chapter 4 

153 

Furthermore, an assumption has been made that workers’ place of temperature 

exposure was the workplace. Exposure misclassification can only be addressed by 

using personalised temperature and physiological indicators measurement which is 

emerging as a direction for future research.413 Third, we did not control for relative 

humidity, in line with recent concerns about its suitability in epidemiological and 

environmental health research due to its strong diurnality and seasonality.414 

However, our sensitivity analysis using AT, WBGT, HX, HI and UTCImax (see 

supplementary material, Figure B5, Appendix B2) yielded similar results to those 

gained using daily Tmax, lending support to the finding that no single temperature 

metric based on highly correlated weather data is superior to others.288 Fourth, 

stratifying workers’ temperature exposure based on industrial sector level has its 

limitations due to the considerable heterogeneity in exposures to workers within any 

one industry. Although we attempted to refine this by using occupational level 

classifications, this does not obviate the need for individual-level data on the 

workers’ actual task, location and level of exposure on the day of injury for precise 

exposure assessments. Fifth, our results are based on metropolitan areas (urban 

environments) which limits generalisability to rural and remote areas (non-urban 

environments) that tend to have a greater proportion of some high risk industries 

such as agriculture and mining. Further research to evaluate the impact of 

temperature on WRIs and illnesses in rural and regional areas is warranted. 

Additionally, it is known that occupational injuries are often underreported; 

nevertheless, compensation claims data provide a valuable source of data on 

occupational health. The relatively small number of claims and hence wide 

confidence intervals calculated in some stratified analyses is acknowledged, and 

dictates cautious interpretation of the results. Lastly, the use of ‘all accepted claims’ 
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as the outcome variable includes injuries and illnesses which may have resulted 

from short-term or long-term occupational exposures. The data also included both 

acute and chronic outcomes as we were unable to differentiate between these. 

These issues may have introduced some bias with the use of a CCO study design. 

Despite these caveats, the strengths of this study should be noted. It is one of the 

first comprehensive studies to assess the impact of both cold and hot temperatures 

on WRIs and illnesses in Australia using a statistical approach suitable for the 

exploration of both the nonlinear pattern of exposure-outcome associations and lag 

structure simultaneously. Second, we have explored influencing factors such as 

worker, nature of work and workplace characteristics that may govern the 

occurrence of occupational injuries. Third, this study also measures the proportion 

of injury burden attributable to non-optimal temperatures. 

4.3.6 Conclusion 

Our study suggests that both cold and hot temperatures increase the risk of WRIs 

and illnesses with milder temperatures having the greater burden than extreme 

temperatures. The degree of occupational injury risk associated with non-optimal 

temperatures varies according to the nature of work being undertaken and the 

workplace environment. These may have important public health implications for the 

prevention of occupational injuries especially for those vulnerable subpopulations at 

greater risk. It is widely accepted that particular industries such as ‘construction’ and 

‘agriculture’ are exposed to the effects of the thermal environment, but our findings 

suggest that other industries are also affected, particularly in hot weather which our 

findings suggest, poses a greater problem than cold weather. This is of particular 

concern as the number of hot days is projected to increase. The broader impacts of 
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temperature highlighted by this study present a challenge that is multi-faceted, with 

potential consequences for workers, supervisors, and policymakers. Regulators and 

governments need to engage with workplaces to discuss and develop targeted 

injury prevention measures that take into account specific risks to workers during 

hot and cold weather. 
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*****End of published paper***** 

4.4 CHAPTER SYNOPSIS 

This chapter consisted of a study that focussed on evaluating the risk, susceptibility 

and attributable burden of WRI concerning ambient temperatures in Adelaide, a city 

with a temperate climate. The findings suggest that a positive relationship exists 

with WRI increasing with daily temperatures with the greatest risk at the extremes 

but moderate contributing most of the burden. The findings highlight that the risk of 

WRI is not limited to outdoor occupations alone or heavy demanding occupations 

but also includes some indoor workers and medium demanding occupations as well. 

Therefore, prevention strategies need to be inclusive of broader temperatures and 

not be limited to extremes heat and outdoor workers. The next chapter consists of 

a study that extends the evidence from Adelaide to three other major Australian 

capital cities, namely, Brisbane, Melbourne, and Perth.
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Chapter 5: Geographical Variation in Risk 
of Work-Related Injuries and Illnesses 

Associated with Ambient Temperatures: A 
Multi-City Case-Crossover Study in 

Australia, 2005–2016 

5.1 PREFACE 

The study (Study 2) presented in this chapter is the second of two studies in this 

thesis that address the first and the third objective. While the previous study 

examined the impact and quantified the associated burden of ambient temperatures 

on the risk of WRI in Adelaide, this study uses the same methodology for three other 

Australian capital cities (Melbourne, Brisbane and Perth) which have different 

climates. 

This study is the first to investigate the relationship between ambient temperatures 

and WRI in Perth and Brisbane, and to quantify the associated burden in all three 

cities in Australia. 

This paper has been published in the Journal of Science of the total environment 

as: Varghese BM, Barnett AG, Hansen A et al. Geographical variation in risk of 

WRIs and illnesses associated with ambient temperatures: A multi-city case-

crossover study in Australia, 2005–2016. Sci Total Environ. 2019; 

doi:10.1016/j.scitotenv.2019.06.098.  
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5.3 PUBLICATION 

5.3.1 Abstract 

Background: The thermal working environment can have direct and in-direct 

effects on health and safety. Ambient temperatures have been associated with an 

increased risk of occupational injuries but it is unknown how the relationship can 

vary by weather, location and climate. 

Objectives: To examine the relationship between ambient temperatures and work-

related injuries (WRIs) and illness compensation claims in three Australian cities: 

Melbourne and Perth (temperate climate) and Brisbane (subtropical climate) in 

order to determine how hot and cold weather influences the risk of occupational 

injury in Australia. 

Methods: Workers’ compensation (WC) claims from each city for the period 2005–

2016 were merged with local daily weather data. A time-stratified case-crossover 

design combined with a distributed lag non-linear model was used to quantify the 

impacts of daily maximum temperature (Tmax) on the risk of WRIs and illnesses. 

Results: Compared to the median Tmax, extremely hot temperatures (99th 

percentile) were associated with a 14% (95% CI: 3–25%) increase in total WC 

claims in Melbourne, but there were no observed effects in Brisbane or Perth, with 

the exception of traumatic injuries that increased by 17% (95% CI: 3–35%) during 

extreme heat in Perth. For extremely low temperatures (1st percentile), there was a 

protective effect in Brisbane (RR 0.89; 95% CI: 0.81–0.98), while no effects were 

observed in Melbourne or Perth. 
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Conclusion: The relationship between injury and ambient temperature appears to 

be variable depending on location and climate. In general, WRIs and illnesses 

appear to be more common at higher temperatures than lower temperatures. 

Adopting adaptation and prevention measures could reduce the social and 

economic burden of injury, and formulating effective measures for dealing with high 

temperatures should be prioritised given the predicted increase in the frequency and 

intensity of hot weather. 

5.3.2 Introduction 

Over the last few decades, numerous studies have evaluated the impacts of 

temperature extremes on human health and interest in assessing this relationship 

as a response to projected climate warming continues to grow.5, 9 Exposure to 

extreme weather events such as heatwaves are associated with increased mortality 

and/or morbidity rates.8, 9, 16, 415 Several episodes of extreme weather events, for 

example, heatwaves in Chicago (1995), Europe (2003), Russia (2010) and Australia 

(2009 and 2014) have led to an increased awareness on the adverse health effects 

and have resulted in development of interventions and/or strategies targeted at 

specific population groups.20-22, 416 These specific population groups identified to be 

at-risk includes the elderly, children, those with chronic morbidities, lower socio-

economic status, and those living in densely populated cities.5, 12 In the context of a 

warming climate, the higher mean temperatures, increased summer temperature 

variability, and frequent, more intense, and longer duration of heatwaves worldwide 

are likely to exacerbate the health impacts of heat exposure with social and 

economic implications.417 
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Many studies have examined the health risks related to temperature extremes and 

epidemiological studies in particular, have contributed to the understanding and 

evidence of the potential adverse effects and associated risks of climate-related 

events on human health, and have identified the above mentioned populations of 

concern who are more at-risk. These epidemiological studies have described the 

relationship between ambient temperature and mortality/morbidity as a U-, V- or J-

shaped curve, whereby mortality and morbidity rise progressively above or below a 

moderate temperature range, often referred to as the minimum mortality/morbidity 

temperature (MMT).10 However, the effects of temperature, show geographical 

heterogeneity whereby cities with colder climates have generally greater heat 

effects while warmer cities have greater cold effects, reflecting population 

adaptation to local climate.6 

An additional group at risk of adverse health consequences of temperature 

extremes is workers. In the occupational setting, interest in investigating the impacts 

of temperatures on workers’ health and safety, particularly high temperatures, has 

been increasing since the fourth assessment report (2005–2007) of the 

Intergovernmental Panel on Climate Change (IPCC) where rising heat was first 

raised as a concern for workplaces.29, 33, 50, 397, 398 In addition to heat-induced 

illnesses, work stress, physical discomfort and losses in work capacity and 

productivity, cumulative exposure to hot and cold temperatures at the workplace can 

place workers at risk of accidents/injuries.29, 50, 397 Results of several experimental 

studies point towards an effect on accidents and injuries through diminished human 

performance due to factors such as fatigue, loss of alertness, lack of coordination 

and altered judgment, loss of dexterity and general discomfort.50 
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Most of the existing epidemiological studies have examined the association 

between temperature extremes and work-injuries using workers’ compensation 

(WC) claims data. Studies in Italy,122, 184 Canada,127 China,183, 190 Thailand42 and the 

US,43, 44, 135, 189 that mostly focussed on extreme heat show an increasing risk for 

injuries at higher temperatures, but that the association varies depending on the 

type of work and work location. Evidence regarding cold temperatures is limited to 

a small number of studies in Italy,401 the US400, 402, 403 and Spain.185 The latter study 

assessed the effects of heat and cold and estimated that 2.7% of all occupational 

injuries were attributable to non-optimal ambient temperatures, corresponding to an 

estimated 0.67 million person-days of work lost every year. The estimated annual 

economic burden to non-optimal ambient temperatures (both heat and cold) was 

estimated to be 370 million Euros or 0.03% of Spain’s Gross Domestic Product 

(GDP).185 Besides the specific economic burden related to occupational injuries due 

to non-optimum temperatures, various studies have also estimated an economic 

burden ranging between 0.1% and 0.5% of GDP from reduced work capacity and 

productivity related to heat stress.29, 238, 418, 419 

Whilst studies127, 135, 184, 185, 190 in different locations as mentioned above have 

examined the role of temperatures on occupational injuries, their results might not 

be generalisable to cities with different climate and population characteristics. There 

is a need to identify workers at-risk of injuries from thermal environments to provide 

an evidence base for developing local population and climate-specific workplace 

interventions and preventive measures to ease the impact of projected increased 

risks from extreme temperatures. This is important on the basis of climate change 

scenarios with average temperatures projected to increase by 0.6–1.5 °C by 2030, 

with fewer cold extremes and more heat extremes.404 



Chapter 5 

165 

Australian workers experience a range of climates varying from warm and humid in 

the north of the country, through to cool and temperate in the south.420  Australian 

studies of the adverse health effects of ambient temperatures on work-related 

outcomes have been mostly related to heat and based on the temperate climatic 

cities of Adelaide45, 145, 146, 421, 422 and Melbourne.132, 188, 423 Evidence is currently 

lacking for other cities with a subtropical or tropical climate. Furthermore, there are 

no comparisons of work-related injuries (WRIs) and illnesses at moderately and 

extremely high-temperatures, and at cold temperatures. In this paper we examine: 

1) the link between ambient temperatures and WRIs and illnesses in three major 

Australian cities with differing climates and experiences of extreme weather events; 

2) the risk profile of workers in these cities; and 3) the attributable risk of WRIs and 

illnesses due to cold and heat. 

5.3.3 Materials and methods 

5.3.3.1 Study setting 

This study includes capital cities of three states in Australia, namely Melbourne 

(Victoria), Brisbane (Queensland) and Perth (Western Australia). Melbourne 

(37°81'S, 144°96'E) is on the southern east coast of Australia and is the country’s 

second largest city with a mild temperate climate with warm summers and cool wet 

winters.424 During summer (December–February) the average daytime daily 

maximum temperature (Tmax) is 25.6 °C while in winter (June–August) the average 

Tmax is 14 °C. 

Brisbane (27°46'S, 153°02'E) is on the central east coast of Australia and is a sub-

tropical city characterised by warm to hot weather for most of the year. The hottest 

months (December–February) can be very humid (average relative humidity of 65% 



Chapter 5 

166 

to 70%) with average Tmax of 29.3 °C, while winter is mostly mild and dry (average 

Tmax 21.3 °C). 

Perth (31°95'S, 115°86'E) is on the southern west coast and is characterised by a 

mix of warm temperate and typical Mediterranean climate with mild winters (average 

Tmax 18.4 °C) and hot dry summers (average Tmax 30.8 °C).286 

These three cities combined comprised 37.4% or 9.4 million of Australia’s estimated 

resident population in 2018 (Melbourne: 4.9 million, Brisbane: 2.4 million, Perth: 2.1 

million) with an estimated employed labour force of 4.1 million.425 

5.3.3.2 Data sources 

Workers’ compensation (WC) claims data 

The data included all accepted workers’ daily WC claims for WRIs and illnesses (as 

determined by the insurer) lodged between 1 July 2005 and 30 June 2016 in the 

three cities. All injuries regardless of their severity (minor or major) were included, 

although those that occurred during commuting to and from work were excluded, as 

they are not compensable in all jurisdictions. These data were extracted from the 

National Dataset for Compensation Based Statistics (NDS3) collected by Safe Work 

Australia (SWA). The NDS3 is an amalgamation of case-level data supplied each 

year by jurisdictional WC schemes. Details about this database are provided 

elsewhere.72 As effects of temperature are likely to be higher in those carrying out 

physical work and in outdoor environments, we used industrial classifications 

following the work of Xiang et al.45 to categorise workers as working in either 

‘outdoor industries’ or ‘indoor industries’. Additionally, as in our previous study,422 

we also categorised the physical job demands (strength) and the potential 
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workplace temperature exposures at the occupational level using a validated cross-

walk approach that has been described elsewhere.132 

Meteorological data 

Weather data including daily Tmax, daily minimum temperature (Tmin), daily mean 

temperature (Tmean), relative humidity, wind speed and solar radiation were obtained 

from the Australian Bureau of Meteorology. A single established weather station 

was selected to represent the weather conditions in each city, in line with previous 

studies.278, 283, 285 

5.3.3.3 Study design 

We investigated the impact of ambient temperature on WRIs and illnesses using a 

time-stratified case-crossover (CCO) approach. This study design, where each case 

is their own control,357 is appropriate in occupational epidemiology426 for studying 

acute outcomes related to transient environmental risk (e.g. temperature). The CCO 

design also controls for seasonal changes and long-term trends in injury risk that 

are unrelated to temperature. In contrast to similar studies132, 188 and other 

mortality/morbidity studies362, 363 that use a monthly strata of 28 days, we chose a 

short strata (control period) of seven days. Several factors such as labour strikes, 

power outages, change in work setting, practice and/or tasks undertaken, and 

vacation periods may affect week-to-week numbers of workers.132 Therefore, a 

shorter window than 28 days was needed to account for these week-to-week 

changes in the number of workers. In our strata, a case day (date of injury) is 

compared to six other referent days (days when the injury did not occur) within the 

same calendar week (Sunday to Saturday). Using this approach we examined the 
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impact of ambient temperature on WRIs/illnesses by three domains: work, worker 

and work environment characteristics. 

5.3.3.4 Statistical modelling 

The time-stratified CCO study design was combined with the distributed lag non-

linear model (DLNM) to model the non-linear and delayed effect of temperature.234, 

375, 422 The city-specific exposure-response and lag-response relationship between 

ambient temperature and WRI were both modelled with a natural cubic spline with 

three degrees of freedom (df) for temperature and two df for lagged effects.422 The 

maximum lag was set to six days as the longest possible delay between temperature 

exposure and WRIs. 

We included relative humidity in the models, as Brisbane has a hot and humid 

climate during summer and higher humidity levels may lead to over-heating of the 

body due to slower evaporation of sweat.427 

Tests of modelling assumptions were undertaken, including checking the residuals 

for normality, outliers and autocorrelation, and collinearity checks using the variance 

inflation factor. The initial check of residuals led to the modelling of ‘first day of the 

financial year’ (1 July) and ‘New Year’s day’ as separate variables. Models were 

also adjusted for day of the week, ‘Christmas Day’, and other public holidays using 

binary indicator variables. These adjustments controlled for a reduction in worker 

numbers on weekends and holidays. All modelling choices and selection of df were 

determined using the Akaike Information Criterion.234, 428 

The median value of daily Tmax for each city over the study period was used as the 

centring value (baseline temperature) for calculating RRs at the 1st (extreme cold), 
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10th (moderate cold), 90th (moderate hot) and 99th (extreme hot) temperature 

percentiles in line with previous studies.10, 185, 337, 338, 422, 429 

Several sensitivity analyses were used to test the robustness of the above modelling 

choices for the CCO design combined with the DLNM model. These included: 

varying the df for temperature and lag dimensions, excluding relative humidity, and 

varying the temperature indices by using Apparent Temperature (AT), Humidex 

(HX), Heat Index (HI), Wet Bulb Globe Temperature (WBGT) and Universal Thermal 

Comfort Index (UTCI). 

Attributable risk 

We calculated the number of injuries attributable to temperature and the population 

attributable fraction using a previously defined method.236 In short, the total number 

of claims attributable to temperature (AN) in each city was calculated using the 

minimum Tmax in each city as the reference temperature to find the number of claims 

that could be avoided if the temperature remained at its coldest. The minimum Tmax 

in each city represents the lowest point on the exposure-response curve, is in line 

with previous studies10, 236 calculating attributable mortality/morbidity risks of 

temperature. The ratio of AN with the total number of claims gives the population 

attributable fraction (PAF). Empirical 95% confidence intervals (CIs) were obtained 

for PAF and AN through 5000 Monte Carlo simulations.236 

5.3.4 Results 

5.3.4.1 Descriptive 

Between 1 July 2005 and 30 June 2016, a total of 798,831 accepted WC claims 

were reported in the three cities: i.e. Melbourne: 258,379, Brisbane: 260,730 and 
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Perth: 279,722. Across the cities, the claimants were predominantly males (66%) 

and aged between 35 and 54 years (47%). About 51% of claims occurred in the 

‘manufacturing’ (18%), ‘healthcare and social assistance’ (13%), ‘construction’ 

(10%) and ‘retail trade’ (10%) industries. In Brisbane and Melbourne, more than half 

of the claims were ‘major’ (57%) involving a week or more of workdays lost, while in 

Perth the majority of claims were minor i.e. less than a week of workdays lost (66%). 

The majority of the claims (91%) were injury-related while 9% were illness-related. 

Over half of the claims (56%) were due to musculoskeletal injuries, followed by 

traumatic injuries and fractures (34%). Table B5, Appendix B3 summarises the 

characteristics of WC claims. 

Over the years 2005–2016, the daily average Tmax was 21.1 °C (range 9.2–46.4 °C) 

for Melbourne, 26.4 °C (range 12.6–40.2 °C) for Brisbane, and 25 °C (range 12.8–

44.4 °C) for Perth. The mean and median (50th percentile) values of daily Tmax, Tmin 

and Tmean were higher in Brisbane, while Melbourne had the highest maximum 

temperatures. The average daily relative humidity ranged from 64% in Melbourne 

to 70% in Brisbane (Table 5.1). 
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Table 5.1 Summary statistics of daily weather variables for Brisbane, Melbourne and Perth, 2005–
2016. 

City Meteorological 
indicator 

Mean Min. Max. Percentiles 
 

     
1st 10th 50th 90th 99th IQR 

Brisbane Daily Tmax (°C) 26.4 12.6 40.2 17.7 21.4 26.8 31 34.7 5.7 
 

Daily Tmin (°C) 16.4 2.6 26.5 6.2 10 16.9 22 24.5 7.4 
 

Daily Tmean (°C) 21.4 10.7 31.5 13.1 16 21.8 26.3 28.9 6.4 
 

Daily Rh (%) 69.5 19.8 98 39.1 57.3 70 81.7 91.8 11.1 

Melbourne Daily Tmax (°C) 21.1 9.2 46.4 11.4 14.2 20.0 29.9 38.9 8.4 
 

Daily Tmin (°C) 11.9 0.6 28.6 3.5 6.6 11.7 17.5 22.4 6 
 

Daily Tmean (°C) 16.5 6.4 35.5 8.4 10.8 16 23.4 29.4 7.1 
 

Daily Rh (%) 63.8 19.1 100 33 49.5 64.1 78.2 88.6 15.4 

Perth Daily Tmax (°C) 25 12.8 44.4 15.3 18 23.8 34.2 40.1 9.1 
 

Daily Tmin (°C) 12.9 −0.7 29.7 2 5.9 13.1 19.5 23.8 7.4 
 

Daily Tmean (°C) 18.9 7.4 35.4 9.6 12.7 18.3 26.3 31.2 7.9 
 

Daily Rh (%) 64.7 20.5 95.2 30.8 44.1 66.8 81.2 90.3 19.7 

Note: IQR: inter-quartile range. 

5.3.4.2 Exposure-response relationship 

Overall 

The cumulative association between daily Tmax and WRIs and illnesses presented 

as RR for each city, is shown in Figure 5.1. There was a heterogeneous pattern 

between cities in the effects of heat, with increasing injury risk at the extremes, while 

cold effects were similar in each city with decreasing injury risks at the coldest 

extremes. 

Relative to the median, increasing Tmax in Melbourne was associated with an 

increase in injury risk, with RRs of 1.05 (95% CI: 0.99–1.10) for moderately hot (90th 

percentile) and 1.14 (95% CI: 1.03–1.25) for extremely hot (99th percentile) 

temperatures. In other cities the corresponding RR for injuries for moderately hot 

and extremely hot temperatures were 0.96 (95% CI: 0.93–1.01) and 0.98 (95% CI: 

0.89–1.09) in Brisbane, and 0.98 (95% CI: 0.93–1.04) and 1.01 (95% CI: 0.93–1.11) 

in Perth, respectively. In Brisbane and Perth, we observed a ‘comfort zone’ of 
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temperature (above the 50th percentile of Tmax) where injury risks were decreased 

(RRs <1), before increasing (RRs >1) at the upper temperature range of 37 °C and 

37.5 °C in Brisbane and Perth, respectively. Protective associations were observed 

on cold days in Brisbane, with a RR of 0.89 (95% CI: 0.81–0.98), at the 1st percentile 

versus relative to the median Tmax. A non-significant risk reduction was seen on cold 

days in the other cities compared to the median Tmax, with corresponding RRs of 

0.99 (95% CI: 0.90–1.09) in Melbourne and 0.96 (95% CI: 0.88–1.05) in Perth, 

respectively. 
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Figure 5.1 Relative risks of workers’ compensation claims associated with daily maximum temperature (°C) relative to median Tmax of (A) 20 °C in Melbourne, 

(B) 27 °C in Brisbane and (C) 24 °C in Perth, using data from 1 July 2005 to 30 June 2016.

A 

B C 
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The effects of ambient temperatures on claims stratified by workers’ demographics, 

work and work environment characteristics for Melbourne are shown in Table 5.2. 

In Melbourne, young workers (RR 1.18, 95% CI: 1.03–1.36) and those in ‘regulated 

indoor climates’ (RR 1.07, 95% CI: 1.01–1.14) had higher risk of WRIs and illnesses 

on moderately hot days (90th percentile vs median Tmax). Increased risks of WRIs 

and illnesses during extremely hot temperatures (99th percentile) were observed for 

female workers (RR 1.27, 95% CI: 1.07–1.15), those aged 25–34 years (RR 1.25, 

95% CI: 1.01–1.55), workers who are not an apprentice/trainee (RR 1.14, 95% CI: 

1.03–1.26) and workers ‘in a vehicle or cab’ (RR 1.34, 95% CI: 1.10–1.63). Workers 

in ‘indoor industries’ and in ‘medium-demanding’ occupations were susceptible to 

both moderately and extremely hot temperatures with the highest mean RR 

observed for ‘transport, postal and warehousing’ industry (RR 1.59, 95% CI: 1.18–

2.13, results not shown). 

Supplementary Table B6, Appendix B3 shows corresponding effects of ambient 

temperatures on claims in Brisbane and Perth where there was no statistically 

significant changes in risk for most subgroups. Industry-specific analysis showed 

higher RRs during extremely hot temperatures for ‘agriculture, forestry and fishing’ 

(RR 1.91, 95% CI: 0.72–5.03) and ‘transport, postal and warehousing’ (RR 1.37, 

95% CI: 0.99–1.90) in Brisbane, and ‘electricity, gas and water’ (RR 1.53, 95% CI: 

0.70–3.37) in Perth; however, these were not statistically significant (results not 

shown). 

Consistent with the overall pattern observed at cold temperatures in Melbourne, 

workers in ‘medium-demanding’ occupations and ‘indoor’ and ‘outdoor’ industries 

had lower risk of WRIs and illnesses relative to the median Tmax (Table 5.2), while 
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in Brisbane ‘male workers’, those aged 15–24 years, workers in ‘outdoor’ industries 

and ‘heavy-demanding’ occupations had lower risk (Table B6, Appendix B3). No 

change in risks was observed in Perth for any of these subgroups (Table B6, 

Appendix B3). 

Injury and illness characteristics 

In Melbourne, claims with the injury characteristics classified as ‘falls, trips and slips 

of a person’ increased during moderately and extremely cold temperatures (RR 

1.11; 95% CI: 1.00–1.22 and RR 1.24; 95% CI: 1.01–1.52, respectively, results not 

shown), while those due to ‘being hit by moving objects’ increased during 

moderately and extremely hot temperatures (RR 1.14; 95% CI: 1.01–1.29 and RR 

1.33; 95% CI 1.03–1.71, respectively, results not shown). Claims due to ‘heat, 

electricity and other environmental factors’ increased during moderately hot 

temperatures (RR 1.63; 95% CI: 1.09–2.45), while those due to ‘mental stress’ 

increased during extremely hot temperatures (RR 1.54; 95% CI: 1.01–2.32, results 

not shown). In Brisbane no specific types of injuries were significantly increased 

during hot temperatures, while in Perth traumatic injuries increased during 

extremely hot temperatures (RR 1.17; 95% CI: 1.02–1.35, results not shown). By 

further stratifying the traumatic injuries data for Perth, we found that workers who 

were not an apprentice/trainee were at risk at moderately hot (RR 1.15, 95% CI: 

1.05–1.27) and extremely hot temperatures (RR 1.31, 95% CI: 1.10–1.55), while 

workers in the construction industry (RR 1.61, 95% CI: 1.09–2.39), retail trade 

industry (RR 1.60, 95% CI: 1.07–2.38) and ‘medium-demanding’ occupations (RR 

1.54, 95% CI: 1.22–1.93) were at risk during extremely hot temperatures (results 

not shown).
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Table 5.2 Relative risks for workers’ compensation claims in hot and cold temperatures stratified by 
claims characteristics in Melbourne metropolitan area, 2005–2016 (RR with 95% CI). 

Exposurea Extreme coldb Moderate coldc Moderate heatd Extreme heate 

Claim severity 
    

Minor claims 0.82 (0.68, 0.99) 0.88 (0.80, 0.96) 1.15 (1.04, 1.27) 1.17 (0.95, 1.44) 

Major claims 1.05 (0.94, 1.17) 1.03 (0.97, 1.09) 1.02 (0.96, 1.07) 1.12 (1.02, 1.26) 

Gender 
    

Male 1.04 (0.92, 1.17) 1.02 (0.95, 1.08) 1.03 (0.97, 1.10) 1.06 (0.93, 1.21) 

Female 0.90 (0.77, 1.05) 0.95 (0.88, 1.03) 1.06 (0.98, 1.15) 1.27 (1.07, 1.50) 

Age group (years) 
    

15–24 1.14 (0.86, 1.50) 1.02 (0.89, 1.16) 1.18 (1.03, 1.36) 1.15 (0.86, 1.53) 

25–34 1.05 (0.85, 1.29) 1.02 (0.92, 1.13) 1.08 (0.96, 1.20) 1.25 (1.01, 1.55) 

35–54 0.96 (0.84, 1.09) 0.98 (0.92, 1.05) 1.02 (0.94, 1.09) 1.12 (0.97, 1.29) 

>55 0.91 (0.73, 1.15) 0.95 (0.85, 1.07) 1.01 (0.90, 1.14) 1.05 (0.82, 1.33) 

Worker experience 
    

Apprentice/Trainee 1.06 (0.51, 2.17) 1.02 (0.72, 1.45) 0.97 (0.66, 1.41) 0.87 (0.40, 1.87) 

Other 0.98 (0.90, 1.09) 0.99 (0.94, 1.04) 1.05 (0.99, 1.10) 1.14 (1.03, 1.26) 

Potential workplace 
temperature exposure 

    

Regulated indoors 0.95 (0.89, 1.02) 0.98 (0.92, 1.03) 1.07 (1.01, 1.14) 1.04 (0.98, 1.11) 

Unregulated indoors 
and outside 

0.66 (0.32, 1.35) 0.75 (0.40, 1.39) 0.73 (0.38, 1.42) 0.99 (0.49, 2.00) 

In a vehicle or cab 0.86 (0.70, 1.05) 1.00 (0.84, 1.20) 1.02 (0.85, 1.23) 1.34 (1.10, 1.63) 

Multiple locations 0.94 (0.85, 1.06) 1.03 (0.93, 1.13) 0.96 (0.87, 1.07) 0.99 (0.88, 1.11) 

Physical demands 
    

Limited (≤5kg) 0.94 (0.78, 1.13) 0.95 (0.90,1.00) 1.03 (0.98, 1.09) 1.06 (0.87, 1.30) 

Light (5–10kg) 0.92 (0.75, 1.14) 0.99 (0.94,1.06) 1.00 (0.94, 1.06) 0.99 (0.80, 1.24) 

Medium (10–20kg) 0.96 (0.82, 1.13) 0.94 (0.90, 0.98) 1.05 (1.01, 1.09) 1.23 (1.03, 1.47) 

Heavy (>20 kg) 1.17 (0.94, 1.45) 1.01 (0.95,1.07) 1.01 (0.95, 1.07) 1.24 (0.98, 1.55) 

Industry 
    

Indoor 0.95 (0.90, 1.01) 0.97 (0.94, 0.99) 1.04 (1.01, 1.07) 1.06 (1.01, 1.12) 

Outdoor 0.84 (0.72, 0.99) 0.92 (0.86, 0.99) 0.96 (0.89, 1.04) 0.96 (0.82, 1.14) 

Abbreviations: CI: confidence interval; RR: relative risk. Shaded cells indicate statistically significant results. 
All temperatures were compared with the median Tmax of 20.0 °C 

a. The 1st percentile of temperature (11.4 °C) 
b. The 10th percentile of temperature (14.3 °C) 
c. The 90th percentile of temperature (29.9 °C) 
d. The 99th percentile of temperature (38.9 °C) 
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Population attributable fraction (PAF) 

The PAFs for WC claims attributable to temperature were 1.9% (95% CI: 10.3, 

13.4%) in Melbourne, 26.5% (95% CI: 10.2, 40.1%) in Brisbane and 5.7% (95% CI: 

6.1, 16.9) in Perth (Table 5.3). The corresponding number of claims attributed to 

temperatures in these cities for the whole study period (11 years) was calculated to 

be 5,137 claims in Melbourne (467 claims/year), 69,442 claims in Brisbane (6,312 

claims/year) and 16,467 claims in Perth (1,497/year). 

Table 5.3 Attributable risk numbers (AN) and population attributable fractions (PAF) and 95% CIs 
using the lowest Tmax in Melbourne, Brisbane and Perth, 2005–2016. 

Exposure 

City 

Reference  
Temperature 

AN 
n (95% CI) 

PAF 
% (95% CI) 

Melbourne 9.2 °C 5137 (−27,478–34,923) 1.98 (−10.3,13.4) 

Brisbane 12.6 °C 69,442 (27,967–104,649) 26.51 (10.2,40.1) 

Perth 12.8 °C 16,467 (−17,959–46,612) 5.71 (−6.1,16.9) 

 

5.3.4.3 Sensitivity analyses 

Similar estimated effects were obtained for the range of sensitivity analyses, 

including other temperature metrics (supplementary material, Table B7, Appendix 

B3). It should be noted that during extremely cold temperatures in Brisbane a 

protective effect was found when using Tmax (and other indices) as the exposure 

variable, whereas elevated risk ratios were found when using Tmean or Tmin. Varying 

the df for Tmax and lag dimensions did not substantially change any results (results 

not shown). 

5.3.5 Discussion 

In this study, the associations between ambient temperature and WRIs and illnesses 

were explored and quantified using WC claims data from three Australian cities with 
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differing climates. Our results provide both supporting and new evidence regarding 

the occupational impacts of hot and cold temperatures. 

The key findings can be summarised as follows. Firstly, the exposure-response 

relationships varied between the cities, particularly in Melbourne where a stronger 

effect of increasing temperatures (moderate and extreme) was found. In contrast, 

claims increased only slightly in Brisbane and Perth when temperatures were close 

to, or above the reference level of extreme hot temperatures (99th percentile). 

Secondly, cool to cold temperatures (moderate and extreme) were associated with 

lower risks of overall claims in all three cities, with Brisbane showing a large 

protective association. However, specific injuries due to ‘falls, trips and slips’ 

increased on cold days in Melbourne. Thirdly, worker subgroups vulnerable to 

injuries during warm or hot weather were not those in heavy physically demanding 

occupations and working outdoors, as expected, but were those in ‘medium’ 

strength occupations and those working in ‘regulated indoors’ and ‘vehicle or cab’ 

environments. Finally, the burden of claims attributable to temperatures appears to 

be considerably higher in a sub-tropical location than temperate locations. 

The differences in risks across the cities warrants further investigation, because it 

suggests that there are location or population-specific factors that influence the 

impact of temperature on workers’ health. This is in contrast to studies examining 

temperature and mortality risk in Australia, which have reported a similar 

relationship for Brisbane, Melbourne and Sydney.9, 10 It is possible that these 

differences are related to workplace factors; for example, although there exists 

harmonised model workplace health and safety (WHS) legislations, there are 

variances in how they are implemented and enforced across states and territories. 
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Furthermore, there are likely differences between the cities in relation to industry or 

employment profiles, which may also contribute to differences in the exposure-

response curves. 

Our finding of a stronger heat effect on workers’ claims in Melbourne is consistent 

with previous studies132, 188 in this city and also with a previous study in Adelaide,422 

which also has a temperate climate. The different relationship to that observed in 

Brisbane and Perth may be due to climatic or non-climatic factors. Melbourne is 

situated at a higher latitude than Perth and Brisbane, with a cooler climate overall, 

yet more variable temperatures in summer. These factors may contribute to the 

increased sensitivity of workers, who may be less acclimatised to high temperatures. 

Health effects have been reported to be greater in other cities with cooler climates 

but higher temperature variability in summer.378, 430 Our results for Melbourne are 

consistent with this observation, and suggest that, at least for extreme hot 

temperatures, these factors matter. Although we do not know the prevalence of 

workplace air-conditioning, Melbourne has a lower prevalence of any type of 

household air-conditioning and higher prevalence of heaters than Brisbane and 

Perth based on reports by the Australian Bureau of Statistics (ABS).257 This 

indicates that adaptation to cold may be better than to heat in Melbourne. However, 

the role of individual physiological and behavioural adaptations in this study were 

not explored due to the ecological study design and lack of such data within the WC 

database. Further investigation is needed in order to disentangle and identify factors 

that may have contributed to the observed heterogeneity in the heat effects. 

The worker subgroups most vulnerable to hot days in Melbourne included: ‘workers 

who are not an apprentice/trainee’, ‘female workers’ and ‘young workers’. These 
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findings are largely similar to those reported by previous studies45, 422 with some 

notable variations. Although several studies45, 135 have shown male workers to be at 

greater risk due to their occupational profiles, our results indicate a pronounced 

effect for female workers during moderately and extremely hot days. Industrial 

sectors with mostly indoor activities, which have a higher proportion of female 

workers showed stronger heat effects than industries with mostly outdoor activities. 

The finding that outdoor workers were not at elevated risk in Melbourne was 

unexpected as it contrasts with previous studies,45, 145, 422 and suggests the 

existence of heat stress policies, better acclimatisation status or greater awareness 

of risks posed by hot weather have likely reduced the risks for those working in 

industries with mostly outdoor activities. Consistent with the study of McInnes et al. 

(2017)132 we found that workers in ‘regulated indoor climates’ and ‘in a vehicle or 

cab’ but not in ‘unregulated indoor and outside’, had increased risks of injury. 

Although a regulated indoor climate includes work carried out in air-conditioned 

environments, occupational health problems may arise in workers acclimatised to 

cooler workplaces if the air-conditioning system fails as they may have reduced 

capacity for physiological regulation to higher temperatures.410 It is also possible 

that workers may not be indoors all the time, thereby being subject to the effects of 

heat stress and injury when required to work outdoors. Similarly, ‘vehicle or cab’ 

environments may not necessarily be air-conditioned, and drivers may need to 

spend considerable time outside of the vehicle. Furthermore, it is also important to 

note that the ‘unregulated/regulated indoor’ and ‘vehicle or cab’ classification of 

work environments is a crude measure of workers’ potential temperature exposure. 
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Our finding of an association between Tmax and medium physically demanding 

occupations in Melbourne resonates with a study in Quebec127 and Adelaide422 but 

contrasts with a previous study in Melbourne,132 where associations were observed 

only for heavy physically demanding occupations. These findings emphasise that 

the level of physical strength required by the occupation and other personal risk 

factors such as acclimatisation and awareness of the health risks of hot weather 

may be important effect modifiers for injuries on hot days for those working primarily 

indoors or in industries with mostly indoor activities. 

The lack of a significant association between hot temperatures and claims in 

Brisbane was an unexpected finding, as this city experiences higher levels of 

humidity on summer days. This finding contrasts with a study in Guangzhou, China, 

a city with similar climate to Brisbane.190 Humidity limits evaporation, a major heat 

loss mechanism, and this would be expected to place workers at greater risk of 

injuries than in locations where humidity levels are comparatively low (Melbourne 

and Perth). However, the role of humidity did not seem to influence our results, 

either when controlling for it with Tmax or its inclusion in composite indices (e.g. 

WBGT), possibly because the Brisbane working population is likely acclimatised to 

high temperatures and humidity in summer. 

There appears to be a broader ‘comfortable working zone’ in terms of temperature 

in Brisbane and Perth, where the risk of WRIs and illnesses is lower. As previously 

mentioned, this possibly indicates adaptation to local climatic conditions either 

through physiological, technological and or behavioural acclimatisation of the 

workers,12, 352, 430, 431 or more effective occupational WHS practices. However, once 

temperatures rise above the ‘comfortable working zone’, the risk ratios were 
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somewhat elevated (albeit non-significantly) at extreme temperatures (37 °C in 

Brisbane and 38 °C in Perth). This suggests that workers in Brisbane and Perth are 

still likely to be affected by extreme heat in their climatic region. This is clearly 

evident in our finding that ‘traumatic injuries’ increased by 17% during extreme hot 

days in Perth. Previous studies in Adelaide, a city with comparable climate to Perth, 

reported that traumatic injuries such as ‘wounds, lacerations and amputations’ and 

‘burns’ increased during high temperatures and heatwave periods.145, 422 Similar to 

studies in Adelaide, the at-risk worker subgroups for traumatic injuries during 

extremely hot temperatures in Perth were those in the construction industry, workers 

in medium-demanding occupations, and workers who are not an apprentice/trainee. 

In contrast to the effects of heat, our results indicate that injuries appear to be 

reduced during cold days in all cities. This protective effect at cold temperatures 

contrasts with a recent study in Spain,185 where a U-shaped curve was found 

between ambient temperature and risk of occupational injuries. Our results do 

indicate that ‘falls, trips and slips’ increased in Melbourne during moderate and 

extreme cold days, which is in agreement with other studies.400, 401 It should also be 

noted that elevated risks at extremely cold temperatures were apparent when Tmin 

was used as the exposure variable in Brisbane. Tmin  is a more effective indicator of 

low overnight and early morning temperatures, and these are likely to impact those 

who work non-traditional workhours. 

