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Abstract
Stomatal traits have been shown to vary in predictable ways in response to environmental 

change in many species. As a consequence, stomatal traits in fossil leaves are sometimes used 

as proxies for past CO2 and climate. Here we investigate the influence of temperature, rainfall 

and CO2 on stomatal traits in Melaleuca quinquenervia. We use both modern and sub-fossil 

leaves to evaluate the effect of CO2, and modern leaves for climate variables. We found a 

significant negative relationship between stomatal size and density across both modern and 

sub-fossil leaves of M. quinquenervia. However, we were unable to find any relationship 

between stomatal traits and CO2 across a range from 260-380 ppm. Using the modern data set 

we were unable to find any robust relationships between stomatal traits and either 

evaporation or temperature. Apogeotropic roots account for the lack of stomatal anatomy 

correlation to evaporation in a region that experiences inundation. We conclude that stomatal 

size is a highly plastic trait in this species and changes do not necessarily reflect functional 

changes in the leaves.
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11 Abstract
12 Stomatal traits have been shown to vary in predictable ways in response to environmental 

13 change in many species. As a consequence, stomatal traits in fossil leaves are sometimes used 

14 as proxies for past CO2 and climate. Here we investigate the influence of temperature, rainfall 

15 and CO2 on stomatal traits in Melaleuca quinquenervia. We use both modern and sub-fossil 

16 leaves to evaluate the effect of CO2, and modern leaves for climate variables. We found a 

17 significant negative relationship between stomatal size and density across both modern and 

18 sub-fossil leaves of M. quinquenervia. However, we were unable to find any relationship 

19 between stomatal traits and CO2 across a range from 260-380 ppm. Using the modern data set 

20 we were unable to find any robust relationships between stomatal traits and either 

21 evaporation or temperature. Apogeotropic roots account for the lack of stomatal anatomy 

22 correlation to evaporation in a region that experiences inundation. We conclude that stomatal 

23 size is a highly plastic trait in this species and changes do not necessarily reflect functional 

24 changes in the leaves.

25 Key words: Stomatal density, stomatal size, climate proxy, Holocene, Melaleuca 

26 quinquenervia.
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27 1. Introduction
28 Plants are capable of morphological and physiological plasticity in response to a range of 

29 conditions. Plasticity maximises survival in the face of environmental variables such as light, 

30 rainfall, humidity, temperature, CO2 and nutrients. Plant plasticity manifests in a number of 

31 ways including changes in leaf size and shape, and stomatal traits that can often be measured 

32 in fossils. Stomatal changes influence the maximum potential uptake of CO2 and control the 

33 rate of water loss in leaves. Maximum potential water loss through stomata (gwmax) is a 

34 function of stomatal size and density, and is directly related to stomatal conductance for a 

35 range of plants. For example, Feild et al. (2011) analysed 87 basal angiosperm species from 

36 across the world and found a strong, positive relationship between gwmax and measured 

37 stomatal conductance. Maximum potential water loss through stomata determines the upper 

38 limit to stomatal conductance and therefore limits photosynthesis and whole canopy gas 

39 exchange (de Boer et al., 2011). It can vary in response to changing environmental 

40 conditions; for example, it has been shown to increase with decreasing CO2 thereby 

41 increasing the capacity for CO2 uptake as availability declines (Franks et al., 2012). The 

42 sensitivity of gwmax to changing atmospheric CO2 concentration across the last 400 My has 

43 been demonstrated for almost all plant groups, from non-vascular plants to angiosperms 

44 (Franks and Beerling, 2009). This gwmax response has also been experimentally demonstrated 

45 in living specimens of Commelina communis, Vicia faba, Osmunda regalis and Selaginella 

46 uncinata grown in growth chambers with CO2 concentrations of 760 to 820 ppm (Franks et 

47 al., 2012). 

