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RefineNet: Multi-Path Refinement Networks for
Dense Prediction

Guosheng Lin, Fayao Liu, Anton Milan, Chunhua Shen, Ian Reid

Abstract—Recently, very deep convolutional neural networks (CNNs) have shown outstanding performance in object recognition and
have also been the first choice for dense prediction problems such as semantic segmentation and depth estimation. However, repeated
subsampling operations like pooling or convolution striding in deep CNNs lead to a significant decrease in the initial image resolution.
Here, we present RefineNet, a generic multi-path refinement network that explicitly exploits all the information available along the
down-sampling process to enable high-resolution prediction using long-range residual connections. In this way, the deeper layers
that capture high-level semantic features can be directly refined using fine-grained features from earlier convolutions. The individual
components of RefineNet employ residual connections following the identity mapping mindset, which allows for effective end-to-end
training. Further, we introduce chained residual pooling, which captures rich background context in an efficient manner. We carry out
comprehensive experiments on semantic segmentation which is a dense classification problem and achieve good performance on
seven public datasets. We further apply our method for depth estimation and demonstrate the effectiveness of our method on dense
regression problems.

Index Terms—Convolutional Neural Network, Semantic Segmentation, Object Parsing, Human Parsing, Scene Parsing, Depth
Estimation, Dense Prediction.

F

1 INTRODUCTION
Dense prediction, also known as pixel-wise prediction prob-
lems, is a fundamental category of computer vision topics.
The dense prediction task here is to assign a class label or
continuous value to every single pixel in the given image.
A variety of vision tasks can be formulated as dense predic-
tion problems, either discrete or continuous value prediction.
For instance, semantic segmentation and object parsing are
typical dense classification problems, while depth estimation
from monocular images is a representative dense regression
problem.

Semantic segmentation is a crucial component in image
understanding. The task here is to assign a unique label
(or category) to every single pixel in the image, which is
considered as a dense classification problem. The related
problem of so-called object parsing, which aims to segment
and recognize the parts of an object, can usually be cast as
a semantic segmentation task. Depth estimation from single
monocular images is to predict the pixel-wise depth values
(continuous real values) of a single image, which can be
formulated as a dense regression problem. It has found wide
applications in 3D reconstruction, visual recognition, scene
understanding, autonomous driving etc..

Recently, deep learning methods, and in particular convo-
lutional neural networks (CNNs), e.g., VGG [52], Residual
Net [25], have shown remarkable results in recognition tasks.
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Fig. 1 – Example results of our method on the task of object
parsing (left) and semantic segmentation (right).

However, these approaches exhibit clear limitations when it
comes to dense prediction in tasks like dense depth or normal
estimation [13, 40, 41] and semantic segmentation [43, 5].
Multiple stages of spatial pooling and convolution strides
reduce the final output prediction typically by a factor of 32
in each dimension, thereby losing much of the finer image
structure. How to apply the most advanced CNNs methods,
e.g., VGG [52], Residual Net [25], for high-resolution dense
prediction has become a hot topic in the community.

One way to address this limitation is to learn deconvolu-
tional filters as an up-sampling operation [45, 43] to generate
high-resolution feature maps. The deconvolution operations
are not able to recover the low-level visual features which
are lost after the down-sampling operation in the convolution
forward stage. Therefore, they are unable to output accurate
high-resolution prediction. Low-level visual information is
essential for accurate prediction on the boundaries or details.
The method DeepLab recently proposed by Chen et al. [6]
employs atrous (or dilated) convolutions to account for larger
receptive fields without downscaling the image. DeepLab is
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widely applied and represents state-of-the-art performance on
semantic segmentation. This strategy, although successful, has
at least two limitations. First, it needs to perform convolu-
tions on a large number of detailed (high-resolution) feature
maps that usually have high-dimensional features, which are
computationally expensive. Moreover, a large number of high-
dimensional and high-resolution feature maps also require
huge GPU memory resources, especially in the training stage.
This hampers the computation of high-resolution predictions
and usually limits the output size to 1/8 of the original input.
Second, dilated convolutions introduce a coarse sub-sampling
of features, which potentially leads to a loss of important
details.

Another type of methods exploits features from intermediate
layers for generating high-resolution prediction, e.g., the FCN
method in [43] and Hypercolumns in [22]. The intuition
behind these works is that features from middle layers are
expected to describe mid-level representations for object parts,
while retaining spatial information. This information is though
to be complementary to the features from early convolution
layers which encode low-level spatial visual information like
edges, corners, circles, etc., and also complementary to high-
level features from deeper layers which encode high-level
semantic information, including object- or category-level evi-
dence, but which lack strong spatial information.

We argue that features from all levels are helpful for
semantic segmentation. High-level semantic features helps
the category recognition of image regions, while low-level
visual features help to generate sharp, detailed boundaries for
high-resolution prediction. How to effectively exploit middle
layer features remains an open question and deserves more
attentions. To this end we propose a novel network architecture
which effectively exploits multi-level features for generating
high-resolution predictions.

Our main contributions are as follows:
1) We propose a multi-path refinement network (RefineNet)

which exploits features at multiple levels of abstraction
for high-resolution dense prediction. RefineNet refines
low-resolution (coarse) features with fine-grained low-
level features in a recursive manner to generate high-
resolution feature maps. Our model is flexible in that it
can be cascaded and modified in various ways.

2) Our cascaded RefineNets can be effectively trained end-
to-end, which is crucial for good prediction perfor-
mance. More specifically, all components in RefineNet
employ residual connections [25] with identity map-
pings [26], such that gradients can be directly propagated
through short-range and long-range residual connections
allowing for both effective and efficient end-to-end train-
ing.

3) We propose a new network component we call “chained
residual pooling” which is able to capture background
context from a large image region. It does so by ef-
ficiently pooling features with multiple window sizes
and fusing them together with residual connections and
learnable weights.