Regarding the numbers of claims that could be attributed to temperature, we found 

that overall PAFs of WRIs and illnesses was considerably lower in Melbourne and 

Perth, despite the increased risk of WRIs and illnesses in Melbourne at extremely 

hot temperatures. The high PAF for Brisbane likely occurs because of the much 
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lower risk of WRIs and illnesses is at the lowest temperature, compared to which 

every day is associated with an increased risk. 

Study limitations 

This study has a number of limitations. The retrospective ecological nature of the 

study confines our ability to deduce the causal association of ambient temperature 

with WRIs. Consistent with other ecological time-series and CCO studies, we relied 

on temperature data from an outdoor weather station as a surrogate for personal 

exposure, which fails to account for the spatial and temporal variations of ambient 

temperatures in workplaces. This introduces misclassification of exposure, as the 

temperatures to which workers were exposed before the injury may not necessarily 

reflect that measured at the weather station. Additionally, the claims data analysed 

in this study are limited to workers who had ‘accepted compensation claims’ and 

excludes rejected claims and injuries for which no claim was lodged. Thus, the use 

of an administrative dataset not intended for research purposes does not capture 

the total burden of WRIs and illness for the general labour force. Lastly, this study 

is focussed on three cities of Australia, two with a temperate climate and one with a 

sub-tropical climate. This limits generalisability of findings, and further investigations 

are needed for other cities in Australia with tropical climates that may have different 

effects to that observed in the study sites. 

Despite these caveats, this study has a number of strengths. The findings have 

characterised the relationships between ambient temperature and occupational 

injuries in three large Australian cities in different climatic zones, and quantified the 

associated attributable burden. Consistent definitions, study periods, procedures 

and statistical methods were used for each city thereby enabling direct inter-
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jurisdictional comparisons. A further strength is the use of flexible DLNM, combined 

with a time-stratified CCO study design that accounts for (i) the non-linear, delayed 

effects of daily ambient temperatures, and (ii) the lack of denominator information. 

The inclusion of all claims including those classified as ‘minor’ and ‘major’ is a further 

strength of this study. 

Our findings have public health implications in the context of a warming climate. 

RCP4.5 scenarios predict that among the three study sites, the predicted annual 

temperature rise and annual number of days above 35 °C and 40 °C for 2030 and 

2090 is highest in Brisbane followed by Perth and Melbourne.109 These projections 

and our findings indicate that location and climate-specific targeted intervention 

strategies are needed to inform location-specific action WHS plans for hot weather. 

It is also possible that the results from this study could be extended to other cities 

with similar climatic conditions to support the development of extreme weather 

plans. Future studies using qualitative methods could be conducted to provide more 

in-depth analysis and exploration of the many complex factors that contribute to heat 

or cold related injuries, and how they may differ by worker populations and location. 

5.3.6 Conclusion 

Our study contributes to the growing body of research documenting the relationships 

between occupational health risks and ambient temperatures. Our results confirm 

that high ambient temperatures pose a risk for workers’ health and safety by 

increasing the occurrence of WRIs in Melbourne, especially at hot extremes. 

Although exposure to hot temperatures appears to have a lesser effect on work 

injuries in Brisbane and Perth, the burden attributable to temperature appears to be 

higher in sub-tropical Brisbane. Our results indicate that cooler day time Tmax 
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temperatures are associated with reduced risks to workers in all three cities. While 

workers’ health and safety should be a priority at all times of the year, our results 

suggest that there should be particular attention as temperatures increase. 
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5.4 CHAPTER SYNOPSIS 

Chapter 5 presented evidence of how daily ambient temperatures affect WRI in 

three of Australia’s larger cities. The findings suggest that the overall relationship 

between ambient temperature and WRI vary by location and climate, with a stronger 

effect of increasing temperatures (moderate and extreme) in Melbourne, a city with 

temperate climate. Cooler daytime maximum temperatures were associated with 

reduced risks to workers in all three cities, with Brisbane showing a greater reduction 

in risk. The avoidable burden of temperature on occupational health was therefore 

higher in subtropical Brisbane than in Melbourne and Perth with temperate climates. 
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Summary of Section B 

Section B comprised Chapters 4 and 5 and addressed the research question ‘what 

is the epidemiology of heat-related injuries’ from a daily outdoor ambient 

temperature perspective, using WC claims data. The evidence presented in this 

section suggests that ambient temperatures have an impact on WRI, however this 

varies across cities, with a stronger heat effect in Adelaide and Melbourne for overall 

WRI and for traumatic injuries in Perth, while cooler daytime temperatures were 

associated with reduced risks in Brisbane. Together the findings from these two 

studies may have implications for informing policy-makers and relevant 

stakeholders (industry, union organisations, employers, and regulators) on injury 

prevention strategies to protect workers’ health and safety. This is particularly 

relevant in the context of a warming climate. 
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SECTION C: HEATWAVES AND WORK-
RELATED INJURIES 
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Overview of Section C 

Section C consists of two chapters. Chapters 6 and 7 collectively examine the 

impacts of heatwaves of varying severity on WRI using a time-stratified CCO study 

design. Chapter 6 reports on the analysis of WC claims data in Adelaide, while 

Chapter 7 reports on the analysis from Brisbane, Melbourne, and Perth.
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Chapter 6: Heatwave and Work-Related 
Injuries and Illnesses in Adelaide, 

Australia: A Case-Crossover Analysis 
using the Excess Heat Factor as a 

Universal Heatwave Index 

6.1 PREFACE 

Chapter 6 presents the results of a study that addresses the second and third 

objective by examining the effects of heatwaves (or extended periods of heat) on 

WRI in Adelaide. Similar to Chapter 4, WRI were identified from the Tabulator 

dataset. Heatwaves were defined using EHF, a relatively new metric that normalises 

heatwave severity across locations with different climates. In addition to the WC 

data, this study also used work-related ambulance call-outs and also compared the 

predictive ability of EHF to a previously used heatwave definition based on Tmax. 

This study is the first in the literature to assess the impacts of heatwaves on WRI 

using EHF and has been published in the journal of International Archives of 

Occupational and Environmental Health as: 

Varghese BM, Hansen A, Nitschke M et al. Heatwave and WRIs and illnesses in 

Adelaide, Australia: using the Excess Heat Factor (EHF) as a universal heatwave 

index. Int Arch Occup Environ Health. 2019; 92(2):263–72. doi:10.1007/s00420–

018–1376–6. 
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6.3 PUBLICATION 

6.3.1 Abstract 

Purpose: Heatwaves, or extended periods of extreme heat, are predicted to 

increase in frequency, intensity and duration with climate change, but their impact 

on occupational injury has not been extensively studied. We examined the 

relationship between heatwaves of varying severity and work-related injuries (WRIs) 

and illnesses. We used a newly proposed metric of heatwave severity, the Excess 

Heat Factor (EHF), which accounts for local climate characteristics and 

acclimatisation and compared it with heatwaves defined by daily maximum 

temperature. 

Methods: WRIs and illnesses were identified from two administrative data sources: 

workers’ compensation (WC) claims and work-related ambulance call-outs for the 

years 2003–2013 in Adelaide, Australia. The EHF metrics were obtained from the 

Australian Bureau of Meteorology. A time-stratified case-crossover regression 

model was used to examine associations between heatwaves of three levels of 

severity, and: WC claims; and work-related ambulance call-outs. 

Results: There was an increase in work-related ambulance callouts and WC claims 

during low and moderate severity heatwaves as defined using the EHF, and a non-

significant decline during high severity heatwaves. Positive associations were 

observed during moderate heatwaves in WC claims made by new workers (RR 1.31, 

95% CI: 1.10–1.55), workers in medium-sized enterprises (RR 1.15, 95% CI: 1.01–

1.30), indoor industries (RR 1.09, 95% CI: 1.01–1.17), males (RR 1.13, 95% CI: 

1.03–1.23) and labourers (RR 1.21, 95% CI: 1.04–1.39). 
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Conclusions: Workers should adopt appropriate precautions during moderately 

severe heatwaves, when the risks of WRIs and illnesses are increased. Workplace 

policies and guidelines need to consider the health and safety of workers during 

heatwaves with relevant prevention and adaptation measures. 

Keywords: Workers’ compensation claims; Case-crossover design; Heatwaves; 

Occupational Health; Worker safety 

6.3.2 Introduction 

The detrimental effect of temperature upon human health assessed in terms of 

increased mortality and morbidity is well established.5 Major heatwaves (extended 

periods of unusually high temperatures) have been associated with an increased 

health burden in populations over recent years. For example, heatwaves in Australia 

in 200920, 432, 433 and Europe in 200318 have drawn increasing interest among 

researchers, governments and policy makers. The majority of health research has 

predominantly focussed on the general population, while the occupational health 

effects have been largely overlooked despite their potential economic costs and 

impact on quality of life. 

The direct effects of extreme heat on workers’ health was evident during the 2003 

heatwave in France where a considerable number of deaths occurred in those of 

working age (15–64 years). This age group has also been found to be at risk in 

Australia where a 37% increase in mortality was reported during a record-breaking 

2009 severe heatwave in Adelaide, South Australia.20 Apart from elevating the risk 

of symptoms leading to heat-related illness (HRI) and in severe cases, death, there 

is increasing evidence that high ambient temperatures could increase the risk of 

occupational injuries.42, 43, 45, 122, 127, 132, 135, 188 The occurrence of work-related 
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accidents during high temperatures may be attributed to multiple factors that can 

compromise workplace safety, including physical discomfort, decreasing 

psychomotor performance, fatigue and reduced alertness arising from heat 

exposure.29, 33, 41 Consecutive days of very high temperatures can have significant 

health impacts on workers with physical fatigue carrying over into the following days, 

thus increasing the risk of injuries. 

To the authors’ knowledge, only three Australian studies have investigated the 

impact of sustained high ambient temperatures on workers’ health and safety.145, 

146, 188 Two studies145, 146 did not find any statistically significant difference in overall 

injury claims between heatwave and non-heatwave periods, although a 6.2% 

increase in claims was observed for outdoor industries.145 An increased risk of injury 

was observed in Melbourne, Australia during two and three consecutive days of hot 

(but not extreme) weather, with a 15% increased injury risk when the daily maximum 

temperature was above 33 °C.188 Given that the frequency, duration, and intensity 

of heatwaves are predicted to increase in the future due to climate change,417 it is 

imperative to better understand how heatwaves might affect workers directly or 

indirectly in order to inform public health policies that can help minimise the risks. 

One of the key challenges presented for heatwave studies relates to heatwave 

definitions, as currently there exists no standardised definition.16, 182, 434 Most 

studies435-437 have defined heatwaves utilising a combination of duration (≥2, ≥3 or 

≥4 days) and intensity (95th or 97.5th percentiles of temperature). Different 

temperature metrics have been used (e.g. minimum/mean/maximum temperature 

or Apparent Temperature, Humidex and Heat Index), while some studies have used 

extended definitions exploring characteristics such as early or late season 
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heatwaves.325, 438, 439 As a result, it is difficult to make consistent statements on both 

the current and future health impacts using these different definitions. 

In this context, the Australian Bureau of Meteorology (BOM) recently introduced a 

map-based heatwave forecasting service using the Excess Heat Factor (EHF) 

metric based on average daily temperatures.182 Recent studies that have used the 

EHF as an exposure metric in the assessment of health impacts have found it to be 

a useful heatwave indicator.285, 287, 440-442 The EHF is also becoming widely used 

internationally due to its applicability in both tropical and temperate regions, and as 

such is included in the World Health Organization (WHO) and World Meteorological 

Organization (WMO) guidance documents on warning systems.443 

With the association between heatwaves and occupational injuries not well 

established, this study aimed to characterise the relationship between heatwaves of 

varying severity as defined using the EHF, and work-related injuries (WRIs) and 

illnesses in Adelaide, using two data sources: workers’ compensation (WC) claims 

data and ambulance data. We hypothesise that EHF-defined heatwaves are 

associated with an increased risk of WRIs and illnesses. 

6.3.3 Materials and methods 

6.3.3.1 Study site 

Adelaide, the capital city of the state of South Australia, is the fourth largest 

Australian city covering an urban area of 3,258 km² with a population of 1.6 million. 

The city has a temperate climate with mild winters and hot, dry summers. 
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6.3.3.2 Data sources 

Workers’ compensation (WC) claims data 

Compensation claims data for the period from 1 July 2003 to 30 June 2013 were 

aggregated by ‘Return to Work SA’, a government agency that manages the 

prevention and compensation of occupational accidents and diseases in South 

Australia. The dataset covered all reported and active claims in the Adelaide 

metropolitan area defined as the suburbs encompassing postcodes 5000–5200. 

The data included details on worker characteristics (age, gender, type of work, 

industry), injury and illness information (agency, mechanism, type and body 

location) and outcome details (hospitalisations, deaths, days lost from work and total 

expenditure). More details about this data are described elsewhere.45, 145, 146, 301 For 

the purposes of this study, we used all accepted compensation claims (comprising 

WRIs and illnesses) as the outcome variable in line with previous studies.145, 146 

Ambulance call-outs 

Ambulance services in Adelaide are predominantly provided by the South Australian 

Ambulance Service (SAAS). Data pertaining to ambulance call-outs (excluding 

between hospital transfers) logged between 1 July 2003 and 30 June 2013 were 

examined. For the purposes of this study, we selected only SAAS callouts coded as 

‘work-related/industrial’. 

Meteorological data 

The BOM provided the climate data for the study period, including daily maximum 

and minimum temperatures (Tmax °C, Tmin °C) and relative humidity (%) from the 

Kent Town weather station (023090), considered to best represent the Adelaide 

metropolitan area.21, 45, 145, 272, 441 
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6.3.3.3 Heatwave definitions 

Heatwaves (HW) were defined using the EHF definition according to Nairn and 

Fawcett.182 EHF captures the HW intensity based on a three-day averaged daily 

mean temperature (Tmean) consisting of two components: the significance index and 

the acclimatisation index. These are referred to as the Excess Heat Indices (EHIs) 

and are calculated as: 

EHIsig=(Ti+Ti+1+Ti+2)/3–T95 (1) 

EHIaccl=(Ti+Ti+1+Ti+2)/3–(Ti–1 + … + Ti–30)/30 (2) 

The comparison of the three-day averaged Tmean to the 95th Tmean percentile and 

average Tmean over the previous 30 days generates the above EHIs. The product of 

equations (1) and (2) gives EHF as: 

EHF=EHIsig×max(1, EHIaccl) (3) 

Days with a positive EHF indicate the existence of heatwave conditions and the 

severity level of such events are expressed as an EHF severity index (EHFsev) 

calculated as: 

EHFsev=EHF÷85th percentile of all positive values (4) 

Days when EHFsev is between zero and one, and greater than one, indicates 

heatwaves of ‘low’ and ‘severe’ intensity, respectively, whereas those greater than 

three are identified by the BOM as an ‘extreme’ heatwave.182 Thus, EHF is primarily 

based on the local climate and on daily temperature, and accounts for the 

significance of consecutive hot days and acclimatisation. Other heatwave 

characteristics such as intensity, frequency and duration are represented, making 
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EHF useful for forecasting heatwaves.182 Additionally, the effects of relative humidity 

that play a considerable role in human response to heat are also indirectly factored 

in the formula with the use of Tmean. Further details on EHIs and EHF (e.g. 

development, calculation and usage) are described elsewhere.182 

The EHF and EHF severity data for the Kent Town monitoring station were supplied 

by the BOM as a gridded dataset using low resolution (0.25°×0.25°, approximately 

25×20 km) operational daily temperature analyses. Generally heatwave severity is 

classified as above by the BOM. However, as there were very few days of EHFsev 

≥3 during the study period, for our purposes extreme HW days were included within 

the high-severity category that we defined using a lower criterion (EHFsev ≥2) as 

described below. Hence, we used the following EHFsev categories (HWD1): 

 No heatwave: daily EHFsev ≤0 

 Low-intensity: daily EHFsev >0 and <1 

 Moderate-severity: daily EHFsev ≥1 and <2 

 High-severity: daily EHFsev ≥2 

Additionally, we also used a definition (HWD2) using Tmax of ≥3 consecutive days 

with daily Tmax ≥35 °C (as in previous studies) for comparison.21, 145, 272 

6.3.3.4 Study design and analysis 

A time-stratified case-crossover (CCO) study design was used to assess the 

association between heatwave severity and the outcome variables of interest. In 

CCO design each ‘case’ serves as their own control and time-invariant confounders 

and seasonal patterns are controlled for.357 In this study, the ‘cases’ are accepted 

WC claims or reported ‘work-related ambulance call-outs’. Heatwave exposure in 
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the ‘case period’ was compared with the exposures during the ‘control period’ (other 

days within the strata when the case did not occur). A seven-day strata was utilised 

to adjust for week to week changes in worker numbers. 

Risk periods were pre-defined heatwave days of varying severity and the referent 

period was all non-heatwave days. Key confounding factors taken into account 

include: seasonality, day of the week and public holidays. To control for seasonality 

we restricted the analysis to the warm-season (October–March) and adjusted for 

public holidays with three separate indicator binary variables (Christmas Day, New 

Year’s Day and other public holidays). To model the well-known pattern in workers’ 

activity during the week, the days of the week were modelled using an independent 

binary variable for each seven-day window except the reference day (Friday). We 

fitted the CCO design using a generalized linear model (GLM) assuming a Poisson 

distribution. Results are presented as risk ratios (RR) with 95% confidence intervals 

(CIs) for the number of daily WC claims and work-related ambulance call-outs during 

heatwave periods of low-intensity, moderate and high severity, compared with non-

heatwave periods in the warm-season. Additionally, stratified analysis by worker 

(age group, gender), work (industry, occupation), and work environment 

characteristics (work site location, size of business) was conducted to identify 

vulnerable subgroups. We also investigated lagged effects (days 1 and 2) of EHFsev 

on total WC claims and work-related ambulance call-outs. As we found no evidence 

of a marked lagged effect, these are not presented in the results section. 

6.3.3.5 Cross-validation 

The predictive ability of each HW definition was assessed using a 50-fold cross-

validation. Details of this technique are given elsewhere.444 The benefit of using this 
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robust model selection technique is that more realistic predictions can be obtained 

for future studies with the inference being less tailored to the dataset in which this 

procedure is applied.288 We randomly removed one day from the seven-day strata 

throughout the study period and then ran the GLM regression models 50 times. 

Standard errors were then created by comparing the actual number of claims to the 

predicted values with the smaller root mean square error indicating the better 

prediction of the model. 

All analysis was carried out using the R statistical software version 3.2.3, with the 

‘season’ package used to fit the CCO design.355 

6.3.4 Results 

6.3.4.1 Descriptive statistics 

Within the Adelaide metropolitan region during the period of 1 July 2003–30 June 

2013, there were 224,631 (76.1%) accepted WC claims of which 111,254 (49.5%) 

occurred during the warm-season (October–March). Males accounted for 66.4% of 

the claims and approximately two-thirds (69.5%) of claims were for people aged 25–

54 years. On the other hand, there were 5,910 (0.6%) work-related ambulance call-

outs out of a total of 931,786 ambulance call-outs during the same time frame of 

which half (2,987) occurred during the warm-season. 

There were 118, 19 and 7 days defined using the EHF (HWD1) as low-intensity, 

moderate and high-severity heatwaves, respectively. The corresponding three-day 

mean Tmax during these heatwave days were 35.1 °C, 38.2 °C and 41.1 °C. By 

contrast, using the Tmax definition of heatwaves (HWD2), there were 106 heatwave 

days. 
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6.3.4.2 Association between heatwave and work-related injuries and illness 

Total effects 

There was an increase in WC claims during low-intensity and moderate-severity 

heatwaves and a non-significant decline during the high-severity heatwaves (Figure 

6.1A). The RR during moderate-severity heatwaves was 1.08 (95% CI: 1.01–1.17) 

for overall WC claims and 1.10 (95% CI: 1.02–1.19) for injury claims. By contrast 

the RR for illness claims was 1.13 (95% CI: 1.03–1.25) during low-intensity 

heatwaves. However, based on HWD2, there were no statistically significant 

difference detected in WC claims between heatwave and non-heatwave periods. 

A similar trend was observed for work-related ambulance callouts with an increase 

in call-outs during low-intensity and moderate-severity heatwaves and a decline 

during high-severity heatwaves (Figure 6.1B). The corresponding RR during 

moderate-severity heatwave was 1.21 (95% CI: 0.81–1.81) for work-related 

ambulance call-outs. 
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Figure 6.1 Association between heatwave severity and work-related injuries and illnesses, 

Adelaide metropolitan area, October to March 2003 to 2013. (A) workers’ compensation claims; (B) 

work-related ambulance call-outs. 

6.3.4.3 Effect estimates by workers’ demographics, work and work 

environment characteristics 

Tables 6.1 and 6.2 show the effect estimates for WC claims by workers’ 

demographics and work environment characteristics. Male workers had a 

statistically significant increase of 13% (95% CI: 3–23%) in overall claims during 

moderate-severity heatwaves, while no significant change was observed for female 

workers. No particular age group showed any significant increase in claims during 

heatwave periods (Table 6.1). 

Regarding work experience, new workers (those with less than 1 year of experience 

at the time of the claim) showed a statistically significant increase in claims during 

moderate-severity heatwaves of 31% (95% CI: 10–55%). By contrast, there was no 
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statistically significant increase in claims for experienced workers. Considering the 

industries, ‘indoor industries’ showed a statistically significant increase in claims 

overall during moderate-severity heatwaves (RR 1.09, 95% CI: 1.10–1.17), while 

‘outdoor industries’ showed elevated risks, but not statistically significant risks (RR 

1.05, 95% CI: 0.83–1.34). In particular, an increase of 8% (95% CI: 1–16%) was 

observed for claims among workers in the ‘manufacturing industry’ during low-

intensity heatwaves (Table 6.1). 

Positive associations were also observed during moderate-severity heatwaves for 

workers in medium-sized enterprises i.e. businesses with 20–199 employees (RR 

1.15, 95% CI: 1.01–1.30), labourers (RR 1.21, 95% CI: 1.04–1.39), workers 

exposed to electrical hazards (RR 1.43, 95% CI: 1.15–1.79) and those working in 

dangerous locations (RR 3.17, 95% CI: 1.38–7.26). Injuries occurring between 12 

and 2pm increased during moderate-severity heatwaves (RR 1.39, 95% CI: 1.13–

1.70) and this was also evident using the HWD2 definition (RR 1.11, 95% CI: 1.02–

1.21). Also, there was a two-fold increase in injuries occurring between 6 and 8pm 

during high-severity heatwaves (Table 6.2). Notably, there was an increase in claims 

observed among workers from worksites located in the outer suburbs, while those 

in the CBD had no increased risk. 
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Table 6.1 Effect estimates (Risk ratios) for the associations between workers’ compensation claims 
and heatwave severity in Adelaide, October to March 2003 to 2013. 

Exposure 
 

Risk ratio (95% CI) 
  

  
HWD1 

 
HWD2 

Claim characteristics Low intensity Moderate severity High severity 
 

All claims 1.01 (0.98,1.04) 1.08 (1.01,1.16) 0.91 (0.78,1.06) 1.02 (0.98,1.06) 

Injury claims 1.02 (0.96,1.03) 1.10 (1.02,1.19) 0.92 (0.78,1.07) 1.02 (0.98,1.07) 

Illness claims 1.13 (1.03,1.25) 0.90 (0.70,1.15) 0.97 (0.58,1.63) 0.94 (0.82,1.07) 

Gender 
    

Female 0.98 (0.92,1.03) 0.99 (0.87,1.13) 0.76 (0.58,1.02) 1.01 (0.94,1.08) 

Male 1.03 (0.99,1.07) 1.13 (1.03,1.23) 0.99 (0.82,1.18) 1.02 (0.97,1.07) 

Age group 
    

15–24 1.00 (0.92,1.08) 1.15 (0.97,1.36) 0.89 (0.63,1.25) 1.08 (0.98,1.18) 

25–34 0.99 (0.92,1.06) 1.11 (0.95,1.30) 1.14 (0.84,1.54) 1.00 (0.91,1.09) 

35–54 1.01 (0.96,1.06) 1.08 (0.97,1.20) 0.88 (0.70,1.09) 1.01 (0.95,1.06) 

>55 years 1.07 (0.98,1.16) 0.97 (0.78,1.18) 0.87 (0.57,1.31) 1.02 (0.91,1.13) 

Worker experience 
    

Experienced worker 1.02 (0.98,1.05) 1.04 (0.96,1.13) 0.87 (0.74,1.03) 1.01 (0.97,1.06) 

New worker 0.99 (0.91,1.07) 1.31 (1.10,1.55) 1.13 (0.79,1.61) 1.03 (0.94,1.14) 

Industry location 
    

Outdoor 1.04 (0.94,1.16) 1.05 (0.83,1.34) 1.38 (0.78,2.31) 1.11 (0.98,1.27) 

Agriculture, Forestry, Fishing & Hunting 0.95 (0.66,1.37) 1.29 (0.57,2.88) 0.11 (0.01,1.05) 0.98 (0.62,1.54) 

Construction 1.06 (0.94,1.19) 1 (0.76,1.31) 1.46 (0.79,2.71) 1.06 (0.92,1.23) 

Electricity, Gas & Water 0.88 (0.6,1.29) 1.48 (0.65,3.35) 2.53 (0.43,14.89) 1.46 (0.92,2.30) 

Mining 1.21 (0.81,1.82) 1.13 (0.47,2.69) 
 

1.77 (1.03,3.02) 

Indoor 1.01 (0.98,1.04) 1.09 (1.01,1.17) 0.88 (0.76,1.03) 1.01 (0.97,1.05) 

Communication 0.61 (0.16,2.37) 1.50 (0.14,16.23) 
 

0.34 (0.06,1.91) 

Community Services 0.97 (0.92,1.03) 1.13 (0.99,1.29) 0.84 (0.63,1.13) 1.05 (0.98,1.13) 

Finance, Property & Business Services 1.08 (0.93,1.25) 1.24 (0.91,1.69) 0.66 (0.36,1.19) 1.04 (0.87,1.25) 

Manufacturing 1.08 (1.01,1.16) 1.08 (0.93,1.26) 1.01 (0.76,1.33) 1.01 (0.93,1.10) 

Public Administration & Defence 1.10 (0.91,1.34) 1.21 (0.77,1.90) 1.06 (0.46,2.46) 0.93 (0.73,1.19) 

Recreation, Personal & Other Services 0.93 (0.82,1.07) 1.17 (0.89,1.55) 0.84 (0.42,1.69) 0.85 (0.72,1.01) 

Transport & Storage 1.05 (0.92,1.19) 0.88 (0.64,1.21) 0.82 (0.42,1.62) 0.95 (0.80,1.12) 

Wholesale & Retail Trade 0.99 (0.92,1.07) 1.02 (0.86,1.20) 0.88 (0.63,1.23) 1.06 (0.96,1.17) 

Occupations 
    

Managers 0.95 (0.79,1.14) 0.99 (0.67,1.47) 0.79 (0.31,2.04) 0.83 (0.65,1.06) 

Professionals 0.91 (0.82,1.02) 1.10 (0.85,1.43) 0.64 (0.35,1.17) 1.08 (0.95,1.24) 

Technicians & trade workers 1.04 (0.97,1.11) 1.06 (0.91,1.23) 0.90 (0.66,1.23) 1.03 (0.94,1.12) 

Community & personal 0.97 (0.89,1.05) 1.13 (0.93,1.37) 0.94 (0.62,1.41) 0.92 (0.83,1.03) 

Clerical & administrative 1.06 (0.92,1.22) 0.86 (0.62,1.20) 0.80 (0.40,1.61) 0.96 (0.80,1.15) 

Sales workers 0.84 (0.74,0.96) 0.99 (0.75,1.31) 1.38 (0.83,2.30) 1.04 (0.88,1.21) 

Machinery operators & drivers 1.07 (0.99,1.15) 1.02 (0.86,1.22) 0.91 (0.65,1.29) 1.08 (0.98,1.19) 

Labourers 1.08 (1.02,1.16) 1.21 (1.05,1.40) 0.89 (0.66,1.20) 1.06 (0.97,1.15) 

Notes: Shaded cells denote statistically significant differences based on the 95% CI; HWD1 based on EHF intensity and 
HWD2 based on Tmax of 35 °C for ≥3 consecutive days. 
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Table 6.2 Risk ratios of workers’ compensation by work environment characteristics by heatwave 
severity in Adelaide metropolitan area, October to March 2003 to 2013. 

Exposure 
 

Risk ratio (95% CI) 
  

  
HWD1 

 
HWD2 

Work environment Low intensity Moderate 
severity 

High severity 
 

Size of business 
    

Small (<20 employees) 1.01 (0.93,1.10) 1.12 (0.93,1.35) 0.90 (0.63,1.29) 0.98 (0.88,1.10) 

Medium (20–200 employees) 1.05 (0.99,1.11) 1.15 (1.01,1.30) 0.72 (0.56,0.94) 1.04 (0.97,1.12) 

Large (>200 employees) 0.99 (0.95,1.03) 1.03 (0.93,1.14) 1.06 (0.86,1.31) 1.01 (0.96,1.07) 

Worksite location 
    

Adelaide CBD 0.99 (0.91,1.06) 1.14 (0.96,1.35) 1.27 (0.87,1.85) 0.98 (0.89,1.08) 

Adelaide Inner suburb 1.01 (0.97,1.05) 1.08 (0.98,1.18) 0.74 (0.61,0.89) 0.99 (0.94,1.05) 

Adelaide Outer suburbs 1.05 (0.98,1.13) 1.05 (0.89,1.23) 1.36 (1.01,1.83) 1.11 (1.02,1.21) 

Workplace hazards 
    

Dangerous chemical substances 1.10 (0.96,1.26) 1.09 (0.81,1.46) 0.97 (0.50,1.89) 1.10 (0.92,1.31) 

Equipment, machinery, tools 0.90 (0.72,1.12) 1.18 (0.71,1.94) 1.80 (0.74,4.42) 0.90 (0.69,1.17) 

Electricity 0.98 (0.88,1.08) 1.43 (1.15,1.79) 0.75 (0.47,1.20) 1.05 (0.92,1.20) 

Dangerous locations 0.68 (0.44,1.06) 3.17 (1.39,7.26) 5.31 (0.70,40.13) 1.13 (0.68,1.87) 

Multiple hazards 1.05 (0.99,1.11) 1.07 (0.94,1.23) 0.88 (0.68,1.15) 1.04 (0.97,1.12) 

Time of injury 
    

00.00–01.59 1.07 (1.01,1.15) 0.93 (0.79,1.09) 0.77 (0.56,1.06) 0.85 (0.77,0.93) 

02.00–03.59 1.15 (0.85,1.55) 0.83 (0.36,1.91) 0.79 (0.16,3.94) 1.02 (0.71,1.47) 

04.00–05.59 1.06 (0.77,1.45) 0.67 (0.29,1.53) 1.06 (0.30,3.79) 0.85 (0.58,1.27) 

06.00–07.59 0.97 (0.85,1.12) 1.30 (0.98,1.74) 1.14 (0.60,2.16) 1.26 (1.06,1.49) 

08.00–09.59 0.98 (0.90,1.06) 1.12 (0.94,1.34) 1.04 (0.72,1.48) 1.07 (0.97,1.18) 

10.00–11.59 0.99 (0.92,1.07) 1.04 (0.88,1.24) 1.19 (0.83,1.69) 1.03 (0.94,1.14) 

12.00–13.59 0.99 (0.90,1.08) 1.39 (1.14,1.70) 0.58 (0.36,0.92) 1.16 (1.03,1.31) 

14.00–15.59 1.06 (0.97,1.16) 1.14 (0.93,1.40) 0.86 (0.55,1.33) 1.02 (0.91,1.14) 

16.00–17.59 0.94 (0.83,1.07) 0.97 (0.72,1.29) 0.78 (0.45,1.34) 1 (0.85,1.18) 

18.00–19.59 1.08 (0.90,1.29) 1.03 (0.68,1.55) 2.13 (1.02,4.53) 1.20 (0.96,1.51) 

20.00–21.59 1.15 (0.94,1.40) 0.99 (0.63,1.57) 1.16 (0.41,3.28) 1.02 (0.79,1.32) 

22.00–23.59 1.04 (0.81,1.35) 1.28 (0.73,2.23) 0.71 (0.18,2.72) 1.19 (0.86,1.64) 

Notes: Shaded cells denote statistically significant differences based on the 95% CI. HWD1 based on EHF intensity and 
HWD2 based on Tmax of 35 °C for ≥3 consecutive days. 

 

6.3.4.4 Cross-validation 

Using cross-validation methods, the two metrics used to define heatwaves (EHF 

and Tmax) were found to be similar predictors of heat-related outcomes (Figure 6.2).  
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Figure 6.2 Boxplot of root mean square errors comparing the two heatwave metrics. 

Note: EHF.Low, EHF.Moderate and EHF.High constitutes HWD1 using EHFsev and Tmax.HW is HWD2. 

6.3.5 Discussion 

In this study of the effects of heatwaves on WRIs and illnesses in a temperate 

Australian city, concordant estimates were obtained using two population-based 

data sources. To the best of our knowledge, this study is the first of its kind to 

investigate and provide both supporting and new evidence on how heatwaves of 

varying severity, as defined using the Australian BOM’s updated metric for 

heatwaves, the EHF may affect workers’ health and safety. 

This study has yielded several findings. Firstly, there was a consistent increase in 

WC claims and work-related ambulance call-outs during heatwaves of low-intensity 

and moderate-severity, and a non-significant decline during high-severity 

heatwaves. Secondly, moderate-severity heatwaves were significantly associated 
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with an 8.8% increase in WC claims, with the highest effect seen in injury claims, 

while a nonsignificant 20% increase was observed for work-related ambulance call-

outs. These findings differ from previous studies145, 146 that found no significant 

increase in claims during heatwave periods. However, the risk estimates were lower 

and protective in these previous studies which may be explained by the use of a 

stringent heatwave definition (three or more consecutive days of daily Tmax of 35 °C). 

Thirdly, vulnerable groups during moderate-severity heatwaves in this study 

included male workers, new workers, laborers, those in medium-sized business 

(20–199 employees), and in industries with substantial indoor work and exposure to 

electrical hazards. Further, increased risk of WRIs and illnesses was observed 

during the high-severity heatwaves among workers in worksites located outside the 

CBD, while workers in the manufacturing industry were at risk even during low-

intensity heatwaves. 

Elsewhere, previous studies42, 45, 122, 127, 132, 135, 188 have shown strong but variable 

evidence for a relationship between high ambient temperatures and occupational 

injuries, whereby injuries increase in a dose-response manner and decrease above 

a certain temperature threshold. Indeed, our findings of increasing injury risk during 

low-intensity and moderate-severity heatwaves which decline during high-severity 

heatwaves resonate well with this observation. This contrasts with studies on 

morbidity in the general population using EHF285, 287, 440, 442 where the greatest 

impacts were seen with increasing severity of the heatwaves. This could be 

explained by the operation of workplace protective measures such as work ceasing 

work or being postponed during extreme temperatures.45, 146 Further, behavioral 

changes adopted by workers such as ‘self-pacing’ to reduce excessive heat strain, 

along with an increased awareness of heat impacts on health, may be associated 
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with a reduced risk at the higher intensity heatwaves. Since 2009, heatwave 

warnings which have been implemented in Adelaide have appeared to reduce 

morbidity in the general population during severe heatwaves,21 and may have also 

influenced work practices. 

Vulnerable groups identified in this study by gender, occupation, and size of 

business are similar to those found previously in Adelaide.145, 146 Lack of 

acclimatisation to heat and the physical exertion required for the job may make new 

workers more vulnerable to injuries than those who are experienced.32, 146 This 

suggests that an acclimatisation plan should be in place at workplaces along with 

heat stress training where appropriate for both new and experienced workers. 

Although urban areas are considered to be at high risk of heat-related health 

outcomes attributed to the urban heat island effect, this was not evident in our 

findings. However, worksites located outside CBD identified as ‘outer’ suburbs had 

increased risk. This result is likely due to industries being located in the outer 

suburbs, as there was a more than three-fold increase in the risk of WRI or illness 

requiring ambulance attendance, in industrialised areas during heatwaves as 

reported in a study by Hanson et al.269 

Workers in industries where work is carried out in indoor environments were also 

found to be vulnerable during moderate-severity heatwaves. However, other studies 

have shown evidence that outdoor workers in industries such as ‘agriculture, 

forestry and fishing’, ‘construction’, ‘mining’ and ‘electricity, gas and water’ are 

typically at risk. Hot weather adds to the heat burden experienced by indoor workers 

in environments where there is process generated heat (e.g. foundries, bakeries, 

smelters, steel mills, glass factories, and furnaces).33 If the workplace is not 
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adequately cooled or ventilated, the added heat load can potentially compromise 

workers’ health and safety.33 As efficient cooling methods such as air-conditioners 

or industrial fans may be impractical in such environments other personal cooling 

options and adaptive behaviors (e.g. rest breaks, job rotation, and altered work 

schedule) may need to be considered. 

Although our data did not show any significant increase in the risk of health 

outcomes in outdoor industries, we note the elevation in risks for the electricity, gas 

and water and construction industries, which increased during moderate and high-

severity heatwaves. This is consistent overall with a previous study undertaken in 

Adelaide.145 Furthermore, our finding of a three-fold increase in the risk among those 

working in locations that are classified as being inherently dangerous (using the 

workers’ environmental conditions classification—Human Resources & Skills 

Development Canada (228)), such as construction sites, underground sites and 

erected support structures, confirms the vulnerability of these industries. The lack 

of statistical significance at the industry level might reflect the smaller sample size 

rather than the absence of an effect, and therefore the risks of injuries should not 

be ruled out. 

Our results have the potential to inform unions, industry, and regulators in planning 

appropriate mitigation strategies for heatwave-related occupational health effects. 

The current Extreme Heat Plan for South Australia is focused on protecting 

population health during extreme heat events, which occur less frequently than 

moderate-severity heatwaves.445 However, our findings suggest workers are at risk 

before extreme levels are reached i.e. during the more frequent low and moderate-

severity heatwaves. Hence, intervention strategies, policies and heat preparedness 
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plans may need to consider lower thresholds for prevention measures in 

occupational settings. 

Several limitations of this study need to be noted. Exposure misclassification was 

inherent in this study, as we assumed the entire study site to have the same EHF 

severity, and that the injury occurred at the workplace. Our results are also limited 

to one city, which may restrict its generalisability and it is possible that other cities 

with differing climates and working population characteristics may provide different 

results. However, the normalising effect of the EHF severity technique design makes 

severity levels equivalent between locations, despite their differing climates. 

Although humidity is not directly included in the EHF calculations, it is indirectly 

captured by its interaction with daily Tmin, which may extend its usefulness to humid 

environments (Adelaide typically has low humidity in summer).182 Further studies in 

other geographic areas are thus warranted to validate the EHF metric and its utility 

in predicting occupational morbidities. This study was focused on the severity of 

heatwave events and therefore did not explore the effect of heatwave duration. 

Additionally, the use of administrative data, such as WC claims, is an 

underestimation of the overall burden and actual risk of injuries related to heatwaves 

experienced by workers in this region. It is possible that some occupational injuries 

not listed as a WC claim, may be included in ambulance data, which is known to 

better capture minor injuries and those occurring among young workers.241 

However, the ambulance data used in this study were broadly coded as ‘work-

related’ and descriptive details of the incidents were not available. 

Nevertheless, the concordant estimates obtained from both sources of data is one 

of the key strengths of this study. In summary, this study extends the work of Xiang 
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et al.145 by examining the effects of heatwave intensity (using EHF) on WRIs and 

illnesses, and by using a CCO approach. In addition, we were able to examine 

factors such as workers’ demographics, type of work and work environment 

characteristics, which may influence the occurrence of WRIs and illnesses. This 

approach has enabled us to obtain a more detailed picture of how heatwaves can 

affect workers’ health and safety. 

6.3.6 Conclusions 

The findings indicate that working in hot weather is not only problematic for those 

working outdoors but also for those working indoors. Male workers and those new 

to the job appear to be at risk during heatwaves. Heatwave forecasting services may 

prove useful in the occupational setting to plan for and mitigate the effects of 

heatwaves on the health and safety of those working in hot conditions. Our data 

suggest that moderate heatwaves should be considered, in addition to severe 

heatwaves. 
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6.4 CHAPTER SYNOPSIS 

Chapter 6 has detailed the findings from the first of two studies focussed on the 

impacts of heatwaves on WRI. The findings from Adelaide show that WRI increase 

during moderate-severity heatwaves (as defined by EHF) but not significantly for 

high-severity heatwaves. The next chapter extends the evidence from Adelaide to 

Brisbane, Melbourne, and Perth, with different climates.
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Chapter 7: Characterising the Impact of 
Heatwaves on Work-Related Injuries and 

Illnesses in Three Australian Cities using a 
Standard Heatwave Definition-Excess 

Heat Factor 

7.1 PREFACE 

This chapter presents the results of a study that addresses the second and third 

objective by examining the effects of heatwaves on WRI. Building upon the validated 

study design and modelling approach in Chapter 6, this study extends the 

investigation from Adelaide to Brisbane, Melbourne, and Perth. 