48 Stomatal size and density are affected by environmental factors other than CO2. These 

49 include water availability (Fraser et al., 2009), temperature (Beerling and Chaloner, 1993), 

50 nutrients (Peñuelas and Matamala, 1990), light (Onwueme and Johnston, 2000), soil salinity 

51 (Bray and Reid, 2002) and humidity (Nejad and Van Meeteren, 2005). Thus, stomatal traits 

52 are often used as proxies to infer past climate.

53 There have been times in the past when the atmospheric CO2 concentration has been 

54 relatively stable. One of these periods was the Holocene epoch when CO2 changed by less 

55 than 20 ppm over the 11 700 years prior to ~1850 AD (Indermühle et al., 1999). Therefore, 

56 changes in stomatal traits over this time may be due to other environmental factors, such as 

57 temperature or rainfall variation. Considerable global and regional scale climatic variability 

58 occurred through the Holocene (Wanner et al., 2011). For example, the northern Australasian 
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59 monsoon was enhanced between 7500 and 5000 years before present (BP), resulting in high 

60 rainfall, at times above that of the modern range (Shulmeister and Lees, 1995). In a review of 

61 eastern Australian mid-Holocene rainfall variability, Reeves et al. (2013) found that the 

62 majority of studies indicate a decline in effective precipitation after 5000 BP. These proposed 

63 rainfall fluctuations may have influenced stomatal traits across the Holocene. 

64 The relative stability of atmospheric CO2 during the Holocene provides an opportunity to 

65 examine how stomatal traits may have varied over this time in response to temperature and 

66 class A pan evaporation (hereafter, evaporation). In this study, we investigated responses of 

67 Melaleuca quinquenervia (Cav.) ST Blake to a range of environmental variables. Leaves of 

68 M. quinquenervia from core samples obtained from both lake sediments (hereafter referred to 

69 as sub-fossils) and modern leaf litter (hereafter referred to as the modern dataset) are tested. 

70 This is the first study that we know of that incorporates both a long-term leaf litter collection 

71 and sub-fossil specimens of the same species and analyses their response to environmental 

72 variables.

73 2. Methods

74 2.1 Study site and species

75 Melaleuca quinquenervia is an Australian native tree species that occurs on flood plains, 

76 wetlands (Greenway, 1994), and littoral zones of lakes (Lockhart et al., 1999). When 

77 inundated, the tree grows roots from epicormic buds in an upward direction thus allowing 

78 oxygen uptake into roots (McJannet, 2008). It is categorised as scleromorphic, based on 

79 features such as fibrous leaves with a thick cuticle, and an evergreen habit (Hill, 1998). M. 

80 quinquenervia occurs along the east coast of Australia in Queensland and New South Wales 

81 (Brophy et al., 2013). It also occurs naturally in Indonesia, Papua New Guinea, and New 

82 Caledonia (Brophy et al., 2013), the Hawaiian Islands and has naturalised in southern Florida 

83 where it is considered an invasive species (Pratt et al., 2014).

84 We measured stomatal traits from M. quinquenervia leaves collected between 1992 and 2003 

85 from Carbrook Wetland (27.7°S, 153.2°E), a seasonally inundated wetland approximately 40 

86 km south of Brisbane (Fig. 1; Greenway, 1994). We also measured stomatal traits of sub-

87 fossil leaves obtained from a sediment core taken from Swallow Lagoon on North Stradbroke 

88 Island, Queensland, Australia (27.5°S, 153.4°E). Swallow Lagoon is a small (0.27 ha), 

Rev3
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89 oligotrophic, freshwater lake located high (94 m above sea level) in the dunes of North 

90 Stradbroke Island, the World’s second largest sand island. The lake is perched, meaning that 

91 it is separated from the regional water table. Variation in water depth is therefore a function 

92 of the balance between precipitation and evaporation. Extant populations of M. 

93 quinquenervia continue to grow as fringing vegetation around the lake.

94 As the modern specimens all came from Carbrook Wetland and all sub-fossil specimens 

95 came from Swallow Lagoon, we assume that nutrient availability and soil salinity were 

96 similar for all modern and all sub-fossil leaves collected for this study. We also assume that 

97 light availability did not affect leaves as the plants we studied have open canopies and do not 

98 have significant self-shading.