4) The proposed RefineNet achieves excellent performance
on several semantic segmentation datasets, including

PASCAL VOC 2012, PASCAL-Context, NYUDv2,
SUN-RGBD, Cityscapes, ADE20K, and the object pars-
ing Person-Parts dataset. We further apply our method
for depth estimation from a single image and achieve
competitive performance.

Our preliminary result is published in [36]. To facilitate
future research, we release both source code and trained
models for our RefineNet.1

1.1 Related Work

We focus on semantic segmentation as a typical dense clas-
sification problem and depth estimation as a representative
dense continuous value prediction problem. We next review
the works most related to these two tasks.

Semantic segmentation
CNNs become the most successful methods for semantic

segmentation in recent years. The early methods in [18, 23]
are region-proposal-based methods which classify region pro-
posals to generate segmentation results. Recently fully con-
volution network (FCNNs) based based methods [43, 5, 10]
show effective feature generation and end-to-end training, and
thus become the most popular choice for semantic segmenta-
tion. FCNNs have also been widely applied in other dense-
prediction tasks, e.g., depth estimation [15, 13, 40], image
restoration [14], image super-resolution [12]. The proposed
method here is also based on fully convolution-style networks.

FCNN based methods usually have the limitation of down-
resolution prediction. There are a number of proposed tech-
niques which addressed this limitation and aim to gener-
ate high-resolution predictions. The atrous convolution based
approach DeepLab-CRF in [5] directly output a middle-
resolution score map then applies the dense CRF method [30]
to refine boundaries by leveraging color contrast information.
CRF-RNN [59] extends this approach by implementing re-
current layers for end-to-end learning of the dense CRF and
FCNN. Deconvolution methods [45, 2] learn deconvolution
layers to up-sample the low-resolution predictions. The depth
estimation method [41] employs super-pixel pooling to output
high-resolution continuous predictions.

There are several existing methods which exploit middle
layer features for segmentation. The FCN method in [43]
adds prediction layers to middle layers to generate predic-
tion scores at multiple resolutions. They average the multi-
resolution scores to generate the final prediction mask. Their
system is trained in a stage-wise manner rather than end-to-
end training. The method Hypercolumn [22] merges features
from middle layers and learns dense classification layers. Their
method employs stage-wise training instead of end-to-end
training. The method Seg-Net [2] and U-Net [49] apply skip-
connections in the deconvolution architecture to exploit the
features from middle layers. Exploring middle level features
and performing multi-path fusion are also applied for object
detection tasks [58].

Although there are a few existing work, how to effectively
exploit middle layer features remains an open question. We

1. Our source code is available at https://github.com/guosheng/refinenet

https://github.com/guosheng/refinenet
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Fig. 2 – Comparison of fully convolutional approaches for dense classification. Standard multi-layer CNNs, such as ResNet (a) suffer
from downscaling of the feature maps, thereby losing fine structures along the way. Dilated convolutions (b) remedy this shortcoming
by introducing atrous filters, but are computationally expensive to train and quickly reach memory limits even on modern GPUs. Our
proposed architecture that we call RefineNet (c) exploits various levels of detail at different stages of convolutions and fuses them to
obtain a high-resolution prediction without the need to maintain large intermediate feature maps. The details of the RefineNet block
are outlined in Sec. 3 and illustrated in Fig 3.

propose a novel network architecture, RefineNet, to address
this question. The network architecture of RefineNet is clearly
different from existing methods. RefineNet consists of a
number of specially designed components which are able to
refine the coarse high-level semantic features by exploiting
low-level visual features. In particular, RefineNet employs
short-range and long-range residual connections with identity
mappings which enable effective end-to-end training of the
whole system, and thus help to archive good performance.
Comprehensive empirical results clearly verify the effective-
ness of our novel network architecture for exploiting middle
layer features. Our work can be further applied for instance
segmentation and object detection [24, 46, 47, 31, 58] to
generate high-resolution semantic feature maps and thus to
improve the instance segmentation performance.

Depth estimation
Recently, deep learning methods have been widely applied

to depth estimations and have now become state-of-the-art
methods for this task. The pioneering work can be attributed
to [15, 40]. In [15], Eigen et al. proposed a multi-scale CNN
approach for depth estimation. They directly regress the depth
values of the convolution maps to the ground-truth depth maps
using basic CNN networks. Later on, they extend their work
to [13] by proposing a unified multi-scale CNN architecture
for depth, surface normal and semantic label prediction. Liu et
al. [40] propose an end-to-end deep structured learning model
that jointly exploits continuous CRFs and CNNs. Their method
relies on graphical models and performs inference by network
forward at the original image size, therefore does not have the
down-resolution issue. However, it requires a super-pixel over-
segmentation procedure beforehand, which limits its flexibility.
In [50], Roy et al. propose a deep architecture, i.e., neural
regression forest, by combining deep CNNs with regression
forests for estimating depths from single images. Laina et al.
[33] proposes a fully convolutional architecture exploiting the
recent CNN architecture, i.e., residual net [26], and introduce
the reverse Huber loss function for depth estimation.

We directly apply our method for dense depth regression
without considering any domain knowledge or special design
for depth estimation. Our network architecture for this task is
completely the same as that for semantic segmentation. We

demonstrate our general framework for high-resolution dense
prediction is able to achieve very competitive results for depth
estimation.

2 BACKGROUND
Before presenting our approach, we first review the structure
of fully convolutional networks for semantic segmentation [43]
in more detail and also discuss the recent dilated convolution
technique [6] which is specifically designed to generate high-
resolution predictions.

Very deep CNNs have shown outstanding performance on
object recognition problems. Specifically, the recently pro-
posed Residual Net (ResNet) [25] has shown step-change im-
provements over earlier architectures, and ResNet models pre-
trained for ImageNet recognition tasks are publicly available.
Because of this, in the following we adopt ResNet as our
fundamental building block for semantic segmentation. Note,
however, that replacing it with any other deep network is
straightforward.

