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ABSTRACT
This study proposes a modified value-function-approximation (MVFA) and investi-
gates its use under a single-critic configuration based on neural networks (NNs) for
synchronous policy iteration (SPI) to deliver compact implementation of optimal
control online synthesis for control-affine continuous-time nonlinear systems. Exist-
ing single-critic algorithms require stabilising critic tuning laws while eliminating
actor tuning. This paper thus studies alternative single-critic realisation aiming to
relax the needs for stabilising mechanisms in the critic tuning law. Optimal control
laws are determined from the Hamilton-Jacobi-Bellman equality by solving for the
associated value function via SPI in a single-critic configuration. Different from other
existing single-critic methods, an MVFA is proposed to deal with closed-loop stabil-
ity during online learning. Gradient-descent tuning is employed to adjust the critic
NN parameters in the interests of not complicating the problem. Parameters conver-
gence and closed-loop stability are examined. The proposed MVFA-based approach
yields an alternative single-critic SPI method with uniformly ultimately bounded
closed-loop stability during online learning without the need for stabilising mecha-
nisms in the critic tuning law. The proposed approach is verified via simulations.

KEYWORDS
Adaptive dynamic programming; approximate dynamic programming; neural
networks; nonlinear control; optimal control; policy iteration

1. Introduction

Nonlinear optimal control generally involves the determination of control laws that
minimise the associated performance cost, where the Hamilton-Jacobi-Bellman (HJB)
equality (Bellman, 1957) or its nonlinear variations are to be solved, or where an
inverse approach without solving the HJB equation (Lopez, Sanchez, Alanis, & Rios,
2017) may apply. In our study, the discussion is focused on the former, where the HJB
equality and its variants, being partial differential equations that are nonlinear, are
difficult to be solved analytically. Practical methods to solve the HJB equation and its
variants are provided through approximation methods, one class of which is the widely
studied adaptive/approximate dynamic programming (ADP) (Werbos, 1974). ADP
techniques are basically iterative approaches built upon the concept of reinforcement
learning (Sutton & Barto, 1998), which approximates optimal control laws as well
as corresponding value functions through policy evaluation and improvement, where
a ‘policy’ is referred to as a control law. Some good reviews are provided by F.-
Y. Wang, Zhang, and Liu (2009), Z.-P. Jiang and Jiang (2013), and D. Wang, He, and
Liu (2017a). To implement the ADP, the value function in the HJB equation needs
to be properly structured, and neural networks (NNs) are ideal candidates given their
universal approximation properties (Hornik, Stinchcombe, & White, 1989).



Offline ADP has been an effective and useful tool for handling optimal control in
various challenging problems, including nonaffine systems (Luo, Liu, Huang, & Wang,
2016; Mu, Wang, & He, 2017; D. Wang, Liu, Wei, Zhao, & Jin, 2012), actuator satura-
tion (Abu-Khalaf & Lewis, 2005; Heydari & Balakrishnan, 2013; Luo, Wu, Huang, &
Liu, 2015), unknown system dynamics (Li, Modares, Chai, Lewis, & Xie, 2017; Luo et
al., 2016, 2015; Mu et al., 2017; Mu, Wang, & He, 2018; D. Wang & Liu, 2013; D. Wang
et al., 2012; Wei, Lewis, Sun, Yan, & Song, 2017; Zhao, Xia, & Wang, 2015), fixed fi-
nal time (Heydari & Balakrishnan, 2013), finite approximation error (Wei, Wang, Liu,
& Yang, 2014), finite horizon (Mu et al., 2018), algorithm simplification (Heydari,
2014; Heydari & Balakrishnan, 2013; D. Wang & Liu, 2013), optimal tracking (Luo et
al., 2016), non-zero initial condition for value iteration (Wei, Liu, & Lin, 2016), and
extension to multi-agent system applications (Li et al., 2017).

With increasing demands on synthesising optimal controllers in real time, online
ADP has been receiving intensive research attention. Online ADP, in contrast to of-
fline methods, features real-time synthesis of optimal control policies for dynamic sys-
tems. The iteration procedures performed on a regular- or irregular-time-interval basis,
where the cost function corresponding to an admissible control being approximated un-
dergoes evaluation before the next iteration commences, can be characterised as being
sequential. These algorithms collect real-time data prior to batch processing for policy
evaluation and policy update at each discrete iteration under either continuous-time
setting (Feng, Zhang, Luo, & Zhang, 2015; Y. Jiang & Jiang, 2014, 2015; Liu, Yang, &
Li, 2013; Vrabie & Lewis, 2009) or in discrete-time domain (Al-Tamimi, Lewis, & Abu-
Khalaf, 2008; Feng et al., 2015; Kiumarsi, Lewis, & Levine, 2015; Škach, Kiumarsi,
Lewis, & Straka, 2018; Wei & Liu, 2014). The study by Vamvoudakis and Lewis (2010)
proposes an attractive ADP algorithm, termed as synchronous policy iteration (SPI),
where policy evaluation and policy update are implemented continuously in time and
simultaneously. The SPI theory framework initiated by Vamvoudakis and Lewis (2010)
has been enormously enriched by latest advances in dealing with faster convergence
(Bhasin et al., 2013), actuator saturation (Huang, Wang, & Liu, 2017; Kiumarsi &
Lewis, 2015; Modares & Lewis, 2014; Modares, Lewis, & Naghibi-Sistani, 2013, 2014;
Modares, Naghibi Sistani, & Lewis, 2013; Yang, Liu, & Wang, 2014), completely un-
known dynamics with unknown nonlinear structures (Liu, Huang, Wang, & Wei, 2013;
Yang et al., 2014), unknown affine nonlinear systems (Lv, Na, & Ren, 2017; Lv, Na,
Yang, Wu, & Guo, 2016; Modares, Lewis, & Naghibi-Sistani, 2013; Na & Herrmann,
2014; Song, Lewis, Wei, & Zhang, 2016; D. Wang, Liu, Zhang, & Zhao, 2016; Zhong,
He, Wang, & Ni, 2018), partially unknown dynamics (Bhasin et al., 2013; Kiumarsi
& Lewis, 2015; Modares & Lewis, 2014; Modares et al., 2014; Vamvoudakis, Vrabie,
& Lewis, 2014), multi-agent systems (Heydari & Balakrishnan, 2014; H. Jiang & He,
2018; Luy, 2018), optimal tracking (Kiumarsi & Lewis, 2015; Modares & Lewis, 2014;
Na & Herrmann, 2014), relaxation of persistent-excitation condition (Modares et al.,
2014), exponential convergence driven directly by estimation error assuming known
ideal parameters rather than being driven by the HJB error (Lv et al., 2017, 2016;
Na & Herrmann, 2014), algorithm simplification (Huang et al., 2017; Liu, Huang, et
al., 2013; Liu, Wang, Wang, Li, & Yang, 2014; Luy, 2018; Lv et al., 2017, 2016; Na &
Herrmann, 2014; D. Wang, He, & Liu, 2017b; D. Wang, Liu, Li, & Ma, 2014; D. Wang,
Mu, Yang, & Liu, 2017; Zhang, Cui, & Luo, 2013), and disturbances and uncertainties
(Huang et al., 2017; Liu et al., 2014; Lv et al., 2017; Song et al., 2016; Vamvoudakis
& Lewis, 2012; D. Wang et al., 2014, 2016).