99 2.2 Modern leaves

100 Modern M. quinquenervia leaves were taken from samples collected for a leaf-litter 

101 monitoring project, the initial results of which are reported in Greenway (1994). Leaf litter 

102 was collected in a litter trap at four-week intervals, between April, 1992 and July, 2003, from 

103 Carbrook Wetland (Fig. 1). For our study, one leaf was sampled every second month, 

104 beginning in April 1992 with an even spread of sampling conducted over the twelve year 

105 time frame (n = 4, 5 or 6 per year). A total of 61 leaves were analysed.

106 2.3 Sub-fossil samples

107 Sediment cores were taken from a platform, anchored over the deepest part of Swallow 

108 Lagoon, in March, 2011. The record is a composite of two cores. Core SL1 (150 - 375 cm), 

109 which was collected using a Livingstone corer, was extruded in the field where it was sealed 

110 and stored for transportation back to the laboratory for analysis. Core SLP3 (0 - 250 cm) was 

111 collected using a clear perspex soft sediment piston corer. This was extruded in the field at 1 

112 cm increments from 0 to 150 cm, and the remainder as a single section. The two cores were 

113 correlated stratigraphically, using a distinct 5 cm thick band of sand evident in both cores at a 

114 depth of 220 cm.

115 The cores were sampled at contiguous 1 cm intervals and the sediment was washed through a 

116 500 μm sieve to obtain macrofossil remains. The retained fraction was rinsed in distilled 

117 water and M. quinquenervia leaf fragments were selected for analysis. Fragments of M. 

118 quinquenervia were identified using distinctive morphological features, such as thick veins, 
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119 epidermal colour and anatomy of the spongy mesophyll. A chronology for the core, based on 

120 twelve 14C dates on terrestrial leaf macrofossils, indicates the sediment covers the last 7300 

121 years (Tibby et al., 2016). The distribution of leaves varied through the sediment column and 

122 specimens were collected where samples of sufficient size and number were available. A total 

123 of 93 leaf fragments were analysed.

124 2.4 Cuticle preparation

125 2.4.1 Modern leaves

126 One cm2 pieces were cut from the leaf margin half way along the lamina. These were placed 

127 in separate test tubes, covered in 80% ethanol v/v, and left for 24 hours at room temperature. 

128 The ethanol was then removed and leaves covered in a 2:1 solution of 35% hydrogen 

129 peroxide and 80% ethanol (v/v). The test tubes were then placed in a water bath in a fume 

130 cupboard and gently heated until the leaf samples were translucent, indicating that the cuticle 

131 had separated from the rest of the leaf. The leaf samples were gently rinsed with reverse 

132 osmosis (RO) water, and debris was brushed away from the cuticle with a fine camel hair 

133 brush. The cuticles were stained with 0.05% crystal violet (w/v) for 10 seconds. Leaf cuticles 

134 were transferred to a slide, and mounted in warm phenol glycerine jelly. A coverslip was 

135 placed on top of the sample and left overnight at room temperature. Nail polish was then 

136 applied to the coverslip edges to preserve the cuticles from dehydration.

137 2.4.2 Sub-fossil samples

138 Leaf fragments were covered in a solution of 10% aqueous chromium trioxide (w/v), and left 

139 for between 24 hours and 5 days at room temperature. The resulting leaf cuticles were rinsed 

140 in RO water, then stained and then mounted onto slides using the same method as described 

141 for the modern leaves. Fossil cuticle slides are stored at The University of Adelaide 

142 collection.

143 2.5 Stomatal measurements

144 Leaf cuticles were examined with a light microscope (Olympus AX70), and 

145 photomicrographs were taken with an Olympus UC50 camera. Micrographs were analysed 

146 using imaging software (AnalySIS version 6.0.6001 Service Pack 1 Build 6001, Acer, 
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147 Australia). In the case of the sub-fossil leaves, three pieces of leaf cuticle per one cm of leaf 

148 core section were measured; these pieces of leaf cuticle were often fragmentary.