Similar to Chapter 5, WRI were identified from the NDS3 dataset and heatwaves 

were defined using EHF, allowing heatwave comparisons between cities with 

different climates. This study is also unique in that it is the first study in the literature 

to assess the impacts of heatwaves on WRI using EHF in Brisbane, Melbourne, and 

Perth. 

The study presented in this chapter has been published in the Journal of Exposure 

Science and Environmental Epidemiology as: 

Varghese BM, Barnett AG, Hansen AL et al. Characterising the Impact of 

Heatwaves on Work-Related Injuries and Illnesses in Three Australian Cities Using 

a Standard Heatwave Definition—Excess Heat Factor (EHF). J Expo Sci Environ 

Epidemiol. 2019; [Epub ahead of print]. doi:10.1038/s41370–019–0138–1. 
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7.3 PUBLICATION 

7.3.1 Abstract 

Background and aims: Heatwaves have potential health and safety implications 

for many workers, and heatwaves are predicted to increase in frequency and 

intensity with climate change. There is currently a lack of comparative evidence for 

the effects of heatwaves on workers’ health and safety in different climates (sub-

tropical and temperate). This study examined the relationship between heatwave 

severity (as defined by the Excess Heat Factor (EHF)) and workers’ compensation 

(WC) claims, to define impacts and identify workers at higher risk. 

Methods: WC claims data from Australian cities with temperate (Melbourne and 

Perth) and subtropical (Brisbane) climates for the years 2006–2016 were analysed 

in relation to heatwave severity categories (low and moderate/high severity) using 

time-stratified case-crossover models. 

Results: Consistent impacts of heatwaves were observed in each city with either a 

protective or null effect during heatwaves of low-intensity while claims increased 

during moderate/high-severity heatwaves compared with non-heatwave days. The 

highest effect during moderate/high-severity heatwaves was in Brisbane (RR 1.45, 

95% CI: 1.42–1.48). Vulnerable worker subgroups identified across the three cities 

included: males, workers aged under 34 years, apprentice /trainee workers, labour 

hire workers, those employed in medium and heavy strength occupations, and 

workers from outdoor and indoor industrial sectors. 

Conclusion: These findings show that work-related injuries and illnesses increase 

during moderate/high-severity heatwaves in both sub-tropical and temperate 
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climates. Heatwave forecasts should signal the need for heightened heat 

awareness and preventive measures to minimise the risks to workers. 

Keywords: Heatwave, Morbidity, Workers health and safety 

7.3.2 Introduction 

Extreme heat events (heatwaves) represent the most common cause of weather-

related deaths in Australia and the US.32, 103, 110 Individuals are usually acclimatised 

to their local weather, in physiological, cultural and behavioural terms, within a 

certain thermal coping range.8 However, continuing extreme heat with long duration 

and severity can overstretch limits of tolerance, leading to adverse health outcomes 

and even death. Effects are typically manifested on the same day, or within a few 

days, of exposure.8 

Many studies have examined population health effects of heatwaves in terms of 

increased morbidity and mortality.434, 446 Studies have also indicated that workers 

engaged in strenuous physical activities in hot conditions may be at particular risk 

of both illness and injury.145 Cumulative heat exposure can contribute to fatigue, loss 

of concentration, decline in vigilance, reduced psychomotor performance and 

reduced use of personal protective equipment (PPE), all of which can increase the 

risk of work-related injuries (WRIs) and illnesses as outlined in a recent review.50 

These effects can be compounded if there is a lack of relief due to high overnight 

temperatures. To our knowledge, the impact of heatwaves on work-place injuries 

has been examined in only five studies to date, with mixed results. Studies in Italy,184 

Adelaide, Australia421 and Melbourne, Australia188 have shown an increased risk, 

while two other studies in Adelaide145, 146 found no statistically significant increased 

risk of occupational injuries during heatwaves. 
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The wider literature on the effects of heatwaves on population health documents 

several challenges in comparing the effects of heatwaves across different regions.16, 

434, 446 For one, despite the general agreement on heatwaves being periods of 

prolonged and unusually hot weather, there is no universal definition of a 

heatwave,443 as there is no consensus on what defines ‘prolonged’ or excessively 

hot in different areas and climates.182 The use of an absolute temperature threshold 

for every location would be unwise due to factors that may have different impacts in 

different communities or locations. These include population acclimatisation, 

adaptation, underlying demographics, meteorological characteristics such as 

temperature distribution and humidity levels, and extent of urbanisation.12 For 

example, temperatures which are considered to be unusually high in tropical or 

subtropical locations may occur more commonly during hot summers in temperate 

locations. A variety of heatwave metrics have been used in the literature ranging 

from temperature only metrics (mean, maximum or minimum temperature), to 

thermal composite indices that incorporate effects of temperature and humidity 

(Apparent Temperature or Humidex or Heat Index).434 Besides this variation, the 

intensity of heatwaves measured by temperature thresholds (range: 90–99th 

percentile), and duration of heatwaves in length (2–4 days) also varies according to 

definition.435-437 

The lack of a universal heatwave definition can be a challenge for emergency 

services and government agencies who want to use an indicator that is easily 

operated and understood by the community they serve. In an attempt to address 

the lack of a national heatwave definition, the Australian Bureau of Meteorology 

(BOM) developed a metric called the Excess Heat Factor (EHF) that can be applied 

consistently across different locations and provide an indication of heatwave 
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severity and intensity.182 According to this metric, heatwave conditions occur at a 

location when there is a significant temperature anomaly (both short-term and long-

term) specific for that particular location. The EHF index has been used in several 

studies in Australia285, 287, 440-442 and elsewhere.447, 448These studies suggest that 

EHF is a useful indicator of heat-health impacts, and therefore a potential heat 

warning indicator of heat-related occupational injuries and illnesses.421 

Although several multi-city studies have investigated the relationship between 

heatwaves and health outcomes (mortality/morbidity) in Australia,449-452 no research 

to our knowledge has been conducted to compare the occupational health impacts 

of heatwaves across different cities. The aims of this study are: (i) to examine the 

association between workers’ compensation (WC) claims data and heatwave 

exposure (as defined by EHF), for cities with sub-tropical and temperate climates; 

and (ii) identify vulnerable workers by demographics, type of work (physical 

demands), occupation and industry of employment and working environment 

(indoor versus outdoor). With the increasing frequency, duration and intensity of 

heatwaves across Australia,417 it is vital to understand the impacts on workers, so 

that industries can better prepare for the challenges of a warmer climate on 

occupational health and safety (OHS). 

7.3.3 Methods 

7.3.3.1 Study area 

This study was conducted in three major Australian cities with different climatic 

characteristics (Brisbane, Melbourne and Perth). Brisbane, the state capital of 

Queensland, is located on the central eastern coast and has a sub-tropical climate 

with dry, mild winters and hot, humid summers.424 Melbourne is located on the 
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southern coast, in the state of Victoria, and has a temperate oceanic climate (i.e. 

warm summers and cool wet winters) and is also known for its changeable weather 

conditions. Perth, the capital of Western Australia, is located on the south-west 

coast of Australia and has a Mediterranean climate with hot, dry summers and cool 

wet winters.286 These three cities combined have a population of 8.5 million (or 34% 

of the Australian population) and a total workforce of about 3.7 million, which is 38% 

of the total employed workforce in Australia. We restricted our analyses to 

metropolitan areas in these cities, where the majority of people live and work.255 

7.3.3.2 Data collection 

Workers’ compensation (WC) data 

In Australia, workers experiencing a WRI or illness are entitled to be supported 

financially for their medical and health care expenses while they are unable to 

perform their normal duties. This support is provided by compulsory WC insurance 

schemes regulated by the relevant jurisdictions. The details of workers making a 

claim are captured within a jurisdictional database of WRIs and illness for that 

jurisdiction. The National Dataset for Compensation Based Statistics (NDS3)  is 

compiled by Safe Work Australia,  the national regulatory agency, from case-level 

claims data supplied by each jurisdiction.72 This dataset contains claims made by 

the majority of Australian workers, but excludes specific subgroups such as: self-

employed and self-insured workers, Commonwealth government employees, 

military personnel within the Australian Defence Force and police officers in Western 

Australia.72, 312 

All accepted WC claims (as determined by the insurer) that occurred in the three 

Australian states (Queensland, Victoria and Western Australia) between 1 January 
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2006 and 30 March 2016 were extracted from the NDS3. We included all claims 

regardless of their severity either as ‘minor’ (<1 week work time lost) or ‘major’ 

(≥1 week work time lost) claims. Although there are similarities in the way claims 

are made and recorded across these jurisdictions, there exists some structural and 

functional differences in policy and practice.292, 313 For example, claims made while 

‘commuting to and from work’ are compensable with restrictions in Queensland, but 

are not compensable in Victoria and Western Australia.292 Hence, to establish three 

comparable jurisdictional-level cohorts, we excluded such claims. 

In the NDS3 dataset, each accepted claim includes information on the injured 

workers age and gender (demographics), industry and occupation (employment), 

and details of their injury (date, nature, mechanism, body location and agency of 

injury). However, there is no information on potential workplace heat exposure 

based on the location of work (outdoor or indoor), the availability of air-conditioning 

or acclimatisation status or physical demands of the occupation. As outdoor workers 

were identified to be at higher risk of weather-related heat exposure previously,145 

these workers were identified using two classifications, one at the industrial level 

and other at the occupational level. Industries were broadly classified as outdoor or 

indoors based on groupings used by Xiang et al.145 In an attempt to broadly define 

occupations and heat exposure levels (e.g. indoor or outdoor), we followed the 

approach taken by a study in Melbourne132 whereby a ‘cross-walk’ was performed 

between the Australian and New Zealand Standard Classification of Occupations 

(ANZSCO) system294 and the Canadian National Occupational Classification (NOC) 

system.228 This method has been validated previously.132 The potential 

classifications of workplace temperature exposures at the occupational level 

obtained from this cross-walk included ‘regulated indoors’; ‘unregulated indoors and 
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outside’; ‘in a vehicle or cab’ and ‘multiple locations’. Also obtained from this cross-

walk were the occupational physical job demands (strength) classified as ‘limited’; 

‘light’; ‘medium’ and ‘heavy’. 

Meteorological data 

Daily weather data obtained from the Australian BOM included: maximum (Tmax), 

minimum (Tmin), and mean (Tmean) temperature data for each city. These data were 

obtained using the BOM’s operational low resolution (0.25°×0.25°) daily 

temperature analyses. Data were obtained for the following monitoring stations: 

Brisbane (BOM site number: 040913); Melbourne (BOM site number: 086071) and 

Perth (BOM site number: 009225). These stations were considered as 

representative weather stations for these metropolitan areas and have been used 

in previous studies.276, 278, 283, 285, 286 

7.3.3.3 Heatwave definition 

The EHF is an intensity measure that categorises heatwaves by their severity.182 

The calculation of the EHF is based on a three-day averaged daily Tmean, in relation 

to the 95th percentile of long-term average temperatures, and the recent (prior 30-

day) temperatures, for a particular location. This estimate accounts for both 

historical averages and short-term acclimatisation. EHF intensity is normalised to 

generate an index of heatwave severity that can be used for comparison between 

different locations.182 The details on the calculation of this metric are provided in 

Appendix B5.182 We obtained daily gridded EHF and EHF severity data for the BOM 

monitoring sites mentioned above. We then categorised heatwaves using the 

following EHF severity levels (EHFsev): 
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 No heatwave: daily EHFsev ≤0; 

 Low-intensity: daily EHFsev >0 and <1; 

 Moderate-severity: daily EHFsev ≥1 and <2, and 

 High-severity: daily EHFsev ≥2. 

However, as there were very few days of EHFsev ≥2 during the study period, we 

combined the moderate and high-severity HW days (i.e. daily EHFsev ≥1). 

7.3.3.4 Study design and statistical analysis 

The risk of WRI and illness during heatwave days, defined by EHFsev, compared 

with non-heatwave days, was assessed using a time-stratified case-crossover 

(CCO) study design. This approach, whereby each case serves as their own control, 

was chosen to account for the lack of site-specific denominator data (i.e. the number 

of workers), as well as its strength in controlling for known and unknown time-

invariant individual confounders.356, 357 In contrast to other studies using a monthly 

or 28-day strata,132, 135, 188 we used a shorter seven-day strata to adjust for known 

weekly changes in worker numbers that arise over a short-period of time due to, for 

instance, labour strikes, power outages, co-worker absence or changes in work 

practices.132, 188 The analyses were restricted to the warm months of each year 

(November–March) to control for the effects of seasonality.450 A generalised linear 

model with a Poisson distribution was used to estimate the relative risk (RRs). Public 

holidays were adjusted for with three separate binary indicator variables (Christmas 

Day, New Years’ Day and other holidays). Days of the week were adjusted for by 

including a categorical ‘day of the week’ variable using Friday as the reference day. 

RRs with 95% confidence intervals (CIs) are reported for heatwave days of low-

intensity, and moderate/high-severity, compared with non-heatwave days during the 
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same warm season. The lagged effects (days 1 and 2) for EHFsev on total WC claims 

were also explored. As a marked lag effect was not found, these results are not 

presented. 

Ethical clearances were obtained from the ethics committees of The University of 

Adelaide, the Queensland University of Technology, The University of Western 

Australia and Monash University. 

7.3.4 Results 

7.3.4.1 Exposure 

The number of heatwave days at each severity level as well as the corresponding 

three-day average daily Tmax for each city are in Table 7.1. Melbourne had the 

highest number of moderate/high-severity heatwave days, while low-intensity 

heatwave days were highest in Brisbane. The three-day average daily Tmax during 

moderate/high-severity heatwave days were highest in Perth (39.9 °C) and 

Melbourne (37.8 °C). 

Table 7.1 Number of heatwave days (n) and corresponding average daily maximum temperatures 
(ADTmax, in °C, for 3 day average) by city, for warmer months (November to March, 2006–2016). 

Heatwave severity* 

  No heatwave Low Moderate/High 

City Total n (%) ADTmax n (%) ADTmax n (%) ADTmax 

Perth 1602 1416 
(88.4%) 

29.3 161 (10.0%) 36.5 25 (1.5%) 39.9 

Brisbane 1602 1406 
(87.8%) 

28.8 173 (10.8%) 32.1 23 (1.4%) 33.9 

Melbourne 1602 1419 
(88.6%) 

24.8 157 (9.8%) 32.8 26 (1.6%) 37.8 

Notes: * severity defined on the basis of normalised EHF intensity: No heatwave: EHFsev <0; Low: 0 >EHFsev <1; 
Moderate/High: EHFsev ≥1. 
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7.3.4.2 Outcomes 

Overall, 746,655 WC claims were reported in the three cities during the study period 

(1 January 2006–30 March 2016). There were 243,963 (33%) claims in Brisbane, 

241,376 (32%) in Melbourne and 261,316 (35%) in Perth. Of these, 11,693 (4.8%), 

10,946 (4.5%) and 12,207 (4.6%) occurred during 197, 183 and 186 heatwave days, 

respectively, as defined by EHFsev (i.e. EHFsev >0). Across the three cities, the 

majority of claims were among males (66%) and those aged 34–54 years (47%). 

industries such as ‘manufacturing’, ‘healthcare and social assistance’, ‘construction’ 

and ‘retail trade’ accounted for about half (51%) of all claims. 

7.3.4.3 Heatwaves and workers’ compensation (WC) claims 

Overall effect 

There was a consistent trend of increasing WC claims with heatwave severity across 

the three cities. In Brisbane and Melbourne, a small reduction in risk (RR 0.97, 95% 

CI: 0.94–0.99) was observed during low-intensity heatwaves, while in Perth a null 

effect (RR 1.01, 95% CI: 0.97–1.02) was observed. However, significant increases 

in WC claims during moderate/high-severity heatwave days were seen for all three 

cities with the highest effect estimate in Brisbane (RR 1.45; 95% CI: 1.42–1.48), 

followed by Perth (RR 1.26, 95% CI: 1.24–1.29), and Melbourne (RR 1.25, 95% CI: 

1.22–1.28). 

Higher associations were seen for ‘minor claims’ (≤1 week of time-lost) compared 

with ‘major claims’ during moderate/high-severity heatwaves (Table 7.2). 
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Effect by workers’ demographics, work and work environment characteristics 

The results of stratified analyses of claims are shown in Table 7.2. Across the three 

cities, there were increases in claims during moderate/high-severity heatwaves for 

almost all worker characteristics, i.e. age, gender and work experience, and 

consistent with the overall trend, the highest effect was in Brisbane. Also, in all three 

cities claims were more pronounced during moderate/high-severity heatwaves 

among male workers, young workers (aged 15–24 and 25–34 years), 

apprentice/trainees, and workers in labour hire arrangements. 

Analysis of work characteristics revealed that moderate/high severity heatwaves 

affected workers regardless of their work physical demands, with a stronger effect 

for ‘heavy-strength’ occupations in Brisbane (RR 1.56, 95% CI: 1.50–1.63) and 

Melbourne (RR 1.32, 95% CI: 1.26–1.39) and ‘medium-strength’ occupations in 

Perth (RR 1.32, 95% CI: 1.28–1.36). 

Stratified analyses by work environment characteristics showed significant increase 

in claims during moderate/high-severity heatwaves whether work was carried out 

‘mostly outside’ or ‘inside’ based on industry classification (results not shown). 

Similar effects were also observed when workers were classified based on 

occupational classifications of workplace temperature exposures as working in 

‘regulated indoors’ or ‘unregulated indoors and outside’ or ‘in a vehicle or cab’ (Table 

7.2).
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Table 7.2 Relative risks of workers’ compensation claims by heatwave severity (low and moderate/high) in Brisbane, Melbourne and Perth metropolitan areas 
during warmer months (November to March, 2006–2016). 

 
Perth Brisbane Melbourne 

Exposure 
(EHFseverity)* 

Non-
H/W 

Low intensity Moderate/ 
High severity 

Non-
H/W 

Low intensity Moderate/ 
High severity 

Non-
H/W 

Low intensity Moderate/ 
High severity 

(n) (n) RR (95% CI) (n) RR (95% CI) (n) (n) RR (95% CI) (n) RR (95% CI) (n) (n) RR (95% CI) (n) RR (95% CI) 

Total  99781 10840 1.01 
(0.97–1.02) 

1367 1.26 
(1.24–1.29) 

91199 10381 0.97 
(0.94–0.99) 

1312 1.45 
(1.42–1.48) 

88638 9478 0.97 
(0.94–0.99) 

1468 1.25 
(1.22–1.28) 

Claim severity 
               

Minor claims 66064 7053 1.00 
(0.97–1.03) 

877 1.28 
(1.24–1.31) 

33574 3729 0.97 
(0.92–1.02) 

464 1.98 
(1.91–2.05) 

22401 2407 0.96 
(0.91–1.01) 

404 1.47 
(1.41–1.54) 

Major claims 33717 3787 1.01 
(0.96–1.05) 

490 1.24 
(1.20–1.28) 

57625 6652 0.97 
(0.94–1.01) 

848 1.23 
(1.20–1.26) 

66237 7071 0.97 
(0.94–0.99) 

1064 1.19 
(1.16–1.22) 

Gender 
               

Male  69058 7541 1.00 
(0.97–1.03) 

940 1.29 
(1.26–1.32) 

57829 6711 0.98 
(0.94–1.02) 

844 1.50 
(1.46–1.54) 

56141 6042 0.96 
(0.93–0.99) 

949 1.29 
(1.25–1.33) 

Female 30723 3299 1.01 
(0.96–1.05) 

427 1.20 
(1.16–1.24) 

33370 3670 0.96 
(0.91–1.01) 

468 1.35 
(1.30–1.40) 

32224 3436 0.97 
(0.93–1.01) 

519 1.18 
(1.15–1.23) 

Age group 
(years) 

               

15–24 19963 2168 1.01 
(0.95–1.06) 

254 1.29 
(1.23–1.35) 

15298 1717 0.94 
(0.88–1.01) 

221 1.55 
(1.47–1.63) 

10596 1106 0.96 
(0.89–1.04) 

186 1.27 
(1.19–1.35) 

25–34 22217 2361 0.98 
(0.93–1.03) 

297 1.27 
(1.22–1.33) 

19312 2284 0.98 
(0.92–1.04) 

271 1.56 
(1.49–1.63) 

18113 1947 0.93 
(0.88–0.99) 

325 1.31 
(1.24–1.37) 

35–54 42914 4696 1.01 
(0.97–1.05) 

599 1.26 
(1.22–1.30) 

43251 4843 0.97 
(0.93–1.01) 

602 1.42 
(1.37–1.46) 

44336 4701 0.97 
(0.93–1.01) 

750 1.26 
(1.22–1.30) 

>55 14687 1615 1.01 
(0.95–1.07) 

217 1.21 
(1.15–1.28) 

13338 1537 0.99 
(0.93–1.07) 

218 1.30 
(1.23–1.37) 

15593 1724 1.01 
(0.94–1.07) 

207 1.18 
(1.12–1.24) 

Worker 
experience 

               

Apprentice/ 
Trainee 

1944 208 1.02 
(0.85–1.22) 

24 1.35 
(1.18–1.56) 

2847 332 1.05 
(0.88–1.24) 

35 1.74 
(1.54–1.97) 

1634 184 1.01 
(0.83–1.23) 

20 1.41 
(1.21–1.64) 

Other 70641 8115 0.99 
(0.96–1.02) 

1006 1.26 
(1.23–1.29) 

88209 10030 0.97 
(0.94–0.99) 

1275 1.44 
(1.41–1.47) 

86836 9281 0.97 
(0.94–0.99) 

1446 1.25 
(1.22–1.28) 
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Perth Brisbane Melbourne 

Exposure 
(EHFseverity)* 

Non-
H/W 

Low intensity Moderate/ 
High severity 

Non-
H/W 

Low intensity Moderate/ 
High severity 

Non-
H/W 

Low intensity Moderate/ 
High severity 

(n) (n) RR (95% CI) (n) RR (95% CI) (n) (n) RR (95% CI) (n) RR (95% CI) (n) (n) RR (95% CI) (n) RR (95% CI) 

Labour hire 
status 

               

Labour hire 
worker 

1977 209 0.96 
(0.81–1.16) 

35 1.56 
(1.35–1.80) 

4447 481 1.01 
(0.88–1.16) 

51 1.58 
(1.43–1.74) 

5163 539 0.91 
(0.81–1.02) 

88 1.52 
(1.39–1.67) 

Other 2805 294 0.94 
(0.81–1.10) 

52 1.37 
(1.21–1.55) 

86589 9878 0.97 
(0.94–0.99) 

1259 1.44 
(1.41–1.47) 

83287 8924 0.97 
(0.94–0.99) 

1379 1.24 
(1.21–1.27) 

Potential 
workplace 
temperature 
exposure  

               

Regulated 
indoors 

67993 7350 0.99 
(0.97–1.03) 

936 1.24 
(1.21–1.27) 

59879 6860 0.97 
(0.94–1.01) 

872 1.45 
(1.41–1.48) 

61695 6595 0.96 
(0.93–0.99) 

1046 1.25 
(1.22–1.28) 

Unregulated 
indoors and 
outside 

1062 125 1.03 
(0.82–1.29) 

25 1.35 
(1.10–1.66) 

1139 126 1.01 
(0.79–1.29) 

14 1.14 
(0.93–1.40) 

508 45 0.67 
(0.46–0.98) 

12 1.35 
(0.99–1.84) 

In a vehicle or 
cab 

5617 608 1.01 
(0.91–1.13) 

84 1.32 
(1.21–1.44) 

5904 676 0.96 
(0.86–1.07) 

90 1.47 
(1.35–1.59) 

6277 640 0.93 
(0.84–1.03) 

110 1.21 
(1.12–1.31) 

Multiple 
locations 

24843 2735 1.01 
(0.96–1.06) 

319 1.32 
(1.26–1.37) 

24088 2695 0.96 
(0.91–1.02) 

336 1.46 
(1.40–1.52) 

19609 2137 1.01 
(0.95–1.06) 

297 1.29 
(1.23–1.35) 

Physical 
demands  

               

Limited 
(≤5kg) 

20470 2223 1.02 
(0.96–1.08) 

257 1.22 
(1.16–1.27) 

20312 2231 1.01 
(0.95–1.07) 

275 1.33 
(1.28–1.40) 

23736 2564 0.98 
(0.93–1.04) 

386 1.21 
(1.17–1.27) 

Light 
(5–10kg) 

18565 1993 1.01 
(0.95–1.06) 

270 1.16 
(1.10–1.22) 

14881 1719 0.99 
(0.93–1.07) 

198 1.32 
(1.25–1.39) 

17501 1930 0.99 
(0.94–1.06) 

313 1.20 
(1.14–1.26) 

Medium 
(10–20kg) 

38285 4142 0.98 
(0.94–1.02) 

543 1.32 
(1.28–1.36) 

33178 3814 0.96 
(0.91–1.01) 

491 1.50 
(1.45–1.56) 

29982 3203 0.97 
(0.92–1.01) 

490 1.28 
(1.24–1.33) 

Heavy 
(>20 kg) 

22195 2460 1.02 
(0.96–1.08) 

294 1.29 
(1.24–1.35) 

22639 2593 0.95 
(0.90–1.01) 

348 1.56 
(1.50–1.63) 

16870 1720 0.91 
(0.86–0.97) 

276 1.32 
(1.26–1.39) 

Notes: Shaded cells denote statistically significant differences based on the 95% CI. *severity defined on the basis of normalised EHF intensity: no heatwave (non-H/W): EHFsev <0 (reference category); 
low: 0 >EHFsev <1; moderate/high: EHFsev ≥1. 

 



Chapter 7 

 234

7.3.5 Discussion 

The principal finding of this study is that the risk of WRIs and illnesses was found to 

significantly increase during moderate/high-severity heatwaves (EHFsev ≥1) across 

all three cities, albeit with different effect sizes. Additionally, the worker subgroups 

impacted by moderate/high-severity heatwaves were fairly consistent across three 

cities. These findings suggest that even though workers in these cities with different 

climates may have adapted to their local weather conditions, they may nonetheless 

be vulnerable to the effects of heatwaves as defined by EHF. Overall our results are 

consistent with previous occupational health studies45, 122, 127, 132, 135, 184, 188, 421 

suggesting that working in hot conditions can be associated with occupational 

injuries. Our findings are also in agreement with previous multi-city population health 

studies434, 449, 450 where consistent increases in mortality risks were observed in 

Brisbane, Melbourne and Sydney during heatwaves. However, in Melbourne and 

Brisbane a significant protective effect of low-intensity heatwaves on WRIs and 

illnesses was found, while in Perth a null effect was observed. As most of the 

heatwaves at each location are of low-intensity, people generally have adequate 

capacity to cope with this level of heat.182 While we do not have any clear 

explanation for the protective effect observed, a similar effect of low-intensity 

heatwaves on mortality has been reported previously.440 

In this study, the city-specific effect of moderate/high-severity heatwaves on WRIs 

and illnesses ranged from a 25% increase in Melbourne to 45% in Brisbane. These 

differences in the size of the effect estimates across the cities might be due to 

differences in climatic as well as non-climatic factors, such as the demographic 

characteristics of the workforce, the nature of work-related heat exposure, 
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workplace adaptation measures and responses to extreme heat (e.g. heat 

policies).16, 33, 453 

Our finding of the greater risk to workers during moderate/high-severity heatwaves 

in Brisbane is consistent with previous heat-health studies that have found greater 

population health impacts (both morbidity and mortality) with more intense and 

longer duration heatwaves.277, 363, 453-455 Although the population of Brisbane might 

be acclimatised to extended periods of warmer temperatures during summer,277, 453, 

456, 457 the rarity of ‘unusually’ hot days (defined by EHFsev) may explain why they 

are at risk.277, 449, 453, 458 Furthermore, being a sub-tropical city, the effects of heat 

stress can be due to the combined effect of air temperature and humidity. For 

example, the average relative humidity ranged from 69% to 71% during heatwaves 

of moderate/high-severity over the warm season. As a result, workers can feel much 

hotter than the actual environmental temperature when relative humidity is high as 

it impairs the evaporation of sweat, thus accelerating the increase of body 

temperature.3, 427 Impaired sweating is also likely to contribute to decreased grip, 

possibly leading to injury. Although EHF does not take humidity into account 

explicitly, its use as a heatwave forecasting service in tropical environments has 

been previously demonstrated by BOM.459 

Notwithstanding the differences in exposure metric used, our findings for Melbourne 

are in general agreement with a previous study,188 which reported that the risk of 

serious occupational injuries (up to 10 days of work lost) increased up to the 90th  

percentile of temperature (33.3 °C) and declined at extreme temperatures. 

Consistent with previous population health studies in Perth285-287 that have found 

significant increases in morbidity and mortality during heatwaves, our study showed 
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that workers are at risk of WRIs and illnesses during moderate/high-severity 

heatwaves in Perth. 

Overall, these findings build upon our previous work in Adelaide421 where we 

examined the effects of heatwaves (defined using EHFsev) on WRIs and illnesses in 

Adelaide, a city with temperate climate in Australia, and found a significant increase 

in claims during moderate-severity heatwaves (RR 1.08, 95% CI: 1.01–1.17) and 

non-significant decline during high-severity heatwaves (RR 0.91, 95% CI: 0.78–

1.06). The findings from the present study based on moderate/high-severity 

heatwaves in Melbourne, Brisbane and Perth are similar to those from Adelaide. 

The effect observed at high-severity heatwaves in Adelaide could be due to the 

reduced statistical power because of the rarity of such events. 

Consistent increases in risks were observed for workers across the three cities 

regardless of gender, age group and experience. However, pronounced effects 

were seen amongst males, younger age groups (<35 years), apprentice/trainees 

and labour hire workers. Reasons for increased susceptibility in males and young 

workers have been previously discussed in the literature.45, 127 Young workers, with 

less experience, are more likely to work in high-risk occupations and/or strenuous 

work and are less likely to slow down or self-pace. Other possible reasons may 

include: lack of awareness of workplace rights and responsibilities, workplace peer 

pressures and low compliance towards preventive measures.45, 132 In the case of 

male workers, it is known that they are more likely to work in physically demanding 

and heat exposed occupations and are also more likely to be risk-takers.45, 127 

Apprentices/trainees may be at risk due to lack of experience, acclimatisation, 

training and competency. Workers in labour hire arrangements have been shown to 
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be at greater injury risk than ‘direct hire’ workers due to the type of work assigned 

and lack of proper workplace health and safety practices. An inquiry into labour hire 

workers in Victoria has revealed that OHS standards are lower in the labour hire 

sector where these workers often work in dangerous working environments, without 

being provided with adequate PPE, supervision, inductions or job-specific 

training.460 This highlights the need to especially consider the health and safety of 

these workers. 

To categorise work as indoor or outdoor, we have used two classifications, one at 

the industrial sector level and the other at the occupational level. Notwithstanding 

the exposure misclassification inherent in grouping workers according to industrial 

sectors, we found that indoor as well as outdoor industries were at risk during 

heatwaves. This contrasts with the findings of Xiang et al.145 who found only outdoor 

industries at risk during heatwaves in Adelaide. Outdoor heat may add to the 

exposure levels in indoor work environments where workers may already be 

exposed to heat-generating processes (e.g. food preparation/services and 

manufacturing).127 A recent study of complaint calls made to the safety regulator in 

South Australia identified that most of the calls were from indoor workplaces 

(warehouses, factories and kitchens).461 On the other hand, limited awareness of 

heat stress, reduced acclimatisation due to reliance on, or failure of, cooling systems 

in place may explain why workers in indoor industries with office environments and 

sedentary work such as ‘administrative and support services’ and ‘professional, 

scientific and technical services’ were at risk.24, 410, 462 Similar findings have also 

been reported in Quebec.127 
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Consistent with McInnes et al.132 using the occupational level classification of work 

as indoor or outdoor, we found that workers in ‘regulated indoors’ and ‘working in a 

vehicle or cab’ were at increased risk of WRIs and illnesses during moderate/high-

severity heatwaves. Besides work location, another important effect modifier in the 

heat-health relationship is the nature of work undertaken which can be strenuous 

and repetitive in both outdoor and indoor industries.33, 408 Indeed, our findings by 

physical workloads that show workers in medium (somewhat physically demanding) 

and heavy strength (very physically demanding) occupations are at risk, confirms 

this observation. 

Our findings are of benefit and have implications for policymakers and industry 

leaders, by highlighting how the risks to workers’ health and safety increase during 

exposure to prolonged and unusual heat across different locations in Australia. A 

recent review of policies and guidance documents in Australia has revealed that 

none of the jurisdictional regulators currently have any guidelines or regulations for 

specific outdoor temperature thresholds at which precautions need to be taken or 

when work should cease.171 At the population level, higher thresholds are used for 

extreme heatwave warnings to avoid message fatigue. However, our findings have 

shown that occupational injuries and illnesses occur in moderate/high-severity 

heatwaves (EHF ≥1). This indicates that workplaces should be aware of the 

potential risks to workers’ health and safety during hot as well as extreme conditions. 

In Australia ‘heatwave assessment maps’ and ‘forecast maps’ are provided by the 

BOM291 that may be useful for workplaces undertaking risk assessment for predicted 

periods of hot weather when work may need to be modified or rescheduled.291 
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This study has a number of strengths. To the best of our knowledge, this is the first 

multi-city study in Australia to compare heatwave effects on WRIs and illnesses 

using a standard definition of heatwave severity based on local climatic conditions. 

We have included both major and minor claims. The results provide a more 

complete picture of how heatwaves affect workers’ health and safety by exploring 

immediate and contributing factors (e.g. those relating to the worker, work 

undertaken and work environment) to the occurrence of injuries and illnesses. 

There are several limitations. First, the study population consisted of workers who 

had an accepted compensation claim, while rejected or ineligible claims and injuries 

for which a claim was not lodged, were not included. Therefore, using WC data 

alone are likely to underestimate the true burden of injuries and illnesses.293 

Nevertheless, the NDS3 dataset provides useful national level data to investigate 

the epidemiology of occupational injuries. Second, workers’ personal exposure to 

ambient heat was not known as we used data from a single weather monitoring 

station in each city. This introduces the likelihood of exposure misclassification 

which typically leads to an underestimation of the risk estimates. Further studies 

using personalised heat exposure measures are needed to establish precise 

exposure-response relationships. Furthermore, the EHF metric does not directly 

incorporate measures of humidity, which was expected to limit its utility in Brisbane. 

Nevertheless, Nairn and Fawcett182 have argued that humidity is indirectly factored 

in the calculation of EHF due to its relationship with Tmin, in that higher humidity 

leads to higher Tmin. From our results, it appears that EHF is a useful metric for both 

temperate (Melbourne, Perth) and humid (Brisbane) locations. Lastly, cautious 

interpretation is needed for some results where subgroup sample size was small, 
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and we cannot rule out the possibility of some erroneous inferences due to multiple 

comparisons. 

7.3.6 Conclusions 

In conclusion, our results show that WRIs and illnesses increase in both subtropical 

and temperate locations during moderate/high-severity heatwaves with the greatest 

effect in Brisbane. The impacts of exposure to prolonged periods of extreme heat 

are not limited to workers in very physically demanding occupations and outdoor 

industrial sectors, but also extend to less demanding occupations and indoor 

industrial sectors as well. In the context of a warming climate, these findings have 

important implications for workforce policies and practices, suggesting that 

prevention strategies along with workplace heatwave action plans are needed to 

prevent heat-related occupational injuries and illnesses. 
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7.4 CHAPTER SYNOPSIS 

Chapter 7 presented evidence of how heatwaves of varying severity can affect WRI 

risk in three Australian cities. The findings show that WRI increase during 

moderate/high-severity heatwaves (as defined by EHF) in both subtropical Brisbane 

and temperate Melbourne and Perth. 
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Summary of Section C 

The evidence base presented in the Chapters 63 and 7 show that WRI increase 

during moderate/high-severity heatwaves in both subtropical and temperate 

climates with a higher effect in subtropical Brisbane. Amongst those most at risk 

were males, new workers, and labour hire workers. Both outdoor and some indoor 

work resulted in increased risks of WRI during heatwaves. The evidence shows 

workplaces need to be mindful of the increased injury risks for workers during 

heatwave periods. 

                                            
3 Note: combining the high-severity heatwave category to the moderate-severity category in 
Chapter 6 generates similar results to that of Chapter 7 (see Tables B8-B9, Appendix B4 for the 
updated results). 
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SECTION D: INJURY EXPERIENCES, 
MANAGEMENT AND PREVENTION 
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Overview of Section D 

This section of the thesis focusses on better understanding the circumstances 

underpinning the occurrence of WRI in hot weather. This is in the context that limited 

understanding exists in the literature on how WRI arise in hot weather and how they 

can be better prevented. Two chapters are part of this section. Chapters 8 and 9 

build upon the epidemiological evidence shown in Sections B and C and present 

findings from two national online cross-sectional surveys of key stakeholders such 

as HSPs and HSRs. Participants were questioned on their perceptions of heat and 

WRI, as well as the determinants, prevention, and management of injuries in hot 

working conditions.
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Chapter 8: Determinants of Heat-Related 
Injuries in Australian Workplaces: 
Perceptions of Health and Safety 

Professionals 

8.1 PREFACE 

Chapters 4–7 presented the findings from epidemiological studies showing how 

daily ambient temperatures and heatwaves can impact WRI. These studies used 

WC data acknowledging that not all WRI are captured this way and that the data 

provide no contextual information as to why WRI occur in hot weather. This chapter 

aims to fill this gap by better understanding the circumstances underpinning WRI 

occurrence in workplaces using key stakeholders’ perspectives at a national level. 

The study presented in this chapter is the first of two studies that address the fourth 

objective. To the best of the authors’ knowledge, this study is the first to have 

gauged the perceptions of HSPs on heat and WRI across Australia. 

This paper is currently in the format of a manuscript submitted for publication.   
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8.3 PUBLICATION 

8.3.1 Abstract 

Introduction 

Hot environments can lead to adverse health effects and contribute to injuries in the 

workplace. However, there is limited understanding of the context of heat-related 

injury occurrence. Gaining the perspectives of occupational health and safety 

professionals (HSPs) may assist in better characterisation of the issue and inform 

targeted interventions. 

Methods 

A national online survey of HSPs was conducted in Australia (2017–2018) to collect 

data on: their experiences of heat-related injuries in workplaces; current preventive 

measures; training, policies and guidelines; and their perspectives on barriers for 

prevention. Results were analysed descriptively and a log-Poisson regression 

model was used to identify risk factors associated with HSP reported injury 

occurrence. 

Results 

Of the total 307 HSP survey participants, 74% acknowledged the potential for 

increased risk of occupational injuries in hot weather. A variety of injury types and 

mechanisms were reported, including manual handling injuries, hand injuries, 

wounds or lacerations, and loss of control of power tools. 

Correlates of reported heat-related injuries included: working in the sun without 

shade; inadequate hydration; too few rest breaks; issues with personal protective 

equipment (PPE); and poor supervision. Only 42% reported that adequate heat 
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training was available in workplaces and 54% reported the provision for outdoor 

work to cease in extreme temperatures. It was acknowledged that the frequency of 

injuries could be reduced with wider adoption of self-pacing and work/rest regimes. 

Perceived barriers for prevention included: lack of awareness of physical injury risks, 

and management concerns about productivity loss and/or deadlines. 

Conclusion 

The findings indicate a range of potentially modifiable work and organisational risk 

factors for WRIs during hot weather. More attention to these factors, in conjunction 

with traditional interventions to reduce heat effects, could enhance injury prevention 

and labour productivity in people working in hot environments. 