Since semantic segmentation can be cast as a dense clas-
sification problem, the ResNet model can be easily modified
for this task. This is achieved by replacing the single label
prediction layer with a dense prediction layer that outputs the
classification confidence for each class at every pixel. This
approach is illustrated in Fig. 2(a). As can be seen, during
the forward pass in ResNet, the resolution of the feature maps
(layer outputs) is decreased, while the feature depth, i.e. the
number of feature maps per layer (or channels) is increased.
The former is caused by striding during convolutional and
pooling operations.

The ResNet layers can be naturally divided into 4 blocks
according to the resolution of the output feature maps, as
shown in Fig. 2(a). Typically, the stride is set to 2, thus
reducing the feature map resolution to one half when passing
from one block to the next. This sequential sub-sampling has
two effects: first it increases the receptive field of convolutions
at deeper levels, enabling the filters to capture more global
and contextual information which is essential for high quality
classification; second it is necessary to keep the training
efficient and tractable because each layer comprises a large
number of filters and therefore produces an output which has
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a corresponding number of channels, thus there is a trade-off
between the number of channels and resolution of the feature
maps. Typically the final feature map output ends up being 32
times smaller in each spatial dimension than the original image
(but with 1000s of channels). This low-resolution feature
map loses important visual details captured by early low-
level filters, resulting in a rather coarse segmentation map.
This issue is a well-known limitation of deep CNN-based
segmentation methods.

An alternative approach to avoid lowering the resolution
while retaining a large receptive field is to use dilated (atrous)
convolution. This method introduced in [6], has the state-
of-the-art performance on semantic segmentation. The sub-
sampling operations are removed (the stride is changed from 2
to 1), and all convolution layers after the first block use dilated
convolution. Such a dilated convolution (effectively a sub-
sampled convolution kernel) has the effect of increasing the
receptive field size of the filters without increasing the number
of weights that must be learned (see illustration in Fig. 2(b)).
Even so, there is a significant cost in memory, because unlike
the image sub-sampling methods, one must retain very large
numbers of feature maps at higher resolution. For example, if
we retain all channels in all layers to be at least 1/4 of the
original image resolution, and consider a typical number of
filter channels to be 1024, then we can see that the memory
capacity of even high-end GPUs is quickly swamped by very
deep networks. In practice, therefore, dilation convolution
methods usually have a resolution prediction of no more than
1/8 size of the original rather than 1/4, when using a deep
network.

In contrast to dilated convolution methods, in this paper we
propose a means to enjoy both the memory and computational
benefits, while still able to produce effective and efficient
high-resolution segmentation prediction, as described in the
following section.

3 PROPOSED METHOD

We propose a new framework that provides multiple paths
over which information from different resolutions and via
potentially long-range connections, is assimilated using a
generic building block, the RefineNet. Fig. 2(c) shows one
possible arrangement of the building blocks to achieve our
goal of high resolution semantic segmentation. We begin by
describing the multi-path refinement arrangement in Sec. 3.1
followed by a detailed description of each RefineNet block in
Sec. 3.2.

3.1 Multi-Path Refinement
As noted previously, we aim to exploit multi-level features
for high-resolution prediction with long-range residual connec-
tions. RefineNet provides a generic means to fuse coarse high-
level semantic features with finer-grained low-level features
to generate high-resolution semantic feature maps. A crucial
aspect of the design ensures that the gradient can be effort-
lessly propagated backwards through the network all the way
to early low-level layers over long-range residual connections,
ensuring that the entire network can be trained end-to-end.

For our standard multi-path architecture, we divide the
pre-trained ResNet (trained with ImageNet) into 4 blocks
according to the resolutions of the feature maps, and employ
a 4-cascaded architecture with 4 RefineNet units, each of
which directly connects to the output of one ResNet block
as well as to the preceding RefineNet block in the cascade.
Note, however, that such a design is not unique. In fact, our
flexible architecture allows for a simple exploration of different
variants. For example, a RefineNet block can accept input from
multiple ResNet blocks. We will analyse a 2-cascaded version,
a single-block approach as well as a 2-scale 7-path architecture
later in Sec. 5.1.2.

We denote RefineNet-m as the RefineNet block that con-
nects to the output of block-m in ResNet. In practice, each
ResNet output is passed through one convolutional layer
to adapt the dimensionality. Although all RefineNets share
the same internal architecture, their parameters are not tied,
allowing for a more flexible adaptation for individual levels
of detail. Following the illustration in Fig. 2(c) bottom up, we
start from the last block in ResNet, and connect the output
of ResNet block-4 to RefineNet-4. Here, there is only one
input for RefineNet-4, and RefineNet-4 serves as an extra set
of convolutions which adapt the pre-trained ResNet weights
to the task at hand, in our case, semantic segmentation. In
the next stage, the output of RefineNet-4 and the ResNet
block-3 are fed to RefineNet-3 as 2-path inputs. The goal of
RefineNet-3 is to use the high-resolution features from ResNet
block-3 to refine the low-resolution feature map output by
RefineNet-4 in the previous stage. Similarly, RefineNet-2 and
RefineNet-1 repeat this stage-wise refinement by fusing high-
level information from the later layers and high-resolution but
low-level features from the earlier ones. As the last step, the
final high-resolution feature maps are fed to a dense soft-max
layer to make the final prediction in the form of a dense score
map. This score map is then up-sampled to match the original
image using bilinear interpolation.

The entire network can be efficiently trained end-to-end.
It is important to note that we introduce long-range residual
connections between the blocks in ResNet and the RefineNet
modules. During the forward pass, these long-range residual
connections convey the low-level features that encode visual
details for refining the coarse high-level feature maps. In the
training step, the long-range residual connections allow direct
gradient propagation to early convolution layers, which helps
effective end-to-end training.

