
Design and Mechanism Study of Electrocatalysts for Alkaline 

Hydrogen Evolution 

Xuesi Wang 

School of Chemical Engineering and Advanced Materials 

Faculty of Engineering, Computer and Mathematical Science 

A thesis submitted for the degree of Doctor of Philosophy 

The University of Adelaide 

June 2019 



Table of Contents 
Abstract ......................................................................................................................... 1 

Declaration .................................................................................................................... 3 

Acknowledgments.......................................................................................................... 4 

Chapter 1 : Introduction ............................................................................................... 6 

1.1 Significance of the project ................................................................................. 6 

1.2 Research objectives ........................................................................................... 6 

1.3 Thesis outline .................................................................................................... 7 

1.4 References......................................................................................................... 7 

Chapter 2 : Literature Review ...................................................................................... 9 

2.1 Introduction ....................................................................................................... 9 

2.2 Design Strategies of Electrocatalysts for Alkaline Hydrogen Evolution ........... 10 

2.3 Electronic and Structural Engineering of Carbon-Based Metal-Free 

Electrocatalysts for Water Splitting ............................................................................ 47 

Chapter 3 : Anomalous Hydrogen Evolution Behavior in High-pH Environment 

Induced by Locally Generated Hydronium Ions ........................................................ 58 

3.1 Introduction ..................................................................................................... 58 

3.2 Anomalous Hydrogen Evolution Behavior in High-pH Environment Induced by 

Locally Generated Hydronium Ions ........................................................................... 59 

Chapter 4 : Breaking the Volcano-Plot Limits for Pt-based Electrocatalysts by 

Selective Tuning Adsorption of Multiple Intermediates .......................................... 102 

4.1 Introduction ................................................................................................... 102 

4.2 Breaking the Volcano-Plot Limits for Pt-based Electrocatalysts by Selective 

Tuning Adsorption of Multiple Intermediates........................................................... 103 

Chapter 5 : Strain Effect in Bimetallic Electrocatalysts on the Hydrogen Evolution 

Reaction  .................................................................................................................. 139 

5.1 Introduction ................................................................................................... 139 



5.2 Strain Effect in Bimetallic Electrocatalysts on the Hydrogen Evolution Reaction

140 

Chapter 6 : Conclusions and perspectives ................................................................ 165 

6.1 Conclusions ................................................................................................... 165 

6.2 Perspectives .................................................................................................. 166 

Appendix I: Publications during PhD Candidature ................................................ 168 

1



Abstract 

The hydrogen evolution reaction (HER) is one of the most important and fundamental 

electrochemical processes in sustainable photo/electrochemical energy generation 

technologies. However, even after decades of study, the HER mechanism in 

neutral/alkaline media is still unclear and the slow kinetics of the reaction remains an 

ongoing problem. Consequently, most of the alkaline HER catalysts, especially the highly 

cost-effective non-noble metal catalysts, are still inefficiently designed based on trial and 

error methods. This lack of knowledge surrounding the alkaline HER has not only affected 

the development of hydrogen-based catalysis, but also obstructed the proliferation of 

energy conversion technologies (e. g. fuel cell, sea water splitting etc.). Understanding the 

cause of the sluggish alkaline HER kinetics and developing efficient design protocols for 

highly active catalysts is now urgently required by both academia and industry. To this end, 

work contained in this thesis aims to contribute to meeting these needs. 

The first two chapters of this thesis provide a systematic review on the current 

understanding and progress on alkaline HER catalysts. These chapters have introduced the 

latest opinions on the reaction mechanism of alkaline HER, concluded the design strategies 

of almost all the current catalytic materials for the reaction and give outlook on the future 

development of the field. The last three chapters of the thesis are specially focused on noble 

metal catalysts, which are the most representative candidates for the alkaline HER. Here, 

the thesis presents a series of Pt-based catalysts in two parts. 

The first part of the thesis focuses on the unique alkaline HER mechanism on 

nanostructured electrocatalysts. So far, almost all studies on the alkaline HER mechanism 

are carried out using single/poly crystalline Pt as a model catalyst. However, it has been 

found that some of the mechanistic understandings drawn from the bulk model catalysts 

are inapplicable to highly active nanostructured catalysts in practice. Therefore, an 

alternative alkaline HER reaction mechanism for nanostructured catalysts was proposed 

based on the finding of a new reactive intermediate that has not been reported before on 

the model catalysts. In situ-Raman and a series of electrochemical characterizations were 

carried out to confirm that in a high-pH environment, a large amount of hydronium ions 
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(H3O+) are generated on the surface of nanostructured catalysts during the HER process. 

The H3O+ forms an acid-like environment on the surface of the catalysts which improve 

the overall activity by reducing the activation energy of the reaction. Such phenomenon 

distinct on nanostructured catalysts provides a comprehensive explanation to the observed 

differences in catalytic behavior between bulk and nanostructured catalysts. 

In the second part of the thesis, the origin of the high activity on nanostructured catalysts 

are studied from the perspective of the material. Firstly, a catalyst design strategy is 

proposed to break the activity limitation or ‘volcano plot’. A volcano plot is a relationship 

between the catalytic performance of a series of catalysts and a certain descriptor, which 

in the current case is the hydrogen adsorption ability. By investigating a group of typical 

nanostructured catalysts, a volcano plot was built up for Pt-based bimetallic materials, and 

some unique dealloyed samples were found to go beyond the limitation of the volcano plot 

and represent much higher activity than theoretical predictions. Thermodynamic and 

kinetic characterizations indicate that the reason for the unusual performance of these 

samples is that dealloying can selectively optimize the H and OH binding energy on Pt 

sites, promoting the overall activity. Secondly, well-defined RuPt alloy and core-shell 

(Ru@Pt) nanoparticles were studied to demonstrate the contribution of the electronic and 

geometric effects of a nanostructured catalyst towards alkaline HER performance. The two 

groups of nanoparticles have similar electronic structures but differing surface strain. A 

comparison between the catalytic activity of the two materials indicated that the strain 

effect has a dominant role in determining the intrinsic alkaline HER activity of the catalyst. 

In particular, the compressive surface strain of Ru@Pt nanoparticles provided the catalyst 

with weakened hydrogen binding and improved interaction with hydroxyl species, leading 

to enhanced apparent activity. 
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Chapter 1 : Introduction 

1.1 Significance of the project 
Hydrogen-based energy conversion technologies (e. g. photo/electrocatalyzed water 

splitting, carbon dioxide and nitrogen reduction) provide solutions toward the generation 

of renewable energy sources that hopefully will replace fossil fuels in the future.1-4 One of 

the core obstacles for these technologies to be further commercialized is the slow kinetics 

of the involved electrochemical processes in aqueous electrolytes.5-6 Being the most 

fundamental and most generally involved reaction in energy conversion process, alkaline 

HER is often used as a model catalysis to study the reaction mechanism of the hydrogen-

based energy conversion reactions. However, even after decades of efforts, there’s still no 

systematic explanation on the slow alkaline HER reaction kinetics.5, 7 Moreover, the 

limited mechanism studies of alkaline HER are usually carried out on single/polycrystal 

bulk metal, which is far from the nanostructured catalysts in practice.8-10 For alkaline HER, 

comprehensive mechanism understanding on nanostructured materials and corresponding 

catalyst-designing strategies are urgently needed for its further development in both science 

and industry. 

1.2 Research objectives 
The major goal of this thesis is to discover the reaction mechanism of alkaline HER on 

nanostructured catalysts and to find out the activity origin on highly active catalysts. The 

objectives of this thesis are as follow: 

• To discover the reaction mechanism of alkaline HER on nanostructured catalysts based 

on a series of model Pt-based nanoparticles. 

• To identify the origin of the anomalous hydrogen evolution behavior of the 

nanostructured catalysts in alkaline environments. 

• To investigate the relationship between the HER activity and the intrinsic electronic 

structure of the nanostructured catalysts.  

• To evaluate the influence of a variety of intermediates toward the alkaline HER activity.  

• To design an applicable strategy to break the current activity limitation for most 

commonly used alkaline HER catalysts. 
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• To optimize the geometry of the Pt-based catalysts for better catalytic performance in 

alkaline environment. 

1.3 Thesis outline 
This thesis is partial outcomes of my PhD research presented in the form of journal 

publications. The chapters in this thesis are presented in the following sequence: 

• Chapter 1 introduces the general background and the significance of the project. It 

provides an outline and the research purpose of the current thesis.  

• Chapter 2 reviews the current development, mechanism understanding and the 

designing strategies of the electrocatalysts for HER.   

• Chapter 3 reports new reaction mechanism found for nanostructured catalysts in 

alkaline HER under high-pH environment. 

• Chapter 4 proposes and studies a new strategy for breaking the known adsorption-

activity limitation for Pt-based nanostructured catalysts in alkaline HER.  

• Chapter 5 studies the strain effect on a RuPt-based bimetallic nanoparticle and its 

influence toward the intrinsic HER activity of the catalysts. 

• Chapter 6 provides the conclusions and perspectives for future work on design and 

improvement of the alkaline HER catalysts. 

1.4 References 
1. Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S.-Z. Understanding 

the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and 

hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646-7659. 

2. Tang, C.; Qiao, S.-Z. How to explore ambient electrocatalytic nitrogen reduction 

reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166-3180. 

3. Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. 

F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical Ammonia Synthesis—The Selectivity 

Challenge. ACS Catal. 2016, 7, 706-709. 

4. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels 

from electrochemical interfaces. Nat. Mater. 2016, 16, 57-69. 
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Int. Ed. Engl. 2018, 57, 7568-7579. 

6. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. 

What would it take for renewably powered electrosynthesis to displace petrochemical 

processes? Science 2019, 364, eaav3506. 

7. Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. Electrocatalysts for 

Hydrogen Oxidation Reaction in Alkaline Electrolytes. ACS Catal. 2018, 8, 6665-6690. 

8. Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen Oxidation and Evolution 

Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Soc. 2010, 

157, B1529-B1536. 

9. Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y. Correlating the hydrogen evolution 

reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic 

surfaces. Energ. Environ. Sci. 2013, 6, 1509-1512. 

10. Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J. G.; Yan, Y. Correlating 

hydrogen oxidation and evolution activity on platinum at different pH with measured 

hydrogen binding energy. Nat. Commun. 2015, 6, 5848. 
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Chapter 2 : Literature Review 

2.1 Introduction 
This chapter can be divided into two parts. 

In the first part, the reaction mechanism and catalyst designing strategies for alkaline HER 

is reviewed in general. With the fast-growing hydrogen economy, there’s an increasing 

demand for technologies such as electrocatalytic water splitting in order to produce 

hydrogen-based energy carriers. For most of these technologies, the generation of hydrogen 

is taken place in alkaline or neutral media for safety and technique reasons. However, the 

HER kinetics in these media is usually 2-3 magnitudes slower than in acid environment. 

As the reaction mechanism of alkaline HER is still unclear, the origin of such slow kinetics 

is still a mystery. As a result, there’s no systematic theoretical guide in catalyst designing 

for the reaction. So far, the development of catalysts for alkaline HER is still mostly based 

on a trial and error method. 

To this end, this section of the review provides direct guidelines for alkaline HER from the 

perspective of mechanism study and material engineering. Both the classic ideas and the 

latest understanding of alkaline HER mechanism is represented in clear storylines 

according to the different theoretical viewpoints. Based on that, a series of catalyst 

designing strategies are listed closely aiming to make up for the kinetic drawbacks in 

alkaline HER catalysts. Detailed material engineering methods are given accordingly with 

typical examples in giving instructions on how to tailor the electronic and physical structure 

of the material to achieve best catalytic performance. These strategies are not only of 

guidance toward catalyst design for alkaline HER, but also for other catalysis involving 

multiple intermediates. 

In the second part, a review is specifically given on catalysts in carbon-based metal-free 

materials. In the past few decades, carbon-based materials have attracted tremendous 

research interest because they are inexpensive and exhibit excellent performance as 

electrocatalysts for clean and sustainable energy conversion technologies. The excellent 

electrocatalytic activity of carbon was first discovered for the oxygen reduction reaction 

and was later extended to other reactions including water splitting and carbon dioxide 
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reduction. In principle, the performance of carbon-based catalysts is highly dependent on 

their electronic and physical properties. With the advances of theoretical calculations, 

advanced characterization techniques, and well-developed synthetic methods, researchers 

are now able to precisely engineer carbon nanomaterials to perform for specific reactions.  

Here, using the fundamental water splitting reactions as a platform, we present commonly 

used strategies for engineering carbon for highly active electrocatalysis. Systematic 

analysis is given on how dopants, edge effects, and topological defects can be applied in 

tuning the electronic band of carbon materials. Next, further discussion is given on how 

the physical structure of carbon can be engineered to synergistically coordinate with the 

electronic structure in order to achieve the best electrocatalytic performance. We hope that 

these strategies will provide useful guidance for designing carbon-based metal-free 

materials for broader applications. 

2.2 Design Strategies of Electrocatalysts for Alkaline Hydrogen 

Evolution  
This chapter is included as it appears as a journal paper published by Xuesi Wang, Yao 

Zheng, Wenchao Sheng, Zhichuan J. Xu and Shi-Zhang Qiao: Designing Strategies for 

Alkaline Hydrogen Evolution Electrocatalysts, invited review to be submitted to Materials 

Today. 
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Abstract 

Electrocatalytic hydrogen evolution reaction (HER) in alkaline environments is one of the major 

energy conversion processes in water electrolysis technology. Very active and cost-effective catalysts 

are highly desirable for alkaline HER not only for its industrial value, but also for its fundamental 

importance in studying all electrocatalytic reactions occurring on cathode electrodes. However, to date, 

the reaction mechanism of alkaline HER is still under debate, which makes the design of catalysts 

largely a trial-and-error process. To address this issue, here we present strategies for the design of 

alkaline HER catalysts based on the current knowledge of the reaction mechanism by emphasizing the 

connection between the atomic-level materials engineering and reaction fundamentals. Particularly, we 

focus on the improvement of the inherent electronic structure of the materials to achieve desired 

interactions between the catalysts and reactive intermediates. By showing several successful examples 

of both theoretical and experimental design strategies, we aim to provide direct guidelines toward the 

design of catalysts for HER under alkaline conditions. 

 

Keywords: Hydrogen evolution reaction; electrocatalysts; water dissociation; catalyst design; alkaline 

conditions. 
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Introduction 

Producing clean energy through electro/photocatalytic methods has been one of the top priorities for 

the science community in recent decades. Renewable fuels, from simple hydrogen to complex energy 

carriers such as C2 molecules and ammonia, can be produced from water, carbon dioxide (CO2) and 

nitrogen (N2) through electrochemical or photochemical processes under mild conditions.
1-6

 Among 

those, alkaline hydrogen evolution reaction (HER) plays a fundamental yet significant role for being 

the simplest cathode reaction in high pH environment. With only water dissociation and proton 

reduction processes, alkaline HER is critical in investigating the general role of water molecule in 

many reduction reactions.
5,7

 For example, an in-depth understanding of alkaline HER mechanism can 

build up strong foundation for the carbon dioxide reduction (CRR) and nitrogen reduction reaction 

(NRR), which always involve an initial water dissociation step (e.g. CO2 + 6H2O +8e
-
 ↔ CH4 +8OH

-
; 

N2 + 6H2O + 6e
-
 ↔ 2NH3 + 6OH

-
)(Figure 1).  

Although an in-depth understanding has been achieved for acid HER, the reaction mechanism for 

alkaline HER is still a long-standing puzzle. The main argument remains the explanation to the origin 

of the sluggish alkaline HER kinetics, which is being 2-3 orders of magnitude slower than that in acid 

environments.
8,9

 It is a general consensus that the HER process in these two environments shares a 

similar reaction pathway, except that the hydrogen intermediates (H
*
, 

*
 represent an adsorption site) in 

alkaline HER are generated through a water dissociation step. Thus, the overall reaction pathway of 

alkaline HER is as follows: 

H2O + e
-
 → H*

 + OH
-
 (Volmer) 

H2O + e
-
 + H

*
 → H2 + OH

-
 (Heyrovsky) or 2H

*
 → H2 (Tafel) 

Despite several theories have been proposed, the cause of the widely observed pH dependence of the 

HER activity is still unclear. For example, on the benchmark Pt surface, Markovic et al. suggested that 

the additional energy barrier introduced by water dissociation determines the rate of alkaline HER,
10,11

 

while the hydrogen binding energy (HBE) theory proposed by Sheng et al. states that the binding 
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energy between the catalyst and H
*
 intermediate dictates the reaction kinetics.

12,13
 Besides, other 

influential factors such as the potential of zero free charge (pzfc) and the efficiency of anion transfer 

through the electrochemical double layer region have also been reported.
14-16

 In general, all these 

theories focus on answering two key questions regarding the alkaline HER reaction mechanism: (i) 

what is the real cause of the slow kinetics; (ii) to what extent does water dissociation process influence 

the overall reaction kinetics in comparison to other factors (e.g., HBE and pzfc).  

Due to the unclear reaction mechanism, the development of the alkaline HER catalysts is still 

relying mainly on trial-and-error experiences. Specifically, without identifying the weight of influence 

of the intermediates (i.e., H
*
, OH

*
 and H2O

*
) involved in the reaction, the adsorption behavior of all 

these intermediates needs to be taken into account when designing a catalyst. By adjusting the 

electronic and physical structure of a material, it is desirable to build up a catalyst that has the lowest 

activation barrier and appropriate interaction ability with intermediates. Computational methods such 

as density functional theory (DFT) are often used to illuminate a quantitative relationship between the 

inherent characters of different materials and their HER performance (e.g., through a H adsorption 

ability - activity volcano plot).
17-19

 Although these results seem to fit the acid HER data perfectly, they 

are not such accurate for prediction of HER under alkaline environments. This is because in alkaline 

electrolytes, the HER reaction activity is most likely not only determined by one single rate-

determining step (RDS) that can be evaluated by a sole intermediate. Besides, for alkaline HER, other 

factors such as reactive interface, electrochemical environment, and physical hybrid constructions of 

the catalyst, are more influential toward the reaction process comparing to that in an acid 

environment.
20-25

 The best way to study these critical factors is in-situ characterization (both 

spectroscopy and electrochemistry),
26-28

 which may provide more advanced guidance for design of 

catalysts.  

In this review, we attempt to provide some recommendations for the design of highly active 

alkaline HER catalysts based on the newest theoretical and experimental achievements. First, we 
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briefly introduce the recent developments on the HER mechanism under alkaline conditions with 

special emphasis on the fundamentals of this process. Then, we discuss how this knowledge is linked to 

the principles of catalyst design by tailoring the electronic structure and/or creating active sites on the 

catalytic materials. We aim to (i) build up a clear connection between the mechanistic studies and the 

design of catalysts for alkaline HER; and (ii) directly present the catalyst design strategies based on the 

current knowledge. We hope that a comprehensive understanding of HER under alkaline conditions can 

provide more insights into other electrocatalytic reduction reactions like CRR and NRR under neutral 

conditions. 

Origin of the slow kinetics of HER under alkaline conditions 

Based on our best knowledge, one of the biggest mysteries about HER is the nature of its pH-dependent 

kinetics. As shown in Figure 2 a-c, it is very clear that the HER activity of a variety of Pt catalysts 

decreases continuously with increasing pH of electrolytes.
11,12,29

 For example, in an alkaline 

environment, the reaction activity can be two orders of magnitudes slower than that in acid media for Pt 

group metal catalysts. Such difference can be also reflected in kinetic and thermodynamic parameters 

for the majority of catalysts, including exchange current density (j0), Tafel slope and reaction activation 

energy(ΔH).8,9
 For more than a decade, some in-depth research has been done using model catalysts (Pt 

group single crystals) to find out a comprehensive explanation of this phenomenon.
10-16,30

 Based on all 

these works, the current studies are focusing on three most possible scenarios considered by: water 

dissociation theory, HBE theory, and interface water and/or anion transfer theory. So far, it is still hard 

to judge, which of these theories, if any, is close to the real mechanism of HER under alkaline 

conditions.  

Water dissociation theory: what is the role of OH? 

In acid environments, the abundant H
+
 in electrolytes can create H

*
-rich surface under an overpotential 

condition, while in alkaline/neutral environments, H
*
 can only be originated from water dissociation 
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process (H2O + 
*
 ↔ H*

 + OH). Therefore, it is very reasonable to conclude the energy barrier induced 

by extra water dissociation is the cause to the slow alkaline HER kinetics. Based on the systematic 

experiments performed for a series of Pt-based materials, Markovic et al. were the pioneers in 

explaining the effect  of water dissociation on the  HER kinetics under alkaline conditons.
10,31

 They 

suggested that during water dissociation process, adsorption of OH
*
 competes with H

*
 on one single 

active site, therefore weakening the generation of H2. By providing separate oxophilic sites that can 

host OH
*
 for water dissociation, the generation of H

*
 can be largely promoted, thus, improving the 

kinetics of Volmer step. For example, a well-defined Pt (111) catalyst with extra water dissociation 

sites (e.g., M (OH)2 clusters, M = Fe, Co, Ni) was constructed to demonstrate this concept (Figure 2d). 

It was proved that the aforementioned M(OH)2 sites can significantly improve the interaction between 

the catalyst and OH
*
, in turn, promote the water dissociation rate and overall HER activity. Based on 

this principle, it was later found that by creating dual sites for water dissociation using other oxophilic 

metals (such as Ru), one can further enhance HER activity under alkaline conditions.
11,32-34

 It was even 

reported that the activities of Pt0.1Ru0.9 in alkaline solutions and Pt in acid solutions are identical 

(Figure 2e).
11

 

However, although the ‘dual active sites’ strategy indeed improves the catalyst’s activity for 

alkaline HER, the enhancement origin raises some doubts. It was suggested that the outstanding 

alkaline HER kinetics of dual-site catalysts is not due to the so-called ‘dual active sites effect’, but 

likely due to the changed electronic structure of the material.
35,36

 Moreover, the original electronic 

structure of a metal can be altered when a second metal is introduced. With an optimized HBE, one 

catalyst’s overall HER performance can also be enhanced.
37,38

 This has been proved in the case of 

Ru@Pt nanoparticles, in which the oxiophilic Ru sites are fully covered by Pt and cannot provide water 

dissociation sites.
39

 Nevertheless, the Ru@Pt nanoparticles represent much better HER activity as 

compared to Pt or RuPt alloy.
33,40

 Besides, more recent studies suggest that adsorption of OH
*
 does not 

participate in the Volmer step of alkaline HER, nor does it affects the HER activity.
30,41

 These doubts 
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have led to a more detailed consideration of catalyst-intermediate interactions in alkaline HER process 

beyond the initial water dissociation step.  

Although it was suggested that adsorption of OH
*
 does not affect the activity of alkaline HER, 

the origin of slow HER kinetics is still believed to be related to the role of OH
-
. Using in-situ X-ray 

absorption near edge structure (XANES) characterization, Jia et al. recently proposed that the transfer 

of OH
*
 is the RDS for alkaline HER, and this process can be promoted by the presence of adsorbed 

hydroxyl-water-alkali metal cation (OHad-(H2O)x-AM
+
) in the double layer region.

15
 The OHad-(H2O)x-

AM
+
 adduct can help directly to remove OH from the electric double layer to the bulk solution right 

after water dissociation, therefore, promoting the overall HER activity (Figure 2f). Noticeably, unlike 

the water dissociation theory, where adsorption of OH
*
 is considered to be the key descriptor of the 

reaction,
10

 Jia et al. theoretical considerations emphasize the importance of transport process of OH
*
 

through the double layer, i.e., the overall activity of a catalyst is not determined by the OH
*
 binding 

energy, but is largely dependent on the presence of metal cation (AM
+
) and the structure of the electric 

double layer. By changing the AM
+
 species in electrolytes (e.g., using Li

+
 instead of K

+
), the kinetics of 

OHad transfer can be altered and the overall HER activity can be increased. As the abundance of OH
-
 

and AM
+
 is pH-dependent, the HER kinetics is in turn closely controlled by the pH on the catalyst 

surface. 

HBE theory: Is HBE a universal descriptor for HER? 