149 Stomatal size (μm2) was calculated as the mean of length by width of five guard cell pairs per 

150 piece of cuticle. Stomatal density (stomata mm-2) was determined by counting the number of 

151 stomata in a minimum 100 x 100 μm area on each cuticle. Where possible, a 200 x 200 μm 

152 area was used for stomatal counts with three of these areas counted per cuticle. Three of the 

153 one cm core sections had only one leaf fragment available for counting density, and three had 

154 only two leaf fragments available for this purpose. Final numbers for stomatal density were 

155 n=62, and for stomatal size were n=93. Stomatal density had fewer measurements as some 

156 leaf pieces were too small to determine stomatal density but we were able to measure 

157 stomatal size.

158 For the modern leaves we present individual measurements of the abaxial and adaxial leaf 

159 surfaces for stomatal density and size and compare these with stomatal traits from sub-fossil 

160 samples.

161 2.6 Environmental data

162 Environmental data were obtained using the Scientific Information for Land Owners (SILO) 

163 database for the location 27.7°S, 153.2°E. SILO is a database compiled and interpolated from 

164 observational data collected by the Australian Bureau of Meteorology (Jeffrey et al., 2001) 

165 The data obtained from SILO were mean annual values for minimum air temperature (°C), 

166 and class A pan evaporation (mm year−1).

167 The mean annual minimum temperature ranged from 14.1°C for the 1994 dataset to 15.7°C 

168 for the 1998 dataset. Class A pan evaporation ranged from 3.97 mm year-1 in 1999 to 4.66 

169 mm year-1 in 1994. As leaf longevity for M. quinquenervia is 2-4 years (M. Greenway, 

170 Griffith University, Australia pers. comm; Van et al., 2002), environmental data from two 

171 years prior to leaf litter collection have been compared with stomatal data.

172 2.7 Statistical analyses

173 All statistical analyses have been run in RStudio. Locally Weighted Least Squares Regression 

174 (loess) shows smoothed relationships between stomatal density and size for both modern and 

175 sub-fossil specimens. Loess also shows smoothed relationships between stomatal size and 

176 climate variables.
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177 ANOVAs have been performed to test significance between the measures of sub-fossil and 

178 modern populations of stomatal size and density.

179 3. Results

180 3.1 Stomatal size and density

181 The difference between sub-fossil and modern stomatal density, size is not statistically 

182 significant. Modern and sub-fossil differences are as follows: stomatal density P = 0.264; 

183 stomatal size P = 0.327. Notably, there was a greater range in values for stomatal size and 

184 density in the sub-fossil data set than the modern one (Figs. 5 and 6). The sub-fossil leaves 

185 contained the largest and smallest stomata, and likewise the highest and lowest stomatal 

186 densities. For the combined modern and sub-fossil data sets, there was a negative relationship 

187 between stomatal size and density (Fig. 3).

188 3.2 Correlation of stomatal size to climate

189 The assumptions for linearity were not satisfied for any relationships discussed here, thus any 

190 correlations can only be considered as general trends. Stomatal size of leaves from the 

191 modern dataset was weakly, but significantly correlated with class A pan evaporation (Fig. 

192 4). Variation in class A pan evaporation explained 8.1% of the variation in stomatal size for 

193 M. quinquenervia. Stomatal density did not correlate with class A pan evaporation. There 

194 were also no correlations between stomatal size or density from the modern dataset with 

195 mean daily minimum temperature. There is a weak correlation between minimum 

196 temperature and stomatal size; minimum temperature explained 5.6% of the variation in 

197 stomatal size.

