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ABSTRACT 12 

Geotechnical systems often examine interactions that occur between continuum bodies 13 

and granular soils. The systems and interactions can be accurately simulated by using 14 

multiscale coupling approaches. The model for the continuum bodies is often 15 

constructed into a mesh. The meshing however is time consuming for a huge spatial 16 

extent system and if distorted is subject to adjustments. A mesh-free approach can be 17 

used to eliminate these drawbacks. In this study, a mesh-free approach for simulating 18 

continuum–granular systems is presented. This approach combines element-free 19 

Galerkin (EFG) and discrete element (DE) methods to approximate the interactions. 20 

The capabilities of the coupled EFG–DE method are validated through its solving two 21 

example problems: the cantilever beam–disc system and Cundall’s Nine Disc Test. The 22 

proposed approach appears to be an efficient and promising tool to model multiscale, 23 

multibody contacting problems.  24 

Keywords: meshless, element-free Galerkin, discrete element, coupling, multiscale 25 

 26 

  27 
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1. INTRODUCTION 28 

Multiscale modeling offers solutions, usually better than the solo scale (i.e., macro- or 29 

microscale) modeling, for geotechnical systems where a huge spatial continuum body 30 

presents in an assembly of granular soils [1, 2]. In these systems, multiscale modeling 31 

enables material response examinations at different scales of resolution, i.e. the 32 

macroscale approximation for the continuum bodies and microscale insight into the 33 

granular media [3]. To combine the multiscale examinations, coupling methods are 34 

applied. A usual coupling method is to develop the finitediscrete element models 35 

(FDEM) [4-9]. For the finite element analyses, meshing, re-meshing, or mesh distortion 36 

sometimes adds to the computational expenses or comprises the simulation accuracy 37 

[10-13]. Similar meshing problems occur to other mesh-based numerical methods, such 38 

as the finite difference [14, 15]. As suggested by Liu and Gu [16], meshless methods 39 

offer choices of solution for these meshing problems.  40 

Meshless methods were developed in the 1970s with the intention of reducing 41 

engineers’ dependence on meshes. Meshless methods emcompass a wide range of 42 

varieties, such as the natural element method [17], the scaled boundary method [18], 43 

and the element-free Galerkin (EFG) method [19]. Not until the 1990s, the EFG method 44 

was developed by Belytschko et al. [19] as a tool to predict fracture and crack growth. 45 

In this context, the crack propagation problem is modelled as an extending line. As the 46 

crack develops, the nodal points adjacent to the crack paths will lose their domain 47 

influence to the neighbouring nodes as they are separated. The EFG method defines a 48 
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grid of nodes which are distributed over the problem domain (i.e, the continuum body), 49 

thus enabling a meshless representation of the body. Based on the nodes distribution, a 50 

shape function (for interpolations) is constructed. Where interpolations (for the inter-51 

nodes) are needed, the EFG method uses the moving least square (MLS) approximation 52 

to establish algebraic expressions for the shape function. Overall the EFG method 53 

adopts an open, global form [16], that enables its uses in a range of engineering 54 

modeling problems [20-26].  55 

The EFG method has been combined with other numerical tools in earlier 56 

studies. Most often, such as [27-29], the EFG method is combined with the finite 57 

element method in order to optimize domain meshing, improve computation efficiency 58 

and increase results accuracy. For example, Ullah et al. [30] used the finite element 59 

method to mesh the continuum domain at the outset and converted part of the domain 60 

into EFG nodes where necessary. In some other studies, such as [31-33], the EFG 61 

method can also be combined with the boundary method in order to improve the 62 

solution efficiency and to take the full advantages of the individual methods. These 63 

coupled approaches have proven successful in outperforming corresponding solo 64 

methods, however, are generally applicable to problems of continuum domain. The 65 

approaches are restricted, if not prohibited, from granular systems such as geomaterials, 66 

where the particulate nature is of interest and should be replicated. 67 

In this study, the EFG method was coupled with the discrete element (DE) 68 

method to examine interactions that occur between continuum and graular bodies. The 69 
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EFG and DE modeling was applied to the two bodies respectively. The granular body 70 

comprised an assembly of discrete particles. The continuum–granular interfacial 71 

contacts were detected in terms of algorithms and used to transfer stresses and 72 

deformations between the bodies. The coupling method was validated through it 73 

solving two interesting example problems. To implement the method to the examples, 74 

the coupling was programmed and executed using the MATLAB software package. The 75 

single-platform programming avoids multiple-platform communications which 76 

multiscale modeling often use and prompts the computation efficiency.  77 

 78 

2. GOVERNING EQUATIONS  79 

In this section, the formulations that are established for the EFG and DE domains in a 80 

two-dimensional (2D) space are presented. The information obtained from the two 81 

domains is communicated at the domains interface, thus updating the resultant contact 82 

forces at each time step. The details of the algorithms developed for the transfer of 83 

forces are discussed. The responses at each of the nodes and particles in respective 84 

domains are examined.  85 

 86 

2.1. Continuum domain 87 

The continuum domain and its boundaries are represented by a grid of nodes. Although 88 

the method of nodes development and the choice of the domain shape are arbitrary, a 89 

grid of nodes in square, as shown in Figure 1, is usually used for simplification. The 90 
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shape functions can be formed in a local support domain within the problem domain. 91 