Considering that the reaction pathway of HER is similar in alkaline and acid environments and is 

closely related to the catalyst-hydrogen interactions, many researchers believe that the HER activity is 

determined by the same factor in all pH environments: HBE of the catalyst.
13,35,36

 The first 

experimental evidence for this theory was provided by Yan et al.
13

 Using polycrystal Pt as a model 

catalyst, they proposed a systematic study on the dependence of HBE as a function of the electrolyte 

pH. As shown in the cyclic voltammetry (CV) of polycrystal Pt (Figure 3a), the peaks reflecting the 

under potential deposition of hydrogen (Hupd) can be assigned to Pt (110) and Pt (100), respectively.  
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The position of these peaks shows a pH-dependent shift. When the pH increased from 0.2 to 12.8, the 

Hupd peak shifts positively by 0.15 V, directly reflecting the pH-dependent HBE of Pt. Further, it is 

suggested that a stronger HBE leads to a higher activation barrier, which is responsible to the slow 

HER kinetics in high-pH environments. Similar phenomena were also found in nanostructured metal 

catalysts with good HER activity such as Pt, Ir, Pd and Rh (Figure 3b).
12

 For these nanostructured 

catalysts, an obvious trend throughout all pH range is that a weaker H adsorption leads to larger 

exchange current density, and vice versa. This further suggests that HBE changes under various OH
-
 

environments and determines the overall HER activity. Interestingly, HBE of a catalyst was shown to 

be an inherent property of a material and should be independent on the change of pH in local 

environments.
8,9

 To explain this contradiction, Yan. et al. hypothesized that the changed 

hydrogen/water adsorption energies result from different water dipole orientation under various OH
-
 

concentrations of the electrolytes.
12

 In other words, it is believed that the intermediates other than H
*
 

(e.g., OH
*
 and H2O

*
) only influence the reaction by altering HBE of the catalyst. Although this 

hypothesis has not been confirmed experimentally, computational calculations showed that the 

orientation of water on Pt surface can indeed be changed under different pH conditions. Using 

molecular dynamics simulation, Goddard et al. simulated alkaline HER process under different 

conditions and concluded that the pH-dependent HER activity is due to the changes of water adsorption 

on the electrode.
42

 Specifically, under a higher pH value and a more negative applied potential, Pt (100) 

electrode becomes more hydrophobic as represented by the orientation distribution of water molecules 

close to the surface.  As a result, the water adsorption decreases with increasing pH value, which in 

turn, increases the hydrogen bonding within the monolayer (Figure 3c, d). Based on this argument, 

they claimed that the weakened water adsorption is the dominant cause of the pH-dependent HBE. 

Despite the successful theoretical computations, the HBE dependent theory seems to be not 

universal. For example, on Pt (111) surface, while the HER activity largely alters under different pH 

conditions, the position of Hupd peak does not change much.
14

 As a result, many researchers suggested 
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that the nature of Hupd is unlikely to be determined by adsorption of hydrogen alone.
14-16

 Therefore, the 

atomic-scale electrochemical interface structure on the catalyst surface was taken into account. For 

example, the changes in the electric double layer under different pH and its influence on the overall 

reaction have been considered. Koper et al. proposed a model indicating that the barrier of alkaline 

HER depends on the relationship between the electrode potential and pzfc.
14

 They found that the Hupd 

peak shifts in the same way as pzfc under changing pH conditions. Therefore, it is believed the changed 

pzfc alters the reorganization energy of the interfacial water to move H
+
 or OH

-
 from the electrode 

surface to the electrolyte bulk. For HER in any water-based electrolyte, hydrogen adsorption has to 

proceed through the charge transfer within the interfacial double layer. The efficiency of such charge 

transfer is dependent on the charge separation between the electrode and the bulk electrolyte, which is 

determined by the position of pzfc. In an acid environment, the pzfc of Pt is close to the potential of 

hydrogen adsorption region. This means the reorganization energy is relatively small, while in an 

alkaline environment, such energy is much larger in comparison to that in acid environment. By 

introducing Ni hydroxide deposition on the Pt (111) surface, the pzfc can be shifted close to the 

potential of hydrogen adsorption region, therefore reducing the activation barrier for hydrogen 

adsorption and improving the overall activity. Importantly, this result provides a reasonable explanation 

to the so-called ‘dual-site’ alkaline HER electrocatalysts from the perspective of catalyst-hydrogen 

interactions.  

Designing of the alkaline HER catalyst 

As discussed before, it is still unsure whether water dissociation or hydrogen adsorption are the key 

factors in boosting the alkaline HER kinetics. As a result, many alkaline HER catalysts were designed 

following the guidelines for acid environments. Such methodology is based on the discovery of 

Nørskov et al.,
18,19,43

 which has been proved to be applicable for the reactions with a single type of 

reactive intermediates that is directly related to the RDS of the reaction, such as ORR and acid HER. 
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This designing strategy always starts from analysis of the electronic structure (e.g., position of D-band 

center) of a group of materials by DFT computations
17-19

 Afterwards, the adsorption ability toward key 

reactive intermediates (e.g., H
*
 for acid HER or OOH

*
 for ORR) can be estimated and be linked to the 

materials’ inherent property.
44-46

 With this information, the so-called descriptor-based ‘volcano plot’ 

can be built up to directly represent the relationship between the calculated adsorption ability and the 

apparent activity of the catalysts.
47,48

 A candidate with the best activity is located at the top of the 

volcano plot.
43,49,50

  

However, it is still doubtful whether such strategy is applicable for alkaline HER. As both OH
-
 

and H
+
 ions participate in the reaction, it is important to evaluate the influence of both intermediates 

toward the catalytic activity and to design the balanced active sites correspondingly. From the 

perspective of catalyst design, all strategies for material engineering applied to catalysts should aim to 

achieve both or either of the two goals: optimizing the thermodynamics of the reaction by lowering 

water dissociation barrier; and/or enhancing the reaction kinetics by improving the catalyst-H 

interaction. In material engineering, several operational approaches can be used to achieve this goal, 

and they can be classified into a few categories, such as dual-site, surface strain and electronic structure 

engineering, which nowadays covers the design of the most successful alkaline HER catalysts (Figure 

4). Note that good physical properties such as large active area and high conductivity can always 

benefit the activity of a catalyst. It is a regular routine that is applicable for all electrocatalysts despite 

of a specific reaction. Such strategies were explored in many excellent works and would not be 

emphasized in this review.
26,51,52

 Here, we only focus on the methods that can optimize catalysts’ 

inherent properties by using chemical approaches.  

Creating dual active sites 

Although the specific role of OH
-
 is yet unknown in alkaline HER, it is clear that the interaction 

between the catalyst and OH
-
 is one of the key factors in controlling the catalytic activity. However, 

balancing the adsorption/desorption ability toward OH
*
 and H

*
 on one site is extremely hard due to the 
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poorly known scaling relationship between the binding energy of these two intermediates. In order to 

separately gain control over OH
*
 and H

*
, one of the most accepted strategies is to create dual active 

sites that can individually feature distinct functions. Under this concept, Markovic et al. reported a 

series of catalysts by decorating bulk Pt with another metal or metal hydroxide sites.
10,11,31,53,54

 The 

general idea was to achieve a hybrid material with an appropriate HBE for HER by coupling a  material 

on the top of the acid HER volcano plot, such as Pt, with an oxophilic metal that can provide good OH
-
 

interaction sites for water dissociation process. A comparison of oxophilicity for several commonly 

used materials are shown in Figure 5a; a stronger oxophilicity indicates a stronger OH binding energy, 

vice versa.
55

 Just like the case of HBE, the OH binding energy of a catalyst has to be neither too strong 

nor too weak in order to provide a proper catalyst-water interaction. Thus, a few candidates, such as Ni, 

Ru and Co, stand out for their appropriate oxophilicity. These materials are widely used in the design 

of catalysts with dual active sites and exhibit an outstanding performance.
56-60

  

Based on the success of the alloys with dual sites, non-noble materials have been used to replace 

Pt as H
*
 interaction sites to construct more cost-effective catalysts. Just like Pt, MoS2 and graphitic 

carbon nitride (g-C3N4) have all been proved to have perfect hydrogen adsorption ability in HER 

process. A good such example was reported by Yang et al., who used MoS2 as H-active material and 

the layered double hydroxides (LDH) as OH-active sites for good HER performance (Figure 5b).
61

 

The DFT calculations showed that the increased performance of MoS2/LDH heterostructures is due to 

the lowered activation energy (Figure 5c), which is a result of the optimized water dissociation process. 

Just like Pt/Ni(OH)2, the MoS2/LDH provides distinct sites for H adsorption (on MoS2) and water 

dissociation (on LDH). These sites act synergistically in promoting the overall alkaline HER process 

(Figure 5d). Similar as H-adsorption sites, OH-interaction sites can also be engineered or replaced with 

several materials. In another work, 2D MoN was used as OH
*
 adsorption site and coupled with C3N4 to 

boost alkaline HER.
62

 Using a salt-templated method, 2D MoN was fabricated and bonded to C3N4 

through an electrostatic interaction (Figure 6a). Interestingly, such 2D MoN-C3N4 represents similar 
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HER activity in 1 M KOH and 0.5 M H2SO4 electrolytes (Figure 6b), which is very rare in the case of 

HER catalysts. Such trend indicates that the reaction barrier induced by water dissociation process does 

not affect the activity of 2D MoN-C3N4 due to the superior water dissociation ability of 2D MoN as 

confirmed by DFT computations (Figure 6c). By tuning the g-C3N4 to MoN ratio, the activity of the 

catalyst can be directly controlled as shown in the volcano plot, further indicating the importance of the 

balance between hydrogen adsorption (on C3N4 site) and water dissociation (on MoN site) abilities on a 

catalyst (Figure 6d). Similar dual-site catalysts with high alkaline HER activity such as Ni(OH)2/MoS2 

and Ni (Fe, Co, Ru) doped MoS2 were reported.
56,61,63-68

 In all cases, the successful designs are based 

on the idea of proper balancing water dissociation and hydrogen adsorption, which is proved to be an 

effective strategy for improving the activity of a catalyst for alkaline HER. 

Controlling the electronic structure of the catalysts 

For most of heterogeneous catalysts, the electronic structure is the sole factor that determines their 

inherent adsorption abilities toward all kinds of intermediates.
17,22,26,44

 Thus, interfering the electronic 

band of a catalyst is an effective way to control its catalytic performance. In particular, for alkaline 

HER, tuning the electronic structure of a catalyst mainly aims to improve its HBE, similar to the 

strategies in acid environments.  

Metal catalysts: D-band engineering. For hydrogen, higher vacancy of the d-band of a metal catalyst 

indicates an upshift of d-band center in energy toward the Fermi level, which leads to a stronger 

adsorptive hydrogen bond, and vice versa.
18,19,44

 Alloying one metal with another is the most efficient 

way to engineer the d-band vacancy of a metal-based catalyst. As shown in Figure 7a, for most of 

metal catalysts, their HBE can be altered by alloying with a second metal, mostly as a result of the 

mass electron transfer between two different metal sites.
37,46

 In some cases, such massive electron 

transfer can also contribute to the electronic structure of the non-metallic sites, which work 

synergistically with metal alloy for the overall catalytic performance. One such example is a series of 

RuCo alloy encapsulated in N doped graphene layer.
59

 Although Ru itself is already a very active metal 
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in catalyzing alkaline HER, the activity and stability of RuCoC alloy are even much better (Figure 7b). 

DFT calculations indicate that the good performance is closely related to the special electron structure 

of the carbon shell, in which the electron transfer from the metal to the carbon shell is largely changed 

due to the alloying of RuCo (Figure 7c). As a result, the C-H bond on the carbon surface is enhanced, 

lowering HBE of the catalyst, and improving the overall activity. Similar examples were also reported 

for other alloy catalysts.
69-75

 For example, Huang et al. reported a PtNi/NiS nanowire that exhibited a 

5.58 times higher current density than Pt/C at -0.07 V vs. RHE.
76

 Zheng. et al. reported a PtNi alloy in 

the form of hexagonally close-packed nano-multipods that showed a much better HER activity than 

Pt/C.
77

  

Noticeably, editing the electronic structure through alloying can also activate non-noble metal 

materials that normally have poor HER activities.
71,72,74,78

 Chen et al. reported a Cu-Ti bimetallic 

electrocatalyst that represents an outstanding alkaline HER activity.
72

 By adjusting Ti’s concentration 

in the catalyst, the electronic structure of CuTi was altered, and HBE of the catalyst was optimized to a 

much more appropriate level, which placed this catalyst at the top of the volcano plot. As a result, 

although neither Cu or Ti is a good HER candidate, the Cu-Ti catalyst exhibited a tremendous 

activity.
72

 Similar situation was reported for MoNi4 alloy.
79

 Although Mo, Ni, and MoO2 exhibit very 

sluggish alkaline HER kinetics, MoNi4 alloy featured a significantly improved electronic structure and 

showed an outstanding water dissociation ability due to the reconstructed electronic structure of the 

alloy. These properties of MoNi4 guaranteed its outstanding HER activity in alkaline environment. 

Transition-metal based catalysts: Defect engineering and heteroatom doping. Thanks to the fast-

developing synthesis techniques, earth abundant and cost-effective transition metal dichalcogenides, 

nitrides, chalcogenides, and phosphides with different morphologies have been widely developed in 

last decades.
51,80-82

 It was found that with proper electronic structure engineering, many transition metal 

based materials represent very good interaction with H.
51,82

 Among those, Mo-based catalysts such as 

MoS2 and Mo2C are the most popular ones due to their outstanding performance in acid 
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environments.
51,83-85

 However, in alkaline environments, the engineering of the transition metal based 

catalysts is more complicated as a result of the interfering of water dissociation process. Taking 2D 

MoS2 and MoSe2 as examples, it was found that their active sites for HER are different under acid and 

alkaline environments.
84,86

 While it is widely known that modifying the Mo edge sites and/or S/Se 

vacancies of these catalysts can be sued to effectively promote their HER in acid, the same strategy 

does not  work well in alkaline electrolytes. This is because these metal-terminated edge sites show 

strong OH adsorption ability in alkaline environment. With OH intermediates on the edge sites, the 

S(Se) -rich groups that are mostly present on the terrace of the catalyst are the dominant H
*
 active sites 

for alkaline HER.
86,87

  

The importance of S sites on the transition metal sulfides for alkaline HER was also proved by 

Markovic et al., who investigated the catalytic mechanism of metal sulfides on both bulk model 

catalyst (S island on Au (111)) and TMSx (TM = Mo, Co, x = 4 - 6) nanomaterials.
88

 It was found that 

the irreversibly adsorbed S (Sad
δ-

) on Au (111) acts as a promoter to alter the HER activity through the 

Sad
δ-

 - cation
n+

 - H2O bonding (Figure 8a). Such connection can introduce hydrated cations to boost the 

water dissociation process, therefore promoting the alkaline HER process. This mechanism was then 

applied to design TMSx catalysts, where Sad
δ-

 - TM
n+

 shows a similar behavior as Sad
δ-

 - cation
n+

. 

Further, the relationship between the activity and stability of the TMSx catalysts was found to be 

governed by tunable substrate-adsorbate binding energy and the number of defects on the catalysts. The 

defect rich CoSx blocks are highly active but not as stable as less active MoSx material. It was found 

that by inducing Co doping into the original TMSx, a new site for water dissociation can be generated 

and work synergistically with H-active S sites. By designing a CoMoSx material, a catalyst with both 

enhanced stable building blocks, good water dissociation ability and high activity was created (Figure 

8c). This balanced design was proved to be an efficient method for engineering transition-metal-based 

catalysts. 
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To change the electronic structure of 2D transition metals, the defect engineering is a highly 

efficient way.
89,90

 Taking 2D MoS2 as an example, the defects can be naturally generated on the 

boundary of different phases; with a certain modification, even the boundary in the inert basal plane 

can be activated for alkaline HER.
91

 Further DFT study indicates that different kinds of boundaries can 

lead to the remarkable changes in the Gibbs free energy of H
*
, in which the 2H-1T heterophase 

boundary shows the best performance. Besides defect engineering, heteroatom doping is also a popular 

way for changing the electronic structure of 2D transition metals for acid HER applications,
92,93

 and 

can be adopted for the design catalysts for  alkaline environment. For example, carbon doped MoS2 (C-

MoS2, fabricated through the sulfurization of Mo2C) presents high alkaline HER activity very close to 

that of Pt/C (Figure 9a).
94

 The extraordinary activity is a result of the carbon doping, which changed 

the electronic structure of MoS2. Instead of playing the role of a dual active site, the carbon in the 

catalyst induced empty 2p orbitals perpendicular to MoS2 basal plane, which is favorable for water 

adsorption (Figure 9b). Consequently, the catalyst shows an increased water dissociation rate in 

alkaline environments and an improved overall activity. Noticeably, defect engineering and heteroatom 

doping are also effective strategies for carbon-based catalysts.
22,27,49,50,95-102

  For alkaline HER in 

particular, it has been proved that both defect engineering and heteroatom doping can be used to 

directly optimize the valence orbital energy for carbon sites, thus, improving the interaction between 

carbon and H
*
 intermediates. However, the carbon-based materials usually show better performance 

when coupled with other catalysts instead of being the sole catalytic center in alkaline HER.
56,103

 

Therefore, a detailed discussion of these materials is not the subject of this review. 

Another commonly applied strategy for improving the inherent adsorption ability of the transition 

metals is to change the charge density of the catalytic surface. One of the most often used methods to 

achieve this goal is coupling transition metal based catalysts with another materials. Zou et al. reported 

a good example for controlling the charge transfer of Mo2C-based HER catalyst.
104

 By covering Mo2C 

with nitrogen-rich carbon, the HER catalytic activity of the resultant material was boosted in all pH 
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environments (Figure 9c), which is the sole result of the optimized H adsorption ability of the catalyst. 

Different from the C doping case as mentioned before, it was revealed that the strong electron-

withdrawing ability of N sites induced an electron transfer that draw electrons from Mo2C to N via C 

sites. Such process activated the C atoms neighboring to N sites and created HER-active C sites that 

can work synergistically with Mo2C (Figure 9d). As a result, the overall HER activity under all pH 

environments could be generally promoted. Similar strategies were also reported to other alkaline HER 

catalysts, and have been proved to be effective not only for adjusting the H adsorption ability of the 

catalysts, but also for optimizing the catalyst-water (OH) interaction.
105-107

  One typical example is 

MoP@C catalyst, which exhibited a remarkable HER activity in alkaline environment (Figure 9e).
107

 

The presence of carbon on the surface of MoP has resulted in the Mo-C bond in the catalyst, which 

largely altered the electronic structure of Mo. As a result, the improved Mo site has become appropriate 

for water dissociation, while the hydrogen recombination occurred on the neighboring P sites (Figure 

9f). Such construction was shown to be an ideal platform for processing alkaline HER. Its simple 

design that can boost two processes in one attempt is the most efficient way for creating high-quality 

HER catalysts. 

Adjusting surface geometry of the catalysts 

Alkaline HER has been proved to be extremely sensitive to the surface structure of the catalysts.
108

 As 

early as 1990s, Markovic et al. reported that HER/HOR on various Pt single crystals are very different, 

with increasing activity in the sequence of Pt(111) < Pt(100) < Pt(110) in alkaline environment.
109

 

Although DFT calculations clarified how various Pt crystal facets can alter the electronic structure and 

the H adsorption ability of the catalyst, the true surface-sensitive nature of the alkaline HER is still a 

puzzle. Until now, it is still unknown how Hupd and Hopd are separately influenced by the surface 

structure of the catalysts.
8
 In practice, one of the handiest ways to modify the surface structure of a 

catalyst is through the lattice strain engineering. It has been proved that a small change in the lattice 

strain can severely alter the interaction between the catalyst and intermediates. For example, 1 % lattice 
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strain on the Pt surface can result in a ~ 0.1 eV shift on its d-band center, which can make an obvious 

difference in Pt’s HBE.
44,110

 In comparison  to the catalyst-H interaction, the strain has more influence 

toward the interaction between the catalyst and O-bound intermediates (e. g., OH). It was found that for 

late transition metals such as Pt and Ru, the tensile lattice strain can cause a stronger interaction with 

O-based intermediates, and vice versa.
111,112

 Noticeably, such trend is opposite to early transition 

metals.
113

 

Inducing the desired strain on the surface of a catalyst has always been challenging in material 

engineering. Typically, by lattice adjusting,
114

 fabricating certain core-shall structures
115

 and creating 

specially angled or defected morphologies,
116,117

 one can alter the surface strain of a variety of 

materials. For nanostructured catalysts in particular, the morphology modulation methods such as 

crystal shaping, dealloying and inducing lattice mismatch can also change the surface of a material into 

a more beneficially strained structure.
118

 These strategies have been used for improving the catalytic 

performance of the ORR catalysts, and were proved to be efficient for HER catalysts such as MoS2 and 

WS2 in acid environments.
114,115,119-121

 In recent years, many attempts have been made to extend this 

method into alkaline HER applications. One typical example of creating a highly active alkaline HER 

catalyst through a systematic processing of alloying induced strain engineering is the Pt3Ni alloy 

reported by Stamenkovic et al.
122

 By constructing Pt3Ni polyhedra, followed by removal of extra Ni 

and annealing the product in Ar atmosphere, Pt3Ni nanoframes with Pt skin were constructed (Figure 

10a). With Ni being covered by Pt, the outstanding alkaline HER catalytic performance of Pt3Ni 

nanoframes cannot be originated from dual active sites for water dissociation. The high alkaline HER 

activity is solely the result of the optimized electronic structure of Pt. On one hand, the Pt3Ni 

nanoframes provide a mixture of a variety of Pt crystal structures and crystal interfaces. On another, the 

core-shell structure of the Pt3Ni nanoframes results in the compressive strain on the Pt surface. 

Together these properties shape the electronic band structure of the Pt3Ni nanoframe catalyst, which 

results in an outstanding alkaline HER activity (Figure 10b). 
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Although strain engineering through alloying is always considered to be most effective in shifting 

the surface catalytic properties of noble metal materials, there are some concerns whether the improved 

catalytic performance is due to the electronic transfer between the two metals or a result of strain 

altering. To understand the sole influence of surface strain in HER, we studied the effect of the 

geometric and electronic effects separately for the core-shell structured RuPt catalysts (Figure 10c).
40

 

The core-shell bimetallic Ru@Pt represents a larger compressive strain (~ 3%) due to the lattice 

mismatch comparing to that in the RuPt alloy (Figure 10d). It was found that with the compressive 

strain, the catalyst showed the decreased H adsorption ability and enhanced catalyst-OH interaction, 

resulting in a largely increased activity (Figure 10e). Such strain-induced improvement in the HER 

activity is not limited to metal catalysts, but also was reported for transition metal oxides. A good 

example of such case material are  the S-CoO sawtooth-rich nanorods with 3 % surface tensile strain.
123

 

As can be seen, for each little sawtooth structure, the strain component ε (associated with the 

expansion/contraction of the respective lattice vectors R1 and R2) shows a biaxial strain on the surface 

of the nanotooth (Figure 10f).  Due to this tensile strain, a large number of O-vacancies was generated, 

which optimized the water dissociation barrier and the HBE of the catalyst. As a result, the tensile-

strain of the S-CoO nanorods led to an impressive overall HER activity even comparable to the 

commercial noble metal catalysts (Figure 10g).  

Conclusions and outlook 

A large variety of highly active alkaline HER catalysts has been reported in the last decade due to the 

development of theoretical computation and material engineering technologies. These successful 

design strategies are aimed either to improve the interaction between the active sites and certain 

intermediates, or to lower the overall energy barrier of the reaction. Most of these methods are 

universal toward catalyst design for other energy conversion technologies. Aiming at a thorough 

understanding and total control of alkaline HER, we are still facing several challenges as below. 
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I. Fundamentally, the origin of the slow kinetics of alkaline HER is still unknown. From the 

experimental perspective, such mystery is likely to be solved by gaining better understanding toward 

the catalyst-intermediates interactions on the active sites during the reaction. This can only be achieved 

by employing more in-situ characterizations, such as TEM, X-ray and vibrational spectroscopies, etc, 

to monitor the course of reaction. The local environments (e.g., local pH, electric double layer), the 

dynamic transformation of the catalytic surface structure are all substantial factors in determining the 

alkaline HER mechanism and should be studied in the future.  

II. The transfer of ions through the electric double layer/water layer is proved to be crucial during 

alkaline HER. However, in the catalyst design, currently there are no specific strategies aiming to 

optimize these aspects. As the structure of the electric double layer is closely related to the catalytic 

surface, it is important to gain a comprehensive understanding on the relationship between the material 

surface properties and the structure of electric double layer/water interface under electrocatalytic 

environments. 

III. Beside focusing on the reaction mechanism on the traditional single crystal Pt model catalysts, 

more attention should be paid to systematically study the catalytic mechanism on the typical 

nanostructured catalysts that are more active and widely used in practice. With more complex surface 

structures, the reaction mechanism on nanostructured catalysts can be partially different from that on 

model single crystals. For typical nanostructured catalysts such as bimetallic alloys and transition 

metal-based compounds, finding the true activity origin on these highly complex surfaces is important 

for providing guideline toward design of new generation of catalysts.  

