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Abstract

Generalised parton distributions (GPDs) are observables that contain an abundance of

previously inaccessible information about hadron structure. However, GPDs have proven

difficult to measure from experiment, and first principles calculations in lattice Quantum

Chromodynamics (QCD) have largely been limited to their lowest Mellin moments.

In this thesis, we outline a completely novel approach to determine GPD-related in-

formation using Feynman-Hellmann techniques in lattice QCD. We present both the for-

malisms that make this numerical computation possible, and an exploratory calculation

using this method. The results appear very promising.

First, we show how lattice Feynman-Hellmann techniques can be applied to calculate

the off-forward Compton tensor (OFCT). The result is a relation between the OFCT and

the energy shifts of a two-point function for a carefully chosen perturbed Lagrangian.

Moreover, since the OFCT is both off-forward and second order, the Lagrangian mixes

momentum eigenstates in a non-trivial way. Therefore, we also show how to control this

mixing by a careful choice of the parameters in our perturbed Lagrangian.

Second, we need a form of the OFCT with kinematics that are suitable for the Eu-

clidean lattice. We use an operator product expansion to derive an expression for the

leading order (twist-two) contribution to the OFCT in terms of the Mellin moments of

GPDs. This result can be compared to a lattice calculation of the OFCT for large mo-

mentum transfer, and hence allows us to extract the moments of GPDs.

Finally, we present our calculation of the Euclidean OFCT using lattice Feynman-

Hellmann techniques. Our results exhibit behaviour that is consistent with the theoretical

expressions derived in the previous chapters. We find that the magnitude of our results

is significantly larger than what is expected from a simple phenomenological model, but

that the t dependence of our results is consistent with this model.

As such, this study paves the way for a first principles calculation of higher GPD

moments. Moreover, it allows us to investigate the behaviour of the OFCT in the Euclidean

region as it pertains to scaling, factorisation, and other properties of interest.
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Chapter 1

Introduction

What is a hadron?

In practice, the answer to this question depends upon the energy scale

of interest.

S. J. Brodsky, G. P. Lepage [1].

Hadrons, the bound states of Quantum Chromodynamics (QCD), account for almost

all observable matter: every ion, atom and molecule in the universe is composed of them.

Despite their ubiquity, the phenomena of hadronic matter are some of the least understood

in all particle physics.

It has been a long and winding road that led to QCD, our best theory of hadronic

matter. We can begin our story in 1909, with Geiger and Marsden’s famous experiment

involving the scattering of alpha particles off gold foil [2]. In 1911, Rutherford was the first

to propose that the anomalous ‘back-scattering’ observed in these experiments could be

explained if atoms were made of a positively charged and tightly bound nucleus, orbited by

electrons [3]. The discovery of protons and neutrons followed. However, if the nucleus is

composed of multiple positively charged particles, surely some even stronger force would be

responsible for overcoming their electromagnetic repulsion and holding them together? An

early and successful theory of this strong nuclear force was proposed in 1934 by Yukawa [4].

His model had protons and neutrons as fundamental particles, bound together by the

exchange of massive particles dubbed ‘mesons’.

In the 1950s, our understanding of the strong interaction changed significantly, as a

new generation of high-energy experiments began to discover a ‘zoo’ of strongly interacting

particles. With the proliferation of new types of particles came a proliferation of new

theoretical frameworks: S-matrix methods, current algebra and its sum rules, and the

various iterations of the quark model all sought to circumvent the need for quantum field

theory (QFT) of the strong force altogether.

The quark model of Gell-Mann and Zweig [5], developed in the early ’60s, appeared

to clear up the mess of new particles significantly. According to this model, the newly

discovered particles were not fundamental, but were instead composites (collectively called

hadrons), made up of the truly fundamental particles, quarks. The elegance of the quark

model seemed to speak for its truthfulness. However, it offered little to explain how quarks

were held together. In fact, the force binding quarks would have to be immensely powerful

to keep them forever bound within the hadron, never seen in experiment.

Then, in 1969, the first deep inelastic scattering experiments took place at the Stanford

Linear Accelerator (SLAC), scattering electrons off of protons with unprecedentedly high

1
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energies [6]. These experiments revealed the extraordinary property of ‘Bjorken scaling’,

which suggested that the proton could be described as a collection of weakly interacting

particles. Although at first this seemed entirely at odds with the idea that quarks in

hadrons were strongly bound together, it was in fact the final piece of the puzzle for QCD.

In the few years after the SLAC experiment, this property of being strongly bound at low

energies and weakly bound at high energies (asymptotic freedom) led finally to QCD as

the QFT of the strong force.

Quantum chromodynamics describes how quarks interact strongly via the exchange

of gluons. The strong nuclear force, which binds protons and neutrons in the nucleus,

then emerges as a residual force, much like molecular forces between atoms. As with any

quantum field theory, QCD is summarised by its Lagrangian; in principle, all predictions

of the theory are contained in this equation. But QCD is not so simple: since the strong

force between quarks is so strong, the coupling is too large to apply perturbation theory.

Therefore, quantitative predictions require computational simulations. The first formula-

tion of numerical solutions to the QCD equations of motion (lattice QCD) was provided

in 1974 by Wilson [7]. However, it wasn’t until the late 1980s that lattice QCD became

computationally feasible.

So, with one of the greatest achievements of modern particle physics — a QFT of

the strong force — how much more do we know about what’s really going on inside

hadrons? For a long time, two observables encompassed almost all there was to know

about hadron structure: (1) parton distribution functions (PDFs), which describe the

probability density of quarks and gluons in a hadron as one dimensional functions of

the ‘longitudinal momentum fraction’; and (2) electromagnetic form factors, from which

one can obtain the charge and magnetisation densities of the hadron. Hence for a more

complete description of hadron structure, new observables would need to be constructed.

Generalised parton distributions (GPDs) were first considered as an extension of the

standard PDFs [8]. Ji then showed in 1996 that GPDs could give insights into the spin

structure of the proton [9], thereby offering to solve the decades-old ‘proton spin crisis’.

Since then, it has also been shown that GPDs are the Fourier transform of the spatial

distribution of quarks and gluons in a plane transverse to the motion of a high-energy

hadron [10]. Moreover, recent work has uncovered the connection between GPDs and a

hadron’s ‘mechanical’ properties [11]. Therefore, the measurement of generalised parton

distributions would offer an unprecedented window into hadron structure.

However, as we have already established, nothing in QCD is ever easy. As such, GPDs

are very difficult to measure experimentally. This is partly a result of the experiments

that measure them: hard, exclusive scattering processes, which are more difficult to get

a clean measurement of than inclusive deep inelastic scattering. Moreover, even once

the necessary cross section has been extracted, phenomenological determination of GPDs

from this data requires even more work. Global fits of GPDs, which are most desired,

lean heavily on our theoretical understanding, which is lacking. Nonetheless, there have

been multiple experiments aiming to measure GPDs (HERA, COMPASS and JLab). The

proposed electron-ion collider (EIC) is a major experimental undertaking, specifically to

probe hadronic structure by measuring hadronic observables such as GPDs.

In terms of lattice calculations, the progress has been mostly limited to the lowest few

Mellin moments of GPDs. More recently, there has been one study of pion quasi-GPDs.

The lack of lattice calculations of GPDs reflects a more general difficulty in reconciling the
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light-cone physics that is so useful in describing high-energy scattering and the Euclidean

spacetime of lattice calculations, our only first principles way to calculate parton distri-

butions. The present thesis offers a novel way to determine GPD-related quantities from

lattice QCD, by first calculating the off-forward Compton tensor (OFCT) in the Euclidean

region and relating this to GPD moments.

To begin this thesis, in chapter 2 we give a brief outline of QCD and lattice QCD.

In chapter 3, we give a detailed account of deep inelastic scattering (DIS). In particular,

we show how the non-perturbative structure of the amplitude for this process can be

parameterised by a basis of local operators from the operator product expansion (OPE),

or by non-local light-cone operators. In chapter 4, we outline all things GPD: their basic

properties and relation to other variables, their physical content, and the ways in which

they can be measured experimentally or calculated on the lattice.

Then we begin our results in chapter 5. The Feynman-Hellmann method, as applied

to lattice QCD, involves adding perturbing terms to the lattice Lagrangian that depend

on arbitrary parameters. As in the perturbation theory of regular quantum mechanical

systems, the shift in the energy can be shown to be proportional to the matrix elements of

operators. Hence we show how the energy shifts calculated from lattice two-point functions

can be related to the OFCT.

In chapter 6, we investigate the theoretical behaviour of the OFCT, the quantity in

our Feynman-Hellmann relation. Even though the OFCT is very well-studied, much of

these studies only consider light-cone kinematics (in the infinite momentum frame), and

hence aren’t suitable for comparison to the Euclidean lattice. Therefore, by performing

an OPE on the OFCT, we show how the Compton tensor can be parameterised in terms

of the Mellin moments of GPDs.

Finally, in chapter 7, we present the results of a proof-of-principle lattice calculation.

Remarkably, given the subtleties involved in both our Feynman-Hellman relation and the

OPE, the lattice results appear in good agreement with what we expect from previous

chapters. Therefore, the exploratory results presented in this chapter open up a multitude

of possibilities for future studies: the calculation of many higher GPD moments, exploring

the factorisation and scaling behaviour of the OFCT, and ultimately the reconstruction

of full GPDs may all be possible.

Now, more than one hundred years after Rutherford first proposed the existence of

atomic nuclei, we may be afforded a new window into the internal structure of nucleons

through the determination of GPDs. According to our best theory of matter, all the

information about such structure is contained in the Lagrangian of QCD. Therefore, in

this thesis we present a new method to numerically calculate these observables from lattice

QCD.



Chapter 2

Quantum Chromodynamics

The Standard Model (SM) of particle physics is one of the most successful theories in

the history of science. It predicted the existence of the W and Z bosons, top and charm

quarks, and the Higgs boson, as well as many of the properties of these particles. To give

an example of the SM’s predictive power, precision tests of QED agree with one another

to more than ten significant figures∗, making them the most accurate predictions in all

science.

Roughly speaking, the SM applies to the universe on the small scale, where gravity

is negligible. As such, the SM describes three of the four fundamental forces in nature

(electromagnetism, the weak force and the strong force) in terms of gauge field theories

(GFTs); that is, a field theory in which the Lagrangian is invariant under a group of

continuous, local transformations.

Quantum Chromodynamics (QCD) is the GFT that describes the strong force: the

force responsible for binding quarks together to form hadrons. The strong force also gives

rise to the strong nuclear force that binds protons and neutrons together to form atomic

nuclei. It is therefore QCD that describes the interactions that make almost all observable

matter possible.

However, QCD is the outlier of the three GFTs of the SM: due to the size of the strong

coupling (αS ≈ 1 at standard energy scales), we cannot apply perturbation theory to QCD.

Even though the QCD Lagrangian in principle contains all possible strong interactions,

there are few analytic methods for making quantitative predictions apart from pertur-

bation theory. Therefore, the only first principles method to calculate non-perturbative

quantities in QCD is computational: lattice QCD, a technique that only became feasible

in the late 1980s.

The structure of this chapter follows: first, we introduce quarks and gluons, the basic

constituents of QCD, and then introduce some of the formal properties of the theory, such

as local gauge invariance and the Lagrangian. Next, we give a brief account of asymptotic

freedom, and how it gives rise to perturbative and non-perturbative regimes. Finally,

we introduce some of the formalism and techniques of lattice QCD. We omit a detailed

discussion of the quantisation of the Lagrangian and the construction of Feynman rules,

as these topics are not essential to the present thesis.

∗QED makes predictions about observables (e.g. the anomalous magnetic moment of the electron and
muon, the Lamb shift etc.) in terms of the fine structure constant αQED (equivalently the QED coupling).
These observables can then be measured, and hence the value of αQED determined from different processes.
These measurements of αQED agree with one another to an extremely high degree of accuracy [12].

4



2.1 Elements of QCD 5

2.1 Elements of QCD

In this section we start with a qualitative description of the quark model, and then give a

more formal treatment of the theory of QCD.

2.1.1 Quarks and Hadrons

The basic elements of QCD are quarks (the fermions) and gluons (the gauge bosons).

Quarks and gluons both carry ‘colour’ charge. The different types of quarks are known as

different ‘flavours’ of quark, given in the table below. The flavour of a quark determines

its electric charge, spin and mass. Note that each flavour of quark listed below has its own

anti-particle (e.g. the anti-up quark).

Strong interactions only occur between colour charged particles. In strong interactions,

there are three types of charge: red, green and blue (with corresponding anti-red, -green

and -blue for the anti-particles). In contrast with electromagnetism, the gauge bosons

of QCD (gluons) are themselves carriers of colour charge. Apart from the fact that the

anti-quarks carry anti-charge, the flavour of a quark and its colour charge are independent.

Particle electric charge spin mass (MeV/c2)

Up quark +2/3 1/2 2.2

Down quark -1/3 1/2 4.7

Charm quark +2/3 1/2 1.28× 103

Strange quark -1/3 1/2 96

Top quark +2/3 1/2 173× 103

Bottom quark -1/3 1/2 4.18× 103

Gluons 0 1 massless

Note the difference in masses of the different types of quarks: the up, down and strange

are all comparatively light, while the others (especially the top!) are significantly heavier.

Bound States

Individual quarks and gluons are never observed. Instead, we always measure colour

neutral bound states, collectively called hadrons. There are two main types of hadron:

mesons and baryons, defined by their valence quarks. A meson has two valence quarks

(a quark and an anti-quark), whereas baryons have three valence quarks. These valence

quarks determine the quantum numbers that define a particular hadron. Examples of

some hadrons are given in the table below.

In addition to the valence quarks, hadrons also contain sea quarks and gluons. The

sea quarks always occur in quark anti-quark pairs, and hence do not alter the quantum

numbers of the hadron. As our knowledge of QCD has developed further, we have come to

understand that the sea quarks and gluons determine more of a hadron’s properties than

was first thought (see for instance the ‘proton spin crisis’ [13]). The existence of this ‘sea’

of quarks and gluons within hadrons is a large part of the reason their internal structure

is so complicated.
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Hadron electric charge valence quarks spin mass (MeV/c2)

Proton +1 uud 1/2 938.27

Neutron -1 udd 1/2 939.56

Pion + +1 ud̄ 0 139.57

Pion 0 0 1√
2
(uū+ dd̄) 0 134.98

Pion - -1 dū 0 139.57

2.1.2 Formal Properties of QCD

We now move from a qualitative account of the quark model to describing some of the for-

mal properties of QCD. Quantum chromodynamics is defined by its local gauge invariance:

the QCD Lagrangian (and all QCD observables) must be invariant under the SU(3) group

of transformations. Moreover, these quantities must be locally invariant, meaning that

different spacetime points have independent gauge spaces, and hence transform differently

under SU(3) transformations.

An element of SU(3) can be expressed as

V (x) = exp
[
iαa(x)ta

]
, (2.1)

where αa(x) are parameters that depend on some spacetime point x (that is, they are

local), and ta are the generators of the group†. In the language of Lie groups, ta are

elements of the Lie algebra and the V (x) are elements of the Lie group. In particular,

the elements of SU(3) don’t commute, which has important physical implications we will

discuss later.

The fermion (quark) fields transform like

ψi(x)→ ψ′i(x) = [V (x)]ijψj(x), (2.2)

where i, j are colour indices‡.

Now we need to construct a gauge invariant Lagrangian. To start, note that the

derivative is not well-defined, since we can’t meaningfully subtract two quark fields with

different gauge spaces and different transformations:

nµ∂µψ(x) = lim
ε→0

ψ(xµ + εnµ)− ψ(xµ)

ε
. (2.3)

Therefore we need a way to ‘compare’ different gauge spaces.

As such, we define the Wilson line U(x1, x2) that transforms like

U(x1, x2)→ V (x1)U(x1, x2)V (x2)−1, (2.4)

and constructed to ensure that U(x+ εn, x)ψ(x) transforms like ψ(x+ εn).

†In the fundamental representation of SU(3), we can write ta = λa

2
, where λa are known as the Gell-Mann

matrices.
‡There are two types of colour indices we make explicit: first, indices of the 3 × 3 SU(3) matrices in the
fundamental representation: i, j. Second, the indices that label the individual generators ta fo SU(3):
a, b, c.
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Explicitly, the Wilson line is

U(x1, x2) ≡ P exp
{
ig

∫ x1

x2

dxµtaAaµ(x)
}
, (2.5)

where P denotes path-ordering. The Wilson line is a way to parallel transport in gauge

space: it gives a way of ‘comparing’ local gauge geometries at different spacetime points.

Therefore, for an infinitesimal path,

U(x+ εn, x) = I + iεnµgAaµ(x)ta, (2.6)

and hence, by comparison with Eq. 2.3, we get the covariant derivative:

Dµ = ∂µ − igAµata, (2.7)

where Aaµ are the gluon fields. Since there are eight SU(3) generators, there are eight types

of gluon.

Then the derivative of quark fields has the transformation law

Dµ
ijψj(x)→ [V (x)]ijD

µ
jkψk(x), (2.8)

and hence kinetic terms such as ψ̄Dµψ are gauge invariant.

The field strength tensor F aµν is defined by

[Dµ, Dν ] = −igF aµνta. (2.9)

The Classical Lagrangian

The two main properties the classical QCD Lagrangian density must satisfy are: (1) local

gauge invariance, and (2) renormalisability (that is, it must have mass dimension four:

[L] = 4). It is then a straightforward exercise to enumerate all possible terms made up of

quark and gluon fields and eliminate those that don’t satisfy these constraints [14]. The

resultant Lagrangian density is,

L =
∑
f

ψ̄if
(
/D
ij − δijmf

)
ψjf −

1

4
F aµνF aµν . (2.10)

Here, f is the flavour index that runs over u, d, s....

Note that, since the elements of SU(3) don’t commute, there will be interaction terms

in the Lagrangian that are cubic and quartic in the Aaµ fields. Physically, these interac-

tion terms mean that the vector bosons of QCD (gluons) interact with one another, an

extremely important property.

For the quantised QCD Lagrangian density, we must include ghost terms that arise

from the gauge-fixing condition, and counter-terms from renormalization. For the purposes

of our simple description of QCD, we omit such terms.

2.1.3 Asymptotic Freedom

One of the most important emergent properties of QCD is asymptotic freedom: at short

distances (or equivalently high energies), the effective strength of strong interactions de-
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Figure 2.1: Left: the one-loop vacuum polarisation term for quarks. Right: the one-loop vacuum

bubble for gluons.

creases. Therefore, it becomes possible at short distances to apply perturbative techniques

to QCD.

Asymptotic freedom is the result of gluon self-interaction. To demonstrate this quali-

tatively, consider the case of screening in quantum electrodynamics (QED): a lone electron

will emit an electric field, which will in turn create virtual electron-positron pairs in the

vacuum. The positrons will be pulled towards the inital electron, resulting in a screening

of the charge: the further away the observer from the charge, the more vacuum is in the

way, and hence more screening. Therefore, at long distances the charge will be weaker.

For a lone quark with some colour charge, the same process as above will occur (see

figure 2.1 left), resulting in a screening of the colour charge. However, unlike QED, gluon

self-interaction implies that gluons may also be created from the vacuum (see figure 2.1

right). Since gluons are spin 1 bosons rather than spin 1/2 fermions, they are affected

differently by the presence of the strong charge: they act as colour-anti-colour dipoles,

oriented to align with the direction of the inital charge [15, 16]. As a result, they anti-

screen the colour charge, increasing its strength at long distances. The anti-screening of

the gluons dominates the screening of the quarks, resulting in the extraordinary property

of asymptotic freedom.

Quantitatively, we must use renormalisation group methods. The one-loop result for

the strong coupling is

αS(µ) ∝ 1

log(µ/ΛQCD)
. (2.11)

Here µ is the energy scale and ΛQCD ≈ 0.2 GeV is the natural scale of QCD, which is on

the order of low-lying hadronic masses (pions, nucleons etc.). Therefore, for large energy

scales µ� ΛQCD, the coupling is small. This dependence on the energy scale µ is known

as the ‘running’ of the coupling.

2.1.4 Confinement

The fundamental constituents of QCD so far introduced (quarks and gluons) all carry

colour charge, but observed states in QCD are colour neutral (colourless). Therefore,

we say that colour charged states are always confined within the colourless bound state.

However, confinement is an emergent property of QCD: it is not fundamental to the QCD

Lagrangian (Eq. 2.10), in which all the fields have colour charge, but instead emerges from

the interactions of those fields.

Intuitively, confinement can be thought of as a result of asymptotic freedom: since

the strength of the strong coupling grows with the separation of colour charges, colourless
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bound states are always ‘energetically favourable’. Despite this, so far no first principles

proof exists of the property of confinement, and as such, it is part of one of the Millennium

Prize Problems (the ‘Yang-Mills mass gap’ problem) [17].

2.1.5 Perturbative and Non-Perturbative QCD

Apropos our discussion of asymptotic freedom, the running of the strong coupling di-

vides QCD into two regimes: the high-energy/short distance regime, where perturba-

tive techniques are applicable, and the low-energy/long distance regime, where only non-

perturbative techniques can be used.

However, even at high energies, there is still some non-perturbative contribution to the

amplitude. This is manifest in a property called factorisation: a high-energy amplitude

factorises into its short distance (perturbative) and long distance (non-perturbative) parts.

This is demonstrated below:

σ =
(
long distance effects

)
⊗
(
short distance effects

)
, (2.12)

where ⊗ represents some convolution integral. While we can calculate the short distance

component using perturbation theory, the long-distance effects can only be calculated

with non-perturbative methods (e.g. lattice QCD) or measured from experiment. This is

a highly desirable property, since it means we can extract the interesting non-perturbative

part of the process, which gives us information about internal hadronic structure.

Factorisation is particularly important to the present thesis, since we will show how the

quantity we calculate on the lattice factorises (chapter 6), and as a result we can extract

the non-perturbative part of this amplitude (see chapter 7).

2.2 Lattice QCD

Lattice QCD, first proposed by Wilson [7], is the only first principles, systematically im-

provable way to calculate non-perturbative quantities in QCD. Simply put, it is a method

to calculate Euclidean path integrals on a finite volume lattice of points. The finite distance

between adjacent points (the lattice spacing) serves as a natural ultraviolet regularisation,

while the finite volume provides an infrared regularisation. Lattice simulations have been

applied very successfully to the hadronic spectrum, the structure of the QCD vacuum and

the structure of hadrons, among other properties of QCD.

2.2.1 Euclidean Path Integrals

In the path integral formulation of QCD, the expectation value of some operator O is

given by

〈Ω|O|Ω〉 =

∫
DAµDψ̄DψOeiSQCD∫
DAµDψ̄DψeiSQCD

, (2.13)

where |Ω〉 is the vacuum state and Dφ gives the functional volume element for some field

φ. Hence the path integral is an integration over all possible configurations of classical

fields.

Here,

SQCD =

∫
d4xLQCD(x), (2.14)
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where the Lagrangian density is given in Eq. 2.10.