3.2 RefineNet
The architecture of one RefineNet block is illustrated in
Fig. 3(a). In the multi-path overview shown in Fig 2(c),
RefineNet-1 has one input path, while all other RefineNet
blocks have two inputs. Note, however, that our architecture is
generic and each Refine block can be easily modified to accept
an arbitrary number of feature maps with arbitrary resolutions
and depths.

Residual convolution unit. The first part of each RefineNet
block consists of an adaptive convolution set that mainly fine-
tunes the pretrained ResNet weights for our task. To that end,
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Fig. 3 – The individual components of our multi-path refinement network architecture RefineNet. Components in RefineNet employ
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position of the pooling layer (marked in gray) and that of the
convolution layer is exchanged.

each input path is passed sequentially through two residual
convolution units (RCU), which is a simplified version of the
convolution unit in the original ResNet [25], where the batch-
normalization layers are removed (c.f. Fig. 3(b)). The filter
number for each input path is set to 512 for RefineNet-4 and
256 for the remaining ones in our experiments.

Multi-resolution fusion. All path inputs are then fused into
a high-resolution feature map by the multi-resolution fusion
block, depicted in Fig. 3(c). This block first applies convolu-
tions for input adaptation, which generate feature maps of the
same feature dimension (the smallest one among the inputs),
and then up-samples all (smaller) feature maps to the largest

resolution of the inputs. Finally, all features maps are fused
by summation. The input adaptation in this block also helps to
re-scale the feature values appropriately along different paths,
which is important for the subsequent sum-fusion. If there is
only one input path (e.g., the case of RefineNet-4 in Fig. 2(c)),
the input path will directly go through this block without
changes.

Chained residual pooling. The output feature map then goes
through the chained residual pooling block, schematically
depicted in Fig. 3(d). The proposed chained residual pooling
aims to capture background context from a large image region.
It is able to efficiently pool features with multiple window
sizes and fuse them together using learnable weights. In par-
ticular, this component is built as a chain of multiple pooling
blocks, each consisting of one max-pooling layer and one
convolution layer. One pooling block takes the output of the
previous pooling block as input. Therefore, the current pooling
block is able to re-use the result from the previous pooling
operation and thus access the features from a large region
without using a large pooling window. Using more pooling
blocks usually gains better performance. In our experiment,
our best reported results are based on a setting of 4 pooling
blocks in one chained residual pooling module.

The output feature maps of all pooling blocks are fused
together with the input feature map through summation of
residual connections. Note that, our choice to employ residual
connections also persists in this building block, which once
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again facilitates gradient propagation during training. In one
pooling block, each pooling operation is followed by convo-
lutions which serve as a weighting layer for the summation
fusion. It is expected that this convolution layer will learn to
accommodate the importance of the pooling block during the
training process.

We can also consider alternative architectures for our
chained residual pooling block. Fig. 4 shows another architec-
ture of chained residual pooling. This alternative architecture
is modified from the architecture shown in Fig. 3(d) by
exchanging the position of the convolution layer and the
pooling layer in one pooling. This convolution layer will learn
to adapt the input features and accommodate the importances
of the input features before going through the pooling layer. In
our observation, this alternative architecture may sometimes
perform slightly better in some datasets compared to the
original architecture.

Output convolutions. The final step of each RefineNet block
is another residual convolution unit (RCU). This results in a
sequence of three RCUs between each block. To reflect this
behavior in the last RefineNet-1 block, we place two additional
RCUs before the final softmax prediction step. The goal here
is to employ non-linearity operations on the multi-path fused
feature maps to generate features for further processing or for
final prediction. The feature dimension remains the same after
going through this block.

3.3 Identity Mappings in RefineNet
Note that all convolutional components of the RefineNet have
been carefully constructed inspired by the idea behind residual
connections and follow the rule of identity mapping [26]. This
enables effective backward propagation of the gradient through
RefineNet and facilitates end-to-end learning of cascaded
multi-path refinement networks.

Employing residual connections with identity mappings
allows the gradient to be directly propagated from one block to
any other blocks, as was recently shown by [26]. This concept
encourages to maintain a clean information path for shortcut
connections, so that these connections are not “blocked”
by any non-linear layers or components. Instead, non-linear
operations are placed on branches of the main information
path. We follow this guideline for developing the individual
components in RefineNet, including all convolution units.
It is this particular strategy that allows the multi-cascaded
RefineNet to be trained effectively. Note that we include one
non-linear activation layer (ReLU) in the chained residual
pooling block. We observed that this ReLU is important for
the effectiveness of subsequent pooling operations and it also
makes the model less sensitive to changes in the learning rate.
We observed that one single ReLU in each RefineNet block
does not noticeably reduce the effectiveness of gradient flow.

We have both short-range and long-range residual connec-
tions in RefineNet. Short-range residual connections refer to
local shot-cut connections in one RCU or the residual pooling
component, while long-range residual connections refer to
the connection between RefineNet modules and the ResNet
blocks. With long-range residual connections, the gradient

can be directly propagated to early convolution layers in
ResNet and thus enables end-to-end training of all network
components.

The fusion block fuses the information of multiple shortcut
paths, which can be considered as performing summation
fusion of multiple residual connections with necessary dimen-
sion or resolution adaptation. In this aspect, the role of the
multi-resolution fusion block here is analogous to the role of
the “summation” fusion in a conventional residual convolution
unit in ResNet. There are certain layers in RefineNet, and
in particular within the fusion block, that perform linear
feature transformation operations, like linear feature dimension
reduction or bilinear up-sampling. These layers are placed on
the shortcut paths, which is similar to the case in ResNet [25].
As in in ResNet, when a shortcut connection crosses two
blocks, it will include a convolution layer in the shortcut path
for linear feature dimension adaptation, which ensures that the
feature dimension matches the subsequent summation in the
next block. Since only linear transformation are employed in
these layers, gradients still can be propagated through these
layers effectively.