IV. From the computation perspective, more feasible operando computation techniques are 

needed to better simulate the reaction process by taking the local environmental factors (e.g., influence 

of water, metal cations, and anions) into account. Ideally, the operando spectroscopy and computation 

could work synergistically in uncovering the nature of the alkaline HER. Noticeably, this point is also 
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one of the key issues regarding to other heterogeneous reduction reactions involving multiple 

intermediates such as CRR and NRR.  
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Figure 1 A scheme illustrating a comparison of water reduction, alkaline HER and two other widely 

studied heterogenous reduction reactions (CRR and NRR). For both CRR and NRR in natural/alkaline 

environments, water reduction and alkaline HER are two essential processes accompanying the gas 

reduction reactions. The red H shows the trace of the water dissociated hydrogen in different reactions.  
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Figure 2 (a-c) The HER activity of several Pt-based materials in a variety of different environments. (a) 

Pt (111). Reproduced with permission.
11

 Copyright 2013, Nature Publishing Group. (b) Pt/C. 

Reproduced with permission.
12

 Copyright 2016, American Association for the Advancement of Science; 

(c) Pt disk. Reproduced with permission.
29

 Copyright 2015, The Electrochemical Society. (d) 

Overpotential trend for HER of Pt (111) with a variety of 3d transition metal hydroxide sites. Inset: a 

schematic showing the reaction mechanism of alkaline HER on the catalysts. Reproduced with 

permission.
10

 Copyright 2012, Nature Publishing Group. (e) A comparison of current density at an 

overpotential of 0.05 V for several catalysts in 0.1 M KOH. Reproduced with permission.
11

 Copyright 

2013, Nature Publishing Group. (f) A scheme representing the mechanism of OH transfer in alkaline 

HER process. Reproduced with permission.
15

 Copyright 2019, The American Chemical Society. 
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Figure 3 (a) A comparison of Hupd peak position for polycrystal Pt in a variety of electrolytes with 

different pH. Reproduced with permission.
13

 Copyright 2015, Nature Publishing Group. (b) A 

correlation between the exchange current density and Hupd peak position for a few Pt group metals. 

Reproduced with permission.
12

 Copyright 2016, American Association for the Advancement of Science; 

(c-d) The snapshots of the simulation result showing details of the interfacial water orientation under 

different applied potential and pH. Reproduced with permission.
42

 Copyright 2018, The American 

Chemical Society. 
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Figure 4 A scheme on the design strategies for alkaline HER based on the possible reaction 

mechanisms. The general idea is either to separately create water dissociation and hydrogen adsorption 

sites to achieve an ensemble effect, or to significantly optimize the hydrogen adsorption/desorption 

ability of the catalyst for a given reaction environment.  
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Figure 5 (a) A comparison of the oxophilicities of some metal materials that are commonly used as 

catalysts .
55

 (b) A comparison between the HER activity of MoS2 and MoS2/NiCo-LDH in 1 M KOH 

with fitted standard activation free energies (meV). (c) Free energy diagram of the reaction pathway for 

MoS2 and MoS2/NiCo-LDH reproduced with permission. (d) A scheme of the alkaline HER reaction 

mechanism on the surface of the MoS2/LDH catalyst.
61

 Copyright 2017, Elsevier.  
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Figure 6 (a) TEM image of C3N4@MoN nanosheet. (b) A comparison of HER activity for 

C3N4@MoN before/after the removal of C3N4 in different electrolytes. (c) A scheme of water 

dissociation process on C3N4@MoN. (d) The relationship between a variety of DCDA (dicyandiamide 

as precursor for C3N4)/MoN ratios and the reaction overpotential at a current density of 10 mA cm
-1

. 

Reproduced with permission.
62

 Copyright 2018, Elsevier. 
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Figure 7 (a) A comparison of the HBE of some metal and alloy materials that are commonly used for 

the design of catalysts. Reproduced with permission.
37

 Copyright 2004, Nature Publishing Group. (b) 

the HER activity of RuCo@NC hybrid in comparison to other candidates before/after 10000 round of 

CV cycles. (c) Calculated charge density differences on left: Co and right: Co3Ru models. Yellow and 

cyan regions refer to corresponding increased/decreased charge distributions. Reproduced with 

permission.
59

 Copyright 2016, Nature Publishing Group.  
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Figure 8 (a) A scheme of the HER mechanism on the surface of Au with Sad
δ-

. (b) The alkaline HER 

activity of a series of Co/Mo sulfides. (c) Schematic illustration of the alkaline HER mechanism on 

CoMoSx. Reproduced with permission.
88

 Copyright 2015, Nature Publishing Group.   
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Figure 9 (a) The HER activity of C-MoS2 in comparison to several similar catalysts and benchmark 

Pt/C in 1 M KOH. (b) The reactive energy diagram with the reaction coordinate representing the water 

dissociation process on the basal planes of MoS2 and C-MoS2, respectively. Reproduced with 

permission.
94

 Copyright 2019, Nature Publishing Group. (c) HER activity of Mo2C@NC in comparing 

to Pt/C. (d) the calculated free energy diagram of hydrogen adsorption for different structured Mo2C-

based catalysts. Reproduced with permission.
104

 Copyright 2015, Wiley. (e) HER activity of MoP@C 

in comparison to that of Pt/C and MoP in 1 M KOH solution. (f) A scheme of HER mechanism on 

MoP@C. Copyright 2018, Wiley. 
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Figure 10 (a) A scheme and corresponding TEM images for the different stages in the formation 

process of Pt3Ni nanoframes. (b) The HER activity of Pt3Ni nanoframes in comparison to other 

benchmark catalysts in 0.1 M KOH. Reproduced with permission.
122

 Copyright 2014, American 

Association for the Advancement of Science. (c) Experimental TEM image of Ru@Pt nanoparticle. (d) 

EXAFS spectra of Ru@Pt in comparison to other catalysts. (e) HER activity of Ru@Pt/C in 

comparison to Pt/C and RuPt alloy/C in 0.1 M KOH. Reproduced with permission.
40

 Copyright 2018, 

American Chemical Society. (f) Contour plots of the strain component εxy relative to the reference 

values on the nano sawtooth. R1 and R2 are lattice vectors referencing for the strain analysis. (g) HER 

activity of the S-CoO nanorods in comparison to some other catalysts in 1 M KOH. Reproduced with 

permission.
123

 Copyright 2017, Nature Publishing Group. 
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2.3 Electronic and Structural Engineering of Carbon-Based Metal-Free 

Electrocatalysts for Water Splitting  
This chapter is included as it appears as a journal paper published by Xuesi Wang, Anthony 

Vasileff, Yan Jiao, Yao Zheng, Shi-Zhang Qiao: Electronic and Structural Engineering of 

Carbon-Based Metal-Free Electrocatalysts for Water Splitting, Advanced Materials, 2018, 

31, 1803625.  
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potential window. These properties are all 
advantageous for designing high perfor-
mance electrocatalysts. Another unique 
feature of these carbon materials is that 
they can exist with various morpholo-
gies and have highly tunable electronic 
structures.[1,2] This makes them the ideal 
platform for the design of catalysts at the 
atomic level. To date, many carbon-based 
materials with different architectures have 
been engineered into highly active elec-
trocatalysts for the ORR and many other 
reactions. These materials include low-
dimensional nanostructures like CNTs, 
graphene, and graphitic-carbon nitride 
(g-C3N4) to hybrids and functional carbon 
composites.[3–5] The motivation behind 
these efforts is to replace precious metal 
electrocatalysts with low-cost alternatives 
for energy conversion applications. This is 
especially sought after for water splitting 
where the performance of conventional 
precious metals is yet to be surpassed.

In an electrocatalytic process, a 
catalyst’s activity is mainly determined 

by its adsorption/desorption ability toward the key reaction 
intermediates involved in the reaction. Therefore, the intrinsic 
adsorption energy for these reaction intermediates on a range 
of catalysts can be correlated to a specific activity descriptor 
(e.g., exchange current density) in the shape of a volcano 
plot.[6,7] Furthermore, adsorption behavior is fundamen-
tally determined by the electronic properties of the catalyst, 
which can be analyzed using density functional theory (DFT) 
calculations. Accordingly, one could pursue highly active 
electrocatalysts by first engineering the electronic structure 
(e.g., p-band for carbons) of the material, and then optimizing 
its physical structure to maximize catalytic performance.[8] 
Engineering of electronic structures can be achieved by 
introducing a secondary element or fabricating specific defect 
structures in the pristine carbon framework. Such approaches 
can create active sites by either inducing electron- or spin-
redistribution in the sp2 conjugated carbon matrix. The gener-
ated active sites can then be scaled up through nanostructure 
engineering techniques. Thus, the overall apparent perfor-
mance of a catalyst can be synergistically increased by both 
enhanced intrinsic activity and improved physical properties 
(e.g., conductivity or surface area).

In this research news, we summarize current strategies used 
for the electronic and structure design of carbon-based electro-
catalysts for water splitting applications. Due to its simplicity 

Since first being reported as possible electrocatalysts to substitute 
platinum for the oxygen reduction reaction (ORR), carbon-based metal-free 
nanomaterials have been considered a class of promising low-cost materials 
for clean and sustainable energy-conversion reactions. However, beyond the 
ORR, the development of carbon-based catalysts for other electrocatalytic 
reactions is still limited. More importantly, the intrinsic activity of most 
carbon-based metal-free catalysts is inadequate compared to their metal-
based counterparts. To address this challenge, more design strategies 
are needed in order to improve the overall performance of carbon-based 
materials. Herein, using water splitting as an example, some state-of-the-art 
strategies in promoting carbon-based nanomaterials are summarized, 
including graphene, carbon nanotubes, and graphitic-carbon nitride, as 
highly active electrocatalysts for hydrogen evolution and oxygen evolution 
reactions. It is shown that by rationally tuning the electronic and/or physical 
structure of the carbon nanomaterials, adsorption of reaction intermediates 
is optimized, consequently improving the apparent electrocatalytic 
performance. These strategies may facilitate the development in this area and 
lead to the discovery of advanced carbon-based nanomaterials for various 
applications in energy-conversion processes.

Carbon-Based Electrocatalysts

1. Introduction

The hydrogen evolution/oxidation reactions (HER/HOR) and 
oxygen reduction/evolution reactions (ORR/OER) are the fun-
damental electrochemical processes in fuel cells and water elec-
trolyzers. Both devices play critical roles in the development of 
renewable energy conversion and storage technologies. In order 
for these electrocatalytic processes to achieve high efficiency 
while being commercially viable, carbon-based metal-free 
materials are being developed as cost-effective alternatives to 
traditional noble-metal catalysts. Carbon materials, from tradi-
tional amorphous carbon to the more recent carbon nanotubes 
(CNTs) and porous nanocarbons, are popular because of their 
low cost, excellent electrical and thermal conductivity, large sur-
face area, and mechanical/chemical strength throughout a wide 
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as well as its economic importance, water splitting is an ideal 
platform for investigating carbon-based electrocatalysts for the 
clean energy development. The focus of this research news is i) 
approaches used to engineer the electronic structure of carbon 
materials, ii) the relationship between electronic structure and 
electrocatalytic activity on carbon materials, and iii) ways to 
maximize the overall electrocatalytic activity by simultaneously 
engineering the physical structure and chemical composition 
of carbon-based electrocatalysts.

2. Engineering the Electronic Structure  
of Carbon-Based Materials

Usually, electronic engineering is achieved by disrupting the 
uniform carbon matrix, either by heteroatom doping, generating 
active edge sites, or by creating topologic defects. However, each 
strategy has a different impact on specific reaction intermedi-
ates in different reactions. For overall water splitting, both the 
HER and OER processes are involved. The reaction intermedi-
ates involved in these processes are outlined in the following 
reaction pathways (* represents an active site on the catalyst):

HER in acid media:
H e * H * Volmer

H e H* H Heyrovsky

or 2H* H Tafel
2

2

( )
( )

( )

+ + →
+ + →

→

+ −
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+ + → +

→

− −

− −

HER in alkaline media:
H O e H * OH Volmer
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+ → + +
→ + +
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→ + +

→ +

+ −

+ −

+ −
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*OH *O H e
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2 2
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* OH *OH e
*OH OH H O *O e
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For the HER, H adsorption ability is the most important factor 
to consider when designing electrocatalysts, while for the OER, 
the ability to adsorb OH* from solution and to generate adsorbed 
OOH* are key to high activity.[9] Unlike metal catalysts, an under-
standing of the effects of specific electronic states toward reaction 
intermediate energetics on carbon materials is still inconclusive.

2.1. Electronic Structure Engineering by Doping

Doping carbon with various heteroatoms (such as N, O, P, 
S, F, or B) is one of the most commonly used methods for 

tuning its electronic structure.[3,10–19] The effect of doping 
can be controlled by changing the configuration, location, 
and species of the dopants. Dual- and triple-doping has even 
shown to enhance the activity of carbon toward higher reaction 
efficiencies.[12,14,20,21] To date, a great variety of experimental 
approaches for heteroatom doping have been developed, 
ranging from traditional hydrothermal treatments and pyrolysis 
to advanced chemical vapor deposition.[12,22,23] In general, 
doping is a simple yet effective method in terms of both the 
fabrication process and parameter control.

The valence band orbital is often applied to explain the efforts 
of different dopants to the adsorption/desorption ability of the 
active sites in the carbon matrix (Figure 1a).[24,25] In this regard, 
a linear relationship can be built between the density of states 
of the active site and its adsorption/desorption free energy (ΔG) 
to an intermediate (Figure  1b).[26] As illustrated in Figure  1c, 
dopant atoms can act as electron donors or electron acceptors 
when anchored into a carbon matrix; doping the carbon matrix 
with electron donors such as P and S can introduce electron 
depletion on adjacent carbon atoms, and vice versa.[17] This 
charge transfer can lead to optimized valence orbital energy for 
active carbon sites, consequently improving intrinsic activity.

With guidance from DFT, one can construct active sites on 
carbon-based electrocatalysts with deliberate design to maximize 
the benefit of doping. For example, for the HER in acidic solu-
tions, the contribution of different doping species toward the 
overall reaction activity of graphene has been evaluated by 
DFT calculations and experimental measurements, and is 
represented in a volcano-shaped plot (Figure 1d).[24] It is clear 
that the heteroatom-doped graphene materials all show lower 
activity compared to MoS2 and Pt/C benchmarks, mainly due 
to their relatively weaker H* adsorption abilities. Accordingly, 
two different heteroatoms with a large difference in charge 
density (usually one electron donor and one electron acceptor) 
were introduced into the matrix to engineer the valence band of 
carbon. DFT calculations showed that dual-doping could signif-
icantly upshift the valence bands of the active carbon sites, thus 
improve the interaction with adsorbed H (Figure 1e).[12,17,24,27]

A similar dual-doping approach has also shown to be effective 
for fabricating carbon-based electrocatalysts for the OER. For 
example, N, P co-doped carbon nanofiber achieved superior 
activity compared to benchmark IrO2 due to its optimized 
reaction intermediate adsorption energies (Figure  1f,g).[28]  
Significantly, many dual-doped and tri-doped carbon materials 
have multifunctional active sites for the HER, OER, and ORR 
simultaneously.[20,29–32] From the above, it is clear that heter-
oatom doping is of universal significance toward tuning the 
adsorption energetics of carbon-based materials for different 
reactions.

2.2. Electronic Structure Engineering by Edge Site 
and Topological Defect Exposure

Edge sites and topological defects are inherent in carbon-based 
nanomaterials and are formed during the physical and/or 
chemical fabrication process.[1,2] The former usually includes 
dangling groups and vacancies at the edge of the carbon 
matrix, while the latter contains intrinsic topologic vacancies 
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and deformations at both bulk domains and edges. Although 
it has been long known that both features modify the electronic 
structure of a material, it was not until recently that these sites 
were deliberately manipulated during material fabrication.[33] In 
carbon-based electrocatalysis, edge sites and topological defects 
usually play two important roles: i) providing anchoring points 
for other active species such as a metal or heteroatoms and ii) 
acting as active sites directly.

The function of edge sites in electrocatalysis was first found 
and studied for the ORR.[34] Edge sites generally contain many 
functional groups, which can significantly improve the hydro-
philicity of the carbon and enhance adsorption of heteroatoms 
and molecules. In fact, dopant and edge effects are inseparable 

in electrocatalysts when the promoting mechanism is taken into 
account. Moreover, it is generally believed that the activity origin 
of materials rich with edge sites is that dopants are more active 
when anchored on an edge compared to the basal plane.[35] For 
example, in the DFT calculation for the ORR/OER on N-doped 
graphene nanoribbons performed by Xia et  al. (Figure  2a), it 
was identified that the most active sites are the carbon atoms 
near the nitrogen doping on the armchair edge of graphene 
(Figure 2a,b). Additionally, the location of N dopants also plays 
an important role in the overall activity of the material. As 
demonstrated in Figure 2c, the OER has a smaller overpotential 
when N is doped in some specific edge sites. For near-edge 
N-doped armchair nanoribbons, a minimum theoretical OER 

Adv. Mater. 2019, 31, 1803625

Figure 1.  Engineering electronic structure of carbon material through doping. a) Model of various heteroatom doping on a carbon matrix. b) Relationship 
between the adsorption energy of H and the highest peak position of density of states of the active carbon. c) Natural bond orbital population analysis 
of different nonmetallic doping atoms. Inset indicates the locations of the corresponding doping sites. d) Volcano plot between normalized theoretical 
exchanged current per active site and free energy change of hydrogen adsorption for the graphene matrix with different dopants. e) Free energy diagram 
for the graphene matrix with different single- and codopants. a,b,d,e) Reproduced with permission.[25] Copyright 2016, Nature Publishing Group.  
c) Reproduced with permission.[17] Copyright 2014, American Chemical Society. f) OER polarization curves for N and P co-doped carbon in 1 m KOH.  
g) Volcano plot of the overpotential versus the difference between the adsorption energy of O and OH for carbon with different doping sites.  
f,g) Reproduced with permission.[28] Copyright 2016, Wiley-VCH.
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overpotential of 0.405 V can be achieved, which is comparable 
to noble-metal electrocatalysts.[35] Later experimental works 
show that the effect of edge-doping can be extended to other 
heteroatoms.[36,37] For example, a combination of experiments 
and DFT calculations showed that O doping at edge sites and 
at defective sites generated the most active sites for the OER.[37]

Although edge sites can provide highly active centers for elec-
trocatalysis, they are not the only contributor toward the activity 
of a material. Topological defects also play an important role in 
reaction activity, as they participate in determining the elec-
tronic structure of carbon-based materials. Topological defects 
are unavoidable in carbon-based materials, and are generated 
either during the fabrication process or formed naturally due 
to crystalline disorder. For carbon with a hexagonal matrix such 
as graphene, these defects can exist as nonhexagonal units in 

the form of a random point mismatch or patterned defects etc. 
(Figure  2d).[38] DFT calculations showed that these topological 
defects can significantly alter the charge density of neighboring 
carbon atoms.[39] For the ORR, line-defects on graphene are more 
efficient for promoting the reaction by optimizing energy barriers 
to the four-electron transfer reaction pathway compared to other 
defect models. Although calculations for the HER and OER were 
not included, it is reasonable to predict that the structure and posi-
tion of defects in carbon-based materials also play important roles.

Such predictions have been proven more recently by both 
experimental evidence and DFT calculations.[40] Yao et  al. 
prepared a dopant-free defective graphene (DG) as model to 
emphasize the role of defects in tuning the electrocatalytic 
activities of carbon materials.[38] By removing the N dopants in 
an N-doped graphene (NG), they fabricated a DG with various 

Adv. Mater. 2019, 31, 1803625

Figure 2.  Engineering electronic structure of carbon material through edge sites and topological defects. a) Scheme of N-doped graphene nanoribbons 
with armchair and zigzag edges. b) Volcano plot of the OER overpotential versus the difference between the adsorption energy of O and OH on different 
graphene armchair and zigzag sites. c) OER overpotential verses the distance of N from edge for different sites. a–c) Reproduced with permission.[35] 
Copyright 2014, Elsevier. d–f) HAADF-STEM image and corresponding polarization curves of defected graphene and N-doped graphene for the OER 
and HER. d–f) Reproduced with permission.[38] Copyright 2016, Wiley-VCH. g) ORR and OER polarization curves of defective graphene. h,i) The volcano  
plot of the OER overpotential on different sites and corresponding models. g–i) Reproduced with permission.[41] Copyright 2016, Wiley-VCH.
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defect units (pentagons, heptagons, and octagons). Com-
pared to NG, the DG exhibited much higher activities for the 
ORR, OER, and HER due to the various kinds of defect sites 
(Figure  2d–f). DFT calculations indicated that when a certain 
defect (e.g., pentagon, 585, or 7557) was introduced to the 
graphene framework, the edge atoms around the defect recon-
struct the electronic structure of active carbon atoms, and 
therefore change their adsorption energetics. In oxygen related 
reactions, all the active sites are the carbon atom adjacent the 
defective edge (Figure  2f). However, these sites do not fit for 
promoting HER activity due to their overly strong hydrogen 
binding energy. Instead, the conjunction carbons at the defects 
are responsible for providing more suitable hydrogen binding 
energy (Figure 2e).

Wei et  al. also confirmed that the diverse structures in 
topological defects could play different roles in electrocatalytic 
processes.[41] They fabricated a graphene sheet with N doping 
and in-plane defects, which exhibited superior ORR activity 
than Pt/C and comparable OER activity to Ir/C in alkaline 
media (Figure 2g). To identify the active center for each reaction, 
the possible active sites on the N-doped defective graphene were 
categorized by the different N species (Q: quaternary N on the 
edge, QN: quaternary N in the bulk, PN: Pyridinic N, and PR: 
pyrrolic N) and topological defect sites (C7, C5+7, and C5), as 
indicated in Figure 2i. DFT calculations concluded that for the 
OER, topological defects with a C5+7 structure provides the 
most appropriate adsorption energy for OH species, resulting 
in the smallest overpotential (Figure 2h). Interestingly, although 
not being the best interacting sites for OH intermediates, the 
C5 and C7 sites are preferable for O and OOH adsorption, 
respectively. As the process of adding an OH to adsorbed O* 
to form an OOH* is the rate-determining step in the OER, the 
interaction between the surface and O/OOH species is also 
important for overall OER performance. As a result, optimized 
adsorption toward different intermediates combined leads to 
enhanced OER activity. Although many methods have been pro-
posed for optimizing electronic structures and creating active 
sites, it is still a challenge in carbon materials to experimentally 
confirm the catalytically active sites. This is largely because of 
the difficulty in fabricating carbon materials with uniform active 
site type which match the models proposed by DFT calculation.

3. Engineering the Physical Structure  
of Carbon-Based Materials

Sufficient apparent activity of carbon materials is generally not 
obtained with well-designed active sites alone. To reach a high 
overall performance, the quantity of the active sites as well as 
other material properties also need to be taken into account. 
For example, hierarchical nanostructures are often applied 
for carbon-based materials to increase surface area, improve 
charge transfer rate, and expose more active sites.

3.1. Activity Promoted by Synergistic Effects

The synergistic effects that are apparent in carbon-metal 
hybrid materials has long been exploited for high performing 

electrocatalysts.[42–46] In such systems, carbon is usually used as 
a host material to support the metallic catalysts, provide better 
conductivity, and offer greater surface area.[47,48] Moreover, 
the interaction between carbon and metallic materials are 
often so strong that it can change the electronic properties 
of the whole hybrid. Thereby new active sites with enhanced 
adsorption ability are created. In terms of metal-free systems, 
such synergistic effects can also be exploited by carefully 
manipulating the interaction between different types of carbon-
based materials.[49]

One typical example is g-C3N4-based electrocatalysts. As a 
semiconductor, g-C3N4 has always been an inert electrocatalyst 
due to its poor conductivity and inappropriate adsorption of 
H- and O-relevant intermediates.[50] However, when coupled 
with other carbon materials, the catalytic performance of g-C3N4 
can be significantly increased. Interestingly, although g-C3N4 
is considered unsuitable for the HER due to its overly strong 
H* adsorption, several g-C3N4-carbon hybrids have exhibited 
extraordinary HER activity.[23,51,52] For example, when g-C3N4 
was coupled with NG to form a double layered structure, the 
HER activity of the hybrid material was greatly increased and 
comparable to that of MoS2 (Figure  3a,b).[51] Experimental 
evidence and DFT calculations both revealed that the improve-
ment in activity originated from improved ability to adsorb 
and reduce protons from solution, which was induced by the 
intrinsic chemical and electronic coupling between carbon 
and g-C3N4 (Figure  3d). In another case, a g-C3N4-graphene 
mesh-on-mesh hybrid structure was synthesized using a 
simple template-free method.[53] The unique layered porous 
structure offered fast charge and mass transport and also 
provided significant surface area for hydrogen adsorption. As a 
result, the overall activity of the material in acidic solution was 
extremely high compared to other nonmetallic electrocatalysts. 
This structurally induced synergistic effect was also been dem-
onstrated for the OER. By assembling g-C3N4 with CNTs into 
a 3D porous structure, a composite with high N content and 
large surface area was obtained (Figure 3e).[54] This composite 
exhibited outstanding OER activity (even outperforming bench-
mark IrO2) which was attributed to the significantly improved 
conductivity of the material and the large number of exposed 
active sites (Figure 3f).