For stabilisation purpose, most SPI schemes implement separate NNs for the critic
and actor, respectively, each dynamically tuned with a different learning law. Specif-
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ically, actor tuning laws generally contain stabilising terms derived from Lyapunov
stability analysis. To simplify SPI implementation and reduce computational load,
there have been efforts on single-critic approaches where the same NN is used for both
components with the critic NN weights directly passed on to the actor NN (Huang et
al., 2017; Liu, Huang, et al., 2013; Liu et al., 2014; Luy, 2018; Lv et al., 2017, 2016; Na
& Herrmann, 2014; D. Wang, He, & Liu, 2017b; D. Wang et al., 2014; D. Wang, Mu, et
al., 2017; Zhang et al., 2013). Further improvements are seen in event-based methods
based on the single-critic configuration (D. Wang, He, & Liu, 2017b; D. Wang, Mu, et
al., 2017), where the data needed for online learning are reduced. The instability re-
sulted from direct simplification of the actor-critic configuration is recognised in Liu,
Huang, et al. (2013), and critic-NN initial weights need to be determined carefully
by trial-and-error. Guaranteed stability can be achieved by introducing a stabilising
mechanism to the critic tuning law (Huang et al., 2017; Liu et al., 2014; Luy, 2018;
Lv et al., 2017, 2016; Na & Herrmann, 2014; D. Wang, He, & Liu, 2017b; D. Wang
et al., 2014; Zhang et al., 2013). The stabilising mechanism is generally a stabilising
term derived on the basis of Lyapunov stability, either conditionally activated upon
instability being detected (Huang et al., 2017; Liu et al., 2014; Luy, 2018; D. Wang et
al., 2014; Zhang et al., 2013), or continuously in effect throughout online learning (Lv
et al., 2017, 2016; Na & Herrmann, 2014; D. Wang, He, & Liu, 2017b). It is interesting
to note that the SPI schemes in the aforementioned studies share a common form of
value function approximation (VFA) with an NN of standard structure directly em-
ployed. The question is: Can a different form of VFA deliver alternative realisation
of the single-critic configuration for SPI without introducing additional stabilising
mechanisms in the NN tuning law?

Therefore, as our major contributions, this study proposes a modified value-
function-approximation (MVFA) and study its feasibility and efficacy as an alternative
approach under the single-critic configuration. Specifically, closed-loop stability are in-
vestigated.

In the remainder of the paper: Section 2 introduces the problem under discussion
together with some preliminaries; Section 3 proposes an MVFA for alternative reali-
sation of the single-critic configuration for SPI; Section 4 analyses overall closed-loop
stability during online learning; Section 5 gives two simulation examples. Section 6
draws conclusions.

2. Problem and preliminaries

2.1. Problem

The following control-affine nonlinear systems in continuous-time domain is consid-
ered:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rnx contains system states of dimension nx, x(0) = x0, with x0 being
a vector containing the initial states; u ∈ Rnu collects control inputs of dimension
nu; f(x) ∈ Rnx refers to internal dynamics of the system; g(x) ∈ Rnx×nu denotes
distribution dynamics of control inputs.

Assumption 1. For the system as in (1), there is f(0) = 0. Given a set Ω ⊆ Rnx
including zero, equation (1) is Lipschitz continuous with respect to Ω, and there exist
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admissible control u ∈ Ξ(Ω) that can stabilise (1). f(x) as well as g(x) are assumed
known.

Assumption 2. There exist ‖f(x)‖ ≤ bf ‖x‖ with constant bf ∈ R+ and ‖g(x)‖ ≤ bg
with constant bg ∈ R+ (Modares et al., 2014; Modares, Naghibi Sistani, & Lewis, 2013;
Vamvoudakis & Lewis, 2010).

A proper control law u is desired to minimise

V (x0) =

∫ ∞
0

[
Q̄(x(t)) + uTRu

]
dt, (2)

which is also known as a cost function with a positive-definite function Q̄(x) and
symmetric positive-definite weighting R ∈ Rnu×nu .

Definition 1 (Admissible control). Given continuously differentiable control
u(x) ∈ Ψ(Ω) with initial condition u(0) = 0, if on Ω it stabilises system (1) and
if the cost V (x0), ∀x0 ∈ Ω, as given in (2) is finite, then the control is considered as
being admissible (Beard, Saridis, & Wen, 1997).

2.2. Continous-time HJB equation

If V ∈ C1, differentiating (2) yields

Q̄(x) + uTRu+ (f + gu)T∇V = 0, (3)

with V (0) = 0 and ∇V , ∂V (x)
∂x ∈ Rnx .

The control that minimises (2) for the same initial conditions is deemed optimal
and denoted as u∗. The associated cost is V ∗ = min(V ) for u ∈ Ξ(Ω) and generally
known as the ‘value function’. Specifically,

u∗ = −1

2
R−1gT∇V ∗, (4)

with which there is

Q̄+ uTRu∗ + (f + gu∗)T∇V ∗ = 0, (5)

with V ∗(0) = 0, which then gives the following Hamilton-Jacobi-Bellman (HJB) equa-
tion:

−1

4
∇V ∗TgR−1gT∇V ∗ +∇V ∗Tf + Q̄ = 0, (6)

with V ∗(0) = 0.

Remark 1. Note that u in (3) can be any admissible control, and there exists a
corresponding cost V as in (2) that makes (3) hold. However, (5) is a special case
of (3) where u is associated with V through (4). A residual error arises to the right
of (5) and (6) if the condition of V ∗ = min(V ) for u ∈ Ξ(Ω) is unsatisfied.
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2.3. Policy iteration

To analytically determine V ∗(x) from the nonlinear HJB equation has been known
difficult. Instead, V ∗(x) can be obtained through an iterative procedure termed as
‘policy iteration’ (Sutton & Barto, 1998), which requires V ∗(x) being appropriately
structured and successively approximated (Saridis & Lee, 1979), basically involving
two steps in a ‘actor-critic’ configuration:

• The ‘critic’ for policy evaluation: using (3) to evaluate V(i) resulted from u(i).
This is to solve for V(i) from

Q̄(x) + uT
(i)Ru(i) + (f + gu(i))

T∇V(i) = 0, (7)

with V(i)(0) = 0.
• The ‘actor’ for policy improvement: implementing updated control, which is

u(i+1) = −1

2
R−1gT∇V(i). (8)

The iteration procedure begins with u(0) which is an initial admissible control, and
proceeds with the above two iterative steps until reaching convergence at V ∗ and u∗ or
proximity to V ∗ and u∗. It is worth emphasising that for synchronous policy iteration
(SPI), the procedure performs continuously in time, and the above two steps take
place simultaneously (Vamvoudakis & Lewis, 2010). The subscript ‘(i)’ in V(i) and
u(i) are unnecessary in the SPI case. However, for ease of explanation of SPI at an
infinitesimal time step, these subscripts are used, only to indicate a general time step
being considered rather than iteration number.