The problem domain and the local support domain are represented by Ω and ΩI 92 

respectively. Based on a Gauss quadrature rule [34], Gauss points are distributed in the 93 

background cell as illustrated so that the locations of the influenced nodes in the local 94 

domain are identified.  95 

 96 

Figure 1. Schematic of the EFG domain presented by nodes and Gauss points. 97 

 98 

The MLS approximation, as suggested in [16], is used to construct the shape 99 

functions. The MLS approximation applies to the local support domain ΩI. As a set of 100 

equations are to be solved at the point of interest, an ill-conditioned system, where the 101 

solutions exist but difficult to find, may occur [22, 26]. To address this issue, an 102 

orthogonal basis function together with the MLS application is used to approximate the 103 

nodal displacement. Define the nodal displacement trial function, )(xuh , as the 104 

approximation of the actual displacement, u(x), at the point of interest. The trial 105 

Gauss points 

Ω 

Geometric nodes 

ΩI 

I 



7 

 

function is written as: 106 

 
1

( ) ( ) ( ) ( , ) ( )
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 T
q x x a x≡∑  (1) 

where ( , )jq x x  are the orthogonal basis functions corresponding to the monomial 107 

basis function p(x), ( )ja x  are the coefficients, and m is the number of elements in the 108 

monomial basis function. To simplify the coupling framework with the DEM, a linear 109 

basis function in the 2D domain is created as: 110 

 ( ) [1, , ]x yT
p x  (2) 

By using the Schmidt method [35], the orthogonal basis function is obtained as: 111 
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where, k=1 to 3, and the coefficient ( )kja x  is expressed as: 112 
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where the index n refers to the nodes number in domain ΩI, and ( )Iw x  is the weight 113 

function and usually determined based on the exponential weight function or the conical 114 

weight function [19]. In this study, the cubic spine weight function [16] is adopted: 115 
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where r = dI / dmI, dI = Ixx , dmI = dmax × cI, dmax is the scaling factor, and cI can be 116 

defined as characteristic length of the integration zone that contains the point xI. In a 117 

2D space, the weight function is expressed as 118 
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       yxyxI wwrwrwxxw   (6) 

where rx and ry are calculated respectively as 119 
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where dmx and dmy are sizes of the support domain ΩI, and cxI and cyI are coefficients 120 

calculated at node I by searching for nodes to satisfy the base function in both directions. 121 

In the Hilbert space span q, for the selected point x and weight function w, the 122 

orthogonal function ( , )jq x x  should satisfy the expression as follows: 123 

 0),(),(),( xxqxxqxxw IjIkI

m

I
∑  (9) 

where m = 3, k ≠ j, and k, j = I,…, m. In terms of the MLS approximation, the difference 124 

between the trial displacement )(xuh  and actual displacement u(x) should be 125 

minimized. Define the least square function as: 126 
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Minimizing J, the coefficients )(xa j  are obtained as: 127 
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Applying the MLS approximation, we have: 128 

 ( ) ( )
n

h

I I

I

u x x u  (12) 
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Therefore the shape function ( )I x  is defined as: 129 
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The partial derivative of the shape function is expressed as: 130 
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where the subscript ‘k’ denotes partial derivative to x or y, and parameters A1 and A2 131 

are expressed respectively as 132 

 )],(),(),(),()[,()(1 ,

2
xxqxxqxxqxxqxxqxwA IjjIjkj

n

I
IjI   (15) 
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Note that )(xwI
, ),( xxq j  and ),( xxq Ij  are derivable with respect to x.  133 

 134 

2.2. Dynamic equation  135 

According to Liu and Gu [16], the dynamic equation for node I in the local domain is 136 

expressed as: 137 

 
0)( , 



ducubW iiijijI

I




  
(17) 

where 
IW


 is the weight function. In a discretized system, the dynamic equation for 138 

node I is written as: 139 

 )()()()( tFtuKtuCtuM IIII    (18) 

where MI, KI are the local mass and stiffness matrix respectively for node I, CI is the 140 

corresponding damping matrix, FI is the force acting on node I at time t, and ( )Iu t ,141 

( )Iu t , ( )Iu t are nodal displacement, velocity and acceleration at time t.  142 
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On the traction boundary 
t , the boundary conditions are written as: 143 

 tn σ  (19) 

where σ is the stress tensor, n is the unit normal to the domain Ω, and t  are the 144 

prescribed tractions. On the displacement boundary 
u , the boundary conditions 145 

become 146 

 uu   (20) 

where u  are the prescribed displacements. In order to satisfy the boundary conditions, 147 

as suggested in Liu and Gu [16], the penalty method (i.e., optimization algorithms) is 148 

adopted for simplicity and also maintain the symetrical matrix. By introducing the 149 

penalty coefficient α [26], the Galerkin form [16] for a dynamic problem is written as: 150 
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u
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where δ is the test function, and α= 








2

1

0

0




. The penalty factors αi are usually 151 

assigned a constant, large, positive number, and this study adopts αi=105 × E. Using Eq. 152 