3.2. Application Supported by Mechanical Properties

The physical structures of carbon-based materials can serve 
purposes other than contributing to the reaction activity. A good 
example is their stability in harsh electrolytes and oxidizing 
environments. These properties allow electrocatalysts to be 
more adaptable to extreme reaction conditions, making them 
more applicable for practical devices.

Seeking suitable electrocatalysts for the OER in acidic 
solutions has always been a challenge due to the harsh oxidizing 
environments present (even for the noble metals). Surprisingly, 
it was found that multiwalled carbon nanotubes (MWCNTs) 
had unexpected activity and stability as OER electrocatalysts 
in acidic media.[55] The oxidation process during the reaction 
activated the MWCNTs in the initial stages, and then became 
stable under the highly oxidizing environment. The unique 

Adv. Mater. 2019, 31, 1803625
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stability of the MWCNTs makes them viable candidates for the 
development of OER electrocatalysts in acidic solutions.

Other than enhanced stability in extreme environments, 
properly constructing the physical architecture of nanocar-
bons can induce other beneficial properties, such as flexibility 
and durability into the material.[52,56] For example, carbon 
paper and carbon cloth are often used as soft current collec-
tors for carbon-based electrocatalysts. These substrates are 
easily treated and have excellent conductivity, hence, they are 
often used for in situ construction of electroactive nanocarbon 
structures.[28,57] Moreover, by using filter techniques, g-C3N4, 
NG, and CNTs can be directly made into highly flexible self-
assembled layered films or membranes.[52,54] In these cases, the 
as-fabricated electrocatalysts exhibited high stability induced by 
their structural integrity and high activity. These self-supported 
carbon electrocatalysts have the potential to be directly applied 
as electrodes in energy conversion devices such as metal–air 
batteries.[58–60]

4. Conclusions and Perspectives

In recent decades, interest in carbon-based metal-free electro-
catalysts has grown significantly due to their unique chemical 
and physical properties. Among all accomplishments achieved 
in theoretical and experimental electrocatalysis, research 
on electrocatalytic water splitting is still of the highest pri-
ority due to its fundamental role in the field. Thanks to the 

development of nanotechnologies, a series of strategies such 
as heteroatom doping, edge-site generation, and topological 
defect engineering, are now able to create specific active sites 
in carbon-based materials with optimized adsorption abilities 
toward reactive intermediates. Further, with the assistance 
of DFT calculations, theory-led design of carbon materials is 
much more accessible and convenient. When these strategies 
are coupled with structural engineering of nanocarbons, 
significantly improved catalyst activity and stability are possible.

However, despite the achievements made so far, the devel-
opment of metal-free carbon electrocatalysts is still far behind 
that of their metal counterparts. Two major challenges, namely 
improving activity and stability, need to be addressed before 
carbon-based metal-free electrocatalysts can compete with 
the current state-of-the-art. In terms of activity, both DFT 
calculations and experimental evidence clearly indicate that 
the activity of carbon electrocatalysts is still below that of metal 
electrocatalysts in most cases. Although the OER activity of 
some carbon-based electrocatalysts is now comparable to noble-
metal materials, their HER activity is still far from their metal-
based counterparts. To solve this problem, further study of the 
fundamental principles is needed to gain full knowledge of 
the origin of activity enhancement. Only through this can we 
find a way to break the inherent linear scaling relationships 
that limit the activity of carbon electrocatalysts. Consequently, 
the current activity limit of carbon-based electrocatalysts could 
be surpassed, and possibly even reach that of metal catalysts. 
More advanced surface engineering strategies, such as precise 

Adv. Mater. 2019, 31, 1803625

Figure 3.  Engineering physical structure of carbon-based materials. a,b) TEM image of C3N4/NG hybrid and its HER performance. c,d) A scheme of 
the structure of C3N4/NG and its calculated free-energy diagram for the HER. a–d) Reproduced with permission.[51] Copyright 2014, Nature Publishing 
Group. e,f) A scheme of the structure and fabrication procedure for C3N4–CNT 3D composites and OER performance. e,f) Reproduced with permis-
sion.[54] Copyright 2014, Wiley-VCH.
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defect engineering and dimer doping, are expected to produce 
nanocarbons with more uniform physical structures and pre-
cisely controlled surface properties. This is also critical for 
model construction in DFT studies and to gain better control 
over the adsorption/desorption ability toward targeted interme-
diates. Regarding stability improvement, advanced engineering 
and synthesis methods are expected to produce carbon mate-
rials with higher mechanical and chemical stability to resist 
the harsh environments during electrocatalytic processes. Also, 
as more active nanocarbon catalysts are being developed for 
the OER, it is expected that lower potentials and hence less  
oxidizing environments will be required for this process.

As shown by many experimental and DFT studies, the 
methods of electronic and physical structure engineering 
summarized here are of general applicability. These strate-
gies are expected to be extended to other catalytic processes 
for the design of more candidate catalysts. By providing a brief 
review on the current knowledge of engineering nanocarbons, 
we hope this general guidance could be of assistance in other 
energy conversion fields such as the CO2 reduction reaction 
and nitrogen reduction reaction.

Acknowledgements
The authors gratefully acknowledge financial support from the Australian 
Research Council through Discovery and Linkage Project programs 
(DP160104866, DP170104464, LP160100927, DE160101163, and 
FL170100154).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
carbon engineering, hydrogen evolution reactions, metal-free 
electrocatalysts, oxygen evolution reactions, water splitting

Received: June 7, 2018
Revised: July 20, 2018

Published online: October 1, 2018

[1]	 D. S. Su, S. Perathoner, G. Centi, Chem. Rev. 2013, 113, 5782.
[2]	 M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2009, 110, 132.
[3]	 L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321.
[4]	 Y.  Li, W.  Zhou, H.  Wang, L.  Xie, Y.  Liang, F.  Wei, J.-C.  Idrobo, 

S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394.
[5]	 K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
[6]	 E.  Skúlason, V.  Tripkovic, M.  E.  Björketun, S. d.  Gudmundsdóttir, 

G.  Karlberg, J.  Rossmeisl, T.  Bligaard, H.  Jónsson, J.  K.  Nørskov, 
J. Phys. Chem. C 2010, 114, 18182.

[7]	 J.  K.  Nørskov, T.  Bligaard, A.  Logadottir, J.  R.  Kitchin, J.  G.  Chen, 
S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.

[8]	 Y. Zheng, Y. Jiao, S. Z. Qiao, Adv. Mater. 2015, 27, 5372.
[9]	 Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 

2060.
[10]	 X. Huang, Y. Zhao, Z. Ao, G. Wang, Sci. Rep. 2014, 4, 7557.

[11]	 W.  Cui, Q.  Liu, N.  Cheng, A.  M.  Asiri, X.  Sun, Chem.  Commun. 
2014, 50, 9340.

[12]	 Y.  Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem., Int. Ed. 
2015, 54, 2131.

[13]	 Y.  Zhao, R.  Nakamura, K.  Kamiya, S.  Nakanishi, K.  Hashimoto, 
Nat. Commun. 2013, 4, 2390.

[14]	 R. Li, Z. Wei, X. Gou, ACS Catal. 2015, 5, 4133.
[15]	 G.  L.  Tian, Q.  Zhang, B.  Zhang, Y.  G.  Jin, J.  Q.  Huang, D.  S.  Su, 

F. Wei, Adv. Funct. Mater. 2014, 24, 5956.
[16]	 Y. Cheng, Y. Tian, X. Fan, J. Liu, C. Yan, Electrochim. Acta 2014, 143, 

291.
[17]	 Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, 

ACS Nano 2014, 8, 5290.
[18]	 Z.  Zhang, T.  Cao, S.  Liu, X.  Duan, L.  M.  Liu, S.  Wang, Y.  Liu, 

Part. Part. Syst. Charact. 2017, 34, 1600207.
[19]	 Z. Yi, Z. Zhang, S. Wang, G. Shi, J. Mater. Chem. A 2017, 5, 519.
[20]	 K.  Qu, Y.  Zheng, Y.  Jiao, X.  Zhang, S.  Dai, S.-Z.  Qiao, Adv.  Energy 

Mater. 2017, 7, 1602068.
[21]	 K. Qu, Y. Zheng, X. Zhang, K. Davey, S. Dai, S. Z. Qiao, ACS Nano 

2017, 11, 7293.
[22]	 J.  Zhang, Z.  Zhao, Z.  Xia, L.  Dai, Nat.  Nanotechnol. 2015, 10, 

444.
[23]	 Y.  Zhao, F.  Zhao, X.  Wang, C.  Xu, Z.  Zhang, G.  Shi, L.  Qu, 

Angew. Chem., Int. Ed. 2014, 53, 13934.
[24]	 Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, Nat. Energy 2016, 1, 16130.
[25]	 Y.  Jiao, Y. Zheng, M.  Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 

136, 4394.
[26]	 Y.  Zheng, Y.  Jiao, M.  Jaroniec, S.  Z.  Qiao, Angew.  Chem., Int.  Ed. 

2015, 54, 52.
[27]	 D.  Yan, S.  Dou, L.  Tao, Z.  Liu, Z.  Liu, J.  Huo, S.  Wang, 

J. Mater. Chem. A 2016, 4, 13726.
[28]	 Y. P. Zhu, Y. Jing, A. Vasileff, T. Heine, S. Z. Qiao, Adv. Energy Mater. 

2017, 7, 1602928.
[29]	 J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, Angew. Chem., Int. Ed. 

2016, 55, 2230.
[30]	 T. Sun, Q. Wu, Y.  Jiang, Z. Zhang, L. Du, L. Yang, X. Wang, Z. Hu, 

Chem. - Eur. J. 2016, 22, 10326.
[31]	 J. Zhang, L. Dai, Angew. Chem., Int. Ed. 2016, 128, 13490.
[32]	 C. Hu, L. Dai, Adv. Mater. 2017, 29, 1604942.
[33]	 L. D. Carr, M. T. Lusk, Nat. Nanotechnol. 2010, 5, 316.
[34]	 P.  J. Britto, K. S. Santhanam, A. Rubio, J. A. Alonso, P. M. Ajayan, 

Adv. Mater. 1999, 11, 154.
[35]	 M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, J. Catal. 2014, 314, 66.
[36]	 Z. Xiao, X. Huang, L. Xu, D. Yan, J. Huo, S. Wang, Chem. Commun. 

2016, 52, 13008.
[37]	 Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, S. Wang, 

Adv. Mater. 2017, 29, 1606207.
[38]	 Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, 

Adv. Mater. 2016, 28, 9532.
[39]	 L. Zhang, Q. Xu, J. Niu, Z. Xia, Phys. Chem. Chem. Phys. 2015, 17, 

16733.
[40]	 Z.  Zhang, Z.  Yi, J.  Wang, X.  Tian, P.  Xu, G.  Shi, S.  Wang, 

J. Mater. Chem. A 2017, 5, 17064.
[41]	 C.  Tang, H.  F.  Wang, X.  Chen, B.  Q.  Li, T.  Z.  Hou, B.  Zhang, 

Q. Zhang, M. M. Titirici, F. Wei, Adv. Mater. 2016, 28, 6845.
[42]	 Y. Liang, Y. Li, H. Wang, H. Dai, J. Am. Chem. Soc. 2013, 135, 2013.
[43]	 H. Wang, H. Dai, Chem. Soc. Rev. 2013, 42, 3088.
[44]	 R. Zhou, S. Z. Qiao, Chem. Mater. 2014, 26, 5868.
[45]	 J. Liang, R. F. Zhou, X. M. Chen, Y. H. Tang, S. Z. Qiao, Adv. Mater. 

2014, 26, 6074.
[46]	 J.  Duan, S.  Chen, S.  Dai, S.  Z.  Qiao, Adv.  Funct.  Mater. 2014, 24, 

2072.
[47]	 M.  Gong, Y.  Li, H.  Wang, Y.  Liang, J.  Z.  Wu, J.  Zhou, J.  Wang, 

T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452.
[48]	 A. Vasileff, S. Chen, S. Z. Qiao, Nanoscale Horiz. 2016, 1, 41.

Adv. Mater. 2019, 31, 1803625
56



© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1803625  (8 of 8)

www.advmat.dewww.advancedsciencenews.com

Adv. Mater. 2019, 31, 1803625

[49]	 Y. P. Zhu, C. Guo, Y. Zheng, S. Z. Qiao, Acc. Chem. Res. 2017, 50, 
915.

[50]	 Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Z. Qiao, Energy Environ. Sci. 
2012, 5, 6717.

[51]	 Y.  Zheng, Y.  Jiao, Y.  Zhu, L.  H.  Li, Y.  Han, Y.  Chen, A.  Du, 
M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.

[52]	 J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2015, 9, 931.
[53]	 Q.  Han, Z.  Cheng, J.  Gao, Y.  Zhao, Z.  Zhang, L.  Dai, L.  Qu, 

Adv. Funct. Mater. 2017, 27, 1606352.
[54]	 T.  Y.  Ma, S.  Dai, M.  Jaroniec, S.  Z.  Qiao, Angew.  Chem., Int.  Ed. 

2014, 53, 7281.

[55]	 Y. Yi, J. Tornow, E. Willinger, M. G. Willinger, C. Ranjan, R. Schlögl, 
ChemElectroChem 2015, 2, 1929.

[56]	 S.  Chen, J.  Duan, M.  Jaroniec, S.  Z.  Qiao, Adv.  Mater. 2014, 26, 
2925.

[57]	 T.  Y.  Ma, J.  Ran, S.  Dai, M.  Jaroniec, S.  Z.  Qiao, Angew.  Chem., 
Int. Ed. 2015, 54, 4646.

[58]	 Q. Liu, Y. Wang, L. Dai, J. Yao, Adv. Mater. 2016, 28, 3000.
[59]	 S.  Chen, J.  Duan, Y.  Zheng, X.  Chen, X.  W.  Du, M.  Jaroniec, 

S.-Z. Qiao, Energy Storage Mater. 2015, 1, 17.
[60]	 J. Han, X. Guo, Y.  Ito, P. Liu, D. Hojo, T. Aida, A. Hirata, T. Fujita, 

T. Adschiri, H. Zhou, M. Chen, Adv. Energy Mater. 2016, 6, 1501870.

57



Chapter 3 : Anomalous Hydrogen Evolution Behavior in High-

pH Environment Induced by Locally Generated Hydronium 

Ions 

3.1 Introduction 
The current understanding on electrocatalytic reactions are mostly from the mechanic 

studies based on bulk metal materials. Nevertheless, it is nanostructured electrocatalysts 

that have attracted more interests in practice due to their high efficiency and cost-

effectiveness in heterogenous reactions. However, some of the reaction mechanisms 

accounted from bulk materials are inapplicable to nanocatalysts due to the unique behavior 

of the reactive intermediates induced by the nanostructured catalytic surface. As a result, 

nanocatalysts designed from current mechanic studies sometimes represent unpredictable 

catalytic performance, especially for homogenous reduction reactions such as carbon 

dioxide and nitrogen reduction. 

Here using electrocatalytic hydrogen evolution reaction (HER) as an example, we 

conducted in-situ study to probe the interaction between the intermediates and the catalyst 

on a series of nanostructured electrocatalysts. By identifying the local reactive 

intermediates on the catalysts, a new reaction mechanism that uncovers the intermediate-

catalyst interaction on nanostructured surface was found. This new mechanism not only 

explained the origin of the widely reported anomalous HER activity in high-pH electrolytes, 

but also brings new guidance toward catalyst designing for other electrocatalytic reduction 

reactions in aqueous environment. The highlights of this work include:  

• The widely reported, yet unexplained anomalous HER activity of nanostructured 

electrocatalysts in high-pH electrolytes is first being analyzed.  

• A new intermediate (in-situ generated H3O+) is detected for the first time on 

nanostructured electrocatalysts using in-situ Raman characterizations during the 

electrocatalytic HER process in high-pH environment.  

• Using a series of electrochemical thermal and kinetic analysis, we investigated the origin 

of the in-situ generated H3O+. Further, we uncovered the significant influence of H3O+ 
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intermediates in reducing the reaction energy barrier, changing the rate-determining step 

of HER, and improving the overall HER activity. 

• Based on the above-mentioned evidence, we proposed a new HER reaction mechanisms 

on nanostructured catalytic surface under high-pH environment. 

3.2 Anomalous Hydrogen Evolution Behavior in High-pH Environment 

Induced by Locally Generated Hydronium Ions 
This chapter is included as it appears as a journal paper published by Xuesi Wang, 

Chaochen Xu, Mietek Jaroniec, Yao Zheng and Shi-Zhang Qiao: Anomalous Hydrogen 

Evolution Behavior in High-pH Environment Induced by Locally Generated Hydronium 

Ions, 
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Abstract 

Most fundamental studies of electrocatalysis are based on the experimental/simulation results obtained 

for bulk model materials. Some of these mechanistic understandings are inapplicable for more active 

nanostructured electrocatalysts. Herein, considering the simplest and typical electrocatalytic process, 

hydrogen evolution reaction, an alternative reaction mechanism is proposed for nanomaterials based on 

the identification of a new intermediate, which differs from those commonly known for the bulk 

counterparts. In-situ Raman spectroscopy and electrochemical thermal/kinetic measurements were 

conducted on a series of nanomaterials under different conditions. In high-pH electrolytes with 

negligible hydronium (H3O
+
) concentration in bulk phase, massive H3O

+
 intermediates are found 

generating on the catalytic surface during water dissociation and hydrogen adsorption processes. These 

H3O
+
 intermediates create a unique “acid-like” local reaction environment on nanostructured catalytic 

surface and cut the energy barrier of the overall reaction. Such phenomena on nanostructured 

electrocatalysts explain their widely observed anomalously high activity under high-pH conditions. 
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Introduction 

Heterogeneous electrocatalytic reduction reactions, e.g., water, nitrogen, and carbon dioxide reduction, 

are attracting more attention due to their importance for production of hydrogen, carbon 

monoxide/methane and ammonia through simple electrochemical hydrogenation processes.
1-7

 To carry 

out these reactions under mild and cost-effective conditions, water-based alkaline solutions are usually 

used as the hydrogen source. During these reactions, water is not only a solvent but is usually 

dissociated into H* and OH* species (* represents an active site on the catalyst), which further interact 

with other reactive intermediates through proton-coupled electron transfer to generate the final 

products.
2,4,8-12

 As a result, it is important to reveal the local environments about the reactant, reaction 

intermediates and catalyst surfaces. So far, the understanding of this complicated issue in 

electrocatalysis is mostly achieved based on the experimental and simulation studies for uniform 

single-/poly-crystal models.
13-22

 These fundamental studies were always carried out for alkaline 

hydrogen evolution reaction (HER) as a simple model that involves both water dissociation and proton 

reduction processes. Most results showed that alkaline HER activity of a single-/poly-crystal material is 

dependent on the pH value of the electrolyte, i.e., the HER kinetics gradually decreases with increasing 

pH.
15,18,23

 This may be due to pH-dependent H adsorption energy and/or water dissociation energy 

barrier.
15,24-26

 More importantly, such mechanism suggests a sluggish HER kinetics on bulk materials in 

high-pH environments (e.g., 1 M KOH), largely limiting their practical applications in the 

aforementioned reduction reactions.  

On the other hand, due to the high specific surface area and a variety of active sites, 

nanomaterials are more efficient and cost-effective as heterogeneous electrocatalysts. Thus, the design 

of more active nanostructured electrocatalysts is now the key research concept.
27

 However, when the 

reaction mechanism is taken into account, the well-known principles established for the bulk materials 

are sometimes inapplicable for nanostructured electrocatalysts.
20

 One of the well-known facts is that 
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the HER activity of many nanostructured electrocatalysts is much better in high-pH (0.1 to 1 M KOH, 

pH = 13-13.5) electrolytes than in less alkalic environments (0.01 M KOH to neutral buffer, pH = 12-

7.1).
28-33

 This is opposite to the HER activity trend observed for single-/poly-crystal metals (e.g. 

activity decreases with raising pH). This different behavior of nanostructured and bulk electrocatalysts 

indicates not only different HER mechanism on these catalysts, but more importantly, suggests that the 

water dissociation and proton adsorption/reduction on the surface of nanostructured electrocatalysts are 

more complicated than those on bulk metals. However, very little research has been conducted toward 

distinguishing the difference in the reaction mechanisms on the bulk and nanostructured 

electrocatalysts. As a result, the design principle of nanostructured electrocatalysts for reduction 

reactions in aqueous electrolytes is still mainly based on the ‘inappropriate’ knowledge of the bulk 

materials.  

Herein, we report a new insight into HER process on the surface of nanostructured 

electrocatalysts different from that for the well-understood bulk materials, specifically at high-pH 

electrolytes that contain a negligible amount of hydronium ions (H3O
+
) in the bulk aqueous solutions. 

This study shows that H3O
+
 ions are in-situ generated on the nanostructured Pt-based catalyst’s surface 

during the HER process, inducing an acidic local surface environment. As a result, these catalysts 

exhibit an anomalous acid-like HER activity at high-pH electrolytes, e.g., high activity with acid-like 

Tafel slope of ~30 mV dec
-1

 and low activation energy. Formation of the favorable H3O
+
 layer is most 

likely due to the high-rate water dissociation process that results in a large amount of free H3O
+
 within 

the electric double layer of nanostructured electrodes, confirmed by in-situ Raman spectroscopy and 

electrochemical thermal and kinetic analysis. This alternative mechanism as compared to that on the 

bulk materials sheds a new light toward the design of electrocatalytic nanomaterials by taking the effect 

of local intermediates in aqueous electrolytes into account. 

Results  
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HER Kinetics  

In correspondence to the mechanical studies carried out on bulk Pt and its alloys, we use the standard 

Pt/C and a series of Pt-based bimetallic nanomaterials as models to reveal the nature of water 

dissociation and proton reduction on nanostructured electrocatalysts.
34

 Characterization of these 

materials (including transmission electron microscopy images and X-ray powder diffraction patterns) 

provided in Supporting Information (Supplementary Figure 1, 2) shows that the differences in their 

structural properties are tiny. Figure 1a shows the HER polarization curves recorded for Pt/C (20 wt % 

metal) in electrolytes from neutral buffer (pH = 7.1) to 1 M KOH (pH = 13.5). It can be seen that the 

apparent activity of Pt/C is significantly higher under high OH
-
 concentration ([OH

-
]) in comparison to 

that under less alkaline environment. Note that the low activity in 2 M solution may be due to the 

slower kinetics of OH
*
 transfer in such highly alkaline environment than the rate of water dissociation. 

Additionally, Pt/C’s activity in 1 M KOH is much higher than those in other conditions, which trend is 

very different from the previous results obtained for bulk Pt electrode (Figure 1b).
15,25,35

 Further, the 

rate-determining step (RDS) of HER is also various in different alkaline electrolytes, which is 

evidenced in the Tafel plots shown in Figure 1c, d. Tafel slopes in different electrolytes are compared 

in similar range (~50 mV negative than the equilibrium potential) to avoid the influence from the high 

overpotential polarization and formed bubbles.  The Tafel slope for Pt/C is ~180 mV dec
-1

 in buffer and 

0.01 M KOH solutions, indicating that in these environments RDS for HER is water dissociation 

process. However, the Tafel slope drops to 94 mV dec
-1

 when [OH
-
] increases to 0.1 M while in 1 M 

KOH solution, the Tafel slope for HER on Pt/C is around 30 mV dec
-1

 (~40 mV·dec
-1 

in 2 M KOH 

solution). For these reactions with a Tafel slope under 120 mV·dec
-1

, the RDS of the reaction is either 

proton recombination (Volmer-Tafel) step or electrochemical desorption (Volmer-Heyrovsky) step, 

similar to the RDS of Pt/C in acid environments. Both reaction pathways indicate that there is a 

sufficient amount of hydronium ions on the electrode surface for HER process. Otherwise, water 
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dissociation should be the RDS of the reaction, yielding a Tafel slope larger than 120 mV·dec
-1

. Such 

phenomena are also observed in LiOH-based electrolytes (Supplementary Figure 

 3), indicating the small Tafel slope in high-pH environment is not induced by a specific cation but 

generally exists in different types of alkaline solutions. Additionally, these results can be observed on 

other Pt-based nanomaterials as well (Supplementary Figure 4-6), further confirming that the 

nanostructured electrocatalysts have an acid-like RDS for HER in high-pH environments. 