Keywords: Occupational health; Workplace heat exposure; Work-related injuries; 

Perceptions; Safety professionals 

8.3.2 Introduction 

Current and projected hot weather conditions are a serious concern for public and 

occupational health.32, 463 Epidemiological studies have documented increases in 

morbidity and mortality associated with temperature extremes, especially among 

infants, young children, the elderly, those with underlying chronic health issues or 

disabilities and those using certain medications. However, the health risks due to 

extreme heat are not limited to these traditional vulnerable populations alone, but 

also extend to workers across a wide range of workplaces.25, 29, 32 

Heat exposure in the workplace (both high temperatures and heatwaves) is known 

to cause adverse health effects including physical injury and illness, both acute and 

chronic, in workers both outdoors and in unregulated indoor environments.29, 50, 464, 
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465 One of the well-documented direct health effects of heat exposure is heat-related 

illnesses (HRIs) comprising a spectrum of disorders that range from minor heat rash 

to heat exhaustion and heat stroke, which in severe cases can lead to death.113 

These illnesses have been shown to increase with rising temperatures and during 

heatwaves.123, 466, 467 Heat stress also affects workers’ thermal comfort and reduces 

worker performance, work capacity and labour productivity.29, 468 

Studies using administrative databases such as workers’ compensation (WC) 

claims45, 127, 132, 135, 145, 184, 185, 190, 421-423, 469 or company injury records43, 44 and 

hospital records,122 have identified subgroups at-risk, which include male workers, 

young workers, new workers, and those in outdoor and some indoor occupational 

settings. A range of occupational injuries have also been reported to increase in hot 

weather including slips, trips and falls, wounds, lacerations and amputations, burns, 

fractures, and superficial injuries.42, 127, 145, 185 

However, research on the antecedents or mechanisms of injuries during hot weather 

is limited.50, 397 Additionally, the interplay of potential underlying organisational, work 

and personal factors that might increase the risk of work-related injuries (WRIs) 

during hot weather is not well-understood. Studies have identified these factors as 

potential causes of HRIs, but further research is needed to establish whether they 

play a role in injury occurrence.120, 178 

Cross-sectional studies assessing risk factors for heat stress-related health effects 

have primarily surveyed workers from a range of sectors.115-117, 119, 120, 140, 201, 217, 470-

474 Furthermore, perceptions of workers140, 201 and of occupational hygienists199 

regarding extreme hot weather management in a warming climate have also been 
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explored. However, the risk factors for work injury occurrence was not the focus of 

these studies. 

A range of stakeholders hold occupational health and safety (OHS) roles and 

responsibilities, including employers and managers, OHS officers, workers 

themselves, health and safety professionals (HSPs), return to work coordinators 

and government regulatory bodies.475 The comprehensive efforts and cooperation 

of these stakeholders is key for the successful prevention of workplace injuries and 

illnesses. HSPs encompass a wide range of professional groups such as 

occupational hygienists, occupational physicians, OHS consultants, safety 

managers, OHS advisers, officers and managers.261 Their roles include, but are not 

limited to, performing work site inspections and evaluations, identification and 

assessments of risks, providing health and safety training and professional advice, 

policy and design, and determining ways to anticipate, eliminate, reduce or alleviate 

hazards.261 Given their broader role and importance in OHS and the growing 

concern about OHS risks with rising temperatures, we conducted a survey among 

HSPs to gauge their perceptions on occupational injuries during hot weather in 

workplaces they visit or manage. 

The purposes of this study were to assess HSP perspectives on: (i) injury 

experiences in Australian workplaces during hot weather and contributing factors; 

(ii) current preventive practices; (iii) current levels of training, policies and guidelines; 

(iv) heat-associated productivity loss; and (v) barriers to injury prevention. 
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8.3.3 Methods 

8.3.3.1 Study design and participants 

An anonymous cross-sectional online survey of Australian HSPs was administered 

from March 2017 to April 2018. HSPs included in this survey were defined as those 

with a full-time responsibility in managing the health and safety of workers in several 

workplaces. They included ‘work health and safety consultants’, ‘inspectors’, ‘safety 

managers’ and ‘trainers’. Recruitment was assisted by Safe Work Australia (the 

peak national body for OHS in Australia), jurisdictional OHS authorities, and industry 

and union contacts, who promoted the survey via their websites, newsletters and 

networks. A brief study description and a link to the online survey were provided to 

these organisations, with reminder emails. 

8.3.3.2 Questionnaire design and measures 

The survey questions were developed following an extensive literature review50 and 

discussions with experts, and made available online through SurveyMonkey™ 

(www. surveymonkey.com, San Mateo, California, US) following a pilot test with 

local HSPs in South Australia (n=10). The opening page of the survey contained the 

participant information statement and informed consent was sought from all 

participants prior to commencement of the survey. The final questionnaire 

comprised seven sections namely: demographics; heat-related injuries/incidents; 

preventive measures; training; policies and guidelines; barriers; and productivity 

impact and potential solutions (see the supplementary material for the survey 

questions in Appendix B6). 
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Specifically, to determine the perceived frequency of heat-related injuries in 

workplaces, HSPs were asked the following question based on a 4-point Likert-scale 

‘In your experience of workplaces, would you say that injuries or incidents caused 

by (partly at least) hot/very humid weather occur: (never/rarely/sometimes/often)’ 

This was followed by questions on the types of injuries/incidents, symptoms and 

outcomes where heat exposure could have been a direct or in-direct contributing 

factor. 

A five point Likert-type scale was used to assess the frequency of currently adopted 

prevention measures (never/rarely/sometimes/often/always) for outdoor and indoor 

workers. Respondents were asked their views on the most important work practice 

for preventing heat stress. Questions asked about the availability and type of training 

for preventing heat-related injuries/incidents in workplaces the respondents 

visit/manage. Questions also asked about the existence of a hot weather/heat stress 

policy, risk assessment tools used in workplaces and perceptions on the barriers for 

establishing prevention measures for best practice. In the final section, specific 

questions sought to identify HSPs perceptions on productivity concerns and 

potential solutions. 

8.3.3.3 Data analysis 

Quantitative analysis 

Data were analysed descriptively in the first instance. Not all questions were 

mandatory, so the actual number of participants per question was used to estimate 

the percentages of responses for each item. Underlying factors that may have 

contributed to injury experiences were assessed using the following themes: work 

factors and hazards; organisational issues; and types of workers. A dichotomous 
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dependent variable was created to represent the frequency of injury experience as 

reported by HSPs, by combining ‘sometimes’ and ‘often’ versus ‘never’ and ‘rarely’. 

The five response categories for the frequency of prevention measures adopted for 

indoor and outdoor workers were collapsed into two categories: ‘often/always’ and 

‘never/rarely/sometimes’ with ‘always/often’ as the reference category. 

Bivariate associations between frequency of injury experience (sometimes/often vs. 

never/rarely) and risk factors (organisational issues, work factors and hazards, 

types of workers, frequency of prevention measures) were assessed using log-

Poisson regression analyses. This approach was chosen over the logistic model to 

decrease overestimation of the risks so that the results could be expressed as 

prevalence ratios (PR) with 95% CI, with p-values less than 0.05 considered 

statistically significant.476, 477 All data analysis was performed using Stata 15 

(College Station, TX). 

Qualitative analysis 

Participants who responded in the affirmative to the question ‘Do you think that hot 

weather contributes to productivity loss?’ (n=245) were further asked: ‘What 

potential solutions to productivity loss during hot weather have been discussed?’ 

Open-ended responses were provided by 115 participants and were imported and 

analysed for textual content in NVivo 11 (QSR International Pty Ltd, Doncaster, 

Victoria, Australia). 

8.3.3.4 Ethical approval 

This study was approved by the Ethics committee of the University of Adelaide 

(approval number: H-2016-085), and ratified by corresponding committees of 
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Queensland University of Technology, Monash University, and The University of 

Western Australia. 

8.3.4 Results 

8.3.4.1 Characteristics of study participants 

Table 8.1 shows the demographic characteristics of the 307 participants who 

completed the online survey. The majority of respondents were males (65%) and 

60% of respondents were in the 35–54 years age group. Forty-five percent 

represented industries with mostly outdoor activities, while 29% were from 

industries with mostly indoor activities. About 40% and 32% identified as a ‘health 

and safety professional’ and ‘health and safety manager’, respectively. 
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Table 8.1 Characteristics of the study population. 

Sample Characteristics (n=307a) N (%) 

State and territory, Australia* 
 

Eastern (ACT/NSW/Qld/Tas/Vic) 120 (39) 

Central (SA/NT) 145 (47) 

Western (WA) 41 (13) 

Gender* 
 

Male 198 (65) 

Female 106 (35) 

Unspecified 2 (0.6) 

Age-group* 
 

18–34 years 42 (14) 

35–54 years 184 (60) 

55 years and over 80 (26) 

Years of experience in health and safety* 

Less than 5 years 33 (11) 

5–10 years 105 (34) 

11–20 years 104 (34) 

More than 20 years 63 (21) 

Industry 
 

Mostly indoor activities 88 (29) 

Mostly outdoor activities 139 (45) 

Mixed 80 (26) 

Current role in health and safety* 
 

Consultant 31 (10) 

Health and Safety Manager 98 (32) 

Health and Safety Professional 121 (40) 

Inspector 27 (9) 

Other (please specify) 27 (9) 

Note: * May not total to 307 due to missing values. 
Abbreviations: NSW/ACT/Qld/Tas/Vic, New South Wales/Australian Capital Territory/Queensland/Tasmania/Victoria; SA/NT, 
South Australia/Northern Territory; WA, Western Australia. 

 

8.3.4.2 Heat-related injuries/incidents 

Three-quarters (74%) of respondents indicated that injuries or incidents caused by 

hot/very humid weather occur ‘sometimes’ or ‘often’ in workplaces that they 

visit/manage. ‘Manual handling’ (musculoskeletal injuries) or ‘joint/ligament injuries’ 

were the main type of injuries identified by 58% of the HSPs (Figure 8.1A) followed 

by ‘hand injuries’ (46%) and ‘wounds or lacerations’ (32%), all of which resulted in 
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minor outcomes such as being sent home or days off work (Figure B6A, Appendix 

B6). 

The four most frequently cited causes of injuries were ‘injuries arising from slips, 

trips or falls’ (46%), ‘injuries resulting from not wearing personal protective 

equipment (PPE)’ (45%), ‘impaired vision due to fogged safety glasses’ (39%) and 

‘loss of control of tools leading to injury’ (38%) (Figure 8.1B). Respondents reported 

‘fatigue’ (88%) as the most frequent type of incident or illness in workers during hot 

weather followed by ‘muscle/heat cramps’ (68%) and ‘severe dehydration’ (64%) 

(Figure 8.1C) resulting in minor outcomes (being sent home or days off work) and 

‘any access to health care’ (ambulance called /visit to Emergency Department / stay 

in hospital), respectively (Figure B6B, Appendix B6). 
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Figure 8.1 Bar chart of (A) types of injuries; (B) mechanism of injuries and (C) types of illnesses 

during hot weather as reported by respondents. Percentages do not total 100% as multiple 

responses were allowed. 

The major organisational issues for injuries cited by participants were ‘policies not 

adhered to’ (54%), ‘poor supervision’ (40%) and ‘no health and safety training 

specifically on heat stress’ (37%) (Figure B7A, Appendix B6). Organisational issues 

listed under the ‘others’ option included, ‘work design and environment’, ‘culture 

within the organisation’, ‘management’ and ‘victim-blaming’. Some verbatim 

examples of organisational issues raised by participants include: ‘aged building 

design issues’, ‘failure of air conditioning’, ‘poor decision making’, ‘lack of leadership 

on safety’, ‘culture of not managing hazards’, ‘workers not managing their own risks’, 

and ‘workers incorrect perception of work pressure’. 

The three most frequently cited contributing work factors and hazards for injuries 

were ‘working in the sun with no access to shade (solar radiation)’ (61%), ‘wearing 

A 

B 

C 
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of PPE leading to higher body temperature’ (48%) and ‘rushed activity’ (46%) 

(Figure B7B, Appendix B6). Sixty-eight percent and 47% responded that ‘workers 

aged 25–50 years’ and ‘younger workers (aged up to 24 years)’, respectively were 

most commonly affected by injuries/incidents (Figure B7C, Appendix B6). 

8.3.4.3 Preventive measures 

In response to a question asking about preventive work practices adopted for 

outdoor workers during hot weather, the measures most often/always adopted were 

‘access to cool drinking water (86%)’, ‘PPE supplied’ (85%), and ‘sunscreen 

supplied’ (78%) (Figure 8.2A). Most respondents indicated ‘use of cool vests’ and 

‘urine specific gravity testing’ were measures that were never/rarely adopted, while 

‘work gets rescheduled to cooler times’ and ‘shade erected over work area’ were 

adopted ‘sometimes’. 

For indoor workers, the measures ‘fan only cooling’ (30%) and ‘job rotation’ (25%) 

were adopted sometimes, while ‘access to cool drinking water’ (94%), ‘adequate 

ventilation’ (75%) and ‘PPE supplied’ (71%) were adopted often/always (Figure 

8.2B). 
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Figure 8.2 Percentages of work practices adopted during hot weather for outdoor (A) and indoor 

workers (B) as cited by HSPs. 
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Fifty-five percent of the participants reported that the ‘provision for outdoor work to 

cease if temperatures are extreme’ was available in workplaces that they 

visit/manage, with two-thirds (67%) saying that the ‘temperature at which outdoor 

work ceases’ varies between workplaces and is dependent on other factors 

including humidity, location and nature of work (Table B10, Appendix B6). With 

respect to work practices, participants noted that ‘heat stress training’ (22%) and 

‘access to cool drinking water’ (19%) were the most important for preventing heat 

stress in outdoor workers (Figure B8A, Appendix B6). 

‘Access to air conditioning or fans’ was often available for indoor workers as cited 

by 74% of respondents and the most common type of cooling systems in workplaces 

was ‘refrigerated’ (Table B10, Appendix B6). With respect to work practices for 

indoor workers, participants noted that ‘heat stress training’ (25%), ‘air conditioning’ 

(24%) and ‘access to cool drinking water’ (21%) were noted as important for 

preventing heat stress in indoor workers (Figure B8B, Appendix B6). 

8.3.4.4 Training 

Forty-two percent of the HSPs reported that training was available for preventing 

heat-related injuries/incidents in workplaces they manage/visit, while 39% reported 

that it was available in some workplaces (Table B11, Appendix B6). Fifty-two 

percent of the respondents said that training was available for supervisors and only 

10% reported that supervisors and workers were trained separately (Table B11, 

Appendix B6). 

About two-thirds of the HSPs said that training was conducted ‘annually regardless 

of job’ and ‘once at induction when starting a new job where heat could be a hazard’ 

with the majority of the training being provided on site by ‘health and safety 
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professionals’ (67%) and ‘supervisors’ (46%). With respect to the quality of the heat 

stress training, 45% said that the training provided was ‘comprehensive’ or 

‘adequate’ while 47% of HSPs reported that this training was not assessed. The 

main sources of heat stress training information and resources were the ‘Employer’ 

(70%) and ‘Safety regulator’ (24%) (Table B11, Appendix B6). 

8.3.4.5 Policies and guidelines 

Sixty-three percent of the participants reported that there is a hot weather or heat 

stress policy in workplaces they visit/manage, and 63% reported that heat stress 

management is partially implemented (Table B12, Appendix B6). When asked about 

indicators of heat risk, about half (51%) said that ‘air temperature at weather bureau’ 

followed by ‘air temperature on site’ (45%) were used as measures to indicate heat 

thresholds in workplaces. With respect to the use of mobile phone device apps to 

assist in heat stress management, two-thirds of the HSPs (66%) reported that they 

were not used in workplaces they currently visit (Table B12, Appendix B6). 

8.3.4.6 Barriers 

The three most important barriers for the prevention of occupational 

injuries/incidents during very hot weather reported by the HSPs (Figure B9, 

Appendix B6) was ‘lack of awareness of workers that heat can be associated with 

ill health and injury’ (43%), followed by ‘management concerns about productivity 

loss and/or deadlines’ (33%) and ‘lack of awareness by supervisors of heat hazards’ 

(29%). 
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8.3.4.7 Productivity and potential solutions 

More than half of the participants (52%) indicated that hot weather contributes to 

productivity loss often, while 44% said it contributes sometimes (Table B13, 

Appendix B6). When asked how much of a problem productivity is for workers, 58% 

thought it was a minor problem and 28% thought it was a major problem. Fifty-one 

percent of the participants reported that potential solutions have been discussed to 

address productivity loss in workplaces they visit/manage. The most frequent 

response to an open-ended question on potential solutions was to reschedule work, 

for example, to include earlier starts, night work or even to cooler months. Other 

common suggestions were: rotation of workers or tasks; active cooling systems 

(including air conditioning and fans); and adopting work rest regimes to ensure 

adequate breaks. The most common responses based on the number of coding 

references are shown in Figure 8.3. 
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Figure 8.3 Open ended responses to solutions for productivity concerns. Numbers are the coding 

reference and circles are proportional to the number (n=115). 

8.3.4.8 Factors associated with injury experience 

Bivariate analyses of the organisational issues and reported frequency of injury 

experiences indicated a higher prevalence of injuries was associated with: ‘workers 

not being allowed to take breaks as needed’; ‘lack of induction’; ‘insufficient access 

to cool drinking water’; ‘poor supervision’ and ‘no health and safety training 

specifically on heat stress’ (Figure 8.4). 

With respect to work factors and hazards (Figure 8.5), ‘working in the sun with no 

access to shade (solar radiation)’; ‘dangerous locations’; ‘wearing of PPE leading to 

higher body temperature’; ‘fire steam and hot surfaces’ and ‘rushed activity’ were 

identified to be associated with higher frequency of injury experiences as cited by 

HSPs.
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Figure 8.4 The associations between organisational issues cited by HSPs and reported frequency 

of injury experiences. Prevalence ratios (PRs) and 95% CIs. 
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Figure 8.5 Prevalence ratios (PRs) for injury experiences associated with work factors and hazard 

cited by HSPs.
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‘New workers’, ‘young workers’ and ‘workers whose first language is not English’ 

were identified as workers associated with higher frequency of injury experiences 

(Figure 8.6). Compared with workplaces where preventive work practices such as 

‘self-pacing’; ‘work-rest regimes’ and ‘access to cool drinking water’ are adopted 

often/always for outdoor workers, the frequency of injury experience 

(sometimes/often) was higher in workplaces where these measures were adopted 

never/rarely/sometimes. Similarly, if ‘access to cool drinking water’ and ‘self-pacing’ 

was adopted never/rarely/sometimes for indoor workers, such workplaces had 

higher frequency of injury experiences as cited by HSPs (Table 8.2). 

Injury experience was reportedly lower in workplaces where air-conditioning or fans 

were available ‘often’ (reference=‘never’) for indoor workers (PR 0.79; 95% CI: 

0.64–0.97) and heat stress management was fully implemented (PR 0.72, 95% CI: 

0.59–0.89) compared with workplaces where it has been partially or not at all 

implemented (results not shown). Workplaces with a hot weather or heat stress 

policy had lower reported injury experience compared with those that did not (results 

not shown), however this association was not statistically significant (PR 0.92; 95% 

CI: 0.77–1.09). 
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Figure 8.6 Prevalence ratios (PRs) for injury experiences associated by worker factors as cited by 

HSPs. 
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Table 8.2 Prevalence ratios (PRs) for frequency of injury experiences (never/rarely vs. sometimes/often) reported by HSPs and prevention measures 
(never/rarely/sometimes vs often/always). 

Note: ~Prevention measures adopted was coded as ‘Often/Always’ (reference category) vs. ‘Never/Rarely/Sometimes’. ▲ shows statistically significant PR ratio at the 95% CI. 

Frequency of injury experience 
Never/ 
Rarely 

Sometimes/ 
Often 

PR (95%CI) Injury experience 
Never/ 
Rarely 

Sometimes/ 
Often 

PR (95%CI) 

Prevention measure~ for outdoor workers n(%) n(%) 
 

Prevention measure for indoor  
workers 

n(%) n(%) 
 

Access to cool drinking water  59 (27) 158 (73) 1.19 (1.01-1.40) ▲ Access to cool drinking water 59 (26) 168 (74) 1.35 (1.25-1.46) ▲ 

Broad brimmed hat supplied  47 (27) 129 (73.) 1.04 (0.88-1.22)  Shielding of heat sources 30 (25) 90 (75) 1.04 (0.90-1.22)  

PPE supplied  54 (26) 154 (74) 1.13 (0.92-1.37)  PPE supplied 45 (26) 127 (74) 1.10 (0.92-1.30)  

Use of cool vests 4 (22) 14 (78) 0.95 (0.73-1.23)  Adequate ventilation 47 (26) 132 (74) 1.09 (0.93-1.27)  

Sunscreen applied 56 (28) 142 (72) 1.17 (1.01-1.36) ▲ Fan only cooling 22 (29) 55 (71) 1.08 (0.91-1.28)  

WH&S information signage on display 41 (30) 94 (70) 1.15 (1.00-1.34)  
Packaged cooling systems to ventilate 
confined spaces 

10 (31) 22 (69) 1.10 (0.85-1.42)  

Heat stress training 33 (29) 79 (71) 1.10 (0.95-1.28)  Heat stress training 24 (25) 72 (75) 1.00 (0.85-1.16)  

Shaded rest area  40 (30) 95 (70) 1.13 (0.97-1.31)  H&S information signage on display 33 (26) 93 (74) 1.02 (0.88-1.19) 

Shade erected over work area 7 (19) 30 (81) 0.89 (0.74-1.06)  Job rotation 24 (32) 51 (68) 1.18 (0.99-1.41)  

Rest /lunch area with air-conditioning  43 (30) 102 (70) 1.13 (0.98-1.32)  Workers allowed to self-pace 41 (34) 79 (66) 1.28 (1.10-1.50) ▲ 

Rest /lunch area with an electric fan 13 (24) 41 (76) 0.97 (0.81-1.17)  
Colour urine charts to indicate 
dehydration 

28 (26) 80 (74) 1.01 (0.87-1.18)  

Packaged cooling systems to ventilate 
confined spaces 

4 (19) 17 (81) 0.94 (0.74-1.18)  Urine specific gravity testing 4 (22) 14 (78) 0.97 (0.74-1.25)  

Workers allowed to self-pace 46 (36) 83 (64) 1.31 (1.12-1.53) ▲         

Job rotation 31 (30) 71 (70) 1.13 (0.97-1.32)          

Increased supervision 14 (27) 37 (73) 1.06 (0.87-1.27)          

Work gets rescheduled to cooler times 20 (29) 49 (71) 1.06 (0.89-1.26)          

Work/rest regimes 34 (34) 67 (66) 1.19 (1.01-1.41) ▲         

Colour urine charts (to indicate dehydration) 27 (23) 90 (77) 0.94 (0.80-1.09)          

Urine-specific gravity testing 5 (22) 18 (78) 0.95 (0.76-1.20)          
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8.3.5 Discussion 

Hot weather creates significant OHS concerns particularly for those working 

outdoors and in non-air-conditioned indoor work environments. The findings 

described here provide insights into the experiences of work-injuries and incidents 

sustained during hot weather in Australian workplaces, based on the perceptions of 

HSPs, who are at the frontline in improving occupational safety and health. 

There are several key findings from this study. First, hot/humid weather was 

acknowledged by the majority of the HSPs as a contributory factor to work-injuries 

in workplaces they visit/manage. Second, we have identified organisational issues, 

factors and hazards that are associated with a higher reported frequency of injury 

experiences. Third, it was evident that administrative and personal controls such as 

provision of cool drinking water, PPE and sunscreen (outdoor workers) and 

ventilation (indoor workers) were reportedly the most often/always adopted 

preventive measure. However, lack of awareness of workers and supervisors, and 

management concerns around productivity loss and/or deadlines were reported as 

key barriers for prevention. Fourth, the existence of a hot weather or heat stress 

policy (62%), provision for outdoor work to cease at temperature extremes (55%), 

and access to air-conditioning for indoor workers (74%) were reported by more than 

half of the HSPs. Fifth, heat stress training (42%) and full implementation of heat 

stress management (28%) was reported by less than half. 

To date, studies examining the relationship between hot weather and work-injuries 

have not identified the mechanisms underlying this relationship.132, 135, 185, 188 A 

recent review 50 suggests that it is difficult to isolate ambient temperature as the sole 

contributory factor for work-injuries, but rather a range of personal, work-related and 
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organisational factors or a combination of these factors as the most likely pathway 

to heat-related work injuries. 

The acknowledgement by 74% of HSPs that injuries or incidents occur in hot/humid 

weather is concerning as this alludes to a larger problem than reported in studies 

using WC claims data.45, 132, 135, 145, 188, 421, 422 This figure is also higher than a 

previous study conducted in Australia in 2014,199 where 53% of occupational 

hygienists reported having investigated circumstances around injuries or illnesses 

attributed to extreme heat. However, the acknowledgement of heat-related 

injuries/incidents that occur is not often reflected in the injuries/illnesses reported. 

This issue of under-reporting of heat-related injuries/illnesses is possibly due to the 

misunderstanding of the link between heat and health consequences. Furthermore, 

it is possible that the main causal factor of heat is often not reported—for example, 

when an individual collapses in the heat it may be attributed to the increased 

cardiovascular stress. 

In the present study, frequently occurring heat-related injuries and symptoms of 

HRIs often resulted in minor outcomes (sent home/days off work), a notable finding 

which would not normally be captured using workers compensation claims data. 

Consistent with previous studies,145, 185 the types of heat-related occupational 

injuries frequently reported in this study included ‘manual handling’, ‘hand injuries’ 

and ‘wound or lacerations’. ‘Fatigue’, ‘muscle/heat cramps’ and ‘severe dehydration’ 

were the commonly cited symptoms of illnesses, which is consistent with previous 

cross-sectional studies115, 116, 119, 120, 201, 215, 221, 224, 474 assessing risk factors for HRIs. 

These results point towards the contributory role of physiological factors such as 



Chapter 8 

 274

fatigue, dehydration and muscle cramps as precursors to the early stages of HRIs 

and work injuries in hot weather. 

Our findings suggest that new workers, young workers (aged 15–24 years) and 

workers whose first language is not English are more likely to be at risk of heat-

related injuries. This result concurs with previous research.45, 132, 421, 422 The higher 

risks faced by these groups may be explained by factors such as lack of awareness 

of hazards, job inexperience, lack of familiarity within the work environment, risk-

taking behaviours, and language barriers, and possible cultural factors for workers 

whose first language is not English.478, 479 Additionally, these workers often feel 

uncomfortable raising safety concerns, and may be more likely to push through to 

impress their managers and other workmates due to job insecurity. In light of these 

findings, these groups need to be an OHS priority for regulatory bodies and policy 

makers. 

Organisational factors such as poor safety climate and safety practices have an 

influence on the rates of work injuries in a workplace.480 The key actors in this space 

include employers and workers, both of whom have shared responsibility in regards 

to OHS matters. By legislation, employers are required to protect the health and 

safety of their workers by ensuring a safe working environment ‘as far as reasonably 

practicable’.462 In the present study, the organisational risk factors most often 

reported by HSPs as being associated with a higher frequency of heat-related 

injuries were: lack of health and safety training and induction, poor supervision, 

insufficient access to cool drinking water, and workers not allowed to take breaks 

as needed. This relates to structural factors in the workplace beyond the control of 

the individual worker that may either directly or indirectly influence the occurrence 
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of injuries. Additionally, it is noteworthy that 62% of HSPs reported the existence of 

a hot weather policy; however, ‘policies not being adhered to’ was identified as an 

organisational issue by 60% of participants. This highlights that having a policy 

alone does not necessarily translate to solutions, as non-compliance can result in 

unsafe work environments and increased risk-taking behaviours by workers. Such 

policies need to be followed up with in-field interactions/discussions by leadership 

and HSPs in the hotter months to ensure the message is understood and controls 

embedded. 

Work factors related to higher frequency of injuries included working in the sun with 

no access to shade, work in dangerous locations (e.g. confined spaces), use of 

PPE, work near hot surfaces and rushed activity. Although the wearing of PPE is 

necessary to protect workers from hazards, it can be problematic in two ways. First, 

PPE can be impermeable clothing or clothing with high insulating factors, potentially 

increasing the risk of heat stress by impeding heat loss to the environment via sweat 

evaporation, retaining excess heat and moisture and/or increasing the physical 

effort to perform tasks.481-484 Second, workers may choose not to wear PPE in hot 

weather because of feelings of discomfort, poor fit, and inappropriateness for a 

range of work circumstances. Respiratory protection devices for example can 

impede adequate fluid intake in hot work environments. This may result in 

respirators being removed in hazardous environments in order to drink fluids, 

resulting in exposures. Workers not wearing PPE was cited as a mechanism of 

injury by HSPs suggesting that the non-use of PPE may be leaving workers exposed 

to other hazards. Therefore, the choice of the right PPE taking into account the work 

and work environment, is vital and the improvement of PPE to make it more 

comfortable in hot weather is needed. 
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Limiting the work to suit the environment and modifying the environment to suit the 

work are two approaches that may be used to manage heat stress where 

practicable. These can be done through the hierarchy of controls to reduce hazards 

leading to the prevention of work-injuries and illness.485 In terms of heat hazard, the 

most effective higher order controls for indoor working environments would be 

provision of ventilation and mechanical cooling methods i.e. air-conditioning and/or 

cooling fans, insulation of roofs and walls and shielding of heat sources. For outdoor 

workers, protection from the sun and the provision of an air-conditioned environment 

for rest breaks would be most effective. However, these controls could be expensive 

and impractical depending on the work environment and work settings. 

Our findings that the provision of drinking water is the most common method of 

workplace heat stress prevention in workers (both outdoor and indoor) is consistent 

with other studies.140, 199, 201, 226, 486 However, despite access to water, 64% of HSPs 

cited severe dehydration as a frequent type of incident in workplaces as shown in 

other studies.115, 487-490 Although water may be provided in workplaces, workers may 

still not be drinking enough, perhaps due to the inability to take adequate breaks as 

needed as reported by HSPs. Alternatively, as other studies have indicated, workers 

could be starting work dehydrated.487, 490-492 

The key guidance advice provided by all the eight state and territory WHS regulators 

in Australia to control heat risk includes ‘reschedule work to cooler parts of the day’, 

‘change location of work’, ‘job rotation’ and ‘extra rest breaks in cool area’.171 The 

lower frequency of adoption of some of these control measures (e.g. extra rest 

breaks) indicates the challenge faced by workplaces in terms of expense and the 

trade-off between labour productivity and worker health. Indeed, more than half of 
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the HSPs (53%) cited that hot weather contributed to productivity losses in 

workplaces and that solutions to address them have been discussed. This finding is 

similar to a survey of construction workers where 50% of participants reported 

slowing down when it is hot.474 A recent study estimated that the annual costs of 

heat stress to the Australian economy was US$6.2 billion per year (or US$655 per 

person) and concluded that wider adoption of prevention measures is warranted to 

reduce further economic impacts.238 The solutions raised by HSPs in the open-

ended questions included reschedule of work to cooler times of the day and rotation 

of workers or tasks, while allowing workers to self-pace, and having appropriate 

work/rest regimes, were the measures identified as being associated with 

reductions in reported frequency of injury. These measures have been shown to be 

effective as protective measures for HRIs if engineering solutions are too expensive 

or difficult to implement.493 

Provision of training and adequate supervision is another component of heat stress 

management, but only 42% of HSPs reported the availability of heat stress training 

in workplaces. Similarly, in a study of workers from South Australia, 43% of 

participants reported heat-stress training was available.140 Notwithstanding, it is 

important to acknowledge the variety of factors operating at multiple levels that may 

constrain the wider adoption of safe work practices. The lack of awareness by 

workers that heat can be associated with ill health and injury, as identified by 44% 

of HSPs, is an important barrier for prevention that needs to be considered. This is 

consistent with previous studies.199, 204 It is possible that workers and their 

supervisors may not be fully aware of the spectrum of health effects which can start 

with fatigue and dehydration and can progress to increased risk of accidents and 

heat disorders. Our previous work in Adelaide422 has shown that occupational 
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injuries increase with temperatures even in moderate ranges (above 25 °C) before 

reaching extreme levels (35 °C), in both outdoor and indoor settings. Accordingly, 

workers and their supervisors need to be aware of the health risks of working in hot 

weather at both moderate and extreme temperatures. Current training programs 

may need to be modified to include the risks of workplace injuries that can occur at 

moderate temperatures, and before the occurrence of HRI. It is also important that 

the training materials are translated or presented appropriately for non-English 

speaking workers, or those with poor literacy. While there is a need for raising 

awareness and providing training for workers, supervisors and management teams, 

it is also important to highlight that each of these groups have a shared responsibility 

in relation to OHS. Also, as pointed out earlier, training and policies are important 

but they must be followed up at the work front with interactions/discussions to 

ensure the importance is recognised and to reinforce the adoption of controls. In 

summary, a combination of administrative and engineering controls tailored 

according to individual occupations will be necessary to reduce heat-associated 

injuries for workers. 

The present study has several limitations. First, although the study has attempted 

to obtain information about the extent and characteristics of occupational injury 

experiences during hot weather at the Australian national level, we cannot make 

any claims for generalisability due to the relatively small sample size and non-

random sampling design. It is plausible that HSPs who were more interested in the 

topic may have completed the survey creating a possible selection bias whereby 

the frequency of injury may be inflated. We cannot calculate a survey response rate 

because we did not have a sampling frame but instead advertised the survey widely. 

As a proportion, there were more respondents from Central Australia than from other 
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states. Second, the data are self-reported and the injuries/incidents reported are not 

validated. Third, despite our extended work469 showing differences in outcomes for 

occupational temperature-related injuries according to climate zones, we were 

unable to carry out region-specific analyses due the relatively small sizes. Despite 

these caveats, one of the major strengths of the study is that the data collected 

covers several risk factors that are not normally collected as part of administrative 

datasets, and the first reported national study of HSPs perspectives on working in 

hot conditions. Garnering the perspectives of professionals at the forefront of OHS 

has aided in a better understanding of the underlying causes for the associations 

between hot weather and injuries. 

8.3.6 Conclusion 

The results of this study add to the growing body of evidence about the relationship 

of work injuries and hot weather, and offer additional insights on underlying factors 

that may explain the increase in risk. Our results highlight that the underlying 

mechanisms of injury occurrence are likely to be complex and multi-factorial. 

However, heat related injuries are preventable if adequate attention is given to the 

working environment and work factors. Translating these findings into proactive 

preventive action should be given a priority in the context of increasing heat 

exposure in Australian workplaces. 
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8.4 CHAPTER SYNOPSIS 

Chapter 8 presented the findings of a national survey of HSPs on heat and WRI, 

their determinants, prevention, and management. The findings point to a range of 

modifiable work and organisational risk factors for WRI in hot weather. More 

attention to these factors in conjunction with traditional interventions for heat-

induced illness, could enhance workplace injury prevention. The findings also call 

for more increased awareness of heat as an occupational hazard, particularly with 

regards to WRI occurrence and modifiable risk factors. The following chapter further 

examines the risk factors using a similar survey targeting HSRs.
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Chapter 9: Heat-Related Injuries in 
Australian Workplaces: Perspectives from 

Health and Safety Representatives 

9.1 PREFACE 

The study presented in this chapter also addresses the second objective. This study 

expands on the findings presented in Chapter 8 by examining the risk factors for 

heat-related injuries from the perceptions of HSRs. The findings from the study 

represent an evidence base upon which WHS practices and interventions could be 

assessed to better the health and safety of workers in hot weather. 

Similar to Chapter 8, this study is the first to have garnered the perceptions of HSRs 

on heat and WRI across Australia. 

This paper is currently in the format of a manuscript submitted for publication. 
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9.3 PUBLICATION 

9.3.1 Abstract 

Introduction 

Hot weather poses occupational health and safety concerns for people working in 

hot environments. It is known that work-related injuries increase during hot weather, 

yet there is an incomplete understanding of the underlying factors. 

Methods 

A national online survey was conducted in Australia among workplace health and 

safety representatives (HSRs) to better understand factors contributing to heat-

related injuries in workplaces. Risk factors and preventive measures associated with 

reported injuries were identified using log-Poisson regression models. 

Results 

In total, 222 HSRs completed the survey. Overall, 43% reported that injuries or 

incidents caused by hot/very humid weather occur sometimes or often in their 

workplace. Factors found to be associated with reported heat-related injuries 

included ‘the wearing of personal protective equipment (PPE)’ which can hinder the 

loss of body heat, and ‘inadequate resources and facilities’. ‘Piece-rate workers’, 

and ‘new workers’ were identified as being at high risk. The most frequently adopted 

preventive measures for outdoor and indoor workers were the provision of PPE 

(despite some identified issues) and access to cool drinking water. HSRs reported 

that less injuries occurred in hot weather among outdoor workers if work was 

rescheduled to cooler times and shade was provided; and in indoor environments 
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where there was adequate ventilation, heat sources were shielded and workers 

were able to self-pace. 

Conclusion 

Organisational issues, workplace hazards, personal factors and preventive 

measures, are all determinants of heat-related injuries in Australian workplaces. 

Wider adoption of identified prevention measures could reduce the incidence of 

heat-related injuries in outdoor and indoor workplaces. 

Keywords: Occupational health; Workplace heat exposure; Work-related injuries; 

Perceptions; Safety representatives 

9.3.2 Introduction 

Heat exposure (weather-related or industrial) in the workplace is an important 

occupational health and safety (OHS) concern that has been linked to a range of 

adverse physical outcomes including fatal heat-related illnesses (HRIs).29, 201 In 

addition, heat stress is also known to affect workers’ thermal comfort, reduce worker 

efficiency, compromise work capacity and labour productivity, and increase safety 

risks.24, 29, 203, 238, 494 

In the US between 2009 and 2017 there were 327 work-related fatalities and 30,890 

non-fatal work injuries and illnesses involving days away from work, that were 

attributed to exposure to environmental heat.495 The corresponding figures over the 

same time-period in Australia show 13 worker fatalities and 12,905 compensated 

work-related injuries (WRIs) and illnesses involving more than a week of absence 

from work.496 However, these official figures only capture reported incidents/injuries 

where heat exposure was thought to be a contributing factor and so likely 
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underestimate the total burden.32 Several epidemiological studies have correlated 

workers’ exposure to hot weather with an increased risk of workplace injuries and 

accidents at higher temperatures and during heatwaves.43-45, 122, 127, 132, 135, 145, 184, 

185, 188, 190, 423, 469 Groups susceptible to heat-related injuries include male workers, 

young workers, both outdoor and some indoor workers (e.g. warehouse workers) 

and those carrying out a range of physically demanding work.33, 50, 397, 465, 468 

While much about the 4Ws (what, who, where and when) of the risks of reported 

occupational injuries in hot weather is known, currently there is a lack of information 

on the ‘why’ and ‘how’ these occur. This is mainly due to the lack of such information 

in administrative datasets used in previous epidemiological studies. For example, 

little is known about factors operating at the workplace level (e.g. organisational 

factors) and/or preventive practices, which are likely to influence the health impacts 

experienced by workers during hot weather. Better understanding these underlying 

risk factors will help identify workplace issues requiring prevention action. This 

information can guide policy and will support the appropriate provision of resources 

and prevention efforts. 

The adverse health effects of heat (i.e. heat-illnesses and injuries) are 

preventable.199, 474, 497 Workplace safety standards and guidance materials have 

promoted a wide variety of control measures for dealing with heat, including 

education and training, personal protection, administrative controls and engineering 

controls.167 However, there is little information about the extent to which different 

control measures aimed to mitigate exposure to heat are currently practised in 

Australian workplaces. This information will be key to promoting effective practice 

interventions to protect workers. 
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Under the Model Work Health and Safety (WHS) Act, Australian employers are 

required to consult with their workers in regards to the prevention, identification and 

abatement of workplace hazards.172 This consultation is often done through 

workplace health and safety representatives (HSRs) who are ‘workers elected or 

selected for the role to represent the health and safety interests of workers within 

their workplace’.263 As HSRs operate at the interface between the employers and 

workers, they play an integral role in maintaining safer workplaces and can offer 

valuable perspectives on the physical hazards, conditions and work practices, and 

other risk factors for heat-related injuries that exist at their workplace.265 Hence, this 

study examined the perspectives of HSRs on heat-related injuries with the following 

objectives: (i) investigate the types of heat-related injuries and their associated risk 

factors in Australian workplaces during hot weather; (ii) describe and assess the 

prevention measures adopted for outdoor and indoor workers; (iii) examine the 

existing levels of training, policies and guidelines; and (iv) identify potential barriers 

to the prevention of heat-related injuries. 

9.3.3 Methods 

9.3.3.1 Study design, participants, setting and data collection 

This study comprised a national cross-sectional online survey targeting Australian 

occupational HSRs and workers’ representatives on health and safety committees 

(hereafter referred to as HSRs). Union officials and/or work site supervisors who 

have health and safety as a part-time responsibility also completed the survey. 

The survey was promoted by Safe Work Australia (peak national body for WHS in 

Australia), jurisdictional WHS authorities, and industry and union contacts via their 

websites, newsletters and networks. The anonymous survey was open from March 
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2017 to April 2018 and was hosted on SurveyMonkey™ (www. surveymonkey.com, 

San Mateo, California, US). 