(21), the discretized function for a dynamic problem can be developed. The detailed 153 

process was discussed in Zhang et al. [26], and is expressed as: 154 

 
αα

FFUKKUCUM  )(  (22) 

In Eq. (22), U , U  and U  are global vectors for displacement, velocity and 155 

acceleration of all of the nodes, respectively; M and K are respectively the mass matrix 156 

and stiffness matrix in the problem domain, C is the damping matrix, F is the global 157 

external force vector, Kα is the global penalty matrix, and the additional force vector Fα 158 
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is derived from the boundary conditions. And, these parameters are expanded as: 159 
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where c is the damping coefficient, and the other coefficients are defined as follow:  160 
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and, for plan stress problems, 161 

 D =
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for plan strain problems, 162 
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 163 

2.3. Granular domain 164 

In the granular domain, the interaction between the particles, or the particles and wall, 165 
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is determined based on Newton’s second law of motion and the force–displacement law. 166 

The two laws govern the motion of the entities of interest and update the contact force 167 

based on the displacement. Similar to the dynamic problem described in Eq. (18), in 168 

the granular domain, as per Cundall and Strack [36], the particle motion is expressed 169 

as: 170 

 mp,i (t)ui
 +c (t)ui

 = (t)Fi
 (33) 

 Ii (t)θi
 +c* (t)θi

 = (t)Mi
 (34) 

where mp,i is the mass of disc i, Ii is the moment of inertia of disc i, (t)ui
  and (t)θi


 

171 

are respectively the translational and angular velocities for disc i, c and c* are global 172 

damping coefficients for translational and rotational velocities, respectively, and (t)Fi
 173 

and (t)Mi
 are resultant force and moment at contact, respectively. 174 

The DE model uses a set of mechanical elements (e.g., a spring and dashpot) to 175 

calculate the contact force occurred between two entities (or particles) of interest. One 176 

of the widely used models is the linear contact, as presented in Figure 2. A finite overlap 177 

is allowed between the rigid particles to simulate the particle’s deformation. The 178 

dashpot element is used to reflect viscous behavior at contact. The contact force is 179 

determined in terms of the deformation of these mechanical elements, or the relative 180 

displacement between the particles. In the model, the normal and shear forces between 181 

the entities i and j, 
n

ijF  and 
s

ijF , respectively, are calculated as: 182 

 nknkF nn

n

ij    (35) 

 skskF ss

s

ij    (36) 



13 

 

where kn and ks are contact normal and shear stiffness respectively, Δn and Δs are 183 

relative displacements measured at the normal and shear directions, and β is a damping 184 

coefficient. To model the stick–slip contact occurred between entities, a Coulomb–185 

friction criterion is employed as follows: 186 

 cFF u

n

ij

s

ij  tan)( max  (37) 

where max)( s

ijF  is the maximum value of the shear force, 
u  is the smaller of the 187 

interparticle friction angles for entities i and j, and c is the smaller of entities’ cohesion. 188 

The moment acting on entity i is the result of all the shear forces applied at its contacts 189 

and is expressed as: 190 

 i

n

j

s

iji rFM 



1

 (38) 

where ri is the radius of entity i. 191 

 192 

Figure 2. Schematic of the linear contact model used in DEM. 193 

 194 
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2.4. Continuum–granular interface 195 

The continuum–granular domain interface is examined to communicate the force–196 

displacement relationship between the two domains. The domains interface is modeled 197 

as the disc–wall (or segment) contact, which is commonly used in the FDEM analyses 198 

(e.g. Nakashima and Oida [37]). Specifically, the interface becomes disc–segment 199 

contacts. At each contact, paired disc–segment contact forces are transmitted to the disc 200 

centroid and the nodes of each element at the interface. A bonding strength can be 201 

specified to transmit a tensile strength or a moment. The forces travel to the rest parts 202 

of corresponding domains.  203 

A similar concept is used in the EFG–DE domain interface as follows: a) detect 204 

the valid contacts between discs (of granular domain) and segments (of continuum 205 

domain), including contact forces and their positions; and b) compute the external force 206 

matrix arising from the contacts. The computer flow chart is represented in Figure 3. It 207 

is noted that the EFG–DE method processes the interface force in a way different from 208 

that for the FDEM method. The granular contact force cannot be transmitted directly to 209 

the node forces at the interface, as the shape function obtained does not have Kronecker 210 

delta function property [16]. A new approach is developed to transmit the forces. 211 
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 212 

Figure 3. The computer flow chart used to determine the interface force. 213 

 214 

2.4.1. Contact detection  215 

Contacts occur in two forms: the disc–disc contacts in the granular domain and the 216 

disc–segment on the domains interface. The former type of contact can be detected in 217 

commercially accessible software packages, e.g. the PFC, or an open source code such 218 

as Escript [38] or Yade. These packages however are not established to readily detect 219 

the disc–segment contacts, or otherwise have to use a bridging scheme [39] to 220 

communicate contact detections across the domains. There are algorithms [11, 12, 40] 221 

developed to detect finite–discrete element interfacial contacts. These algorithms, 222 

however, are not applicable to the EFG–DE interface and a separate approach is 223 

required. To these ends, we developed contact detection algorithms in terms of Muth et 224 

al. [41] and programmed the algorithms on the MATLAB platform.  225 

To detect the EFG–DE interfacial contacts, the first step is to gather location 226 