Note that, even with discretisation, the expression in Eq. 2.13 is near-impossible to

evaluate, due to the highly oscillatory factor eiSQCD . To deal with this problem, we use

a fundamental property of any QFT, analytic continuity, to ‘Wick rotate’ to Euclidean

spacetime: t → −iτ . Under this transformation, the action goes to SQCD → iSEuc
QCD, and

hence

〈Ω|O|Ω〉 =

∫
DAµDψ̄DψOe−S

Euc
QCD∫

DAµDψ̄Dψe−S
Euc
QCD

. (2.15)

Since each configuration of fields is now weighted by a decaying exponential, providing

that the field configurations are generated to conform to this probability distribution, we

have that

〈Ω|O|Ω〉 ≈ 1

Nconf

Nconf∑
i=0

O[φi], (2.16)

where φi represents the ith configuration of the relevant particle fields.

Despite making lattice calculations computationally feasible, the Wick rotation doesn’t

come without consequences. For instance, after the Wick rotation the invariant length of

a four-vector is

x2 = −τ2 − |x|2 < 0.

Hence the lattice is Euclidean: there is no sign difference between the spatial and temporal

components. Therefore, lattice calculations can only involve spacelike vectors (for spatial

separations, momenta etc.). This makes it difficult to extract information related to parton

distributions, as we will discuss in future chapters.

2.2.2 Discretisation

For lattice QCD, discretisation is quite an involved exercise; as with most discretisation

procedures, the choice of discretisation is not unique. Moreover, the choice of procedure

is further complicated by the desire to preserve the physics.

Discretisation begins with introducing the lattice spacing a, which is related to a

spacetime point by

xµ = anµ,

where nµ ∈ Z. Note that the choice of nµ is restricted since the lattice has finite volume.

Now we would like to construct a gauge invariant lattice action. We can separate

out the gauge and fermion parts of the action: Slatt = SGlatt + SFlatt. To construct gauge

invariant quantities, we again need to use the Wilson line from Eq. 2.5. In particular, we

will use the Wilson line (Eq. 2.4) to define the link variable:

Uµ(x) ≡ U(x, x+ aµ̂) = exp
{

2iagtaAaµ(x+ aµ̂/2)
}
, (2.17)

where µ̂ is the unit vector point along the axis xµ. Note that the link variable pointing in

the −µ̂ direction is U−µ(x) = U †µ(x− aµ̂).

Then, the discretised covariant derivative is

Dµψ(x) =
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

2a
. (2.18)



2.2 Lattice QCD 11

x x+ aµ̂

x+ aµ̂+ aν̂x+ aν̂

Uµ(x)

Uν(x+ aµ̂)

U †µ(x+ aν̂)

U †ν (x)

Figure 2.2: Visual representation of the gauge invariant plaquette.

Unlike in the continuum case (Eq. 2.7), we can’t take a to be infinitesimal, and therefore

we don’t have the straightforward relationship between the covariant derivative and the

gauge boson fields Aµ as in Eq. 2.7. Hence all gauge invariant quantities on the lattice

must be constructed from the link variables in Eq. 2.17.

Gauge Component

To construct the gauge term, we introduce the plaquette (see figure 2.2):

Pµν(x) ≡ U †ν (x)U †µ(x+ aν̂)Uν(x+ aµ̂)Uµ(x). (2.19)

It is trivial to show that this is gauge invariant, using the transformation law of the Wilson

line Eq. 2.4.

Then, using the identity ea+b = exp
{
a + b + 1

2 [a, b] + ...
}

, and Taylor expanding the

vector fields,

Aν(x+ µ̂) = Aν(x) + a∂µAν(x) +O(a2),

one can derive the following

Pµν(x) = exp
{
ia2Fµν(x) +O(a2)

}
, (2.20)

where Fµν is the QCD field strength tensor from Eq. 2.9. Hence the standard discretisation

of the gauge term is

SGlatt =
2

g2

∑
sites

∑
µ<ν

Re trace
[
I− Pµν(x)

]
. (2.21)

Fermion Component

Building a gauge invariant fermion component of the lattice action at first glance seems

simpler than the gauge component. We use the discretised form of the covariant derivative

from Eq. 2.18,

SFnaive =
∑
sites

[
ψ̄(x)γµ

Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

2a
+mψ̄(x)ψ(x)

]
, (2.22)



2.2 Lattice QCD 12

which has O(a2) errors. However, this naive fermion action suffers from a difficulty known

as ‘fermion doubling’. To remove the doubling, the ‘Wilson term’ is added to the naive

action. However, this term introduces O(a) errors, which can be removed by the inclusion

of the Sheikholeslami-Wolhert (or ‘clover’) term [18]. Therefore, the final clover action is

O(a) improved, and doesn’t suffer from fermion doubling. See Refs. [19, 20] for a much

more complete treatment of this problem and its solution.

2.2.3 Hadron Spectroscopy

One of the most common applications of lattice QCD is the calculation of energies of

hadronic states. For the present thesis, this is particularly important, since such methods

are the foundation of Feynman-Hellmann lattice techniques.

First, we define the nucleon two-point correlation function§:

cχχ(z′, z) ≡ 〈Ω|χ(z′)χ†(z)|Ω〉, (2.23)

where χ is the nucleon interpolating operator that couples to states with the same quantum

numbers as the nucleon:

χα(x) = εijk[ψu]iα(x)
(

[ψu]jβ(x)[Cγ5]βγ [ψd]
k
γ(x)

)
,

χ†α(x) = εijk
(

[ψ̄ū]iβ(x)[Cγ5]βγ [ψ̄d̄]
j
γ(x)

)
[ψ̄ū]kα(x).

(2.24)

Here, i, j, k are fermion colour indices and α, β, γ are Dirac indices.

Then, we define the set of momentum eigenstates {|X(k)〉}, where X is the hadronic

state and k is the momentum, whose components are quantised to integer values of 2π/L

for L the spatial extent of the lattice. These states are eigenstates of the Hamiltonian and

satisfy the normalisation condition

HQCD|X(k)〉 = EX(k)|X(k)〉, 〈Y (p)|X(k)〉 = 2EX(k)L3δX,Y δp,k. (2.25)

We then define C(τ,k) the Fourier-projected two-point function∗∗:

C(τ,k) ≡
∑

z

e−ik·z〈Ω|χ(τ, z)χ†(0)|Ω〉. (2.26)

Then inserting a complete set of states

C(τ,k) =
∑

z

e−ik·z〈Ω|χ(τ, z)χ†(0)|Ω〉

=N
∑
X,k′

∑
z

e−ik·z〈Ω|χ(τ, z)|X(k′)〉〈X(k′)|χ†(0)|Ω〉,
(2.27)

§We often refer to lattice correlation functions by the number of spacetime points their operators have. So
some matrix element 〈Ω|φ1(x1)...φn(xn)|Ω〉 is an n-point function.
∗∗For the rest of this thesis, we simply refer to the Fourier-projected quantity as the ‘two-point function’

or ‘correlator’.
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where N is some appropriate normalisation of the complete set of states. Using the

translational invariance of the interpolating operators in Euclidean space, we get

C(τ,k) =N
∑
X,k′

∑
z

e−ik·z〈Ω|eHτ−ip̂·zχ(0)e−Hτ+ip̂·z|X(k′)〉〈X(k′)|χ†(0)|Ω〉

=N
∑
X,k′

e−EX(k′)τ
∑

z

e−i(k−k′)·z〈Ω|χ(0)|X(k′)〉〈X(k′)|χ†(0)|Ω〉

=
∑
X

e−EX(k′)τ |〈Ω|χ(0)|X(k)〉|2,

(2.28)

which we simply write as

C(τ,k) =
∑
X

AX(k)e−EX(k)τ . (2.29)

Therefore, for large τ , the term in the sum of X with the lowest energy will dominate:

the nucleon. Hence

C(τ,k) ≈ AN (k)e−EN (k′)τ , τ � a. (2.30)

This allows us to extract the ground state nucleon. In particular, we define the effective

mass:

∆Eeff(τ) ≡ 1

δτ
log

(
C(τ,k)

C(τ + δτ,k)

)
. (2.31)

When the effective mass is approximately constant, the ground state is dominant. There-

fore, we can calculate the nucleon mass from first principles. Moreover, by varying the

interpolating operators or with more advanced techniques, we can also calculate the masses

of different hadrons and excited states.

Although thoroughly compactified, this section presents all the basic ideas of QCD

that will be necessary in subsequent chapters. In the next chapter, we narrow our focus

considerably to a single QCD process.



Chapter 3

Forward Scattering

In this chapter, we discuss deep inelastic scattering (DIS). This scattering process is ex-

tremely important for a few reasons: first, from a historical perspective, DIS was in-

strumental in guiding theorists towards QCD at a time when there was great confusion

about how the strong force should be described. Second, the parton distribution functions

(PDFs) that are measured from DIS are some of the most important observables for de-

scribing hadron structure. Finally, for the purposes of the present thesis, we are concerned

with calculating generalised parton distributions (GPDs). Since GPDs are generalisations

of PDFs and the processes one uses to access them are generalisations of DIS, an analysis

of DIS serves as a natural gateway to discussions of GPDs and their measurement and

calculation.

In the early 1960s Gell-Mann’s eight-fold way and the quark model [5] provided an

elegant description of the observed hadronic spectrum without introducing a quantum

field theory (QFT). Moreover, methods such as current algebra [21] seemed to supplant the

need for a QFT of the strong force altogether. By 1969, however, results from the Stanford

linear accelerator (SLAC) would lead to breakthroughs in the understanding of hadron

structure, and eventually a field theory of the strong force: QCD. The electron-proton

scattering (DIS) experiments at SLAC were performed at unprecedented high-energies. In

particular, they showed that the DIS cross section exhibited behaviour known as ‘Bjorken

scaling’ [6], which suggested that hadronic structure was best described at high-energies

as a collection of weakly interacting particles. The first iteration of a model of weakly

interacting hadron constituent was the naive parton model [22,23].

Later, it was proven that the only QFT that could have this behaviour would have

to have to be asymptotically free [24]. Furthermore it was shown that only non-Abelian

gauge theories could exhibit this asymptotic freedom [25, 26], which, combined with the

symmetries described by the quark model and eight-fold way, confirmed that QCD was a

good description of the strong force.

Deep inelastic scattering is more than just historically interesting, though. Parton

distribution functions, which are extracted from DIS, have enormous significance to al-

most any physics that involves high-energy scattering with hadrons [27]. Not only are

PDFs one of the most important observables for describing hadron structure, they are

also used to parameterise non-perturbative behaviour in scattering events, allowing for

phenomenological tests of standard model and beyond standard model physics.

For our purposes, DIS has a special importance. The tools and methods introduced in

this chapter will be used over and over in later chapters to extract GPD-related quantities

from a lattice calculation (see chapters 5, 6 and 7). Moreover, an introduction to the

14
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simpler case of DIS and PDFs may help to clarify many of the properties of GPDs that

can seem arbitrary or confusing when they are introduced in chapter 4.

The structure of this chapter is as follows: first in section 3.1, we will discuss the

basic kinematics and cross section of DIS, and its behaviour in the high-energy limit.

Furthermore, we will briefly discuss the parton model, indicating the properties that make

it a good description of experiment.

Then, in section 3.2, we will discuss the application of the operator product expansion

(OPE) to DIS. This section is especially significant, since it forms the basis of our OPE

analysis in chapter 6. In addition to a more or less standard presentation of the OPE,

we will emphasise properties of the OPE that make it good for comparing to lattice

calculations.

Finally, in section 3.3, we will introduce the light-cone operators, which are essential

tools for understanding the definition and properties of parton distributions.

Therefore, the outline of this chapter is to present a general description of DIS in

section 3.1, and then show how DIS can be parameterised in the high-energy limit in

terms of two types of operators: first, the local operators introduced by way of the OPE,

and then non-local light-cone operators. The similarities and contrasts between these two

types of operators is especially important for how we connect lattice quantities to physical

Minkowski quantities, as will be discussed in depth in later chapters.

3.1 Deep Inelastic Scattering

Deep inelastic scattering is a hard inclusive∗ process, given by e−(k)+N(P )→ e−(k′)+X,

where X is some unspecified final hadronic state. See figure 3.1 for a Feynman diagram.

In our discussion, we always take the target to be a nucleon, but in principle it could

be another hadron. Moreover, we will limited ourselves to discussing only spin averaged

scattering; that is, where a particular spin polarisation is not enforced, and hence there is

an average over the spins in experiment.

Qualitatively, our understanding of DIS is that the very high-energy electron transmits

enough momentum to eject one of the nucleon’s constituent quarks. As the quark is pulled

out of its nucleon, the strong force between it and the colour-charged remnants of the

nucleon increases with the distance between them, until this force is strong enough to

create particles from the QCD vacuum. The products of DIS are then a collection of

colour neutral hadrons. This violent process of ‘smashing open’ a nucleon gives us insight

into its internal structure. In the rest of this chapter, we will furnish the technical details

to this qualitative account of DIS†.

3.1.1 Kinematics

The kinematics of DIS are:

• the incoming nucleon has momentum P ;

• the incoming/outgoing electrons have momentum k/k′, respectively;

∗In a particle physics context, ‘hard’ means that the momentum transferred between the particles is much
greater than the relevant particle masses, and ‘inclusive’ means that the outgoing hadronic states are not
specified.
†Where no citation is given, the material of this chapter is drawn from Refs. [14,28–32].
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P

k k′

q

P + q
N

e−

X

e−

Figure 3.1: The Feynman diagram for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

• the virtual photon exchanged by the electron and nucleon has momentum q = k−k′.

Given these variables, it is useful to define some Lorentz scalars.

• ν = P ·q
M , which is the energy transferred to the nucleon in the nucleon’s rest frame:

ν = k0 − k′0.

• Q =
√
−q2, which is always real, since qµ is spacelike. This is the momentum

transferred to the nucleon.

• x = Q2

2P ·q , the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum transfer to energy transfer.

• ω = x−1, the inverse Bjorken variable. This variable is particularly useful for the

OPE.

• M , the nucleon mass.

• mf the mass of a quark of flavour f .

• M2
X = (P + q)2, the invariant mass of the outgoing state X.

Physical Region of Scalars

Now we will determine what the physically allowed region is for each Lorentz scalar defined

above.

First, note that in the nucleon’s rest frame the electron transfers energy to the proton

and hence ν ≥ 0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q = k−k′ and k and k′ are future-pointing timelike vectors, we can use the

inverse Minkowski triangle inequality to get q2 = (k − k′)2 ≤ |k2 − k′2| = m2
e− −m2

e− = 0

(see appendix A). Therefore, q is a spacelike vector, and hence −q2 = Q2 ≥ 0. The region

for inelastic scattering starts at Q2 & 2GeV2.

In inelastic scattering, the momentum transfer to the nucleon is very large, and hence

M2
X = (P + q)2 &M2. Therefore,

P 2 + 2P · q −Q2 & P 2 ⇒ 2P · q & Q2 ⇒ ω =
2P · q
Q2

& 1. (3.1)

Hence the physical region of x is [0, 1], and for ω it is [1,∞).
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3.1.2 Cross Section

The scattering amplitude for spin averaged DIS is

iM = (−ie)2
(−igµν

q2

)
〈k′|jµ

e−(0)|k〉〈X|jνh(0)|P 〉, (3.2)

where we leave out spin variables in the state vectors, since we only consider the spin

averaged case. Note that jµ
e− and jµh are the electromagnetic Noether currents for electrons

and hadrons, respectively:

jµ
e−(z) = −ψ̄e−(z)γµψe−(z), jµh (z) =

∑
f

ef ψ̄f (z)γµψf (z), (3.3)

where f denotes the flavour of the quark, ef is the charge for quark of flavour f in units

of the magnitude of the electron charge e (e.g. for the down quark ef = −1/3), and ψf is

the quark field for quark of flavour f .

Therefore, the scattering cross section for spin averaged DIS is

dσ =
1

2

∑
X,spins

∫
d3PX
(2π)3

1

2EX

∫
d3k′

(2π)32k′0
(2π)4δ(4)(k + P − k′ − PX)

2k02M
|M|2

=
e4

Q4

1

2

∑
X,spins

∫
d3PX
(2π)3

1

2EX

∫
d3k′

(2π)32k′0
(2π)4δ(4)(k + P − k′ − PX)

2k02M

× 〈P |jµh (0)|X〉〈X|jνh(0)|P 〉Lµν ,

(3.4)

where we have introduced PX the momentum of the outgoing state X. Also note that

we used the hermiticity of the currents to get 〈α|j|β〉 = (〈β|j|α〉)†. And moreover, we

introduced Lµν the leptonic tensor, defined as

Lµν ≡
1

2

∑
spins

〈k′|jµ
e−(0)|k〉〈k|jνe−(0)|k′〉.

Now we would like a similar tensor for the hadronic contributions to this scattering process.

Hence we define the hadronic tensor :

Wµν ≡ 1

2

∑
X,spins

∫
d3PX
(2π)3

1

2EX
(2π)4δ(4)(k + P − k′ − PX)〈P |jµh (0)|X〉〈X|jνh(0)|P 〉. (3.5)

We can simplify expression 3.5 significantly. First, using the integral representation of the

Dirac delta and the fact that q = k − k′, we can re-write

Wµν =
1

2

∑
X,spins

∫
d3PX
(2π)3

1

2EX

∫
d4zei(q+P−PX)·z〈P |jµh (0)|X〉〈X|jνh(0)|P 〉. (3.6)

By the transational invariance of the current operator

jµ(z) = eiP̂ ·zjµ(0)e−iP̂ ·z.
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Therefore,

Wµν =
1

2

∑
X,spins

∫
d3PX
(2π)3

1

2EX

∫
d4zeiq·z〈P |jµh (z)|X〉〈X|jνh(0)|P 〉. (3.7)

Finally, since {|X〉}, the set of all hadronic states, is a complete set, the identity in this

space is

I =
∑
X

∫
d3PX
(2π)3

1

2EX
|X〉〈X|. (3.8)

Therefore,

Wµν =
1

2

∑
spin

∫
d4zeiq·z〈P |jµ(z)jν(0)|P 〉, (3.9)

where we have dropped the h subscripts on the currents, since from now on we will only

consider the hadronic current. Therefore, the cross section in Eq. 3.4 can be written as,

dσ =
e4

Q4

∫
d3k′

(2π)32k′0
1

4k0M
WµνLµν . (3.10)

The purpose of isolating the leptonic (electron) and hadronic (nucleon) contributions

to the scattering process is so that we can independently examine the hadronic part

of the process. Leptons have trivial structure, and their contribution can be calculated

perturbatively. By contrast, due to the complicated nature of the strong force, the hadronic

tensor is highly non-trivial.

We can constrain the form of the hadronic tensor by noting that it must satisfy its

Ward identity qµW
µν = 0 = qνW

µν . Further, the spin averaged hadronic tensor can only

depend on the Lorentz tensors, Pµ, qµ and the Minkowski metric gµν . Therefore, after

writing out the most general ansatz and applying the Ward identity, we arrive at the

tensor decomposition for the spin averaged hadronic tensor:

Wµν = F1(x,Q2)

(
− gµν +

qµqν

q2

)
+
F2(x,Q2)

P · q

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
, (3.11)

where F1,2 are called the structure functions, whose variables are the only Lorentz scalar

variables we can form: q2 and P · q, or equivalently Q2 and x.

3.1.3 The Bjorken Limit

In 1967, Bjorken predicted that the DIS cross section should exhibit a behaviour now

known as ‘Bjorken scaling’ [33]. That is, as Q2 → ∞ with x fixed, the DIS cross section

asymptotically approaches a finite non-zero value:

lim
Q2→∞

F1,2(x,Q2) = F1,2(x). (3.12)

This behaviour was later confirmed by experiment, leading to the discovery of QCD as

the QFT of the strong force, as discussed in the introduction. Note that there are large
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logarithmic deviations from Bjorken scaling behaviour, as predicted by perturbative QCD;

however, we will not discuss these in the present thesis.

Therefore, it is useful to introduce the Bjorken limit :

Q2 →∞, P · q →∞, x, ω fixed to finite values. (3.13)

Coordinate Space Behaviour

Recall the hadronic tensor from Eq. 3.9:

Wµν =
1

2

∑
spin

∫
d4zeiq·z〈P |jµ(z)jν(0)|P 〉.

It is instructive to ask how this object behaves in the Bjorken limit.

To begin, consider the Riemann-Lebesgue lemma:

lim
p→∞

∫ ∞
−∞

dxeipxf(x) = 0, (3.14)

where f(x) is an integrable function of one variable. Compare this to the hadronic tensor

in the Bjorken limit

lim
Q2,P ·q→∞

1

2

∑
spin

∫
d4zeiq·z〈P |jµ(z)jν(0)|P 〉. (3.15)

Clearly, from the Riemann-Lebesgue lemma, some regions of the hadronic tensor will

vanish. However, since we are in Minkwoski space, where q · z = 0 does not imply

|q||z| = 0, we may have regions where the argument of the exponential vanishes, and

hence these regions will have non-vanishing contributions. In particular, in the nucleon’s

rest frame [34],

q · z ≈ ωQ2

2M
(z0 − r)− M

ω
r, (3.16)

for r = q · z/|q|. Therefore, it is not too difficult to show that this implies

|z2| . c1

Q2
, |zµ| . c2ω, (3.17)

where |zµ| indicates the magnitude of the µth component of the separation between cur-

rents z, and c1,2 are finite non-zero scalars. Hence in the Bjorken limit the contributions

that dominate are those for which the current separation is lightlike (see figure 3.2). In-

tuitively, we can think of this as, at infinite momentum, a massive particle’s trajectory

asymptotically approaches a lightlike trajectory‡.

3.1.4 The Parton Model

In response to the SLAC experiments, Feynman [22] and Bjorken and Paschos [23] recog-

nised that Bjorken scaling behaviour could be recovered if one assumed that the nucleon

was composed of non-interacting fundamental particles, which they called partons.

‡For a full discussion of light-cone dominance, we need to consider the singularities of the current product
[35–38]. However, in the interest of brevity, this heuristic explanation must suffice.
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ω/M

z1
z2

Figure 3.2: Light-cone in (2+1) dimensions. In the Bjorken limit, the blue region is dominant,

while the red region and everything outside the light-cone is suppressed.

Today, the theory of parton-like calculations is very advanced [27]; however, for the

naive parton model, the assumptions are simple:

• hadrons are constituted point-like particles called partons;

• these partons don’t interact with one another, but can interact electromagnetically

with the incoming electron;

• with P the nucleon momentum, a given parton has momentum p = yP , where y

is the fraction of the nucleon’s momentum carried by the parton (so we ignore any

components of the parton’s momentum transverse to the nucleon’s);

• parton model calculations always use the infinite momentum frame, where the nu-

cleon and parton momenta are lightlike. In the Bjorken limit, this is simply the

centre of mass frame.

Parton Model Hadronic Tensor

In particular, the fact that the partons don’t interact with one another means that we can

simply split up the hadronic tensor into its contributions from each species of parton:

Wµν =
∑
f

∫ 1

0
dyqf (y)Wµν

f , (3.18)

where qf (y) is the probability density to find a parton of species f and momentum fraction

y in the nucleon and Wµν
f is the hadronic tensor of a given parton species. These probabil-

ity densities are known as parton distribution functions (PDFs). For the moment, they are

ad hoc inclusions necessary to conserve probability. However, the future sections of this

chapter will be devoted to parameterising them in terms of QCD operators. Furthermore,

Eq. 3.18 is an example of the factorisation of short- and long-distance contributions to a

cross section. In perturbative QCD these relations, known as ‘factorisation theorems’, are

extremely important.
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p

q

p′ = p+ q

Figure 3.3: The Feynman diagram for γ∗ parton → parton′ scattering.