Remark 2. In terms of the single-critic configuration, an actor component is still nec-
essary for a complete policy iteration procedure including SPI. The term ‘single-critic’
refers to the case where the separate tuning for the actor component is eliminated in
comparison to the general actor-critic structure in which both of the actor and critic
components require individual tuning.

3. Modified single-critic configuration

3.1. Modified value function approximation

Analytically obtaining V(i)(x) from (7) is difficult, and hence implementing policy it-
eration requires proper approximation of the solution. Neural networks (NNs), with
universal approximation properties (Hornik et al., 1989), can be used for this purpose.
Different from other existing studies that use a common form of NN-based represen-
tation for approximating the value function, in this paper a modified value-function-
approximation (MVFA) is proposed, being:

V ∗ =
1

2
xTPx+W ∗TΦ + ε, (9)

where hidden-layer neurons are contained in Φ ∈ Rnn , with ideal NN weights being
W ∗ ∈ Rnn ; P ∈ Rnx×nx is an additional parameter matrix that is diagonal and
positive-definite; the error of approximation is denoted by ε ∈ R.
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Accordingly, there is

∇V ∗ = ∇̄ΦTW ∗ + Px+∇ε, (10)

with ∇̄Φ = ∇ΦT =
[
∂Φ
∂x

]T ∈ Rnn×nx and ∇ε = ∂ε
∂x ∈ Rnx .

Remark 3. The discussion in Section 1 has revealed that VFA in existing methods
takes a common NN-based representation, the convergence of which in online learning
necessitates separate actor tuning or stabilising mechanisms in critic tuning laws for
stabilisation. Differently in this study, the proposed MVFA features an auxiliary term
in addition to the standard structure of an NN. The advantages of introducing the
auxiliary term is to be discussed in the remainder of this paper.

Remark 4. The hidden-layer neurons in Φ are nonlinear activation functions, which
can be obtained by applying Weierstrass approximation using high-order polynomials
(Finlayson, 1972). The resulting activation functions are the individual terms of a
polynomial of specified order with the NN inputs as variables.

Assumption 3. There exist inequalities
∥∥∇̄Φ

∥∥ ≤ bφ ‖x‖ for bφ ∈ R+ and
‖∇ε‖ ≤ bε ‖x‖ for bε ∈ R+, where bφ and bε are constants.

3.2. Single-critic structure and tuning

On considering the ‘Policy Evaluation’ step only (i.e., a control law remains fixed for
evaluation), the associated cost function V(i) takes

V(i) = WT
(i)Φ +

1

2
xTPx+ ε(i), (11)

with its gradient being

∇V(i) = ∇̄ΦTW (i) + Px+∇ε(i), (12)

with W (i) being NN ideal weights that approximate V(i) with the least error ε(i).

Remark 5. Technically speaking, V(i) in (11) and V in (2) are equal only in terms of
value, given the same initial conditions and the same control policy, but different in
structure. V in (2) is structured to give physical interpretation of cost while V(i) in (11)

is specially constructed for mathematical approximation. The term WT
(i)Φ in (11) is

not equal to uTRu in (2) but includes the information of uTRu, since the set Φ
contains activation functions in polynomial forms consisting of both x and u.

Remark 6. The discussion at this stage only considers the case of approximating
the cost function for a known control policy u(i). That is, u(i) is known and not
approximated by NN. The NN used at this stage only approximates the cost function
associated with the known control u(i).

Using an estimate Ŵ (i) to replace W (i) in (11) and (12) gives

V̂(i) = Ŵ
T
(i)Φ +

1

2
xTPx, (13)
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∇V̂(i) = ∇̄ΦTŴ (i) + Px, (14)

and

Q̄+ uT
(i)Ru(i) + (f + gu(i))

T∇V̂(i) = e1, (15)

where V̂(i)(0) = 0, and e1 is the error arises as a result (as commented in Remark 1
and to be discussed in Section 4).

To minimise e1 so that Ŵ (i) →W (i), gradient-descent tuning is adopted, by con-
sidering the quadratic error function

E =
1

2
e2

1. (16)

This yields

˙̂W (i) = −κ1D1
∂E

∂Ŵ (i)

= − a√
σ(i)

Tσ(i) + 1
D1σ(i)e1, (17)

where κ1 = a√
σT

(i)σ(i)+1
is added for normalisation, with a ∈ R+ being a scalar learning

rate and σ(i) = ∇̄Φ(f + gu(i)); D1 is an auxiliary term added to adjust contribution

of individual state to tuning, and D1 = diag(D2D3), with D2 ∈ Rnn×nx being a
constant matrix related to ∇̄Φ(x) with its element D2(jk) ∈ B, (j = 1, 2, · · · , nn; k =

1, 2, · · · , nx), and D3 ∈ Rnx×1 being a weighting vector.
Specifically, the constant matrix D2, in connection with the expression of every

single element of ∇̄Φ(x), namely, ∇̄Φ(jk)(x), is given in the following form:

D2(jk) =

{
0 if ∇̄Φ(jk)(x) = 0, ∀x 6= 0,

1 if ∇̄Φ(jk)(x) 6= 0, ∀x 6= 0.

Similarly, for the complete synchronous policy iteration (SPI), the ideal weights
W ∗ are unknown and should be determined so that (9) approximates a target value
function. With Ŵ being the estimated weights, the approximated value function and
its gradient become

V̂ = Ŵ
T
Φ +

1

2
xTPx (18)

and

∇V̂ = ∇̄ΦTŴ + Px, (19)

respectively, and the associated control is given by

û = −1

2
R−1gT∇V̂ . (20)

Note the absence of the subscript ‘(i)’ in (18) and (19) for complete SPI, which
are different from (13) and (14) corresponding to a fixed control law at a general
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infinitesimal time step for ‘Policy Evaluation’ only.
In the SPI case involving the single-critic structure with (18) and direct implemen-

tation of (20), there is

Q̄+ ûTRû+ (f + gû)T∇V̂ = e2, (21)

where V̂ (0) = 0, and e2 is the resulting approximation error as commented in Remark 1
(details to be given in Section 4).