Search boundary co-ordinates 

Search disc at boundary 

For Boundary disc O 

Determine contact wall 

segment 

Determine projection point and 

compute velocities 

Calculate contact force 

Determine the closest node 

 

Search nodes at boundary 
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information for the nodes and discs adjacent to the interface. Figure 4 illustrates disc O 227 

and nodes i to i+N which contact and sit on the interface. To detect the disc–segment 228 

contact, the following subroutines are executed: a) Calculate di,O, the distance between 229 

centroid O and node i , where i=i,…,i+N; b) Determine the minimum distance (di,O)min 230 

and the corresponding node number j; c) Calculate distances dj–1,O and dj+1,O; d) 231 

Determine the interface segment. The segment is section (j–1, j) if dj–1,O > dj+1,O, or 232 

section (j, j+1) if dj–1,O < dj+1,O. If dj–1,O = dj+1,O, the segment is dependent on the distance 233 

between the centroid and the segments of interest which is discussed in the next 234 

paragraph; e) Calculate dH,O, the distance between centroid O and point H. Line OH is 235 

drawn normal to the segment determined in Step d); and f) Calculate the velocity at 236 

point H based on the shape function of this segment, and the velocity of nodes j and j–237 

1 based on the EFG method. 238 

 239 

 240 

Figure 4. An illustration of disc position and boundary line segments. 241 

The next step is to determine the contact geometric primitives. In the FDEM 242 

coupling work, Zang et al. [11] categorized the contact geometric primitives into 243 

particle–facet, particle–edge and particle–vertices problems. These contacts are not 244 

i i+1 j–1 j j+1 i+N

O 

••• ••• 

H 
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suitable to the EFG–DE coupling. Instead, two types of disc–segment contacts are 245 

discussed, as shown in Figure 5(a) and (b) respectively. Figure 5(a) shows the particle–246 

segment contact where no nodes sit within the interface segment. Figure 5(b) shows the 247 

particle–point contact where disc O contacts node j. At the particle–point contact, the 248 

segment (j–1, j+1) deforms into two sub-segments, (j–1, j) and (j, j+1). In this case, the 249 

contact force will be doubled. To eliminate this error, distance dH,O is replaced by dj,O 250 

in Step f) in the contact detection subroutine. 251 

 252 

(a)        (b) 253 

Figure 5. Schematic of disc–segment contact: (a) particle–segment contact, and (b) 254 

particle–point contact. 255 

Based on the finite difference method, the discrete equation used to calculate the 256 

increment of disc–segment force is written as: 257 

 tvvktvvkF HOnHOn

n

HO  )()(   (39) 

 tvvktvvkF HOsHOs

s

HO  )()(   (40) 

where vo and vH are the average velocities of centroid O and point H on the segment 258 

during time step Δt. The velocity of vH is expressed as: 259 

j (or H) 
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j–1 j 

H 

O 
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or, if dj–1,O = dj+1,O, is simplified into 260 

 iH vv   (42) 

where vi and vi+1 are the velocity of nodes i and i+1 respectively, li,H is the distance 261 

between nodes i and H, and li,i+1 is the distance between nodes i and i+1.  262 

 263 

2.4.2. Determination of contact force  264 

In finite element modeling, contact forces are usually acted as a point load on the 265 

boundary nodes [42]. This point-load approach cannot be directly applied to the 266 

boundary nodes in the EFG domain, which otherwise invalidates the use of MLS 267 

approximation [19]. Alternatively, each load is regarded as a distributed traction, and 268 

multiple tractions are superposed. According to Zuohui [43], if a point load F acts at 269 

position (x0, y0) on interface Γt as shown in Figure 6, the following equation is obtained:  270 

 
( )

t t

T T T

I i I i i i it F x x F
 

      d d    
(43) 

where δ is the Dirac delta function. Assuming a total of N point loads act on the 271 

boundary, the superposed traction is expressed as: 272 

 
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N

i
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N

i
i xxFtxt

11
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Eq. (43) then becomes as 273 

 
1

t

N
T T

I i i

i

td F


    (45) 

Substituting Eq. (45) to Eq. (27) leads to: 274 
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 275 

Figure 6. The interaction between a disc and an EFG domain. 276 

 277 

In Eq. (46), the external force F acting on domain Ω contains two components: 278 

the body force such as the gravity, and the point load. The latter part of the equation 279 

refers to the following physical meaning: when a point load Fi acts at point (x0, y0) on a 280 

continuum boundary, this load is distributed to the surrounding points in the local 281 

supporting domain ΩI based on shape function )(xI  which is determined by Eq. (13). 282 

The supporting domain area may be affected by the chosen domain scaling factor dmax.  283 

 284 

3. TIME INTEGRATION 285 

In the EFG–DE simulation, the force–displacement relationship is discretized into finite 286 

time steps. To enable a converge of the simulation, the value of the time steps is properly 287 

determined to ensure the algorithms are stable in both DE and EFG domains. This 288 

section describes the method developed to determine the time step and to present the 289 