HER activity trends  

As the HER activity is closely dependent on the H adsorption ability of the materials, we investigated 

the change of H adsorption for a series of Pt-based nanomaterials under different [OH
-
] conditions. 

Here, the experimentally obtained d-band vacancies (calculated through the ex-situ X-ray absorption 

near edge structure spectra, XANES, shown in Supplementary Figure 7) are used to represent the H 

adsorption ability of the catalysts; the larger vacancy of the Pt’s d-band, the stronger Pt-H bond, and 

vice versa.
36,37

 Afterwards, by quantitatively evaluating the H adsorption ability of a group of different 

Pt-based nanomaterials, we obtained a relationship between the H adsorption ability and the material’s 

activity.
34

 As can be seen in Figure 2a, the activities of all these catalysts in different electrolytes 

follow the order: 1 M KOH > 0.1 M KOH >> neutral buffer > 0.01 M KOH. This confirms that the 

nanostructured electrocatalysts studied exhibit anomalously high HER activities in high-pH solutions. 

More importantly, it can be seen that a volcano-type relationship exists between the H adsorption 

ability and the activity of the materials in 1 M (only the left side of the volcano plot was achieved for 

the catalysts tested in 1M solution) and 0.1 M KOH electrolytes. Such volcano relationship is not 

observed in 0.01 M KOH and neutral buffer electrolytes (Supplementary Figure 8). It is well known 

that in an acid environment, the HER activity of a catalyst is solely depending on its hydrogen 

adsorption ability that has a very close relationship with catalyst’s electronic structure (e.g., d-band 

vacancy).
38-40

  However, in an alkaline environment, the HER activity of a catalyst is more dependent 
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on other factors (e.g., water dissociation rate) but not only on the hydrogen adsorption ability. 

Normally, for the bulk metal surfaces the relationship between hydrogen adsorption ability and 

catalysts’ HER activities does not match the volcano shape in alkaline environments well.
41

 Thus, the 

observed volcano relationship between the H adsorption ability of the catalysts and their activities in 

high-pH electrolyte indicates the HER behavior of the nanostructured electrocatalysts under such 

conditions is more like that in the acid environment.   

In-situ Raman characterization  

We used in-situ Raman spectra to detect the adsorbates on the catalysts in different alkaline 

environments and support our above assumption.
42

 The samples used in Raman testing were freshly 

prepared and Nafion was not used in the ink (5 mg/mL catalyst-water solution without any binder) to 

avoid the presence of an additional acid-spectator. To rule out the influence from the bulk solution, the 

reference spectra (with no potential applied) were taken for each group of samples, on which no peaks 

of electrochemically adsorbed intermediates can be observed. As shown in Figure 3a and 

Supplementary Figure 9,  a series of peaks such as  Pt-H (~2100 cm
-1

 ),
43

 H2O (~1600 cm
-1

) and H3O
+
 

(~ 1750 cm
-1

) is observed on the spectra of nanostructured Pt/C surfaces at high-pH electrolyte. The 

positions of these peaks are consist with theoretical values and/or reported data.
43-45

  However, such 

features are absent on the spectra of bulk Pt samples (Figure 3b) and Pt/C in 0.01 M solution (Figure 

3a). Specifically, as can be seen from Supplementary Figure 9, the H intermediates are already 

adsorbed on the Pt/C catalyst before the onset potential (0 V) of HER and soon get desorbed when a 

negative potential is applied. Meanwhile, the original G-band peak of the materials (~ 1590 cm
-1

) also 

becomes broader with increasing potential as compared to the reference curve due to the a large amount 

of adsorbed water (Figure 3a).
44

 Interestingly, the Pt-H3O
+
 interaction peak appears and becomes 

stronger with increasing overpotential (Figure 3a). Noted that the concentration of H3O
+
 species in the 

bulk of all tested alkaline electrolytes is extremely low (10
-13

 M). Thus, the H3O
+
 species detected by 
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Raman spectra on the surface of catalysts have to be in-situ generated during the HER process. So far, 

the interaction between Pt and H3O
+
 was only reported on the bulk Pt in acid environments and was not 

observed on the bulk Pt in any alkaline solutions.
44,46

 With such strong H3O
+
 signal detected here, one 

can assume that an acid-like environment with rich H3O
+
 species is created on the catalyst surface in a 

high-pH environment. Such formation of H3O
+
 during HER process in 0.1 M KOH solution is not only 

observed on Pt/C, but also on other nanomaterials. As highly active nanostructured HER 

electrocatalysts, PtNi/C and dealloyed PtCo/C were also examined in different alkaline environments. 

For both materials, Pt-H3O
+
 features can be detected at around -0.1 V in 0.1 M KOH electrolytes 

(Supplementary Figure 10). Moreover, the existence of H3O
+
 was further confirmed by deuterium 

substitution experiment with both LiOH and KOH electrolytes. As can be seen in Figure 3c, the 

corresponding D3O
+
 (~2720 cm

-1
) and HD2O

+
/H2DO

+
(~2850 cm

-1
) signals can be observed on the 

spectra of nanostructured Pt/C in 0.1 M solution.
45

 In comparison, such signals are not observed on the 

spectra of bulk Pt and any other nanostructured electrocatalysts when the reaction takes place in 0.01 M 

KOH solution in either H2O or D2O environment (Supplementary Figure 11-13). This indicates that 

the Pt-H3O
+
 interaction is distinctive for high-pH environments.  

Interaction between electrocatalyst and intermediates  

We propose the formation of H3O
+
 is closely related to the generation of H* and water dissociation 

process in the reaction. It is well known that water dissociation can be facilitated by good interaction 

between OH intermediates and the catalytic surface. Additionally, such interaction can be monitored 

using carbon monoxide (CO) stripping tests.
47-50

 Qualitatively, a lower CO oxidation potential suggests 

stronger interaction between the catalyst and the OH
*
, indicating better water dissociation proceeds. As 

shown in Figure 4a, Pt/C and other nanostructured electrocatalysts show much stronger interactions 

(lower oxidation potential) with OH
-
 with increasing [OH

-
], indicating the water dissociation process is 

improved in high-pH electrolytes on these nanomaterials.  
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Afterwards, the interaction between the catalyst and H
*
 is studied. The previous studies 

conducted for bulk polycrystal Pt show that desorption of H is more difficult with growing pH in 

alkaline environment.
17,18,25

 Such strongly adsorbed H is believed to be unbeneficial toward water 

reduction.
17,18,25

 To compare these results with the current case, we recorded the cyclic voltammograms 

(CVs) for Pt/C and bulk Pt under different [OH
-
] environments. For bulk materials, the underpotentially 

detected H (Hupd) peak can only be clearly observed in 0.01 M and 0.1 M KOH, with the Hupd potential 

becoming more positive with increasing [OH
-
] (Figure 4b). When [OH

-
] is higher than 0.1 M, only a 

weak Hupd peak can be detected. This may be caused by a large amount of OH
-
 blocking some of the H 

adsorption sites on the bulk Pt surface. In general, the peak associated with H adsorption on the bulk Pt 

appears at higher potentials and shifts with increasing pH. Conversely, for Pt/C, the Hupd peak is 

shifting to the lower potentials with increasing pH, indicating the H adsorption weakens (Figure 4c). 

At this stage, it is clear that Pt/C shows the improved water dissociation ability and weakened H 

adsorption ability with increasing [OH
-
]. We suggest that such changes can lead to the generation of the 

large amount of H3O
+
 during the HER process; the detailed formation mechanism will be explained 

later.  

Activation energy  

The activation energy (Ea) values for Pt/C and a series of Pt-based nanostructured electrocatalysts were 

calculated to reveal how the in-situ generated H3O
+ 

changes the overall kinetics of the reaction in 

different alkaline environments. The values of Ea were calculated according to the Arrhenius equation 

from the HER polarization curves under different temperatures (Figure 5a and Supplementary 

Figure14, 15).
51

 Figure 5b shows the Ea values for Pt/C, PtNi/C and dealloyed PtCo/C under three 

different alkaline environments. It is clear that the values of Ea are obviously smaller at 1 M/0.1 M 

KOH as compared to those at 0.01 M KOH. This demonstrates that the in-situ generated H3O
+
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intermediates lowered the energy barrier for the overall reaction, most likely by providing an acid-like 

environment that significantly optimizes the proton reduction process and changes RDS of the reaction.  

Origin of H3O
+
  

Based on the in in-situ Raman spectra and electrochemical thermal/kinetic analysis, an alternative 

water reduction mechanism is revealed for the nanostructured Pt-based electrocatalysts. In all alkaline 

electrolytes, water dissociation is always the most important step toward producing hydrogen source 

needed for HER process. Under high [OH
-
], large amounts of OH

-
 are available in the electrolyte and 

can be easily adsorbed to the catalyst, strongly promotes the water dissociation process. As a result, 

large amounts of H
*
 are produced and the majority of the H active sites are soon covered with strongly 

bonded Hupd. Note that under negative potential, water molecules are connected to each other.
52

 As 

water dissociation continues, more and more H ions are still bonded to nearby water molecules but not 

the catalyst’s surface, which is being occupied by Hupd species. Thus, a large amount of free H3O
+
 ions 

is generated within the double layer, resulting an acid-like local environment. With more electrons 

being transferred on the surface, Hupd turns to Hopd (overpotential deposited hydrogen) and the later 

combines each other to form H2 gas (following the Tafel mechanism evidenced by a Tafel slope of ~30 

mV·dec
-1

), leaving an empty site. At the same time, H3O
+
 is reduced to H* on that site to form the 

cycle (Figure 6a). 

  On the other hand, another dissociation product, OH intermediates, does not dissociated as OH
-
 

within the double layer. According to the report by Jia et al,
53

 , OH intermediates will directly form a 

hydroxyl-water-alkali metal cation adduct (in our case, OH
*
-(H2O)n-K

+
), which can be directly 

desorbed through the double layer into the bulk solution. As a result, the local concentration of OH
-
 

does not increase and the generated OH
*
-(H2O)n-K

+
 does not react with hydronium species. In the 

current study, this assumption has also been confirmed by in-situ Raman spectra. As shown in 

Supplementary Figure. 16, under different overpotentials, the OH stretching mode (Raman shift 

70



10 

 

3200-3600 cm
-1

) does not change much, indicating a stable status of [OH
-
] on the catalytic surface 

during the reaction (Figure 6a). 

However, the same process cannot take place in less alkalic solutions due to the low [OH
-
] in the 

environment to facilitate the key water dissociation process and to supply H intermediates. In this case, 

Volmer step (H2O + e
-
 → H

*
 + OH

-
) becomes the RDS of the overall reaction as indicated by Tafel 

slope of 166 mV·dec
-1

. High overpotential is needed for the catalysts to interact with water to start 

water dissociation under such low [OH
-
] environment, resulting in a high activation energy for the 

overall reaction.  Moreover, the low concentration of metal cation also causes a slow removal of OH 

intermediates from the double layer.  As a result, the generation of H* is sluggish, which results in the 

low overall HER activity (Figure 6b).  

Noticeably, this H3O
+
 induced water reduction mechanism seems to be unique to nanostructured 

electrocatalysts. This is most likely due to the complex surface structure of nanomaterials allowing the 

existence of a variety of different active sites to facilitate water adsorption/dissociation without 

interfering with the H-catalyst interactions. Since these two key processes can proceed at the same time, 

a facile generation of H3O
+
 is guaranteed. However, for uniform bulk materials with a single kind of 

active sites, the competition for active sites between the water dissociation and hydrogen adsorption 

reduces the water dissociation efficiency significantly, and consequently, affects the generation of 

hydrogen species (Figure 6c).
24,50

 As a result, the water reduction on nanostructured electrocatalysts 

can be promoted with increasing [OH
-
], while hydrogen production is reduced on the bulk catalysts.  

Discussion 

In summary, we studied a series of Pt-based nanostructured electrocatalysts to reveal the unique water 

dissociation and proton reduction mechanism on nanomaterials. A unique H3O
+
 intermediate layer that 

creates an acidic environment on the catalyst’s surface was first identified under high [OH
-
] conditions. 

This H3O
+
 intermediate layer was found to be responsible for an anomalous acid-like HER activity of 
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nanostructured electrocatalysts in alkaline electrolytes. More electrochemical analysis and in-situ 

Raman characterizations have indicated that these H3O
+
 are generated by high-rate water dissociation 

process that promotes desorption of H* on the surface of electrocatalysts. This unique reaction 

mechanism on nanomaterials may provide an important guidance for the design/selection of 

catalysts/electrolytes for the nanomaterial-catalyzed reactions in an aqueous environment, including 

carbon dioxide reduction, nitrogen reduction and other electrocatalytic reduction reactions. 

Methods 

Fabrication of Electrocatalysts  

Commercialized Pt/C (20 wt.%), PtM/C (20 wt.%, M = Fe, Co, Ni) were purchased from FuelCellStore 

without further treatment. The acid-treated PtM/C samples were fabricated by mixing 10 mg of PtM/C 

with 30 mL of HClO4 solution (0.1 M) and stirring overnight. The products were then washed several 

times and freeze-dried. The annealed PtM/C samples were fabricated by annealing 10 mg of PtM/C at 

900 ℃ for 5 hours in H2/Ar (H2 = 5 vol.%) atmosphere. All the catalysts are metal nanoparticles (size: ~ 

5 nm) supported on carbon black. 

In-situ Raman Characterization  

The in-situ Raman spectra were recorded by HORIBA Scientific Raman Spectroscopy (laser 

wavelength = 532 nm) using a screen-printed electrode from Pine Research Instrumentation. The 

electrolytes were prepared with extra care to avoid contaminations from other ions and glassware. The 

tests were carried out using a screen-printed chip electrode from Pine Research Instrumentation. 10 µL 

of the ink gel was added to the printed electrode before dried in room temperature. For the test with 

bulk materials, a Pt-printed chip electrode with bulk Pt surface from Pine Research Instrumentation 

was used. 

Electrochemical Testing Setup  
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All the electrochemical data were recorded by a CHI 760E bipotentiostat (CH Instruments, INC.). The 

powdered electrocatalysts were first dispersed in 0.05 wt.% Nafion aqueous solution to form a 2.0 

mg/mL homogeneous ink gel. The working electrode was prepared by adding 20 µL of the ink gel onto 

the glassy carbon rotating disk electrode (RDE, surface area of the glassy carbon = 0.196 cm
2
, Pine 

Research Instrumentation) and dried at room temperature. The reference electrode was an Ag/AgCl 

wire in 4 M KCl solution. The counter electrode was a pure gold wire. All the potentials in this work 

were referenced to the reversible hydrogen electrode (RHE) using pure hydrogen calibration and all 

polarization curves were iR corrected. All the polarization data were represented after calibration with 

respect to the electrochemical active surface area (ECSA). During the experiments, a flow of argon was 

maintained over all the cyclic voltammograms tests, while a flow of H2 was purged to ensure an H2-

oversaturated electrolyte environment during recording all the polarization curves. The electrolytes 

used were KOH solution with different concentrations (0.01, 0.1 and 1 M) and phosphate buffer 

solution (1 M). During all the tests, the working electrode was rotated at 1600 rpm. A water jacket cell 

from Pine Research Instrumentation was used for all the tests to achieve controllable temperature.  

Data Availability 

The data that support the findings of this study are available from the corresponding author upon 

request. The source data underlying Figures 1a-d, 2a, 3a-c, 4a-c and 5a, b and Supplementary Figures 

1-16 are provided as a Source Data file. 
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Figure 1 HER activity comparison under different alkaline environments. a The HER polarization 

curves of Pt/C under different conditions. b The activity trend for Pt/C and polycrystal Pt (inset) under 

different conditions. The data for polycrystal Pt were taken from reference.
35

 c Tafel plots and the 

corresponding Butler-Volmer fitting results for Pt/C under different conditions. d The Tafel slope for 

Pt/C under different conditions.  
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Figure 2 The experimentally acquired relationship between the H adsorption ability and the activity (j0) 

for a series of Pt-based materials using different electrolytes. The symbols in the figure are : Pt/C : 

PtFe/C ▲: PtCo@Pt/C ▼: PtCo/C ♦: PtNi/C : PtFe@Pt/C  : dealloyed PtNi/C  : PtNi@Pt/C The 

H adsorption ability of the electrocatalysts is represented according to the d-band vacancies of each 

material.  
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Figure 3 Raman spectra of Pt/C and bulk Pt at various conditions. The Raman spectra for: a Pt/C and b 

bulk Pt in water-based alkaline environments. c Pt/C in deuterium water-based alkaline environments. 

The marked overpotential is in comparing to the on-set potential of HER (e.g. -0.1 V is 0.1 V more 

negative to onset potential). The Raman signals on the surface of the catalyst are identified as: g-band 

of carbon: ~1580 cm
-1

;H2O: ~1600 cm
-1

; H3O
+
: ~1750 cm

-1
; D3O

+
: ~ 2720 cm

-1
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+
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-1
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, ~ 2500 cm
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.
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Figure 4 The trends of H and OH interactions with different catalysts. a OH interaction potentials 

obtained for three catalysts in different electrolytes. Data obtained from CO stripping measurements. b-

c CVs of bulk Pt and Pt/C in different electrolytes. The dotted line indicates the shifting trend of the 

Hupd peak. 
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Figure 5 HER energy barrier for various nanostructured electrocatalysts. a The relationship between 

the temperature and the catalytic activity of Pt/C under certain temperature range (10 
o
C to 55 

o
C). b A 

comparison of the activation energy (Ea) for a series of different Pt-based nanostructured 

electrocatalysts in different alkaline environments. 
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Figure 6 Schematic illustration of the water reduction mechanism on the nanostructured 

electrocatalysts. a Surface intermediates on the nanostructured electrocatalysts in solutions with high 

[OH
-
]; b Surface intermediates on the nanostructured electrocatalysts in solutions with low [OH

-
]. c 

Water reduction mechanism on the bulk electrocatalysts in high-pH environments. EDL represents the 

electric double layer. 
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Supplementary Figure 1 The high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) images of the samples. HAADF-STEM images of a, b Pt/C; c, d PtNi/C; 

e, f dealloyed PtCo/C nanosized electrocatalysts. 

86



 

20 30 40 50 60 70 80

Pt (220) Pt (200) 

dealloyed

PtCo/C

PtNi/CIn
te

n
s
it
y
 (

a
. 
u
. 
)

2 Theta (degree)

Pt/C

Pt (111) 

 

Supplementary Figure 2 XRD spectra of Pt/C, PtNi/C and dealloyed PtCo/C catalysts. 
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Supplementary Figure 3 The HER activity of the electrocatalysts. a-b The HER polarization curves 

measured for a Pt/C; b PtNi/C under different LiOH electrolytes. c-d The corresponding Butler-Volmer 

fitting results for c Pt/C; d PtNi/C under different conditions. e-f A comparison of the polarization 

curves measured for e Pt/C; f PtNi/C in two different electrolytes for a series of concentrations. 
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Supplementary Figure 4 The HER/HOR polarization curves obtained for a series of Pt-based 

nanosized electrocatalysts in different alkaline environments. The electrocatalysts are: a PtFe/C; b 

PtCo/C; c PtNi/C; d dealloyed PtFe/C; e dealloyed PtCo/C; f dealloyed PtNi/C; g PtFe@Pt/C; h 

PtCo@Pt/C; i PtNi@Pt/C. 
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Supplementary Figure 5 The experimental Tafel plots and the corresponding Butler-Volmer fitting 

data (BV) for a series of Pt-based nanostructured electrocatalysts in different alkaline solutions. The 

electrocatalysts are: a PtFe/C; b PtCo/C; c PtNi/C; d dealloyed PtFe/C; e dealloyed PtCo/C; f dealloyed 

PtNi/C; g PtFe@Pt/C; h PtCo@Pt/C; i PtNi@Pt/C. 

  

90



0.001 0.01 0.1
0.00

0.05

0.10

0.15

182 mV dec-1

153 mV dec-1

110 mV dec-1

PtFe/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

38 mV dec-1

a

0.001 0.01 0.1
0.00

0.05

0.10

128 mV dec-1

116 mV dec-1

81 mV dec-1

37 mV dec-1

PtCo/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

b

0.001 0.01 0.1
0.00

0.05 101 mV dec-1

87 mV dec-1

47 mV dec-1

21 mV dec-1

PtNi/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

c

0.001 0.01 0.1
0.00

0.05

0.10

136 mV dec-1

131 mV dec-1

72 mV dec-1

36 mV dec-1

dealloyed PtFe/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

d

0.001 0.01 0.1
0.00

0.05

106 mV dec-1 99 mV dec-1

35 mV dec-1

22 mV dec-1

dealloyed PtCo/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

e

0.001 0.01 0.1
0.00

0.05

0.10

140 mV dec-1

102 mV dec-1

86 mV dec-1

24 mV dec-1

dealloyed PtNi/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

f

0.001 0.01 0.1
0.00

0.05

0.10

151 mV dec-1 148 mV dec-1

93 mV dec-1

38 mV dec-1

PtFe@Pt/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

g

0.001 0.01 0.1
0.00

0.05

0.10

133 mV dec-1 145 mV dec-1

71 mV dec-1

22 mV dec-1

PtCo@Pt/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

h

0.001 0.01 0.1
0.00

0.05

22 mV dec-1

65 mV dec-1

135 mV dec-1140 mV dec-1

PtNi@Pt/C

 1 M KOH

 0.1 M KOH

 0.01 M KOH

 Buffer

P
o
te

n
ti
a
l 
(V

 v
s
. 
R

H
E

)

log i (mA cm-2)

i

 

Supplementary Figure 6 Tafel slops for a series of Pt-based nanostructured electrocatalysts in 

different alkaline solutions. The electrocatalysts are: a PtFe/C; b PtCo/C; c PtNi/C; d dealloyed PtFe/C; 

e dealloyed PtCo/C; f dealloyed PtNi/C; g PtFe@Pt/C; h PtCo@Pt/C; i PtNi@Pt/C. 
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Supplementary Figure 7 The XANES spectra for a series of Pt-based nanosized electrocatalysts. The 

d-band vacancies were calculated based on the XANES data. a Pt LII edge. b Pt LIII edge. 
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Supplementary Figure 8 The experimentally acquired relationship between the H adsorption ability 

and the activity (j0) for a series of Pt based materials using different electrolytes. The H adsorption 

ability of the electrocatalysts is represented according to the d-band vacancies of each material. 
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Supplementary Figure 9 Raman signal of Pt/C in different alkaline environments. Raman spectra of 

Pt/C in 0.1 M (above) and 0.01 M (below) KOH (H2O) solutions at the Raman shift range of 2000-

2300 cm
-1
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Supplementary Figure 10 Raman signal of different electrocatalysts. Raman spectra of: a PtNi/C in 

0.1 M (above) and 0.01 M (below) KOH (H2O), respectively. b dealloyed PtCo/C in 0.1 M (above) and 

0.01 M (below) KOH, respectively. 
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Supplementary Figure 11 Raman spectra of Pt/C in different environments. The electrolytes are 0.01 

M KOH (top panels) and 0.01 M LiOH·H2O (bottom panels) in D2O solutions, respectively. 
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Supplementary Figure 12 Raman spectra of bulk Pt in different environments. The electrolytes are 0.1 

M (top panels) and 0.01 M (bottom panels) KOH in D2O solutions, respectively. 

  

97



1000 1200 1400 1600 1800 2000

- 0.4 V

- 0.3 V

- 0.2 V

- 0.1 V

0 V

Reference (no potential)

0.1 M LiOH·H
2
O in D

2
O (Bulk Pt)

D2O

2200 2400 2600 2800 3000

- 0.5 V

- 0.4 V

- 0.3 V

- 0.2 V

- 0.1 V

0 V

Reference (no potential)

D2O D2O

1000 1200 1400 1600 1800 2000

- 0.5 V

- 0.4 V

- 0.3 V

- 0.2 V

- 0.1 V

0 V

Reference (no potential)

0.01 M LiOH·H2O in D2O (Bulk Pt)

D2O

2200 2400 2600 2800 3000

D2OD2O

- 0.5 V

- 0.4 V

- 0.3 V

- 0.2 V

- 0.1 V

0 V

Reference (no potential)

Raman Shift (cm-1)
 

Supplementary Figure 13 Raman spectra of Pt/C in different environments. The electrolytes are 0.1 

M (top panels) and 0.01 M (bottom panels) LiOH·H2O in D2O solutions, respectively. 
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Supplementary Figure 14 The activation energy calculated using the relationship between j0 and 

temperature in different alkaline environments for a series of Pt-based electrocatalysts. The 

electrocatalysts are: a PtFe/C; b PtCo/C; c PtNi/C; d dealloyed PtFe/C; e dealloyed PtCo/C; f dealloyed 

PtNi/C; g PtFe@Pt/C; h PtCo@Pt/C; i PtNi@Pt/C. 
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Supplementary Figure 15 A comparison of Ea for a series of different Pt-based nanosized 

electrocatalysts in different alkaline environments. 