To minimise e2 so that Ŵ →W ∗, equation (17) is modified as

˙̂W = − a√
σTσ + 1

D1σe2 = −κ2D1σe2, (22)

where κ2 = a√
σTσ+1

, and σ = ∇̄Φ(f + gû), with D1, D2, and D3 defined the same

as in (17).
It now gives a single-critic structure consisting of critic tuning only, without addi-

tional stabilising mechanisms in the tuning law (22).

Remark 7. For conventional VFA as in the SPI pioneer work of Vamvoudakis and
Lewis (2010) (also commonly used in other studies discussed in Section 1), it has been

known that closing the loop by directly passing Ŵ on to the actor NN can lead to
instability issues during online learning without any stabilising mechanism. This is
because in these cases some intermediate values along the evolution path of Ŵ may

not necessarily yield admissible intermediate control policies that satisfy dV̂
dt < 0.

Remark 8. Compared with the existing single-critic approaches with conventional
VFA and stabilising critic tuning laws, the proposed method with MVFA also differs
in that the critic tuning law does not need to be stabilising, allowing the use of simpler
tuning laws. Accordingly, in this paper the critic tuning based on traditional yet simple
gradient descent is used without additional stabilising mechanisms in the tuning law.
Closed-loop stability is to be investigated next in Section 4.

4. Convergence and stability analysis

4.1. Policy evaluation

Similar to most adaptive control problems that require online tuning of parame-
ters (Ioannou & Sun, 1996), proper convergence of NN parameters in this paper also
relies on the persistence of excitation (PE) condition to ensure sufficiently rich training
set being obtained.

Definition 2 (Persistence of Excitation). A bounded vector signal z(t) is considered
to be persistently excited (PE) if

µ1I �
∫ t0+td

t0

z(τ)z(τ)Tdτ � µ2I; ∀t0 ≥ 0,

where µ1 ∈ R+, µ2 ∈ R+, td ∈ R+, and I is an identity matrix (Ioannou & Sun, 1996).

In addition, the stability of a linear time-varying system as given by the lemma
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below, is to be used in the stability analysis that follows.

Lemma 1. For a given system being linear and time-varying in the form of

ẋ = −h(t)hT(t)x, (23)

where vector x contains system states, its origin is exponentially stable if vector h(t)
satisfies the condition of PE (Ioannou & Sun, 1996).

Assumption 4. During online tuning, states x(t) of the system (1) satisfy the PE
condition.

The following theorem presents the convergence property of Policy Evaluation with
the MVFA under the tuning given by (17).

Theorem 1. Let (11) approximate the cost function (2) corresponding to a given
admissible control u(i). Under Assumptions 1, 3, and 4, and the tuning algorithm (17),

the error W̃ (i) = W (i) − Ŵ (i) from NN weights estimation converges to a residual

set cW̃ exponentially, and ‖cW̃ ‖ ≤ bW̃ for a finite scalar bW̃ ∈ R+ with bW̃ → 0 as
nn →∞.

Proof. Comparing (7) and (15), with (12) substituted for ∇V(i), and with (14) sub-

stituted for ∇V̂(i), yields

e1 = −W̃ (i)
T
σ(i) + ε1, (24)

where σ(i) = ∇̄Φ(f + gu(i)), and ε1 = −∇εT
(i)(f + gu(i)).

As can be seen from (24), if ε(i)(x) = 0 for any x 6= 0, then ε1 = 0. For the

case of ε(i)(x) 6= 0, it is easy to see that ε1 ≤ bε1 for bε1 ∈ R+, given Assumption 3
and (f + gu(i)) as well as x being bounded under Assumption 1. Since ε(i) → 0
and ∇ε(i) → 0 given proper activation functions with sufficiently large nn (Finlayson,
1972), it is straightforward to show that ε1 → 0 when nn →∞.

By using (17) and (24), we have the time derivative of W̃ (i)

˙̃W (i) = −aD1σna(i)σ
T
na(i)W̃ (i) + aD1σnb(i)ε1, (25)

where σna(i) =
σ(i)

(σT
(i)σ(i)+1)

1
4

and σnb(i) =
σ(i)√

σT
(i)σ(i)+1

.

Let uε = aD1σnb(i)ε1. If ε1 = 0, then uε = 0, and (25) reduces to

˙̃W (i) = −aD1σna(i)σ
T
na(i)W̃ (i). (26)

Denote the equilibrium of system (25) by cW̃ . Under Assumption 4, σna(i) is PE.
Under Lemma 1, the origin (i.e. cW̃ = 0) of the system (26) is exponentially stable.

That is, W̃ (i) converges to zero exponentially.
In the case of uε 6= 0, it is straightforward to show that (25) has non-zero equilibrium

(i.e. cW̃ 6= 0), and that W̃ (i) converges to cW̃ exponentially. Since ‖σnb(i)‖ < 1 and

ε1 ≤ bε1 , we have ‖uε‖ ≤ buε for buε ∈ R+ that can be arbitrarily small given sufficient
number of suitable activation functions being provided. Therefore, there exists a bound
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bW̃ ∈ R+ such that ‖cW̃ ‖ ≤ bW̃ , and bW̃ → 0 with the number of activation functions
nn →∞.

Remark 9. As can be seen from the proof of Theorem 1, the MVFA has no direct
influence on critic NN weights convergence when considering the ‘Policy Evaluation’
step only. Exponential stability is primarily due to the admissible control being evalu-
ated. However, the overall system stability in the case of complete synchronous policy
iteration (SPI) needs to be further analysed, where the control policy is replaced by a
dynamically varying approximation.

4.2. Synchronous policy iteration

As discussed in Remark 7, instability may result when directly implementing the ap-
proximated control policy (20) for complete SPI. In this subsection, closed-loop stabil-
ity under the proposed alternative single-critic scheme with the MVFA is investigated.

Definition 3 (Uniformly Ultimately Bounded). The states x(t) of a dynamic system
with initial states x0 , x(t0) is regarded as uniformly ultimately bounded (UUB)
about equilibrium xe ∈ Rnx if there exist a compact set Ω ∈ Rnx , a finite constant
be ∈ R+ and a time td(be,x0) ∈ R+ such that ‖x(t) − xe‖ ≤ be for any x0 ∈ Ω and
t ≥ t0 + td (Lewis, Jagannathan, & Yesildirek, 1999).

Theorem 2. Consider a system as in (1). Let (9) approximate its value function,
with the control policy given by (20). Under Assumptions 1 to 4 and the online tuning
law (22), the states x of the system as well as the the critic NN weights estimation
error W̃ = W ∗ − Ŵ remain UUB during online tuning, if the parameter matrix P
in (9) is selected to satisfy ‖P ‖ > mP , for a finite scalar mP ∈ R+.

Proof. Consider

L = V̂ +
1

2
W̃

T
(κ2D1)−1W̃

= Lv + Lw, (27)

where Lv = V̂ and Lw = 1
2W̃

T
(κ2D1)−1W̃ .