(x0, y0) 

F 

Ω0 
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corresponding governing equations in the two domains. 290 

 291 

3.1. Time step 292 

A time step is determined either explicitly or implicitly. Belytschko et al. [44] discussed 293 

the differences between the explicit and implicit methods and suggested that the choice 294 

of method should be determined in terms of the governing equations, smoothness of 295 

data, and material response to examine. In the discrete element analysis, the central 296 

difference method is often used [36]. This method guarantees numerical stability so that 297 

each time step does not exceed the critical time step in the explicit time scheme. Also 298 

when the particle number increases, the implicit time schemes may require solving 299 

multiple matrices at each time step, which significantly increases the processing time 300 

[45]. Due to the above reasons, one common method in the coupled model is to 301 

determine the time step using explicit–explicit schemes [12, 40], which is expressed as: 302 

  21,min ttt   (47) 

where Δt1 and Δt2 are the minimum time steps in the continuum and granular domains, 303 

respectively. To optimize the time step determination, Elmekati and El Shamy [46] 304 

suggested to use the predictor–corrector method, a two-staged iterative process. This 305 

method arises from the fact that Δt2 is usually much less than Δt1. Therefore the time 306 

step in the main routine is expressed as Δt1: 307 

 
2 1

pm
t t n t n

K
       (48) 

where n is an integer, mp is the particle mass, and K is the contact spring stiffness. 308 
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In this present study, an explicit–implicit time integration scheme was adopted. 309 

In the continuum domain, the iterations are stable due to the advantages of the implicit 310 

method, if relatively a small- to medium time step increment is used [26]. Therefore, 311 

time steps only need to be determined in the DE domain. Also, the calculation is 312 

consistent in the combined model because the results of the DE simulation can be 313 

transmitted to the EFG domain at each time step. In this context, important information 314 

such as the contact detection on the interface should be attained, so that the conditions 315 

at each node and particle can be examined explicitly while executing major iterations.  316 

 317 

3.2. Partial difference solution 318 

Difference method is used to discretize the time domain to solve governing equations. 319 

The governing equations relating to accelerations, velocities and displacements arising 320 

from the force acting on the two domains are updated at each time step. It is noteworthy 321 

that the governing equations for the two domains are solved in different processes. The 322 

differences are illustrated in Figure 7. In the EFG domain, the governing equations are 323 

solved based on a matrix, which arises from the nature of continuum body. In the DE 324 

domain, stiffness matrix dimensions may vary in different steps as some particles may 325 

not in contact as shown in Figure 7 (b). Therefore, the contact conditions need to be 326 

determined at the end of each step. It is computationally expensive to compute a 327 

stiffness matrix at each loop. Where appropriate the responses of individual particles 328 

are examined, which avoids excessive iterations of the stiffness matrix. In the EFG 329 
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domain, the nodes are numbered sequentially and the displacement, velocity and 330 

acceleration are obtained in matrices (i.e. U , U  and U  respectively). In the DE 331 

domain, the displacement, velocity and acceleration are calculated for disc i, i.e., 
iu , 332 

iu  and 
iu  respectively. 333 

 334 

(a)           (b) 335 

Figure 7. Schematic illustrating EFG–DE domains: (a) EFG domain with difference 336 

nodes, and (b) DE domain with particles at contact. 337 

 338 

Table 1 presents the sets of governing equations used in the EFG and DE 339 

domains respectively. These equations demonstrate the motions occurred in a time step 340 

increment from t to t+Δt. The two sets of equations are tabularised to compare the 341 

difference in conception when computing nodes (or discs) motion. Specifically, in the 342 

continuum domain, an external force matrix is a major target; in the granular domain, 343 

internal disc–disc contact forces are computed to provide the force–displacement 344 
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relationship. Regarding the equation solving processes, the continuum domain uses the 345 

Taylor expansion to obtain the recurrence relationship at the end of the time increment. 346 

The granular domain uses the central difference method and determines the velocity at 347 

t+
2

t
 which is known as the average speed during a time step increment. Extra rolling 348 

behavior at disc i, such as rolling angle 
i , rolling velocity i

 , and rolling acceleration 349 

i
 , was added in the DE analysis. 350 
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Table 1 Governing equations to depict the motion of elements in EFG and DE domains. 351 

 EFG domain DE domain 

Displacement 
1 2 3
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where in Eq (49), the parameters are respectively expressed as: 353 

  K K K   (60) 

 2

2

1

2

t
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

   (61) 
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2


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 1
1

2

3 


  (63) 

where, two constants
1 =1.5 and

2 =1.6 are used as the Newmark parameters as per 354 

[26]. 355 

 356 

4. EXAMPLE PROBLEMS 357 

Two example problems were examined and solved using the developed EFG–DE 358 

method, aiming to validate this coupling method. The first example problem is to assess 359 

a cantilever beam which is subjected to a disc acting at the end of the beam. The second 360 

example problem is developed based on the Nine Disc Test [36]. The test reproduces a 361 

bi-axial test on an assembly of nice discs. Contact force evolution and stress distribution 362 

between the discs are estimated. The two example problems consider multi-body 363 

interactions, but involve less number of nodes or discs than required in other large-scale 364 

problems. This means the computational costs are affordable, and these special settings 365 

satisfy the aim of developing and validating the EFG–DE method. The deformation, on 366 

both continuum and granular bodies, however, is executed in a large scale so that the 367 

advantages of the mesh free method can be demonstrated and confirmed. 368 
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 369 