 

  

100



3200 3600 4000

H2O

- 0.2 V

Raman shift (cm-1)

reference (no potential)

~ 0 V

- 0.1 V

H2O

 

Supplementary Figure 16 Raman spectra of dealloyed PtCo/C in 0.1 M KOH aqueous solution. 
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Chapter 4 : Breaking the Volcano-Plot Limits for Pt-based 

Electrocatalysts by Selective Tuning Adsorption of Multiple 

Intermediates 

4.1 Introduction 
In heterogeneous electrocatalysis, the activities of a series of electrocatalysts are closely 

related to the materials’ adsorption affinity toward key reactive intermediates. This 

relationship is usually represented as a volcano-shaped plot, in which the top of the volcano 

is the theoretically highest activity achieved by this series of electrocatalysts. Such upper 

limit of activity is hard to break due to the inherent strong scaling relationship between 

binding energies among different reactive intermediates. More importantly, this 

relationship limits the development of new electrocatalysts that could be more active than 

the conventional benchmarks. Here, using hydrogen evolution reaction (HER) as a model 

reaction, we propose a simple but feasible strategy that can be used to break the activity 

limits imposed by volcano plot. For the first time, we proved that by selective tuning the 

adsorption affinity of electrocatalysts the scaling relationship between the binding energies 

of *H and *OH in alkaline HER process can be broken, leading to the specific 

electrocatalysts with activities beyond the limits imposed by volcano plot. The highlights 

of this work include: 

• For the first time, experimental HER volcano plots under different alkaline reaction 

environments for a series of Pt alloys are reported; 

• A new general strategy for breaking the limits imposed by volcano plot is proposed for 

HER under alkaline conditions;  

• Using the aforementioned strategy, the intrinsic activity of newly developed 

electrocatalysts is twice higher than that of conventional Pt/C benchmark; 

• It is proved that the poorly known scaling relationship between the binding energies of 

*H and *OH can be broken. As a result, the activity of electrocatalysts can be significantly 

improved. 
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4.2 Breaking the Volcano-Plot Limits for Pt-based Electrocatalysts by 

Selective Tuning Adsorption of Multiple Intermediates 
This chapter is included as it appears as a journal paper published by Xuesi Wang, Qun He, 

Li Song, Mietek Jaroniec, Yao Zheng and Shi-Zhang Qiao: Breaking the Volcano-Plot 

Limits for Pt-based Electrocatalysts by Selective Tuning Adsorption of Multiple 

Intermediates, Journal of Material Chemistry A, 2019, 7, 13645-13640 
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cano-plot limits for Pt-based
electrocatalysts by selective tuning adsorption of
multiple intermediates†

Xuesi Wang, ‡a Qun He,‡b Li Song, b Mietek Jaroniec, c Yao Zheng *a

and Shi-Zhang Qiao *a

The development of heterogeneous electrocatalysts with enhanced activity as compared to conventional

benchmarks is a highly important but challenging task. One of the main reasons is that the performance of

current catalysts is limited by a ‘volcano plot’, which defines the relationship between the activities of

a family of catalysts and a series of specific descriptors (e.g., adsorption ability of reaction

intermediate(s)). Here, using the alkaline hydrogen evolution reaction as an example, we propose

a strategy to break such activity limits. By building up volcano plots for a group of Pt alloys, we found

that some “unique” samples did not follow the trend and possessed higher activities beyond the volcano

top. Our thermodynamic and kinetic measurements revealed that dealloying can break the poorly known

scaling relationship between the binding energies of *H and *OH, and thus, selectively optimize the

adsorption properties toward *H and *OH reaction intermediates on Pt surfaces and boost the overall

activity. This provides a new insight into the aforementioned activity limits, which can be avoided by

regulating the adsorption behaviors of two or more intermediates.
Introduction

The development of new electrocatalysts with enhanced activity
has been one of the priorities in materials science for renewable
energy.1 Although various new catalysts have been reported for
energy-related electrocatalytic reactions such as the hydrogen
evolution reaction (HER), oxygen reduction reaction (ORR),
oxygen evolution reaction (OER), etc., their activities did not
show signicant improvement as compared with those of
conventional benchmarks.2–9 Through merging theoretical
computations and experimental measurements, one is able to
establish the activity trend of a group of catalysts with similar
properties in a form of the so-called ‘volcano plot’.10–17 This plot
links the activity of a solid catalyst with its thermodynamic
adsorption ability toward one or more reactive intermedi-
ates.14,18–23 More importantly, this volcano-plot–activity rela-
tionship has been widely accepted as a powerful guide for the
development of new electrocatalysts for a wide range of
iversity of Adelaide, Adelaide SA 5005,

u.au; s.qiao@adelaide.edu.au

, University of Science and Technology of

, Kent State University, Kent, Ohio 44242,

tion (ESI) available. See DOI:

hemistry 2019
10
electrolysis processes by evaluating their activity and predicting
the potential maximum activity (the volcano top).2,11,14,19 As the
top of a volcano plot always shows the best activity for this
family of catalysts, it also sets the activity boundary for the
development of related materials.

However, the limits of the volcano plot are hard to break
because of the complexity of electrocatalytic processes. In
principle, the adsorption affinity of an electrocatalyst toward
the reactive intermediate of the rate-determining step (RDS) is
always used to determine its activity. However, for most prac-
tical reactions, multiple intermediates can inuence RDS. In
such cases, the adsorption affinity of a catalyst toward different
intermediates can signicantly affect its overall perfor-
mance.8,24–27 The well-studied typical example is the ORR, where
the adsorption energies of catalysts toward *OH, *O and *OOH
intermediates are essential for the activity of catalysts. For
example, on the Pt surface, a strong binding of *OOH and/or
weak binding of *OH can lead to higher activity. However,
since both species are attached to the catalysts' surface through
O atoms, a linear scaling relationship can be found between the
adsorption affinity of *OOH and *OH, which means that the
adsorption energy of these intermediates varies in the same way
(increase or decrease simultaneously). This leads to the result
that the performance of catalysts is strictly limited by the
volcano plot. Consequently, the activity of any newly developed
catalyst may be very close to the activity at the volcano top, but
impossible to go beyond that.14
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Fig. 1 (a–c) Left column: HAADF-STEM images of several randomly
chosen particles. Right column: EDS mapping images of the different
bimetallic nanomaterials. Green mapping is for Co while red is for Pt.
(a) PtCo alloy sample, (b) dealloyed PtCo sample, and (c) PtCo with Pt
skin. Insets show models for the corresponding samples.

Journal of Materials Chemistry A Paper

Pu
bl

is
he

d 
on

 0
8 

M
ay

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 o

n 
7/

1/
20

19
 3

:0
9:

57
 A

M
. 

View Article Online
As indicated above, unless the scaling relationship between
the adsorption energies of multiple adsorbates is broken, e.g.,
one increases while the other one decreases or is unchanged,
the volcano relationship still sets the boundary for the devel-
opment of new catalysts. Such a rule applies to all heteroge-
neous electrocatalysts. In general, the simplest and most
representative reaction to describe this complicated relation-
ship is the HER in alkaline solutions, where the reaction is
believed to be strongly determined by the interaction between
the electrocatalyst and two adsorbates: *H and *OH.28–34

Specically, while the H adsorption affinity of a material was
proved to be the key criterion to the HER activity and deter-
mines the shape of the volcano plot,28,31,35 the material's inter-
action with OH is also crucial for the overall activity.27,36–40 To
this end, alkaline HER catalysts with optimized OH adsorption
sites have been widely designed, such as PtRu and PtNi alloys,
and have been proved to be highly active.17,41 However, due to
the scaling relationship between adsorbed *H and *OH, the
activities of these alloys are still within the limits of the volcano
relationship, although their H adsorption affinity is altered by
changes in their composition, as evidenced by a shi in the
volcano plot.20,23,42,43

Herein, we propose a new strategy to break the limits of the
volcano relationship between the adsorption energy and the
activity of catalysts for the alkaline HER. First, a volcano-shaped
plot determined by the electronic structures (i.e., d-band
vacancies) and the apparent HER activities of three different
classes of Pt-based materials is constructed. Interestingly, two
materials namely dealloyed PtCo and dealloyed PtFe showed
unique performance by breaking the limits of the volcano plot.
Furthermore, the kinetic analysis indicated that these two
materials feature lower activation barriers for water dissociation
as compared to their counterparts, which could be traced back
to the Pt sites with higher coordination of O species. With these
OH-active Pt sites, the dealloyed samples have appropriate
interaction with OH species without an obvious effect on the H
adsorption energy. Thus, the dealloyed samples are able to
represent very high overall HER activity.

Results and discussion

Ten Pt based nanoparticles were prepared to build up the
relationship between the H adsorption energy and the electro-
catalytic activity. Pt (20 wt% metal on carbon) and three PtM/C
(20 wt%metal on carbon, M¼ Fe, Co, Ni, Pt : M¼ 1 : 1) samples
were used to fabricate bimetallic nanoparticles with different
compositions and structures. Starting with PtM, dealloyed PtM
samples were obtained by acid leaching and bimetallic samples
with Pt skin were prepared by annealing (see the ESI†). The
high-angle-annular-dark-eld scanning transmission electron
microscopy (HAADF-STEM) images of the PtCo series of
samples are shown in Fig. 1. The original PtCo alloy consists of
4–7 nm nanoparticles with Pt and Co homogeneously cong-
ured into a uniform 1 : 1 metal component (Fig. 1a). As
compared to the PtM alloys, the post-processing mainly
changed the surface structure of the materials as schematically
demonstrated in the inset of Fig. 1. Specically, the acid-treated
13636 | J. Mater. Chem. A, 2019, 7, 13635–13640
10
dealloyed samples present a defect-rich Pt surface with a trace
amount of M metal le (1.56 wtmetal% Fe for dealloyed PtFe, 6.4
wtmetal% Co for PtCo and 5.7 wtmetal% Ni for PtNi according to
inductively coupled plasma mass spectra), while the annealed
samples show a 2–3 atom thick layer of Pt skin on the surface
(Fig. 1b and c). Such surface variability is also clearly visible in
the energy dispersive X-ray spectroscopy (EDS) mapping images
showing that the dealloyed PtCo has a thick Pt-rich shell
decorated by a trace amount of Co element and both Pt and Co
are located in the core, while the annealed PtCo has a very thin
layer of Pt skin with high compressive strain on the surface of
the original PtCo alloy. Similar structural variability can also be
observed for the other PtM samples (Fig. S1 and S2†). Such
structural differences are also represented in X-ray diffraction
(XRD) spectra (Fig. S3†), where peaks of Pt shi toward higher
degrees for all the annealed materials compared to dealloyed
samples, indicating great differences in the lattice strain
between the two kinds of materials. These structural differences
not only affect the surface properties of the different bimetallic
materials but also inuence their electronic bands.
This journal is © The Royal Society of Chemistry 2019
7
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Fig. 3 HER polarization curves of (a) a series of PtFe samples and (b)
a series of PtCo samples in 0.1 M KOH solution with (c and d) their
corresponding Tafel plots. The dotted lines indicate Butler–Volmer
fitting results. (e and f) A comparison of the j0 specific value for a series
of PtFe samples and a series of PtCo samples in different solutions.
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The changes in the electronic structure of these Pt-based
bimetallic materials are quantitatively evidenced by X-ray
absorption near edge structure (XANES) spectroscopy (Fig. 2).
On the Pt LIII-edge, a blue shi of the white line (WL) can be
observed for all dealloyed PtM samples as compared with the
original PtM alloys, indicating a change in the electronic state of
Pt sites (Fig. 2a inset, Fig. S4a and b†). Such a change in the
electronic structure is especially obvious for dealloyed PtCo,
where theWL is shied by 0.6 eV. To quantitatively evaluate this
electronic structure diversity, the XANES spectra of the Pt LII-
edge were also taken for all the samples (Fig. 2b, S4c and d†).
Based on both spectra, the Pt's d-band vacancies can be
conrmed for all the samples, which has been proved to be
closely related to the H adsorption affinity of the Pt surface (e.g.,
larger d-band vacancy leads to a stronger adsorptive H
bond).18,23,25,43–47 Therefore, based on the d-band vacancies in
the bimetallic materials, their H adsorption affinity can also be
quantitatively determined (Fig. 2c and Table S1†).

The apparent HER activities of the freshly made samples
were recorded in different alkaline solutions and the polariza-
tion curves were normalized by the electrocatalytically active
surface area (ECSA) to show the intrinsic activity of each active
site (see the ESI, Fig. S5–S7 and Table S2†).48 Typically, in 0.1 M
KOHmedia, the activity of the samples increases in the order of
PtM < Pt # PtM with Pt skin < dealloyed PtM (Fig. 3a and b).
Furthermore, the dealloyed Fe and Co samples clearly feature
faster kinetics than the other bimetallic samples according to
the Tafel plots tted by using classic Butler–Volmer equations
(Fig. 3c and d). Such a HER activity trend has also been veried
in 0.01 M KOH and 1 M KOH solutions (Fig. S8 and S9†). As
shown in Fig. 3e and f, by normalizing the exchange current
density (j0) of the samples with that of pure Pt, one can see that
the dealloyed PtFe (Co) retains its superiority with increasing
Fig. 2 XANES spectra of the (a) Pt LIII-edge and (b) Pt LII-edge of
a series of PtCo samples. Detailed WL shifting spectra are shown in the
inset of panel (a). (c) The distribution of d-band vacancies in different
Pt-based samples calculated by using the XANES spectra.

This journal is © The Royal Society of Chemistry 2019
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OH� concentration. Interestingly, many reports show that the
introduced M metal sites in the PtM alloys can provide better
OH adsorption sites and thus promote water dissociation
capacity in alkaline HER processes.29,30,36 However, this study
shows that when OH� concentration increases the dealloyed
materials with a smaller number of surface transition metal
sites have higher activities than the PtM alloys. This unusual
phenomenon indicates that other factors may promote the
critical water dissociation process, which was not reported
before.

To represent the relationship between the adsorption affin-
ities of the materials and their HER activities, the volcano plot
for all the samples was constructed, where d-band vacancies
were used to scale the H adsorption affinity and j0 values were
used to represent the apparent HER activity (Fig. 4a and b). It is
obvious that the majority of tested materials follow the volcano
trend, indicating that H adsorption is still the dominating
descriptor for the HER activity, even in strong alkaline media.
The activity of PtNi with thin Pt skin is located at the top of the
volcano plot (0.1 M KOH), indicating that its best HER perfor-
mance is due to the appropriate adsorption affinity toward the
H intermediate.49 Obviously, the dealloyed PtFe (Co) does not
follow the activity trend scaled by H adsorption affinity and even
shows higher activity than PtNi with Pt skin. Similar
J. Mater. Chem. A, 2019, 7, 13635–13640 | 136378

https://doi.org/10.1039/c9ta02801c


Fig. 4 (a and b) The experimentally acquired relationship between the
d-band vacancies and j0 for a series of Pt based materials in (a) 0.1 M
KOH and (b) 1 M KOH solutions. The activities of dealloyed PtCo(Fe)
samples (labelled in red) are beyond the limits of volcano plots.
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phenomena in volcano relationships have also been observed in
1 M (Fig. 4b) and 0.5 M (Fig. S10 and S11†) KOH environments.
Considering that the H adsorption affinity does not show the
most appropriate location on the volcano plot, other factors
besides H adsorption on these two samples should be taken
into account.

It is known that the H intermediates in the alkaline HER
originate from the water dissociation process, and therefore, we
proposed that the barrier of water dissociation, which can also
be considered as the energy barrier for the overall HER, may
play a dominant role in determining the apparent activities of
dealloyed PtFe (Co) samples. A series of kinetic analyses were
carried out to calculate the activation energy (Ea) of the HER on
each sample, which can provide a quantitative evaluation
toward the HER energy barrier. Here, using the Co groups of
bimetallic materials as examples, the values of Ea were calcu-
lated according to the Arrhenius equation from the HER
Fig. 5 (a) The HER polarization curves of the dealloyed PtCo sample at
different temperatures in 0.1 M KOH solutions. (b) The relationship
between j0 and temperature for dealloyed PtCo in 0.1 M KOH. (c) The
relationship between Ea and j0 in 0.1 M KOH and 1 M KOH solutions
(inset). (d) Ea values under different conditions for a series of PtCo
materials.

13638 | J. Mater. Chem. A, 2019, 7, 13635–13640
10
polarization curves (Fig. 5a and b, S12–S17†).50 Based on the
linear trend between Ea and j0 values, one can see that the
energy barrier of the alkaline HER indeed plays an important
role in promoting the overall activity of a catalyst (Fig. 5c and
inset). For example, the lower energy barrier of the dealloyed
PtCo indeed leads to its higher activity as compared to the
counterpart. Additionally, as the concentration of OH increased
from 0.1 to 1 M, the Ea of the dealloyed PtCo dropped from
1.99 kJ mol�1 to 1.54 kJ mol�1, much more than that in the case
of the counterpart (Fig. 5d). This indicates that the interaction
between the dealloyed PtCo surface and OH species in the
electrolyte may be the key in determining the energy barrier of
the HER.

To validate the importance of OH interaction with the deal-
loyed PtCo surface toward breaking the volcano plot limits,
a series of cyclic voltammograms (CVs) were recorded (Fig. 6a).
Although the H adsorption signals (the peaks at �0.25 V in the
red zone) do not change for different PtCo samples, the OH
desorption/adsorption signals (the peaks at 0.7–0.85 V in the
green zone) are obviously different. More specically, the OH
adsorption peak on the dealloyed PtCo sample is shied to
higher potentials as compared to the other Co-containing
samples, indicating that this OH adsorption peak does not
originate from Co sites but from Pt sites. A similar outcome can
also be observed on the PtFe samples (Fig. S18†). This nding is
also conrmed by the carbon monoxide (CO) stripping vol-
tammogram, where the CO oxidation potential is used to eval-
uate the OH adsorption affinity of the material. As shown in
Fig. 6 (a) CVs of a series of PtCo materials in 0.1 M KOH solution. The
H adsorption/desorption zone is marked by a pink rectangle and the
OH adsorption/desorption zone is marked by a green rectangle. (b) CO
stripping of PtCo materials in 0.1 M KOH solution. The dotted line
marks the position of Pt's CO stripping peak. A high CO oxidation
potential indicates low OH adsorption ability of the material and vice
versa. An appropriate OH adsorption ability (neither too strong nor too
weak) is most promotive toward good catalytic performance. (c) The
CO adsorption distribution on PtFe and PtCo materials. (d) A
comparison of CN for alloy and dealloyed samples.

This journal is © The Royal Society of Chemistry 2019
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Fig. 6b and S18a,† the PtM alloy samples and the samples with
Pt skin show strong CO oxidation peaks in the lower potential
zones, which could be attributed to the OH interaction with ‘M’

metal sites. The dealloyed samples feature only a single Pt–OH
interaction peak in a relatively higher potential zone. By
comparing the OH adsorption affinity of different samples with
that of the Pt/C standard, all alloyed and dealloyed samples
show different OH adsorption affinities of Pt sites (Fig. 6c).
Thus, it is clear that the intrinsic OH adsorption of Pt has been
changed. Interestingly, contrary to the commonsense, it seems
that improving OH adsorption by introducing a secondmetal as
a water dissociation site cannot directly lead to higher HER
activity nor a lower energy barrier. Instead, changing the OH
adsorption affinity of Pt itself affects directly the material's
activity. A detailed analysis of Fig. 6a–c shows that the deal-
loying process improves OH interaction with Pt without
noticeable inuence on the H adsorption affinity of the mate-
rials studied. This indicates that the scaling relationship
between the binding energy of *H and *OH can be broken, and
it is possible to individually tune the H and OH adsorption
affinities of a catalyst. In the current case, changing the OH
adsorption affinity of materials may be related to the higher Pt–
O coordination number (CN) of the dealloyed samples, which
has been proved by extended X-ray absorption ne structure
(EXAFS) spectroscopy (Fig. 6d, S19–S21 and Table S3†). Namely,
aer the dealloying process, the Pt sites are more active toward
O species, which is likely to be the reason for the favorable Pt–
OH interaction. Noticeably, although the interaction between
the catalysts and OH* has played a critical role in determining
the performance of a material, it can't be used as a direct
parameter to evaluate the overall activity of the catalysts
(Fig. S22†). For the majority of catalysts, the hydrogen adsorp-
tion ability is still the most important factor in determining the
HER activity in highly concentrated alkaline environments. The
interaction between OH intermediates and catalysts may
signicantly alter the activity of materials but is not as a deter-
mining factor. To get the ultimate activity of the catalysts, the
inuence of both intermediates (H and OH) are needed to be
taken into consideration.

Conclusions

In this work, based on the example of the HER in alkaline
solutions, we demonstrated that the strategy of creating highly
active electrocatalysts could result in breaking the limits
imposed by the volcano-shape plot. Using this strategy, we can
create Pt sites with higher interaction affinity toward OH
species, while their H adsorption affinity is not changed. As
a result, these samples possess a very low energy barrier for
water dissociation and present high overall activity beyond the
limits imposed by the volcano plot. Instead of the common-
sense that the oxophilic metal sites in bimetallic materials are
benecial to the overall HER activity, we proved that the
enhanced HER kinetics on the dealloyed Pt materials is more
likely due to the improved OH interaction with Pt itself.
Therefore, we found an alternative method to create new Pt sites
with modulated adsorption properties for two critical reaction
This journal is © The Royal Society of Chemistry 2019
11
intermediates. Such a strategy proved that the possible *H and
*OH scaling relationship can be broken, and consequently, the
selective control of adsorption of each intermediate can be used
to boost the overall activity of an electrocatalyst beyond the
volcano plot limits. The above strategy offers an inspiration to
break the activity limits for other electrocatalytic reactions, such
as the carbon dioxide reduction reaction, whose activities are
limited by the adsorption of two or more competitive
intermediates.
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Experimental Section

Chemicals and materials. Commercialized Pt/C (20 wt.%), PtM/C (20 wt.%, M = Fe, Co, Ni) were 

purchased from FuelCellStore without further treatment. All the other chemicals used in the experiments 

were purchased from Sigma-Aldrich Co. LLC.

Fabrication of electrocatalysts. The acid-treated PtM/C samples were fabricated by mixing 10 mg of 

PtM/C with 30 mL of HClO4 solution (0.1 M) followed by overnight stirring. The products were then 

washed several times with deionized water and freeze-dried. The annealed PtM/C samples were 

fabricated by annealing 10 mg of PtM/C under 900 ℃ for 5 hours in H2/Ar (H2=5 vol.%) atmosphere. 

Characterization of materials. Scanning transmission electron microscopy (STEM) images were 

collected on a Titan G2 80-200 Field-Emission-Gun electron microscope. The Pt L3 edge X-ray 

adsorption fine structure (XAFS) spectra of various Pt-based alloys were recorded in transmission mode 

(Si 111) under mode 2 (8.5 - 18.5 keV) at the Australian Synchrotron. The data were normalized and 

analyzed using Athena and Artemis. The composition of the dealloyed samples are measured by an 

Agilent 7900x inductively coupled plasma mass spectrometer (ICP-MS).

The d-band vacancies calculation. The d-band vacancies of Pt in all the alloys and Pt/C samples were 

calculated using the following equation:

(ℎ𝐽)𝑡𝑜𝑡𝑎𝑙,   𝑠𝑎𝑚𝑝𝑙𝑒 = (1 + 𝑓𝑑)(ℎ𝐽)𝑡𝑜𝑡𝑎𝑙,   𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

where hJ refers to the total number of unoccupied d-states for Pt. The hJ for standard Pt foil reference has 

been evaluated to be 0.3, and  is:𝑓𝑑

𝑓𝑑 = (∆𝐴3 + 1.11∆𝐴2)/(𝐴3𝑟 + 1.11𝐴2𝑟)

where  is:∆𝐴

∆𝐴 = 𝐴𝑠 ‒ 𝐴𝑟

The term A represents the areas under XANES adsorption edge. The number refers to the L2 or L3 

absorption edge, ‘r’ refers to reference material, and ‘s’ refers to the sample.
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Electrochemical testing setup. All the electrochemical data were recorded on a CHI 760E bipotentiostat 

(CH Instruments, INC.). The powdered electrocatalysts were dispersed in distilled water containing 0.05 

wt.% of Nafion to form a 2.0 mg/mL homogeneous ink gel. The working electrode was prepared by 

adding 20 µL of the ink gel onto the glassy carbon rotating disk electrode (RDE, surface area of the 

glassy carbon = 0.196 cm2, Pine Research Instrumentation) and dried at room temperature. The reference 

electrode was an Ag/AgCl in 4 M KCl solution. The counter electrode was a pure gold wire. All the 

potentials were referenced to reversible hydrogen electrode (RHE) by using pure hydrogen calibration 

and all polarization curves were iR corrected. A flow of Argon was maintained over all the cyclic 

voltammograms (CVs) tests, while a flow of H2 was purged during obtaining all the polarization curves. 