9.3.3.2 Questionnaire design 

The online survey (Supplementary file - Appendix B7) was designed to examine 

HSRs perspectives and experiences of heat-related injuries/incidents; preventive 

measures; training; policies and guidelines; and barriers and recommendations for 

prevention. Development of the survey questions was informed by literature 

reviews33, 50 and expert knowledge from a team of 12 experienced researchers. A 

pilot survey was conducted with HSRs (n=19) after which final amendments were 

made before the online link was activated. 

Section 1 of the survey covered demographic information on: gender; age group; 

years of experience in health and safety (H&S); main industry of employment, 

current role in H&S; and size, nature and location (state) of their workplace. Further, 

worker payment and work operation were characterised by asking HSRs whether 

their organisation had any workers on piece rates (i.e. being paid per output) and if 

any workers were under production targets that allowed them to leave work once 

meeting their target. 

Section 2 investigated the perceived frequency of heat-related injuries/incidents by 

asking participants: ‘In your workplace, would you say that injuries or incidents 

caused by (partly at least) hot/very humid weather occur?’ The participants 

responded using a 4-point Likert-type scale (‘Never’/’Rarely’/’Sometimes’/’Often’). 

This was followed by questions on the types of injuries and incidents or illnesses 

where heat exposure could have been a (direct or in-direct) contributing factor and 

their outcomes. 
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Section 3 collected information regarding preventive measures for heat-related 

injuries/incidents in the workplace. To examine the frequency of prevention 

practices for outdoor and indoor workers, participants were asked about how often 

particular work practices were adopted during hot weather. Response options used 

a 5-point Likert-type scales (‘Never’/‘Rarely’/’Sometimes’/‘Often’/‘Always’). This was 

followed by asking participants to identify the most important work practice for 

preventing heat stress. 

Section 4 contained questions regarding heat stress training, including who is 

trained, the frequency of training and how training is being conducted. Section 5 

contained questions on hot weather policies and guidelines in the workplace, and 

temperature measures used as an indicator of heat risk. 

The final section allowed HSRs to nominate barriers faced in establishing preventive 

measures in their workplace. Responses to an open-ended question ‘Do you have 

any suggestions for the prevention of heat-related injuries and health issues in 

Australian workplaces?’ do not form part of this analysis. 

9.3.3.3 Statistical analysis 

To describe the overall study population, descriptive analyses of all variables were 

conducted. The responses to some questions were dichotomised for analysis due 

to a small number of responses in some categories, as follows: (1) Responses for 

measures of occupational injuries were dichotomised to ‘sometimes/often’ and 

‘never/rarely’; (2) Responses for prevention practices were dichotomised to: 

‘often/always’ to indicate a safer work environment, versus all other responses 

combined (never/rarely/sometimes). 
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Perceived frequency of injuries in the HSRs workplace (dichotomised as 

‘sometimes/often’ versus ‘never/rarely’) was the outcome variable for regression 

analyses. To assess the magnitude or strength of the associations between reported 

injury experience and contributing factors, we used the log-Poisson regression 

expressed as PRs with 95% CIs. This approach was favoured over ORs, as our 

dependent outcome variable had a relatively high prevalence (>20%) and ORs are 

often misinterpreted as prevalence ratios.498, 499 All data analysis was conducted in 

Stata 15 (College Station, TX). 

Ethical approval was obtained from the ethics committees of the University of 

Adelaide, Monash University, The University of Western Australia and Queensland 

University of Technology. 

9.3.4 Results 

9.3.4.1 Demographics 

A total of 222 HSRs responded to the online survey. Response fractions to 

questions varied as survey questions were not compulsory. The demographic 

characteristics of the HSR sample are summarised in Table 9.1. Nearly two-thirds 

were male (63%), 57% were between 35–54 years, and 50% were from the eastern 

states of Australia. The majority of HSRs were from industries with mostly indoor 

activities (66%), medium-sized businesses (45%), part of a larger organisation 

(62%), and workplaces without piece rates and production targets (79% and 78%, 

respectively).  
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Table 9.1 Demographic characteristics of the HSR respondents (n=222). 

Sample Characteristics n (%) 

State and territory, Australia 
 

Eastern (ACT/NSW/Qld/Tas/Vic) 111 (50) 

Central (SA/NT) 96 (43) 

Western (WA) 15 (7) 

Gender* 
 

Male 140 (63) 

Female 78 (35) 

Unspecified 3 (1) 

Age-group* 
 

18–34 years 30 (14) 

35–54 years 125 (57) 

55 years and over 64 (29) 

Years of experience in health and safety* 

Less than 5 years 67 (31) 

5–10 years 65 (30) 

11–20 years 58 (27) 

more than 20 years 27 (12) 

Industry 
 

Mostly indoor activities 145 (66) 

Mostly outdoor activities 55 (25) 

Mixed 20 (9) 

Current role in health and safety* 

Health and safety representative 148 (67) 

Other (please specify) 39 (18) 

Site supervisor 15 (7) 

Union official 18 (8) 

Number of employees in workplace* 

Up to 20 employees (small size) 48 (22) 

21–201 employees (medium size) 100 (45) 

More than 201 employees (large size) 69 (31) 

Part of a larger organisation* 
 

Yes 136 (62) 

No 69 (31) 

Unsure 11 (5) 

Piece rate* 
 

Yes 8 (4) 

No 174 (79) 

Unsure 29 (13) 

Production targets 
 

Yes 8 (4) 

No 172 (78) 

Unsure 32 (14) 

Note: n% unless otherwise indicated *May not total to 222 due to missing values. Abbreviations: NSW/ACT/Qld/Tas/Vic, New 
South Wales/Australian Capital Territory/Queensland/Tasmania/Victoria; SA/NT, South Australia/Northern Territory; WA, 
Western Australia. 
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9.3.4.2 Heat-related injuries/incidents 

Over a third (43%) of the HSRs reported that injuries/incidents occur ‘sometimes’ or 

‘often’ due to hot/very humid weather in their workplace. The three most frequently 

reported types of injuries/incidents were ‘manual handling’ (musculoskeletal 

injuries) (55%); HRIs (31%), and hand injuries (26%), while ‘fatigue’ (90%), 

‘muscle/heat cramps’ (53%), and ‘severe dehydration’ (49%) were the top three 

reported type of illnesses (Table B14 and B15, Appendix B7), all of which resulted 

in minor outcomes (i.e. sent home or days off work) (Figure B10, Appendix B7). 

Concerning the types of workers who had incurred heat-related injuries and 

incidents (Figure 9.1A), HSRs most frequently reported ‘workers aged 25–50 years’ 

(69%), and ‘older workers (aged over 50 years)’ (55%). 

Figure 9.1B shows the most commonly reported work factors and hazards that may 

have contributed to heat-related injuries and incidents as perceived by HSRs. These 

were ‘working in the sun with no access to shade’ (56%), ‘wearing of PPE leading 

to higher body temperature’ (52%), and ‘rushed activity’ (46%). 

‘Lack of health and safety training specifically on heat stress’ (55%), and ‘inadequate 

resources and facilities’ (52%) were the most common organisational issues 

reported by the HSRs (Figure 9.1C). ‘Other’ responses can be broadly summarised 

as issues around ‘management’ and ‘culture within the organisation’. Those 

concerning workplace management issues included ‘poor planning and improper 

allocation of daily work load’; ‘refusal to have a policy’; ‘failure to accommodate 

extreme heat events’ and ‘company not wanting to spend money’. Regarding 

‘culture within the organisation’, some of the issues raised included, ‘culture of just 
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getting the job done’, ‘emphasis on cost saving and production targets’ and ‘low 

OHS culture’. 

 

Figure 9.1 Distribution of risk factors that have contributed to heat-related injuries/incidents during 

hot weather as perceived by HSRs: (A) types of workers; (B) work factors and hazards; (C) 

organisational issues. * indicates that percentages shown do not add to 100% as multiple 

responses were allowed. 

9.3.4.3 Preventive measures 

For outdoor workers the three most common preventive work practices (Figure 

9.2A) adopted ‘always’ during hot weather were ‘PPE supplied’ (61%), ‘sunscreen 

supplied’ (56%), and ‘access to cool drinking water’ (53%). The least common were 

‘urine specific gravity testing’ and ‘use of cool vests’ with 68% and 54% of 

participants indicating they were ‘never’ adopted. HSRs cited ‘outdoor work ceases 
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if temperature is extreme’ (23%) and ‘access to cool drinking water’ (22%) (Figure 

B11A, Appendix B7) as the most important work practices for preventing heat stress. 

About 50% of HSRs (n=87/175) said that there is provision for outdoor work to cease 

when temperatures are extreme with over a third (i.e. 37/91, 41%) clarifying that the 

temperature threshold is not based on a specific temperature, but depends on work 

circumstances (Table B16, Appendix B7). 

For indoor workers ‘access to cool drinking water’ (68%), ‘PPE supplied’ (54%) and 

‘adequate ventilation’ (42%) were the three most common forms of preventive work 

practices ‘always’ adopted, while ‘urine specific gravity testing’ and ‘colour urine 

charts’ were the least commonly adopted (67% and 47% cited ‘never’, respectively) 

(Figure 9.2B). When asked about the most important work practice for preventing 

heat stress in indoor workers, 41% of HSRs cited ‘air-conditioning’ and 30% ‘access 

to cool drinking water’ (Figure B11B, Appendix B7). More than two-thirds (77%) of 

the participants cited that ‘access to air-conditioning or fans’ were often available for 

indoor workers (Table B16, Appendix B7). 
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Figure 9.2 Prevention practices adopted for outdoor workers (A) and indoor workers (B) during hot 

weather. 

9.3.4.4 Training 

Thirty-five percent of the HSRs said that training to prevent heat-related 

injuries/incidents in their workplace was available (Table B17, Appendix B7). When 

asked about the timing of training, 34% of HSRs answered that training was 

B 
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provided ‘annually regardless of job’ followed by 31% claiming it was ‘once only at 

induction when starting a new job where heat could be a hazard’. Forty percent 

indicated that HSPs conducted the on-site training, and 40% also indicated this was 

undertaken by supervisors. 

9.3.4.5 Policies and guidelines 

More than half of HSRs (58%) stated that a hot weather or heat stress policy existed 

in their workplace (Table B18, Appendix B7). While 48% of HSRs reported the use 

of ‘air temperature at weather bureau’ and ‘air temperature on site’ as indicators of 

heat risk, almost one quarter (24%) were unsure/didn’t know what indicators were 

being used in their workplace. 

9.3.4.6 Barriers 

The top three barriers for prevention of heat-related injuries identified by HSRs were: 

lack of awareness by workers that heat can be associated with ill health and injury 

(50%), lack of training of workers (31%), and lack of management commitment to 

protect health and safety (30%) (Table 9.2). Besides these, HSRs also identified the 

barriers of ‘attitudes to keep working at all costs’ (23%), ‘lack of supervisor 

awareness’ (23%) and ‘management concerns around productivity loss and/or 

deadlines’ (23%). 
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Table 9.2 Barriers for prevention of heat-related injuries as perceived by HSRs ordered by 
percentage*. 

Barriers (n=192) n (%) 

Lack of awareness of workers that heat can be associated with ill health and injury 95 (50) 

Lack of training of workers 59 (31) 

Lack of management commitment to protect health and safety 58 (30) 

Attitudes to keep working at all costs 45 (23) 

Lack of awareness by supervisors of heat hazards 45 (23) 

Management concerns about productivity loss and/or deadlines 45 (23) 

Lack of specific heat-related guidelines and regulations 36 (19) 

Difficulties in assessing heat risks 29 (15) 

Management reluctance to allow workers to slow down or rest as needed 26 (14) 

Lack of training of supervisors 24 (13) 

Low compliance and implementation of policies 20 (10) 

Lack of financial resources 19 (10) 

Others 14 (7) 

Note: * Percentages shown do not add up to 100% as multiple responses were allowed. 

 

9.3.4.7 Correlates of injury experiences 

The log-Poisson regression analysis showing factors associated with injury 

experiences in hot weather is summarised in Table 9.3. The work factors and 

hazards associated with higher perceived injury experience were: working in 

dangerous locations (PR 1.47, 95% CI: 1.04–2.07) and wearing of PPE leading to 

higher body temperature (PR 1.39, 95% CI: 1.04–1.85). Organisational issues 

associated with higher reported injury experience were inadequate resources and 

facilities (PR 1.40, 95% CI: 1.04–1.87). New workers were associated with higher 

frequency of reported injury experiences (PR 1.34, 95% CI: 1.01–1.76) and HSRs 

who reported that piece-rate workers existed in their workplace also reported a 

notably higher frequency of injuries compared with those that did not (PR 1.78, 95% 

CI: 1.15–2.79, results not shown in table). 
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Table 9.3 Factors associated with the frequency of injury experience as reported by HSRs. 

Injury experience Never/Rarely Sometimes/Often 
 

Work factors and hazards n (%) n (%) PR (95% CI) 

Rushed activity 30 (41) 43 (59) 1.10 (0.83–1.45) 

The wearing of personal protective equipment (PPE) leading to higher body temperature 29 (35) 53 (65) 1.39 (1.04–1.85) ▲ 

Working in the sun with no access to shade (solar radiation) 35 (40) 53 (60) 1.19 (0.89–1.58) 

Working indoors with no air conditioner, fan or adequate ventilation 25 (41) 36 (59) 1.09 (0.82–1.44) 

Equipment, machinery and tools 11 (34) 21 (66) 1.22 (0.91–1.65) 

Fire, steam and hot surfaces 7 (33) 14 (67) 1.23 (0.87–1.72) 

Dangerous locations 2 (20) 8 (80) 1.47 (1.04–2.07) ▲ 

Organisational issues n (%) n (%) PR (95% CI) 

Lack of health and safety training specifically on heat stress 31 (38) 51 (62) 1.22 (0.91–1.63) 

Inadequate resources and facilities 26 (34) 51 (66) 1.40 (1.04–1.87) ▲ 

Lack of supervision 20 (43) 27 (57) 1.01 (0.74–1.36) 

Type of workers n (%) n (%) PR (95% CI) 

New workers 20 (34) 39 (66) 1.34 (1.01–1.76) ▲ 

Younger workers (aged up to 24 years) 32 (44) 41 (56) 1.01 (0.76–1.34) 

Workers aged 25–50 years 45 (43) 60 (57) 1.07 (0.78–1.47) 

Older workers (aged over 50 years) 32 (38) 52 (62) 1.28 (0.95–1.72) 

Workers whose first language is not English 7 (32) 15 (68) 1.27 (0.91–1.76) 

Note: Reference for each variable is ‘no’ response to work factors and hazards, organisational issues and type of workers. ▲ indicates statistically significant results based on the 95% CI. 
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No statistically significant association was seen between the provision for outdoor 

work to cease when temperatures are extreme, and frequency of injury experiences 

as reported by HSRs (PR 0.89, 95% CI: 0.64–1.23); or between having a hot 

weather policy and frequency of injuries (PR 0.69, 95% CI: 0.42–1.23). Access to 

air-conditioning or fans for indoor workers was associated with reduced frequency 

of reported injuries (PR 0.58, 95% CI: 0.42–0.81). HSRs reported fewer injuries for 

outdoor workers in workplaces where preventive work practices such as ‘reschedule 

of work to cooler times’, ‘shaded rest areas’, ‘shade erected over work area’, ‘self-

pacing’ and ‘rest/lunch areas with air-conditioning’ are adopted often or always 

(Figure 9.3). 
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Figure 9.3 Prevalence ratios (PRs) for the frequency of injury experiences (as reported by HSRs) 

and frequency of prevention measures adopted for indoor workers. 

Notes: Reference for each prevention measure is ‘never/rarely/sometimes’ and frequency of injury experience (never/rarely 

versus sometimes/often). ▼ shows statistically significant PR based on the 95% CI. 

For indoor workers ‘self-pacing’, ‘shielding of heat sources’; and ‘adequate 

ventilation’ often or always adopted, were significantly associated with fewer injuries 

(Figure 9.4). 
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Figure 9.4 Prevalence ratios (PRs) for the frequency of injury experiences (as reported by HSRs) 

and frequency of prevention measures adopted for indoor workers. 

Note: Reference for each prevention measure is ‘never/rarely/sometimes’ and frequency of injury experience (never/rarely 

versus sometimes/often). ▼ shows statistically significant PR based on the 95% CI. 

9.3.5 Discussion 

Our results reveal the hazards of working in hot weather as perceived by HSRs and 

identify the most common challenges faced by Australian workplaces in regard to 

dealing with heat-related work injuries. To the best of our knowledge, no previous 

research has examined the factors underlying injury experiences in hot weather 

from the perspective of HSRs who are a vital link between employers and 

employees. Notwithstanding the cross-sectional nature of the data, the breadth and 
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depth of information provided by HSRs sheds light on the importance of the work 

and the work environment and their effects on workers’ health and safety in hot 

weather. 

The key findings from the survey are: (i) 43% of surveyed HSRs recognise the 

contributory role of hot weather in injury occurrence in their workplace; (ii) the 

frequency of heat-related injuries and incidents was higher in workplaces with 

inadequate resources and facilities; and new workers, workers on piece rates and 

workers wearing PPE were most at risk; (iii) the prevention measures associated 

with reduced frequency of injuries include a combination of administrative controls 

(e.g. rescheduling of work to cooler times and self-pacing) and engineering controls 

(e.g. provision of shielding of heat sources and adequate ventilation); (iv) 58% of 

HSRs reported a hot weather or heat stress policy in their workplace but only 35% 

reported heat-stress training was available; and (v) potential barriers for the 

prevention of heat-related injuries related to lack of awareness and training of 

workers, and management’s lack of commitment to protect workers’ health and 

safety. 

The survey indicates that HSR accounts of heat-related injuries/incidents caused by 

hot or very humid weather may be more prevalent than those reflected in official 

statistics of WC claims. This finding is of concern as it indicates that heat exposure 

in the workplace is not a trivial issue and can be overlooked by official statistics on 

occupational heat-related injuries and HRIs.32 A similar survey we conducted 

amongst workplace health and safety professionals (HSPs) (unpublished) together 

with surveys of occupational hygienists,199 and workers140 have also indicated a high 

prevalence of heat illness or injury in different work settings. 
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Our analysis suggests that the underlying mechanism of occupational heat-related 

injuries is multi-factorial, consisting of modifiable factors (organisational and work-

related).50 Although there are no prescribed maximum and minimum temperatures 

under regulations at which work cease, the WHS legislation legally mandates a ‘duty 

of care’ responsibility for employers and managers to protect the health and safety 

of their workers by ensuring a safe thermal work environment ‘as far as reasonably 

practicable’.172 This includes identifying and controlling workplace risks, and 

providing training and supervision. Despite these legal obligations, only 35% of 

HSRs cited the availability of heat stress training in their workplace. This lack of heat 

stress training was cited both as a top organisational issue and as the second top 

barrier for prevention. While WHS training is mandatory, heat stress training is not 

and this is related to the fact that there are no WHS legislations pertaining to work 

in hot weather across Australia.171 Similar Australian studies have shown 43% of 

workers and 42% of HSPs reported having heat stress training in their workplace 

and workplaces they visit or manage.140 Awareness of the work environment and 

safety issues plays an important part in the prevention of workplace injuries and 

illnesses. However, lack of awareness of workers about heat risks, which is also 

linked with the lack or lower frequency of training available in workplaces, was cited 

as the top barrier for prevention by respondents. While heat stress training was 

reportedly provided annually in some workplaces, the scope, depth and content of 

the training was not explored in this study. This makes it difficult to assess its 

effectiveness in reducing injuries. Providing more heat stress training can make 

workers aware of the potential risks and provide directions to protect them; however, 

if workers do not feel empowered, then no level of training will help. This means that 
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there is a need for a comprehensive approach for prevention that is top-down from 

the management to workers. 

Inadequate resources and facilities was identified as another organisational factor 

reported by HSRs and associated with higher frequency of injuries. This is 

consistent with previous studies in the US.464, 500 The lack of resources and health 

and safety information is an inherent issue for small businesses that can have 

limited capacity and tighter financial constraints.501, 502 Also, the lack of 

management’s commitment to protect workers’ health and safety poses challenges 

for effective prevention of injuries. The lack of resources and health and safety 

information was identified as the third top barrier by HSRs, along with attitudes to 

keep working at all costs, lack of awareness by supervisors, and management 

concerns around productivity loss and/or deadlines. All of these issues have also 

been identified previously464, 500 and are influential factors in the safety climate of 

workplaces. 

The commonly cited work factors and hazards associated with heat-related injuries 

and incidents as reported by HSRs were lack of shade, rushed activity, wearing of 

PPE and working in dangerous locations (e.g. confined spaces). The latter two 

factors showed an association with an increased reported frequency of injuries and 

are recognised in the literature as being risk factors for heat-related health 

impacts.33, 50, 120, 474 While PPE (e.g. gloves, protective workwear and safety 

glasses) represents a control measure to reduce workers’ exposure to hazards, it 

can be a competing workplace hazard as it can increase workers’ thermal load and 

act as a barrier for heat loss and evaporative cooling, particularly during very hot 
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days.474, 482 Therefore, choosing the right PPE for the right work and work 

environment is crucial.483 

Workers aged 25–50 years and older workers (>50 years) were cited as groups that 

were most affected by heat, while ‘new workers’ were found to be associated with 

an increased reported frequency of injury experiences. Although older workers may 

be physically more susceptible to injuries, new workers have also been shown to be 

at higher risk of heat-related occupational injuries and illnesses.211, 421, 423 Possible 

reasons include inexperience, inadequate training, and supervision, lack of 

awareness of rights and responsibilities, and greater exposure to more hazardous 

jobs.503, 504 Also, it is likely that new workers feel that they have limited control over 

their work environments and are likely to prioritise work over safety.504 This finding 

highlights the need for workplaces to focus on health and safety awareness in new 

workers as a priority. 

Consistent with the literature,120, 164, 505 we found that HSRs who reported workers 

being on piece-rates also reported a higher prevalence of heat-related injuries. 

Workers who get a pay rate for their output (e.g. number of items made, picked or 

packed) may tend to ignore the body’s signals to slow down their activity in the heat 

in order to earn more wages.135 Piece-rates can therefore be a disincentive to taking 

breaks to rest and hydrate.120 This is often found among horticultural workers (e.g. 

fruit picking) or among textile workers (e.g. garment) where employers rely on piece-

rates as mode of compensation to boost productivity.505 

Regarding the types of injuries experienced by workers during the heat, ‘manual 

handling’, ‘hand injuries’ and ‘burns’ were the most frequently reported injuries, while 

‘fatigue’, ‘muscle/heat cramps’ and ‘severe dehydration’ were the most frequently 
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reported symptoms of HRIs. The similarities in the types of injuries seen by HSRs 

and those reported previously in ecological studies using workers’ compensation 

claims data145, 422 confirms that heat exposure in the workplace is a broad 

occupational health problem. 

The core message of the heat illness prevention campaign run by the Occupational 

Safety and Health Administration (OSHA) in the US was ‘water, rest and shade’.506 

Consistent with this message is the guidance provided by the state and territory 

regulators in Australia; however, there is no legally binding or any active surveillance 

to ensure the compliance of these practices in workplaces.171 The control of risks 

and hazards in the workplace to prevent WRIs is guided by the hierarchy of controls 

which is mandated by OHS legislation in Australia.507 The findings from the present 

study show that most workplaces are not reliant on higher order controls (i.e. 

elimination/substitution of the hazard, e.g. better designed buildings), as the most 

often/always adopted prevention measures for indoor workers was access to cool 

drinking water (82%), adequate ventilation which is an engineering control and PPE 

(63% each); while for outdoor workers it was PPE (73%), access to cool drinking 

water (72%) and sunscreen (67%). The adoption of these control measures in 

workplaces is encouraging, but there is still room for improvement as these 

measures (except for ventilation) are all lower-order controls. We found that the 

frequency of injury experiences were lower for outdoor workers in workplaces with 

shaded rest areas, shade over work areas and rest/lunch areas with air-conditioning 

and where work was rescheduled to cooler times of the day. It has been shown 

access to regular breaks and breaks in shaded areas reduces the odds of HRI.220 

On the other hand, provision of fans, shielding of heat sources, adequate ventilation 

and air-conditioning reduced the frequency of injury experiences for indoor workers. 
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While reductions in injury experience is expected with adoption of these higher order 

controls, it is important to acknowledge that these may not be practical and 

economical, especially in small- and medium-sized enterprises. Additionally, 

measures like self-pacing were associated with reduced frequency of injury 

experience for both indoor and outdoor workers. Indeed, self-pacing has been found 

to be a protective behaviour in reducing the risk of heat stress for those working in 

hot weather provided that they are well-hydrated and acclimatised.493, 508 What this 

means is that the combination of control measures is likely to be more effective than 

using a single control measure. 

Having a temperature-cut off for stopping work, especially outdoor work, is an 

ongoing debate between employers, workers, experts and regulators, as to date, 

there is no legislation which specifies maximum temperatures to which workers can 

be exposed.171 Certainly in this study HSRs reported that the ceasing of outdoor 

work and the provision of air-conditioning was most important for outdoor and indoor 

workers, respectively. In this study, more than half (58%) of HSRs reported the 

existence of a hot weather or heat stress policy in their workplace; and the provision 

for outdoor work to cease when temperatures are extreme was cited by half of the 

HSRs (50%). Further investigation is needed to examine the contents of the policies 

in place to evaluate their effectiveness. It is also possible that having specific heat-

related guidelines and regulations which, if enforced, may encourage employers to 

be more proactive in fulfilling their responsibilities, as a lack of such guidelines and 

regulations were cited as one of the top five barriers for prevention by HSRs. While 

we do not argue for a (sometimes impractical) temperature threshold at which work 

must stop, it is recommended that there be consideration of solutions to issues that 

are placing workers at risk of injury in hot working conditions. We would suggest 
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that more training and awareness of workers is needed and that this should be in 

conjunction with other forms of control. 

This study has several limitations that should be taken into account while 

interpreting the results. While participants were from a broad range of areas, the 

generalisability of the study findings is limited due to the potential non-

representativeness of the participants. It is also likely that HSRs who were interested 

in the topic may have been more likely to participate in the survey, resulting in 

selection bias. Another limitation is the cross-sectional design of the study and the 

self-reporting of HSRs view on injury experiences and preventive measures which 

may not reflect the true situation. Finally, because of the relatively small sample 

size, we could not compare responses by states and across different industries. 

Despite these caveats, the present study provides an improved understanding of 

the factors that may contribute to the risk of heat-related occupational injuries and 

the current prevention measures adopted in Australian workplaces. The targeting of 

HSRs is a strength of the study, because this group can provide a reflection of their 

own current workplace experiences and practices. The comprehensive nature of the 

survey data is also a major strength of this study, and the findings complement the 

findings of previous epidemiological studies using alternative data sources. 

9.3.6 Conclusion 

This study advances the current knowledge of how occupational heat exposure may 

lead to increased risk of injuries by considering the perspectives of HSRs who 

provide a vital link between employers and workers. The study offers a window into 

issues that workers face during hot weather that potentially places them at increased 

risk of occupational injuries. The findings identify several factors operating at the 
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work, organisational and individual level that contribute to the risk of injuries in hot 

weather, and addressing these factors will be essential for maintaining safe 

workplaces and keeping workers safe during the heat. 
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9.4 CHAPTER SYNOPSIS 

Chapter 9 presented the findings of a national survey of HSRs on heat and WRI, 

their determinants, prevention, and management. The findings suggest that 

organisational issues, as well as workplace hazards, personal factors, and 

preventive measures are all major determinants of heat-related injuries in Australian 

workplaces. The results suggest that the burden of heat-related WRI could be 

reduced by wider adoption of prevention measures such as work rescheduling, self-

pacing, provision of shade, and adequate ventilation. The following section is the 

discussion of the key findings and conclusion of this research.
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Summary of Section D 

Section D focussed on better understanding the circumstances underpinning the 

occurrence of WRI in hot weather from the workplace level. This was obtained from 

surveying two groups of key stakeholders, HSPs and HSRs, who are at the forefront 

of WHS in workplaces. The next section will bring together the multiple lines of 

evidence obtained from the research presented from Sections B to D.
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SECTION E: USING THE EVIDENCE 

 

 

 

  

What we think, or what we know, or what we 
believe is, in the end, of little consequence. 

The only consequence is what we do. 
 

John Ruskin (1819–1900) 
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Overview of Section E 

This final section of the thesis consists of two chapters which bring together the 

findings from Sections B to D. Chapter 10 contains a full discussion, interpretation 

and evaluation of the research findings with reference to the existing evidence base 

and literature. Chapter 11 concludes the thesis and reports on evidence-based 

recommendations drawn from the key research findings to improve and better 

safeguard workers’ health and safety. 
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Chapter 10: Discussion 

10.1 PREFACE 

This chapter brings together the evidence obtained throughout this PhD research. 

Section 10.2 provides an overview and recap of the research background, along 

with the objectives set out in this research. Section 10.3 covers the key findings and 

an overview of the key discussion points in five sub-sections (10.3.1–10.3.5). The 

overall significance of the research is described in Section 10.4, followed by issues 

related to the findings in Section 10.5. The overall strengths and limitations of the 

work undertaken and the challenges faced are presented in Sections 10.6 through 

to 10.8. The key implications from this research are summarised in Section 10.9; 

and Section 10.10 concludes this chapter with suggestions for future research, 

followed by the chapter synopsis in Section 10.11. 

10.2 OVERVIEW OF THE RESEARCH 

This research has examined the impacts that environmental heat exposure has on 

workers’ health and safety, assessed mainly in terms of WRI. The overall research 

aimed to better characterise the association between heat and WRI, thereby 

contributing to new evidence in order to inform national injury prevention policy and 

guidance in Australia in the context of a warming climate. 

This research has been scoped around four objectives (as mentioned in Chapter 1) 

and shown in Table 10.1. 
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Table 10.1 Summary of research objectives and the chapters in which they are addressed. 

Research objectives Chapters 

1. To examine the effect of ambient temperatures and risk of WRI recorded in 
WC data from four Australian capital cities with diverse climates. 

4–5 

2. To assess to what extent heatwaves of varying severity affect the risk of 
WRI recorded in WC data from four Australian capital cities. 

6–7 

3. To identify workers at-risk during high temperatures and heatwaves. 4–7 

4. To better understand the nature of heat-related injuries in Australian 
workplaces, the potential risk factors, and prevention measures being 
employed to reduce the effects of heat stress; and to characterise the 
potential barriers faced in workplaces for injury prevention. 

8–9 

 

As discussed in Chapter 3, the first three objectives relate to answering the 4Ws in 

the epidemiology of WRI associated with hot weather (What, Who, Where and 

When), and the last objective mainly addresses the ‘Why’ and ‘How’ these injuries 

occur in workplaces, and the solutions for prevention. Four studies were conducted 

to address Objectives 1–3 and two studies were conducted to address Objective 4. 

Although each of these studies have their own research questions, they are all 

interconnected by common themes that overall lead to a better understanding of the 

heat-work injury phenomenon. 

Two data sources were utilised in order to obtain a more comprehensive 

understanding of the issue under investigation. These were the WC claims data, 

and the surveys data, the latter of which complemented the former by uncovering 

the stakeholder perceptions of the determinants of heat-related injuries, their 

prevention and management. While previous research has generally considered the 

heat-WRI relationship, this is the first time that many facets of the issue of WRI 

associated with hot working conditions has being systematically assessed at a 

national level in Australia. This has been made possible through the use of multiple 

lines of evidence and flexible, complex and modern quantitative approaches. 
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The relationship between heat exposure and WRI was examined using two BOM 

exposure metrics: Tmax and EHF-defined heatwaves. The former metric is a 

standard way of examining the impact, while the latter is a new way of classifying 

the varying severity of heatwaves. 

While assessing WRI from high temperatures and heatwaves was the major aim of 

this thesis, analysis using Tmax throughout the year also generated evidence for cold 

temperatures, the impact of which has not been previously explored in Australia. 

Although this additional aspect was discussed within Chapters 4 and 5, to keep with 

the overall aims and objectives of this thesis, the results for hot temperatures and 

heatwaves will be the main focus of this Discussion section. 

10.3 KEY FINDINGS OF THE RESEARCH 

The key findings from the overall research are summarised in Table 10.2 and 

discussed further in Sections 10.3.1–10.3.5.  

At a higher level, the key findings may be broadly interpreted as follows;  

1. Working in heat is a clear and significant health and safety hazard for workers as 

shown by an increase in WRI claims (Chapters 4 to 7) and in surveys of health and 

safety professionals and health and safety representatives (Chapters 8 and 9).    

2. The relationships between heat and WRI are complex, and depend not only on 

the temperature (Chapters 4 and 5), but also on the location (Chapter 5), whether a 

heatwave is occurring (Chapters 6 and 7), the characteristics of the work (Chapters 

4-9), policies and practices in the workplace (Chapters 6-9), and characteristics of 

the workers themselves (Chapters 4-9).    
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3. The novel statistical methods used in this research (Chapters 4-7) produced 

robust results which agree broadly with previous literature (Chapter 2) and with the 

findings of the surveys (Chapters 8 and 9). 

Table 10.2 Summary of key findings, corresponding data sources and relevant chapters. 

Key findings Data 
sources 

Chapters 

1) Both hot and cold temperatures are associated with increased 
risk of WRI in Adelaide, and the increase in WRI is apparent at 
moderately and extremely hot temperatures. 

WC 4 

2) Extremely hot temperatures were associated with greatest 
risks, but a relatively small absolute burden of WRI. Most 
injuries are attributable to moderately hot temperatures. 

WC 4 

3) The relationships between ambient temperatures and WRI 
vary by location and climate; however generally, higher 
maximum temperatures are likely to be associated with an 
increase in WRI. 

WC 5 

4) The impact of heatwaves (as measured by EHF) on WRI is 
consistent across the study sites with an increased risk of WRI 
during moderate/high-severity heatwaves as compared to non-
heatwaves. 

WC 6–7 

5) Working in heat is a clear and significant health and safety 
hazard for workers, as acknowledged by stakeholders. 

Surveys 8–9 

6) Fatigue and dehydration are perceived possible pre-cursors to 
WRI in hot weather. 

Surveys 8–9 

7) The use/non-use of PPE is a perceived contributory factor to 
heat-related injuries 

Surveys 8–9 

8) Lack of awareness and heat stress training often exists among 
workers and there can be a perceived lack of effective safety 
leadership in some workplaces. 

Surveys 8–9 

9) Many workplaces are reliant on administrative controls and 
some of these measures have the perceived potential to 
reduce WRI in hot weather. 

Surveys 8–9 

10)  Workers at higher risk of heat-related injuries include males, 
young workers, non-English speaking workers, labour-hire 
workers, new workers, and those in outdoor and some indoor 
industrial sectors, or in medium and heavy strength 
occupations. 

WC 

Surveys 

4–9 

 

The following section presents the above key findings which are discussed in the 

following order. Key findings (1)–(4) from the analysis of the WC claims data are 

discussed in Sections 10.3.1–10.3.3, followed by key findings (5)–(9) from the 
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surveys of HSPs and HSRs in Section 10.3.4. Key finding (10) is an integration of 

findings from the two main data sources and is discussed in Section 10.3.5. 

10.3.1 Relationship between ambient temperature and work-related injury 

claims 

Two studies422, 469 (Chapters 4 and 5) were conducted to investigate the effects of 

temperature exposure on the occurrence of WRI in four Australian capital cities 

namely; Adelaide, Melbourne, Brisbane and Perth. The results have been discussed 

in detail in Chapters 4 and 5 and the three key points related to findings (1)–(3) 

stated above, are discussed below. 

The first key finding is that both hot and cold temperatures were associated with 

increased risk of WRI in Adelaide and that injuries increase both at moderately and 

extremely hot temperatures. In Adelaide, a city with temperate climate, a non-linear 

relationship or J-shaped curve was observed between WRI and daily Tmax with the 

risk of WRI increasing above and below an optimum temperature of 25 °C. In 

comparison to 25 °C, moderately hot (90th percentile, i.e. 33 °C) and extremely hot 

(99th percentile, i.e. 40 °C) temperatures were associated with an 8% and 30% 

increase in overall claims, respectively, while moderately cold (10th percentile) and 

extremely cold (1st percentile) temperatures were associated with an 8% and 10% 

increase in WRI, respectively. 

The second key finding is that most of the temperature-attributable injuries can be 

attributed to moderately hot temperatures (1.5%), whereas the contribution of 

extremely hot temperatures, which were associated with the greatest risks, was 

relatively small (0.6%). The higher attributable burden on moderately hot days 

reflects the greater number of such days as compared to extremely hot days that 
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occur rarely. Almost 5% of total WRI were attributable to ambient temperatures (hot 

or cold) and notably, moderate temperatures accounted for a substantial higher 

fraction of injuries than extreme temperatures (4% versus 1%, respectively). 

The third key finding is that the relationships between temperature and WRI vary by 

location and climate across the study cities. There is clear evidence of an effect of 

hot temperatures on WRI in Adelaide and Melbourne where increases were seen at 

both moderately and extremely hot temperatures, while in Perth this effect was 

limited to traumatic injuries. In the case of Brisbane, cooler temperatures reduced 

the risk, suggesting that temperatures above the mean still pose significant safety 

risks. Notably, not finding a statistically significant effect does not necessarily mean 

workers are safe in high temperatures, as population health studies286, 509 have 

found negative health effects from extreme heat in Brisbane and Perth using 

morbidity data. 

The exposure-response curves observed in the four cities are generally consistent 

with recent heat and WRI studies,132, 183, 185, 187, 189, 190 and also with population health 

studies10, 510 where the magnitude of heat-health effects increases at high 

temperatures. Although earlier WRI studies by Morabito et al.122, Xiang et al.45, and 

Spector et al.135, showed a reverse-U-shaped curve, these studies did not consider 

denominator information (number of workers). The observed decrease in WRI at 

high and low temperatures is likely to reflect interruptions to work, rather than 

reduced risk. For example, outdoor work may cease at a specific heat threshold, or 

can be cancelled due to inclement winter conditions. As discussed in Chapter 2, the 

use of CCO study designs in Studies 1 and 2 (Chapters 4 and 5) overcomes the 
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lack of denominator information and resulted in the familiar non-linear (U-shaped) 

curves, similar to McInnes et al.132, Sheng et al.190, and Calkins et al.189. 

10.3.1.1 Factors that may explain the difference in findings between cities 

The differences observed across the four cities warrants further investigation, 

because it suggests that there are location and population-specific factors that 

influence the impact of temperature on workers’ health. This is in contrast to studies 

examining temperature and morbidity/mortality risk in Australia, which have reported 

a similar relationship for Adelaide, Brisbane, Melbourne and Perth.9, 10, 347, 351, 509, 511-

514 The relationships between Tmax and WRI across the four cities may be influenced 

by climatic and/or non-climatic factors. The climatic factors include: the number of 

warm-hot days and warm-hot nights, extreme temperatures observed, levels of 

humidity, diurnal temperature ranges, and the influences of local geographical 

phenomena (e.g. sea breezes) in each city. For example, Brisbane has less 

variation in daily temperatures (Figure K1, Appendix K), many fewer hot and very 

hot days (Figure 3.4), and higher humidity levels, compared to the other cities. 

Melbourne is known for having very changeable daily weather (Figure K1, Appendix 

K). Adelaide has a higher number of very hot days (Figure 3.3 and Figure K2, 

Appendix K) and generally low humidity. A distinct phenomenon unique to Perth is 

the ‘Fremantle Doctor’, a cooling afternoon sea breeze which provides relief by 

dropping temperatures dramatically.286 These factors may moderate how 

temperatures affect workers and contribute to the distinct temperature and WRI 

relationships observed in each city. 

There are several factors unrelated to climate which may also contribute to the 

observed differences in the WRI-temperature relationship between the study sites. 
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These may include, for example, differences in: the proportion of outdoor vs indoor 

workers, legislation, heat policies, acclimatisation,6, 8 behavioural patterns, use of 

air-conditioning, and infrastructure (e.g. workplaces with white roofs and green 

infrastructures) and the demographic characteristics of the workforce. For example, 

at a broad level, the proportion of workers in outdoor industries based on 

classifications used by Xiang et al.45 and used in this thesis, is higher in Perth (19%) 

and lower in Melbourne (11%).The proportion of ‘labourers’ is highest in Perth (73%) 

and lowest in Brisbane (45%), while that of ‘machinery operators and drivers’ is 

highest in Melbourne (75%) and lowest in Brisbane (46%).255 

Additionally, the model of WHS legislations have been adopted in only two out of 

the four jurisdictions (South Australia and Queensland) examined in this thesis. 