With (1), (19) and (20), there is

L̇v = (f + gû)T∇V̂

= (Px+ ∇̄ΦTŴ )
T
[
f − 1

2
gR-1gT(Px+ ∇̄ΦTŴ )

]
= xTPTf + Ŵ

T∇̄Φf − 1

2
Ŵ

T∇̄ΦgR−1gT∇̄ΦTŴ

− xTPTgR−1gT∇̄ΦTŴ − 1

2
xTPTgR−1gTPx. (28)

Let G = gR−1gT. With Ŵ = W ∗ − W̃ , equation (28) becomes

L̇v = xTPTf +W ∗T∇̄Φf − W̃T∇̄Φf

− 1

2
xTPTGPx− xTPTG∇̄ΦTW ∗
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+W ∗T∇̄ΦG∇̄ΦTW̃ − 1

2
W̃

T∇̄ΦG∇̄ΦTW̃

+ xTPTG∇̄ΦTW̃ − 1

2
W ∗T∇̄ΦG∇̄ΦTW ∗. (29)

In regard to the second term in (27), considering (22), we have

L̇w = W̃
T

(κ2D1)−1 ˙̃W = −W̃T
(κ2D1)−1 ˙̂

W

= W̃
T∇̄Φ(f + gû)e2. (30)

By comparing (4) and (20), there is

û = u∗ +
1

2
R−1gT(∇̄ΦTW̃ +∇ε). (31)

Let z = ∇̄ΦTW̃ . Rewriting (30) using (31) gives

L̇w =
1

2
W̃

T∇̄ΦgR−1gT∇εe2 + W̃
T∇̄Φ(f + gu∗)e2

+
1

2
W̃

T∇̄ΦgR−1gT∇̄ΦTW̃ e2

= zT(f + gu∗)e2 +
1

2
zTG∇εe2 +

1

2
zTGze2. (32)

Subtracting (21) from (5) yields

e2 = (Px+ ∇̄ΦTŴ )
T

(f + gû) + ûTRû− u∗TRu∗

− (Px+ ∇̄ΦTW ∗ +∇ε)T
(f + gu∗). (33)

By using (4), (10), (19) and (20), the individual terms in (33) have expressions of

(Px+ ∇̄ΦTŴ )
T

(f + gû)

= (f + gu∗)T(Px+ ∇̄ΦTW ∗ − ∇̄ΦTW̃ )

+
1

2
(Px+ ∇̄ΦTW ∗)

T
gR−1gT(∇̄ΦTW̃ +∇ε)

− 1

2
(∇̄ΦTW̃ )

T
gR−1gT(∇̄ΦTW̃ +∇ε), (34)

ûTRû

=
1

4
(Px+ ∇̄ΦTW ∗)

T
gR−1gT(Px+ ∇̄ΦTW ∗)

− 1

2
(Px+ ∇̄ΦTW ∗)

T
gR−1gT∇̄ΦTW̃

+
1

4
(∇̄ΦTW̃ )

T
gR−1gT∇̄ΦTW̃ , (35)
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u∗TRu∗

=
1

4
(Px+ ∇̄ΦTW ∗)

T
gR−1gT(Px+ ∇̄ΦTW ∗)

+
1

2
(Px+ ∇̄ΦTW ∗)

T
gR−1gT∇ε

+
1

4
∇εTgR−1gT∇ε. (36)

Substituting (34), (35), and (36) back into (33) gives

e2 =− (∇ΦTW̃ )
T

(f + gu∗)−∇εT(f + gu∗)

− 1

2
(∇ΦTW̃ )

T
gR−1gT∇ε− 1

4
∇εTgR−1gT∇ε

− 1

4
(∇ΦTW̃ )

T
gR−1gT∇ΦTW̃ . (37)

It can be seen from (37) that for a given set of NN hidden-layer neurons of a finite
number nn, the minimum of e2, denoted by ε2, is reached when W̃ = 0:

ε2 = −∇εT(f + gu∗)− 1

4
∇εTgR−1gT∇ε. (38)

Under Assumptions 1 and 3, ∇ε and (f + gu∗) are bounded. Thus, there exist
a finite constant bε2 ∈ R+ such that ε2 ≤ bε2 . Since ε → 0 and ∇ε → 0 as the
number of suitable activation functions nn increases infinitely (Finlayson, 1972), it is
straightforward to show that ε2 → 0, ∀x 6= 0, if nn →∞. As a special case, ε2 = 0 if
∇ε = 0, ∀x 6= 0.

Substituting (33) for e2 in (32) yields

L̇w =− zT(f + gu∗)(f + gu∗)Tz − 3

8
zTGzzTG∇ε

− zT(f + gu∗)(f + gu∗)T∇ε− 1

8
zTGzzTGz

− 3

4
zT(f + gu∗)zTGz − 1

2
zTGz∇εT(f + gu∗)

− zT(f + gu∗)zTG∇ε− 1

8
zTG∇ε∇εTG∇ε

− 1

4
zT(f + gu∗)∇εTG∇ε− 1

8
zTGz∇εTG∇ε

− 1

2
zTG∇ε∇εT(f + gu∗)− 1

4
zTG∇ε∇εTGz. (39)

Note that the first term in (39) can be expanded as

− zT(f + gu∗)(f + gu∗)Tz

=− zTffTz − 1

4
zTG∇̄ΦTW ∗W ∗T∇̄ΦGz

− 1

4
zTGPxxTPTGz − 1

4
zTG∇ε∇εTGz
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+ zTGPxfTz − 1

2
zTG∇̄ΦTW ∗∇εTGz

+ zTG∇̄ΦTW ∗fTz − 1

2
zTGPx∇εTGz

+ zTG∇εfTz − 1

2
zTGPxW ∗T∇̄ΦGz. (40)

Combining (29) and (39) gives:

L̇ = T1 + T2 + T3 + T4 + T5, (41)

where

T1 =− 1

2
xTPTGPx+ xTPTf +W ∗T∇̄Φf

− xTPTG∇̄ΦTW ∗, (42)

T2 =− 1

4
zTGPxxTPTGz − 1

2
zTGPxW ∗T∇̄ΦGz

− 1

2
zTGPx∇εTGz − 1

2
zTG∇̄ΦTW ∗∇εTGz

+ zTGPxfTz + zTG∇̄ΦTW ∗fTz + zTG∇εfTz

− zT(f + gu∗)zG∇ε− 1

2
zTGz∇εT(f + gu∗)

− zTf + xTPTGz +W ∗T∇̄ΦGz, (43)

T3 =− 1

2
zTG∇ε∇εTGz − 1

4
zT(f + gu∗)∇εTG∇ε

− 1

8
zTGz∇εTG∇ε− 1

2
zTG∇ε∇εT(f + gu∗)

− zTffTz − zT(f + gu∗)(f + gu∗)T∇ε

− 1

4
zTG∇̄ΦTW ∗W ∗T∇̄ΦGz

− 1

8
zTG∇ε∇εTG∇ε, (44)