During all the tests, the working electrode was rotated at 1600 rpm. A special cell with water jacket from 

Pine Research Instrumentation was used for all the tests to achieve controllable temperature.

Exchange current density. The kinetic current densities are worked out through the equation: 

1
𝑗

=
1
𝑗𝑘

+
1
𝑗𝑑

#

where j, jk and jd are the measured current, kinetic current and diffusion limit current, respectively. The 

HER current is commonly considered not limited by H+ transport, therefore, the diffusion current is not 

counted into the calculation. The j0 of HER was obtained by fitting jk into the Butler-Volmer equation:

𝑗𝑘 = 𝑗0[exp (𝛼𝐹𝜂
𝑅𝑇 ) ‒ exp ((𝛼 ‒ 1)𝐹𝜂

𝑅𝑇 )]#

where α is the transfer coefficient, η is the overpotential, F is Faraday’s constant, R is the universal gas 

constant and T is the thermodynamic temperature. 

ECSA calculation. The ECSA could be calculated using the function below:

𝐸𝐶𝑆𝐴
(𝑚2

𝑔,  𝑚𝑒𝑡𝑎𝑙)
=

𝑄𝐶𝑂

𝑀𝑚𝑒𝑡𝑎𝑙 × 𝑄𝑡ℎ𝑒𝑜
𝐶𝑂
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In the equation, QCO is the CO stripping charge, Mmetal is the mass loading of the metal on the working 

electrode. QCO
theo is the theoretical value of QCO, which is 420 µC/cm2 for a two-electron transfer of one 

CO molecule to a CO2 per electrocatalyst atom. The as calculated ECSA of Pt is 92 m2/gmetal, within the 

reported range of Pt ECSA. The detailed ECSAs of Pt/C and other Pt based samples are as Table S2. 

Before CO stripping, a few cycles of CVs was run for each sample to clear the electrochemical surface.  

The CO stripping process was conducted in 0.1 M KOH using RDE. CO adsorption was under potential 

control at 0.06 V/RHE, followed by two cycles of CVs at 0.05 V/s to determine CO-based ECSA. 

The activation energy (Ea) measurement and calculation. The Ea of the samples are acquired through 

the natural logarithm of Arrhenius’ equation.

ln (𝑘) =  
‒ 𝐸𝑎

𝑅 (1
𝑇) + 𝑙𝑛⁡(𝐴)

Where k is the rate constant, T is the absolute temperature in kelvin, R is the universal gas constant, A is 

the pre-exponential factor and Ea is the activation energy. In this work, we considering k as the j0 of each 

reaction, and a relationship between j0 and the temperature of the reaction can be established. The HER 

polarization curves of each sample were measured under 4 different temperatures (10 ℃, 25 ℃, 40 ℃, 

55 ℃) in a water jacket cell with H2 purging. The corresponding j0 was then acquired by fitting jk into 

the Butler-Volmer equation. As a result, a linear relationship could be built between 1/T and ln j0. The 

slope of the plot is considered as -Ea/R, from where Ea could be easily calculated. The similar process 

had been used to acquire the Ea of all the other samples in different solutions.
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Fig. S1 HAADF-STEM images of (a) PtFe alloy nanoparticle (b) dealloyed PtFe nanoparticle (c) Fe 

nanoparticle with Pt skin. (d) PtNi alloy nanoparticle (e) dealloyed PtNi nanoparticle (f) PtNi 

nanoparticle with Pt skin.
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Fig. S2 EDS mapping images of PtM bimetallic samples.
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Fig. S3 XRD spectra of the Pt-based samples.
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Fig. S4 Pt LIII-edge XANES spectra of (a) Fe (b) Ni samples. Pt LII-edge XANES spectra of (c) Fe (d) 

Ni samples.

119



Fig S5 CO stripping of PtM samples in 1M KOH. The CO was fully pre-adsorbed on the electrocatalysts 

by immersing the electrode in 1 M KOH saturated with CO under potential control of 0.06 V (vs. RHE) 

for 20 minutes.
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Fig S6 CO stripping of PtM samples in 0.5 M KOH. The CO was fully pre-adsorbed on the 

electrocatalysts by immersing the electrode in 0.5 M KOH saturated with CO under potential control of 

0.06 V (vs. RHE) for 20 minutes.
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Fig. S7 CO stripping investigation on various electrocatalysts in 0.1 M KOH. The CO was fully pre-

adsorbed on the electrocatalysts by immersing the electrode in 0.1 M KOH saturated with CO under 

potential control of 0.06 V (vs. RHE) for 20 minutes.
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Fig. S8 HER polarization curves of (a) PtFe-containing samples and (b) PtCo-containing samples and 

(c) PtNi-containing samples in 0.01 M KOH solution with their corresponding Tafel plots (d-f). The 

dotted lines indicate Butler-Volmer fitting results. 

Fig. S9 HER polarization curves of (a) PtFe-containing samples and (b) PtCo-containing samples and 

(c) PtNi-containing samples in 1 M KOH solution. 
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Fig S10 The experimentally acquired relationship between the d-band vacancies and j0 for a series of Pt 

based materials in 0.5M KOH.

Fig S11 HER activity of PtM samples in 0.5 M KOH
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Fig. S12 (a), (d), (g), (j) HER polarization curves of the Pt and Pt alloy samples and their corresponding 

experimental Tafel plots (b), (e), (h), (k). The dotted lines indicate Butler-Volmer fitting results. (c), (f), 

(i), (l) the relationship between the reaction temperature and j0 of the corresponding alloy electrocatalysts. 

All the tests were carried out in 1 M KOH solution.
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Fig. S13 (a), (d), (g) HER polarization curves of the Pt dealloyed samples and their corresponding 

experimental Tafel plots (b), (e), (h). The dotted lines indicate Butler-Volmer fitting results. (c), (f), (i) 

the relationship between the reaction temperature and j0 of the corresponding dealloyed electrocatalysts. 

All the tests were carried out in 1 M KOH solution.
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Fig. S14 (a), (d), (g) HER polarization curves of the samples with Pt skin and their corresponding 

experimental Tafel plots (b), (e), (h). The dotted lines indicate Butler-Volmer fitting results. (c), (f), (i) 

the relationship between the reaction temperature and j0 of the corresponding Pt skinned electrocatalysts. 

All the tests were carried out in 1 M KOH solution.
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Fig. S15 (a), (d), (g), (j) HER polarization curves of the Pt and Pt alloy samples and their corresponding 

experimental Tafel plots (b), (e), (h), (k). The dotted lines indicate Butler-Volmer fitting results. (c), (f), 

(i), (l) the relationship between the reaction temperature and j0 of the corresponding alloy electrocatalysts. 

All the tests were carried out in 0.1 M KOH solution.
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Fig. S16 (a), (d) HER polarization curves of the Pt dealloyed samples and their corresponding 

experimental Tafel plots (b), (e). The dotted lines indicate Butler-Volmer fitting results. (c), (f) the 

relationship between the reaction temperature and j0 of the corresponding dealloyed electrocatalysts. All 

the tests were carried out in 0.1 M KOH solution.
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Fig. S17 (a), (d), (g) HER polarization curves of the samples with Pt skin and their corresponding 

experimental Tafel plots (b), (e), (h). The dotted lines indicate Butler-Volmer fitting results. (c), (f), (i) 

the relationship between the reaction temperature and j0 of the corresponding Pt skinned electrocatalysts. 

All the tests were carried out in 0.1 M KOH solution.
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Fig. S18 (a) CO stripping of PtFe-containing bimetallic samples in 0.1 M KOH solution, (b) CVs of 

PtFe-containing bimetallic samples in 0.1 M KOH.
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Fig. S19 Fitted EXAFS spectra of the Pt alloy samples. Left: Forward Fourier transform of the EXAFS 

after correction for phase shifts. Right: Fits in K-space for the Pt alloy samples.
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Fig. S20 Fitted EXAFS spectra of the Pt dealloyed samples. Left: Forward Fourier transform of the 

EXAFS after correction for phase shifts. Right: Fits in K-space for the Pt alloy samples.
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Fig. S21 Fitted EXAFS spectra of the samples with Pt skin. Left: Forward Fourier transform of the 

EXAFS after correction for phase shifts. Right: Fits in K-space for the Pt alloy samples.
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Fig S22 The relationship between the OH interaction ability and the HER activity of the catalysts in 0.1 

M KOH, (a) PtFe, (b) PtCo and (c) PtNi series. No obvious relationship between the two parameters can 

be found.
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Table S1. The d-band vacancies of the Pt-based bimetallic samples.

Pt PtFe PtCo PtNi dealloyed PtFe

d-band vacancies 0.28286 0.28054 0.28242 0.28369 0.27987

dealloyed PtCo dealloyed PtNi PtFe with 

Pt skin

PtCo with 

Pt skin

PtNi with 

Pt skin

d-band vacancies 0.28157 0.28761 0.28455 0.28246 0.28689

Table S2. ECSAs of the Pt based samples.

PtC PtFe PtCo PtNi dealloyed PtFe

ECSA 
(m2/gmetal)

92 87 90 82 45

dealloyed PtCo dealloyed PtNi PtFe with Pt 

skin

PtCo with Pt 

skin

PtNi with Pt 

skin

ECSA 
(m2/gmetal)

43 50 58 82 52
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Table S3. EXAFS fitting results for the Pt-based bimetallic samples.

Fe Co NiCoordination 

shell

EXAFS 

parameter Alloy Dealloy Pt skin Alloy Dealloy Pt skin Alloy Dealloy Pt skin

R factor 0.0019 0.0026 0.002 0.0031 0.004 0.0038 0.0009 0.001 0.0009

R (Å) 2.70(8) 2.70(6) 2.71(1) 2.70(4) 2.70(7) 2.70(2) 2.69(5) 2.69(6) 2.69(5)

CN 6.24(8) 6.90(6) 8.02(3) 8.02(7) 9.22(0) 9.75(7) 7.97(8) 8.10(5) 7.60(4)

△σ2 0.0075 0.00667 0.0061 0.00788 0.00806 0.0068 0.00806 0.00796 0.00601

Pt-Pt

△E0(eV) 4.091 4.528 4.616 3.898 3.424 4.888 3.998 3.61 5.113

R (Å) 2.66(9) 2.67(2) 2.66(7) 2.65(7) 2.66(4) 2.64(4) 2.64(0) 2.65(3) 2.62(2)

CN 2.39(3) 2.65(9) 5.12(2) 2.20(6) 2.34(9) 5.04(7) 2.75(2) 2.42(9) 4.69(0)

△σ2 0.00774 0.00743 0.00688 0.00913 0.00862 0.00874 0.00912 0.00889 0.00744

Pt-M

△E0(eV) 8.371 8.055 7.082 9.926 9.387 7.276 9.997 9.687 7.014

R (Å) 2.00(4) 2.00(2) 2.01(6) 2.00(2) 2.00(4) 1.96(6) 1.99(7) 2.00(1) \

CN 1.25(2) 2.06(5) 0.42(6) 1.36(0) 2.23(2) 0.82(1) 1.17(9) 2.27(2) \

△σ2 0.0068 0.00568 0.00304 0.00318 0.00463 0.00134 0.00383 0.00485 \

Pt-O

△E0(eV) 9.395 9.629 9.192 9.946 9.734 2.601 7.714 9.877 \
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Chapter 5 : Strain Effect in Bimetallic Electrocatalysts on the 

Hydrogen Evolution Reaction 

5.1 Introduction 
Bimetal materials are one of the most efficient catalysts toward some key but kinetically 

sluggish electrocatalytic reactions such as oxygen reduction reaction, CO2 reduction 

reaction and hydrogen evolution reaction (HER), etc. However, the co-existence of 

geometric and electronic effects in this kind of materials has interactive influence toward 

their overall catalytic activities. Therefore, finding the reactivity origin of the bimetal 

materials is very challenging for designing active ones. Here by using two kinds of well-

defined Ru-Pt nanostructures, i.e., core-shell and conventional alloy, as model catalysts, 

we can isolate the geometric and electronic effects and link each of them to the fundamental 

reaction intermediate adsorption strength during HER process. For the first time, we found 

that the strain effect plays a more dominant role for the activity enhancement of HER, 

therefore providing an important strategy for the future composition/structure design of 

more bimetal catalysts. The highlights of this work include: 

• A new face-centred-cubic Ru core @ Pt shell structure with a highly compressively 

strained Pt interface was well-characterized by both atomic-level imaging and molecular 

dynamics simulation. 

• The geometric and electronic effects of this model catalysts was isolated by using 

experimentally X-ray absorption spectroscopy and theoretically simulation. 

• The unique strained nanostructure leads optimal adsorption/desorption of both 

hydrogen and hydroxyl reactive species during the reaction. 

• The Ru@Pt core-shell sample with geometric effect only even showed much higher 

activity compared to conventional RuPt alloys with both geometric and electronic effects 

and single Pt. 
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5.2 Strain Effect in Bimetallic Electrocatalysts on the Hydrogen 

Evolution Reaction 
This chapter is included as it appears as a journal paper published by Xuesi Wang, Yihan 

Xhu, Anthony Vasileff, Yan Jiao, Shuangming Chen, Li Song, Bin Zhang, Yao Zheng and 

Shi-Zhang Qiao: Strain Effect in Bimetallic Electrocatalysts on the Hydrogen Evolution 

Reaction, ACS Energy Letter, 2018, 3, 1198-1204 
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*S Supporting Information

ABSTRACT: Unravelling the electrocatalytic activity origins of bimetallic
nanomaterials is of great importance, yet fundamentally challenging. One of
the main reasons for this is that the interactive contributions from geometric
and electronic effects to enhancements in reaction activity are difficult to
distinguish from one another. Here, on well-defined Ru−Pt core−shell
(Ru@Pt) and homogeneous alloy (RuPt) model electrocatalysts, we are able
to isolate these two effects. Furthermore, we observe the dominant role of
strain in the intrinsic activity of the alkaline hydrogen evolution reaction. In
the Ru@Pt icosahedral nanostructure, the highly strained Pt shells
effectively accommodate the interfacial lattice mismatch from a face-
centered cubic structured Ru core. This unique property leads to a weak
binding of hydrogen and optimal interaction with hydroxyl species during
the reaction, thus leading to an enhanced apparent activity of Ru@Pt.

Platinum (Pt)-based materials have shown unique and
incomparable catalytic activities for a range of electro-
catalytic processes such as the oxygen reduction reaction

and hydrogen evolution reaction (HER) in acidic condi-
tions.1−5 However, Pt is inefficient in some critical renewable
energy-related processes, such as the HER in alkaline
environments, which is the half-reaction in promising photo-
electrocatalytic water-splitting technologies.6−8 The kinetics of
alkaline HER on Pt are usually several orders of magnitude
lower than that in acidic environments.9−11 In this regard, Pt-
based alloys (e.g., Ni−Pt and Ru−Pt) have been developed to
enhance the alkaline HER activity of Pt by introducing a
secondary active site for synergistic catalysis.12−14 However, it is
hard to identify the origin of the activity enhancement in these
materials as both chemical composition (ligands) and physical
structure (strain) effects always contribute interactively.13,15 As
a result, tailoring alloys with precise control of these features is
key to identifying the relationship between their physicochem-
ical properties and catalytic performances for future rational
electrocatalyst design.
In a bimetallic system, the ligand effect occurs when

electrons transfer between two different atom groups and
cause changes in the electronic band structures. The strain
effect arises when the surface atom geometry is compressed or
expanded. Theoretically, both of these effects can independ-
ently change the adsorbed states of reactive intermediates in the

reaction, thus affecting the overall activity of bimetallic
electrocatalysts.16−18 Nevertheless, in practice, the strain and
ligand effects work interactively in a certain bimetallic
electrocatalyst, and this combination can have either a positive
or negative influence on its catalytic activity.19−24 As a result,
the coexistence of these two effects obscures the origin of the
overall activity for these materials, especially for reactions
involving several different reactive species. More importantly, a
comprehensive understanding of the reaction mechanisms on
most bimetallic systems is still lacking.
The HER in alkaline solutions (2H2O + 2e− → H2 + 2OH−)

is an ideal model reaction for investigating the above issue as it
involves complex reactive species. The reaction pathway can be
described as an initial water dissociation process (Volmer step:
H2O + e− ↔ Had + OH−), which produces reactive hydrogen
(Had), followed by either the Heyrovsky (H2O + Had + e− ↔
H2 + OH−) or Tafel (2Had ↔ H2) step to generate molecular
hydrogen product.25 Clearly, the alkaline HER activity is
strongly affected by the binding ability of the electrocatalyst
surface with H and/or OH species.26−28 To fully understand
the nature of alkaline HER catalysis on bimetallic electro-
catalysts, it is important to construct direct relationships
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between the electrocatalyst’s strain/ligand effect and its binding
ability toward each reactive species. Therefore, developing well-
defined electrocatalysts with isolated strain or ligand effects is
key to revealing their activity origins.
Herein, we used a pair of well-characterized Ru−Pt model

electrocatalysts with identical ligand effect but different surface
geometries to uncover the mechanism responsible for their
HER activity enhancement in alkaline conditions. With a highly
compressive strained surface, the Ru@Pt core−shell nanostruc-
ture exhibited much higher activity than the conventional
strain-free RuPt alloy. When compared to acidic HER, the
strain-induced enhancement on HER activity is more
prominent in alkaline solutions. Electrochemical character-
izations indicated that the compressive strain on the Ru@Pt led

to better interaction toward both H reactive intermediates and
OH spectator species, in turn promoting the overall HER
activity. Therefore, we suggest that the surface strain of
bimetallic electrocatalysts is a more dominant factor compared
to the ligand effect for alkaline HER activity. Core−shell
nanostructure exhibited much higher activity than the conven-
tional strain-free RuPt alloy. When compared to acidic HER,
the strain-induced enhancement on HER activity is more
prominent in alkaline solutions. Electrochemical character-
izations indicated that the compressive strain on the Ru@Pt led
to better interaction toward both H reactive intermediates and
OH spectator species, in turn promoting the overall HER
activity. Therefore, we suggest that the surface strain of

Figure 1. (a) HRSTEM image of Ru@Pt nanoparticles. (b) EDX line profiles of Pt L-edge and Ru K-edge signals from the yellow dashed line
in panel c. Experimental (c, f) and simulated (d, g) HRSTEM images of individual Ru@Pt nanoparticles along [001] and [112] axes. Insets are
corresponding diffractograms. (e, h) The corresponding Ru147@Pt414 model structure of nanoparticles. In panel e, the particle is slightly off-
axis (5.8°). The Pt and Ru atoms are depicted as cyan and brown spheres, respectively.
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bimetallic electrocatalysts is a more dominant factor compared
to the ligand effect for alkaline HER activity.
The Ru@Pt nanoparticles with Ru core and Pt shell were

synthesized by the thermal reduction of corresponding metal
salts. The Ru cores were fabricated first in ethylene glycol,
followed by coating with Pt shells by the reduction of a Pt
chloride precursor (see experimental details in the Supporting
Information).29 The high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) images
illustrate the morphologies of the nanoparticles at low
magnification, which had an average size of 4 nm (Figure
1a). The difference in contrast between the core and shell
regions can be assigned to a Ru@Pt core−shell structure with
an approximately 2 nm Ru core and 1 nm thick Pt shell, which
was further confirmed by the energy dispersive X-ray (EDX)
line profile in Figure 1b. Further EDX mapping of the Pt M-
edge and Ru L-edge shows a distinct boundary between the Pt
shell and Ru core, with only a trace Ru signal detected in the Pt
layer (Figure S2b−d). This indicates that only very few Ru
atoms exist on the Pt surface. The atomic-resolution HAADF-
STEM images of a randomly chosen individual nanoparticle
indicated a multiply twinned structure (Figures 1c,f and S1),
and the contrast closely resembles the simulated images from a
Ru147@Pt414 icosahedron model structure projected along the
[001] and [112] directions, respectively (Figure 1d,e,g,h).
Additional HAADF-STEM images show that that nanoparticles
have homogeneous structure and are uniform (Figure S1). In
addition, the simulated fast Fourier transform (FFT) results of
different orientations match well with their corresponding
experimental ones (insets of Figure 1c,d,f,g). All of the above
observations unambiguously show that the synthesized Ru−Pt
bimetallic nanoparticles exhibit a Ru@Pt icosahedral core−shell
structure, where the Pt shell grows epitaxially on the anomalous
face-centered cubic (fcc) structured Ru core. Notably, Ru is
well-known to be stable with a hexagonal close-packed (hcp)
structure, while our previous work reported a crossover
between hcp and fcc structures in Ru nanoparticles upon the
metal−substrate interactions.30 It is thus speculated that the
formation of the fcc structured Ru core may result from the Pt/
Ru interfacial interactions, which also introduces compressive
strain in the Pt shell to accommodate the interfacial lattice
mismatch. Because of the small thickness of the Pt shell, such
strain would have a more pronounced effect on the outmost
surface structure of the icosahedral nanoparticle. In contrast,
the homogeneous RuPt alloy nanoparticles have perfect fcc
crystalline structure and have strain-free surfaces (Figure S2).
Unlike the Ru@Pt nanoparticles where Ru and Pt are
segregated at different regions, PtRu alloy has a random
occupation of Pt and Ru in the structure which greatly
minimizes the strain. This is unambiguously proven by a
geometric phase analysis (GPA) conducted on an individual
PtRu alloy nanoparticle, as shown in Figure S3, where rather
small and uniform strain fluctuations throughout the whole
particle can be observed for different strain components. Such
distinction can also be observed from the X-ray powder
diffraction (XRD) spectra of the two bimetal structures (Figure
S4). As shown in Figure S4, the materials are highly consistent
with reported Ru fcc and Pt fcc structures (JCPDS No. 88-2333
and JCPDS No. 04-0802, respectively). Noticeably, the peaks
for Ru@Pt are broader compared to that of the RuPt alloy. This
broadening is most likely due to the highly strained Pt shells of
the Ru@Pt nanoparticles.