Therefore, in the parton model the contribution to the hadronic tensor (Eq. 3.5) given

by the struck parton can be calculate independently:

Wµν
f =

1

2

∑
spins

∫
d3p′

(2π)32p′0
1

y
(2π)4δ(4)(q + p− p′)〈p|jµf (0)|p′〉〈p′|jνf (0)|p〉, (3.19)

where jµf (z) = ef ψ̄f (z)γµψf (z), for parton field ψf . We include the factor of 1/y since the

hadronic tensor is normalised for 1/2P 0.

Note that, since the partons are structureless particles (see figure 3.3), we can calculate

this amplitude using the standard trace techniques:

1

2

∑
spins

〈p|jµf (0)|p′〉〈p′|jνf (0)|p〉 =
1

2
e2
f tr
[
(/p
′ −mf )γµ(/p−mf )γν

]
≈ 2e2

f

(
p′µpν + pµp′ν − gµνp · p′

)
= 2e2

f

(
2y2PµP ν + y(Pµqν + Pµqν)− gµνyP · q

)
,

(3.20)

where we have used the fact that mf and M , the parton and nucleon mass, may be

neglected. Now we can use the identity∫
d3p′

(2π)32p′0
=

∫
d4p′

(2π)4
(2π)δ

(
(p+ q − p′)2

)
=

∫
d4p′

(2π)4

π

P · q δ(x− y), (3.21)

and hence we can make the equivalence of the Bjorken variable and the momentum fraction

x = y in the parton model. So in the parton model p = xP .

Putting Eqs. 3.20 and 3.21 into Eq. 3.19:

Wµν
f =

2π

P · q δ(x− y)e2
f

(
2yPµP ν + (Pµqν + Pµqν)− gµνP · q

)
. (3.22)

Therefore, the full hadronic tensor for the parton model is

Wµν = 2π
∑
f

∫ 1

0
dye2

fqf (y)
δ(x− y)

P · q

(
2yPµP ν + (Pµqν + Pµqν)− gµνP · q

)

= 2π
∑
f

e2
fqf (x)

[(
− gµν +

qµqν

q2

)
+

2x

P · q

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)]
.

(3.23)
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By comparison with Eq. 3.11, the parton model structure functions are:

F1(x) = 2π
∑
f

e2
f (qf (x) + q̄f (x)), F2(x) = 2π2x

∑
f

e2
f (qf (x) + q̄f (x)). (3.24)

Note that we have pre-empted the identification of partons with quarks by introducing

the anti-parton distribution q̄f (x).

From Eq. 3.24, we recover Bjorken scaling: the structure functions of the parton model

are independent of Q2. Note that F1 and F2 are linearly dependent:

F2(x) = 2xF1(x), (3.25)

which is known as the Callan-Gross relation.

3.2 Operator Product Expansion

The parton model reproduces the observed property of Bjorken scaling and imbues the

structure functions of Eq. 3.11 with a simple physical interpretation of probability densi-

ties. So far, however, we have made little reference to the properties of QCD outlined in

chapter 2. Therefore, in this section we will show that the partonic results can be recovered

from QCD via a theoretical tool known as the operator product expansion (OPE).

Recall from chapter 2 that we discussed a property of QCD called asymptotic freedom.

Due to this property, the strong coupling as a function of energy scale µ behaves like

αS(µ) ∝ 1

log(µ/ΛQCD)
.

In DIS, our energy scale is µ = Q, and hence in the region where Q is large, the coupling

is small and we can use perturbation theory. Of course, in the Bjorken limit the coupling

vanishes altogether, and hence QCD becomes very similar to the parton model.

However, it is not immediately clear how to apply perturbative techniques to the DIS

cross section. For instance, even if one of the nucleon’s quarks is struck by the high-energy

electron and made asymptotically free, the rest of the nucleon — a mass of gluons and

quarks — will still be dominated by low-energy degrees of freedom. Therefore, we can’t

simply apply the Feynman rules of QCD to this problem, since the amplitude still contains

non-perturbative components.

Ideally, we would like to show that at large momentum scales the scattering amplitude

can factorise; that is, to show that it can break up into its high-energy/short-distance

component and low-energy/long-distance component:

MDIS =Mshort distance ×Mlong distance. (3.26)

Then for an asymptotically free theory, the short distance component can be calculated

in perturbation theory, allowing for the purely non-perturbative (i.e. interesting) part of

the amplitude to be extracted. This is exactly what the OPE allows us to do.
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3.2.1 The Compton Tensor

Before we apply the OPE to DIS and perform a perturbative calculation, we first need to

recall that for perturbation theory to work, we need time-ordered operators. By contrast

the hadronic tensor,

Wµν =
1

2

∑
spin

∫
d4zeiq·z〈P |jµ(z)jν(0)|P 〉,

is not time-ordered. However, we can relate the hadronic tensor to a time-ordered operator

through the optical theorem§:

2ImM(A→ A) =
∑
X

∫
d2pX
(2π)3

1

2P 0
X

(2π)4δ(4)(pA − pX)|M(A→ X)|2. (3.27)

Note that this only works for inclusive processes, where there is a sum over the final states.

Therefore, if we define the forward Compton tensor as

Tµν ≡ i
∫
d4zeiq·z〈P |T [jµ(z)jν(0)]|P 〉, (3.28)

the optical theorem implies

2ImTµν = Wµν . (3.29)

It is then convenient to use the translational invariance of the current operators to re-

express Eq. 3.28 as

Tµν = i

∫
d4zeiq·z〈P |T [jµ(z/2)jν(−z/2)]|P 〉. (3.30)

Note that from now on, we will suppress the spin averaging; nonetheless we are only

interested in the spin averaged Compton tensor. The Feynman diagram for the Compton

tensor is given in figure 3.4.

Unlike the hadronic tensor, the Compton tensor satisfies the crossing symmetry:

Tµν(P, q) = T νµ(P,−q), (3.31)

and therefore the physical range of its ω variable is |ω| ≥ 1 and for x, |x| ≤ 1. Since the

hadronic tensor has the decomposition given in Eq. 3.11, the Compton tensor similarly

has the decomposition:

Tµν = T1(x,Q2)

(
− gµν +

qµqν

q2

)
+
T2(x,Q2)

P · q

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
, (3.32)

where T1,2 are the Compton form factors. From the optical theorem (Eq. 3.29), these can

be related to the hadronic structure functions by

2Im
{
Ti(x,Q

2)
}

= Fi(x,Q
2), for i = 1, 2. (3.33)

§The field theory optical theorem, just as in the quantum mechanical case, follows from the unitarity of
the S-matrix; derivations can be found in most QFT textbooks [29,30].
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P

q

P

q

Figure 3.4: The Feynman diagram for forward Nγ → Nγ scattering.

Now we are ready to perform the OPE on the Compton tensor.

3.2.2 Wilson’s Operator Product Expansion

For two operators, A and B, Wilson [39] conjectured the following relationship:

A(z)B(0)
z→0−−−→

∑
i

ci(z)Oi(0). (3.34)

The ci are complex-valued functions called ‘Wilson coefficients’; at least some of these will

be singular as zµ → 0, and moreover they are arranged by the strength of their singularity,

with c0 having the greatest divergence. The operators Oi(0) are local and regular (not

divergent). Or, equivalently in momentum space:∫
d4zeiq·zA(z)B(0)

q→0−−−→
∑
i

c̃i(q)Õi(0). (3.35)

Note that the momentum space coefficients c̃i(q) may not be singular. Equations 3.34 and

3.35 are operator product expansions.

Immediately, we can see that if an OPE could be performed on the Compton tensor,

factorisation would follow. For instance, in the matrix element of the OPE,∫
d4zeiq·z〈out|A(z)B(0)|in〉 q→0−−−→

∑
i

c̃i(q)〈out|Õi(0)|in〉, (3.36)

the local operators are not sensitive to the large momentum transfer q and hence their

matrix elements contain low-energy (long-distance) information, which relates to the non-

perturbative strucutre of the hadron. On the other hand, the Wilson coefficients are

entirely dependent on the large momentum transfer, and therefore parameterise the high-

energy (short-distance) part of the matrix element. Therefore, in an asymptotically free

theory, the Wilson coefficients can be calculated perturbatively, while the local operators

can not. This is the desired property of factorisation we mentioned previously.

Validity of the OPE

The OPE statement (Eq. 3.34) was first proven by Zimmermann [40]. This and all sub-

sequent proofs are in renormalised perturbation theory; that is, where the entire matrix

element can be calculated perturbatively. By contrast, many applications of the OPE,

including its application to DIS, are for matrix elements that contain non-perturbative

components. The main difficulty in a non-perturbative proof of the OPE is that one can-

not preclude infinite oscillations in the matrix element of the operator product as z → 0.
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However, once these oscillations are assumed to vanish, a non-perturbative proof is possi-

ble [41,42].

In the case of DIS, the OPE has been very successful at providing a theoretical frame-

work for describing experiment, and it is this property, not a rigorous mathematical proof,

that speaks for its validity. More advanced justifications of the OPE and its application

to different non-perturbative processes can be found in, for instance, Ref. [43].

Moreover, the OPE as it is proven in perturbation theory is best understood as a

Euclidean relation [28]: it is true in the short-distance limit, taking all the components

of zµ → 0, rather than the Minkowski product z2 → 0. Similarly, it is in the limit of

‘large Euclidean momentum’ (see the next paragraph) that relations like Eq. 3.35 hold

in perturbation theory. Even for non-perturbative physics, the OPE is still thought of

as a Euclidean relation [43–45]. Therefore, it has a natural correspondence with lattice

calculations, as we will see.

Large Euclidean Momentum

In momentum space, the OPE applies for large Euclidean momentum. In general, this

means that momentum scalars have values that are accessible in Euclidean space, but does

not necessarily mean we need to perform our calculations in Euclidean space [14, 28, 31].

For the case of DIS, we have in Euclidean kinematics

ω =
2P · q
Q2

∼ |P ||q| . (3.37)

Therefore, we can’t access the Bjorken limit Q2 →∞ and ω fixed without making target

mass corrections |P |/|q| blow up. If we allow our target mass corrections to blow up, we

would spoil any possibility of relating our results back to the physical light-cone limit.

Instead, we take the large Euclidean momentum limit:

Q2 →∞, ω ∼ 0. (3.38)

This is also evident from our discussion of light-cone dominance (recall figure 3.2), where

we saw that the individual components of the current separation go like |zµ| . ω
M , and

hence as we take ω → 0, we get the short-distance limit |zµ| → 0. Therefore, the limit

of large Euclidean momentum, whether in Euclidean or Minkowski space, picks out the

short distance limit.

However, because we ultimately wish to analytically continue this expression back to

the Minkowski region where |ω| ≥ 1, we keep terms of all powers of ω but throw away

target mass corrections such as P 2/Q2, even though in Euclidean kinematics these are of

approximately the same order.

Finally, for the purposes of this thesis, the fact that the OPE uses Euclidean kinematics

makes it very useful to compare to the lattice calculation, which also uses the Euclidean

signature.

3.2.3 Operator Product Expansion for DIS

The method for doing a more rigorous and complete OPE is outlined in appendix B.

However, in this section we will simply expand the Compton tensor in the Bjorken limit: at
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Figure 3.5: Feynman diagrams corresponding to terms in Eq. 3.40: the trace term (left), the two

terms with a single contraction (center), the term with no contraction (right).

αS = 0, the free field approximation. Our results are equivalent to the OPE from appendix

B for the leading-order basis of operators with their corresponding Wilson coefficients taken

to leading-order, too.

Free Field Approximation

To begin, note that the current product is

T [jµ(z)jν(y)] =
∑
f

e2
fT [ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y)]. (3.39)

Since we take αS = 0 and hence the fields in Eq. 3.39 as free, we can apply Wick’s theorem:

T
[
ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y)

]
=− trace[γµ ψf (z)ψ̄f (y)γν ψ(y)f ψ̄f (z)]

+ : ψ̄f (z)γµ ψf (z)ψ̄f (y)γνψf (y) :+ : ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y) :

+ : ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y) :,

(3.40)

where the contractions yield free quark propagators, SF (z − y), which are singular both

in the limit that z → y and (z − y)2 → 0 [14].

Therefore, in the short-distance limit z → y, the trace term will be the most singular

of Eq. 3.40, the second two terms less singular. The last term corresponds to a power-

suppressed cat’s ears diagram (See Figure 3.5). We are only interested in the most singular

terms. Therefore, we can ignore the cat’s ears term. Further, the trace term (vacuum

polarisation) doesn’t contribute to the scattering process, so we ignore this term too. This

leaves us with the two terms that have only one propagator each: the ‘handbag’ terms.

Coordinate Space OPE

So the relevant part of the free current product are the handbag terms from Eq. 3.40:

T [jµ(z/2)jν(−z/2)] =
∑
f

e2
f

(
: ψ̄f (z/2)γµ ψf (z/2)ψ̄f (−z/2)γνψf (−z/2) :

+ : ψ̄f (z/2)γµψf (z/2)ψ̄f (−z/2)γνψf (−z/2) :
)
.

(3.41)

With some manipulation this becomes

T [jµ(z/2)jν(−z/2)] =∑
f

e2
f

(
: ψ̄f (z/2)γµSF (z)γνψf (−z/2) : + : ψ̄f (−z/2)γνSF (−z)γµψf (z/2) :

)
. (3.42)
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The free fermion propagator in coordinate space is

SF (z − y) =
i

2π2

(z − y)αγα
((z − y)2 − iε)2

+ less singular terms, (3.43)

where we will ignore the less singular terms. Therefore, for our present purposes, it is

useful to define the reduced propagator:

Sµ(z) ≡ i

2π2

(z − y)µ

((z − y)2 − iε)2
⇒ γµS

µ(z) = SF (z). (3.44)

Therefore,

T [jµ(z/2)jν(−z/2)] =∑
f

e2
fS

ρ(z)
(

: ψ̄f (z/2)γµγργνψf (−z/2)− ψ̄f (−z/2)γνγργµψf (z/2) :
)
. (3.45)

From Dirac algebra γµγργν = gµργν + gρνγµ − gµνγρ + iεµρνκγ
κγ5 = (Sµρνκ + iεµρνκγ

5)γκ,

where we denote Sµρνκ = gµρgνκ + gµκgνρ− gµνgρκ. Substituting this into Eq. 3.45, we get

T [jµ(z/2)jν(−z/2)] =
∑
f

e2
fS

ρ(z)
(

: ψ̄f (z/2)(Sµρνκ + iεµρνκγ
5)γκψf (−z/2)

− ψ̄f (−z/2)(σνρµκ + iενρµκγ
5)γκψf (z/2) :

)
=
∑
f

e2
fS

ρ(z)
(
Sµρνκ : ψ̄f (z/2)γκψf (−z/2)− ψ̄f (−z/2)γκψf (z/2) :

− iεµρνκ : ψ̄f (z/2)γκγ5ψf (−z/2) + ψ̄f (−z/2)γκγ5ψf (z/2) :
)
,

(3.46)

by symmetry properties of Sµρνκ and εµρνκ, and the anti-commutation of γ5 and γµ.

We can now Taylor expand the Dirac bilinears ψ̄f (z/2)γµψf (−z/2) and ψ̄f (z/2)γµψf (−z/2),

since the singular part of the operator has been factored out. Doing so, we get

ψ̄f (−z/2)γµψf (z/2) =
∞∑
n=0

1

n!
zµ1 ...zµn

(
ψ̄f (X)γµ

↔
D
µ1
...
↔
D
µn
ψ(X)

)∣∣
X=0

, (3.47)

where
↔
D = ( ~D − ~D)/2, for D the covariant derivative. The appearance of the covariant

derivatives instead of the regular partial derivatives is due to the Wilson line, which we

chose to suppress earlier.

Now notice that any terms in the operator in Eq. 3.47 that are proportional to gµiµj

(traces) will contract with the z vectors to give z2, thereby reducing the power of the

singularity. Hence, to get the leading (in terms of the strength of the singularity) term of

Eq. 3.47, we must subtract the traces.

Moreover, each of the derivative terms in Eq. 3.47 is contracted with zµ1 ...zµn , a to-

tally symmetric tensor. Therefore, the indices of the covariant derivatives are totally sym-

metrised. Moreover, it can be shown, by considering the further contractions of Lorentz

indices in Eq. 3.46, and the restriction of current conservation, that all the Lorentz indices

of the operator in Eq. 3.47 must be symmetrised.
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Therefore, the component of Eq. 3.47 that is leading-order is

ψ̄f (−z/2)γµψf (z/2) =

∞∑
n=0

1

n!
zµ1 ...zµn

(
ψ̄f (X)γ{µ

↔
D
µ1
...
↔
D
µn}

ψ(X)− traces
)∣∣
X=0

. (3.48)

See appendix A for our symmetrisation convention. Following the above Taylor expansion

it is easy to see that

ψ̄f (z/2)γµψf (−z/2) =

∞∑
n=0

(−1)n

n!
zµ1 ...zµn

(
ψ̄f (X)γ{µ

↔
D
µ1
...
↔
D
µn}

ψ(X)− traces
)∣∣
X=0

.

(3.49)

The expansion of the polarised terms is identical except for the inclusion of a γ5 matrix.

We have, therefore, arrived at the basis of leading-order local quark operators (vector

and axial vector, respectively):

O(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1i

↔
D
µ2
...i
↔
D
µn}

ψf (X)− traces, (3.50)

Õ(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1γ5i

↔
D
µ2
...i
↔
D
µn}

ψf (X)− traces. (3.51)

Note that in the standard jargon of the OPE these operators are referred to as twist-

two operators. For more explanation of this terminology see appendix B, but for our

purposes all we need note is that ‘twist-two’, ‘leading-order’ and ‘leading-twist’ may be

used interchangeably to refer to the term that is leading-order as |zµ| → 0 or as Q2 →∞.

Moreover, we will suppress the dependence on X of the above operators.

Then the bilinears become

: ψ̄f (z/2)γµψf (−z/2)− ψ̄f (−z/2)γµψf (z/2) :

= −2

∞∑
n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)µµ1...µn
f (0),

(3.52)

: ψ̄f (z/2)γµγ5ψf (−z/2) + ψ̄f (−z/2)γµγ5ψf (z/2) :

= −2
∞∑

n=0,2,4

(−i)n
n!

zµ1 ...zµnÕ
(n+1)µµ1...µn
f (0).

(3.53)

Therefore, the current product is

T [jµ(z/2)jν(−z/2)] =− 2
∑
f

e2
fS

ρ(z)

{
Sµρνκ

∞∑
n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f

− iεµρνκ
∞∑

n=0,2,4

(−i)n
n!

zµ1 ...zµnÕ
(n+1)κµ1...µn
f

}
.

(3.54)
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For the rest of this thesis, we will focus on the symmetric part of Eq. 3.54 and the

unpolarised operators:

T [jµ(z/2)jν(−z/2)]symm =− 2
∑
f

e2
fS

ρ(z)

×
{
Sµρνκ

∞∑
n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f

}
.

(3.55)

The forward matrix element of Eq. 3.55 is therefore

〈P |T [jµ(z/2)jν(−z/2)]symm|P 〉 = −2
∑
f

e2
fS

ρ(z)

×
{
Sµρνκ

∞∑
n=1,3,5

(−i)n
n!

zµ1 ...zµn〈P |O
(n+1)κµ1...µn
f |P 〉

}
.

(3.56)

Then, from Lorentz symmetry, we have that

〈P |O(n)µ1...µn
f |P 〉 = afnP

µ1 ...Pµn , (3.57)

where afn is a Lorentz scalar. Therefore, Eq. 3.56 becomes

〈P |T [jµ(z/2)jν(−z/2)]symm|P 〉 = −2
∑
f

e2
fS

ρ(z)
{
Sµρνκ

∞∑
n=1,3,5

(−i)n
n!

(P · z)nafn
}
. (3.58)

Fourier Transform

Inserting Eq. 3.54 into the expression for the Compton tensor (Eq. 3.30), we get that the

leading-order Compton tensor is

Tµν = −2i
∑
f

e2
f

∫
d4zeiq·zSρ(z)SµρνκP κ

∞∑
n=1,3,5

(−i)n
n!

(P · z)nafn+1. (3.59)

A useful identity from distribution theory [46] is∫ b

a
dxF(x)

∂n

∂xn
δ(x− y) = (−1)n

∂n

∂xn
F(x)

∣∣∣∣
x=y

y ∈ (a, b). (3.60)

Hence we have that

(P · z)n = in
∫
dχeiχP ·z

∂n

∂χn
δ(χ). (3.61)

So, inserting Eq. 3.61 into the Compton tensor we get

Tµν =− 2i
∑
f

e2
fSµρνκP κ

∞∑
n=1,3,5

1

n!
afn+1

∫
dχ

∂n

∂χn
δ(χ)

∫
d4zei(q+χP )·zSρ(z). (3.62)
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Now, Fourier expanding the reduced propagator, we get∫
d4zei(q+χP )·zSµ(z) =

i(qµ + χPµ)

(q + χP )2
=

i(qµ + χPµ)

χ2P 2 + 2χP · q −Q2

=
i(qµ + χPµ)

χ2P 2 + 2χP · q −Q2
= − 1

Q2

i(qµ + χPµ)

1− 2χP · q/Q2
.

(3.63)

Note that, by Eq. 3.60, we have∫
dχ

∂n

∂χn
δ(χ)

∫
d4zei(q+χP )·zSρ(z)

= −
∫
dχ

∂n

∂χn
δ(χ)

1

Q2

i(qµ + χPµ)

1− 2χP · q/Q2

= (−1)n+1 i

Q2

∂n

∂χn
(qρ + χP ρ)

∞∑
k=0

χk
(2P · q

Q2

)k∣∣∣∣
χ=0

= (−1)n+1 i

Q2

∞∑
k=0

(δk,nk!qρ + δk+1,n(k + 1)!P ρ)ωk,

(3.64)

where we can Taylor expanded around χ = 0, since this is where the derivative is evaluated.

Inserting Eq. 3.64 back into Eq. 3.62, we get

Tµν =− 2

Q2

∑
f

e2
fSµρνκP κ

∞∑
n=1,3,5

afn+1

(−1)n

n!

∞∑
k=0

(δk,nk!qρ + δk+1,n(k + 1)!P ρ)ωk

=
2

Q2

∑
f

e2
fSµρνκP κ

∞∑
n=1,3,5

afn+1ω
n−1(ωqρ + P ρ).

(3.65)

Then, recalling that Sµρνκ = gµρgνκ + gµκgνρ − gµνgρκ, we get

Tµν =
2

Q2

∑
f

e2
f

∞∑
n=1,3,5

afn+1ω
n−1
(
ω(Pµqν + Pνqµ) + 2PµPν − ωP · qgµν

)
=
∑
f

e2
f

∞∑
n=2,4,6

afnω
n

(
Pµqν + Pνqµ

P · q +
Q2

(P · q)2
PµPν − gµν

)
.

(3.66)

So, as in the parton model, we recover the Bjorken scaling prediction and the Callan-Gross

relation.