However, consistency exists in most key areas of the existing OHS laws in Western 

Australia and Victoria, suggesting that different legislation is unlikely to be the major 

influential factor for the observed differences. Heat stress policies and 

recommendations by union bodies exist in some at-risk outdoor industries, but again 

there are variations between states. For example, as per the Construction, Forestry, 

Mining and Energy Union (CFMEU) policy, trade workers in unionised work sites 

can stop work when the temperature reaches 35 °C in Victoria and South Australia, 

while in Western Australia it is 37.5 °C.515, 516 However, recently the Queensland 

branch of CFMEU established a stop-work rule at 35 °C, whereas previously extra 

breaks were recommended.517 These differences may influence the impact of heat 

in relation to WRI. 
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10.3.2 Relationship between heatwaves and WRI claims 

The fourth key finding is the consistent impact of heatwaves on WRI across the four 

cities. Two studies421, 423 (Chapters 6 and 7) were conducted to investigate the 

effects of heatwaves of varying severity on the occurrence of WRI in Adelaide, 

Brisbane, Melbourne and Perth. Heatwaves were defined using a unique location-

specific definition, the EHF, a metric that was recently introduced and is part of the 

National Heatwave Warning Service.182 This definition accounting for both short-

term adaptation over a period of one month and taking into account a long-term 

climate reference value, can be readily applied to any location. During 

moderate/high-severity heatwave days, the risk of WRI increased compared to non-

heatwave days in each city, with the highest effect apparent in Brisbane. 

10.3.3 Differences between heatwaves and temperature findings 

There were some differences between the findings from analysis using Tmax and 

that using EHF. This was particularly the case in Brisbane and Perth where a strong 

effect was only found during heatwaves and not during high temperatures. The 

exception was traumatic injuries in Perth for which there was a positive association 

with high temperatures. Firstly, it may be argued that the impacts on health during 

single days of heat and those during heatwaves (extended periods of high 

temperatures) can vary due to the intensity and duration of the heat.518 Further, 

heatwaves are generally periods of not only higher daytime Tmax but also higher 

overnight Tmin. Hence, the effects can be cumulative and likely to induce fatigue on 

days with high temperatures if individuals have poor sleep on the previous night.132, 

188 Population health studies have also estimated higher health effects during 

heatwaves than during single days of heat.8, 435 These studies have shown that 
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factors such as impaired thermoregulation and dehydration contribute to the 

increased morbidity and mortality in the general population. The same factors can 

also apply for workers during episodes of several consecutive days of extreme heat. 

Varying results using Tmax and EHF reflect how the heat exposure metric used for 

analysis can influence findings. Studies have also noted that the associations 

between heat extremes and health outcomes can vary depending on how extreme 

heat conditions are defined.519, 520 

In summary, the relationships between heat and WRI claims appear to be sensitive 

to the exposure metric used in the analysis and location. It is evident that worker 

injury experience can be influenced by extreme heat distinct to a climatic region. 

10.3.4 Stakeholder perceptions about heat-related injuries 

This section below discusses key findings (5)–(9) arising from the surveys of 

stakeholders (HSPs and HSRs) on the perceived determinants of heat-related 

injuries. It should be noted that there is scant literature on surveys of HSPs and 

HSRs as mentioned in Chapter 2, except for a survey of industrial hygienists and 

mining supervisors.199, 200 

The fifth key finding is that exposure to hot working conditions is regarded by both 

HSPs and HSRs as a clear health and safety hazard for workers. Seventy-four 

percent of the HSPs (who visit many workplaces) reported heat-related 

injuries/incidents occur in workplaces they visit or manage, compared to 43% of the 

HSRs (who are generally responsible for one workplace). If heat-related injuries are 

misclassified in respect to mechanism and nature of injury, WC data may provide 

an underestimate of the true number of these injuries, as described in Chapter 1. It 
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is possible that the importance placed by stakeholders of the impacts of hot weather 

on WRI more reliably reflects the extent of the problem than WC data. 

The sixth key finding is that there was a perception that fatigue and dehydration 

represent contributing factors that may act as precursors for WRI in hot weather. 

Both HSPs and HSRs reported that manual handling (musculoskeletal injuries) or 

joint/ligament injuries, hand injuries and wounds or lacerations were the most 

common type of injuries seen, while incidents seen included fatigue, muscle/heat 

cramps and severe dehydration. This finding from the surveys strengthens and 

validates the types of heat-related WRI found using WC data (Chapter 4–7). 

Nonetheless, symptoms of worker fatigue, heat cramps and dehydration are far less 

likely to be compensable and captured in the WC data. As mentioned in Chapter 1, 

official statistics from Safe Work Australia reveal that 2% of all compensated claims 

are for ‘heat-related’ claims, which captures several different types of illnesses and 

injuries.99 HSPs also indicated that heat-related injuries included slips, trips or falls, 

consistent with the WC data analysis (Chapters 4–7). Also mentioned were injuries 

arising from not wearing PPE, impaired vision due to fogged safety glasses, and 

loss of control of tools. These findings correlate with the plausible model of why 

injuries occur in hot weather presented in Chapter 2 (Figure 2.3).50 

The seventh key finding is that the reported use/non-use of PPE is a contributory 

factor to heat-related injuries. The provision of PPE against exposure to hazardous 

materials presents interesting scenarios in hot weather. For one, it was observed 

that ‘not wearing PPE’ was a contributing factor to injury; on the other hand, wearing 

of PPE was also an issue. Workers may feel thermal discomfort in the heat and may 

choose not to wear PPE and therefore be at risk of injuries from exposure to 
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hazardous materials and chemicals.521 If the PPE is not well designed to suit the 

work and work conditions, the risk of heat stress increases, due to the insulated 

microclimate formed above the skin, impeding evaporation.474, 482 

The eighth key finding is that there is a perceived under-appreciation of heat risks 

by workers and supervisors, and a lack of effective safety leadership in some 

workplaces. When asked about the barriers to prevention, both HSPs and HSRs 

thought lack of awareness of workers that heat can be associated with ill health and 

injury is a top barrier. HSPs also thought that management concerns about 

productivity loss/and or deadlines was another barrier; and HSRs thought 

management often lacked commitment to protect health and safety. These findings 

are consistent with those of Xiang et al.199 

The ninth key finding is that many workplaces are reliant on administrative controls 

and that some of these measures have the potential to reduce WRI in hot weather. 

Both groups of respondents indicated that ‘access to cool drinking water’ and PPE 

was the most frequently adopted prevention measure for outdoor workers, while for 

indoor workers, it was access to cool drinking water, adequate ventilation, and PPE. 

From these findings, it is clear that workplaces are routinely adopting administrative 

controls and personal protection measures, and some of these measures, including 

frequent breaks and self-pacing, have the potential to reduce the risk of heat-related 

injuries as evidenced by the findings in Chapters 8 and 9. Whereas higher-order 

controls such as rescheduling work are generally most efficient and preferable in 

reducing the hazard, it may not be practical or possible to implement such measures 

in every workplace.167 In order to operationalise higher-order controls, the 
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circumstances of each workplace needs to be understood. Workplaces need to at 

least provide appropriate access to water, breaks, and shade. 

In summary, the perceptions of key stakeholders have identified specific issues 

associated with heat exposure in the workplace which complements and explains 

the epidemiological findings from the WC data. These findings are in general similar 

to those of Xiang et al.199 who investigated industrial hygienists’ perceptions on 

workplace heat exposure. 

10.3.5 Vulnerable groups 

Based on dual lines of evidence, the final key finding is that workers at higher risk 

of heat-related injuries include males, young workers, non-English speaking 

workers, labour-hire workers, new workers, and those in outdoor and some indoor 

industrial sectors, or in medium and heavy strength occupations. Evidence from the 

analysis of WC data indicates vulnerability in most of these groups, while evidence 

from surveys points to young workers, new workers and non-English speaking 

workers as being at-risk of heat-related injuries. This addresses objective (3), i.e. to 

identify worker subpopulations at greatest risk in hot weather. According to Safe 

Work Australia,522 vulnerable workers are those who have a higher risk of general 

injuries or incidents in the workplace and they include: young workers, 

apprentice/trainee workers, migrant workers, workers in insecure jobs, labour hire 

workers, and culturally and linguistically diverse workers. Findings from Chapters 4 

through 9 largely concur with this but showed that subgroups vulnerable to heat-

related injuries vary according to worker subgroup, nature of work and work 

environment characteristics as discussed further in Sections 10.3.5.1 and 10.3.5.2. 
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10.3.5.1 Vulnerability by worker characteristics 

Workers’ demographic and work characteristics were examined as possible 

determinants for injuries in hot working conditions. These characteristics included 

gender, age, native language and experience. 

Worker-specific analyses in Chapters 4, 6 and 7, revealed that male workers were 

at higher risk of heat-related injuries both at moderate and extreme hot temperatures 

and during heatwaves. This is consistent with findings from previous studies.45, 127, 

145 Male workers are known to be highly represented in temperature-sensitive 

industries, such as ‘outdoor industries’ where their risk profile comes from the 

combined effect of the heat exposure and the strenuous nature of the work 

undertaken. To a lesser extent, female workers were also found to be at risk in the 

heat (Chapters 4, 5, and 7), in contrast to most previous studies which have only 

identified male workers to be at risk.45, 127, 145, 190 This result is possibly due to the 

high proportion of female workers in ‘indoor industries’ which was also consistently 

identified as an at-risk group (discussed in 10.3.4.2). 

Consistent with the literature,127, 132, 185, 189 young workers (<25 years) were found to 

be at higher-risk of WRI during moderate and extreme hot temperatures and 

heatwaves, and were also mentioned as a vulnerable group in the HSP survey. The 

reasons for increased risk in young workers have been discussed previously in 

Chapters 4 and 7, including limited or lack of training, competency in the assigned 

tasks, awareness of WHS risks, and heat exposure risks.523 Additionally, inadequate 

supervision can be an issue for young workers as raised by HSPs (Chapter 8). 

Middle-aged (35-54 years) and older workers (>55 years) were also found to be at 

risk in the heat as noted in Chapter 4. Except for the studies by McInnes et al.188 
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and Calkins et al.189 this finding is not common in the literature. However, other 

studies have reported greater heat intolerance and heat strain influenced by 

reduced fitness levels in those over 45 years of age.524-526 Further, it is likely that a 

higher prevalence of pre-existing health conditions and underlying chronic 

morbidities may also explain higher risks among middle-aged and older workers. 

Non-English speaking workers were suggested to be at higher risk of heat-related 

injuries by HSPs (as shown in Chapter 8). This finding needs to be interpreted with 

caution as it was raised in only one of the two self-reported surveys. Nevertheless, 

some of the likely risk factors for these workers include language barriers, cultural 

differences including reluctance to speak up, limited understanding of safe work 

practices, inexperience in the assigned task and/or individual workplace, and 

possibly limited acclimatisation.527, 528 The same can also be said about labour-hire 

workers who were found to be at higher risks during heatwaves in Brisbane, 

Melbourne, and Perth (as shown in Chapter 7). This finding of higher WRI risks for 

labour-hire workers during hot weather has not previously been reported. An inquiry 

into labour hire workers in Victoria has revealed that OHS standards are lower in 

the labour hire sector as these workers often work in dangerous working 

environments, without being provided with adequate PPE, supervision, inductions 

or job-specific training.460 Some of these factors have indeed been identified in the 

HSPs and HSRs surveys as part of this thesis (Chapters 8 and 9) and other studies 

(Hansen et al., unpublished). 

New workers or apprentice/trainees were found to be at-risk of WRI during hot 

weather in the studies using WC data (Chapters 6 and 7) and identified in the HSP 

and HSR surveys (Chapters 8 and 9). Inexperience is a known risk factor for WRI504 
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and lack of acclimatisation to heat in the work environment and job exertion 

requirements may place these workers at higher risk of WRI.189 However, 

experienced workers or workers who were not an apprentice or trainee were also 

found to be at risk in the heat in Chapters 4 and 5. The information on workers’ level 

of experience was reliant upon variables available in the different WC datasets. In 

the Tabulator dataset used in Chapters 4 and 6 the variable ‘new workers’ was used 

to indicate experience, while in the NDS3 dataset (Chapters 5 and 7) it was the 

‘apprentice/trainee’ variable. As mentioned in Chapter 4, ‘new workers’ were those 

operationally defined as having less than a year of experience at the time of injury 

and those not meeting this definition were considered as ‘experienced workers’. 

While these operationally used definitions do not describe the actual experience of 

the worker that influences their skills, responsibilities or tasks acquired over a longer 

period of time, it does reflect to a certain extent the familiarity of the worker with the 

tasks performed, work procedures, and to the work environment. While the variables 

used to indicate experience differed, a common characteristic is that experienced 

workers were generally not in the 15–24 age group. The category of ‘new workers’ 

in the ‘Tabulator dataset’ mostly applied to those from the ‘manufacturing industry’ 

while ‘apprentice/trainees’ were more often in the ‘construction industry’. Both of 

these industries were indeed identified to be at-risk industries. The vulnerabilities 

associated with certain work conditions therefore seems to be an important factor, 

along with factors that deem a worker to be vulnerable (i.e. being a young worker or 

new worker). 

10.3.5.2 Vulnerability by work and work environment characteristics 

Factors that relate to work characteristics examined included: occupation, industry, 

physical demands of the work, potential workplace temperature exposures, and 
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work factors and hazards. Factors that relate to work environment examined 

included: organisational size, worksite location, and organisational issues. 

Increased risks of WRI were found in both outdoor and some indoor industrial 

sectors, with the pattern being more consistent for certain outdoor industrial sectors. 

This is in line with previous evidence but contrasts with that of Xiang et al.45 who 

only found effects in outdoor industries. While the research in this thesis deals with 

outdoor ambient heat, in some indoor industrial sectors workers are exposed to 

process-generated heat (e.g. smelters, textile mills, and kitchens) and it is likely that 

outdoor heat adds to the heat stress problems in these workplaces.461 

As discussed in Chapter 2, there are drawbacks in categorising of workers’ heat 

exposure as outdoors or indoors using industry, as it does not consider the 

heterogeneity of exposures within industries. However, when using classifications 

by occupation, the findings reveal that workers working in ‘regulated indoor climates’ 

and ‘in a vehicle or cab’ are particularly at-risk during high temperatures and 

heatwaves. This is an unexpected finding and warrants closer investigation to 

determine which activities may be placing these workers at risk. Some examination 

of the conditions in regulated indoor climates is also justified because they may be 

highly variable. Further, according to the model code of practice for managing the 

work environment and facilities, the recommended zone of thermal comfort for 

sedentary work in indoor environments is usually between 20 °C and 26 °C with 

heightened risk to workers’ health as thermal conditions move outside this range.462 

Fatigue, loss of concentration and reduced productivity are the known impacts of 

thermal discomfort which can lead to WRI and incidents.167 Thus, increasing outdoor 

temperatures may indeed augment the health risks that workers in hot indoor 
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environments already face in the absence of cooling systems or insufficient 

ventilation. 

Another determinant of the heat risk for workers is the nature of work undertaken. 

The findings for different physical workloads (demands of the work) show that 

workers carrying out medium (somewhat physically demanding) and heavy strength 

(very physically demanding) work are at higher risk. This is an important finding as 

it indicates that doing outdoor work alone is not the main risk factor for WRI on hot 

days.132, 529 This is because not all occupations categorised as medium or heavy 

demanding work are predominantly outdoors. Examples include heavy vehicle 

drivers, warehouse workers, health and personal workers, carpenters, cleaners, and 

machine operators. That workers in medium-demanding occupations are at risk is 

consistent with Adam–Poupart et al.127 and Martinez-Solanas et al.185 who reported 

heat effects for non-manual workers; but contrasts with McInnes et al.132 who 

reported effects only for heavy demanding occupations. Further, work and work 

environment factors identified from the HSPs and HSRs surveys such as rushed 

activity, use of heavy impermeable PPE, insufficient access to water and rest 

breaks, may also play a role as to why WRI occur in these occupations and 

industries. In essence, these findings indicate that both work location (outdoors or 

indoors), and the level of physical strength required to carry a specific work need to 

be considered as risk factors for heat-related injuries. 

10.4 SIGNIFICANCE OF THE RESEARCH 

The rationale for the research relates to the unacceptable burden of injuries 

occurring in workplaces.530 With respect to heat associated-WRI, the phenomenon 

is currently not well understand and is likely to be more important in the future with 
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the likely increase in the number of days when working in the heat can be 

‘dangerous’ for workers.111 The specific contributions of this research to the field are 

as follows. 

Firstly, a comprehensive review of the literature,50 led to the development of a model 

of causation plausibly explaining how heat exposure could result in WRI. Secondly, 

using multiple lines of evidence the research has added to the growing body of 

knowledge about heat as an occupational hazard and has characterised the 

phenomenon on a national basis, thus providing a more complete picture of workers’ 

health and safety at high temperatures. The research has also contributed to new 

evidence that vulnerable workers are not just outdoor workers and those engaged 

in heavy physically demanding occupations, but also some indoor workers and 

those undertaking less physically demanding occupations. Thirdly, comparisons of 

different exposure metrics including daytime Tmax and EHFsev-defined heatwaves 

were made in order to potentially harmonise risk factors across different climate 

zones. The findings based on a normalised metric (i.e. EHFsev) may provide an 

additional or more useful basis for informing safe work guidance to employers, 

supervisors, and workers during heatwaves regardless of climate (see Chapter 11). 

Fourthly, this research has quantified the magnitude of the heat effect on WRI using 

attributable risk and fractions which can provide a useful perspective for policy 

makers. For example, this research has shown that 5% of all WRI claims can be 

attributed to non-optimum temperatures, with heat accounting for 2.5%. Although 

this proportion may not be large, the implementation of prevention measures as 

suggested by stakeholders may result in measurable economic benefits, including 

savings associated with averting injury and lost productivity. 
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10.5 METHODOLOGICAL ISSUES 

The choice of analytical methods used, the nature of the data, and issues related to 

multiple comparisons may influence the study findings. Each of these issues are 

briefly discussed below. 

10.5.1 Analytical issues 

Modelling relationships between an environmental variable (such as temperature) 

and health outcomes requires decisions to be made in relation to: 

 Study design (TS vs CCO) 

 Choice of model (TS: DLNM vs GEE vs GAM; CCO: conditional logistic/ 

conditional Poisson) 

 Model distribution approach (Poisson vs negative binomial vs quasi-Poisson) 

 Manner in which seasonality is controlled for in TS design, with respect to 

choice of df for time 

 Df for natural cubic spline for exposure and lag dimensions 

 Number of maximum lag days 

 Strata length (28 days or 30 days: applies to CCO design) and 

 Choice of temperature percentiles defining moderate and extreme heat. 

The choices made in relation to these factors will undoubtedly influence the results 

of statistical analyses. The CCO study design was adopted because, unlike TS 

where the choice of df to control for long-term and seasonal trends is important and 

varies from study to study, the CCO study design used in this study meant that these 

trends were controlled for by design using short-interval strata, namely, one 
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calendar week.338, 355, 356 The choice of DLNM to model the association between 

daily temperature and the daily number of WRI was largely influenced by the 

temperature-morbidity/mortality studies which have utilised this model.9, 10, 234, 346, 

347, 349-351, 375 Therefore, the modelling choices were based on existing literature and 

confirmed using sensitivity analyses by varying the df, strata length and maximum 

lag days. 

There are similarities in the findings from Chapter 4 and the study of Martinez-

Solanas et al. in Spain,185 which both use DLNM and similar modelling choices 

despite differences in study design (CCO vs TS). This provides validation to the 

choices of study design and analyses and gives confidence in the findings. 

10.5.2 Data quality issues 

The WC claims data used in four of the epidemiological studies in this thesis 

(Chapters 4–7) represent one of the major sources of data on WRI in Australia.293, 

309-313, 531-534 However, it is important to acknowledge that WC claims data are from 

an administrative database that is fundamentally intended for ‘managing claims, 

tracking payments and setting insurance premiums’.304 As a result, the WC data are 

not designed for research purposes, and thereby present some quality concerns. 

At its core, each state and territory administers their own compulsory WC system 

and regulate the health and safety of workers within their jurisdiction. While the 

fundamental structure of all the compensation schemes are similar, differences exist 

across schemes in administration, insurance arrangements, payable benefits, 

threshold limits, premium setting policies, dispute resolution, rehabilitation and 

return to work obligations.293 These well-documented and acknowledged system 

differences by SWA are likely to have some effect in the way the data are collected. 
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Attempts have been made to enable the use of WC data nationally by standardised 

data recording protocols. Although claims are coded with standard agreed upon 

classifications, it is possible that certain fields are missing because either the worker 

or the employer did not provide the relevant information while completing the 

‘workers’ injury form’ or the ‘employer injury claim’ form provided to the insurer. For 

example, the size of the business was an important variable considered in the 

studies conducted in Chapters 4 and 6; however, this was missing from the data 

provided for Victoria and Queensland, thereby excluding that variable in studies 

conducted in Chapters 5 and 7. 

10.5.3 Multiple comparisons testing 

One of the issues of concern for the research findings, especially studies in 

Chapters 4–7, is that spurious results may be obtained when many comparisons 

are made between several WRI outcomes (types, mechanism, agency and body 

location) and exposure variables (temperature and heatwave severity 

categories).535 Methods such as the Bonferroni’s correction536 or the ‘false discovery 

rate’537 can be used to reduce the possibility of identifying significant findings by 

chance or spurious associations. However, there are debates on their suitability in 

exploratory studies. The main rationale behind not adopting these methods was that 

some important or plausible differences or results could be missed resulting in an 

increase in false-negative results when using Bonferroni correction.536, 538 The false 

discovery rate approach has been found to be more suitable for laboratory 

experiments where a considerable number of comparisons and tests are normally 

done.537, 539 Also, it has been argued that ‘no adjustments are needed for multiple 

comparisons’ as they tend to cause more problems than intended.540 
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In this research a progressive data analysis approach was undertaken, whereby the 

overall relationship between heat and WRI was first examined, then subgroup 

analyses were conducted. The subgroup analyses were based on the variables 

chosen a priori as per the data analysis plan (Appendix J) and were influenced by 

previous research45, 145 and findings from the literature.122, 127, 132, 135 The statistically 

significant findings thus obtained were not just presented as such but rather were 

examined for their plausibility and compared to existing literature.45, 127, 132, 135, 145, 

185, 188, 190 Where findings were influenced by small counts this was acknowledged 

and confidence intervals provided to aid readers in using ‘their own judgement’ in 

interpreting the results.541 This approach is similar to that used in other studies.272, 

542-545 

10.6 OVERALL STRENGTHS OF THE RESEARCH 

The major strength of this research is that it has evaluated the risk and susceptibility 

of workers and quantified the associated attributable burden of heat and WRI across 

four Australian cities with diverse climates and worker profiles. This is the first time 

such an extensive multi-city study has been conducted in Australia on heat-related 

WRI and their determinants. A multiple data source approach was used to address 

the research questions, combining both complex statistical models incorporating 

administrative data, and surveys of key stakeholders. The multiple data source 

approach yielded a triangulation of findings with the outcomes of surveys supporting 

and supplementing the major findings of the analysis of the WC data. Additional 

strengths specific to the two parts of the research (i.e. the analysis of WC data and 

stakeholder surveys) are discussed below. 
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10.6.1 Strengths of the analysis of workers’ compensation data 

There are several strengths for the four studies conducted in Part 1 of the research, 

as presented below. 

First, the TS nature of the WC data over 10–12 years has provided a large sample 

size (~1 million compensated WRI claims) for the analyses carried out in Chapters 

4–7. 

Second, the WC data covering the vast majority of workers in the four jurisdictions 

of interest capture a wide range of severity of injuries and contain comprehensive 

information about the worker demographics, employment characteristics and injury 

details.309, 312, 313 The comprehensive nature of the data has allowed the 

identification of at-risk worker subgroups by their occupation and industry.312 

Further, the use of WC data enabled the exploration of injury attributes such as the 

nature, agency, mechanism, and body location of injury, highlighting the types of 

injuries that are most likely to occur in hot weather. Such information represents a 

valuable tool for raising awareness of safety among industry, employers, and 

workers. 

There were several strengths in the modelling approach used in the analysis of the 

WC data. First, two of the studies conducted in this research (Chapters 4 and 5) are 

the first studies in Australia and among the first two studies183, 185 in the world, to 

make use of complex but flexible statistical modelling techniques such as the DLNM 

model which considers the lagged and non-linear effects of temperatures on WRI. 

Second, as discussed in Chapters 2 and 3, using daily injury claims on a given day 

without considering the total number of workers working on that same day can bias 

the results.401 However, by utilising the CCO design, separately for each city the 
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need for such information is precluded as each ‘case’ is compared to themselves 

as controls. The studies in Chapters 4 and 5 are indeed the first occupational health 

studies to apply DLNM models in the time-stratified CCO study design, thereby 

representing a novel methodological approach. 

Third, the calculation of attributable fractions and numbers (see Chapters 4 and 5) 

complements the usual RR estimates gained from regression models. The 

calculation of attributable fractions and numbers has policy implications for 

prevention and future interventions as it quantifies the preventable injury burden due 

to a specific risk factor, which in this case is temperature.10, 235, 236, 386, 390, 546 A similar 

attempt to estimate AF has been taken by only two other studies in the world183, 185 

and this thesis represents the first such attempt in Australia. 

Fourth, the epidemiological studies conducted in this thesis examined the risks at 

moderately hot and extremely hot temperatures using temperature percentiles at 

the 90th and 99th, respectively, enabling comparisons between cities with respect 

to temperature gradient. Similarly, the use of a national heatwave metric that is 

location-specific accounted for the possibility of acclimatisation to warmer weather 

and also readily facilitated comparisons across cities.430 

Fifth, a number of sensitivity analyses were conducted in line with existing literature. 

These included varying df for temperature and lag dimensions, replacing the 

meteorological data from a main BOM monitoring station with that of an alternative 

station, and use of average exposures across many available stations (Table K1, 

Appendix K). The main conclusions remained robust to these changes. 

Sixth, the use of thermal composite indices such as AT, WBGT, UTCI, HX, and HI, 

in addition to daily Tmax (the main exposure metric used) presented an advantage in 
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that they accounted for humidity, wind speed and solar radiation. The consideration 

of these metrics to indicate heat stress in Chapters 4 and 5 is a strength, as previous 

Australian studies45, 132, 188 have been limited to only temperature metrics. 

Seventh, considering all claims (both injuries and illnesses), was a strength of the 

study as it mimics a negative control design.547 For example, no significant 

associations for WRI not related to heat exposure (e.g. ‘injuries to nerves and spinal 

cord’ or ‘nervous system and sense organ diseases’) were found. 

Finally, an additional strength of the four studies in this thesis (Chapters 4–7) is the 

use of occupational based classifications of indoor and outdoor environments and 

the consideration of potential physical demands. This approach is a refinement over 

that based on industrial groupings as in previous studies,45, 127, 145 where exposure 

misclassification may have occurred due to possible inclusion of several indoor 

occupations being grouped under ‘outdoor industries’, or vice-versa. 

10.6.2 Strengths of the stakeholder surveys 

The major strength of surveying health and safety managers, professionals and 

workplace representatives is that it extends the understanding on the heat-injury 

phenomenon beyond the population level obtained using WC data. This approach 

provides a more detailed and nuanced understanding of the circumstances and the 

context in which injuries occur in workplaces during hot weather. Additionally, the 

surveys also highlight areas of concern that were not captured through WC data 

alone. As previously mentioned in Chapters 8 and 9, the surveys are likely to capture 

information about minor injuries or other injuries that may be excluded from WC 

claims data. Having such information from two groups of key stakeholders (HSRs 
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and HSPs) is useful for understanding the heat and WRI phenomenon and has 

implications for development of policies and preventive practices. 

10.7 OVERALL LIMITATIONS OF THE STUDY 

The limitations of the six studies conducted as part of this research have largely 

been mentioned in the individual chapters. The following section briefly discusses 

the overall study limitations of Part 1 in Section 10.7.1, and of Part 2 in Section 

10.7.2. 

10.7.1 Limitations of the analysis of workers’ compensation data 

The main limitation of the four studies conducted in Part 1 (Chapters 4–7) relates in 

particular, to data sources used to ascertain exposures and outcomes, and the 

methodological challenges, and these are briefly addressed in turn. 

First, administrative data sources such as the WC claims data have clear 

advantages as discussed in Section 10.7.1; however, there are some limitations. 

WC datasets are a subset of WRIs as they essentially capture injuries that were 

reported and accepted as compensation claims, the criteria for which varies across 

jurisdictions, and therefore WC data do not capture all WRI.293 The under-reporting 

of injuries in WC datasets is a widely acknowledged limitation which may 

underestimate the actual risk for workers in industries such as ‘agriculture, forestry 

and fishing’, and ‘construction’ and those in smaller companies that are likely to 

under-report WRI.548 Further, some workers are not included in WC datasets; for 

example, self-employed workers who represent about 10% of the Australian 

workforce.72 Thus, WC datasets underestimate the true burden of WRI. 



Chapter 10 

 343

Second, due to the ecological nature of the study, assessments of heat exposure 

were not at the individual worker or localised worksite level, but instead used 

meteorological measurements of outdoor temperature from single weather stations 

at each study site. There are limitations to this approach as this introduces exposure 

misclassification, a common limitation of epidemiological studies examining heat-

health relationships.413 Such studies assume that workers in the defined study area, 

regardless of being outdoors or indoors, roughly experience the same exposure as 

that measured at the weather monitoring station. However, indoor temperatures can 

vary from that measured outdoors depending on worksite characteristics such as 

building type, building materials, surrounding environment, and use of adaptation 

measures such as air-conditioning and individual behavioural factors. Furthermore, 

a constant exposure is assumed across the whole geographical area for the working 

population at every unit of time. However, this is not the case in reality, as 

temperatures vary spatially and temporally depending on locations, time of day, 

other factors such as urban heat island effects, differences in elevation or wind 

circulation, amount of impermeable surface and distance from water.549-551 

The exposure misclassification bias introduced can be classical or Berkson-type 

errors, the former leading the bias downwards, i.e. towards the null, and the latter 

resulting in the increased variance of the regression coefficient but unbiased 

estimate.552, 553 However, the bias introduced with the use of ecological measures 

of weather station exposure in lieu of individual worker level measurement is likely 

to be non-differential due to the correlation between data from several weather 

stations and indoor and outdoor temperatures, resulting in an attenuation of the 

estimates.554 Sensitivity analyses performed in Chapters 4 and 5 using data from 

alternative stations and averages from several stations did not substantially alter the 
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estimates. Ideally, geocoding the location of the site of the WRI and matching this 

with high resolution meteorological data could address this issue, as in a study 

conducted by researchers in Washington, US.135, 189 

Third, misclassification may occur with the geographical location where workers 

were exposed and injured. The ‘postcode of the workplace where the injury 

occurred’ variable was the only geographic information in the WC datasets used to 

define the study area. However, it cannot be ruled out that some workers may have 

been injured at locations other than their normal workplace. For example, a 

construction worker may have been injured at a suburban construction site but the 

postcode recorded could be of the employers’ establishment. However, it was not 

possible to identify such records, thus classification errors are likely to be present. 

Fourth, the role of workplace and personal risk factors on the heat-WRI relationship 

was not examined. This was due to the lack of information on relevant workplace 

risk factors such as heat adaptations (e.g. air-conditioning use) and personal risk 

factors such as fitness level, acclimatisation status, medical history, drug/alcohol 

use, or use of medications. 

Fifth, while the epidemiological investigation includes workers from different cities, 

the findings cannot be seen as representative for other geographical areas in 

Australia or other regions in the world. While broad similarities may be gathered 

based on climate, the underlying characteristics of the workforce may limit the 

generalisability of the studies for workers in other cities. 

Sixth, air pollutants were not adjusted for in the main models on the heat-WRI 

relationship. While this could be considered as a limitation, there is an ongoing 

debate among environmental health researchers on whether such adjustments are 
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needed for in temperature-health models.555 This is because pollution levels are 

influenced by daily temperature which is not influenced by pollution, thus making air 

pollutants a mediator rather than a confounder.556 Furthermore, previous studies8, 

16, 331-333, 557 suggest that adjustments for air pollutants is likely to have a minimal 

effect on the temperature-health association.  

Finally, cautious interpretation of the findings is warranted given the relatively small 

samples sizes in some stratified analyses. Additionally, the small number of WRI by 

workers in specific occupations or industrial groups prohibited the exploration of 

certain groups. This is likely to mask some sub-group variations in the exposure-

response relationship. For example, workers in the waste collection services have 

been identified to be at risk of heat-related injuries in Spain185 but in the current 

study these workers are collectively categorised as workers in ‘electricity, gas, water 

and waste services’. 

10.7.2 Limitations of the stakeholder perception surveys 

The major limitation of the two stakeholder perceptions survey studies (Chapters 8 

and 9) is that they are cross-sectional in nature and therefore only provide a 

snapshot of the issue. As such, the associations observed between the frequency 

of injury experience and the risk factors assessed are not diagnostic on their own 

compared to longitudinal studies. Other limitations include the susceptibility to 

biases such as recall, selection, and responder bias. The relatively small sample 

sizes (307 HSPs and 222 HSRs) and non-representativeness of the samples are 

also limitations which can affect the external validity of the findings. Another 

limitation relates to the definition of indoor/outdoor workers (see Section 3.8). The 
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questionnaire survey included a question relating to prevention practices for 

indoor/outdoor workers at face-value without a formal definition.  

10.8 CHALLENGES FACED IN THE RESEARCH 

Some of the main challenges faced in this research relate to the data and the 

methods, and these are briefly discussed below in Sections 10.9.1 and 10.9.2, 

respectively. 

10.8.1 Challenges related to the data 

The WC data provided by SWSA and SWA were at the state level and there was a 

need to restrict the claims to the metropolitan areas of each of the four cities only, 

due to the need to have localised temperature data and a large sample size. There 

are several ways of defining the ‘metropolitan area’ using the ABS provided 

Australian Statistical Geography Standard (ASGS) including greater capital city 

statistical areas (GCCSA), statistical area level classification (SA4, SA4, SA2 and 

SA1), significant urban areas (SUA), local government areas (LGAs) and postal 

areas (POA). The latter was chosen due to the availability of a postcode variable in 

the dataset for which the POA seemed the appropriate match. As mentioned in 

Chapter 4, the area encompassing postcodes 5000–5199, 5942, and 5950 were 

chosen to represent metropolitan Adelaide as used in previous studies.45, 274 

Similarly, for the other cities definitions of metropolitan areas were also based on 

previous studies.132, 276 

Decisions were also made regarding data from the most appropriate weather 

monitoring stations best represented weather conditions across the defined study 

areas. A combination of approaches, i.e. using measurements from a single 

monitoring site,45, 145 averages from all available sites,132, 188 and satellite data189 
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have been used in the literature. While there are limitations with using a single site 

or averaged exposures across several sites as discussed in Section 10.8.1, Guo et 

al.558 have shown that the differences between the three approaches are not 

pronounced. Similar conclusions were also obtained in a recent study by 

Weinberger et al.559. Hence, as outlined in Chapter 3, a single weather station was 

used in each of the four cities and data from all available stations were used in 

sensitivity analyses. This approach is also similar to other studies.45, 132 

Another challenge relating to data was the choice of temperature metrics (e.g. 

mean, minimum and maximum or composite thermal indices) and heatwave 

definition as mentioned in Chapters 2 and 3. While no consensus exists in the 

literature on the best temperature metric to use, Barnett et al.288 have shown that no 

one metric is superior. They suggest that researchers should use the metric with 

most coverage and which can be easily understood by the general public.288 Hence, 

daily Tmax was used as the main exposure metric in Chapters 4 and 5, while others 

were used in the sensitivity analysis. Although many definitions of a heatwave exist, 

EHF was chosen for consistency between study sites as outlined in detail in 

Chapters 6 and 7. 

10.8.2 Challenges relating to the methods 

As discussed in Chapter 3, most of the environmental epidemiological studies 

assessing the effects of ambient temperatures and air-pollution on population health 

have primarily either used an ecological TS or CCO study design. The challenge 

faced in this research was to choose a study design appropriate for the research 

questions. The TS-design ideally requires denominator data (in this case number of 

workers) to enable calculation of incidence rates. However, only monthly level 
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labour force data were available from the ABS. Based on a study by Adam-Poupart 

et al.127, it was initially decided to use TS-design with labour force data as an offset. 

However, logistical issues including reduced workforce numbers during holiday 

periods, prevented the use of monthly labour force data. Testing of the length of the 

strata period using 28-day, 14-day and seven-day strata showed the optimal was 

the latter (i.e. one case day compared to six other control days). Thus, a CCO design 

with a narrow window (seven days) to account for these dips in worker numbers was 

decided upon as the study design in Chapters 4–7. As outlined in Chapters 2 and 

3, the CCO design obviates the need for denominator data, and addresses the 

concerns around seasonal reductions in worker numbers. 

10.9 PRACTICAL IMPLICATIONS FROM THIS RESEARCH 

Findings from the analysis of the WC claims data indicated that WRI increase at 

high temperatures (Chapters 4 and 5) and during heatwaves (Chapters 6 and 7). 

Further, the finding that moderately hot temperatures have the greatest burden of 

injuries, adds to the understanding of the complexity of the problem. The implication 

of this finding is that workplace heat-health and injury prevention plans should be 

widened to include moderate heat and not just extreme heat. This is important 

considering that workers are more frequently exposed to moderately hot days (that 

are more common), than extremely hot days (which are relatively rare). Similar calls 

to include moderate heat in public health policies and plans have been made by 

researchers linking temperature and mortality/morbidity at a global scale.9, 10 

From the survey data, there is general consensus about the need for more training 

about safety in hot conditions for both workers and supervisors. The training should 

cover not only risks of HRIs and perceived contributing factors such as ‘dehydration’ 
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and ‘fatigue’ that can be the initial symptoms of heat stress, but also risks of injuries 

that can increase in heat-affected workers, with the mechanisms being 

multifactorial. However, the potential for misclassification of heat-related injuries 

exists and the importance of accurate reporting could also be included in training 

sessions. 

In this research EHF-defined heatwaves consistently predicted impacts across 

different locations. The BOM’s national heatwave service provides forecast maps of 

heatwave conditions and severity in a three-day period, as classified by EHFsev (see 

Figure 3.9). These maps, accessible on the BOM website, could serve as a starting 

point for workplaces to implement adequate preventive measures when moderate-

severity heatwaves are forecast and well before heatwaves reach the highest 

severity. These may complement predicted Tmax as an indicator of heat exposure. 

Given that none of the jurisdictional regulators in Australia currently have any 

guidelines or regulations for specific temperature thresholds at which precautions 

need to be taken, or when work should cease, the BOM heatwave maps may be 

useful as a guide to when preventive measures are required.171 

In summary, the findings from this research have practical public health implications 

in the context of a warming climate. Besides the increased frequency and intensity 

of hot days, warm nights, and heatwaves are also increasing.404 This translates into 

more heat exposure for workers. In the wake of future projections for the increasing 

number of hot days in Australian cities (as outlined in Figure 1.5),109 it is vital that 

OHS of workers during hot weather be acknowledged and addressed to reduce the 

burden. 
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10.10 FURTHER RESEARCH 

While the effects of ambient temperatures and heatwaves on OHS have been 

examined at the population level using administrative data sources, further research 

is needed to understand other aspects of the relationship between hot weather and 

WRI. Suggestions for further research at the population, workplace and individual 

levels, are outlined below: 

10.10.1 National research to provide more local level relevance of heat as an 

occupational hazard 

It is of interest to further explore how the relationships between temperature and the 

risk of WRI vary depending on differing demographic, socio-economic, 

infrastructural and climatic profiles across Australia. This should not be limited to 

estimating RRs, but measures such as attributable fractions and attributable 

numbers which quantify the whole WRI burden due to non-optimum moderate and 

extreme temperatures need to be estimated in other cities — e.g. Sydney, Darwin, 

Hobart and Canberra. Such a study would provide a comprehensive national picture 

and local evidence that could serve as important evidence for key stakeholders to 

plan suitable risk communication messages to workers, tailor prevention programs 

and evaluate the overall WRI burden due to non-optimum temperatures. 

For consistency and comparability the study would need to employ a uniform 

modelling approach with a) city-specific analysis; b) meta-regression at the state-

level (using climatic zones) and c) at a national level using a multi-variate meta-

regression approach that is widely used in several multi-city and multi-country 

studies.9, 10, 16, 346, 347, 350, 351, 512 Such research could also address the impacts of 

temperatures on OHS in non-metropolitan areas and rural and remote regions which 
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have not been included in current and previous research. As the smaller number of 

daily claims in regional areas can be problematic, ‘cluster-analysis’ approach 

recently used in US studies378, 554 where places that share common weather 

characteristics are grouped, may serve as an alternative approach in TS-analysis 

and address the sample size issue. 