T4 =− 1

8
zTGzzTGz − 3

4
zT(f + gu∗)zTGz

− 3

8
zTGzzTG∇ε, (45)

T5 = −1

2
W ∗T∇̄ΦG∇̄ΦTW ∗ − 1

2
zTGz. (46)

Now introduce bounds to (42).
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As G = gR−1gT, the rank of G is

rank(G) = rank(g) < nx. (47)

It follows that there exist kernel

ker(GPr) = {r ∈ Rnx | GPr = 0} . (48)

For nonlinear systems as in (1), since x and z are explicitly governed by (1) instead
of being random, the existence of x = ker(GPr) and corresponding effects to the
system is rendered negligible. Accordingly, we focus on x 6= ker(GPr) in this paper.
In this case, G is positive-definite and symmetric, and under Assumptions 2 and 3,
there is

xTPTGPx ≥ m1‖P ‖2‖x‖2, (49)

where constant m1 ∈ R+. Also, there is ‖G‖ ≤ bG for constant bG ∈ R+.
Together with Assumption 3, the following inequality holds:

T1 ≤
(
−1

2
m1‖P ‖2 + bf ‖P ‖+ bGbΦ ‖W ∗‖ ‖P ‖+ bΦbf ‖W ∗‖

)
‖x‖2

=− 1

2
m1‖x‖2

(
‖P ‖2 − c1 ‖P ‖ − c2

)
, (50)

where

c1 =
2 (bf + bGbΦ ‖W ∗‖)

m1
,

c2 =
2bΦbf ‖W ∗‖

m1
.

Under Assumption 4, if ‖P ‖2 − c1 ‖P ‖ − c2 ≥ 0, then T1 ≤ 0. This requires

‖P ‖ ≥
c1 +

√
c2

1 + 4c2

2
, p1. (51)

In T2, similarly to the case of T1, we consider the circumstances of x 6= ker(GPr)
and z 6= ker(Gr). Then there is a finite constant m2 ∈ R+ such that

zTGPxxTPTGz ≥ m2‖P ‖2‖x‖2‖z‖2. (52)

Given Assumption 3, we have ‖f+gu∗‖ ≤ bẋ‖x‖, for a finite constant bẋ ∈ R+. Hence,

T2 ≤
(
−1

4
m2‖P ‖2 +

1

2
b2Gbε ‖P ‖+ bGbf ‖P ‖+

1

2
b2GbΦ ‖W ∗‖ ‖P ‖

+
1

2
b2GbΦbε ‖W ∗‖+ bGbεbf + bGbΦbf ‖W ∗‖+

3

2
bẋbGbε

)
‖x‖2‖z‖2

+ (bG ‖P ‖+ bf + bGbΦ ‖W ∗‖) ‖x‖ ‖z‖

=− 1

4
m2

(
‖P ‖2 − d1 ‖P ‖ − d2

)
‖x‖2‖z‖2
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+ (bG ‖P ‖+ bf + bGbΦ ‖W ∗‖) ‖x‖ ‖z‖ , (53)

where

d1 =
2b2GbΦ ‖W

∗‖+ 2b2Gbε + 4bGbf
m2

,

d2 =
(2b2GbΦbε + 4bGbΦbf ) ‖W ∗‖+ 4bGbεbf + 6bẋbGbε

m2
.

Let

c3 = ‖P ‖2 − d1 ‖P ‖ − d2,

c4 = bG ‖P ‖+ bf + bGbΦ ‖W ∗‖ .

Then (53) can be rewritten as

T2 ≤ −
1

4
m2c3

(
‖x‖ ‖z‖ − 4c4

m2c3

)
‖x‖ ‖z‖ . (54)

It is clear that T2 ≤ 0 if c3

(
‖x‖ ‖z‖ − 4c4

m2c3

)
≥ 0. That is, if

‖P ‖ >
d1 +

√
d2

1 + 4d2

2
, p2, (55)

then c3 > 0, and in this case, T2 ≤ 0 whenever

‖x‖ ‖z‖ ≥ 4c4

m2c3
. (56)

Regarding T3, for cases of z 6= ker(Gr) and ∇ε 6= ker(Gr), there exist constants
m3, m4, m5, m6 ∈ R+ such that the following inequalities hold:

zTG∇ε∇εTGz ≥ m3‖x‖4
∥∥∥W̃∥∥∥2

, (57)

zTGz∇εTG∇ε ≥ m4‖x‖4
∥∥∥W̃∥∥∥2

, (58)

zTffTz ≥ m5‖x‖4
∥∥∥W̃∥∥∥2

, (59)

zTG∇̄ΦTW ∗W ∗T∇̄ΦGz ≥ m6‖x‖4
∥∥∥W̃∥∥∥2

. (60)

Therefore, we have from (44) that

T3 ≤
(
−1

2
m3

∥∥∥W̃∥∥∥− 1

8
m4

∥∥∥W̃∥∥∥−m5

∥∥∥W̃∥∥∥− 1

4
m6

∥∥∥W̃∥∥∥
+

1

4
bẋb

2
εbGbΦ +

1

2
bẋb

2
εbGbΦ + b2ẋbεbΦ +

1

8
b3εb

2
GbΦ

)∥∥∥W̃∥∥∥‖x‖4
=− d3‖x‖4

∥∥∥W̃∥∥∥(∥∥∥W̃∥∥∥− d4

d3

)
, (61)
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where

d3 =
1

2
m3 +

1

8
m4 +m5 +

1

4
m6,

d4 =
3

4
bẋb

2
εbGbΦ + b2ẋbεbΦ +

1

8
b3εb

2
GbΦ.

As a result, under Assumption 4, T3 ≤ 0 when∥∥∥W̃∥∥∥ ≥ d4

d3
. (62)

With regard to T4, for z 6= ker(Gr), there is

zTGzzTGz ≥ m7‖x‖4
∥∥∥W̃∥∥∥4

(63)

for a constant m7 ∈ R+. Then from (45),

T4 ≤−
1

8
m7‖x‖4

∥∥∥W̃∥∥∥4
+

3

4
bẋbGb

3
Φ‖x‖

4
∥∥∥W̃∥∥∥3

+
3

8
bεb

2
Gb

3
Φ‖x‖

4
∥∥∥W̃∥∥∥3

=− 1

8
m7

(∥∥∥W̃∥∥∥− 6bẋbGb
3
Φ + 3bεb

2
Gb

3
Φ

m7

)
‖x‖4

∥∥∥W̃∥∥∥3
. (64)

Therefore, under Assumption 4, T4 ≤ 0 requires∥∥∥W̃∥∥∥ ≥ 6bẋbGb
3
Φ + 3bεb

2
Gb

3
Φ

m7
. (65)

It is easy to see from (46) that T5 ≤ 0. Thus, it can be concluded from (51), (55),
(56), (62), and (65) that (41) is negative if

‖P ‖ > max(p1, p2) , mP , (66)

‖x‖ ‖z‖ > 4c4

m2c3
, (67)∥∥∥W̃∥∥∥ > max

(
d4

d3
,

6bẋbGb
3
Φ + 3bεb

2
Gb

3
Φ

m7

)
. (68)

Since z = ∇̄ΦTW̃ , and x is PE under Assumption 4, equation (67) also establishes
a bound for ‖W̃ ‖. Thus, equations (67) and (68) together, show that W̃ is UUB.
Finally, upon satisfaction of (66), (67), and (68), the UUB stability holds for the
system states and NN weights estimation errors.