198 4. Discussion
199 This study investigated relationships between stomatal morphology and temperature, 

200 evaporation and CO2 using M. quinquenervia leaf litter collected over twelve years from 

201 1992 to 2003. We also measured stomatal traits of sub-fossils of the same species collected 

202 from a lake covering the period from 7300 years ago to 1975 AD. 
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203 4.1 Stomatal density and size

204 The negative relationship we observed between stomatal density and size of both the modern 

205 and sub-fossil Melaleuca quinquenervia leaves was similar to observations reported in 

206 previous studies on different species. These studies have shown a negative, logarithmic 

207 relationship between stomatal size and density (for example Brodribb et al., 2013; Franks and 

208 Beerling, 2009). This relationship between stomatal size and density is likely to be due to the 

209 limited leaf area that is available for stomata (Brodribb et al., 2013), but it also has functional 

210 significance as more, smaller stomata result in a higher maximum potential water loss than 

211 fewer, larger stomata with deeper pores (Brodribb et al., 2013; Franks and Beerling, 2009).

212 4.2 Climate correlations

213 Minimum temperature was weakly correlated with short-term changes in stomatal size in the 

214 modern M. quinquenervia leaves (Fig. 3). A larger stoma creates a longer diffusion path for 

215 water to travel along when exiting the leaf during transpiration (Nobel, 2009), and thus 

216 reduces transpiration rates. Our analyses showed that larger stomata in M. quinquenervia 

217 leaves formed during periods of warmer minimum temperatures. Temperature is directly 

218 proportional to vapour pressure deficit, and warmer minimum temperatures create a larger 

219 VPD and thus a greater driving force for water to evaporate through open stomata. For a 

220 given VPD, larger stomata would slow evaporation relative to smaller stomata, and thus 

221 retain water for longer. 

222 There was no correlation between stomatal density and temperature, thus, it could be argued 

223 that there was no functional change in potential water loss as only stomatal size changed 

224 weakly in response to temperature. The lack of response by stomatal density to temperature 

225 leads to the hypothesis that stomatal size is a more plastic phenotype than the former two 

226 variables with temperature changes. 

227 There is no correlation between stomatal size and evaporation. It is possible, however, that 

228 stomatal size in leaves of M. quinquenervia is unrelated to evaporation because it frequently 

229 occurs in areas where the water table is high (e.g. wetlands and lake edges). It also has 

230 apogeotropic roots that are adapted to rising and falling water tables. McJannet (2008) 

231 demonstrated that stand transpiration of M. quinquenervia was unaffected by variation in 

232 water table depth due to these root systems. Thus, in this high water environment, 

233 evaporation is unlikely to be a limiting factor. 
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234 Throughout the 7300 year Holocene leaf accumulation, the stomatal size of the sub-fossil 

235 samples regularly fall outside the range of that of the modern dataset. The correlation of 

236 stomatal size of the modern dataset to minimum temperature likely reflects the correlation 

237 between these variables during the Holocene, although it is important to note the temporal 

238 range between these two is quite different, since we are comparing a 12 year data set with a 

239 7500 year one and the range of temperatures and evaporation will be different, but we do not 

240 know the extent of this. As such, the weak correlation between stomatal size and minimum 

241 temperature can not be considered for use as a palaeo-temperature proxy. Change in stomatal 

242 anatomy has been shown to correlate with CO2 changes though we do not consider this to be 

243 the case for change in M. quinquenervia stomatal size as CO2 only increased by ~20ppm 

244 during the Holocene (Indermühle et al., 1999). 

245 During the Holocene, large changes in El Niño-Southern Oscillation (ENSO) caused 

246 variability in rainfall events; an intensification of ENSO in the late-Holocene has been noted 

247 in a range of proxies from the Eastern Pacific (for example Conroy et al., 2008; Koutavas and 

248 Joanides, 2012; Moy et al., 2002) and Australia (for example Barr et al., 2019; Donders et al., 

249 2007; Quigley et al., 2010; Shulmeister and Lees, 1995). However, an intensification of 

250 ENSO leading to larger rainfall events mediated by M. quinquenervia’s root system is thus 

251 not reflected in stomatal size during the Holocene. There is evidence that there were cold 

252 periods in other parts of the world apart from Stradbroke Island during the Holocene (Wanner 