Although ‘journey claims’ (claims related to travel to and from work) were not 

included in the analyses in Chapters 4 to 7, it is possible that they represent an 

appreciable proportion of all accepted WRI with a concomitant effect and therefore 

warrants further investigation. This might identify potential interventions e.g. in the 

transport industry.  

10.10.2 Research into the effectiveness of heatwave alerts and warnings 

The severe impacts of heatwaves during the 2009 heatwaves in Adelaide and 

Melbourne prompted state emergency services and health departments to develop 

heat alerts and heatwave warning systems (HWS) aimed to protect the general 

public from the health impacts of heat. The evaluation of HWS and specific 

interventions in Adelaide showed significant reductions in morbidity in the general 

population.21 However, it is unknown whether and to what extent the HWS has had 

an effect on reducing WRI. A CCO design could be used to compare WRI on days 

without HWS versus those with, adjusting for temporal factors and Tmax.560 

Additionally, it would be useful to know how well public heat warnings affect work 

practices, and how these warnings and work advisories complement each other. 
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10.10.3 Research on projections of temperature and heatwave-related 

excess WRI under climate change scenarios 

Researchers from the worldwide ‘Multi-City Multi-Country Research Network’290, 512 

using two adaptation and three population change scenarios in 35 countries across 

the world, have shown that with future climate change, both temperature and 

heatwave-related excess mortality will increase in most regions. It is therefore of 

interest to quantify the expected burden of WRI associated with variation in outdoor 

temperatures and heatwaves under different climate change scenarios. Evidence 

thus generated could inform policy makers in planning better adaptation and 

mitigation strategies so as to reduce the health impacts. 

10.10.4 Research on surveillance and vulnerability mapping 

As mentioned in Chapter 2, the majority of heat-WRI risks have been established 

using WC data. However, the limitations of WC in regard to coverage and under-

reporting have been identified. It would be useful for future research to explore the 

feasibility of data-linkage between WC and other surveillance data sources such as 

ambulance call-outs, hospital admissions, and emergency department 

presentations. This would provide a more comprehensive estimation of WRI related 

to heat. Indeed, a study in Melbourne investigated the differences and similarities 

between different sources of WRI (WC data, emergency department data, and 

hospital admissions data) and found that different population groups and types of 

injuries were captured in these datasets.241 For example, WRI to young workers, 

and open wound and burn injuries were captured in emergency department data, 

while WC data were more likely to capture injuries in older age groups and 

musculoskeletal injures. Furthermore, it would be beneficial to develop a heat 
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vulnerability index for occupational settings, similar to heat vulnerability index done 

at the population level,561, 562 using occupational, socio-economic, health, 

demographic, environmental and climate measures. High resolution gridded 

meteorological data matched to the geographical location of the WRI could be used 

which may help to minimise the inherent exposure misclassification when using data 

from single monitoring stations. Such research could potentially provide 

policymakers and regulators a powerful tool for tracking vulnerable workplaces. 

10.10.5 Research on the economic burden of heat-related work-related injury 

No research has been conducted in Australia to examine the extent to which hot 

weather conditions increase the associated economic burden of WRI. This would 

build upon a previous study where significant increases in medical costs and work-

days lost due to heat-induced illness were identified in Adelaide.563 

10.10.6 Research at the individual and workplace level 

The conceptual framework of how injuries arise in hot weather presented in Chapter 

2, captures a range of important risk factors categorised at the work, worker, and 

work environment dimension. The role of physiological and psycho-behavioural 

factors has also been discussed conceptually and raised in stakeholder surveys. 

However, there is a need to clearly elucidate the complex mechanisms involved in 

the aetiology of heat-related workplace injuries. This could be done by conducting 

field studies where some of the factors such as psychomotor vigilance or balance 

performance could be tested in heat exposed workers. This would build upon 

previous investigations undertaken by Spector et al564 of pear and cherry harvesters 

and Larsen et al565 (who used simulated environments for firefighters). In the case 

of Spector et al564, it was a relatively small group of workers in moderately hot 
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conditions, while the Larsen et al study565 was conducted in an artificial environment 

with volunteers. Hydration status and level of sweating could be evaluated as effect 

modifiers of the heat and WRI risk relationship. 

Knowing workers’ physiological, physical and cognitive responses to heat could aid 

in clarifying the underlying mechanisms of the heat-WRI phenomenon. 

Further research is also needed to examine PPE and suitable fabrics that allow heat 

dissipation while affording protection to the workers from chemicals and other 

hazards. 

Finally, there is a need to understand how workers, supervisors, and employers 

perceive the risks, what information they need to minimise these in hot weather, and 

what forms of training are needed and how these should be delivered. This 

information could be gathered using qualitative research and case-study 

approaches. 

10.11 CHAPTER SYNOPSIS 

This chapter has provided a discussion and synthesis of key findings from the 

research presented in Chapters 4–9. Multiple lines of evidence about the risk, 

susceptibility, and the attributable burden of WRI in hot weather from WC data and 

stakeholder surveys were considered. This chapter has also outlined the key 

strengths and limitations of the research, along with issues concerning findings, and 

the challenges faced during the research. Further, the significance and implications 

of the research have been considered, along with recommendations for future 

research. The next chapter concludes the thesis and identifies specific 

recommendations for specific stakeholders based on the key research findings.
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Chapter 11: Conclusion and 
Recommendations 

11.1 CONCLUSION 

The work presented in this thesis provides evidence that working in hot conditions 

is a clear and significant health and safety hazard for workers. Occupational injuries 

have been shown to occur at an increased rate in working conditions for both indoor 

and outdoor workers. High temperature days increase heat exposure for workers 

yet it is not just during extreme heatwaves that injuries increase. These results 

suggest that working in hot conditions needs to be treated as seriously as any other 

health and safety hazard, due to the range of health and safety problems that 

exposure can cause. In addition, the research emphasises that the impacts on 

workers should not be neglected in the debate about climate change and public 

health consequences, as the impacts of ambient temperatures are not limited to the 

general population alone. The broader impacts of temperatures presents a 

challenge that is multi-faceted, with potential consequences for workers, 

supervisors, employers, regulators, and policy makers. 

While the risks associated with heat exposure are not homogenous as they can vary 

depending on worker, work or work environment characteristics, it needs to be 

highlighted that the adverse effects of heat on workers’ health and safety can be 

widespread and not limited to vulnerable groups identified in this thesis. Stakeholder 

perception findings indicate that there is an under-appreciation of the risks by 

workers and supervisors and lack of safety leadership in workplaces. 
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With modifiable work and organisational factors, there is a need for workplaces to 

address prevention strategies and have a supportive safety culture for workers. 

Efforts need to be taken to reduce heat exposure and its health effects directed 

towards the work environment, the task being undertaken, and individual workers 

themselves, by adopting a combination of higher and lower-order controls. 

Examples include: having adequate ventilation for indoor workers, and shaded work 

areas for outdoor workers, shaded rest areas, allowing regular breaks, rescheduling 

work times (where practicable) and providing suitable PPE. Attempts to reduce 

dehydration and fatigue in workers should also be addressed. Together, these 

measures may facilitate a reduction in the risk of heat as a health and injury hazard, 

and protect workers from the impacts of increasing temperatures and heatwaves 

that are predicted to increase in frequency, intensity, and duration in the context of 

Australia’s warming climate. 

11.2 SPECIFIC RECOMMENDATIONS FROM THIS RESEARCH 

Finding (a): HSPs and HSRs identified specific deficiencies in relation to: lack of 

heat stress training, lack of specific heat-related guidelines and regulations, lack of 

awareness among workers and supervisors, poor supervision, and policies not 

being adhered to. 

Recommendation: Based on the above finding, it is recommended that 

jurisdictional safety regulators and policy makers target areas such as heat stress 

training, induction, supervision, and associated policy and procedures related to 

working in hot weather. There is need to increase awareness of the currently 

available heat and work guidance materials and to foster compliance. It is also 

recommended that the OHS laws, regulations, codes of practices, and guidelines 
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provided by each state regulator be updated to include heat-associated risks 

including injury risks. 

In the case of employers, it is recommended that they create/refine/update their hot 

weather health and safety policies and ensure that they are written and reviewed 

annually. Every heat-exposed worker should be made aware of, and understand, 

the policy. Also, to maximise the acquisition and retention of information pertaining 

to heat-work hazards, there is a need for employers to consider ways of improving 

how they conduct orientation and training for workers. Possible options include 

training in the form of daily toolbox meetings prior to the start of work on hot days, 

with an emphasis on staying hydrated, taking breaks, and the need to look out for 

each other. Finally, heat stress training should be mandatory for supervisors who 

should monitor the safety of their workers in the heat. 

Finding (b): The WC data analysis and the surveys identified certain at-risk groups 

to include males, young workers, labour hire workers, new workers, and non-English 

speaking workers. 

Recommendation: Based on the above finding, it is recommended that 

jurisdictional regulators consider running promotional campaigns targeted to these 

groups, to increase awareness of heat-associated injury risks. This could be 

undertaken using mass media, social media, and other communication e-tools, 

ensuring that messages are aimed at the right groups and delivered in appropriate 

ways that suit them. 

It is also recommended that regulators engage with employers and workers to 

promote a shared responsibility for collective and individual safety. 



Chapter 11 

 359

It is recommended that employers promote strong safety culture and good 

leadership so that workers feel empowered and are confident to raise issues without 

concerns of job security. 

Finding (c): The WC data analysis showed that WRI increase as temperatures 

increase with both indoor and outdoor workers affected, with some particularly at-

risk. Although there were variations between cities, overall, WRI were more common 

at higher temperatures compared to lower temperatures, and during moderate/high 

severity heatwaves. The consistency in the impacts during EHF-defined heatwaves 

provides an opportunity for regulators to issue messages and warnings for 

workplaces. 

Recommendation: Based on the above finding, it may be appropriate for 

jurisdictional regulators to issue alerts and warning messages following the tiered 

approach shown in Table 11.1, based on heatwave type. 

Table 11.1 Summary of heatwave arrangements by regulators linked to heatwave levels. 

Heatwave type Colour 
code 

Temperature Community impact WRI risk Regulator action 

No heatwave White  Normal --------- ---------  

Low-intensity 
heatwave 

Yellow 

 

Top 10% Most people have 
capacity to cope 

No effect Alert and advice for basic health 
and safety planning via websites, 
social media 

Severe 
heatwave 

Orange 

 

Top 2% Increased deaths and 
illness in vulnerable 
groups 

Increased 
risk 

Issue alerts to workplaces, 

heighten awareness 

targeted messages 

Extreme 
heatwave 

Red 

 

Top 1% Health risk for anyone 
who does not take 
precautions to keep cool, 
even the healthy 

Issue warnings for work to be 
modified and extra care to be 
taken and if heatwave is 
widespread and prolonged then 
consider advising to cease work. 

 

It is recommended that employers and workers keep track of the BOM’s heatwave 

forecasting and assessment service available at the BOM website 

(http://www.bom.gov.au/australia/heatwave/).  

http://www.bom.gov.au/australia/heatwave/
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Employers could alert and warn their employees on days of moderate/high-severity 

heatwaves (i.e. orange/red shade in the forecast map) to modify their work, e.g. 

heavy work to be undertaken in the cooler hours of the day, and workers to have 

more rest periods and drink more. Table 11.2 provides a sample tiered system that 

employers could use to protect the health and safety of their workers. 

Table 11.2 Summary of heatwave arrangements for employers linked to heatwave levels. 

 No heatwave Low-intensity 
heatwave 

Severe heatwave Extreme heatwave 

Temperatures Normal Highest 10% Highest 2% Highest 1% 

Action Basic heat 
safety and 
planning 

Implement 
precautions 

Heighten awareness, provide adequate supervision and monitor if 
workers follow safety procedures and use equipment correctly. 

Encourage hydration and breaks in the shade as often as 
possible. 

Additional protective measures, close monitoring of workers, and 
reconsider if strenuous work needs to be done outdoors. 

 

Finding (d): PPE leading to higher body temperature was identified as a key issue 

by both HSPs and HSRs. 

Recommendation: Based on the above finding, it is recommended that the 

manufacturers of PPE consider improving its comfort and suitability for hot weather 

conditions as some can impair heat loss. 

11.3 PRACTICAL CHALLENGES FOR IMPLEMENTING RECOMMENDATIONS 

While the above recommendations stem primarily from the research findings, there 

are some interesting (and important) aspects about the work sector that may present 

as barriers to these recommendations being implemented. For example, is there a 

broader problem with culture and attitudes that needs to be addressed? Or are there 

problems with the workforce or management not engaging with OHS issues 

(especially in some sectors)? The answer may be yes in some cases. A survey 

undertaken by SWA on perceptions of WHS identified that there was a greater 
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acceptance of risk taking and rule breaking in order to complete work on time in 

some workplaces, particularly among sole traders, employers in the ‘Transport, 

postal and warehousing industry’, ‘construction’ and ‘mining’ labourers and factory 

process workers.566 This highlights that the need to slow down and self-pace in the 

heat may be ignored, especially as hot weather is seen to be a ‘normal’ part of the 

Australian summer. Another issue is the changing nature of the work sector, i.e. 

more insecure employment, the gig economy, more labour hire, and more ‘imported’ 

labour’. All these issues together could pose risks to workers’ health and safety in 

the heat and therefore careful consideration needs to be given about how the 

specific recommendations would be implemented to reduce WRI and make 

workplaces safer. Therefore, greater awareness of the heat hazard at all levels of 

management and more broadly amongst workers at risk should be a clear priority.  
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Summary of Section E 

This final section has summarised the findings from the research presented in this 

thesis which was conducted in several stages encompassing the analysis of WC 

claims data and surveys of stakeholders. The significance and implications of the 

work were outlined and suggestions made for future research. Finally evidence-

based recommendations for ways to reduce the burden of WRI in hot weather were 

presented. 
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Appendix A: Tabulator and NDS3 Dataset 

Table A1 List of variables used for analysis from the Tabulator dataset. 

Claimant details Occurrence details 

Industry of employer Date of injury 

Size of employer Postcode of workplace 

Sex Nature of injury 

Occupation Body location of injury 

Experienced / New worker Mechanism of injury 
 

Agency of injury 
 

Time of injury 

 

Table A2 List of variables used for analysis from the National Data Set for Compensation-Based 
Statistics (NDS3) dataset. 

Claimant details Occurrence details Outcome of occurrence 

Industry of employer Date of injury Time lost from work 

Size of employer Postcode of workplace 
 

Sex Nature of injury 
 

Occupation Body location of injury 
 

Labour hire indicator Mechanism of injury 
 

Apprentice/trainee indicator Agency of injury 
 

Number of hours usually worked each week Time of injury 
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Appendix B: Supplementary Material 

B1 Supplementary Material for Chapter 2 
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Table B1 Search strategy: terms, databases, limitations and number of articles for review. 

Databases Strategy Number of hits Number 
imported into 
Endnote 

PubMed 

 

Filters: 

English, humans 

#1 Heat stress[tw] OR Heat stress disorders[mh] OR Hot temperature[mh] OR heat[tw] OR hot 
weather[tw] OR hot temperature*[tw] OR high temperature*[tw] OR ambient temperature*[tw] OR 
heatwave*[tw] OR heat wave*[tw] OR climate change[mh] OR climate change*[mh] OR global 
warming[mh] OR outdoor[tw] OR thermal exposure[tw] OR solar radiation [tw] OR sun exposure [tw] OR 
UV-index [tw] 

 

#2 (Industry[mh:noexp] OR Industry[tw] OR Industries[tw] OR Industrial[tw] Environmental 
Exposure[mh:noexp] OR Occupational Exposure[mh:noexp] OR Occupation health [mh] OR Work[tw] OR 
workplace[tw] OR work-related[tw] OR workplace[mh] OR employment[tw] OR employment[mh] OR 
occupation*[tw] OR employee*[tw]) OR company*[tw] OR AGRICULTURE INDUSTRY[mh:noexp] OR 
FORESTRY[mh] OR Forestry[tw] OR building site*[tw] OR WORKER*[TW] OR Occupational Health and 
safety[tw]) 

 

#3(Workers’ compensation [mh] OR Wounds and injuries[mh] OR Accidental falls[mh] OR FALLS[TW] OR 

Accidents, occupational[mh] OR injur*[tw] OR accident*[tw]) OR ((accident[tiab] OR accidents[tiab] OR 
injury[tiab] OR injuries[tiab] OR ‘Wounds and Injuries’[Mesh] OR ‘injuries’ [Subheading]))) 

 

#4 Epidemiol*[tw] OR Morbidit*[tw] OR INCIDENC*[TW] OR PREVALENC*[TW] 

 

#5 #1 AND #2 AND #3 AND #4 

324976 

 

 

 

 

2583579 

 

 

 

 

 

1422576 

 

 

 

2416824 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

582 

Embase 

 

Filters: 

English, humans 

#1 'high temperature':ab,ti OR 'high temperatures':ab,ti AND 'hot temperature':ab,ti OR 'hot 
temperatures':ab,ti OR 'high ambient temperature':ab,ti OR 'high ambient temperatures':ab,ti OR 'ambient 
temperature':ab,ti OR 'ambient temperatures':ab,ti OR 'outdoor temperature':ab,ti OR 'outdoor 
temperatures':ab,ti OR heatwaves:ab,ti OR 'heat stress'/exp OR 'heat stress' OR 'heat stress 
disorders':ab,ti OR 'global warming':ab,ti OR 'climate change'/exp OR 'climate change' OR 'thermal 
exposure'/exp OR 'thermal exposure' OR heatwave:ab,ti OR 'extreme heat'/exp OR 'extreme heat' 

 

#2 work:ti OR worker*:ab,ti OR employment:ti OR 'occupational health':ti OR workplace:ab,ti OR 'work 
place':ab,ti OR 'work environment'/exp OR 'workman compensation'/exp OR 'industry'/exp 

128716 

 

 

 

 

 

556688 

 

 

 

 

 

 

 



 
Appendix B 

 368

Databases Strategy Number of hits Number 
imported into 
Endnote 

 

#3 ('injury'/exp OR accident:ab,ti OR accidents:ab,ti OR injury:ab,ti OR injuries:ab,ti) OR ('heat injury':ab,ti 
OR Injur* OR 'accident'/exp OR injur*:ab,ti OR accident*:ab,ti OR harm* OR wound* OR 'fall'/exp OR 
falling* OR (work* NEAR/1 injur*):ti OR (work* NEAR/1 injur*):ti,ab) 

 

#4 epidemiologic* NEXT/1 (stud* OR survey*) OR 'case control study'/syn OR (population OR hospital) 
NEXT/5 'based case control' OR 'case control' NEXT/3 (analys* OR design* OR evaluation* OR research 
OR stud* OR survey* OR trial*) OR 'case comparison' NEXT/5 (analys* OR stud*) OR 'cohort 
analysis'/syn OR ('case base' OR 'case matched' OR 'case referent' OR cohort OR concurrent OR 
incidence OR longitudinal OR followup OR 'follow up' OR prospective OR retrospective OR 'cross-
sectional' OR prevalence) NEXT/1 (analys* OR design* OR evaluation* OR research OR stud* OR 
survey* OR trial*) OR 'prospective method' OR 'crossover procedure'/syn OR 'retrospective study'/syn OR 
morbidit* 

 

#5 #1 AND #2 AND #3 AND #4 

 

 

 

2572431 

 

 

 

2369019 

 

 

 

 

 

 

 

 

 

 

 

105 

Scopus #1 TITLE-ABS-KEY( "heat" OR "Heatwave" OR "Hot temperature" OR "Hot weather" OR "Thermal 
exposure" OR "Ambient temperature" OR "High temperature" OR "High ambient temperature" OR "Heat 
stress" OR "Climate change" OR "Outdoor temperature" OR "Heat exposure" OR "environmental 
temperature" ) 

 

#2 TITLE-ABS-KEY ( "Work-related" OR "Occupation" OR "Work" "Workplace" OR "Outdoor industry" OR 
"workplace" OR "Indoor industry" OR "Worker's compensation" ) 

 

#3 ( TITLE-ABS-KEY ( "Occupational injury" OR "Work injury" OR "Accident" OR "Wound" OR "Damage" 
OR "Work-related injury" OR "incident" OR "Fall risk" OR "falling" OR "occupational accident" ) ) OR 
( TITLE-ABS 

KEY ( accident OR accidents OR injury OR injuries ) )  

 

#4 TITLEABSKEY ( "Epidemiology" OR "Morbidity" OR "Prevalence" OR "Incidence" )  

2067185 

 

 

 

45900 

 

3068939 

 

 

 

 

2334640 
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Databases Strategy Number of hits Number 
imported into 
Endnote 

 

#5 #1 AND #2 AND #3 AND #4 

 

24 

CINAHL 

 

Filters: 

English, Humans, 

Narrow by Subject 
Major: 

- wounds and 
injuries 

- occupational 
safety 

- stress, 
occupational 

- occupational 
diseases 

- environmental 
health 

- occupational 
exposure 

- work environment 

- occupational 
health 

- occupational-
related injuries 

- public health 

- environmental 
exposure 

#1 MH heat OR Ti heat* OR AB heat* OR TX heat* OR TX heatwave* OR TX hot temperature* OR TX hot 
weather OR TX High temperature* OR TX thermal exposure* TX ambient temperature* OR TX high 
ambient temperature* OR TX HEAT STRESS OR TX CLIMATE CHANGE* OR TX outdoor temperature* 
OR TX heat exposure*  

 

#2 TX work-related OR TX work* TX workplace OR TX employment OR TX employee* OR TX occupation 
OR TX company OR TX industry  

 

#3 TX occupational injur* OR TX work injur* OR TX "work injur*" OR MH accident OR TX accident* OR 
TX work-related injur* OR TX incident* TX worker’s compensation OR TX wounds and injuries OR TX 
accidental falls OR TX falls  

 

#4 TI epidemiology OR AB epidemiology OR TX epidemiology OR MH epidemiology OR TX morbidit*  

 

#5 #1 AND #2 AND #3 AND #4 

106501 

 

 

 

405191 

 

 

304385 

 

352267 

 

 

 

 

 

 

 

 

 

 

 

 

547 



 
Appendix B 

 370

Databases Strategy Number of hits Number 
imported into 
Endnote 

Science Direct 

 

 

Filter: 

Journals only, 
English 

#1 "heat" OR "Heatwave" OR "Hot temperature" OR "Hot weather" OR "Thermal exposure" OR "Ambient 
temperature" OR "High temperature" OR "High ambient temperature" OR "Heat stress" OR "Climate 
change" OR "Outdoor temperature" OR "Heat exposure" OR “environmental temperature” 

 

#2 “Occupational injury” OR “Work injury” OR “Accident” OR “Wound” OR “Damage” OR “Work-related 
injury” OR “incident” OR “Fall risk” OR “falling” OR “occupational accident” 

 

#3 “Work-related” OR “Occupation” OR “Work” “Workplace” OR “Outdoor industry” OR “workplace” OR 
“Indoor industry” OR “Worker’s compensation” 

 

#4 “Epidemiology” OR “Morbidity” OR “Prevalence” OR “Incidence” 

 

#5 #1 AND #2 AND #3 AND #4 

2,988,712 

 

 

 

30537 

 

9572 

 

2,441,583 

 

 

 

 

 

 

 

 

 

 

191 

Web of Science #1 TITLE: (( “extreme weather” OR “ambient temperature” OR “extreme heat” OR Heat OR “high 
temperature” OR “high temperatures” OR “Heat wave” OR “Heat waves” OR temperature OR 
temperatures OR “temperature extremes”)) 

 

#2 TITLE: (( injur* OR trauma OR wound* OR accident*)) 

 

#3 TITLE: ((work* OR workplace* OR occupation* OR worker*)) 

 

#4 #1 AND #2 AND #3 

904285 

 

 

425877 

 

560650 

 

 

 

 

 

 

 

19 

TOTAL RESULTS   1468 
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B2 Supplementary Material for Chapter 4 

Calculation of Meteorological Variables 

1. Apparent Temperature 

The calculation of apparent temperature (AT) combines relative humidity, wind 

speed, solar radiation and maximum temperature into a single value;1 

ATair=Tair+ 0.348e−0.70ws+0.70 
Q

(ws+10)
−4.25 

Where: 

Tair=Dry bulb temperature (°C) 

e=Water vapour pressure (hPa) [humidity] 

ws=Wind speed (m/s) at an elevation of 10 meters 

Q=Net radiation absorbed per unit area of body surface (w/m2) 

The vapour pressure can be calculated from the temperature and relative humidity 

using the equation: e=
Rh

100∗ 6.105∗exp (17.27∗ 
Tair

237.7+Tair
)
 where: Rh=relative humidity 

2. Heat Index 

HI combining temperature and relative humidity,2 was calculated as; 

HI= 

−42.379+2.04901523*T+10.14333127*Rh−.22475541*T*Rh−.00683783*T*T−.054

81717*Rh*Rh+.00122874*T*T*Rh+.00085282*T*Rh*Rh−.00000199*T*T*Rh*Rh 

Where: 

T: Temperature (in Fahrenheit) 

Rh: relative humidity (in percent) 

Note: Certain adjustments are made to the HI depending on the relative humidity 

and temperature ranges. 
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 If Rh is less than 13% and temperature range is 80–112, then the following 

value is subtracted from HI: 

Adjustment=HI−[(13-Rh)/4]*SQRT {[17-ABS (T-95)]/17} 

Where: 

ABS: absolute value and SQRT: square root 

 If Rh is greater than 85% and temperature range is 80–87, then the following 

value is added to HI: 

Adjustment=HI + [(Rh-85)/10] * [(87-T)/5] 

 If the temperature range is below 80, then HI is derived as; 

HI=0.5 * {T + 61.0 + [(T-68.0)*1.2] + (Rh*0.094)} 

3. Humidex 

Humidex is similar to HI as it also combines relative humidity and temperature and 

is used by Canadian meteorologists,3 derived as; 

Humidex (HX)=Tmax + (0.5555*(e-10) 

Where: 

e: Vapor pressure (in millibars) 

4. Universal Thermal Comfort Index and Wet Bulb Globe Temperature 

These two indices was calculated from the Excel Heat Stress Calculator 

downloaded from http://www.climatechip.org/excel-wbgt-calculator 

The calculations of UTCI follows the methods described on www.utci.org while 

WBGT calculations followed the recommended Liljegren method where, 

http://www.climatechip.org/excel-wbgt-calculator
http://www.utci.org/
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temperature, humidity, solar radiation and wind speed are combined to generate a 

single value.4 

WBGT (outdoor)=0.7×Tnwb+0.2×Tg+0.1×Ta 

Where: 

Tnwb=natural wet bulb temperature 

Tg=globe temperature 

Ta=ambient temperature 
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Claim Characteristics 

Table B2 Claim characteristics by worker details, Adelaide (2003–2013). 

Factor Categories n % 

Age (years) 15–24 37540 17 

 
25–34 46823 21 

 
35–54 109342 49 

 
>55 30814 14 

Experience Experienced 192900 86 

 
New 31731 14 

Gender Female 75455 34 

 
Male 149176 66 

Industry Agriculture, Forestry, Fishing and Hunting 1608 1 

 
Communication 137 0.8 

 
Community Services 69455 31 

 
Construction 17199 8 

 
Electricity, Gas and Water 1797 1 

 
Finance, Property and Business Services 10156 5 

 
Manufacturing 54124 24 

 
Mining 1414 1 

 
Public Administration and Defence 6543 3 

 
Recreation, Personal and Other Services 12276 5 

 
Transport and Storage 12387 6 

 
Wholesale and Retail Trade 37507 17 

 

  



Appendix B 

 375

Table B3 Claim characteristics by work activity, Adelaide (2003–2013). 

Factor Categories n % 

Occupational groups Animal and Horticultural 6653 3 

  Automobile Drivers 1640 1 

  Carpenters 5730 3 

  Cleaners 6870 3 

  Construction 3933 2 

  Electrical 5954 3 

  Emergency Workers 6069 3 

  Engineers 1457 1 

  Farmers 224 0.1 

  Food Factory 5536 2 

  Food Service 7545 3 

  Handypersons 3977 2 

  Health and Personal Support 17781 8 

  Heavy Vehicle Drivers 12172 5 

  Hospitality 3387 2 

  Machine Operators 24380 11 

  Metal Workers 23764 11 

  Miners 701 0.3 

  Nurses 9719 4 

  Office 32530 14 

  Other Health Professionals 1028 0.5 

  Outdoor Work Not Elsewhere Classified 1224 1 

  Painters 597 0.3 

  Passenger Transport 1748 1 

  Plumbers 6429 3 

  Printers 1339 1 

  Scientists 1422 1 

  Teachers 8328 4 

  Vehicle Workers 8075 4 

  Warehousing 14406 6 

Physical demands of work Limited (≤5 kg) 49646 22 
 

Light (5–10 kg) 39407 18 
 

Medium (10–20 kg) 86644 39 
 

Heavy (>20 kg) 48929 22 
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Table B4 Claim characteristics by workplace, Adelaide (2003–2013). 

Factor Categories n % 

Potential workplace 
temperature exposure Regulated indoors 153218 68 

 
Unregulated indoors 559 0.2 

 
Outside 1486 1 

 
In a vehicle or cab 11001 5 

 
Multiple locations 58362 26 

Size of business Small (1–19 employees) 33240 15 

 
Medium (20–199 employees) 73253 33 

 
Large (≥200 employees) 118138 53 

Season Warm (October–March) 111254 50 

 
Cold (April–September) 113377 50 

Day of week Monday 42720 19 

 
Tuesday 42919 19 

 
Wednesday 42170 19 

 
Thursday 40041 18 

 
Friday 35091 16 

 
Saturday 12565 6 

 
Sunday 9125 4 

Public holidays Yes 2645 1 

 
No 221986 99 
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Workers’ Compensation Claims Data 

 

Figure B1 Flow diagram of inclusion and exclusion criteria for data selection. 
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Injury Characteristics 

 

Figure B2 Injury characteristics by nature, agency, mechanism and body location (Adelaide, South 

Australia, 2003–2013). 
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Time Trends Over Time 

From Figure B3, it can been seen that the number of claims have declined between 

2003–04 and 2012–13. The two clusters in the scatterplot represent the number of 

claims during weekdays (upper cluster) and those during weekends and public 

holidays (lower cluster). 

 

Figure B3 Characteristics of the workers’ compensation claims (Adelaide, South Australia, 2003–

2013). 
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Lag Effects 

 

Figure B4 The effects of hot and cold temperatures on workers’ compensation claims (Adelaide, 

South Australia, 2003–2013) along the lag days at selected temperatures: 1st percentile (13 °C) 

and 97.5th percentile (38 °C). 
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Sensitivity Analyses 

 

Figure B5 Sensitivity analysis of relative risk (RR) estimates by different meteorological metrics. 
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B3 Supplementary Material for Chapter 5 

Claim characteristics 

Table B5 Description of the workers’ compensation claims dataset, 2005–2016. 

Classification Combined Brisbane Melbourne Perth 
 

n (%) n (%) n (%) n (%) 

All claims 798,831 260,730 (32.6) 258,379 (32.3) 279,722 (35.0) 

Gender 
    

Female 274,580 (34.4) 95,037 (36.5) 937,37 (36.3) 85,806 (30.7) 

Male 524,251 (65.6) 165,693 (63.6) 164,642 (63.7) 193,916 (69.3) 

Age group (years) 
    

15–24 128,975 (16.2) 43,751 (16.8) 30,033 (11.6) 55,191 (19.7) 

25–34 170,243 (21.3) 55,092 (21.1) 52,864 (20.5) 62,287 (22.3) 

35–54 376,073 (47.1) 123,957 (47.5) 130,796 (50.6) 121,320 (43.4) 

>55 123,540 (15.5) 37,930 (14.6) 44,686 (17.3) 40,924 (14.6) 

Worker Experience 
    

Apprentice/trainee 18,094 (2.3) 8311 (3.2) 4915 (1.9) 4868 (1.7) 

Other 698,155 (87.4) 251,901 (96.6) 253,023 (97.9) 193,231 (69.1) 

Industry 
    

Agriculture, Forestry & Fishing 6597 (0.8) 2670 (1) 1463 (0.6) 2464 (0.9) 

Mining 12,282 (1.5) 4103 (1.6) 787 (0.3) 7392 (2.6) 

Manufacturing 144,065 (18) 45,428 (17.4) 41,619 (16.1) 57,018 (20.4) 

Electricity, gas, water and waste services 8898 (1.1) 2895 (1.1) 2433 (0.9) 3570 (1.3) 

Construction 82,741 (10.4) 23,867 (9.2) 23,868 (9.2) 35,006 (12.5) 

Wholesale Trade 43,399 (5.4) 9752 (3.7) 18,913 (7.3) 14,734 (5.3) 

Retail trade 79,132 (9.9) 20,408 (7.8) 29,100 (11.3) 29,624 (10.6) 

Accommodation & Food Services 32,163 (4) 10,448 (4) 10,755 (4.2) 10,960 (3.9) 

Transport, Postal & Warehousing 68,133 (8.5) 21,839 (8.4) 27,896 (10.8) 18,398 (6.6) 

Information Media & Telecommunications 5612 (0.7) 1143 (0.4) 2910 (1.1) 1559 (0.6) 

Financial & Insurance Services 5349 (0.7) 1272 (0.5) 2696 (1) 1381 (0.5) 

Rental, Hiring & Real Estate Services 8751 (1.1) 2524 (1) 2827 (1.1) 3400 (1.2) 

Professional, Scientific & Technical Services 15,455 (1.9) 3010 (1.2) 5799 (2.2) 6646 (2.4) 

Administrative & Support Services 33,565 (4.2) 14,296 (5.5) 11,592 (4.5) 7677 (2.7) 

Public Administration & Safety 51,829 (6.5) 23,291 (8.9) 15,589 (6) 12,949 (4.6) 

Education & Training 57,344 (7.2) 25,769 (9.9) 12,825 (5) 18,750 (6.7) 

Health Care & Social Assistance 101,627 (12.7) 38,318 (14.7) 31,857 (12.3) 31,452 (11.2) 

Arts & Recreation Services 16,980 (2.1) 2453 (0.9) 7915 (3.1) 6612 (2.4) 

Other Services 249,09 (3.1) 7244 (2.8) 7535 (2.9) 10,130 (3.6) 

Claim severity 
    

Minor claims 346,512 (43.4) 95,215 (36.5) 66,800 (25.8) 184,497 (65.9) 

Major claims 452,319 (56.6) 165,515 (63.5) 191,579 (74.1) 95,225 (34.0) 
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Table B6 Relative risks for workers’ compensation claims in hot and cold temperatures stratified by worker, work and work environment characteristics in 
Brisbane and Perth, 2005–2016 (RR with 95% CI). 

  
Brisbanea 

  
 Perthb   

Exposure Extreme cold Moderate cold Moderate heat Extreme heat Extreme cold Moderate cold Moderate heat Extreme heat 

Claim severity 
    

    

Minor claims 0.94 (0.80,1.10) 1.06 (0.97,1.17) 0.94 (0.88,1.01) 1.03 (0.86,1.22) 0.94 (0.84,1.05) 0.97 (0.91,1.03) 1.03 (0.97,1.10) 1.07 (0.96,1.20) 

Major claims 0.87 (0.78,0.98) 0.96 (0.90,1.03) 0.97 (0.93,1.02) 0.96 (0.85,1.08) 1.01 (0.87,1.17) 1.04 (0.96,1.12) 0.90 (0.83,0.98) 0.92 (0.79,1.06) 

Gender 
    

    

Male 0.89 (0.79–0.99) 0.99 (0.93,1.07) 0.97 (0.92,1.02) 1.01 (0.89,1.14) 0.95 (0.86,1.06) 0.98 (0.93,1.04) 1.01 (0.96,1.08) 1.07 (0.96,1.19) 

Female 0.89 (0.77,1.05) 0.98 (0.90,1.08) 0.96 (0.90,1.02) 0.94 (0.80,1.11) 0.99 (0.85,1.16) 1.01 (0.93,1.10) 0.93 (0.85,1.02) 0.92 (0.79,1.07) 

Age group (years) 
    

    

15–24 0.73 (0.58,0.92) 0.96 (0.84,1.10) 0.99 (0.90,1.09) 1.16 (0.90,1.48) 0.98 (0.81,1.19) 1.01 (0.91,1.12) 1.03 (0.92,1.15) 1.15 (0.95,1.40) 

25–34 0.84 (0.68,1.03) 1.01 (0.90,1.14) 0.95 (0.88,1.04) 1.05 (0.84,1.29) 0.91 (0.75,1.09) 0.97 (0.88,1.07) 0.92 (0.83,1.02) 0.91 (0.76,1.10) 

35–54 0.95 (0.83,1.09) 1.01 (0.93,1.09) 0.97 (0.92,1.03) 0.99 (0.86,1.14) 0.93 (0.82,1.07) 0.98 (0.92,1.05) 0.97 (0.90,1.05) 1.03 (0.90,1.17) 

>55 1.00 (0.78,1.28) 0.96 (0.83,1.10) 0.93 (0.85,1.03) 0.74 (0.57,0.95) 1.15 (0.91,1.44) 1.03 (0.91,1.16) 1.09 (0.96,1.24) 0.98 (0.78,1.24) 

Worker experience 
    

    

Apprentice/Trainee 0.76 (0.44,1.31) 1.05 (0.76,1.45) 0.88 (0.70,1.12) 0.96 (0.51,1.81) 0.64 (0.29,1.38) 0.85 (0.57,1.27) 0.79 (0.55,1.15) 0.85 (0.46,1.57) 

Other 0.90 (0.82,0.99) 0.99 (0.94,1.05) 0.97 (0.93,1.01) 0.98 (0.89,1.09) 0.97 (0.87,1.08) 0.98 (0.93,1.04) 1.03 (0.97,1.09) 1.06 (0.96,1.18) 

Potential workplace 
temperature exposure 

    
    

Regulated indoors 0.89 (0.79,0.99) 1.00 (0.93,1.07) 0.95 (0.91,1.01) 0.96 (0.85,1.09) 0.95 (0.85,1.05) 0.98 (0.93,1.04) 0.98 (0.92,1.04) 1.00 (0.90,1.11) 

Unregulated indoors and 
outside 

0.82 (0.38,1.76) 0.85 (0.54,1.33) 1.01 (0.73,1.38) 0.83 (0.36,1.93) 1.97 (0.87,4.47) 1.27 (0.82,1.98) 0.91 (0.58,1.43) 0.47 (0.22,1.03) 

In a vehicle or cab 1.10 (0.76,1.58) 1.14 (0.92,1.41) 0.98 (0.85,1.14) 1.20 (0.81,1.75) 0.99 (0.68,1.43) 1.04 (0.85,1.27) 0.90 (0.73,1.11) 0.99 (0.68,1.43) 

Multiple locations 0.85 (0.71,1.03) 0.95 (0.86,1.06) 0.98 (0.91,1.06) 1.00 (0.82,1.21) 0.96 (0.81,1.15) 0.99 (0.90,1.08) 1.04 (0.94,1.15) 1.13 (0.95,1.35) 

Physical demands 
    

    

Limited (≤5kg) 0.78 (0.64,0.95) 0.91 (0.81,1.02) 0.97 (0.90,1.05) 0.91 (0.74,1.14) 0.96 (0.79,1.16) 1.00 (0.90,1.10) 1.00 (0.89,1.11) 1.07 (0.88,1.30) 

Light (5–10kg) 1.05 (0.83,1.31) 1.16 (1.02,1.32) 0.88 (0.81,0.97) 0.94 (0.75,1.19) 0.96 (0.79,1.16) 0.99 (0.89,1.09) 1.01 (0.90,1.12) 1.06 (0.88,1.28) 

Medium (10–20kg) 0.95 (0.81,1.12) 0.97 (0.89,1.07) 1.02 (0.95,1.08) 1.04 (0.87,1.22) 0.94 (0.82,1.09) 0.99 (0.92,1.07) 0.98 (0.90,1.06) 1.03 (0.90,1.19) 
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Brisbanea 

  
 Perthb   

Exposure Extreme cold Moderate cold Moderate heat Extreme heat Extreme cold Moderate cold Moderate heat Extreme heat 

Heavy (>20 kg) 0.81 (0.67,0.97) 0.98 (0.88,1.10) 0.95 (0.89,1.03) 1.01 (0.83,1.23) 1.00 (0.83,1.20) 0.99 (0.89,1.09) 0.98 (0.89,1.09) 0.91 (0.76,1.10) 

Industry 
    

    

Indoor 0.92 (0.71–1.20) 0.99 (0.94–1.06) 0.96 (0.92–0.99) 0.97 (0.73–1.28) 0.90 (0.82–1.00) 0.96 (0.91–1.01) 0.99 (0.93–1.05) 1.03 (0.93–1.14) 

Outdoor 0.89 (0.81–0.98) 0.93 (0.80–1.09) 1.02 (0.91–1.13) 0.98 (0.88–1.09) 1.18 (0.98–1.41) 1.10 (0.99–1.21) 0.97 (0.87–1.07) 0.97 (0.81–1.16) 

Abbreviations: CI: confidence interval; RR: relative risk. *p <0.05 
a. All temperatures were compared with the median maximum temperature of 27 o C. 
b. All temperatures were compared with the median maximum temperature of 24 o C. 
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Table B7 Relative risks for workers’ compensation claims in hot and cold temperatures using alternative temperature metrics in Brisbane, Melbourne and 
Perth, 2005–2016 (RR with 95% CI). 