The following theorem further reveals the link between the UUB boundedness of
NN weight estimation errors and the system states stability.

Theorem 3. Given Assumptions 1 to 4 and the tuning law provided by (22), the
nonlinear system as in (1) remains asymptotically stable in the online learning process
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under the control given by (20), if matrix P in (18) satisfies ‖P ‖ > bmP for a scalar
bmP ∈ R+.

Proof. The Lyapunov function candidate is selected to be LV = V̂ , the time derivative
of which is:

L̇V = (f + gû)T

(
∂V̂

∂x

)
= (f + gû)T(Px+ ∇̄ΦTŴ )

= (f + gu∗ − gũ)T(Px+ ∇̄ΦTW ∗ − ∇̄ΦTW̃ )

= (f + gu∗)T

(
∂V ∗

∂x

)
− (f + gu∗)T∇ε

+
1

2
xTPTG(∇̄ΦTW̃ +∇ε)

+
1

2
W ∗T∇̄ΦG(∇̄ΦTW̃ +∇ε)− W̃T∇̄Φf

+
1

2
W̃

T∇̄ΦG(Px+ ∇̄ΦTW ∗ +∇ε)

− 1

2
W̃

T∇̄ΦG(∇̄ΦTW̃ +∇ε)

= −Q̄− u∗TRu∗ −∇εTf − W̃T∇̄Φf +∇εTGPx

+
1

2
∇εTG∇ε+∇εTG∇̄ΦTW ∗ + W̃

T∇̄ΦGPx

+ W̃
T∇̄ΦG∇̄ΦTW ∗ − 1

2
W̃

T∇̄ΦG∇̄ΦTW̃

= −Q̄− 1

4
xTPTGPx− 1

2
xTPTG∇̄ΦTW ∗ −∇εTf

+
1

2
xTPTG∇ε− 1

4
W ∗T∇̄ΦG∇̄ΦTW ∗ +

1

4
∇εTG∇ε

+
1

2
W ∗T∇̄ΦG∇ε− W̃T∇̄Φf + W̃

T∇̄ΦGPx

+ W̃
T∇̄ΦG∇̄ΦTW ∗ − 1

2
W̃

T∇̄ΦG∇̄ΦTW̃ . (69)

Since Q̄(x) > 0, there exists constant bQ ∈ R+ such that bQ‖x‖2 ≤ Q̄(x). Given
that x is explicitly governed by system (1), the case of x 6= ker(G) is considered. It is
straightforward to see that there exist constants bGL ∈ R+ and bm4 ∈ R+ such that

bGL ≤ ‖G‖ ,

and

bm4‖x‖2 ≤
∥∥∥W ∗T∇̄ΦG∇̄ΦTW ∗

∥∥∥ .
Following the results of Theorem 2, it is known that 0 ≤ ‖W̃ ‖ ≤ bW̃ . Then (69)
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can be upper bounded as:

L̇V ≤ (−bQ −
1

4
bGL‖P ‖2 +

1

2
bGUbε ‖P ‖

+
1

2
bGUbφ‖W ∗‖ ‖P ‖ − 1

4
bm4 + bεbf

+
1

2
bφbGUbε‖W ∗‖+

1

4
b2εbGU + bφbfbW̃

+bφbGUbW̃ ‖P ‖+ b2φbGUbW̃ ‖W
∗‖
)
‖x‖2

= −‖x‖2
(

1

4
bGL‖P ‖2 − η1 ‖P ‖ − η2

)
. (70)

where

η1 =
1

2
bGUbφ‖W ∗‖+

1

2
bGUbε + bφbGUbW̃ ,

and

η2 =
1

2
bφbGUbε‖W ∗‖+

1

4
b2εbGU + bεbf + bφbfbW̃

+ b2φbGUbW̃ ‖W
∗‖ − bQ −

1

4
bm4. (71)

Equation (70) shows that L̇V is negative, and thus ‖x‖ is bounded, as long as

‖P ‖ ≥
2η1 + 2

√
η2

1 + bGLη2

bGL
, bmP . (72)

It follows that L̈V = dL̇V
dt is a function of x and W̃ , and L̈V is also bounded as ‖x‖

and ‖W̃ ‖ are bounded. As a result, asymptotic stability applies to the system states
x.

Remark 10. As can be seen from Theorems 2 and 3, the proposed MVFA establishes
a direct link to closed-loop stability. With the MVFA, no special stabilising tuning laws
are required for the NNs in critic and actor, and during online learning the SPI under
the resulted single-critic configuration remains stable with simple gradient descent
tuning.

5. Numerical studies

This section presents two simulation examples. Finding the optimal control law for a
nonlinear model with a known value function is first introduced to verify the proposed
method. The second example then demonstrates the use of the proposed controller in
a practical engineering application where a nonlinear system with higher dimension is
involved.
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5.1. Nonlinear example

The following nonlinear system is considered (Vamvoudakis & Lewis, 2010), with

f(x) =

[
−x1 + x2

−0.5x1 − 0.5x2

{
1− [cos(2x1) + 2]2

}]
,

and

g(x) =

[
0

cos(2x1) + 2

]
.

For Q = I2×2 and R = 1, the corresponding V ∗ and u∗ are known to be

V ∗ =
1

2
x2

1 + x2
2, (73)

and

u∗ = − [cos(2x1) + 2]x2, (74)

respectively, as given in Vamvoudakis and Lewis (2010).
The critic NN has activation functions of

Φ = [x2
1, x1x2, x

2
2]

T
,

with NN weights being

Ŵ = [Ŵ1, Ŵ2, Ŵ3]
T
.

In simulation, P = 10I2×2, a = 10, and D3 = [5, 1]T. System states x and NN
weights Ŵ are initialised to zeros. An exogenous signal

ue(t) = 2[cos(0.8t) + sin(t)2 cos(t) + sin(2t)2 cos(0.1t)

+ sin(−1.2t)2 cos(0.5t) + sin(t)5]

is used to perturb the system for exploration. Note that the total control that enters the
process during exploration is the sum of û and ue, which also perturbs the system states
x in the meantime. For efficient and effective training with (21) and (22) involved,
exploration is implemented in the following manner: The excitation of ue(t) lasts 0.05 s
for every 0.1 s time interval, while the HJB error e2 in (21) is periodically fed back for
calculation during the intervals when ue(t) is temporarily off (i.e., e2 = 0 if ue(t) 6= 0).
ue(t) is completely turned off at 40 s.