If all we wanted to do was compare to a lattice simulation, Eq. 3.66 would be sufficient,

since it matches on to the Euclidean kinematics of the lattice, where ω ∼ 0. However, to

relate this to the physical Minkowski region, we need a way to connect Eq. 3.66 to the

Compton tensor for the physical region |ω| ≥ 1.
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3.2.4 Dispersion Relation

First, recall the definition of T1(x,Q2) and T2(x,Q2) in Eq. 3.32. So, from Eq. 3.66, we

have that

T1(x,Q2) =
∑
f

e2
f

∞∑
n=2,4,6

afnω
n, T2(x,Q2) = 2x

∑
f

e2
f

∞∑
n=2,4,6

afnω
n, (3.67)

for Q2 → ∞ and ω ∼ 0. Then, recall that the hadronic tensor structure functions Fi
are related to Ti by 2Im{Ti(x,Q2)} = Fi(x,Q

2). Comparing the OPE and parton model

(Eq. 3.24) structure functions have that

1

π
Im

{ ∞∑
n=2,4,6

afnω
n

}
= qf (x) + q̄f (x), (3.68)

which is our first connection between fundamental QCD and partonic physics. However,

Eq. 3.68 is not exactly what we want: it is in the region of ω → 0 and hence x → ∞.

Instead, we would like to find a way to relate this to our physical region.

Leading Order Dispersion Relation

To start, we use the property of analytic continuity, which is a fundamental assumption

of QFT: we extend the variable ω to the complex plane. For convenience, define T f1 (ω) as

the contribution to the Compton form factor for one flavour of quark. Then, if we take a

contour C1, that is a small closed loop around the origin, by Cauchy’s theorem

1

2πi

∮
C1
dω
T f1 (ω)

ωN+1
=

1

2πi

∞∑
n=2,4,6

∮
C1
dω

afnωn

ωN+1
= afN , (3.69)

where N is some even integer ≥ 2. Equation 3.69 follows from the fact that the integral

of a complex contour enclosing the Laurent series
∑

n z
−n only picks out the z−1 term.

The Compton tensor has discontinuities along the real axis for |ω| ≥ 1 (see figure

3.6). We show how to determine the cuts in the complex plane for the Compton tensor in

appendix C. More details can be found in section 6.3.

We can deform C1 to C2, the contour given in Figure 3.6. We assume that the parts of

the contour near the real axis are an infinitesimal distance ε away from it. Hence

1

2πi

∮
C1
dω
T f1 (ω)

ωN+1
=

1

2πi

[ ∫ ∞
1

dω +

∫ −1

−∞
dω

]
T f1 (ω + iε)− T f1 (ω − iε)

ωN+1
+ arc contributions.

(3.70)

Here, we will assume that the contributions from the arcs vanish. Note that by the Schwarz

reflection principle [47], we have that T f1 (ω) = [T f1 (ω∗)]∗, and hence

T f1 (ω + iε)− T f1 (ω − iε) = 2iIm[T f (ω + iε)] = iF f1 (ω + iε).

From now on, we will suppress the infinitesimal ε.
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Reω

Imω

Figure 3.6: Contour C2 and the discontinuities of the Compton tensor.

Therefore, Eq. 3.70 becomes

1

2πi

∮
C1
dω
T f1 (ω)

ωN+1
=

1

2π

[ ∫ ∞
1

dω +

∫ −1

−∞
dω

]
F f1 (ω)

ωN+1
.

=
1

2π

∫ 1

−1
dxxN−1F f1 (x) =

∫ 1

−1
dxxN−1(qf (x) + q̄f (x)).

(3.71)

Comparing Eqs. 3.69 and 3.71, we have∫ 1

−1
dxxn−1(qf (x) + q̄f (x)) = afn. (3.72)

Using symmetry properties of PDFs, we note that qf (x) = −q̄f (−x). Therefore, it is

simple to show that Eq. 3.72 implies

2

∫ 1

−1
dxxn−1qf (x) = afn, (3.73)

and

2

∫ 1

0
dxxn−1(qf (x) + q̄f (x)) = afn. (3.74)

Therefore, for instance, 1
2a

f
2 gives the fraction of the nucleon’s total momentum contributed

quarks of flavour f and their anti-quarks∗∗.

In general we define the nth Mellin moment Mn of a function f(x) as

Mn ≡
∫ 1

−1
dxxn−1f(x) (3.75)

Equation 3.73 completes our connection between local parton distribution functions and

a basis of local operators (Eq. 3.50). In the next section, we will show the connection

∗∗Note that it is more common [29,30] to see the notation 〈P |O(n)µ1...µn
f |P 〉 = 2afnP

µ1 ...Pµn , which differs
from our definition (Eq. 3.57) by a factor of 1/2.
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between PDFs and non-local light-cone operators. This is desired, since it short-cuts the

complicated relationship between local operators and PDFs.

3.3 Light-Cone Operators

Parton distribution functions qf (x) were introduced as the probability density of finding

a proton constituent with flavour f and momentum xP . Probability densities in quantum

mechanics are always interpreted as the mod squared of some state function. Therefore,

we should be able to write

qf (x) =

∫
d4pX
(2π)4

∑
X

|〈X|ψf |P 〉|2δ(xP − p) = 〈P |ψ†fψf |P 〉δ(xP − p), (3.76)

where p is the parton momentum.

However, as we saw in the parton model section, it’s not that pµ = xPµ, but rather

that the components of pµ transverse to the nucleon’s momentum were taken to be very

small compared to the components parallel to the nucleon’s momentum. Obviously, this

is not true in all frames — in the nucleon’s rest frame, for instance.

Therefore, we start by choosing to work in the centre of mass frame, where qµ =

(0, 0, 0, Q). In this frame, the nucleon momentum must be Pµ = (E,P 1, P 2,−P ·q
Q ). Since

P · q ∼ Q2 in the Bjorken limit, P · q/Q ∼ Q, which goes to infinity. Then, noting that

E =
√

P2 +M2 '
√
Q2 +M2 ≈ Q, we have that Pµ ' (E, 0, 0,−E), a lightlike vector in

this frame.

Since our nucleon momentum is lightlike, it is convenient to project all the vector

quantities into light-cone coordinates with two light-cone vectors: aµ = Λ(1, 0, 0, 1) and

āµ = (1, 0, 0,−1)/(2Λ), for Λ a parameter set so that a·P = 1. Hence Pµ = āµ+(M2/2)aµ

(see appendix D).

Therefore, the relationship between the parton and nucleon momentum becomes p·a =

xP · a. So, we can make Eq. 3.76 a precise relation:

qf (x) =

∫
d4pX
(2π)4

∑
X

|〈X|ψf |P 〉|2δ(p · a− xP · a), (3.77)

where the above equation describes a nucleon splitting into one constituent parton of

momentum p, and the left-over parts of the nucleon X with momentum pX . So we have

the momentum conservation P = p+ pX , which we can insert as a momentum conserving

delta function into Eq. 3.77:

qf (x) =

∫
d4p

(2π)4

∫
d4pX
(2π)4

∑
X

(2π)4δ(4)(p+ pX − P )|〈X|ψf |P 〉|2δ(p · a− xP · a)

=

∫
d4pX
(2π)4

∑
X

|〈X|ψf |P 〉|2δ((P − pX) · a− xP · a)

=

∫
d4pX
(2π)4

∫
dλ

2π

∑
X

〈P |ψ†f (0)|X〉〈X|ψf (0)|P 〉e−iλa·(P−xP−pX),

(3.78)
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where we have introduced some parameter λ, the Fourier conjugate of a · (P − xP − pX).

Then, using translational invariance, Eq. 3.78 becomes

qf (x) =

∫
d4pX
(2π)4

∫
dλ

2π

∑
X

〈P |ψ†f (−λa/2)|X〉〈X|ψf (λa/2)|P 〉eiλxP ·a

=

∫
dλ

2π
eiλx〈P |ψ̄f (−λa/2)γ0ψf (λa/2)|P 〉,

(3.79)

removing the complete set of states, and using the relations (γ0)2 = I and P ·a = 1. From

the Dirac equation, we have that 0 = (/p−mf )ψf ≈ /pψf ≈ p · ā/̄aψf , using the fact that we

neglect quark masses, and that most of the quark’s momentum is in the āµ direction (i.e. in

the same direction as the proton’s momentum). So /̄aψf ≈ 0, and therefore γ0ψ = −a ·γψ,

implying that 2γ0ψ = /aψ††. Therefore, we have the final expression of a PDF in light-cone

coordinates.

qf (x) =

∫
dλ

2π
eiλx〈P |ψ̄f (−λa/2)

/a

2
ψf (λa/2)|P 〉. (3.80)

More generally, we can introduce the non-local light-cone operator

OfLC(x) =

∫
dλ

2π
eiλxψ̄f (−λa/2)/aψf (λa/2). (3.81)

So that we can simply write qf (x) = 1
2〈P |O

f
LC(x)|P 〉.

3.3.1 Correspondence Between Light-Cone and Local Operators

So far, we have managed to connect parton distributions to fundamental QCD through two

very different formalisms: the local operators of section 3.2 and the light-cone operators

of section 3.3. However, we should be able to connect these, since we stated in 3.2 that

the matrix elements of the local operators were the Mellin moments of PDFs.

Therefore, from Eqs. 3.73 and 3.80, we have

aµ1 ...aµm〈P |O
(m)µ1...µm
f |P 〉 =

∫ 1

−1
dxxm−1〈P |OfLC(x)|P 〉. (3.82)

In fact, we can show something more general. First, we Taylor expand along the light-cone

to get

aµ1ψ̄f (−λa/2)γµ1ψf (λa/2) =
∞∑
k=0

λk

k!
aµ1 ...aµk+1

(
ψ̄f (y)γµ1

↔
D
µ2
...
↔
D
µk+1

ψ(y)
)∣∣
y=0

. (3.83)

Notice that any term in the operator on the LHS of Eq. 3.83 that are proportional to gµiµj

(traces) will result in an a2 = 0. Therefore, we can subtract off the traces without changing

the overall expression. Moreover, the operator on the LHS of Eq. 3.83 is contracted with

aµ1 ...aµk+1
, a totally symmetric tensor, which will kill off any anti-symmetric components

††To make the expression gauge invariant it is necessary to insert a Wilson line; however, as is commonly
done, we will neglect this term by choosing light-cone gauge, A · a = 0.
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of this operator. Hence Eq. 3.83 becomes

aµ1ψ̄f (−λa/2)γµ1ψf (λa/2)

=

∞∑
k=0

λk

k!
aµ1 ...aµk+1

(
ψ̄f (y)γ{µ1

↔
D
µ2
...
↔
D
µk+1}

ψ(y)− traces
)∣∣
y=0

=

∞∑
k=0

λk

k!
(−i)kaµ1 ...aµk+1

O(k+1)µ1...µk+1

f ,

(3.84)

where we have used the definition of the local twist-two operators Eq. 3.50. Inserting this

into the definition of the light-cone operators, Eq. 3.81, we get

OfLC(x) =

∫
dλ

2π
eiλx

∞∑
k=0

λk

k!
(−i)kaµ1 ...aµk+1

O(k+1)µ1...µk+1

f . (3.85)

Then, the mth moment is∫ 1

−1
dxxm−1

∫ ∞
−∞

dλ

2π
eiλx

∞∑
k=0

λk

k!
(−i)kaµ1 ...aµk+1

Oµ1...µk+1

f

=
∞∑
k=0

1

k!
(−i)kaµ1 ...aµk+1

Oµ1...µk+1

f

∫ 1

−1
dxxm−1

∫ ∞
−∞

dλ

2π
eiλxλk

=
∞∑
k=0

1

k!
(−i)kaµ1 ...aµk+1

Oµ1...µk+1

f

∫ 1

−1
dxxm−1(−i)k ∂

k

∂xk

∫ ∞
−∞

dλ

2π
eiλx

=
∞∑
k=0

1

k!
(−i)kaµ1 ...aµk+1

Oµ1...µk+1

f

∫ 1

−1
dxxm−1(−i)k ∂

k

∂xk
δ(x).

(3.86)

Finally, using the identity in Eq. 3.60, we have∫ 1

−1
dxxm−1 ∂

k

∂xk
δ(x) = (−1)k

∂k

∂xk
xm−1

∣∣∣∣
x=0

= δk,m−1(−1)kk! (3.87)

So putting this back into Eq. 3.86, we get

∞∑
k=0

1

k!
(−i)kaµ1 ...aµk+1

Oµ1...µk+1

f (−i)k(−1)kk!δk,m−1 = aµ1 ...aµmOµ1...µmf . (3.88)

Therefore, we get the very nice result that

aµ1 ...aµmOµ1...µmf =

∫ 1

−1
dxxm−1OfLC(x). (3.89)

This final result is a very neat way to short-cut the connection between non-local light-

cone operators, which inherently are Minkowski space objects, and the local twist-two

operators, which are related to the Euclidean Compton tensor. Therefore, as we will

discuss in future chapters, this provides a way to calculate parton distribution related

quantities in lattice QCD.



Chapter 4

Generalised Parton Distributions

For a long time, parton distribution functions (PDFs) and electromagnetic (EM) form

factors (see appendix E) encompassed almost all there was to know about hadron struc-

ture. However, more recent research has uncovered the potential of a new class of hadronic

observable, generalised parton distribtuions (GPDs)∗, which contain an abundance of hith-

erto inaccessible physical information. As their name suggests, GPDs are generalisations

of PDFs to kinematics where the outgoing parton (quark or gluon) has a different mo-

mentum to the incoming parton. Therefore, they do not have the standard probability

interpretation that PDFs do. Moreover, GPDs can only be extracted from a class of hard,

exlcusive†, off-forward scattering experiments, which are in some ways generalisations of

deep inelastic scattering (DIS). The unifying feature of off-forward scattering processes is

that they all involve a non-zero momentum transfer to the scattered hadron. And hence

just like GPDs the incoming and outgoing hadronic states have different momenta.

While there were some early studies of off-forward processes, widespread interest in

off-forward scattering began in the mid 1990s with a string of papers on GPDs [8,9,48,49].

Importantly, Ji [9] showed that the GPDs contained valuable information about the pro-

ton’s spin structure, offering to resolve the decades-old ‘proton spin crisis’. Moreover, it

was proven [50] that the scattering amplitude of some off-forward processes do indeed fac-

torise into a hard perturbative part and a non-perturbative component containing GPDs,

making GPDs experimentally accessible.

Since then, it has been shown that GPDs and off-forward scattering contain more

information about hadron structure. In particular, from the work of Burkardt [10], GPDs

give access to the spatial distribution of partons in a hadron, in the plane transverse to

the hadron’s motion. More recent work [11, 51–53] has explored the relation of GPDs to

‘mechanical’ properties of hadrons: forces, distribution of pressure, and radius of hadrons.

Hence GPDs offer the possibility of unprecedented access to information about hadron

structure.

Despite the intense theoretical interest in GPDs, they have proven extremely difficult to

measure from experiment. Even once an experimental cross section has been measured —

itself a task beset with difficulties — determining GPDs from the cross section is extremely

difficult. The main way to extract GPDs is to assume a functional form of the GPD, leaving

some parameters adjustable, and fit this to experimental data [54, 55]. Such a method

∗Older literature may refer to them as ‘off-forward’, ‘off-diagonal’, ‘non-forward’ or ‘skewed’ parton distri-
butions; these terms all refer to the same observable.
†In contrast to inclusive processes like DIS, exclusive processes have all of their final state particles specified.

36
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clearly leans heavily on the theoretical understanding of GPD-behaviour. Therefore, GPD

phenomenology can be greatly aided by improvements in theoretical constraints.

Since the experimental determination of GPDs is so difficult, first principles lattice

calculations of GPD-related quantities are highly valuable. So far, lattice results have

been limited to the lowest few Mellin moments of GPDs [56–64], and one quasi-GPD

calculation [65].

In this chapter, we start in section 4.1 by introducing off-forward processes that can

probe GPDs. Then, we will show how GPDs are defined and explore some of their basic

properties. In section 4.2, we will outline the physical information that GPDs give access

to. In section 4.3 we will review the current status of off-forward scattering experiments,

and the phenomenological methods of extracting GPDs from these experiments. Finally,

in section 4.4, we will look at the various methods of calculating parton distributions

and related quantities using lattice QCD. In particular, we will mention which of these

methods has been applied to GPDs.

4.1 Definition and Properties

In this section, we define what GPDs are and how they relate to off-forward scattering

processes. Moreover, we derive some of their basic features, such as polynomiality and

their relation to PDFs and EM form factors.

4.1.1 Off-Forward Scattering Processes

The off-forward scattering processes we focus on are those that contain the sub-process

γ(∗)(q) + N(P ) → γ(∗)(q′) + N(P ′)‡. Note that the incoming/outgoing photons need not

be virtual; however, in any process that probes inelastic hadron structure, at least one of

them must be deeply virtual (q2 and/or q′2 much greater than the nucleon mass). This

sub-process is illustrated in figure 4.1.

General Off-Forward Kinematics

The kinematics of this off-forward sub-process are:

• The incoming/outgoing photon has momentum q/q′.

• The incoming/outgoing nucleon has momentum P/P ′.

• We use the standard basis

P̄ =
1

2
(P + P ′), q̄ =

1

2
(q + q′), ∆ = P ′ − P = q − q′. (4.1)

• Hence we can form at most four possible linearly independent momentum scalar

variables

P̄ · q̄, q̄2, q̄ ·∆, ∆2. (4.2)

‡In general, the target hadron need not be a nucleon, but that is the focus of this thesis.
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P

q

P ′ = P + ∆

q′ = q −∆

Figure 4.1: The Feynman diagram for off-forward Nγ → Nγ scattering.

• We will use an equivalent basis of scalars:

Q̄2 = −q̄2, ω̄ =
2P̄ · q̄
Q̄2

, t = ∆2, ξ = − q̄ ·∆
2P̄ · q̄ . (4.3)

• Note that P̄ ·∆ = 0 and P̄ 2 = M2−t/4, and hence these are not linearly independent

Lorentz scalars.

The amplitude of this sub-process is

iM(γN → γN) = ε∗µενT
µν(P, q;P ′, q′), (4.4)

where we have introduced the off-forward Compton tensor (OFCT):

Tµν(P, q;P ′, q′) ≡ i
∫
d4zeiq̄·z〈P ′|T

[
jµ(z/2)jν(−z/2)

]
|P 〉, (4.5)

which is clearly just a generalisation of the forward Compton tensor introduced in the

previous chapter (Eq. 3.30).

Physical Processes

While this sub-process of off-forward Compton scattering and the OFCT is the main focus

of this thesis, it is worth outlining the physical processes that can measure the OFCT.

Of all the physical processes that can probe the OFCT and GPDs, deeply virtual Comp-

ton scattering DVCS is the most thoroughly studied, theoretically and experimentally. It

is given by e−(k) + N(P ) → e−(k′) + γ∗(q′) + N(P ′) (see figure 4.2 left). The scattering

amplitude for DVCS is

iM(e−N → e−Nγ) = e3ū(k′)γµu(k)ε∗νT
µν(P, q;P ′, q′), (4.6)

where Tµν is the OFCT.

Similarly, we can measure the OFCT from doubly deeply virtual Compton scattering

(DDVCS) e−(k) +N(P )→ e−(k′) + `+ + `− +N(P ′), where ` is some lepton (see figure

4.2 right).

Each of these physical processes define a limit on the allowed values of the off-forward

Lorentz scalars in Eq. 4.3:

DIS: ∆ = 0, ξ = t = 0, (4.7)

DVCS: ξ ' ω̄−1, q′2 = 0, Q̄2 ' −q
2

2
, (4.8)

DDVCS: ω̄−1 < ξ, q2 < 0, q′2 > 0. (4.9)
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P P ′

q′
q

γ

P

P ′

q′

q

`

¯̀

Figure 4.2: Left: the Feynman diagram for deeply virtual Compton scattering. Right: the

Feynman diagram for doubly deeply virtual Compton scattering. Note that both diagrams are

expanded to leading-order in the strong coupling.

Note that ' means ‘equal up to t/Q̄2 and M2/Q̄2 terms’, which are suppressed in the

scaling limit of each process. In all off-forward processes, we can use the Minkowski

triangle inequality to show that t ≤ (P ′)2 − P 2, and hence t is always spacelike.

Finally, note that all these processes are exclusive: their outgoing states are specified.

Contrast this to DIS where we had a sum over all possible outgoing states. This makes

them harder to measure experimentally, since it means lower luminosity of the cross sec-

tion and interference with other processes (e.g. Bethe-Heitler scattering). Furthermore,

exclusivity means scattering amplitudes of these processes can’t be related to the imagi-

nary part of a cross section through the optical theorem, unlike in DIS. Therefore, there

is no analogous ‘off-forward hadronic tensor’ that is the imaginary part of the OFCT.

4.1.2 Generalised Parton Distributions: Definition

To define GPDs, we work in the centre of mass frame as in section 3.3. In this frame,

the averaged momentum of the incoming/outgoing nucleons is dominated by lightlike

contributions. Therefore, we introduce two lightlike vectors similar to those in section 3.3:

aµ = Λ(1, 0, 0, 1) and āµ = (1, 0, 0,−1)/(2Λ), where the normalising factor is chosen such

that a · P̄ = 1. With these lightlike vectors in hand, one can show (see appendix D) that

ξ = −a ·∆/2, which is the more common expression for ξ [66], the ‘skewness’ variable. It

should be noted that in some of Ji’s earlier work [9,49] a variable that is equivalent to our

2ξ is labelled ξ.

Like PDFs, GPDs are defined as the matrix element of the non-local light-cone opera-

tors (Eq. 3.81). The difference being that PDFs are the ‘forward’ matrix element (between

two nucleon states of the same momenta), whereas GPDs are ‘off-forward’ matrix elements

(between two nucleon states with different momenta):

〈P ′|OfLC(x)|P 〉 =

∫
dλ

2π
eiλx〈P ′|ψ̄f (−λa/2)/aψf (λa/2)|P 〉

= Hf (x, ξ, t)ū(P ′)γµaµu(P ) + Ef (x, ξ, t)ū(P ′)
iσµνaµ∆ν

2M
u(P ),

(4.10)

where Hf (x, ξ, t) and Ef (x, ξ, t) are the nucleon GPDs. Here, x is the momentum fraction

in the P̄ direction. That is, the incoming nucleon momentum is P = P̄ −∆/2, and hence

the incoming parton momentum p has longitudinal component a · p = x + ξ, and the

outgoing parton has momentum x − ξ. As in section 3.3, we are working in light-cone
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gauge, where the gauge fields are such that A · a, and hence we need not write out the

Wilson line for gauge invariance.

Note that unlike regular parton distributions functions (Eq. 3.80), the off-forward

matrix element of the light-cone operator needs two Dirac bilinears to span it, similar

to EM form factors. This is why there are two unpolarised twist-two GPDs, but only

one such PDF. The GPD Ef is sometimes referred to as the ‘helicity-flip’ GPD, since it

vanishes if the incoming/outgoing states have the same helicity. Correspondingly, the Hf

GPD vanishes if the incoming/outgoing states don’t have the same helicity.