4.1. Example 1 370 

This section presents a study on the dynamic interaction that occurs between a disc and 371 

a cantilever beam. The EFG–DE method is applied to the example problem, and the 372 

numerical results are compared with the analytical solutions developed for the same 373 

example problem. 374 

 375 

4.1.1. Problem description 376 

In this example problem, the cantilever beam is fixed to a rigid surface, and the disc sits 377 

on the other end, as shown in Figure 8. The beam measures 1 (L) × 0.2 (H) × 0.025 (D) 378 

m. The material density of the beam is ρb = 2,000 kg/m³. The radius of the disc is r = 379 

0.05 m, and its density is ρd = 1,000 kg/m³. It was assumed that the material of the beam 380 

exhibits linear elastic behavior with Young’s modulus E = 2.1×108 Pa and Poisson’s 381 

ratio  = 0.3, and that the disc material is simulated with the linear contact model with 382 

stiffnesses of kn = ks = 106 N/m. The system is assumed un-damped (i.e., damping 383 

coefficient is zero). 384 
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  385 

Figure 8. Schematic of the disc falling down against the end of the cantilever beam. 386 

 387 

In the simulation, the beam is discretized into a node arrangement of 20×4. The 388 

node grid is refined by a 4×4 Gauss quadrature scheme. At time t = 0, the beam is at 389 

rest, and its upper–right boundary is in contact with the disc edge (no overlap or 390 

deformation). The disc centroid sits at a small distance Δ = 10–3 mm inward from the 391 

beam end, to ensure that the centroid falls inside the boundary of the beam. When t 392 

increases, the disc goes down under the gravity and penetrates the boundary of the beam. 393 

Meanwhile, the beam displaces, in particular at its end, forming a convex profile, 394 

prompting the disc to fall out.  395 

 396 

4.1.2. Termination condition  397 

The termination condition was determined in terms of the trajectory of the disc centroid. 398 
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The centroid tends to move outward when the beam is bent downward. Where the 399 

projection of the centroid falls out of the boundary of the beam, the interaction between 400 

the disc and beam becomes unstable and the simulation terminates. To determine the 401 

fall-off moment, the vertical displacements of the beam end and the disc centroid are 402 

captured and plotted with time as shown in Figure 9. Where the two displacement 403 

values disagree, the corresponding time is when the fall-off occurs. It is shown that the 404 

corresponding time point is t = 0.1431 s. It is noted that excellent agreement is obtained 405 

between the two displacement curves before this fall-off time point is reached, thus 406 

demonstrating the stability of the simulation. 407 

 408 

Figure 9. Displacement profile for the end of the beam and the centroid of the disc. 409 

 410 

4.1.3. Model validation 411 

The numerical results are compared with the analytical solutions developed for the 412 

same example problem. The problem was solved in a plane stress condition—a point 413 
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load P acting at the upper right corner of the beam. According to Euler–Bernoulli beam 414 

theory, the axial stress, 
11 , and the deflection of the beam, wx, are respectively 415 

expressed as: 416 

 
mI

yxLP )(
11


  (64) 

 
mEI

xLPx
xw

6

)3(
)(

2 
  (65) 

where (x, y) is the coordinate of the cross section of interest, and Im is the moment of 417 

inertia of the beam.  418 

The axial stress profiles at two cross sections I at L1 = 0.3 m and II at L2 = 0.5 419 

m as shown in Figure 8 are obtained. For the simulation results, the axial stress at the 420 

same cross sections is captured. But, due to the beam acting without damping, the 421 

results where the beam is in its minimal acceleration t = T/4, are used. The results are 422 

presented in Figure 10. The axial stress is plot as a function of the vertical depth y for 423 

both the simulation and analytical results. At either of the cross sections, excellent 424 

agreement between the simulation and analytical results is obtained. Similarily 425 

sastisfactory agreement is obtained for the deflection profile of the beam, as presented 426 

in Figure 11. The results agreement verifies the capability of the EFG–DE model in 427 

simulating the dynamic response of the beam. Furthermore, the orthogonal basis 428 

function was used in the iterations, and this function avoids the occurrence of any ill-429 

conditioned problems. The similar advantage in simulation stability is obtained due to 430 

the uses of the explicit–implicit algorithm for the time step and the penalty method for 431 
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the boundary conditions. 432 

 433 

Figure 10. Axial stress profile plot at two cross sections of the cateliber beam. 434 