4 REFINENET FOR DENSE PREDICTION

We in this section present the training objectives for different
dense prediction tasks, i.e., dense classification and dense
regression.

4.1 Dense classification
We demonstrate our method for semantic segmentation which
is a representative task of dense classification. We denote Ŷij

as the ground-truth labeling of the pixel indexed by (i, j),
and Zijk as the output of the k-th channel and pixel indexed
by (i, j) before the softmax layer. C is the total number of
semantic categories. The softmax loss is then used for dense
classification tasks:

L(Z, Ŷ) = −
∑
ij

C∑
k=1

1(Ŷij = k) log
exp(Zijk)∑C
l=1 exp(Zijl)

. (1)

Here, 1(·) is an indicator function which output 1 when the
input statement is true and 0 otherwise.

4.2 Dense regression
Depth estimation from monocular images is to infer the pixel-
wise depth values from a single RGB image. We here apply
RefineNet for depth estimation to demonstrate the capacity of
our method for dense regression problems predicting continu-
ous values.

The proposed RefineNet can be easily adapted for con-
tinuous dense prediction tasks, with minimum modifications,
i.e., change the softmax layer to a regression layer. We here
apply the most commonly used least square loss, which
is to minimize the squared Euclidean distance between the
prediction map Y and the ground-truth Ŷ.

L(Y, Ŷ) =
∑
ij

(Yij − Ŷij)
2. (2)
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Here the output for one pixel is one-dimensional depth value
instead of C-dimensional probabilities in the case of semantic
segmentation.

5 EXPERIMENTS
To show the effectiveness of our approach, we carry out
comprehensive experiments on seven public datasets, which
include six popular datasets for semantic segmentation on
indoors and outdoors scenes (NYUDv2, PASCAL VOC 2012,
SUN-RGBD, PASCAL-Context, Cityscapes, ADE20K MIT),
and one dataset for object parsing called Person-Part. We
also demonstrate depth estimation on the NYUDv2 dataset.
The segmentation quality is measured by the intersection-
over-union (IoU) score [16], the pixel accuracy and the mean
accuracy [43] over all classes. As commonly done in the
literature, we apply simple data augmentation during training.
Specifically, we perform random scaling (ranging from 0.7 to
1.3), random cropping and horizontal flipping of the images. If
not further specified, we apply test-time multi-scale evaluation,
which is a common practice in segmentation methods [10, 6].
For multi-scale evaluation, we average the predictions on the
same image across different scales for the final prediction. Fol-
lowing the work in [25] for transferring pre-trained ResNets,
the mean and variance parameters in the batch normalization
layers of the pre-trained ResNet are frozen and thus are not
updated in the training process of our RefineNet. We also
present an ablation experiment to inspect the impact of various
components and alternative architectures of our model. Our
system is built on MatConvNet [54].

5.1 Ablation study
5.1.1 Analysis of components in RefineNet
In Table 1, we present an ablation experiment to quantify
the influence of the following components: Network depth,
chained residual pooling and multi-scale evaluation (Msc Eva),
as described earlier. This experiment shows that each of
these three factors consistently improve the performance as
measured by IoU. Our chained pooling significantly improves
the performance, and basically using more pooling blocks
helps to achieve better result. The best result is achieved by
using 4 pooling blocks in our chained residual pooling module.
In the subsequent experiments, we indicate this setting as
“Pool4”. For the setting of using 4 pooling blocks, we use the
alternative architecture of chained pooling in Fig. 4. Generally
deeper initialization networks, e.g., ResNet-101 and ResNet-
152, lead to better performance.

5.1.2 Variants of cascaded RefineNet
As discussed earlier, our RefineNet is flexible in that it
can be cascaded in various manners for generating various
architectures. Here, we discuss several variants of our Re-
fineNet. Specifically, we present the architectures of using a
single RefineNet, a 2-cascaded RefineNet and a 4-cascaded
RefineNet with 2-scale ResNet. The architectures of all three
variants are illustrated in Fig. 5. The architecture of 4-cascaded
RefineNet is already presented in Fig. 2(c). Please note that
this 4-cascaded RefineNet model is the one used in all other

experiments. Chained pooling with 2 pooling blocks are ap-
plied in this experiment.

The single RefineNet model is the simplest variant of our
network. It consists of only one single RefineNet block, which
takes all four inputs from the four blocks of ResNet and fuses
all-resolution feature maps in a single process. The 2-cascaded
version is similar our main model (4-cascaded) from Fig. 2(c),
but employs only two RefineNet modules instead of four. The
bottom one, RefineNet-2, has two inputs from ResNet blocks
3 and 4, and the other one has three inputs, two coming from
the remaining ResNet blocks and one from RefineNet-2. For
the 2-scale model in Fig. 5(c), we use 2 scales of the image
as input and respectively 2 ResNets to generate feature maps;
the input image is scaled to a factor of 1.2 and 0.6 and fed
into 2 independent ResNets.

The evaluation results of these variants on the NYUD
dataset are shown in Table 2. This experiment demonstrates
that the 4-cascaded version yields better performance than the
2-cascaded and 1-cascaded version, and using 2-scale image
input with 2 ResNet is better than using 1-scale input. This is
expected due to the larger capacity of the network. However, it
also results in longer training times. Hence, we resort to using
the single-scale 4-cascaded version as the standard architecture
in all our experiments.

5.1.3 Memory and computation analysis
In this section we discuss the feature map memory consump-
tion and computational cost in terms of FLOPs of our method
and compare with dilated convolution based approaches. Here
we use 4-cascased RefineNets with the setting of using 4
chaining blocks in our residual chained pooling module for
discussion. Results2 are shown in Table 3. We compare our Re-
fineNet with dilated convolution approaches. The comparing
method denoted by “Dilated ResNet” is a Residual Net model
with the dilated (atrous) convolution setting [6] for generating
high-resolution feature maps. The column “Output resolution
ratio indicates the ratio of output feature map size to the input
image size. It shows that our method is both memory and
computation efficient for generating high-resolution prediction
(e.g., 1/4 of input image size) compared to dilated convolution
based approaches. Particularly, our memory consumption is
much lower than comparing methods.The efficiency benefits
of our method is especially significant when using very deep
base networks (e.g., ResNet-152).