Note that, since GPDs are off-forward matrix elements, they can not be immediately

interpreted as a probability density in the same way as PDFs. Instead, as in good old

fashioned quantum mechanics, we can interpret them as an interference or transition

amplitude between two different proton states: the mod square of a GPD is the probability

for a high-energy quark to be ejected from its hadron and re-enter with momentum transfer

∆.

Moreover, as we will discuss in section 4.2, GPDs can in some sense be interpreted as

the Fourier transform of the spatial distribution of quarks.

4.1.3 Relation to DVCS

So far, we have discussed GPDs and off-forward scattering processes independently. In

this subsection, we will show how generalised parton distributions can be extracted from

the OFCT. In particular, the twist-two component of the OFCT for DVCS kinematics is

Tµν(P, q;P ′, q′) = −1

2
(aµāν + aν āµ − gµν)

∫ 1

−1
dx

(
1

x− ξ + iε
+

1

x+ ξ + iε

)
×
[
H(x, ξ, t)ū(P ′)/̄au(P ) + E(x, ξ, t)ū(P ′)

iσαβ āα∆β

2M
u(P )

]
− i

2
εµναβaαāβ

∫ 1

−1
dx

(
1

x− ξ + iε
+

1

x+ ξ + iε

)
×
[
H̃(x, ξ, t)ū(P ′)/̄aγ5u(P ) + Ẽ(x, ξ, t)

∆ · ā
2M

ū(P ′)γ5u(P )
]
,

(4.11)

where aµ and āµ are the collinear lightlike vectors we defined in the previous section. Note

that H̃ and Ẽ are the polarised GPDs, which will not be the focus of the calculation in

this thesis, and therefore we will neglect them. The method of perturbative expansion

used to derive Eq. 4.11 is known as ‘collinear factorisation’§; details of this method can

be found in Ref. [67,68]. Furthermore, the calculation leading to Eq. 4.11 can be found in

Ref. [9, 49].

From Eq. 4.11 it is clear that GPDs can be extracted from DVCS, and their relation to

the OFCT is analogous to the relation of PDFs to the forward Compton tensor. Similar

expressions hold for non-DVCS kinematics.

§In chapter 6, we will derive an expression equivalent to Eq. 4.11 but more suited to comparison with
lattice calculations.
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4.1.4 GPD Moments

Given the relation Eq. 3.89, we would like to find a relationship between the GPDs defined

in Eq. 4.10 and the local twist-two operators defined in Eq. 3.50:

O(n)µ1...µn
f = ψ̄fγ

{µ1i
↔
D
µ2
...i
↔
D
µn}

ψf − traces,

suppressing the coordinate argument.

To start, we write out all possible Lorentz and Dirac structures for the off-forward

matrix elements:

〈P ′|O(n+1)κµ1...µn
f |P 〉 = ū(P ′)γ{κu(P )

n∑
i=0

Xf
n+1,i(t)∆

µ1 ...∆µiP̄µi+1 ...P̄µn}

+ ū(P ′)u(P )P̄ {κ
n∑
i=0

Y f
n+1,i(t)∆

µ1 ...∆µiP̄µi+1 ...P̄µn}

+ ū(P ′)u(P )∆{κ
n∑
i=0

Zfn+1,i(t)∆
µ1 ...∆µiP̄µi+1 ...P̄µn}.

(4.12)

Then, using the Gordon identity

ū(P ′)γµu(P ) = ū(P ′)

(
P̄µ

M
+
iσµν∆ν

2M

)
u(P ), (4.13)

we can reorganise Eq. 4.12 into

〈P ′|O(n+1)κµ1...µn
f |P 〉 = ū(P ′)γ{κu(P )

n∑
i=0

Afn+1,i(t)∆
µ1 ...∆µiP̄µi+1 ...P̄µn}

+ ū(P ′)
σ{καi∆α

2M
u(P )

n∑
i=0

Bf
n+1,i(t)∆

µ1 ...∆µiP̄µi+1 ...P̄µn}

+ Cfn+1(t)
1

M
ū(P ′)u(P )∆{κ∆µ1 ...∆µn},

(4.14)

where we can not use the Gordon identity to reorganise those terms with the Cfn structure

function, since these contain no P̄µi term.

Finally, using time-reversal symmetry, one can show that Eq. 4.14 must be invariant

under the transformation ∆ → −∆ [69]. Hence all terms containing an odd number of

uncontracted ∆µi vanish (σκαi∆α doesn’t change sign under time-reversal, though). Then,

we arrive at the standard decomposition given by Ji [66]:

〈P ′|O(n+1)κµ1...µn
f |P 〉 = ū(P ′)γ{κu(P )

n∑
i=0,2,4

Afn+1,i(t)∆
µ1 ...∆µiP̄µi+1 ...P̄µn}

+ ū(P ′)
σ{καi∆α

2M
u(P )

n∑
i=0,2,4

Bf
n+1,i(t)∆

µ1 ...∆µiP̄µi+1 ...P̄µn}

+ Cfn+1(t)mod(n, 2)
1

M
ū(P ′)u(P )∆{κ∆µ1 ...∆µn}.

(4.15)
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The form factors (Afn,i, B
f
n,i, C

f
n) are known as generalised form factors (GFFs)∗∗.

Now from Eq. 3.89 we know that

aµ1 ...aµn〈P ′|Oµ1...µnf |P 〉 =

∫
dxxn−1〈P ′|OfLC(x)|P 〉. (4.16)

Therefore, inserting Eq. 4.15 into Eq. 4.16, we get

ū(P ′)/au(P )

n∑
i=0,2,4

Afn+1,i(t)(−2ξ)i + ū(P ′)
σκαi∆αaκ

2M
u(P )

n∑
i=0,2,4

Bf
n+1,i(t)(−2ξ)i

+ Cfn+1(t)Mod(n, 2)
1

M
(−2ξ)n+1

(
ū(P ′)/au(P )− ū(P ′)

σκα∆κaα
2M

u(P )

)
=

∫
dxxn−1

[
Hf (x, ξ, t)ū(P ′)/au(P ) + Ef (x, ξ, t)ū(P ′)

iσκα∆κaα
2M

u(P )

]
,

(4.17)

where we have used the facts that a · P̄ = 1 and a ·∆ = −2ξ. Furthermore, we used the

Gordon identity to re-express

1

M
ū(P ′)u(P ) = ū(P ′)/au(P )− ū(P ′)

σαβi∆αaβ
2M

u(P ). (4.18)

Matching the Dirac structures in Eq. 4.17, we have the following relations∫ 1

−1
dxxnHf (x, ξ, t) =

n∑
i=0,2,4

(−2ξ)iAfn+1,i(t) + mod(n, 2)(−2ξ)n+1Cfn+1(t), (4.19a)

∫ 1

−1
dxxnEf (x, ξ, t) =

n∑
i=0,2,4

(−2ξ)iBf
n+1,i(t)−mod(n, 2)(−2ξ)n+1Cfn+1(t). (4.19b)

Therefore, the Mellin moments of GPDs can be related expressed in terms of GFFs. This

relation is known as the ‘polynomiality’ property of GPDs, since the moments of GPDs

are polynomials in ξ.

4.1.5 Relation to Other Observables

We can see from Eq. 4.10 that in the limit that P ′ = P , we have 〈P ′|OfLC(x)|P 〉 = 2qf (x),

the familiar parton distribution function. Noting that

ū(P ′)γµaµu(P )
∣∣∣
P=P ′

= 2P · a = 2

ū(P ′)
iσµνaµ∆ν

2M
u(P )

∣∣∣
P=P ′

= 0,
(4.20)

we see that

Hf (x, 0, 0) = qf (x), x > 0, and Hf (x, 0, 0) = −q̄f (−x), x < 0, (4.21)

where q̄f (x) is the PDF for the anti-quark of flavour f .

∗∗Sometimes the n = 2, i = 0 GFFs are referred to as ‘gravitational form factors’.
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Moreover, using Eq. 4.16 for n = 1, we have

aµ〈P ′|ψ̄γµψ|P 〉

=

∫ 1

−1
dx
(
Hf (x, ξ, t)ū(P ′)γµaµu(P ) + Ef (x, ξ, t)ū(P ′)

iσµνaµ∆ν

2M
u(P )

)
.

(4.22)

Noting that the LHS of Eq. 4.22 can be parameterised by the EM form factors (see

appendix E for a review), we get

aµ〈P ′|ψ̄γµψ|P 〉

= F f1 (t)ū(P ′)γµaµu(P ) + F f2 (t)ū(P ′)
iσµνaµ∆ν

2M
u(P )

=

∫ 1

−1
dx
(
Hf (x, ξ, t)ū(P ′)γµaµu(P ) + Ef (x, ξ, t)ū(P ′)

iσµνaµ∆ν

2M
u(P )

)
,

(4.23)

where F f1 (t) and F f2 (t) are the EM form factors. Hence, matching Dirac structures, we

get ∫ 1

−1
dxHf (x, ξ, t) = F f1 (t),

∫ 1

−1
dxEf (x, ξ, t) = F f2 (t). (4.24)

The relationship between GPDs and PDFs and EM form factors is important for two

reasons: firstly, PDFs and EM form factors are two of the most important and most

studied hadronic observables; the fact that the information contained in both is entirely

contained in GPDs is therefore significant. Secondly, as we discussed earlier, the main

way to extract GPDs from experiment is to fit experimental data to a functional form. By

relating GPDs to better understood observables, therefore, the functional form of GPDs

can be better constrained.

4.2 Physical Content of GPDs

Despite the fact that GPDs by themselves have many interesting properties, the main

reason we’re interested in them is that they contain a great deal of otherwise inaccessible

physical information. As we mentioned in the introduction, the three main pieces of

physical information that are unique to GPDs are:

1. Access to the orbital angular momentum of quarks and gluons within a hadron.

2. The distribution of quarks in ‘impact parameter space’, interpreted as their distri-

bution in a plane transverse to the hadron’s motion.

3. Mechanical properties of hadrons; in particular the distribution of forces and pressure

within a hadron, and its mechanical radius.

In this section, we will outline how this information is related to GPDs.

4.2.1 GPDs and Nucleon Spin Structure

GPDs first emerged as an attempt to solve the ‘proton spin crisis’: the proton is a spin

1/2 particle, as are its constituent quarks. Therefore, it was believed that the valence
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quarks would carry all or almost all the proton’s spin (two with aligned spin polarisation,

one with opposite) [70].

However, experiments at the European Muon collaboration showed that the proton’s

valence quarks carry far less of the total spin than expected [71]. In fact, about 85% of

the proton’s spin is due to orbtial and gluonic contributions! As a result, there have been

many theoretical and experimental efforts to find the source of the proton’s missing spin,

expected to be in the spins and orbital angular momentum of the remaining gluons and

sea quarks. In the first paper on GPDs, Ji [9] showed that the individual components of

quark and gluons spin and orbtial angular momentum could be measured through DVCS.

The general argument starts with the Belifanté energy-momentum tensor (EMT) for

QCD††:

T µν = T µνq + T µνg , (4.25)

an operator that is symmetric in its Lorentz indices.

Here, the quark component for a given quark of flavour f is

T µνq = ψ̄fγ
{µ↔D

ν}
ψf . (4.26)

And the gluon component is

T µνg =
1

4
gµνFαβFαβ + FµαF ν

α , (4.27)

where Fµν is the usual QCD field strength tensor. If we write out the tensor decomposition

of a generic matrix element of the QCD EMT using Lorentz covariance, we get

〈P ′|T µνq,g |P 〉 =ū(P ′)
[
Aq,g(t)γ

{µP̄ ν} +Bq,g(t)
iσ{µα∆α

2M
P̄ ν}

+Dq,g(t)
∆µ∆ν − gµν∆2

M
− gµν c̄q,g(t)M

]
u(P ).

(4.28)

Note that the quark EMT Eq. 4.26 is the n = 2 operator defined in Eq. 3.50: O(n)µν
f

without its traces subtracted. Hence the scalar EMT form factors in Eq. 4.28 are

Afq (t) = Af2,0(t), Bf
q (t) = Bf

2,0(t), Cfq (t) = Cf2 (t). (4.29)

Hence the quark EMT can be calculated from GPDs. Recall the orbital angular momentum

operator from non-relativistic quantum mechanics: Li = εijkxjpk. And the density of

momentum in the i direction is T i0 = T 0i. Hence the angular momentum density operator

in QCD is

Mαµν(x) = T αµf xν − T ανf xµ, (4.30)

††The EMT is defined through Noether’s theorem: Θµν =
∑
i

∂L
∂(∂νφi)

∂µφi − gµνL. In QCD the Noether

EMT is not symmetric in its Lorentz indices. Therefore, to construct an EMT that is symmetric (so as
to agree with the EMT from torsionless General Relativity), one can use the procedure attributed to
Belifanté [72]. The resulting operator T µν is known as the ‘Belifanté EMT’.
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Figure 4.3: The energy-momentum tensors components in matrix form [73].

where x is the position at which the angular momentum density is measured, and T µνf is

the Belifanté EMT for a single flavour of quarks. The angular momentum operator is then

J if =
1

2
εijk

∫
d3x
(
T 0k
f xj − T 0j

f xk
)
. (4.31)

Substituting Eq. 4.28 into Eq. 4.31 and taking the matrix element in the forward limit,

we get the Ji sum rule:

〈J3
f 〉 = lim

P ′→P
〈P ′|J3

f |P 〉

=
1

2
[Af2,0(0) +Bf

2,0(0)] =
1

2

∫ 1

−1
dxx

[
Hf (x, ξ, t) + Ef (x, ξ, t)

]∣∣∣∣
t=0

.
(4.32)

An analogous relation holds for gluons and their GPDs. Combining this with results from

polarised DIS, one could determine the contributions to the proton’s spin from the orbital

angular momentum of its constituents.

However, as we have already discussed, GPDs are difficult to extract from experiment.

Not only would evaluating the explicit value of Eq. 4.32 require a very precise determina-

tion of GPDs, it would also require a determination of both H and E GPDs over a wide

range of x, ξ and t values.

4.2.2 Nucleon Tomography

Shortly after the connection between GPDs and nucleon spin structure was shown by Ji,

Burkardt [10,74] showed that GPDs also contain information about the spatial distribution

of quarks in a nucleon. This led not only to further interest in GPDs, but also a new

physical interpretation of them.

To motivate this argument, we start with a very nice analogy between EM form fac-

tors and GPDs [10]: an EM form factor is an off-forward matrix element of the current

operator ψ̄fγ
µψf . The forward matrix element of this operator is just the charge Q of

the hadron. And the Fourier transform of an EM form factor is the charge density ρ(r)

(strictly speaking, this interpretation is only valid in the infinite momentum frame — see

appendix E). So the Fourier transform of the off-forward matrix element is the density of

the forward matrix element in position space.



4.2 Physical Content of GPDs 46

If we could extend this analogy to GPDs, we would have that the Fourier transform of

a GPD Hf (x, ξ, t) is the density of its forward matrix element, the PDF qf (x), in position

space.

Operator Off-foward Matrix Element Forward Matrix Element Position space

ψ̄fγ
µψf F1,2(t) Q ρ(r)

OLC(x) Hf (x, ξ, t) qf (x) qf (x, r) (??)

The idea, then, is that the Fourier transform of the Hf GPD gives the probability density

of finding a parton of flavour f with longitudinal momentum fraction x and position from

the centre of the nucleon r in certain frames.

Impact Parameter Dependent PDFs

First, to meaningfully define the spatial distribution of partons in a given nucleon, the

nucleon needs to be localised by working in the centre of mass (COM) frame (equivalently

the infinite momentum frame, as discussed in section 3.3). In this frame, the nucleon

is infinitely Lorentz contracted along the direction of its motion into a ‘pancake’ with no

longitudinal extent. Therefore, its partons will all be in a two-dimensional plane transverse

to the nucleon’s motion.

Then, we introduce an operator that is identical to the light-cone operator from

Eq. 3.81, except the position of the quark operators is shifted by b⊥, a vector in this

transverse plane (b⊥ · a = 0 = b⊥ · ā):

ÕfLC(x,b⊥) ≡
∫
dλ

2π
eiλxψ̄f

(
− λa/2 + b⊥

)
/aψf

(
λa/2 + b⊥

)
. (4.33)

We refer to b⊥ as the impact parameter. At b⊥ = 0 this new operator coincides with the

regular light-cone operator: ÕfLC(x,b⊥ = 0) = OfLC(x).

Now we define the nucleon centre of momentum in the transverse plane: R⊥. In

intuitive partonic terms, this is R⊥ =
∑

i xiri,⊥, were xi is the longitudinal momentum

fraction of a parton and ri,⊥ is its position, and the sum is over all the nucleon’s partons.

To localise the nucleon wave-packet we choose a nucleon state with R⊥ = 0 [74], and with

light-cone momentum P+ and some spin value λ: |P+,R⊥ = 0, λ〉. In particular, these

states have the property

|P+,R⊥ = 0, λ〉 = N
∫

d2p⊥
(2π)2

|P+,p⊥, λ〉. (4.34)

This is a property of light-cone helicity eigenstates which we will not justify; the properties

of such states are given in e.g. Refs. [10, 75].

Then we define the impact parameter dependent PDFs:

qf (x,b⊥) ≡ 〈P+,R⊥ = 0, λ|ÕfLC(x,b⊥)|P+,R⊥ = 0, λ〉. (4.35)

Note that it isn’t by definition true that this quantity is a probability density; this inter-

pretation requires further justification.
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Fourier transformed GPD

Consider the GPD definition in terms of light-cone operators from Eq. 4.10. If we fix

the helicity of the incoming and outgoing particles to be the same, then the helicity-flip

GPD Ef (x, ξ, t) vanishes. Moreover, if we let ξ = 0‡‡, so that a · ∆ = 0, then we have

a · P = a · P ′, and therefore ū(P ′)/au(P ) = 2a · P = 2a · P̄ = 2. So the off-forward matrix

element of the light-cone operator is

〈P ′, λ|OfLC(x)|P, λ〉 = 2Hf (x, ξ = 0, t), (4.36)

where from now on we will adopt the notation Hf (x, ξ = 0, t) = Hf (x, t).

It is now a straight-forward calculation to show that the impact parameter dependent

PDF is the Fourier transform of a GPD for ξ = 0:

qf (x,b⊥) =〈P+,R⊥ = 0, λ|ÕfLC(x,b⊥)|P+,R⊥ = 0, λ〉

=|N |2
∫

d2p′⊥
(2π)2

∫
d2p⊥
(2π)2

〈P+,p′⊥, λ|ÕfLC(x,b⊥)|P+,p⊥, λ〉

=|N |2
∫

d2p′⊥
(2π)2

∫
d2p⊥
(2π)2

e−ib⊥·(p
′
⊥−p⊥)〈P+,p′⊥, λ|ÕfLC(x, 0)|P+,p⊥, λ〉

=|N |2
∫
d2∆⊥
(2π)2

∫
d2p̄⊥
(2π)2

e−ib⊥·(p
′
⊥−p⊥)〈P+,p′⊥, λ|ÕfLC(x, 0)|P+,p⊥, λ〉,

(4.37)

where we have introduced the variables ∆⊥ = p′⊥ − p⊥ and p̄⊥ = 1
2(p′⊥ + p⊥). Then,

using Eqs. 4.36 and 4.37, and the fact that the integrand doesn’t depend on p̄⊥, we have

that

qf (x,b⊥) =

∫
d2∆⊥
(2π)2

Hf (x,−∆2
⊥)e−ib⊥·∆⊥ . (4.38)

Probability Density Interpretation

Finally, as we mentioned previously, it is not ipso facto true that Eq. 4.35 defines the

desired probability density. It can be shown [74] that qf (x,b⊥) is non-negative for x > 0

for all b⊥, and non-positive for x < 0 for all b⊥. These constraints strongly suggest the

probability interpretation of qf (x,b⊥). Therefore, the most common interpretation is that

qf (x,b⊥) is the probability density to find a parton with momentum fraction x and b⊥
distance from the centre of mass of the nucleon in the infinite momentum frame. Hence

GPDs may be interpreted as Fourier transforms of the spatial distribution of quarks in

the transverse plane.

As a result, it is possible to extract profiles of the distribution of partons in the trans-

verse plane from hard exclusive scattering experiments [77, 78]. This technique is known

as ‘nucleon tomography’ by analogy with a process of x-ray cross section.

4.2.3 Mechanical Properties

The spin structure and transverse position distribution are certainly the best known and

most studied physical aspects of GPDs. However, due to their relation to the QCD energy-

‡‡These ideas have been extended to ξ 6= 0 [76].
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momentum tensor, GPDs contain an abundance of other information about the properties

of hadrons. In particular, in a series of papers [11, 51, 52] Polyakov and collaborators

have shown, from the so-called ‘D-term’§§ of the EMT (Eq. 4.29), one can calculate the

distribution of shear forces and pressure in a hadron, as well as its mechanical radius.

Moreover, from analyses of the OFCT using dispersion relations, multiple studies [82–85]

have shown that this D-term is experimentally accessible. Recently, the D-term was

measured experimentally via DVCS [86] — a very exciting development.

Recall that the EMT form factors A, B and D are equivalent to the GFFs A2,0, B2,0

and C2, respectively. The EMT T µνf , in the Breit frame where ∆µ = (0,∆), can be related

to the static EMT T̂µνf :

T̂µνf (r, s) =

∫
d3∆

(2π)32E
e−ir∆〈p′|T µνf |p〉. (4.39)

From this tensor, we can get many physical properties of hadronic systems (see Ref. [11]

for a review):

• T̂ 00 gives the energy density in terms of A, B and D EMT form factors. Moreover,

the energy density at the centre of the hadron can be calculated entirely in terms of

A and D form factors.

• T̂ ij is the stress tensor [51]. Since the stress tensor is related to the pressure and

shear force distributions,

T̂ ij(r) =

(
rirj

r2
− 1

3
δij
)
s(r) + δijp(r), (4.40)

these may be calculated from EMT form factors, and hence GPDs. These pressure

and shear force distributions can be calculated entirely from the D-term.

• Moreover, the mechanical radius and surface tension of a hadron may be calculated

from its D-term.

• Finally, it has been suggested [53] that the EMT may shed light on the equation of

state of quark matter in compact stars.

A full measurement of GPDs would, therefore, provide an unprecedented level of de-

scription of hadron structure: information about spin composition, spatial distribution of

partons, and mechanical properties in far greater detail than what is currently available.

As we mentioned previously, however, the determination of GPDs from experiment, while

in principle possible, is highly non-trivial.

§§The etymology of the ‘D-term’ is particularly confusing. In older papers, ‘the D-term’ also refers to a
scalar function in the double distribution representation of GPDs [79–81], which also relates to the C
GFFs! We will use the convention of more recent literature, and exclusively use the ‘D-term’ to refer to
the EMT form factor.
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4.3 Experiment and Phenomenology

In this section, we will outline the experimental progress in measuring GPDs, and give

some idea of the phenomenological methods to attempt to extract them from hard exclusive

processes.

4.3.1 Experiment

Generalised parton distributions can only be calculated from hard exclusive processes:

scattering events in which the momentum transfer of a virtual photon is very large, and

in which the final products of the experiment are specified. The main processes so far

measured in experiment are deeply virtual Compton scattering (DVCS) and deeply virtual

meson production (DVMP), with experiments carried out at HERA [87–91], COMPASS

[92], and JLab [93–96]. Moreover, the proposed election-ion collider (EIC) [97] is a major

experimental undertaking designed specifically to investigate hadron structure, including

through DVCS, DVMP, and doubly deeply virtual Compton scattering (DDVCS) (recall

figure 4.2).