 435 

Figure 11. Deflection profile of the cantilever beam. 436 

 437 

4.1.4. Variation of contact force with time 438 

When the beam is subjected to a dynamic vibration, the contact forces acting on the 439 

boundary change over time. The results of the contact forces are provided in Figure 12. 440 
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In the figure, four critical time steps are identified: t = 0.001, 0.05, 0.1, and 0.143 s, 441 

which correspond to points (a), (b), (c), and (d) respectively. It is shown that the contact 442 

force gradually increases with time at the early stage of the test. At t = 0.05 s where the 443 

contact force equals the gravity force, the acceleration becomes zero, and then negative 444 

when the contact force exceeds the gravity. In the meantime, the disc velocity gradually 445 

decreases, but the contact force grows at a similar gradient. The contact force attains 446 

the peak value when t = 0.1 s, and at this moment, the disc attains the maximum 447 

displacement and penetration into the beam. After the peak point, the penetration 448 

releases gradually and the contact force goes down. At t = 0.143 s the contact force is 449 

less than the gravity, and the disc falls off the end of the beam.   450 

 451 

Figure 12. Development of disc–segment contact force over time. 452 

 453 

4.2. Example 2 454 

Example 2 was adapted from the Nine Disc Test [36]. In the original test, two pairs of 455 

plates were used to compress an assemblage of 9 discs. The plates were assumed ideally 456 

rigid. In example 2, the plates were allowed to deform to avoid the rigid body 457 
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assumption. The Nine Disc Test is employed because of the following reasons: a) this 458 

test is designed to record the single contact force occurred between the discs and walls 459 

(or segments), enabling force gauging; b) the test can capture the effects of the plate 460 

deformation on the contact force; and, c) the test uses a small number of discs and 461 

facilitates contact detection and simulation in a short time period. 462 

 463 

4.2.1. Problem description 464 

An assembly of nine discs is sandwiched by two pairs of plates, as shown in Figure 13. 465 

The setup remains the same as in Cundall and Strack [36], except the left-hand side 466 

plate which is replaced with a deformable strip plate. This strip plate dimensions are 50 467 

(L1) × 300 (H) × 1 (D) units, which enables a plane-stress scenario. As per Cundall and 468 

Strack [36], no physical unit but a number is provided to the properties of the setup or 469 

elements. Specifically, the radii are 50 units, the density is 1000 units, and the normal 470 

and shear stiffness are kn = ks = 1.35×109 units for the linear contact model used for the 471 

discs. In the DE domain, the object wall is not assigned physical properties such as 472 

Young’s modulus, Poisson’s ratio or density. However, in the EFG domain (i.e., the strip 473 

plate), the material properties are specified in order to constitute a motion. These 474 

properties include Young’s Modulus of 2.1×1014 units, Poisson’s ratio of 0.3, the 475 

density of 2000 units. The plates were assumed to be undamped (c=0 in Eqs. (24)), and 476 

fixed at the top and bottom boundaries. To cross check the capacity of the proposed 477 

coupling method, we also simulated this example by using an FE-DE coupling method. 478 
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The EFG domain was replaced with the FE domain with a mesh coinciding with the 479 

background grid of EFG domain. The setting for DE domain remains the same as 480 

provided in Figure 13.  481 

 482 

Figure 13. The nine disc test performed with deformable boundaries. 483 

 484 

4.2.2. Model validation 485 

In the simulation, the assembly of the nine discs is subjected to the bi-axial compression 486 

provided by the two pairs of plates. Two tests were performed. In Test 1, the plates 487 

travel at a velocity of 0.12 units and stop after 40 cycles. In Test 2, the velocity reduces 488 

to 0.04 units, but the plates continue to move until the 120th cycle. As per Cundall and 489 

Strack [36], both simulations continue to the 150th cycle and use a time step Δt = 490 

0.01525 units and damping coefficient of 0.1. The continuum domain (i.e., the left-hand 491 

side plate) uses the cubic spine function [16] and a 3×11 nodal arrangement. In this 492 
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arrangement, the assembly of discs falls into the choices of the disc–segment and disc–493 

point contacts, depending on the disc locations as discussed in Figure 5.  494 

The normal contact force at point C (i.e., the contact of discs 4 and 5) is 495 

examined. The results of the contact force are presented in Figure 14. The results 496 

include the simulations provided by the EFG–DE method, DEM, and Cundall and 497 

Strack [36]. In the DEM simulation, the plates were modeled as rigid walls and the test 498 

was reproduced using PFC programming. Excellent agreement is attained on both tests. 499 

In Test 1 however discrepancies occur in the early- to middle stage (i.e., before the 80th 500 

cycle). This means that the discs contact force is sensitive to the loading rate and the 501 

plate modulus. Specifically, when the rate is as low as in Test 2, the discrepancies fade 502 

off at the 20th cycle and are relatively small compared to the results arising from the 503 

rigid plate based simulations (i.e. the DEM and Cundall and Strack [36]). Where the 504 

rate is tripled as in Test 1, the discrepancies increase in amplitude and extension, 505 

meaning a stronger dynamic response. It is plausible to suggest that stronger dynamic 506 

responses of contact force occur where the loading rate is further increased or the plate 507 

modulus is decreased. Although the discrepancies exist, the trendline agreement on the 508 

two tests verifies the capability of the coupling method in approximating the dynamic 509 

response occurred between the continuum and granular domains. 510 
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 511 