A detailed breakdown analysis of memory usage and com-
putational cost for our RefineNet is shown in Table 4. The
input image size is 512 x 512. It shows that the memory
consumption and the computational cost of our RefineNet are
constant and they are irrelevant to the choice of base networks.
Hence our RefineNet are much more efficient than the dilated
(atrous) convolution based approaches when incorporating
with very deep base networks for high-resolution prediction.

5.2 Object Parsing
In this section we present our results on the task of object
parsing, which consists of recognizing and segmenting object

2. The results of DeepLabV2 are generated from https://github.com/albanie/
convnet-burden

https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
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Fig. 5 – Illustration of 3 variants of our network architecture: (a) single RefineNet, (b) 2-cascaded RefineNet and (c) 4-cascaded
RefineNet with 2-scale ResNet. Note that our proposed RefineNet block can seamlessly handle different numbers of inputs of arbitrary
resolutions and dimensions without any modification.

TABLE 1 – Ablation experiments of our RefineNet on NYUDv2. We analyze the contribution of different components in our method.
Our chained pooling significantly improves the performance, and using more pooling blocks helps to achieve better result. Generally
deeper initialization networks lead to better performance. “Msc Eva” indicates test time multi-scale evaluation.

Initialization Chained pool. # Pooling blocks Msc Eva IoU
ResNet-50 no 0 no 40.4
ResNet-50 yes 2 no 42.5
ResNet-50 yes 2 yes 43.8
ResNet-101 yes 2 no 43.6
ResNet-101 yes 2 yes 44.7
ResNet-152 yes 2 yes 46.5
ResNet-101 yes 4 yes 46.4
ResNet-152 yes 4 yes 47.6

TABLE 2 – Evaluations of 4 variants of cascaded RefineNet:
single RefineNet, 2-cascaded RefineNet, 4-cascaded RefineNet,
4-cascaded RefineNet with 2-scale ResNet on the NYUDv2
dataset. We use chained pooling with 2 pooling blocks in
this experiment. The 4-cascaded version are used as our main
architecture throughout all experiments in the paper because
this turns out to be the best compromise between accuracy and
efficiency.

Variant Initialization Msc Eva IoU
single RefineNet ResNet-50 no 40.3

2-cascaded RefineNet ResNet-50 no 40.9
4-cascaded RefineNet ResNet-50 no 42.5

4-cascaded 2-scale RefineNet ResNet-50 no 43.1

parts. We carry out experiments on the Person-Part dataset [8,
7] which provides pixel-level labels for six person parts

including Head, Torso, Upper/Lower Arms and Upper/Lower
Legs. The rest of each image is considered background. There
are training 1717 images and 1818 test images. We use four
pooling blocks in our chained residual pooling module, which
is indicated by “Pool4” in the result entry.

We compare our results to a number of state-of-the-art
methods, listed in Table 5. The results clearly demonstrate
the improvement over previous works. In particular, we sig-
nificantly outperform the the recent DeepLab-v2 approach [6]
which is based on dilated convolutions for high-resolution seg-
mentation, using the same ResNet as initialization. Qualitative
examples of our object parsing on this dataset are shown in
Fig.6.
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TABLE 3 – Memory and computation analysis. We compare our RefineNet with dilated convolution approaches for generating high-
resolution feature maps. The column “Output resolution ratio indicates the ratio of output feature map size to the input image size. It
shows that our method is both memory and computation efficient for generating high-resolution prediction (e.g., 1/4 of input image
size) compared to dilated convolution based approaches. Particularly, our memory consumption is much lower than comparing methods.
The efficiency benefits of our method is especially significant when using very deep base networks (e.g., ResNet-152).

Methods Base network Input image size Output size ratio Memory FLOPs
Dilated ResNet ResNet-101 512 x 512 1/8 3.3GB 177G
Dilated ResNet ResNet-152 512 x 512 1/8 4.4GB 241G
Dilated ResNet ResNet-101 512 x 512 1/4 11.6GB 695G
Dilated ResNet ResNet-152 512 x 512 1/4 16.7GB 951G

DeepLabv2 (dilated) [6] ResNet-101 513 x 513 1/8 4.0GB 346G
RefineNets+ResNet (ours) ResNet-101 512 x 512 1/4 1.9GB 261G
RefineNets+ResNet (ours) ResNet-152 512 x 512 1/4 2.3GB 280G

TABLE 4 – Memory and computation breakdown details of RefineNet. The input image size is 512 x 512. It shows that the memory
consumption and the computational cost of our RefineNet are constant and they are irrelevant to the choice of base networks. Hence
our RefineNet are much more efficient than the dilated (atrous) convolution based approaches when incorporating with very deep base
networks for high-resolution prediction.