4.3.2 Phenomenology

There are a number of fitting methods used to extract GPDs, including local fitting algo-

rithms [98] and machine learning methods [99]. However, we are most interested in global

fitting procedures, which would give access to GPDs over the full range of their kinematic

variables [100–105]. Global fits use a functional form with free parameters to fit to ex-

periment; the parameterisation is determined by both model dependent and independent

constraints (see Refs. [54, 55] for a review). While global fitting has had great success

with PDFs and EM form factors, for GPDs the situation is more difficult because they

are functions of three variables, not one. Moreover, there can be significant discrepancies

between fits that use different constraints (see for instance Ref. [100]).

Given the difficulty of fitting GPDs from experiment, and the reliance of these fits on

theoretical priors, lattice calculations of GPDs are therefore especially valuable, both to

guide and compare to phenomenological extractions.

4.4 Lattice Calculations

The present thesis is primarily concerned with determining GPD-related quantities (specif-

ically GFFs) from a calculation using lattice QCD. Here, we will outline other lattice

methods that could in principle calculate GPD-related quantities — a few of these have

been put into practice. However, a theme that runs through all of these methods is the

incompatibility of the lightlike description of parton distributions (Eq. 4.10), which is a

good approximation for high-energy experiments, and the Euclidean spacetime of lattice

QCD. In all the methods given in this section, a different trick (or set of) must be employed

to get information about the light-cone parton distributions from the lattice.

4.4.1 Euclidean vs. Minkwoski Space

Recall from section 2.2 that currently the only computationally feasible method to calcu-

late the expectation values of QCD operators is to use Euclidean spacetime. This reduces
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the light-cone from a hypercone to a single point, and only admits the possibility of space-

like vectors.

First, note that the matrix element of a local operator has the same value in Minkowski

as in Euclidean space. Hence it is not really proper to refer to local matrix elements as

belonging to Minkowski or Euclidean space — they are ‘spacetime agnostic’ to use the

phrase from Ref. [106].

Now consider the product of two local operators, A and B, which are respectively

at two spacetime points, x1 = (0,x1) and x2 = (0,x2). Then the value of their product

doesn’t depend on whether it is calculated using a Euclidean or Minkowski signature [106]:

〈k1|AEuc(x1)BEuc(x2)|k2〉 = 〈k1|AMink(x1)BMink(x2)|k2〉. (4.41)

We can see this by simply applying translational invariance and inserting a complete set

of states to the above equation. This reduces the above equation to the product of the

matrix elements of two local operators, with no dependence on the Wick-rotated temporal

coordinate.

Since any spacelike separation can be Lorentz transformed to one for which there is

no temporal separation, the above argument also applies to the matrix element of any

two spacelike separated operators. Therefore, two spacelike separated operators (or local

operators) have the same matrix element in Euclidean and Minkowski space — they, too,

are signature agnostic.

However, light-cone operators (Eq. 3.81) are lightlike separate, not spacelike separated.

Therefore, they can not be directly calculated using lattice QCD. The trick, therefore, is

to relate light-cone operators to spacelike separated or local operators that can be calculated

in lattice QCD.

4.4.2 GPD Moments

We have already spent some time discussing the relation between local operators from

Eq. 3.50 and light-cone operators from Eq. 3.81. We found that the Mellin moments

of GPDs could be expressed as the off-forward matrix elements of the local operators

(Eq. 4.19), and hence these moments can be calculated on the lattice. Naively, we should

be able to calculate these matrix elements from the vacuum expectation value of the

operator

χ(x3)O(n)µ1...µn
f (x2)χ†(x1),

with the correct choice of momentum transfer. There have been quite a few such calcula-

tions of off-forward matrix elements of local operators [56–64].

However, this method suffers a difficulty called operator mixing. The twist-two local

operators defined in Eq. 3.50 belong to an irreducible representation of the Lorentz group

(some further discussion is given in appendix B). Since lattice QCD is formulated on a

hypercubic grid of points, it breaks Lorentz symmetry. Instead of the usual continuum

orthogonal group O(4) of transformations, only a finite subgroup of O(4), the hypercubic

subgroup, survives on the lattice. As a result, the usual leading-twist operators mix under

renormalisation with other operators on the lattice.

For the lowest n = 2 operator, this mixing can be controlled systematically [107], but

as n gets larger the mixing becomes harder to control [108]. Therefore, few studies go

beyond the n = 3 moment. In particular, for GPDs the highest GFFs calculated so far are
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A3,0, B3,0 [61]. Most studies, however, calculate only the lowest moments, A2,0, B2,0 and

C2. From our discussion in section 4.2, this is a sensible choice, since these GFFs contain

lots of the information that is physically interesting. On the other hand, for comparison

to experiment and nucleon tomography, the full GPD is required. Hence calculation of

higher GFFs or the full GPD itself is desirable.

4.4.3 Quasi-GPDs

Quasi-distributions are another method to calculate parton distribution-related quantities,

first proposed by Ji [109]. Quasi distributions are defined by the operator

Ofquasi(x) =

∫
dλ

2π
eiP ·zxψ̄f (−z/2)γ3exp

(
− ig

∫ z

0
dz′A(z′) · z

)
ψf (z/2), (4.42)

where zµ = (0, 0, 0, kλ). Clearly, this operator is similar to the light-cone operator define

in Eq. 3.81 but for spacelike separations. Since z is spacelike, the operator in Eq. 4.42

is signature agnostic, and hence the matrix element of it is the same in Euclidean and

Minkowski space. The forward matrix element of the operator in Eq. 4.42 is a quasi-PDF,

while the off-forward a quasi-GPD. In principle, any distribution that is defined by a light-

cone operator can be related to a similar quasi-distribution defined by an operator like

Eq. 4.42.

The main difficulty, therefore, is in comparing the quasi-distributions to light-cone

distributions. In theory this is possible through large momentum effective field theory

(LaMET) [109,110]. Through this matching procedure, quasi-distributions are equivalent

to light-cone distributions up to terms of order ΛQCD/Pz (higher twist effects), where Pz is

the z-component of the spacelike nucleon momenta. Intuitively, the idea is that, by taking

Pz → ∞, the current separation approaches the light-cone asymptotically, and hence the

matrix element of Eq. 4.42 approaches the corresponding parton distribution.

The possibility presented by quasi-distributions to finally calculate parton distributions

from first principles has generated a great deal of interest in them, and no doubt will

generate more in the future. So far, calculations involving quasi-distributions have largely

been limited to quasi-PDFs (see Ref. [111] for a review). More recently pion quasi-GPDs

were calculated [65]. However, like the local operators, the matching procedure and the

renormalisation involved are non-trivial (see Ref. [111] for a review). Moreover, it has

been argued that the limit Pz →∞ doesn’t recover the light-cone operator as it would in

the continuum due to lattice operator mixing [112,113].

4.4.4 Current Product Methods

Finally, there are lattice calculations that attempt to calculate the matrix element of the

product of currents, such as the Compton tensor (time-ordered currents) or the hadronic

tensor (unordered). Of course, apropos the previous discussion on the Euclidean signature,

for the product of currents jµ(z)jν(0) the separation z must be spacelike in a lattice

calculation.

In this class of calculations are four-point function extractions of the hadronic tensor

[114–118], fictitious heavy quark insertion [119, 120], a proposed method of calculating a

‘lattice cross section’ [121], and the Feynman-Hellmann method [122, 123]. In all these

calculations, however, the matrix elements are forward. Therefore, the present thesis is
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the first attempt to calculate the current product on the lattice for off-forward kinematics

(the OFCT).

A major advantage of this method is that vector currents have a simple multiplicative

renormalisation procedure on the lattice, in contrast to quasi-distributions and local twist-

two operators. On the other hand, one of the main difficulties of this method is relating

the matrix element of the spacelike current product to a physical quantity in Minkowski

space. The OPE discussed in chapter 3 is therefore very useful for this purpose since it

expands a non-local operator in terms of local (that is, signature agnostic) operators. We

will extend this discussion in chapter 6. The application of Feynman-Hellmann techniques

to off-forward second order scattering is given in the next chapter.



Chapter 5

Feynman-Hellmann Techniques

The Feynman-Hellmann (FH) theorem is a result from non-relativistic quantum mechanics

(QM) that relates energy shifts to matrix elements of operators [124–126]. Suppose we have

a Hamiltonian H(λ) with eigen-energies that are differentiable functions of a parameter

λ. Then, for a normalised eigenstate of the Hamiltonian |n〉, one can show that

∂En
∂λ

∣∣∣∣
λ=0

= 〈n|∂H
∂λ
|n〉
∣∣∣∣
λ=0

. (5.1)

This statement was originally used as a tool to calculate forces within molecules. However,

the Feynman-Hellmann theorem is also a generalisation of perturbation theory: in the

special case that H(λ) = H0 + λV , where H0 is a Hamiltonian with analytically solvable

eigenstates, Eq. 5.1 reduces to the usual first order energy shift in QM perturbation theory,

∆En = λ〈n|V |n〉.
Therefore, we generally don’t think of Feynman-Hellmann methods in terms of Eq. 5.1

or forces in molecules, but simply as a generalisation of perturbation theory, where the un-

perturbed Hamiltonian is not necessarily completely solvable and where the λ-dependence

is not necessarily a one-dimensional linear relationship.

Lattice Feynman-Hellmann Techniques

The form of Eq. 5.1 presents applications to lattice QCD, where calculating energies is

simple but calculating matrix elements of operators may be more difficult.

The FH theorem was first applied to lattice QCD in the calculation of sigma terms

[127–130]. In these calculations the mass of a given hadron is varied with respect to the

quark mass. From a Feynman-Hellmann relation, we then have that

mf
∂MX

∂mf
= mf 〈X|ψ̄fψf |X〉 = σf , (5.2)

for some hadron |X〉.
In the calculation of sigma terms, an input of the QCD Lagrangian (the quark mass) is

varied. However, in more recent applications of the FH theorem, extra terms are added to

the QCD Lagrangian that depend on arbitrary parameters. Using this method and related

methods, lattice studies have calculated the axial coupling [131–133] and the Gamow-Teller

matrix element [134]. Moreover, the CSSM and QCDSF/UKQCD collaborations have used

lattice FH techniques to calculate multiple matrix elements of physical interest [135–139].

In particular, this collaboration has used second order FH techniques to calculate the

53
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forward Compton tensor [122,123,140]. The present thesis is an extension of these works

to the off-forward Compton tensor (OFCT).

In this chapter, we will show that the OFCT as defined in Eq. 4.5 can be calculated

from the energy shifts of two-point functions, when the lattice action has been altered by

additional terms. The OFCT must be treated with extra care in our FH proof for two

reasons: first, it is second order, which essentially means that it is the matrix element of

an operator that depends on two spacetime points. Second, it is off-forward, meaning that

the initial and final states have different momenta. The combination of these properties

requires us to take extra care in our derivation of the suitable FH relation.

We will start in section 5.1 by considering a simple example from degenerate QM per-

turbation theory that captures many of the properties of the actual FH proof. However, it

needs to be stressed that the results of this section are not substitutes for a comprehensive

proof of a FH relation using Euclidean path integrals. In section 5.2, we will prove the

necessary FH relation, allowing us to calculate the OFCT. Finally, in section 5.3 we will

look in more depth at the properties of the perturbed correlator, and in doing so justify

some of the assumptions we make in the FH proof and further show how to calculate the

energy shifts.

5.1 Toy-Model Example

For the FH derivation in the next section, a great deal of effort will go into performing

long and quite tedious calculations, and hence the basic physics can easily be obscured. To

avoid losing the forest in the trees, in this section we give an outline of the arguments that

lead us to the FH relation. In particular, we consider a much simpler quantum system

that nonetheless preserves many of the properties of the lattice calculation.

We consider a system with the following properties:

• The Hamiltonian is Hλ = H0 + Vλ, where H0 is the unperturbed Hamiltonian and

Vλ is the perturbing potential. Note that λ = (λ1, λ2), and hence our perturbation

depends on two perturbing parameters.

• Hλ → H0, as λ→ 0.

• We consider a set of eight states: {|pi〉|i ∈ [1, 8]}.

• These states are eigenstates of the unperturbed HamiltonianH0 and the unperturbed

momentum operator; we assume all states have the same mass, so that if |pi| = |pj |,
then the energies of these two states are the same.

• In particular, we let |p1〉 and |p2〉 be degenerate low-energy states, whose energy, E0,

is the lowest energy of all the states.

• For every state in our system, |pi〉, we can always find another state in our system

|pj〉 that has momentum satisfying pj = pi ± q or pj = pi ± q′, where q and q′ are

momentum vectors (see figure 5.1).

In particular, the perturbing potential mixes states of different momentum:

Vλ|pi〉 = J
[
λ1(|pi + q〉+ |pi − q〉) + λ2(|pi + q′〉+ |pi − q′〉)

]
, (5.3)
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Figure 5.1: Diagram in momentum space showing how each state is mixed by the perturbing

potential. The red lines are q vectors, and the blue lines are q′ vectors. The semi-transparent lines

are even higher energy terms that we do not consider.

for some Hermitian operator J ; it is convenient to assume that the matrix elements of J

are all real. So the λ1 perturbation is associated with the transfer of momentum q, and

likewise for λ2 and momentum q′.

Therefore, in matrix form the Hamiltonian operator is

H =



E0 0 λ1J λ2J 0 0 λ1J λ2J

0 E0 λ2J λ1J λ2J λ1J 0 0

λ1J λ2J E1 0 0 0 0 0

λ2J λ1J 0 E2 0 0 0 0

0 λ2J 0 0 E3 0 0 0

0 λ1J 0 0 0 E4 0 0

λ1J 0 0 0 0 0 E3 0

λ2J 0 0 0 0 0 0 E4


, (5.4)

where we let Ei � E0 for i ∈ [1, 4].

Since Vλ doesn’t commute with the momentum operator, the momentum eigenstates

{|pi〉} aren’t eigenstates of the perturbed Hamiltonian. Instead, the low-energy eigenstates

of Hλ are (up to λ2 at least) linear combinations of the eight states in {|pi〉}. Let the per-

turbed spectrum of states be {|ki〉λ}, which are eigenstates of the perturbed Hamiltonian

with energies Eλi . And let |k1〉λ and |k2〉λ be states such that

H0|k1〉λ=0 = E0|k1〉λ=0, H0|k2〉λ=0 = E0|k2〉λ=0. (5.5)

That is, these perturbed states reduce to linear combinations of |p1〉 and |p2〉 as the

perturbation couplings go to zero. Then, we can write these two terms as

|k(1,2)〉λ =

8∑
i=1

c
(1,2)
i |pi〉+O(λ2), (5.6)

where c1 and c2 are O(1), and ci are O(λ) for i = 3, 4, ..., 8.
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We will approximate the energy eigenstates and eigenvalues of the Hamiltonian, Eq. 5.4,

by constructing an effective Hamiltonian, as in Ref. [141]. The effective Hamiltonian is an

operator whose eigen-energies approximate the eigen-energies of the actual Hamiltonian

to up to order O(λ2), and its eigenstates approximate the eigenstates of the actual Hamil-

tonian up to order O(1). In other words, the eigenstates of the effective Hamiltonian are

linear combinations of |p1〉 and |p2〉.
Using the result from Gottfried [141], the effective Hamiltonian is

〈pi|Heff|pj〉 = E0δi,j + 〈pi|Vλ|pj〉+
8∑

k=3

〈pi|Vλ|pk〉〈pk|Vλ|pj〉
E0 − Epk

, (5.7)

where i, j ∈ {1, 2}. Therefore, each component of the effective Hamiltonian is

〈p1|Heff|p1〉 − E0 = λ2
1

(
(J13)2

E0 − E1
+

(J17)2

E0 − E3

)
+ λ2

2

(
(J14)2

E0 − E2
+

(J18)2

E0 − E4

)
,

〈p1|Heff|p2〉 = 〈p2|Heff|p1〉 = λ1λ2

(
J13J23

E0 − E1
+

J14J24

E0 − E2

)
,

〈p2|Heff|p2〉 − E0 = λ2
2

(
(J23)2

E0 − E1
+

(J25)2

E0 − E3

)
+ λ2

1

(
(J24)2

E0 − E2
+

(J26)2

E0 − E4

)
,

where we use the notation Jij = 〈pi|J |pj〉, which we assume are real. Note that there are

no terms linear in the λ variables in the above equations.

Compare the expressions in the equations above with the form of the Compton tensor

where the position space integral has been performed (see appendix C for a derivation):

Tµνfwd =
∑
X

[〈P |jµ(0)|X〉〈X|jν(0)|P 〉
EX − (EN + q0)

+
〈P |jµ(0)|X〉〈X|jν(0)|P 〉

EX − (EN − q0)

]
,

Tµνoff-fwd =
∑
X

[〈P ′|jµ(0)|X〉〈X|jν(0)|P 〉
EX − (EN + q0)

+
〈P ′|jµ(0)|X〉〈X|jν(0)|P 〉

EX − (EN − q′0)

]
,

(5.8)

where EN = P 0. Therefore, if we think of J as a current, and |p1〉 as |P 〉 and |p2〉 as |P ′〉,
we can re-write the effective Hamiltonian as

Heff − E0 =

(
λ2

1T (ω1) + λ2
2T (ω2) λ1λ2T̃ (ω̄)

λ1λ2T̃ (ω̄) λ2
2T (ω1) + λ2

1T (ω2)

)
, (5.9)

where T is the simplified forward Compton tensor, and T̃ is the simplified off-forward

Compton tensor. We have further assumed that, by some symmetries of our system,

J13 = J24, J17 = J26, J14 = J23, and J18 = J25.

The eigenvalues of the effective Hamiltonian are

E±λ = E0+
A+B

2
± 1

2

√
4C2 + (A−B)2 +O(λ3), (5.10)

where

A+B = (λ2
1 + λ2

2)
(
T (ω1) + T (ω2)

)
, A−B = (λ2

1 − λ2
2)
(
T (ω1)− T (ω2)

)
,

C = λ1λ2T̃ (ω̄).
(5.11)
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If we let λ1 = ±λ2 = λ, the eigenvalues become

E±λ =E0 + λ2
(
T (ω1) + T (ω2)

)
± λ2|T̃ (ω̄)|+O(λ3). (5.12)

And the eigenvectors are v± = 1√
2
(1,±1). Therefore, the simplifed off-forward Compton

tensor is

|T̃ (ω̄)| = E+
λ − E−λ

2λ2
+O(λ).

This toy-model example captures the basic idea of the Feynman-Hellmann proof in the

next section. We introduce a shift to our Lagrangian/Hamiltonian that mixes states of

different momentum at second order through a current. Then, we show that the second

order energy shift contains matrix elements with two insertions of the current. And since

two different momenta are transferred through the currents, part of the shift is the off-

forward Compton tensor.

5.2 Second-Order Off-Forward Feynman-Hellmann

In this section, we show the necessary FH relation of the form

∂2E

∂λ1∂λ2

∣∣∣∣
λ1λ2=0

' T 33(P, q;P ′, q′), (5.13)

where T 33 is the µ = ν = 3 component of the OFCT, as defined in Eq. 4.5. Here, the λ

variables are couplings of the FH perturbation, and E is the energy extracted from a two-

point function. The proof will use Euclidean path integrals that have not been discretised

in space and time. A discretised derivation would be equivalent, except with Dirac delta

functions replaced by Kronecker deltas and integrals replaced by sums.

The plan of the following section is:

1. Choose an appropriate perturbation to the QCD Lagrangian, and show the effect of

this perturbation on the nucleon correlator (two-point correlation function).

2. Take the derivatives of the perturbed correlator with respect to λ in two ways: (1)

the ‘direct’ derivative (we will define this later), and (2) path integral derivative.

3. Compare the Euclidean time dependence of terms from the direct and path inte-

gral derivatives, and equate terms either side of the equation with the same time-

dependence. The energy shift (LHS of Eq. 5.13) comes from the direct derivative,

while the matrix element (RHS) comes from the path integral derivative.

4. A relation of the form Eq. 5.13 follows.

5.2.1 Modified Action

The key element of a FH calculation is a perturbation to the action that depends on

arbitrary parameters. The Lagrangian density is,

L = LQCD + LFH, (5.14)
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where LFH is the FH shift, which depends on the parameters λ = (λ1, λ2); we take these

parameters to be small. Specifically, we choose LFH to be

LFH =
[
λ1

(
eiq·z + e−iq·z

)
+ λ2

(
eiq
′·z + e−iq

′·z)]J(z, τ), (5.15)

where J(z) = ψ̄f (z)γ3ψf (z) is the EM quark current (unit charge), with the choice of

flavour f corresponding to the flavour of generalised form factor we wish to extract. Note

that the combination of exponentials of the form eia+ e−ia is used to keep the Lagrangian

Hermitian, and therefore ensure its eigenvalues are real.

This perturbation to the Lagrangian density induces a perturbation to the Hamiltonian

density H = HQCD + HFH. We can find HFH explicitly by using the relation between

Lagrangian and Hamiltonian densities:

H =
∑
f

∂L
∂(ψ̇f )

ψ̇f +
∑
a

∂L
∂(Ȧaµ)

Ȧaµ − L. (5.16)

Since
∂LFH

∂(ψ̇f )
= 0 =

∂LFH

∂(Ȧaµ)
, (5.17)

we have that

H = HQCD +HFH =
∑
f

∂LQCD

∂(ψ̇f )
ψ̇f +

∑
a

∂LQCD

∂(Ȧaµ)
Ȧaµ − LQCD − LFH. (5.18)

Therefore, comparing λ-dependence on each side, we have HFH = −LFH.

Since LFH doesn’t commute with the momentum operator (it mixes states of different

momentum), neither does the perturbation to the Hamiltonian HFH. Of course, HQCD

commutes with the momentum operator. Therefore, the whole Hamiltonian density H
doesn’t commute with the momentum operator, P̂, and hence our momentum eigenstates

are not eigenstates of the perturbed Hamiltonian. The translation operator is exp{iP̂ · x},
and therefore the Hamiltonian also doesn’t commute with this operator.

Consider the nucleon correlator (two-point function) with a FH perturbation∗:

Cλ(τ,p′) =

∫
d3ze−ip

′·z〈Ω|χ(z, τ)χ†(0)|Ω〉

=
∑
Y

∫
d3k

(2π)3

1

2EY (k)

∫
d3ze−ip

′·z〈Ω|χ(z, τ)|Y (k)〉〈Y (k)|χ†(0)|Ω〉

=
∑
Y

∫
d3k

(2π)3

1

2EY (k)

∫
d3ze−ip

′·z〈Ω|χ(z, 0)e−H(λ)τ |Y (k)〉〈Y (k)|χ†(0)|Ω〉,

(5.19)

where |Ω〉 is the perturbed vacuum state, and hence it is an eigenstate of the perturbed

Hamiltonian with eigenvalue zero. Here, χ is the nucleon interpolating operator from

Eq. 2.24.