Figure 14. Normal force at contact C in standard unit versus simulation cycle 512 

determined by different simulation methods. 513 

 514 

FE-DE simulations provide some new outcomes. It appears that Newmark β 515 

method was only conditionally stable in the FE domain, probably due to the relatively 516 

large mesh sizes used. The allowable maximum time step ∆t was coupling method 517 

dependent. For example, given the modulus, the time step for a stable simulation is ∆t 518 

= 0.01525 for EFGDE coupling and is reduced to ∆t = 0.00001525 for FEDE 519 

coupling. It appears that EFGDE program was stable under a lager time step. Even so, 520 

the FE method offers advantage in simulation efficiency in simulating small 521 

displacement problems, partially due to it updating interfacial contact forces be means 522 

of movable loads [47]. This offers simplicity as opposed to the interaction adopted in 523 

the EFGDE coupling. On large-scale displacement problems, FE simulation cost can 524 

escalate due to re-meshing requirements as per Liu and Gu (2005).  525 
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 526 

4.2.3. Influence of Young’s modulus 527 

To gain an insight into the effects of plate deformation on the discs contact force, 528 

additional EFG–DE simulations were performed on scenarios where Young’s modulus 529 

for the left-hand side plate was varied. Where the modulus is small, a large contact 530 

overlap tends to occur, and the results likely become unstable which is called contact 531 

buckling [37]. In this circumstance, as pointed out by Kanto and Yagawa [48], 532 

numerical oscillation may occur at contact because of the discontinuous velocity and 533 

acceleration when enforcing geometric compatibility. To prevent a severe contact 534 

overlap, Young’s modulus was trialed and assigned E = 2.1×1014, 2.1×1013, 2.1×1012, 535 

and 1×1010 units respectively for the plate. Similarly, Tests 1 and 2 that were used in 536 

the nine disc test were performed to examine the effects of the simulation cycles on the 537 

results. The results of the normal force at contact C obtained in the two tests under the 538 

varying plate modulus conditions are presented in Figure 15. In either test, the plate 539 

modulus noticeably influences the development of the contact force. The higher the 540 

modulus is, the greater the contact force will be. This relationship is more pronounced 541 

in stage two of the tests, i.e., the period when the plates stop mvoing and compressing 542 

the assembly of discs. Where the plate stiffness is relatively high, i.e., E ≥ 2.1×1013 543 

units, the result curves coincide and approach equilibrium at the end of simulations. 544 

This trendline agrees with the results obtained in the DEM simulation (Figure 14). This 545 

means that the plate modulus of E ≥ 2.1×1013 units is high enough to satisfy the rigid 546 
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assumption made in the DEM simulation. Where the plate is less stiff, the contact force 547 

attenuates over time. This is probably caused by the discs penetrate the plate when the 548 

plate deforms, decreasing the overlap at contact C.  549 

 550 

Figure 15. The relationship between the contact force in standard unit and the cycles 551 

for test scenarios that assign the plates with varying Young’s moduli in standard unit. 552 

 553 

To gain a further insight into the response of a less stiff plate (i.e., E = 1.0×1012 554 

units), the deformation occurred to the boundary nodes of the plate as shown in Figure 555 

16 is examined. An enlarged view of the nodes displacement captured at the 40th cycle 556 

is shown in Figure 17. Due to the use of the deformable plate, the actual displacement 557 

at the plate boundary is not uniform. The central nodes displace significantly greater 558 
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than those occurred on the upper and bottom plates. The location dependency agrees 559 

with the observations occurred in the tri-axial tests [42, 49] where the central section of 560 

the samples dilated and thus presented greater deformation.  561 

 562 

Figure 16. Boundary nodes location on the plate–discs interface examined for the 563 

plate deformation. 564 
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 565 

Figure 17. Displacement in standard unit of the boundary nodes on the plate–discs 566 

interface recorded at the 40th cycle. 567 

 568 

5. CONCLUSIONS 569 

This paper presents an element-free, multiscale EFG–DE coupling method. This 570 

method is developed to simulate multibody interactions, in particular, the continuum–571 

granular contact problems. This method uses a transient disc–segment contact 572 

algorithm for the contact problems and is applied to two example problems. This study 573 

arrives at the following conclusions. 574 

The coupled EFG–DE method is free of meshing or re-meshing, thus enabling 575 

reasonable computation costs and stable calculation. This method applies the 576 
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Newmark-β method to the continuum and the central difference method to the granular 577 

domain to solve the dynamic problem in a discrete form. This method uses an explicit–578 

implicit time scheme and attains satisfactory computation stability. This method 579 

develops a transient contact detection algorithm which enables accurate, seamless force 580 

exchange on the domains interface, and accounts for deformable boundaries. The 581 

method is applied to two example problems and verified against the existing analytical 582 

and simulation results, thus confirming its capabilities in simulating dynamic 583 

interaction occurred between continuum and granular media. As opposed to other 584 

coupled numerical approaches (e.g., FEMDEM or FEMEFGM), this current method 585 

is capable to conduct numerical analysis with less external interventions. In addition 586 

the method is able to separate different domains and examine the particular behaviour 587 

of interest. It is envisaged that the proposed method will be applied to large-scale, multi-588 

body interaction problems to further verify its performance. 589 
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