City Brisbane 
 

Melbourne 
 

Perth 
 

Temperature metric Cold effect Heat effect Cold effect Heat effect Cold effect Heat effect 

Tmax* 0.89 (0.81–0.98) 0.98 (0.89–1.09) 0.99 (0.90–1.09) 1.14 (1.03–1.25) 0.96 (0.88–1.05) 1.02 (0.93–1.11) 

Tmean 1.09 (0.97–1.21) 0.99 (0.90–1.09) 1.06 (0.96–1.16) 1.09 (0.99–1.19) 1.02 (0.93–1.12) 1.04 (0.94–1.14) 

Tmin 1.19 (1.08–1.30) 0.97 (0.88–1.07) 1.10 (1.01–1.20) 1.01 (0.92–1.10) 1.04 (0.95–1.14) 1.10 (0.99–1.21) 

HXmax~ 0.92 (0.84–1.01) 1.01 (0.91–1.10) 1.02 (0.93–1.12) 1.12 (1.02–1.24) 0.96 (0.89–1.05) 1.03 (0.94–1.14) 

HImax~ 0.90 (0.82–0.99) 0.99 (0.90–1.09) 1.02 (0.93–1.12) 1.12 (1.02–1.24) 0.97 (0.89–1.06) 1.03 (0.93–1.14) 

WBGTmax^ 0.92 (0.85–1.02) 1.01 (0.92–1.11) 1.03 (0.94–1.13) 1.12 (1.02–1.24) 0.97 (0.89–1.06) 1.04 (0.94–1.14) 

UTCImax^ 0.90 (0.83–0.99) 0.99 (0.90–1.11) 0.91 (0.84–1.01) 1.14 (1.03–1.26) 0.95 (0.88–1.04) 1.03 (0.93–1.13) 

ATmax^ 0.92 (0.84–1.02) 1.01 (0.91–1.11) 0.94 (0.86–1.03) 1.13 (1.03–1.24) 0.96 (0.88–1.05) 1.01 (0.92–1.11) 

Abbreviations: Maximum humidex (HXmax); maximum heat index (HImax); maximum Wet Bulb Globe Temperature (WBGTmax); Universal Thermal Comfort Index (UTCImax) and maximum apparent 
temperature (ATmax). Symbols used: 

 Main metric used in this study* 

 Composite temperature indices combining temperature and relative humidity ~ 

 Composite temperature indices combining temperature, relative humidity, wind speed and solar radiation ^ 
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B4 Supplementary Material for Chapter 6 

Table B8 Effect estimates (risk ratios) for the associations between workers’ compensation claims 
and heatwave severity in Adelaide, October to March 2003 to 2013. 

Exposure 
 

Risk ratio (95% CI) 
 

  
HWD1 HWD2 

Claim characteristics Low-intensity Moderate/high-
severity 

 

All claims 1.01 (0.98,1.04) 1.31 (1.28,1.34) 1.02 (0.98,1.06) 

Injury claims 1.02 (0.96,1.03) 1.32 (1.29,1.36) 1.02 (0.98,1.07) 

Illness claims 1.13 (1.03,1.25) 1.21 (1.14,1.30) 0.94 (0.82,1.07) 

Gender 
   

Female 0.98 (0.92,1.03) 1.23 (1.19,1.28) 1.01 (0.94,1.08) 

Male 1.03 (0.99,1.07) 1.35 (1.32,1.39) 1.02 (0.97,1.07) 

Age group 
   

15–24 1.00 (0.92,1.08) 1.27 (1.21,1.34) 1.08 (0.98,1.18) 

25–34 0.99 (0.92,1.06) 1.41 (1.35,1.48) 1.00 (0.91,1.09) 

35–54 1.01 (0.96,1.06) 1.29 (1.26,1.34) 1.01 (0.95,1.06) 

>55 years 1.07 (0.98,1.16) 1.28 (1.21,1.36) 1.02 (0.91,1.13) 

Worker experience 
   

Experienced worker 1.02 (0.98,1.05) 1.31 (1.28, 1.34) 1.01 (0.97,1.06) 

New worker 0.99 (0.91,1.07) 1.34 (1.26, 1.41) 1.03 (0.94,1.14) 

Industry location 
   

Outdoor 1.04 (0.94,1.16) 1.42 (1.33, 1.51) 1.11 (0.98,1.27) 

Agriculture, Forestry, Fishing & Hunting 0.95 (0.66,1.37) 1.79 (1.41, 2.26) 0.98 (0.62,1.54) 

Construction 1.06 (0.94,1.19) 1.38 (1.28, 1.48) 1.06 (0.92,1.23) 

Electricity, Gas & Water 0.88 (0.6,1.29) 1.74 (1.35, 2.23) 1.46 (0.92,2.30) 

Mining 1.21 (0.81,1.82) 1.17 (0.89, 1.54) 1.77 (1.03,3.02) 

Indoor 1.01 (0.98,1.04) 1.30 (1.27, 1.33) 1.01 (0.97,1.05) 

Communication 0.61 (0.16,2.37) 1.97 (0.9, 4.32) 0.34 (0.06,1.91) 

Community Services 0.97 (0.92,1.03) 1.27 (1.22, 1.32) 1.05 (0.98,1.13) 

Finance, Property & Business Services 1.08 (0.93,1.25) 1.15 (1.05, 1.27) 1.04 (0.87,1.25) 

Manufacturing 1.08 (1.01,1.16) 1.47 (1.41, 1.53) 1.01 (0.93,1.10) 

Public Administration & Defence 1.10 (0.91,1.34) 1.49 (1.32, 1.68) 0.93 (0.73,1.19) 

Recreation, Personal & Other Services 0.93 (0.82,1.07) 1.06 (0.97, 1.16) 0.85 (0.72,1.01) 

Transport & Storage 1.05 (0.92,1.19) 1.39 (1.28, 1.52) 0.95 (0.80,1.12) 

Wholesale & Retail Trade 0.99 (0.92,1.07) 1.22 (1.16, 1.28) 1.06 (0.96,1.17) 

Occupations 
   

Managers 0.95 (0.79,1.14) 1.21 (1.08,1.36) 0.83 (0.65,1.06) 

Professionals 0.91 (0.82,1.02) 1.20 (1.11,1.29) 1.08 (0.95,1.24) 

Technicians & trade workers 1.04 (0.97,1.11) 1.32 (1.27,1.38) 1.03 (0.94,1.12) 

Community & personal 0.97 (0.89,1.05) 1.15 (1.08,1.22) 0.92 (0.83,1.03) 

Clerical & administrative 1.06 (0.92,1.22) 1.29 (1.18,1.41) 0.96 (0.80,1.15) 

Sales workers 0.84 (0.74,0.96) 1.17 (1.07,1.27) 1.04 (0.88,1.21) 

Machinery operators & drivers 1.07 (0.99,1.15) 1.42 (1.35,1.49) 1.08 (0.98,1.19) 
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Labourers 1.08 (1.02,1.16) 1.42 (1.36,1.48) 1.06 (0.97,1.15) 

Shaded cells denote statistically significant differences based on the 95% CI; HWD1 based on EHF intensity and HWD2 
based on Tmax of 35 °C for ≥3 consecutive days. 

 

Table B9 Risk ratios of workers’ compensation claims by work environment characteristics by 
heatwave severity in Adelaide metropolitan area, October to March 2003 to 2013. 

Exposure 
 

Risk ratio (95% CI) 
 

  
HWD1 HWD2 

Work environment Low-intensity Moderate/high-severity 

Size of business 
   

Small 1.01 (0.93,1.10) 1.30 (1.23,1.37) 0.98 (0.88,1.10) 

Medium 1.05 (0.99,1.11) 1.34 (1.29,1.39) 1.04 (0.97,1.12) 

Large 0.99 (0.95,1.03) 1.31 (1.26,1.34) 1.01 (0.96,1.07) 

Worksite location 
   

Adelaide CBD 0.99 (0.91,1.06) 1.22 (1.16,1.28) 0.98 (0.89,1.08) 

Adelaide Inner suburb 1.01 (0.97,1.05) 1.36 (1.32,1.39) 0.99 (0.94,1.05) 

Adelaide Outer suburbs 1.05 (0.98,1.13) 1.28 (1.22,1.33) 1.11 (1.02,1.21) 

Workplace hazards 
   

Dangerous chemical substances 1.10 (0.96,1.26) 1.46 (1.34,1.60) 1.10 (0.92,1.31) 

Equipment, machinery, tools 0.90 (0.72,1.12) 1.29 (1.21–1.38) 0.90 (0.69,1.17) 

Electricity 0.98 (0.88,1.08) 1.42 (0.81–2.51) 1.05 (0.92,1.20) 

Dangerous locations 0.68 (0.44,1.06) 1.29 (0.95–1.74) 1.13 (0.68,1.87) 

Multiple hazards 1.05 (0.99,1.11) 1.38 (1.33–1.44) 1.04 (0.97,1.12) 

Time of injury 
   

00.00–01.59 1.07 (1.01,1.15) 1.29 (1.24, 1.35) 0.85 (0.77,0.93) 

02.00–03.59 1.15 (0.85,1.55) 1.41 (1.12, 1.78) 1.02 (0.71,1.47) 

04.00–05.59 1.06 (0.77,1.45) 1.10 (0.90, 1.35) 0.85 (0.58,1.27) 

06.00–07.59 0.97 (0.85,1.12) 1.51 (1.38, 1.64) 1.26 (1.06,1.49) 

08.00–09.59 0.98 (0.90,1.06) 1.56 (1.48, 1.64) 1.07 (0.97,1.18) 

10.00–11.59 0.99 (0.92,1.07) 1.37 (1.30, 1.43) 1.03 (0.94,1.14) 

12.00–13.59 0.99 (0.90,1.08) 1.21 (1.14, 1.28) 1.16 (1.03,1.30) 

14.00–15.59 1.06 (0.97,1.16) 1.17 (1.10,1.24) 1.02 (0.91,1.14) 

16.00–17.59 0.94 (0.83,1.07) 1.24 (1.14, 1.34) 1.00 (0.85,1.18) 

18.00–19.59 1.08 (0.90,1.29) 1.16 (1.03, 1.31) 1.20 (0.96,1.51) 

20.00–21.59 1.15 (0.94,1.40) 1.04 (0.90, 1.21) 1.02 (0.79,1.32) 

22.00–23.59 1.04 (0.81,1.35) 1.19 (0.99, 1.44) 1.19 (0.86,1.64) 

Shaded cells denote statistically significant differences based on the 95% CI; HWD1 based on EHF intensity and HWD2 
based on Tmax of 35 °C for ≥3 consecutive days. 
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B5 Supplementary Material for Chapter 7 

Calculation of Excess Heat Factor 

Heatwaves are normally defined as a periods of unusually or exceptionally hot 

weather. However, the challenge is, what defines an unusual or exceptionally hot 

event at different locations? Bearing in mind these complexities, the Australian BOM 

introduced, the EHF which is now part of the national heatwave warning service. 

Following trials in 2014 EHF has been a widely used metric in the literature both 

locally1–11 and internationally12–15 to define heatwaves and heatwave severity. 

Put simply, this index is based on a three-day averaged daily mean temperature 

(DMT, represented as T in equations (a and b)) and is calculated as the product of 

two excess heat indices (EHIs): the significance index (EHIsig) and the 

acclimatisation index (EHIaccl). These EHIs that indicate excess heat and heat 

stress, respectively are calculated as follows: 

EHIsig=(Ti+Ti+1+Ti+2)/3–T95 (a) 

EHIaccl=(Ti+Ti+1+Ti+2)/3–(Ti–1+…+Ti–30)/30 (b) 

EHF=EHIsig * max (1, EHIaccl) 

Where T is the daily mean temperature, EHIsig is the significance index, and EHIaccl 

is the acclimatisation index. 

The comparison of the three-day DMT to the 95th percentile of DMT (long term 

climate reference value) produces EHIsig which characterises how unusual the heat 

is in a specific location.16 The EHIaccl which characterises the heat stress, is the 

comparison of the same three-day DMT to the DMT of the previous 30 days. In other 
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words, this formula takes into account both the long-term climate reference value 

and the short term adaptation to increasing heat over a period of one month.16 A 

heatwave event exists in a location if the EHFBOM value is positive. Heatwave 

severity (EHFsev) specific to each location as used in this study, is calculated as the 

ratio of EHF to the historical 85th percentiles of values of all positive EHF: 

EHFsev = EHF ÷ 85th percentile of all positive values. 

The heatwave severity is categorised into four categories: 

 No heatwave (daily EHFsev ≤0) 

 Low-intensity (0 < daily EHFsev <1) 

 Severe (1 ≤ daily EHFsev <3) 

 Extreme (daily EHFsev ≥3) 

In this study heatwave exposure, defined by EHFsev was analysed using the 

following categories: 

 No heatwave: daily EHFsev ≤0; 

 Low-intensity: daily EHFsev >0 and <1; 

 Moderate-severity: daily EHFsev ≥1 and <2, and 

 High-severity: daily EHFsev ≥2. 

Further details on the development, calculation, and usage of EHFBOM are provided 

by Nairn and Fawcett (2014).16 
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B6 Supplementary Material for Chapter 8 

 

Figure B6 Outcome of Injuries/incidents cited by HSPs. A) Injuries; B) Incidents. 
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Figure B7 Contributing factors: (A) Organisational issues; (B) work factors and hazards; (C) types 

of workers who incurred heat-related injuries/incidents during hot weather as reported by HSPs. 
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Figure B8 Work practices most important for preventing heat stress in outdoor workers (A) and 

indoor workers (B). 
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Figure B9 Perceived barriers for prevention of heat-related injuries, HSP perceptions. 

Percentages shown do not add to 100% as multiple responses were allowed per respondent. 
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Table B10 Questions on prevention measures, HSPs perceptions. 

Prevention questions n (%) 

Provision for outdoor work to cease if temperature is extreme n=254 

Yes 139 (55) 

No 115 (45) 

At what temperature does outdoor work cease n=132* 

35 °C or below 7 (5) 

36 °C 8 (6) 

37 °C 10 (8) 

38 °C 19 (14) 

Varies between workplaces 88 (67) 

Access to air-conditioning or fans for indoor workers n=248 

Never 1 (0.4) 

Rarely 10 (4) 

Sometimes 52 (21) 

Often 184 (74) 

Don't know 1 (0.4) 

Types of cooling systems n=249 

Evaporative 46 (19) 

Refrigerated 126 (51) 

Industrial fans 55 (22) 

Others 22 (9) 

Note: * refers to questions with skip-logic. 
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Table B11 Questions on heat-stress training, HSPs perceptions. 

Questions n (%) 

Training available for preventing heat-related injuries/incidents 251 

Yes 105 (42) 

No 44 (18) 

Some workplaces 98 (39) 

Don't know 4 (2) 

Training for supervisors 203* 

Yes 105 (52) 

No 10 (5) 

Some workplaces 84 (41) 

Don't know 4 (2) 

Supervisors and workers trained separately 191* 

Yes 19 (10) 

No 85 (45) 

Varies by workplace 68 (36) 

Don't know 19 (10) 

How often is heat-stress training conducted? 205~ 

Annually regardless of job 73 (35.6) 

Once only at induction when starting a new job where heat could be a hazard 63 (30.7) 

Others 39 (19) 

Don't know 30 (14.6) 

Every two years 17 (8.3) 

Once when changing roles or when using new equipment /processes where 
heat could be a hazard 

17 (8.3) 

How is heat stress training conducted? 204~ 

On site by health and safety professionals 136 (67) 

On site by supervisors 94 (46) 

On-line 74 (36) 

On-site by consultants 28 (14) 

Off site by professionals 24 (12) 

Don't know 5 (2.5) 

Quality of the heat stress training 202 

Adequate 74 (37) 

Limited 62 (31) 

Varies 42 (21) 

Comprehensive 17 (8) 

Don't know 7 (4) 

Is this training assessed? 202 

No 94 (47) 
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Questions n (%) 

Sometimes 43 (21) 

Yes 29 (14) 

Varies by type of workplace 21 (10) 

Unsure/ Don't know 15 (7) 

Source of information and resources for heat stress training 205~ 

The employer 144 (70) 

The safety regulator 50 (24) 

Consultants 42 (21) 

Other providers 23 (11) 

The industry association 21 (10) 

Unsure 17 (8) 

Australian Institute of Occupational Hygienists (AIOH) 14 (7) 

Note: ~ refers to questions with multiple responses and * refers to questions with skip-logic 
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Table B12 Questions on policies, guidelines, and risk assessments, HSPs perceptions. 

Questions n (%) 

Heat stress or hot weather policy n=245 

Yes 153 (63) 

No 50 (20) 

Some industries4 33 (14) 

Not sure 9 (4) 

Heat stress management is implemented n=246 

Partially 155 (63) 

Fully 69 (28) 

Not at all 17 (7) 

Unsure/Don't know 5 (2) 

Indicators of heat risk n=247 

Air temperature at weather bureau 125 (51) 

Air temperature on site 111 (45) 

Apparent temperature (feels like temperature) 61 (25) 

WBGT on site 44 (18) 

None of the above 28 (11) 

Thermal work limit calculation 21 (9) 

Predicted heat strain calculation 19 (8) 

Unsure/Don't know 14 (6) 

Other (please specify) 18 (4) 

Ingestible thermometers 5 (2) 

Universal Thermal Comfort Index 4 (2) 

Use of mobile device apps in heat stress management n=247 

No 164 (66) 

Don't know 53 (22) 

Yes 30 (12) 

 
  

                                            
4 Construction, Mining and Manufacturing 
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Table B13 Questions on productivity loss and potential solutions, HSPs perceptions. 

Productivity loss n (%) 

Hot weather contributes to productivity loss n=245 

Yes 128 (52) 

Sometimes 107 (44) 

No 8 (3) 

Unsure /Don't know 2 (1) 

How much of a problem? n=235 

Minor problem 137 (58) 

Major problem 65 (28) 

Unsure/ Don't know 18 (8) 

No problem 15 (6) 

Have potential solutions been discussed? n=233 

Yes 119 (51) 

No 79 (34) 

Unsure /Don't know 35 (15) 
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Survey Questionnaire-Chapter 8 
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B7 Supplementary Material for Chapter 9 

Table B14 Types of heat-related injuries (n=287*), HSR perceptions. 

Type of injuries* n % of cases 

Manual handling (musculoskeletal) injuries or joint/ligament injuries 84 55 

Others 48 31 

Hand injuries 40 26 

Burns 32 21 

Wounds or lacerations 29 19 

Head or neck injuries 21 14 

Motor vehicle accidents 18 12 

Eye injuries 10 7 

Fractures 5 3 

* multiple responses 

  

file:///C:/Users/a1606446/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/9A55C387.xlsx%23RANGE!_ftn1


Appendix B 

 418

Table B15 Types of HRI symptoms and other incidents (n=445*), HSR perceptions. 

Type of illness/incidents n % of cases 

Fatigue 139 90 

Muscle/Heat cramps 81 53 

Severe dehydration 76 49 

Fainting or loss of consciousness 60 39 

Impaired vision caused by sweating 57 37 

Delirium, confusion, disorientation or fitting 23 15 

Others 9 6 
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Figure B10 Types of HRIs (A) and illnesses (B) and their outcomes, HSR perceptions.  
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Figure B11 Most important work practices for outdoor workers (A) and indoor workers (B), HSR 

perceptions. 
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Table B16 Questions on prevention, HSR perceptions. 

Prevention questions n (%) 

Provision for outdoor work to cease if temperature is extreme n=175 

Yes 87 (50) 

No 88 (50) 

At what temperature does outdoor work cease n=91* 

35 °C or below 12 (13) 

36 °C 9 (10) 

37 °C 10 (11) 

38 °C 23 (25) 

Other 37 (41) 

Access to air-conditioning or fans for indoor workers n=185 

Never 2 (1) 

Rarely 6 (3) 

Sometimes 31 (17) 

Often 143 (77) 

Don't know 3 (2) 

Types of cooling systems n=179 

Evaporative 37 (21) 

Refrigerated 107 (60) 

Industrial fans 19 (11) 

Others 16 (9) 

* skip-logic 

  



Appendix B 

 422

Table B17 Questions on heat-stress training, HSR perceptions. 

Heat stress training n (%) 

Training available for preventing heat-related injuries/incidents n=183 

No 84 (46) 

Yes 64 (35) 

Don't know 35 (19) 

Training available for supervisors n=70* 

No 5 (7) 

Yes 56 (80) 

I don't know 9 (13) 

Supervisors and workers trained together n=55* 

No 25 (46) 

Unsure / I don't know 5 (9) 

Varies 12 (22) 

Yes 13 (24) 

How often is heat-stress training conducted? n=67* 

Annually regardless of job 23 (34) 

Once only at induction when starting a new job where heat could be a hazard 21 (31) 

Others 14 (21) 

Don't know 15 (22) 

Every two years 2 (3) 

Once when changing roles or when using new equipment where heat could be a hazard 6 (9) 

How is heat stress training conducted? n=67* 

On site by health and safety professionals 27 (40) 

On site by supervisors 27 (40) 

On-line 21 (31) 

On-site by consultants 9 (13) 

Off site by professionals 10 (15) 

Don't know 4 (6) 

* skip-logic 
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Table B18 Policies and risk assessment tools, HSR perceptions. 

Policies and guidelines n (%) 

Heat stress or hot weather policy n=184 

Yes 106 (58) 

No 39 (21) 

Not sure 39 (21) 

Indicators of heat risk n=177 

Air temperature at weather bureau 54 (31) 

Air temperature on site 30 (17) 

Apparent temperature (feels like temperature) 11 (6) 

WBGT on site 6 (3) 

None of the above 23 (13) 

Unsure / Don't know 42 (24) 

Other (please specify) 11 (6) 

Use of mobile device apps in heat stress management n=185 

No 138 (75) 

Don't know 36 (20) 

Yes 11 (6) 
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Survey questionnaire-Chapter 9 
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Appendix C: Data Access Approvals 

As mentioned in Chapter 3, the Tabulator dataset used in Chapters 4 and 6 was 

obtained from SWSA following a confidentiality agreement. The national dataset 

used in Chapters 5 and 7 were obtained from SWA following approvals from 

concerned jurisdictions. Both the confidentiality agreement and data release 

approval letters are provided in the order below: 

 Appendix C1: SWSA Research Dataset Confidentiality Agreement 

 Appendix C2: Return to WorkSA Approval Letter 

 Appendix C3: Office of Industrial relations, Queensland Treasury Approval 

Letter 

 Appendix C4: WorkCover WA Data Release Agreement 

 Appendix C5: WorkCover WA Approval 

 Appendix C6: WorkSafe Victoria Approval 
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Appendix C1: SafeWork SA Research Dataset Confidentiality Agreement 
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Appendix C2: Return to WorkSA Approval Letter 

 

 

Appendix C3: Office of Industrial relations, Queensland Treasury Approval Letter 
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Appendix C4: WorkCover WA Data Release Agreement 

 

  



Appendix C 

 444

 

  



Appendix C 

 445

Appendix C5: WorkCover WA Approval 

 

  

From: Franky Ku [mailto:Franky.Ku@workcover.wa.gov.au]  
Sent: Friday, 19 May 2017 10:20 AM 

To: 'Richard.Webster@swa.gov.au' <Richard.Webster@swa.gov.au> 
Cc: Jane Heyworth <jane.heyworth@uwa.edu.au>; Han Chan <Han.Chan@workcover.wa.gov.au> 

Subject: FW: TRIM: RE: Request for NDS3 data from Safe Work Australia 
 
Hi Richard 

 
I refer to Dr Jane Heyworth’s email dated 12 May 2017 regarding the release of WA NDS3 data from 
Safe Work Australia for the ARC project. 

 
The WorkCover WA CEO, Chris White has approved the request and attached the Data Release 

Agreement and Data Request Form signed by Dr Heyworth. 
 
Should you have any queries, please feel free to contact me. 

 
Best regards 
 
Franky Ku | A/Manager Business Intelligence Services 

Legislation and Scheme Information 
 

P (08) 9388 5573 

E franky.ku@workcover.wa.gov.au 

 
T @WorkCoverWA | W workcover.wa.gov.au 
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Appendix C6: WorkSafe Victoria Approval 

 

 

From: peter_mckee@worksafe.vic.gov.au [mailto:peter_mckee@worksafe.vic.gov.au]  
Sent: Friday, 21 July 2017 8:54 AM 
To: Dino Pisaniello 
Cc: Alana Hansen; anna_zisimopoulos@worksafe.vic.gov.au 
Subject: Re: FW: Fw:Request for jurisdictional approval (VIC) for NDS3 data access from Safe Work 

Australia 

 
Hi Dino,  
 
Following to our conversation earlier this week I am pleased to advise that approval has been granted 
for you to access Victoria's NDS data subject to your approval of the following terms:   
 
        1.         All data shall be treated as strictly confidential.  
 
2.        No attempt shall be made to identify any employer or employee contained in such records.  

3.        No aggregate data from such records shall be reported or published with a cell size of less 

than five.  

4.        All data at the individual record level shall at all times be stored in a secure location and 
password protected  

5.        Any breach or suspected breach of data confidentiality shall be reported the Chief Executive. 
WorkSafe Victoria  

6.        The obligation of confidentiality, non-disclosure shall remain permanent.  

7.         The data is not to be given to anyone else.  

8.         The data and it will not be used for any other purposes other than the one agreed.   

Could you please confirm your agreement via return email.  

Cheers, Peter  

 
Peter McKee 
Scheme Performance Division  

peter_mckee@worksafe.vic.gov.au 
Tel/ 9641 1456 
Mob/ 0421 583 148    

Head Office, 222 Exhibition 
Street 
Melbourne VIC 3000 
www.worksafe.vic.gov.au  
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Appendix D: Injury Categorisation and 

Corresponding TOOC3 Groupings 

Table D1 Injury categorisation and corresponding TOOC3 major groupings. 

Category TOOCS3 Major Group 

Fractures B: Fractures 

Musculoskeletal F: Traumatic Joint/Ligament and Muscle/Tendon Injury 

H: Musculoskeletal and Connective Tissue Diseases 

Neurological A: Intracranial Injuries 

E: Injury to Nerves and Spinal Cord 

L: Nervous System and Sense Organ Diseases 

Mental health conditions I: Mental Diseases 

Other traumatic C: Wounds, Lacerations, Amputations and Internal Organ 
Damage 

D: Burn 

G: Other Injuries 

Other diseases J: Digestive System Diseases 

K: Skin and Sub-cutaneous Tissue Diseases 

M: Respiratory System Diseases 

N: Circulatory System Diseases 

O: Infectious and Parasitic Diseases 

Q: Other Diseases 

Other claims R: Other Claims 

 Source: Adapted from Lane T, Collie A, Hassani-Mahmooei B.293 
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Appendix E: Survey Advertisements 

 Safe Work SA 
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 Safe Work Australia 
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 SA State Emergency Service 
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 Safety Institute of Australia (now the Australian Institute of Health & 
Safety) 
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 OHSreps 
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 OHS.com.au 
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 Queensland Nursing and Midwifery Union 
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 Thermalenvironment.com 
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Appendix F: Information Pack with Survey 

Links 
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Appendix G: Information Sheet for Surveys 
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Appendix H: Ethics Approvals 

This thesis part of a national project funded by the ARC to the primary supervisor 

(Prof Dino Pisaniello, DP) involved a multi-institutional team of investigators from 

Queensland University of Technology, The University of Western Australia and 

Monash University (academic partners) and SWA, SWSA and SA Health (industry 

partners). Hence, ethics approval for this thesis was sought from each of the four 

involved universities (see provided approval letters in the order below). 

 Appendix H1-H3: University of Adelaide ethics approval letter 

 Appendix H4: QUT ethics approval letter 

 Appendix H5: UWA ethics approval letter 

 Appendix H6: Monash ethics approval letter 
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Appendix H1: Ethical Approval Letter from the University of Adelaide for Part 1 of 

the Project (i.e. Analysis of WC Data) 
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Appendix H2: Ethical Approval Letter from the University of Adelaide for Part 2 of 

the Project (i.e. Analysis of Stakeholder Surveys) 
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Appendix H3: Renewal of the Ethical Approval from the University of Adelaide 
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Appendix H4: Ethical Approval Letter from the Queensland University of 

Technology
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Appendix H5: Ethical Approval Letter from the University of Western Australia 
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Appendix H6: Ethical Approval Letter from the Monash University 
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Appendix I: ANSZCO Codes to 30 

Occupational Groupings 

Table I1 Occupational groups associated with ANZSCO codes. 

Group ANZSCO codes 

Farmers 1211–1214 Farmers and Farm Managers 

Hospitality 1411–1419 Accommodation and Hospitality Managers 

 
4311–4319 Hospitality Workers 

Engineers 2321 Architects and Landscape Architects 

 
2322 Cartographers and Surveyors 

 
2331–2339 Engineering Professionals 

 
3121–3129 Building and Engineering Technicians 

Scientists 2341–2349 Natural and Physical Science Professionals 

 
3111–3114 Agricultural, Medical and Science Technicians 

 
3993 Gallery, Library and Museum Technicians 

 
4513 Funeral Workers 

Painters 3322 Painting Trades Workers 

 
3995 Performing Arts Technicians 

Teachers 1343 School Principals 

 
2411–2415 School Teachers 

 
2421–2422 Tertiary Education Teachers 

 
2491–2493 Miscellaneous Education Professionals 

Nurses 2541–2544 Midwifery and Nursing Professionals 

 
4114 Enrolled and Mothercraft Nurses 

Other Health Professionals 2511–2519 Health Diagnostic and Promotion Professionals 

 
2521 Chiropractors and Osteopaths 

 
2523–2527 Health Therapy Professionals 

 
2531–2539 Medical Practitioners 

 
4112 Dental Hygienists, Technicians and Therapists 

Metal Workers 3221–3223 Fabrication Engineering Trades Workers 

 
3232–3234 Mechanical Engineering Trades Workers 

 
3994 Jewellers 

 
8217 Structural Steel Construction Workers 

 
8391 Metal Engineering Process Workers 

Plumbers 3341 Plumbers 

 
8211 Building and Plumbing Labourers 

Vehicle Workers 3211–3212 Automotive Electricians and Mechanics 

 
3231 Aircraft Maintenance Engineers 

 
3241–3243 Panel beaters, and Vehicle Body Builders, Trimmers and Painters 

 
8994 Motor Vehicle Parts and Accessories Fitters 

Carpenters 3312 Carpenters and Joiners 
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Group ANZSCO codes 

 
3933 Upholsterers 

 
3941–3942 Wood Trades Workers 

 
3991 Boat Builders and Shipwrights 

 
8394 Timber and Wood Process Workers 

Construction 3311 Bricklayers and Stonemasons 

 
3321 Floor Finishers 

 
3331–3334 Glaziers, Plasterers and Tilers 

 
8212–8215 Construction and Mining Labourers 

Electrical 3411 Electricians 

 
3421–3424 Electronics and Telecommunications Trades Workers 

Food Factory 3511–3512 Food Trades Workers 

 
8311–8313 Food Process Workers 

Food Service 3513–3514 Food Trades Workers 

 
8511–8513 Food Preparation Assistants 

Printers 3921–3923 Printing Trades Workers 

 
3996 Signwriters 

 
7114 Photographic Developers and Printers 

 
8995 Printing Assistants and Table Workers 

Animal and Horticultural 3611–3613 Animal Attendants and Trainers, and Shearers 

 
3621–3624 Horticultural Trades Workers 

 
8411–8419 Farm, Forestry and Garden Workers 

Health and Personal Support 2522 Complementary Health Therapists 

 
2726 Welfare, Recreation and Community Arts Workers 

 
3911 Hairdressers 

 
4113 Diversional Therapists 

 
4115–4117 Health and Welfare Support Workers 

 
4211 Child Carers 

 
4221 Education Aides 

 
4231–4234 Personal Carers and Assistants 

 
4511 Beauty Therapists 

 
4515 Personal Care Consultants 

 
4518 Other Personal Service Workers 

Emergency Workers 1392 Senior Non-Commissioned Defence Force Members 

 
4111 Ambulance Officers and Paramedics 

 
4411–4413 Defence Force Members, Fire fighters and Police 

 
4421–4422 Prison and Security Officers 

Outdoor Work NEC 2312 Marine Transport Professionals 

 
4514 Gallery, Museum and Tour Guides 

 
4521–4524 Sports and Fitness Workers 

 
5995 Inspectors and Regulatory Officers 

 
6111 Auctioneers and Stock and Station Agents 

 
6217 Street Vendors and Related Salespersons 

 
8992 Deck and Fishing Hands 

Machine Operators 3931–3932 Textile, Clothing and Footwear Trades Workers 
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Group ANZSCO codes 

 
3992 Chemical, Gas, Petroleum and Power Generation Plant Operators 

 
3999 Other Miscellaneous Technicians and Trades Workers 

 
7111–7113 Machine Operators 

 
7115–7119 Machine Operators 

 
7123 Engineering Production Systems Workers 

 
7129 Other Stationary Plant Operators 

 
8321–8322 Packers and Product Assemblers 

 
8392–8393 Miscellaneous Factory Process Workers 

 
8399 Other Factory Process Workers 

Automobile Drivers 4512 Driving Instructors 

 
5612 Couriers and Postal Deliverers 

 
6113 Sales Representatives 

 
6121 Real Estate Sales Agents 

 
7311 Automobile Drivers 

 
8997 Vending Machine Attendants 

Heavy Vehicle Drivers 7121 Crane, Hoist and Lift Operators 

 
7211–7212 Mobile Plant Operators 

 
7219 Other Mobile Plant Operators 

 
7321 Delivery Drivers 

 
7331 Truck Drivers 

 
8216 Railway Track Workers 

 
8996 Recycling and Rubbish Collectors 

Miners 7122 Drillers, Miners and Shot Firers 

 
8219 Other Construction and Mining Labourers 

Warehousing 7213 Forklift Drivers 

 
7411 Storepersons 

 
8911 Freight and Furniture Handlers 

Cleaners 8111–8116 Cleaners and Laundry Workers 

Handypersons 8993 Handypersons 

 
8999 Other Miscellaneous Labourers 

Passenger Transport 2311 Air Transport Professionals 

 
4517 Travel Attendants 

 
7312–7313 Automobile, Bus and Rail Drivers 

Office 1111–1113 Chief Executives, General Managers and Legislators 

 
1311 Advertising and Sales Managers 

 
1321–1325 Business Administration Managers 

 
1331–1336 Construction, Distribution and Production Managers 

 
1341–1342 Education, Health and Welfare Services Managers 

 
1344 Other Education Managers 

 
1351 ICT Managers 

 
1391 Commissioned Officers (Management) 

 
1399 Other Specialist Managers 

 
1421 Retail Managers 

 
1491–1499 Miscellaneous Hospitality, Retail and Service Managers 
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Group ANZSCO codes 

 
2111–2114 Arts Professionals 

 
2121–2124 Media Professionals 

 
2211–2212 Accountants, Auditors and Company Secretaries 

 
2221–2223 Financial Brokers and Dealers, and Investment Advisers 

 
2231–2233 Human Resource and Training Professionals 

 
2241–2249 Information and Organisation Professionals 

 
2251–2254 Sales, Marketing and Public Relations Professionals 

 
2323–2326 Architects, Designers, Planners and Surveyors 

 
2611–2613 Business and Systems Analysts, and Programmers 

 
2621 Database and Systems Administrators 

 
2631–2633 ICT Network and Support Professionals 

 
2711–2713 Legal Professionals 

 
2721–2725 Social and Welfare Professionals 

 
3131–3132 ICT and Telecommunications Technicians 

 
4516 Tourism and Travel Advisers 

 
5111 Contract, Program and Project Administrators 

 
5121–5122 Office and Practice Managers 

 
5211–5212 Personal Assistants and Secretaries 

 
5311 General Clerks 

 
5321 Keyboard Operators 

 
5411–5412 Call or Contact Centre Information Clerks 

 
5421 Receptionists 

 
5511–5513 Accounting Clerks and Bookkeepers 

 
5521–5523 Financial and Insurance Clerks 

 
5611 Betting Clerks 

 
5613–5619 Clerical and Office Support Workers 

 
5911–5912 Logistics Clerks 

 
5991–5994 Miscellaneous Clerical and Administrative Workers 

 
5996–5999 Miscellaneous Clerical and Administrative Workers 

 
6112 Insurance Agents 

 
6211–6216 Sales Assistants and Salespersons 

 
6219 Other Sales Assistants and Salespersons 

 
6311 Checkout Operators and Office Cashiers 

 
6391–6399 Miscellaneous Sales Support Workers 

 
8912 Shelf Fillers 

 
8991 Caretakers 

Source: Adapted from Carey RN et al. 407 
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Appendix J: Data Analysis Plan—Part 1 
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Appendix K: Additional Material 
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Figure K1 Calendar heat map of daily maximum temperatures in Melbourne (A) and Brisbane (B) between 1 July 2005 and 30 June 2016. 
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Figure K2 Calendar heat map of daily maximum temperatures in Perth (A) between 1 July 2005 and 30 June 2016 and Adelaide (B) between 1 July 2003 and 

30 June 2013.
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Alternative stations comparisons 

Table K1 Relative risks for WC claims due to heat and cold according to weather stations used. 

City Stations Extreme cold Extreme heat 

Adelaide Average of stations 1.09 (0.98–1.20) 1.30 (1.17–1.43) 

      23090Tmax  1.10 (0.99–1.21) 1.30 (1.18–1.44) 

 23034Tmax 1.08 (0.98–1.19) 1.33 (1.20–1.47) 

 23083Tmax 1.11 (1.01–1.22) 1.29 (1.17–1.42) 

 23013Tmax 1.12 (1.01–1.23) 1.29 (1.17–1.42) 

 23887Tmax 1.06 (0.96–1.17) 1.27 (1.15–1.40) 

 23885Tmax 1.04 (0.94–1.14) 1.32 (1.19–1.45) 

 23733Tmax 1.10 (0.99–1.21) 1.29 (1.16–1.43) 

Brisbane Average of stations 0.91 (0.83–0.99) 0.96 (0.88–1.05) 

      40913Tmax  0.89 (0.81–0.98) 0.98 (0.89–1.09) 

 40958Tmax 0.99 (0.92–1.09) 0.95 (0.87–1.05) 

 40211Tmax 1.01 (0.93–1.09) 0.95 (0.86–1.05) 

 40854Tmax 0.86 (0.76–0.98) 0.97 (0.89–1.07) 

 40842Tmax 0.93 (0.84–1.03) 0.95 (0.87–1.04) 

Melbourne Average of stations 0.96 (0.88–1.06) 1.13 (1.02–1.25) 

    86071Tmax  0.99 (0.90–1.09) 1.14 (1.03–1.25) 

 87031Tmax 0.97 (0.89–1.07) 1.16 (1.04–1.28) 

 86351Tmax 0.95 (0.87–1.04) 1.14 (1.03–1.26) 

 86282Tmax 0.95 (0.87–1.04) 1.13 (1.03–1.25) 

 86104Tmax 0.97 (0.89–1.05) 1.11 (1.00–1.23) 

 86077Tmax 0.99 (0.91–1.08) 1.13 (1.02–1.25) 

 86068Tmax 0.97 (0.89–1.06) 1.12 (1.02–1.24) 

 86038Tmax 0.95 (0.87–1.04) 1.14 (1.04–1.26) 

Perth Average of stations 0.96 (0.88–1.05) 1.01 (0.92–1.10) 

      9225Tmax  0.96 (0.88–1.05) 1.02 (0.93–1.11) 

 9021Tmax 0.96 (0.88–1.05) 1.01 (0.93–1.11) 

 9215Tmax 0.97 (0.89–1.07) 1.02 (0.94–1.11) 

 9172Tmax 0.97 (0.89–1.06) 1.02 (0.93–1.11) 

 9240Tmax 0.95 (0.87–1.04) 0.98 (0.90–1.08) 

Note:  indicates the estimate for the main station used in Chapters 4–7.
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Appendix L: Abstracts of published 

manuscripts 
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