Now, we introduce another basis of eigenstates, {|X(a)〉}, that are eigenstates of the

perturbed Hamiltonian and span the same space as the basis of momentum eigenstates,

∗The standard notation in this chapter and chapter 7 is to always use p′ to denote the sink momentum.
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{|Y (k)〉}. These states are labelled by a new quantum number a with corresponding

operator A. We will hold off on discussing explicitly what this operator is until section

5.3.

For finite volume, the relation between these two bases is

|Y (ki)〉 =
∑
X,a

cX,a(ki, Y )|X(a)〉, |X(a)〉 =
∑
Y,i

(cX,a(ki, Y ))∗|Y (ki)〉. (5.20)

Since we have relativistic normalisation 〈X(p)|Y (k)〉 = 2EX(p)δX,Y (2π)2δ(3)(p− k), the

coefficients cX,a(k) are not simply the overlap 〈X(a)|Y (k)〉. However, by unitarity, we

must still have
∑

X,a |cX,a(ki)|2. We use X to label the new states |X(a)〉, even though

strictly speaking these states can be the superposition of multiple different hadronic states.

It is simplest to think of X as the hadronic state of |X(a)〉 in the limit that λ→ 0.

Using Eq. 5.20, we have

e−H(λ)τ |Y (k)〉 = e−H(λ)τ
∑
X,a

ca,X(k, Y )|X(a)〉 =
∑
X,a

ca,X(k, Y )e−EX,aτ |X(a)〉. (5.21)

Inserting Eq. 5.21 into Eq. 5.19, we get

Cλ(τ,p′) =
∑
X,a

e−EX,aτ
∑
Y

∫
d3k

(2π)3

1

2EY (k)

×
∫
d3ze−ip

′·zca,X(k, Y )〈Ω|χ(z, 0)|X(a)〉〈Y (k)|χ†(0)|Ω〉.
(5.22)

We can re-express this as

Cλ(τ,p′) =
∑
X,a

AX,ae
−EX,aτ , (5.23)

where the coefficient AX,a is just the appropriate terms taken from Eq. 5.22. We will

further discuss what A can be and find a more explicit form of the perturbed correlator

in section 5.3.

5.2.2 Derivatives of the Correlator

The rest of the Feynman-Hellmann proof will then be to compare the ‘direct’ derivative of

Eq. 5.23 to the same derivative expressed as the derivative of a path integral. The former

will give us an energy derivative, while the latter will give us a matrix element, and hence

from both we will get a FH relation of the form Eq. 5.13.

Direct Derivative

We will assume that Cλ is at least twice-differentiable in its λ variables, if not analytic in

them. Therefore, from Eq. 5.23,

∂Cλ
∂λi

∣∣∣∣
λi=0

=
∑
X,a

(
∂AX,a
∂λi

− τ ∂EX,a
∂λi

)
e−EX,aτ

∣∣∣∣
λi=0

. (5.24)
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Hence the mixed second derivative is

∂2Cλ
∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

=
∑
X,a

[
∂2AX,a
∂λ1∂λ2

− τ ∂EX,a
∂λ1

∂AX,a
∂λ2

− τ ∂EX,a
∂λ2

∂AX,a
∂λ1

+ τ2∂EX,a
∂λ2

∂EX,a
∂λ1

AX,a − τ
∂2EX,a
∂λ1∂λ2

AX,a

]
e−EX,aτ

∣∣∣∣
λ1=λ2=0

.

(5.25)

Note that the terms in Eqs. 5.24 and 5.25 have different τ -dependencies. In particular,

the terms that will give us the FH relation are those that have τ -dependence like τe−Eτ ;

we call these terms τ -enhanced.

Path Integral Derivative

Now we compare these direct derivatives (Eqs. 5.24 and 5.25) to a derivative of the path

integral expression.

As we discussed in section 2.2, the vacuum matrix element† of an operator in the

Euclidean path integral formalism is

〈O〉 =

∫
DφOe−S∫
Dφe−S , (5.26)

where Dφ indicates a functional integral over all fermion and gauge fields. Then one can

show, using Eq. 5.26, that

∂〈O〉
∂λi

= 〈O〉
〈
∂S

∂λi

〉
−
〈
T

{
O ∂S
∂λi

}〉
, i = 1, 2. (5.27)

Then taking the derivative of Eq. 5.27 with respect to the opposite λ,

∂2〈O〉
∂λ2∂λ1

=
∂〈O〉
∂λ2

〈
∂S

∂λ1

〉
+ 〈O〉 ∂

∂λ2

〈
∂S

∂λ1

〉
− ∂

∂λ2

〈
T

{
O ∂S

∂λ1

}〉
. (5.28)

The derivatives of the action are

∂S

∂λ1
=

∫ ∞
−∞

dτ

∫
d3y
(
eiq·y + e−iq·y

)
J(y, τ), (5.29)

∂S

∂λ2
=

∫ ∞
−∞

dτ

∫
d3y
(
eiq
′·y + e−iq

′·y)J(y, τ). (5.30)

From Eqs. 5.29 and 5.30, the action itself has no cross terms in λ1 and λ2, and hence

the second term on the RHS of Eq. 5.28 vanishes. Moreover, we can use Eq. 5.27 to

†We use the notation 〈O〉 and 〈Ω|O|Ω〉 interchangeably; they are equivalent.
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evaluate the first and third terms on the RHS of Eq. 5.28:

∂2〈O〉
∂λ2∂λ1

=

(
〈O〉

〈
∂S

∂λ2

〉
−
〈
T

{
O ∂S

∂λ2

}〉)〈
∂S

∂λ1

〉
−
〈
T

{
O ∂S

∂λ1

}〉〈
∂S

∂λ2

〉
+

〈
T

{
O ∂S

∂λ1

∂S

∂λ2

}〉
=〈O〉

〈
∂S

∂λ2

〉〈
∂S

∂λ1

〉
−
〈
T

{
O ∂S

∂λ2

}〉〈
∂S

∂λ1

〉
−
〈
T

{
O ∂S

∂λ1

}〉〈
∂S

∂λ2

〉
+

〈
T

{
O ∂S

∂λ1

∂S

∂λ2

}〉
.

(5.31)

For the operator O we use ∫
d3ze−ip

′·zΓβαχα(z, τ)χ†β(0), (5.32)

where we assume τ > 0, and Γ is some projection matrix in Dirac space. Here, χ is the

nucleon interpolating operator (see Eq. 2.24) that couples to QCD states with the same

quantum numbers as the nucleon - i.e. the nucleon and its excited states. Therefore,

〈O〉 =

∫
d3ze−ip

′·zΓβα〈Ω|χ(z, τ)αχ
†
β(0)|Ω〉 = Cλ(τ,p′), (5.33)

the correlator (two-point function) of a nucleon. Finally, evaluating Eq. 5.31 at λ1 = λ2 =

0, we will get the mixed second derivative of the perturbed correlator. Hence we can

equate the matrix element on the RHS of Eq. 5.31 to Eq. 5.25.

5.2.3 Vanishing First Order Shift

From the simple quantum mechanical arguments in 5.1, we saw that there were no linear

terms in λ for our perturbed energies (Eq. 5.9). This was due to a choice of kinematics:

at first order, the perturbing potential mixed a state |p1〉 with a non-degenerate state

|p1 ± q(′)〉. As such, there was no linear shift in the energy.

Similarly, we want to show that, if we choose our q momenta such that |p′| 6= |p′±q(′)|,
the first order shift ∂EX,a/∂λi vanishes. Clearly, from Eq. 5.25, this would give our ‘direct’

derivative a much cleaner form.

We start by inserting Eqs. 5.29, 5.32 and 5.33 into Eq. 5.27:

∂Cλ(τ,p′)

∂λ1

∣∣∣∣
λ1=λ2=0

= Cλ(τ,p′)

〈
∂S

∂λ1

〉∣∣∣∣
λ1=λ2=0

−
〈
T

{∫
d3ze−ip

′·zΓβαχα(z, τ)χ†β(0)

∫ ∞
−∞

dτ ′
∫
d3y
(
eiq·y + e−iq·y

)
J(y, τ ′)

}〉∣∣∣∣
λ1=λ2=0

.

(5.34)

A key detail to note about Eq. 5.34 (and all other matrix elements considered in this

derivation) is that it’s evaluated at λ1 = λ2 = 0, the unperturbed case. This means that

the difficulties we mentioned in subsection 5.2.1 don’t apply here: the Euclidean translation

operator is simply e−Hτ+iP̂·z, where the Hamiltonian and momentum operators are both

unperturbed.
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J

χ† χ

J

χ† χ

J

χ†χ

Figure 5.2: Graphical representation of the three cases of time-ordering in Eq. 5.35. In each

subgraph, τ increases left to right.

From here on we suppress the projector, Dirac indices and evaluation at λ1 = λ2 = 0,

but of course they’re still being carried around, and all matrix elements will be in terms

of unperturbed quantities. Looking closer at the second term of Eq. 5.34, we can expand

the time-ordering (see figure 5.2):〈
T

{∫
d3ze−ip

′·zχ(z, τ)χ†(0)

∫ ∞
−∞

dτ ′
∫
d3y
(
eiq·y + e−iq·y

)
J(y, τ ′)

}〉
=

∫ ∞
−∞

dτ ′
∫
d3zd3y

(
eiq·y + e−iq·y

)
e−ip

′·z〈T{χ(z, τ)χ†(0)J(y, τ ′)
}〉

=

∫ 0

−∞
dτ ′
∫
d3zd3y

(
eiq·y + e−iq·y

)
e−ip

′·z〈χ(z, τ)χ†(0)J(y, τ ′)
〉

+

∫ τ

0
dτ ′
∫
d3zd3y

(
eiq·y + e−iq·y

)
e−ip

′·z〈χ(z, τ)J(y, τ ′)χ†(0)
〉

+

∫ ∞
τ

dτ ′
∫
d3zd3y

(
eiq·y + e−iq·y

)
e−ip

′·z〈J(y, τ ′)χ(z, τ)χ†(0)
〉
.

(5.35)

Now, each of the terms in Eq. 5.35 is simply a three-point function.〈
T

{∫
d3ze−ip

′·zχ(z, τ)χ†(0)

∫ ∞
−∞

dτ ′
∫
d3y
(
eiq·y + e−iq·y

)
J(y, τ ′)

}〉
=

∫ 0

−∞
dτ ′C

(3)

χχ†J
(p′,q; τ, 0, τ ′) +

∫ τ

0
dτ ′C

(3)

χJχ†
(p′,p′ − q; τ, τ ′, 0)

+

∫ ∞
τ

dτ ′C
(3)

Jχχ†
(−q,p′ − q; τ ′, τ, 0).

(5.36)

Explicit calculations of three point functions are given in appendix F. The calculations

in appendix F only apply in the case where our momentum eigenstates are also eigenstates

of our Hamiltonian. This is why it was important that our matrix elements are calculated

in terms of unperturbed quantities. To quote the result of appendix F,

C
(3)
O1O2O3

(p1,p2; τ1, τ2, τ3) =
∑
X,Y

e−EX(p1)(τ1−τ2)

2EX(p1)

e−EY (p2)(τ2−τ3)

2EY (p2)

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Ω〉.

In the following we let our kinematics be such |p′| 6= |p′±q(′)|. Then, we will assume that

this kinematic restriction implies EY (p′) 6= EX(p′ ± q(′)) for all hadronic states X,Y .
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Therefore, the first integral in Eq. 5.36 is∫ 0

−∞
dτ ′C

(3)

χχ†J
(p′,q; τ, 0, τ ′) =

∑
X,Y

e−EX(p′)τ

4EX(p′)E2
Y (q)

× 〈Ω|χ(0)|X(p′)〉〈X(p′)|χ†(0)|Y (q)〉〈Y (q)|J(0)|Ω〉.
(5.37)

The second integral is∫ τ

0
dτ ′C

(3)

χJχ†
(p′,p′ − q; τ, τ ′, 0) =

∑
X,Y

e−EY (p′−q)τ − e−EX(p′)τ

4EX(p′)EY (p′ − q)
(
EX(p′)− EY (p′ − q)

)
× 〈Ω|χ(0)|X(p′)〉〈X(p′)|χ†(0)|Y (p′ − q)〉〈Y (p′ − q)|J(0)|Ω〉.

(5.38)

The third integral is∫ ∞
τ

dτ ′C
(3)

Jχχ†
(−q,p′ − q; τ ′, τ, 0) =

∑
X,Y

e−EY (p′−q)τ

4EY (p′ − q)E2
X(−q)

× 〈Ω|O1(0)|X(−q)〉〈X(−q)|O2(0)|Y (p′ − q)〉〈Y (p′ − q)|O3(0)|Ω〉.
(5.39)

Now we compare the τ -dependence of Eqs. 5.34 and 5.24:∑
X

e−EX,a(p′)τ

[
∂AX,a(p

′)

∂λ1
− τ ∂EX,a(p

′)

∂λ1
AX,a(p

′)

]∣∣∣∣
λ1=λ2=0

=
∑
X

C1e
−EX(p′)τ

−
∑
X,Y

[
C2e

−EX(p′)τ + C3

(
e−EY (p′−q)τ − e−EX(p′)τ

)
+ C4e

−EY (p′−q)τ
]
.

(5.40)

The RHS uses Eq. 5.34, 5.37, 5.38, 5.39. Here the Ci are constant in Euclidean time, but

otherwise depend on X,Y , momentum variables, etc. Hence, since
∂EX,a(p′)

∂λ1
is the only

τ -enhanced term in Eq. 5.40, matching like terms,
∂EX,a(p′)

∂λ1
= 0.

Since the perturbing Lagrangian density, Eq. 5.15, is symmetric under the simultaneous

exchanges λ1 ↔ λ2 and q↔ q′, we have an analogous result for the derivative with respect

to λ2:
∂EX,a(p

′)

∂λ1
= 0 =

∂EX,a(p
′)

∂λ2
. (5.41)

5.2.4 Second-Order Derivative

Using result Eq. 5.41, we can greatly simplify the direct derivative Eq. 5.25:

∂2Cλ(τ,p′)

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

=
∑
X,a

e−EX,a(p′)τ

[
∂2AX,a(p

′)

∂λ1∂λ2
− τ ∂

2EX,a(p
′)

∂λ1∂λ2
AX,a(p

′)

]∣∣∣∣
λ1=λ2=0

.

(5.42)
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Now we compare this to the path integral derivative, by substituting Eq. 5.32 into Eq. 5.31:

∂2Cλ(τ,p)

∂λ2∂λ1

∣∣∣∣
λ1=λ2=0

=Cλ(τ,p′)

〈
∂S

∂λ2

〉〈
∂S

∂λ1

〉∣∣∣∣
λ1=λ2=0

−
〈
T

{∫
d3ze−ip

′·zχ(z, τ)χ†(0)
∂S

∂λ2

}〉〈
∂S

∂λ1

〉∣∣∣∣
λ1=λ2=0

−
〈
T

{∫
d3ze−ip

′·zχ(z, τ)χ†(0)
∂S

∂λ1

}〉〈
∂S

∂λ2

〉∣∣∣∣
λ1=λ2=0

+

〈
T

{∫
d3ze−ip

′·zχ(z, τ)χ†(0)
∂S

∂λ1

∂S

∂λ2

}〉∣∣∣∣
λ1=λ2=0

.

(5.43)

Since the
∂2EX,a(p′)
∂λ1∂λ2

term is the only term in Eq. 5.42 that is τ -enhanced, we will look for

the τ -enhanced component of Eq. 5.43.

Note that the τ -dependence of the second and third terms on the RHS of Eq. 5.43

are three-point functions we considered in subsection 5.41. Hence these don’t contain τ -

enhanced contributions. Moreover, the first term’s τ -dependence is entirely contained in

the correlator, which is not τ -enhanced. Therefore, the only possible τ -enhanced contri-

bution to Eq. 5.43 comes from the fourth term on the RHS.

Let’s start by expanding this term using the explicit form of the action derivatives,

Eqs. 5.29 and 5.30. Once again we drop the explicit evaluation at λ1 = λ2 = 0.〈
T

{∫
d3ze−ip

′·zχ(z, τ)χ†(0)

∫ ∞
−∞

dτ1

∫
d3y
(
eiq·y + e−iq·y

)
J(y, τ1)

×
∫ ∞
−∞

dτ2

∫
d3y′

(
eiq
′·y′ + e−iq

′·y′)J(y′, τ2)

}〉
=

∫
d3zd3y′d3ye−ip

′·z(eiq·y + e−iq·y
)(
eiq
′·y′ + e−iq

′·y′)
×
{∫ 0

−∞
dτ1

∫ τ1

−∞
dτ2

〈
χ(z, τ)χ†(0)J(y, τ1)J(y′, τ2)

〉
+

∫ τ

0
dτ1

∫ 0

−∞
dτ2

〈
χ(z, τ)J(y, τ1)χ†(0)J(y′, τ2)

〉
+

∫ τ

0
dτ1

∫ τ1

0
dτ2

〈
χ(z, τ)J(y, τ1)J(y′, τ2)χ†(0)

〉
+

∫ ∞
τ

dτ1

∫ 0

−∞
dτ2

〈
J(y, τ1)χ(z, τ)χ†(0)J(y′, τ2)

〉
+

∫ ∞
τ

dτ1

∫ τ

0
dτ2

〈
J(y, τ1)χ(z, τ)J(y′, τ2)χ†(0)

〉
+

∫ ∞
τ

dτ1

∫ τ1

τ
dτ2

〈
J(y, τ1)J(y′, τ2)χ(z, τ)χ†(0)

〉
+
[
(y′, τ2)↔ (y, τ1)

]}
.

(5.44)

5.2.5 Four-Point Functions

Equation 5.44 gives us a total of twelve four-point functions multiplied by four separate

Fourier projections. That gives a total of 48 integrals to evaluate. However, note that
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Figure 5.3: Graphical representation of the six cases of time-ordering. In each subgraph, τ

increases left to right. The only region that produces τ -enhanced terms is the subgraph in the

second line.

there are really only six different ways to order the J and χ operators in Euclidean time

(see figure 5.3). Therefore, we consider the generalised integral∫
d3zd3y1d

3y2e
−ip′·zeiq·y1eiq2·y2

∫ ∞
−∞

dτ ′1

∫ ∞
−∞

dτ ′2

〈
T
{
χ(z, τ)J(y1, τ

′
1)J(y2, τ

′
2)χ†(0)

}〉
,

(5.45)

where (y1,2, τ
′
1,2) stand in for (y(′), τ1,2), and q1,2 stand in for ±q(′). Without loss of

generality, assume τ ′1 > τ ′2. Then, Eq. 5.45 breaks up into the six cases shown in figure

5.3.

Here, our kinematic choices become very important. We already specified in subsection

5.2.3 that |p′| 6= |p′ ± q(′)|. From here on we will choose our qs and p′ such that |p′| =

|p′ + q− q′|. This is significant, since it implies EX(p′) = EX(p′ + q− q′) and hence we

can have τ -enhanced terms.

Finally, in appendix F we give an explicit calculation of the four-point function, again

assuming that we’re using unperturbed quantities:

C
(4)
O1O2O3O4

(p1,p2,p3; τ1, τ2, τ3, τ4) =
∑
X,Y,Z

e−EX(p1)(τ1−τ2)

2EX(p1)

e−EY (p2)(τ2−τ3)

2EY (p2)

e−EZ(p3)(τ3−τ4)

2EZ(p3)

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Z(p3)〉〈Z(p3)|O4(0)|Ω〉.

However, since we are just interested in the τ behaviour for the moment (to determine

which term is τ -enhanced), we will only look at the exponentials given in the above

equation and the integral of τ .

Case 1

The first case is τ > 0 > τ ′1 > τ ′2 (figure 5.3, top line far left). Looking at Eqs. 5.45 and

the four-point function above, we have that

p1 = p′, p2 = q1 + q2, p3 = q2. (5.46)

The integral in this case is therefore∫ 0

−∞
dτ ′1

∫ τ ′1

−∞
dτ ′2e

−EX(p′)τeEY (q1+q2)τ ′1e−EZ(q2)(τ ′1−τ ′2). (5.47)

which goes like a sum of exponentials e−Eτ in τ for any choice of kinematics.
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Case 2

The second case is τ > τ ′1 > 0 > τ ′2 (figure 5.3, top line centre left).

p1 = p′, p2 = p′ − q1, p3 = q2. (5.48)

The integral is∫ τ

0
dτ ′1

∫ 0

−∞
dτ ′2e

−EX(p′)(τ−τ ′1)e−EY (p′−q1)(τ ′1−τ)e−EZ(q2)(τ−τ ′2), (5.49)

which is τ -enhanced for EX(p′) = EY (p′ − q1). Hence this integral is not τ -enhanced

under our choice of kinematics.

Case 3

The third case is τ ′1 > τ > 0 > τ ′2 (figure 5.3, top line centre).

p1 = −q1, p2 = p′ − q1, p3 = q2. (5.50)∫ ∞
τ

dτ ′1

∫ 0

−∞
dτ ′2e

−EX(−q1)(τ ′1−τ)e−EY (p′−q1)τeEZ(q2)τ ′2 , (5.51)

which has no possible τ -enhancement.

Case 4

The fourth case is τ ′1 > τ > τ ′2 > 0 (figure 5.3, top line centre right).

p1 = −q1, p2 = p′ − q1, p3 = p′ − q1 − q2. (5.52)∫ ∞
τ

dτ ′1

∫ τ

0
dτ ′2e

−EX(−q1)(τ ′1−τ)e−EY (p′−q1)(τ−τ ′2)e−EZ(p′−q1−q2)(τ ′2−τ), (5.53)

which is τ -enhanced for EY (p′ − q1) = EZ(p′ − q1 − q2). Hence this integral is not

τ -enhanced under our choice of kinematics.

Case 5

The fifth case is τ ′1 > τ ′2 > τ > 0 (figure 5.3, top line far right).

p1 = −q1, p2 = −q1 − q2, p3 = p′ − q1 − q2. (5.54)∫ ∞
τ

dτ ′1

∫ τ ′1

τ
dτ ′2e

−EX(−q1)(τ ′1−τ ′2)e−EY (−q1−q2)(τ ′2−τ)e−EZ(p′−q1−q2)τ , (5.55)

which has no possible τ -enhancement.

Case 6

The sixth case is τ > τ ′1 > τ ′2 > 0 (figure 5.3, bottom line).

p1 = p′, p2 = p′ − q1, p3 = p′ − q1 − q2. (5.56)
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The integral is∫ τ

0
dτ ′1

∫ τ ′1

0
dτ ′2e

−EX(p′)(t−τ ′1)e−EY (p′−q1)(τ ′1−τ ′2)e−EZ(p′−q1−q2)(τ ′2−τ). (5.57)

This is the only integral for which any τ -enhancement is possible. Let q1 = q (and

y1 = y) and q2 = −q′ (and y2 = y′). Or q1 = −q′ (and y2 = y) and q2 = q (and

y2 = y). Hence the degeneracy is EX(p′) = EZ(p′−q + q′) and X = Z, which is allowed

by our kinematics.

So, if we make the substitution EZ(p′ − q + q′) = EX(p′) = EX , Eq. 5.57 becomes

e−EXτ
∫ τ

0
dτ ′1

∫ τ ′1

0
dτ ′2e

(EX−EY )(τ ′1−τ ′2) =
τe−EXτ

EY − EX
+

e−EXτ

(EX − EY )2
(e−(EY −EX)τ − 1),

(5.58)

so we have a τ -enhanced component of the integral in Eq. 5.57 for the previously mentioned

choices of momentum variables.