The trajectories of system states x, approximated optimal control û and the ex-
citation signal ue during online learning are plotted in Figures 1 and 2, respectively.
Close-up of the excitation signal ue for the first 2 seconds is shown in Figure 3 for
clearer illustration of the special excitation implemented. Weights convergence history
of the critic NN is given in Figure 4.
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Figure 1. Trajectories of system states during online tuning.

Figure 2. Trajectories of control signals during online tuning.

Figure 3. Close-up of excitation signal ue for the first 2 seconds.

Figure 4. NN parameters convergence during online tuning.

Figure 4 shows that all NN weights settle within 10 s. At the end of training,

Ŵ = [−4.4999, −0.0003, −3.9996]T.

This yields

V̂ (x) = 0.5001x1
2 − 0.0003x1x2 + 1.0004x2

2
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Figure 5. State trajectories of the closed-loop response to the non-zero initial condition under the proposed

online tuning scheme (PE unsatisfied in this case) and the known ideal optimal control.

≈ 1

2
x2

1 + x2
2,

and

û(x) = − [cos(2x1) + 2] (−0.0002x1 + 1.0004x2)

≈ − [cos(2x1) + 2]x2,

which are close approximation to (73) and (74), showing that the convergence of NN
weights is reached with good accuracy.

Also note that the approximated optimal control û generally mirrors the contour
of the excitation signal ue with slight difference in amplitude. It shows û effectively
counteracts ue and maintains closed-loop system states stability during online training.

In situations when the PE condition may not be satisfied (for example, the closed-
loop response is subject to none-zero initial conditions only), Ŵ may not reach its ideal
setW ∗ as a result. In the following simulations, the convergence of NN parameters and
the closed-loop stability is investigated under unsatisfied PE condition. Accordingly,
x(0) = [0.5 0]T is applied as an initial condition, no probing noise is added, and con-
troller parameters remain the same. The corresponding closed-loop states responses
are plotted in Figure 5, and the corresponding control action is given in Figure 6,
together with responses under the ideal optimal control supplied for comparison. As
can be seen from the figures, states trajectories and control signal under the proposed
control scheme are similar to those of the ideal optimal control. The difference in
response is due to the approximation error resulted from lack of PE. The NN param-
eters convergence history is plotted in Figure 7, where the settling value of Ŵ2 and
Ŵ3 is still far from the ideal one. However, stable closed-loop responses are observed
under the proposed algorithm regardless of the differences, as shown by Figures 5 and
6. The cost of the closed-loop response to the none-zero initial condition under the
proposed algorithm (i.e., V̂ (x(0))) together with that under the known ideal optimal
control (i.e., V ∗(x(0))) are evaluated in Figure 8. By recalculating the cost using the

continuously updated NN weights, the approximated value function V̂ is shown to be
converging to the optimal one, in the presence of some approximation error.

5.2. Nonlinear application example

In the following, the proposed controller is used for actively suppressing airfoil flut-
ter. This example demonstrates the capability of the proposed controller in dealing
with real-world applications with higher model dimension. A two-degrees-of-freedom
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Figure 6. Control input in response to the non-zero initial condition under the proposed online tuning scheme
(PE unsatisfied in this case) and the known ideal optimal control.

Figure 7. NN parameters convergence history during the closed-loop response to the non-zero initial condition

(PE unsatisfied case).

Figure 8. The minimal cost V ∗(x(0)) of the closed-loop response to the non-zero initial condition and the

evolution of the approximated V̂ (x(0)) (PE unsatisfied case).

(2DOF) nonlinear aeroelastic model in state space with 4 states and 2 control inputs
is used (Z. Wang, Behal, & Marzocca, 2011). The aeroelastic model is nonlinear in
pitch stiffness, and all parameters are taken from Z. Wang et al. (2011). The critical
wind speed is around 11.42m/s, at and above which, the airfoil becomes unstable and
starts fluttering when given some excitation or none-zero initial condition.

At the critical wind speed and with the initial condition of x(0) = [0 0.1 0 0]T,
the open-loop responses of the airfoil in terms of plunge and pitch motions are plotted
in Figure 9.

Given the nonlinear pitch stiffness in polynomial form up to the 3rd order, a total
of 65 activation functions up to 4th order are selected for Φ(x). Other parameters are
P = 10I4×4, Q = I4×4, R = I2×2, a = 10, and D3 = [1, 1, 1, 1]T. Ŵ is initialised
to zeros. The corresponding control law for each control channel is not listed herein
due to space concern.

With the proposed controller turned on, the flutter triggered by the same initial
condition can be effectively suppressed, as shown in Figure 10, regardless of whether
the controller has been trained or not. However, manifest differences are observed
before and after training the proposed controller (using the same techniques as in the
previous example), and the post-learning controller shows better performance than
the pre-learning one.

To verify that the post-learning controller offers near-optimal control, an offline
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Figure 9. Open-loop response of a 2DOF aeroelastic system at critical wind speed.

Figure 10. Closed-loop responses of a 2DOF aeroelastic system at critical wind speed with the proposed
controller.

method (Abu-Khalaf & Lewis, 2005) is used to synthesise the nonlinear control law
for the same conditions as a benchmark. The cost of suppressing flutter triggered
by initial conditions is then plotted in Figure 11 for the pre-learning, post-learning,
and offline-learning controllers. In the figure, all system states except the pitch angle
are set to 0 for the initial condition. The cost is obtained for the initial conditions
with a range of pitch angle (x2). The figure confirms that the trained controller has
superior performance over the un-trained one with much smaller cost for the same
initial condition, and that the proposed controller after learning provides generally
identical control to the one trained offline.

6. Conclusions

It is shown in stability analysis that using the proposed MVFA to provide alternative
realisation of the single-critic configuration for SPI is feasible and effective. The pro-
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Figure 11. Cost comparison for suppressing flutter triggered by initial conditions.

posed method eliminates the need for stabilising mechanisms in either the critic or
actor NN tuning, without jeopardising closed-loop stability, and without complicating
the problem, as confirmed in theoretical proof and demonstrated in numerical studies.
In general, the proposed MVFA used in a single-critic configuration for SPI, together
with the study on parameters convergence and closed-loop stability, serve as a new
development to the online SPI theory framework.

It is worth noting that the proposed MVFA scheme is model-based. Many successful
model-free applications (Abouheaf, Gueaieb, & Sharaf, 2018; Luo, Wu, & Huang, 2018;
Radac, Precup, & Roman, 2018) have shed a light in future works on advanced model-
free MVFA based schemes that: (1) features better adaptability and robustness in
circumstances with unknown, uncertain or time-varying system dynamics; (2) delivers
simplified online implementation enabled by the MVFA approach.
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