These strain-induced structure variations in the Ru@Pt
core−shell structure was then modeled by energetically
minimizing and equilibrating a Ru147@Pt414 icosahedron
model using molecular dynamics (MD) (see the Supporting
Information). It is clear from the calculated radial distribution
function (RDF) that the Ru core remains ordered and
unstrained, exhibiting sharp RDF peaks, while the Pt shell
and Pt−Ru interfacial regions are highly strained, exhibiting
very broad peaks (Figure 2a). The weak first-shell RDF peak in

the Pt shell corresponds to a relatively low average coordination
number, arising from the formation of loosely bonded Pt sites
on the surface and near-surface regions (Figure 2b,c), which are
consistent with the experimental imaging results (Figure 1c,f).
The local lattice strain variations in the two different

bimetallic nanostructures were also experimentally probed by
extended X-ray absorption fine structure (EXAFS) spectrosco-
py. As shown in Figure 3a, standard Pt foil has been used as a
strain-free Pt control sample. When compared to Pt foil, the
Pt−Pt peak of the RuPt alloy shows little shift, indicating a
similar Pt−Pt atomic distance between materials. In compar-
ison, the Ru@Pt sample has a very broad Pt−Pt peak, and both
Pt−Ru and Pt−Pt peaks show negative shifts by 0.04 and 0.09
Å, respectively, compared to peaks of the RuPt alloy and
standard Pt foil. This further supports the presence of a large
compressive strain (∼3% compared to RuPt alloy and Pt foil)
in the Pt shells of the Ru@Pt nanoparticles as proposed on the
basis of atomic-resolution imaging. Moreover, X-ray absorption
near edge structure (XANES) spectroscopy was used to
precisely study the electronic charge transfer induced by the
modified ligand environment around the surface (Figure 3b).
At the Pt LIII-edge, the white line (WL) of Ru@Pt
nanoparticles has little shift compared to the RuPt alloy and

Figure 2. (a) Calculated RDF of Pt, Ru, and Pt−Ru atoms from the
equilibrated Ru147@Pt414 model structure. Atomic structure models
of (b) ideal and (c) equilibrated Ru147@Pt414 icosahedron.
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Pt foil, demonstrating that the three Pt-based materials had
identical electron density. Also, at the Ru K-edge, there was a
∼0.2 eV WL shift between the two bimetallic nanostructures,
which may have been induced by the special electronic
structure of the Ru fcc core structure in the core−shell sample
compared to the conventional Ru hcp structure in the alloy
sample (Figure 3c). Additionally, we observed an enhanced WL
intensity of Pt LIII-edge for the Ru@Pt compared with the other
two samples, which can be directly related to a higher
unoccupied density of 5d states probably originating from the
highly strained and loosely bonded Pt surface.3 Therefore, it is
reasonable to assume that the ligand effect is negligible in this
structure and that strain provides the dominant effect on the
surface active sites.
To isolate the impact of strain effects toward H and/or OH

adsorption in the alkaline HER process, a series of cyclic
voltammograms (CVs) were recorded for three Pt-based
electrocatalysts under both acid and alkaline environments.
The bimetallic nanoparticles were loaded on carbon at a mass

fraction comparable to that of the commercial Pt/C (∼20%;
Figure S5). Notably, these samples showed very different
underpotential-deposited hydrogen (HUPD) adsorption−de-
sorption behaviors, and such differences were more obvious
in alkaline conditions (Figures 4a and S6). It is known that the

position of the HUPD peaks are directly related to the hydrogen
binding energy (HBE) of the catalytically active sites.31 For Pt-
based materials, which always possess relatively strong
hydrogen adsorption, a lower HUPD peak potential indicates a
weaker hydrogen binding. This generally facilitates H2 product
desorption, leading to an enhanced overall HER activity. At the
same time, some studies have claimed that besides the reactive
Had, the OH spectator is also considered to be a very important
species for the HER in alkaline environments.32−34 Therefore,
the OH adsorption−desorption behavior on these electro-
catalysts was qualitatively studied by carbon monoxide (CO)
stripping tests, where the electrocatalyst providing neither too
weak nor too strong OH interaction will lead to an optimal CO
electro-oxidation potential.35,36 As shown in Figure 4b, the CO
oxidation potential of the three electrocatalysts downshifts as
follows: Pt/C > RuPt alloy/C > Ru@Pt/C, demonstrating that
the OH interaction with the electrocatalysts increases in the
order of Pt/C < RuPt alloy/C < Ru@Pt/C. It is widely known
that the favorable OH adsorption ability of Ru is considered to
be the main reason for the significant HER performance of
RuPt alloys in alkaline environments. Notably, in our study, the
highly strained Pt shell in the Ru@Pt nanostructures exhibits
even better interaction with OH intermediates than the RuPt
alloy/C, achieving the lowest overpotential for CO oxidation.

Figure 3. (a) Pt LIII-edge R-space EXAFS spectra of standard Pt foil,
Ru@Pt, and RuPt alloy. (b) Pt LIII-edge and (c) Ru K-edge XANES
spectra of Ru@Pt and RuPt alloy. The insets show the enlarged
spectra at the Pt LIII-edge and Ru K-edge WL, respectively.

Figure 4. (a) CVs of various electrocatalysts in 0.1 M KOH showing
the HUPD adsorption−desorption peaks. (b) CO stripping curves of
various electrocatalysts in 0.1 M KOH.
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Regarding apparent HER activity, in 0.5 M H2SO4, the
polarization curves of the three electrocatalysts are very similar.
However, in 0.1 M KOH, the activity clearly increases in the
order Pt/C < RuPt alloy/C < Ru@Pt/C (Figure 5a,b). To
further compare the HER kinetics of the different materials, the
exchange current densities (j0) and Tafel plots were obtained
by fitting the calculated kinetic current (ik) into the Butler−
Volmer equation (see the detailed method in the Supporting
Information). In 0.5 M H2SO4 conditions (Figure 5c), the Tafel
slopes of the three electrocatalysts are very similar (around 30
mV/dec), indicating the rate-determining step (rds) is either
the Heyrovsky step or the Tafel step. In contrast, there is a
greater difference among the Tafel slopes of the three
electrocatalysts in 0.1 M KOH conditions (Figure 5d), which
are between 100 and 116 mV/dec, indicating that the water
dissociation-related Volmer step is the rds for these electro-
catalysts in alkaline conditions.
Furthermore, we measured the electrochemical surface area

(ECSA)-normalized j0 of the three electrocatalysts in various
electrolytes with a wide range of pH values (Figures 5e and

S7−S12). As expected, the values of j0 on all electrocatalysts
decreased with an increase in pH. For example, when the pH
increased from 0.2 to 3, the j0 of Pt/C and RuPt alloy/C
decreased by about half, while on Ru@Pt/C it decreased by
14.3%. Additionally, the j0 changed very little when the pH
increased from 11 to 13, consistent with previous reports on
pure Pt electrocatalysts.37 It is known that the HBE of Pt active
sites increases (more positive) with decreasing H+ concen-
tration in solution.38 For Ru@Pt, the compressive lattice strain
and loosely bonded Pt surface led to a relatively weaker
hydrogen-binding strength compared to the RuPt alloy and
pure Pt.3 Therefore, it is likely that its overall activity is
comparatively less influenced by a decreased concentration of
hydrogen species. Additionally, as indicated by the Tafel slopes,
the water dissociation process becomes critical for the reaction
kinetics of all three electrocatalysts in alkaline conditions.
Despite the direct assistance of exposed Ru, which has a very
low water dissociation barrier, the HER kinetics of the RuPt
alloy is still lower than that of Ru@Pt with only Pt being
exposed (Figure 5e). Therefore, we conclude that the

Figure 5. (a, b) IR-corrected HER polarization curves and (c, d) corresponding Tafel plots of various electrocatalysts in H2-saturated
electrolytes. The dotted lines indicate Butler−Volmer fitting. (e) Comparison of the ECSA-normalized j0 of various electrocatalysts at
different pH values. (f) Comparison of the ECSA-normalized current density of various electrocatalysts at an overpotential of 20 mV. The
numbers indicate the scalar difference in current density between acidic and alkaline conditions.
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enhancement to alkaline HER activity is due to the compressive
strain on the Pt surface rather than Ru. Noticeably, the stability
test indicates that the performance of Ru@Pt is more stable
than that of the alloy structure (Figure S13). This proves that
the activity enhancement introduced by compressive strain of
the Ru@Pt structure could be applied in long-term reactions.
Additionally, such strain-induced activity improvement on

Ru@Pt/C in alkaline electrolyte is more significant under an
applied overpotential (e.g., 20 mV) than that at the equilibrium
potential. For example, the apparent HER current density gap
between acidic and alkaline conditions for Ru@Pt/C is much
smaller than those on the other strain-free Pt-based samples
(Figure 5f). It should be noted that at such conditions, the
overpotential-deposited H (HOPD) becomes the dominant
adsorbate in the HER pathway, which was proven to be closely
related to the HUPD species and to be more dependent on the
electrocatalyst surface geometry.39,40 This indicates that
strategies involving surface strain engineering should have
significant influence toward both HUPD and HOPD sorption, and
also toward reactive OH species. The cumulative effects of this
should likely lead to improvements in the apparent alkaline
HER activity.
In conclusion, by using the well-characterized Ru@Pt core−

shell and homogeneous RuPt alloy model electrocatalysts, we
evaluated the origin of the alkaline HER activity enhancement
on bimetallic materials. With high compressive strain, the Ru@
Pt has optimized adsorption−desorption energetics toward H
intermediates and OH spectator species compared to an
analogous RuPt alloy electrocatalyst with identical ligand effect
but without strain. This highly strained structure was found to
have significantly better HER activity in alkaline conditions. We
also provided strong evidence that in alkaline conditions, strain
in bimetallic electrocatalysts plays a more dominant role in the
HER kinetics compared to the ligand effect. Such a strategy
may direct the future design of more bimetallic electrocatalysts
for other multistep reactions with complex reactive species
(e.g., H and OH), such as the CO2 reduction and N2 reduction
reactions.
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I. Experimental Section 

Chemical and materials 

Commercialized Pt/C and carbon black (CB) were purchased from FuelCellStore without further 

treatment. All the other chemicals used in the experiments were purchased from Sigma-Aldrich Co. 

LLC.  

Synthesis of the Ru@Pt nanoparticles 

55 mg of polyvinylpyrrolidone (PVP, average mol wt 40,000) was first dissolved in 40 mL glycol in 

a 100 mL flask. 80 mg Ruthenium(III) acetylacetonate (Ru(acac)3) was added into the flask and the 

mixture was heated to 200 ℃ for 3 hours with constant stirring. Afterward, the suspension was 

cooled to room temperature and 54 mg platinum(II) chloride (PtCl2) was added into the flask 

followed by another slow heating process to 200 ℃. The suspension was then kept at 200 ℃ for 1.5 

hours before cooled to room temperature. 

Synthesis of RuPt alloy nanoparticles 

51 mg tricarbonyldichlororuthenium(II) dimer [Ru(CO)3Cl2]2 and 79 mg platinum(II) 

acetylacetonate (Pt(acac)2) were added into 40 mL PVP solution under vigorous stirring. The 

mixture was heated to 200 ℃ and kept for 1.5 hours before cooled to room temperature. Both 

Ru@Pt and RuPt alloy nanoparticles were dialyzed in water for a week before further applications. 

Preparation of electrocatalyst 

First, 1 g CB was dispersed in 50 mL nitric acid (HNO3) under ultrasound. The suspension was then 

heated for 12 hours in an 80 ℃ oil bath with reflux. The as prepared CB was then washed in water 

for multiple times until neutralized and freeze-dried before being used. Then, the acidic treated CB 

was added into a homogeneous water suspension with acetic acid (50 % volume ratio) and heated to 

60 ℃. Nanoparticles was then added into the suspension under stirring and the mixture was heated 

overnight before cooled to room temperature. The electrocatalyst was then washed until neutralized 

and freeze dried before collected. Finally, the dried product was heated to 250 ℃ first in a N2 

atmosphere for 4 hours, then in a 10 % H2/Ar atmosphere for 3 hours. The final product had a metal 

loading rate at about 23.7 % (Figure S4). 

Physical characterizations 

Scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) 

images were collected on a cubed Titan G2 80-300 Field-Emission-Gun electron microscope 

equipped with a Fischione model 3000 High-Angle-Annular-Dark-Field (HADDF) detector and a 

CEOS GmbH double-hexapole spherical-aberration corrector operating at 300 kV. HRSTEM 

simulations were carried out by using the qSTEM code developed by C. T. Koch (C. Koch, Ph.D. 
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Thesis, Arizona State University, 2002). Simulation conditions used: 300 kV; Cs = 10 µm; Cc = 1 

mm; ∆E = 0.7 eV; ∆f = -6.1 nm; α = 17 mrad; inner/outer detector angle = 70/200 mrad; simulation 

window size (400 × 400 pixels with 0.0075 nm point sampling). The Ru and Pt L3 edge XAFS 

spectra were recorded in transmission mode (Si 111) at the BL14W1 Endstation of Shanghai 

Synchrotron Radiation Facility (SSRF). The electron beam energy of the storage ring was 3.5 GeV 

with a maximum stored current of 300 mA. The data was normalized and analyzed using Athena. 

Parameterize potentials for the Pt-Ru system 

The Embedding-Atom method (EAM) potential,1 as one of high-quality potential functions, was 

chosen to describe the Pt-Ru system here. In this potential function, the total energy of an alloy 

system can be expressed in the general form of  

���� =	� �	
�	�
	�� +� �

	��/2	,�	  

where F is the embedding function, ρ defines the electron charge density and φ is the pair potential 

function. The indices i and j represent the embedded atom and the neighboring atom, respectively. 

The first term (F) is the embedding energy of i atom, reflecting the many body interactions via the 

atom i and its background electron charge density. The second term (φ) defines the pair interactions 

between atom i and j.  

The EAM potential parameters were obtained by using the force-matching method2 with the 

potfit package3-4. Target systems for fitting employed the configurations of Pt-Ru system, including 

clusters (Pt-Ru), face-centered-cubic crystals (Pt bulk and Pt-Ru alloy), and hcp (Ru) crystals. The 

cutoff radius is set to be 6.0 Å through the entire fitting procedure. The accurate ab-initio 

calculations (VASP)5-6 were used to obtain all fitting configurations. In this method, the projector 

augmented wave (PAW) approach7-8 with the generalized gradient approximation (GGA) was 

chosen. The cut-off energy for the plane wave was set to 400 eV. To prevent any interaction 

between clusters, enough vacuum region in the x, y, and z directions was created. 

Molecular dynamics (MD) simulation 

The LAMMPS package9 was used to perform the molecular dynamics (MD) simulations. Firstly, an 

energy minimization based on the conjugate gradient (CG) algorithm was performed at zero 

temperature to guarantee the atomic positions during geometric optimization. Then, the system was 

thermally equilibrated at 300 K for 1 nanosecond, by using microcanonical ensemble (NVE) with a 

time step of 1 fs. The VMD software10 was applied to visualize the atomic structure. 

Electrochemical measurements 

All electrochemical measurements were conducted under identical conditions (20 ℃, atmospheric 

pressure). 2 mg electrocatalyst (20 % metal mass loading on carbon black) were homogeneously 
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dispersed in 1mL Nafion solution (0.05 %, water solution). 20 µL of the electrocatalyst dispersion 

was then coated onto a glassy carbon rotating disk electrode (RDE, efficient surface area = 0.196 

cm2, Pine Research Instrumentation) and dried in air. 

All the electrochemical data were recorded by a CHI 760D bipotentiostat (CH Instruments, 

INC.). The reference electrode(RE) was an Ag/AgCl in 4 M KCl solution (0.205 V vs. reversible 

hydrogen electrode (RHE)). The working electrode is a glass carbon electrode with a surface area of 

0.196 cm2. The counter electrode was a carbon rod. The electrolyte of different pH values was 

prepared by mixing 0.5 M H2SO4 or 0.1 M KOH with 0.5 M K2SO4 solution. The potentials 

reported in this work were referred to RHE through RHE calibration:  

���� = ���/���� + 0.205 + 0.059 × "#  

Linear sweep voltammograms (LSVs) were carried out using an RDE at 1600 rpm under 

constant H2 flow (50 mL/min) at a scan rate of 2 mV/s. All the LSV results were corrected by 

iR-compensation.  

The electrocatalytic active surface area (ECSA) is calculated through CO stripping voltammetry 

tests. The CO stripping voltammetry tests were carry out with a N2 flow (50 mL/min) being used at 

least 15 minutes before each test to purge the 0.5 M H2SO4 electrolyte. After the N2 saturation, the 

working electrodes was lowered into the electrolyte for the first round of CV between -0.05 V and 

1.20 V, sweeping at a scan rate of 0.01 V/s under rotation of 1600 rpm. Then the purge gas was 

switched to a CO (10 %) in argon gas mixture for 30 minutes, during which time a +0.06 V/RHE 

potential was applied on the electrode to ensure a full occupation of active sites. Another two CVs 

was then performed at a scan rate of 0.05 V/s. No CO oxidation could be observed in second CV, 

indicating a complete conversion of adsorbed CO. 

The ECSA could be calculated using the function below: 

ECSA�() �* ,(+�,�� = -�.
/(+�,� × -�.�0+�

 

In the equation, QCO is the CO stripping charge, Mmetal is the mass loading of the metal on the 

working electrode. QCO
theo is the theoretical value of QCO, which is 420 µC/cm2 for a two-electron 

transfer of one CO molecule to a CO2 per electrocatalyst atom. For commercial Pt/C, the 

underpotential deposited CO (COUPD) region is between 0.8 to 1 V vs. RHE. For Ru and Ru based 

nanomaterials, the COUPD region is between 0.5 to 0.8 V vs. RHE. The as calculated ECSA of Pt is 

92 m2/gmetal, within the reported range of Pt ECSA. The detailed ECSAs of Pt, Ru@Pt and RuPt 

alloy are as follow: Pt/C: 92 m2/gmetal, Ru@Pt/C: 55 m2/gmetal, RuPt alloy/C: 28 m2/gmetal. 

Exchange current density calculation 
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The electrocatalytic activity of HER are obtained using RDE measurement under 1600 rpm. To 

obtain the true kinetics of the reaction, the polarization curves are taken in H2-saturated electrolyte. 

the kinetic current densities (jk) are worked out through  

1
2 =

1
23 +

1
24 #  

where j, jk and jd are the measured current, kinetic current and diffusion limit current, respectively. 

While the HOR polarization curve is directly controlled by both kinetic and diffusion limit current, 

the HER current is commonly considered not limited by H+ transport, therefore, the diffusion 

current is not counted into the calculation. The j0 of HER was obtained by fitting jk into the 

Butler-Volmer equation 

23 = 26 7exp ;<�=
> ? − exp A�< − 1��=

> BC #  

Here α is the transfer coefficient, η is the overpotential, F is Faraday’s constant, R is the universal 

gas constant and T is the thermodynamic temperature.  
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II. Supplementary Results 

 

Figure S1. HRSTEM images of HAADF-STEM images of Ru@Pt nanoparticles at different scales 

(above) and several different individual Ru@Pt icosahedral nanoparticles from different angles 

(bottom).  

Figure. S2. (a). HRSTEM image of individual RuPt alloy nanoparticle and diffractogram (inset). 

(b). HAADF-STEM image of a randomly chosen Ru@Pt nanoparticle. (c)-(e). EDX mapping of: (c). 

combined Pt M edge and Ru L edge. (d). Pt M edge. (e). Ru L edge of a Ru@Pt nanoparticle. 

 

  

a b c 
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Figure S3. GPA strain analysis. 
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Figure. S4. XRD spectra of Ru@Pt and RuPt alloy nanoparticles. The drop lines indicate peaks for 

standard Ru fcc and Pt fcc structures.  
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Figure. S5. Thermogravimetric analysis curve recorded in air for (a) RuPt alloy loaded on carbon. 

(b) Ru@Pt loaded on carbon. 

 

 

 

Figure. S6. Cyclic voltammograms of Pt/C (black) Ru@Pt/C (red) and RuPt alloy/C (blue) at a 

scan rate of 0.05 V/s in 0.5 M H2SO4. 
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Figure. S7. (a-c). CO stripping investigation on various electrocatalysts: (a). Pt/C. (b). Ru@Pt/C. 

(c). RuPt alloy/C in 0.1 M KOH. The CO was fully pre-adsorbed on the electrocatalysts by 

immersing the electrode in 1 M KOH saturated with CO under potential control of 0.06 V (vs. RHE) 

for 20 minutes.  

 

 

 

Figure. S8. HER polarization curves of various electrocatalysts in H2-saturated electrolyte. (a) 

sodium bicarbonate/sodium hydroxide buffer, pH = 11.2 (b) 1M KOH solution, pH = 13.5. 
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Figure. S9. From a to c: HER Tafel plots of the current density of Pt/C, Ru@Pt/C and RuPt alloy/C 

electrocatalysts in pH = 0.2 solution. The red line indicating Butler-Volmer fitting. The diffusion 

effect is not taken into count. 
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Figure. S10. From a to c: HER Tafel plots of the current density of Pt/C, Ru@Pt/C and RuPt 

alloy/C electrocatalysts in pH = 3 solution. The red line indicating Butler-Volmer fitting. The 

diffusion effect is not taken into count. 
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Figure. S11. From a to c: HER Tafel plots of the current density of Pt/C, Ru@Pt/C and RuPt 

alloy/C electrocatalysts in pH = 11 solution. The red line indicating Butler-Volmer fitting. The 

diffusion effect is not taken into count. 

161



 

Figure. S12. From a to c: HER Tafel plots of the current density of Pt/C, Ru@Pt/C and RuPt 

alloy/C electrocatalysts in pH = 13 solution. The red line indicating Butler-Volmer fitting. The 

diffusion effect is not taken into count. 
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Figure. S13. Stability test of (a). Ru@Pt/C and (b). RuPt alloy/C. The CVs were taken before and 

after 12 hours of long term reaction.  
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Chapter 6 : Conclusions and perspectives 

6.1 Conclusions 
This thesis is devoted to deepening the insight into the reaction mechanism and the activity 

origin of the alkaline HER on the surface of nanostructured noble metal catalysts. The 

following conclusions can be drawn from the work in this thesis: 

1. A distinctive alkaline HER mechanism alternative to that on bulk material has been 

found on nanostructured catalysts in high pH environment. In electrolyte with high 

[OH-] concentration, a large amount of H3O+ ions are generated on the surface of the 

nanostructured catalyst, forming an ‘acid-like’ environment within the electric double 

layer. These H3O+-rich environment contributes in lowering the activation energy of 

the overall reaction and increase the activity of the catalyst. As a result, the 

nanostructured catalysts usually represent an anomalously high HER activity in 

electrolytes with high alkaline concentration. 

2. The reaction mechanism of alkaline HER on nanostructured Pt catalysts will change 

with the reduction of the [OH-]. In alkaline environment with [OH-] <0.01 M, the 

reaction mechanism mentioned in conclusion 1 will not exist. Correspondingly, the 

alkaline HER activity of the catalysts will drop significantly.  

3. Breaking the scaling relationship between the poorly known binding energies of H* 

and OH* was proved to be a practical designing strategy in promoting the catalytic 

activity of the Pt-based nanomaterials toward beyond the theoretical limitation of 

volcano plot. Such goal can be easily achieved via regulating the adsorption behaviors 

of different intermediates on dealloyed bimetallic nanoparticles. By creating oxidation 

site on Pt, it is possible to individually tune the H and OH adsorption affinities of the 

catalyst. 

4. Comparing to ligand effect, the strain effect of the nanostructured Pt-based catalysts 

represents more dominant influence toward the alkaline HER activity. The compressive 

surface strain of the Ru@Pt nanoparticles can significantly alter the particles’ binding 

energy toward H* and OH* intermediates and improve the HER activity of the catalyst. 

Such highly strained Pt can be induced to nanosized catalysts by constructing Ru@Pt 

core-shell structured nanoparticles with lattice mismatch between two metals.  
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In summary, these discoveries in alkaline HER mechanism and catalyst design can bring 

new understanding toward the mechanism study and the catalyst development for the 

reaction. Many of these insights are also applicable and may bring new inspirations to other 

electrocatalytic reduction reactions with multiple reactive intermediate (e. g. carbon 

dioxide and nitrogen reduction reaction). 

6.2 Perspectives 
Even considerable achievement has been accomplished in understanding and designing 

active catalysts for alkaline HER, much effort is still needed to get the full picture and gain 

control over the reaction in general.  

1. While the activity of the catalysts is increasing and reaching the commercial demand, 

the stability of the current HER catalysts is still far beyond the need of industry. 

Although many kinds of cheap and abundant materials have been reported with activity 

very close to, or even better than that of the benchmark Pt/C in alkaline HER, the 

commercialization of these catalysts are restricted by their limited stability. For these 

cost-effective catalysts, it is urgent to significantly improve their physical/electronic 

structure for longer catalytic life cycle. Moreover, it is important to find what is the key 

aspect that determines the stability of the alkaline HER catalysts in general. 

2. In-situ spectroscopy and imaging techniques, such as in-situ Raman, XAS, TEM and 

FTIR, should be largely induced into the study of the catalytic process. These 

techniques are much desired in monitoring the atomistic interaction on the surface of 

the catalyst during the reaction and to bring straightforward answers to the nature of 

the catalytic activity on different materials. Nowadays, it is still challenging to carry 

out in-situ characterizations due to the influence of aqueous reaction environment, 

extreme pH and the generation of bubbles during the reaction. More effort should be 

put into designing devices, instruments and general characterization methods to meet 

such needs.   

3. In practice, the alkaline HER reaction is usually carried out under high overpotential to 

ensure a continuous and sufficient hydrogen production. However, the current 

understanding, including the computational simulations on alkaline HER mechanism, 

is still limited to the reaction process at around onset potential. More research work 
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should be done to probe into the alkaline HER reaction mechanism under high 

overpotential. The influence of the intrinsic electronic structure of the typical catalysts 

toward their activity under operating overpotential should be systematically studied. 

4. Total control over the activity of the alkaline HER is specially needed in technologies 

such as carbon dioxide and nitrogen reduction reaction. In these reactions, methods are 

needed to suppress the HER activity of the certain catalysts (e. g. Cu, Au and Ag) 

without influencing the dissociation of water and the reduction of CO2 or N2.  

All in all, with the fast-developing computational simulation and the more advanced in-

situ characterization techniques, more challenges will be met in time and eventually, a 

thorough understanding and total control in alkaline HER will be achieved. 
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