253 et al., 2011). Barr et al. (2019) used sediments from the same species in the same region of 

254 Australia to calculate a rainfall proxy for Stradbroke Island during  the Holocene. These 

255 authors were able to use carbon isotope values to do this reconstruction and our data are not 

256 similar to theirs (Barr et al., 2019) as we were unable to demonstrate a rainfall response in 

257 stomatal density or size and thus could not reconstruct a proxy for rainfall. Potential reasons 

258 for this include stomatal size and density responses occuring at a longer time scale-years- 

259 than carbon isotopes-weeks. It is also possible that M. quinquenervia stomata are not that 

260 sensitive to environmental changes, whereas carbon isotope composition is sensitive to 

261 rainfall variation. Finally, it is always going to be more difficult to obtain stomatal data 

262 because of the limited amount of sub-fossil material available, whereas the M quinquenervia 

263 C isotope data were obtained from sediment cores. Thus, is that carbon isotope composition 

264 may be a better proxy than stomata.

265 However, more evidence of temperature and evaporation forcing on stomatal morphology is 

266 required before we can use these data to create proxies of Holocene climate. The 
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267 relationships found here are weak for temperature and evaporation response and more data 

268 are needed to detect subtle correlations with climate. These include collection of herbarium 

269 data from a wider spatial and temporal range, including invasive M. quinquenervia from 

270 Florida and an increase in the sample size of sub-fossil leaves.

271 4.3 Conclusion

272 This study showed that stomatal size correlated with minimum temperatures indicating a 

273 response by leaf anatomy to changes in VPD. Apogeotropic roots account for the lack of 

274 stomatal anatomy correlation to evaporation in a region that experiences inundation. The sub-

275 fossil dataset indicates that there may have been climate influences forcing stomatal change, 

276 however, we did not find stomatal size or density to be reliable proxies of palaeo-

277 environments. Analysis of a larger dataset of sub-fossil and modern leaves is required to 

278 detect any more subtle correlations between stomatal anatomy and climate variables.
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378 7. List of Figures and Tables
379 Table 1. Ranges and means of stomatal parameters for modern and sub-fossil datasets 

380 of Melaleuca quinquenervia. For the modern dataset, both stomatal size and density have the 

381 same number of observations,  n= 126. For the sub-fossil material stomatal density 

382 measurements, n = 177, for the sub-fossil material stomatal size measurements n = 184.

383 Figure 1. Location of field sites where the modern leaves (Carbrook) and sub-fossil 

384 leaves (Swallow Lagoon) of M. quinquenervia were collected (map modified from Figure 1c 

385 of Tibby et al., 2016).

386 Figure 2. The relationship between stomatal density and size for modern (closed circles) 

387 and sub-fossil (open circles) leaves of M. quinquenervia.The line is a loess smoothed model.

388 Figure 3. Relationship between mean daily minimum temperature and stomatal size is a 

389 smoothed loess line for the modern M. quinquenervia leaves (Multiple R-squared = 0.08, P = 

390 0.001).

391 Figure 4. Relationship between class A pan evaporation and stomatal size is a smoothed 

392 loess line for the modern M. quinquenervia leaves (Multiple R-squared = 0.056, P = 0.007).

393 Figure 5. Changes in stomatal density during the Holocene for M. quinquenervia from 

394 sub-fossil samples. The dotted lines indicate the maximum and minimum values of stomatal 

395 density, for the modern dataset (Table 1).

396 Figure 6. Changes in stomatal size during the Holocene for M. quinquenervia from sub-

397 fossil samples. The dotted lines indicate the maximum and minimum values of stomatal size, 

398 for the modern dataset (Table 1).

399
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400 8. Tables
401 Table 1.

Modern data set Sub-fossil data set

Min. Max. Mean  SE Min. Max. Mean  SE

Stomatal density
(stomata mm-2)

175 525 327 ± 6 75 900 344 ± 12

Stomatal size
(μm2)

353 1240 740  13 139 1699 710 ± 24
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