Methods Base network Feature memory breakdown FLOPs breakdown
RefineNets+ResNet ResNet-101 1.1GB (ResNet)+ 0.8GB (RefineNets) = 1.9GB 40G (ResNet) + 221G (RefineNets) = 261G
RefineNets+ResNet ResNet-152 1.5GB (ResNet)+ 0.8GB (RefineNets) = 2.3GB 59G (ResNet) + 221G (RefineNets) = 280G

TABLE 5 – Object parsing results on the Person-Part dataset.
Our method achieves the best performance (bold).

method IoU
Attention [7] 56.4

HAZN [56] 57.5
LG-LSTM [35] 58.0

Graph-LSTM [34] 60.2
DeepLab [5] 62.8

DeepLab-v2 (Res101) [6] 64.9
RefineNet-Res101-Pool4 68.9
RefineNet-Res152-Pool4 69.4

TABLE 6 – Segmentation results on NYUDv2 (40 classes).
Our RefineNet performs the best.

method training data pixel acc. mean acc. IoU
Gupta et al. [20] RGB-D 60.3 - 28.6

FCN-32s [43] RGB 60.0 42.2 29.2
FCN-HHA [43] RGB-D 65.4 46.1 34.0

Context [37] RGB 70.0 53.6 40.6
RefineNet-Res50-Pool2 RGB 72.2 55.8 43.8

RefineNet-Res101-Pool4 RGB 73.8 58.8 46.4
RefineNet-Res152-Pool4 RGB 74.4 59.6 47.6

5.3 Semantic Segmentation

We now describe our experiments on dense semantic label-
ing on six public benchmarks and show that our RefineNet
outperforms previous methods on all datasets.

5.3.1 NYUDv2

The NYUDv2 dataset [51] consists of 1449 RGB-D images
showing interior scenes. We use the segmentation labels pro-
vided in [19], in which all labels are mapped to 40 classes. We
use the standard training/test split with 795 and 654 images,
respectively. We train our models only on RGB images without
using the depth information. Quantitative results are shown in
Table 6. Our RefineNet achieves new state-of-the-art result on
the NYUDv2 dataset.

Ablation experiments on the NYUDv2 dataset are shown in
Table 1 to evaluate the effect of different settings. Once again,
this study demonstrates the benefits of adding the proposed
chained residual pooling component and deeper networks, both
of which consistently improve the performance as measured
by IoU.

5.3.2 PASCAL VOC 2012

PASCAL VOC 2012 [16] is a well-known segmentation
dataset which includes 20 object categories and one back-
ground class. This dataset is split into a training set, a
validation set and a test set, with 1464, 1449 and 1456 images
each. Since the test set labels are not publicly available, all
reported results have been obtained from the VOC evaluation
server. Following the common convention [5, 6, 59, 42], the
training set is augmented by additional annotated VOC images
provided in [21] as well as with the training data from the
MS COCO dataset [38]. We compare our RefineNet on the
PASCAL VOC 2012 test set with a number of competitive
methods, showing superior performance. Here we use 4 pool-
ing blocks in our chained residual pooling module (indicated
by “P4” in the result table). Kindly noted that there is no post
CRF refinement for our method.

The detailed results for each category and the mean IoU
scores are shown in Table 7. When using Res101 as initial-
ization network We achieve an IoU score of 83.8, which sets
a new state-of-the-art result on this challenging dataset. The
result link to the VOC evaluation server can be found here 3

for RefineNet-Res101-P4 and here 4 for RefineNet-Res152-P4.
We outperform competing methods in almost all cate-

gories. In particular, we significantly outperform the method
DeepLab-v2 [6] which is the currently best known dilation
convolution method and uses the same ResNet-101 network

3. http://host.robots.ox.ac.uk:8080/anonymous/TGDPAW.html
4. http://host.robots.ox.ac.uk:8080/anonymous/ZGXPB5.html

http://host.robots.ox.ac.uk:8080/anonymous/TGDPAW.html
http://host.robots.ox.ac.uk:8080/anonymous/ZGXPB5.html
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TABLE 7 – Results on the PASCAL VOC 2012 test set (IoU scores). Our RefineNet archives the best performance (IoU 83.8).
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tv mean
FCN-8s [43] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

DeconvNet [45] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5
CRF-RNN [59] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

BoxSup [10] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2
DPN [42] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5

Context [37] 94.1 40.7 84.1 67.8 75.9 93.4 84.3 88.4 42.5 86.4 64.7 85.4 89.0 85.8 86.0 67.5 90.2 63.8 80.9 73.0 78.0
DeepLab [5] 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85.0 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1 72.7

DeepLab2-Res101 [6] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7
CSupelec-Res101 [4] 92.9 61.2 91.0 66.3 77.7 95.3 88.9 92.4 33.8 88.4 69.1 89.8 92.9 87.7 87.5 62.6 89.9 59.2 87.1 74.2 80.2

RefineNet-Res101-P4 94.8 65.1 93.6 77.3 80.9 96.5 89.7 91.6 39.3 92.9 73.9 89.8 93.8 87.7 87.5 69.1 90.5 65.0 86.3 78.6 82.9
RefineNet-Res152-P4 95.5 63.2 95.0 78.3 83.5 95.7 88.5 92.9 41.5 92.2 78.2 89.7 93.3 90.4 88.5 69.2 92.5 67.3 88.7 78.6 83.8

(a) Test Image (b) Ground Truth (c) Prediction

Fig. 6 – Our prediction examples on Person-Parts dataset.

as initialization. Selected prediction examples are shown in
Fig. 7.

5.3.3 PASCAL-Context

The PASCAL-Context [44] dataset provides the segmentation
labels of the whole scene for the PASCAL VOC images.

(a) Test Image (b) Ground Truth (c) Prediction

Fig. 7 – Our prediction examples on VOC 2012 dataset.

We use the segmentation labels which contain 60 classes (59
object categories plus background) for evaluation as well as
the provided training/test splits. The training set contains 4998
images and the test set has 5105 images. Results are shown
in Table 8. Even without additional training data and with
the same underlying ResNet architecture with 101 layers, we
outperform the previous state-of-the-art achieved by DeepLab.
For our method, using more pooling blocks, i.e. using 4 blocks
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TABLE 8 – Segmentation results on PASCAL-Context dataset
(60 classes). Our method performs the best. We only use the
VOC training images.

Method Extra train data IoU
O2P [3] - 18.1

CFM [11] - 34.4
FCN-8s [43] - 35.1
BoxSup [10] - 40.5
HO-CRF [1] - 41.3
Context [37] - 43.3

DeepLab-v2(Res101) [6] COCO (∼100K) 45.7
RefineNet-Res101-Pool2 - 47.1
RefineNet-Res152-Pool2 - 47.3
RefineNet-Res101-Pool4 - 48.0
RefineNet-Res152-Pool4 - 48.4

TABLE 9 – Segmentation results on SUN-RGBD dataset (37
classes). We compare to a number of recent methods. Our
RefineNet significantly outperforms the existing methods.

Method Train data Pixel acc. Mean acc. IoU
Liu et al. [39] RGB-D − 10.0 −
Ren et al. [48] RGB-D − 36.3 −

Kendall et al. [28] RGB 71.2 45.9 30.7
Context [37] RGB 78.4 53.4 42.3

RefineNet-Res101-Pool2 RGB 80.4 57.8 45.7
RefineNet-Res152-Pool2 RGB 80.6 58.5 45.9
RefineNet-Res101-Pool4 RGB 80.8 57.3 46.3
RefineNet-Res152-Pool4 RGB 81.1 57.7 47.0

(“Pool4”), achieves best performance.

5.3.4 SUN-RGBD
SUN-RGBD [53] is a segmentation dataset that contains
around 10, 000 RGB-D indoor images and provides pixel
labeling masks for 37 classes. Results are shown in Table
9. Our method outperforms all existing methods by a large
margin across all evaluation metrics, even though we do not
make use of the depth information for training. Our best result
is achieved by using 4 pooling blocks in our chained pooling.

5.3.5 ADE20K MIT
ADE20K [60] is a newly released dataset for scene parsing
which provides dense labels of 150 classes on more than 20K
scene images. The categories include a large variety of objects
(e.g., person, car, etc.) and stuff (e.g., sky, road, etc.). The
provided validation set consisting of 2000 images is used for
quantitative evaluation. Results are shown in Table 10. Our
method clearly outperforms the baseline methods described in
[60]. For our method, using 4 pooling blocks (“Pool4” in the
result table) in our chained pooling performs the best.

5.3.6 Cityscapes
Cityscapes [9] is a very recent dataset on street scene images
from 50 different European cities. This dataset provides fine-
grained pixel-level annotations of roads, cars, pedestrians,
bicycles, sky, etc.. The provided training set has 2975 images
and the validation set has 500 images. In total, 19 classes are
considered for training and evaluation. The test set ground-
truth is withheld by the organizers, and we evaluate our method
on the their evaluation server. The test results are shown in

TABLE 10 – Segmentation results on the ADE20K dataset (150
classes) val set. our method achieves the best performance.

Method IoU
FCN-8s [43] 29.4

SegNet [2] 21.6
DilatedNet [5, 57] 32.3

Cascaded-SegNet [60] 27.5
Cascaded-DilatedNet [60] 34.9

RefineNet-Res101-Pool2 40.2
RefineNet-Res152-Pool2 40.7
RefineNet-Res101-Pool4 41.6
RefineNet-Res152-Pool4 42.4

TABLE 11 – Segmentation results on the Cityscapes test set.
our method achieves the best performance.

Method IoU
FCN-8s [43] 65.3

DPN [42] 66.8
Dilation10 [57] 67.1

Context [37] 71.6
LRR-4x [17] 71.8
DeepLab [5] 63.1

DeepLab-v2(Res101) [6] 70.4
RefineNet-Res101 (ours) 73.6

Table 11. In this challenging setting, our architecture again
outperforms previous methods. A few test images along with
ground truth and our predicted semantic maps are shown in
Fig. 8.

5.4 Depth Estimation
We here demonstrate the efficacy of our method for monoc-
ular image depth estimation. We perform experiments on
the widely evaluated NYUDv2 dataset [51], which contains
RGBD indoor scene sequences. The raw dataset consists of
464 scenes, with 249 for training and 215 for test. Following
a similar setting in previous work [13, 33], we equally sample
frames out of each training scene, leading to 12K images in
total for training. The standard test set of 654 images with
filled depth values are used for test. We use several measures
commonly used in prior works for quantitative evaluations:

• average relative error (rel): 1
T

∑
p

|dgt
p −dp|
dgt
p

;

• root mean squared error (rms):
√

1
T

∑
p(d

gt
p − dp)2;

• average log10 error (log10):
1
T

∑
p | log10 dgtp − log10 dp|;

• accuracy with threshold thr:
percentage (%) of dp s.t. max(

dgt
p

dp
,

dp

dgt
p
) = δ < thr;

where dgtp and dp are the ground-truth and predicted depths
respectively at pixel indexed by p, and T is the total number
of pixels in all the evaluated images.

The results are reported in Table 12. We use cascaded
RefineNets with 4 pooling blocks in the chained residual
pooling module. Our method achieves good performance for
depth estimation. Kindly note that we directly apply the
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(a) Test Image (b) Ground Truth (c) Prediction

Fig. 8 – Our prediction examples on Cityscapes dataset.

same architecture of RefineNet for dense regression without
considering domain knowledge, special layer design or special
loss function for depth estimation. We show some prediction
examples in Fig. 9. As we can see, our method accurately in-
fers the depth values of a scene even in cluttered backgrounds.

6 CONCLUSION
We have presented RefineNet, a novel multi-path refinement
network for high-resolution dense prediction. The cascaded
architecture is able to effectively combine high-level abstracts
with low-level features to produce high-resolution pixel-wise
prediction maps. Our design choices are inspired by the idea of
identity mapping which facilitates gradient propagation across
long-range connections and thus enables effective end-to-end
learning. We focus on the semantic segmentation and monocu-
lar image depth estimation tasks for representative discrete and
continuous dense prediction problems. Extensive experiments
show that our RefineNet outperforms most previous works
on multiple public benchmarks, setting a new mark for the

state of the art in semantic labeling. Note that our method can
also be applied to other dense prediction tasks like low-level
vision tasks including image denoising, super-resolution, edge
detection. This can be explored in the future work.
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