From Eq. 5.58, it seems possible that we could have EY < EX , and therefore we would

have a term that’s not a decaying exponential. However, in the lattice calculation, we will

be fitting to the exponential
∑

X e
−EXτ , and hence this picks out the term for which EX

is its lowest value, the energy of a nucleon with momentum p′. Then, since we choose

kinematics such that |p′±q(′)| > |p′|, we will always have EY > EX , and hence the second

term on the RHS of Eq. 5.58 is just a decaying exponential.

5.2.6 Enhanced Term

Now we know which terms give the τ -enhanced component to Eq. 5.44, and hence the only

τ -enhanced contribution to the whole of Eq. 5.43: the terms for which τ > τ1 > τ2 > 0 or

τ > τ2 > τ1 > 0. We denote this τ -enhanced component as[
∂2
λC
]

enh
.

Let’s first consider the term for which τ1 > τ2:[
∂2
λC
]

enh

∣∣∣
τ1>τ2

≡
∫
d3zd3y′d3ye−ip

′·z(eiq·y + e−iq·y
)(
eiq
′·y′ + e−iq

′·y′)
×
∫ τ

0
dτ1

∫ τ1

0
dτ2

〈
χ(z, τ)J(y, τ1)J(y′, τ2)χ†(0)

〉
=

∫
d3zd3y′d3ye−ip

′·z(eiq·y + e−iq·y
)(
eiq
′·y′ + e−iq

′·y′)
×

∑
X1,X2,X3

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

1

8EX1(p1)EX2(p2)EX3(p3)

∫ τ

0
dτ1

∫ τ1

0
dτ2

× e−EX1
(p1)τ+ip1·zeEX1

(p1)τ1−ip1·ye−EX2
(p2)τ1+ip2·yeEX2

(p2)τ2−ip2·y′e−EX3
(p3)τ2+ip3·y′

× 〈Ω|χ(0)|X1(p1)〉〈X1(p1)|J(0)|X2(p2)〉〈X2(p2)|J(0)|X3(p3)〉〈X3(p3)|χ†(0)|Ω〉.
(5.59)
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Then, using the delta function definition,[
∂2
λC
]

enh

∣∣∣
τ1>τ2

=∑
X1,X2,X3

∫
d3p1d

3p2d
3p3

δp1,p′(δp2,p1−q + δp2,p1+q)(δp3,p2−q′ + δp3,p2+q′)

8EX1(p1)EX2(p2)EX3(p3)

× e−EX1
(p1)τ

∫ τ

0
dτ1

∫ τ1

0
dτ2e

(EX1
(p1)−EX2

(p2))τ1e(EX2
(p2)−EX3

(p3))τ2

× 〈Ω|χ(0)|X1(p1)〉〈X1(p1)|J(0)|X2(p2)〉〈X2(p2)|J(0)|X3(p3)〉〈X3(p3)|χ†(0)|Ω〉.

(5.60)

Note that we have simplified the notation: δp1,p2 = δ(3)(p1 − p2). Once we evaluate this

integral, we have p1 = p′, p2 = p′ ± q, and p3 = p′ + q + q′, or p3 = p′ − q + q′, or

p3 = p′ + q− q′, or p3 = p′ − q− q′.

In our chosen kinematics, only one of these combinations (p2 = p′ − q and p3 =

p′ − q + q′) produces equal energies and therefore a τ -enhancement. Here we introduce

the momentum vector ∆ = q− q′. So we focus on this combination of delta functions:[
∂2
λC
]

enh

∣∣∣
τ1>τ2

=∑
X1,X2,X3

∫ τ

0
dτ1

∫ τ1

0
dτ2

e−EX1
(p′)τe(EX1

(p′)−EX2
(p′−q))τe(EX2

(p′−q)−EX3
(p′−∆))τ2

8EX1(p′)EX2(p′ − q)EX3(p′ −∆)

× 〈Ω|χ(0)|X1(p′)〉〈X1(p′)|J(0)|X2(p′ − q)〉
× 〈X2(p′ − q)|J(0)|X3(p′ −∆)〉〈X3(p′ −∆)|χ†(0)|Ω〉

(5.61)

Now we take the limit of large Euclidean time τ so that the state X1 goes to the nucleon,

N . And similarly, since we must have EX3 = EX1 to produce a τ -enhancement, we also

have that X3 goes to N . Then, for simplicity, we introduce the variables p = p′ −∆,

X2 = X, EX(p′ − q) = EX , and EN (p′) = EN (p) = EN :[
∂2
λC
]

enh

∣∣∣
τ1>τ2

=∑
X

1

8E2
NEX

e−EN τ
∫ τ

0
dτ1

∫ τ1

0
dτ2e

(EN−EX)τ1e(EX−EN )τ2

× 〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(p′ − q)〉〈X(p′ − q)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉

=
∑
X

1

8E2
NEX

[
τe−EN τ

EX − EN
+

e−EN τ

(EN − EX)2
(e−(EX−EN )τ − 1)

]
× 〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(p′ − q)〉〈X(p′ − q)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉.

(5.62)

Then, isolating the τ -enhanced term of Eq. 5.62, we get[
∂2
λC
]

enh

∣∣∣
τ1>τ2

= τe−EN τ

×
∑
X

〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(p′ − q)〉〈X(p′ − q)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉
8E2

NEX(EX − EN )
.

(5.63)
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Considering the τ2 > τ1 term, we similarly arrive at[
∂2
λC
]

enh

∣∣∣
τ2>τ1

=

∫
d3zd3y′d3ye−ip

′·z(eiq·y + e−iq·y
)(
eiq
′·y′ + e−iq

′·y′)
×
∫ τ

0
dτ2

∫ τ2

0
dτ1

〈
χ(z, τ)J(y′, τ2)J(y, τ1)χ†(0)

〉
= τe−EN τ

×
∑
X

〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(p′ + q′)〉〈X(p′ + q′)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉
8E2

NEX(EX − EN )
.

(5.64)

The notation here is a bit careless, since the terms EX in Eq. 5.63 and 5.64 have different

momenta. We make this explicit in the next equation.

If we combine Eqs. 5.63 and 5.64, dividing through by the τe−EN τ factor, we get

eEN τ

τ

[
∂2
λC
]

enh
=

1

4E2
N

∑
X

×
{〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(p′ − q)〉〈X(p′ − q)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉

2EX(p′ − q)(EX(p′ − q)− EN )

+
〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(p′ + q′)〉〈X(p′ + q′)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉

2EX(p′ + q′)(EX(p′ + q′)− EN )

}
(5.65)

This equation is proportional to the Compton tensor, even though this might not be

immediately obvious. To show this we can first replace the momentum of the intermediate

state X with a variable pX and an integral over this variable with the appropriate delta

functions:

eEN τ

τ

[
∂2
λC
]

enh
=

1

4E2
N

∑
X

∫
d3pX
(2π)3

(2π)3(δpX ,p′−q + δpX ,p′+q′)

2EX(pX)(EX(pX)− EN )

× 〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(pX)〉〈X(pX)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉.
(5.66)

Using the Fourier transform definition of a delta function, we get

eEN τ

τ

[
∂2
λC
]

enh
=

1

4E2
N

∑
X

∫
d3pX
(2π)3

∫
d3z
(
ei(pX−(p′−q))·z + ei(pX−(p′+q′))·z

)
× 〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(pX)〉〈X(pX)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉

2EX(pX)(EX(pX)− EN )
.

(5.67)

Then, we can use the fact that‡∫ ∞
−∞

dt
[
e−(E1−E2)tΘ(t) + e(E1−E2)tΘ(−t)

]
=

2

E1 − E2
, (5.68)

‡Here, Θ(t) is the Heaviside step function.
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to reorganise Eq. 5.67:

eEN τ

τ

[
∂2
λC
]

enh
=

1

8E2
N

∑
X

∫
d3pX
(2π)3

1

2EX(pX)

×
∫
d3z
(
ei(pX−(p′−q))·z + ei(pX−(p′+q′))·z

)
×
∫ ∞
−∞

dz0
(
e−(EX(pX)−EN )z0Θ(z0) + e(EX(pX)−EN )z0Θ(−z0)

)
× 〈Ω|χ(0)|N(p′)〉〈N(p′)|J(0)|X(pX)〉〈X(pX)|J(0)|N(p)〉〈N(p)|χ†(0)|Ω〉.

(5.69)

Now, using translational invariance (again, this hinges on the fact that we are evaluating

the matrix element at λ1 = λ2 = 0), this becomes

eEN τ

τ

[
∂2
λC
]

enh
=

1

8E2
N

∑
X

∫
d3pX
(2π)3

1

2EX(pX)

∫
d4ze−iq̄·z

×
{

Θ(z0)〈Ω|χ(0)|N(p′)〉〈N(p′)|J(z/2)|X(pX)〉〈X(pX)|J(−z/2)|N(p)〉〈N(p)|χ†(0)|Ω〉

+ Θ(−z0)〈Ω|χ(0)|N(p′)〉〈N(p′)|J(−z/2)|X(pX)〉〈X(pX)|J(z/2)|N(p)〉〈N(p)|χ†(0)|Ω〉
}
.

(5.70)

Then, since

I =
∑
X

∫
d3pX
(2π)3

1

2EX(pX)
|X(pX)〉〈X(pX)|, (5.71)

we have that Eq. 5.70 becomes

eEN τ

τ

[
∂2
λC
]

enh
=

1

8E2
N

× 〈Ω|χ(0)|N(p′)〉
∫
d4ze−iq̄·z〈N(p′)|T

[
J(z/2)J(−z/2)

]
|N(p)〉〈N(p)|χ†(0)|Ω〉.

(5.72)

Compare this to the Euclidean off-forward Compton tensor (OFCT), the Wick rotation

of Eq. 4.5:

Tµν =

∫
d4zeiq̄·z〈P ′|T

[
jµ(z/2)jν(−z/2)

]
|P 〉.

In our notation, |P (′)〉 = |N(p(′))〉. So we have that∫
d4ze−iq̄·z〈N(p′)|T

[
J(z/2)J(−z/2)

]
|N(p)〉

is simply the Euclidean OFCT for the case that q̄0 = 0, µ = ν = 3, with only one flavour

and unit charge. However, recall from Eq. 5.33, this is still carrying around a Dirac

projector and sum over spins. Therefore, Eq. 5.72 is really

eEN τ

τ

[
∂2
λC
]

enh
=

1

8E2
N

〈Ω|χ(0)|N(p′)〉T 33〈N(p)|χ†(0)|Ω〉, (5.73)
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with kinematics q̄0 = 0.

Recall our expression for the direct derivative in Eq. 5.42:

∂2Cλ(τ,p′)

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

=
∑
X,a

e−EX,a(p′)τ

[
∂2AX,a(p

′)

∂λ1∂λ2
− τ ∂

2EX,a(p
′)

∂λ1∂λ2
AX,a(p

′)

]∣∣∣∣
λ1=λ2=0

.

The τ -enhanced term of the direct derivative is then

−
∑
X,a

e−EX,a(p′)ττ
∂2EX,a(p

′)

∂λ1∂λ2
AX,a(p

′)

∣∣∣∣
λ1=λ2=0

. (5.74)

If we take the limit of large Euclidean time, then the tower of states X is dominated by

the nucleon state N :

−
∑
a

e−EN,a(p′)ττ
∂2EN,a(p

′)

∂λ1∂λ2
AN,a(p

′)

∣∣∣∣
λ1=λ2=0

. (5.75)

It is natural to ask what happens to the a quantum number at this stage, since we wish

to equate Eq. 5.75 and Eq. 5.72. The former has a sum over this quantum number, while

the latter doesn’t. For the moment we will just state that all but one of the amplitudes

AN,a vanish as we go to λ1 = λ2 = 0. In section 5.3 we will justify this statement. Hence

Eq. 5.75 becomes

− e−EN (p′)ττ
∂2EN (p′)

∂λ1∂λ2
AN (p′)

∣∣∣∣
λ1=λ2=0

. (5.76)

Therefore, equating Eq. 5.76 (ignoring the τ -enhanced factor which will cancel) and

Eq. 5.73 we arrive finally at our FH relation:

−AN (p′)
∂2E

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

=
1

8E2
N

〈Ω|χ(0)|N(p′)〉T33〈N(p)|χ†(0)|Ω〉
∣∣∣∣
λ1=λ2=0

. (5.77)

Recall from section 2.2 that

AN (p′) =
|〈Ω|χ|N(p′)〉|2

2EN (p′)
. (5.78)

Therefore, Eq. 5.77 becomes

∂2E

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

= −〈Ω|χ(0)|N(p′)〉T33〈N(p)|χ†(0)|Ω〉
4EN |〈Ω|χ|N(p′)〉|2

∣∣∣∣
λ1=λ2=0

. (5.79)

Finally, since

〈Ω|χα(0)|X(p)〉 = Zχ,X(p)uα(p, s), (5.80)

〈X(p)|χ†α(0)|Ω〉 = Z∗χ,X(p)ūα(p, s), (5.81)

it is convenient for chapter 6 to define

T̃µν ≡ i
∫
d4zeiq̄·z

1

4

∑
spins

Γβαuα(P ′)〈P ′|T [jµ(z/2)jν(−z/2)]|P 〉ūβ(P ). (5.82)
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The above expression will become useful when we wish to compare terms from our operator

product expansion to the lattice calculation.

Therefore, we have arrived at a Feynman-Hellmann relation of the form desired (Eq. 5.79).

This is very powerful, since it allows us to extract a four-point function (proportional to

the OFCT) from the energy shifts of two-point functions.

5.2.7 Comparison to Four-Point Function Methods

Lattice calculations of the forward Compton tensor through four-point function methods

have been hampered by a persistent problem [115, 119, 142]. Any attempt to determine

the OFCT through lattice four-point methods would face the same difficulty. Hence in

this subsection we briefly explain what this problem is, and how the FH lattice calculation

circumvents it.

A standard lattice four-point function, similar to the forward Compton tensor§, has

the form

Wµν(τ) = 〈χJ µ(τ)J ν(0)χ〉 = e−(EN+q0−EX)τ 〈N |Jµ(0)|X〉〈X|Jν(0)|N〉. (5.83)

Martinelli [142] first pointed out that, due to the exponential term out the front, the

dominant terms will be those for which the intermediate state’s energy is minimised.

Hence, for large Euclidean time, the intermediate state does not couple to a tower of

states. Note that there are proposed methods of overcoming this difficulty [118].

By contrast, this problem does not apply to Feynman-Hellmann techniques. Primarily,

this is because the Compton tensor as calculated via FH has completely different Euclidean

time behaviour behaviour to Eq. 5.83: there is already an integral over Euclidean time in

the energy shift we extract. From Eq. 5.58, the energy shift goes like∑
Y

τe−EY τ
∫
dτ ′[four-point function],

where Y is the outgoing nucleon state, not the intermediate state. The integral over τ

means that there is no weight factor for each intermediate hadronic state as in Eq. 5.83,

and as such the current still couples to the full spectrum of intermediate states.

In this way, the Compton tensor we extract from the energy shift should be equivalent

to the Euclidean OFCT in the large Euclidean momentum limit (see chapter 6).

5.3 The Perturbed States and Perturbed Correlator

Due to the fact that the quantity we wish to calculate is both second order and off-forward,

our perturbing Lagrangian (Eq. 5.15) induces a non-trivial mixing of states. We have so

far avoided the complications that arise from this mixing by: (1) taking quite an inexplicit

form of the perturbed correlator (Eq. 5.23), and making assumptions about its behaviour

in the λ → 0 limit; and (2) using the fact that the formal Feynman-Hellmann derivation

evaluates all quantities at λ1 = λ2 = 0.

We will investigate this mixing behaviour by deriving approximate forms of the eigen-

states of the perturbed Hamiltonian, and the perturbed correlator. The two main results

§In reality, this is the hadronic tensor from chapter 3.
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of this section are: (1) justifying our assumption that only one of the amplitudes AN,a
survives the λ → 0 limit, and (2) finding the values of λ that allow us to extract the

perturbed energy eigenstates most cleanly in the lattice calculation.

5.3.1 Form of the Perturbed Correlator

The following is general for any FH calculation in which the perturbed Hamiltonian doesn’t

commute with the momentum operator. Consider a perturbed Lagrangian density: L =

LQCD + LFH. Similarly, our Hamiltonian will receive a modification: H = HQCD +HFH.

And let the momentum operator be P̂.

Below, we make a simplifying assumption that will not change our overall arguments:

we take the translation operator T to be unperturbed, so that T = exp{iP̂ · z}. However,

unlike the Hamiltonian, the eigenstates of the translation operator are the momentum

eigenstates, but not linear combinations of the momentum eigenstates. This means that,

unlike the perturbed Hamiltonian, there is a one-to-one correspondence between the spec-

trum of momentum eigenstates and the eigenstates of the perturbed translation operator.

Hence we can write an eigenstate of the perturbed translation (|X(p)〉λ) operator as

|X(p)〉λ = |X(p)〉+O(λ).

As such, since we use the unperturbed translation operator, we will have O(λ) corrections

to the expressions for energy eigenstates we derive∗∗. These corrections to the eigenstates

don’t affect any of our conclusions, as we will show.

Then, the perturbed correlator is

Cλ(τ,p′) =

∫
d3ze−ip

′·z〈Ω|χ(z)χ†(0)|Ω〉

=
∑
Y

∫
d3p

(2π)3

1

2EY (p)

∫
d3ze−ip

′·x〈Ω|χ(z)|Y (p)〉〈Y (p)|χ†(0)|Ω〉

=
∑
Y

∫
d3p

(2π)3

1

2EY (p)

∫
d3zei(p−p′)·z〈Ω|χ(0)e−H(λ)t|Y (p)〉〈Y (p)|χ†(0)|Ω〉

=
∑
Y

1

2EY (p′)
〈Ω|χ(0)e−H(λ)t|Y (p′)〉〈Y (p′)|χ†(0)|Ω〉.

(5.84)

Note that, by our previous assumption, this expression will have a O(λ) correction.

As in subsection 5.2.1, we introduce another basis of eigenstates {|X(a)〉} that are

eigenstates of the perturbed Hamiltonian and a new operator A and span the same space

as the momentum eigenstates {|Y (p)〉}.
Recall Eq. 5.21, which implies Eq. 5.84 becomes

Cλ(τ,p′) =
∑
X,a

e−EX,aτ 〈Ω|χ(0)|X(a)〉
∑
Y

cX,a(p
′, Y )

〈Y (p′)|χ†(0)|Ω〉
2EY (p′)

. (5.85)

∗∗Note that this is quite similar to the case in QM perturbation theory from section 5.1, where the effective
Hamiltonian’s eigenstates were only approximations up to O(1) of the eigenstates of the perturbed
Hamiltonian.
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For large Euclidean time, the nucleon ground states dominate. Hence Eq. 5.85 becomes

Cλ(τ,p′) ≈
∑
a

cN,a(p
′, N)e−EN,aτ

2E(p′)
〈Ω|χ(0)|N(a)〉〈N(p′)|χ†(0)|Ω〉. (5.86)

Moreover, we have taken Y = N , since cN,a(p
′, Y ) will be small (proportional to higher

powers of λ1,2) for higher hadronic states. This is the second simplifying assumption we

make. Again, it means that our expression for the perturbed correlator will have O(λ)

corrections. However, as we will argue, these don’t affect our results.

Suppose the momentum we project onto, p′, has the following properties:

〈N(p)|H(λ)|N(p′)〉 6= 0,

HQCD|N(p)〉 = HQCD|N(p′)〉 = E0|N(p′)〉, p 6= p′.

In other words, the perturbed Hamiltonian mixes the nucleon state with momentum p′,

with another momentum eigenstate of degenerate energy. In principle, depending on

how we choose the FH perturbation, these states could be subject to arbitrarily many

degeneracies. However, in the case of our chosen perturbation, Eq. 5.15, the degeneracy is

only twofold: states with momentum p′ and hadronic state X are only mixed with states

of momentum p = p′ − (q− q′) and hadronic state X.

Hence for a two-fold degeneracy, Eq. 5.86 becomes

Cλ(τ,p′) ≈ 1

2E(p′)

[
ca1(p′)e−EN,a1 t〈Ω|χ(0)|N(a1)〉〈N(p′)|χ†(0)|Ω〉

+ ca2(p′)e−EN,a2 t〈Ω|χ(0)|N(a2)〉〈N(p′)|χ†(0)|Ω〉
]
.

(5.87)

The next step is to find an operator that commutes with our Hamiltonian to derive

the basis of eigenstates of the Hamiltonian. To find such an operator, A, we need that:

1. the operator commutes with the perturbed Hamiltonian: [H(λ),A] = 0;

2. the operator doesn’t have the same eigenvalue for all the states in our basis (pre-

cluding e.g. the identity). This ensures that the quantum numbers associated with

A allow us to distinguish states that are degenerate in energy.

5.3.2 Symmetries of the Hamiltonian

In this subsection, we will find the operator A that commutes with the perturbed Hamil-

tonian, and hence construct the eigenstates of the perturbed Hamiltonian. To start, we

note that the QCD-only lattice Hamiltonian is independently invariant under charge con-

jugation (C), time-reversal (T), parity (P) and rotations by an angle of π/2. Hence a

good starting point might be to construct A from these transformations. To commute

with the whole (perturbed) Hamiltonian, we must also have that A commutes with the

perturbing Hamiltonian HFH. Therefore, we start by seeing how HFH changes under the

aforementioned transformations.

As we showed in subsection 5.2.1, the FH perturbation to the Lagrangian density is

related to the Hamiltonian density by HFH = −LFH. Recall the form of the perturbing

Lagrangian:

LFH =
[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]J(x, τ),
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where we have that J(x, τ) = ψ̄(x, τ)γ3ψ(x, τ). Then, we will let q = (q1, q2, q3) and

q′ = (−q1, q2, q3); that is, they are related by a reflection of the x1 axis. This choice is

equivalent to the choice to have ‘zero-skewness’ kinematics. In chapter 6, we will show that

this allows us to calculate the A and B generalised form factors. In a different kinematic

region, we would need to consider different symmetries of the Hamiltonian.

Then, the perturbing Hamiltonian density is

HFH = −
[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]J(x, τ),

and the perturbing Hamiltonian is

HFH = −
∫
d3x
[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]J(x, τ).

A reflection off the x1 axis is equivalent to a parity transform combined with a rotation

about the x1 axis by 180 degrees. Hence

P1 = R1(π)P. (5.88)

Since R1(π)2 = I = P2, we have that P†1 = PR1(π). And furthermore, P and R1(π)

commute, so really P†1 = P1 and P2
1 = I.

Under this transformation, the perturbing Hamiltonian becomes:

P1HFHP1 =− P1

[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]J(x, τ)P1

=−
[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]P1J(x, τ)P1

=−
[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]J(−x1, x2, x3, τ),

(5.89)

where the vector current doesn’t flip sign since in our case it’s oriented in the x3 direction,

whereas the reflection is along the x1 axis. Therefore,

P1HFHP1 = P1

∫
d3xP1P1HFHP1

= −P1

∫
d3xP1

[
λ1

(
eiq·x + e−iq·x

)
+ λ2

(
eiq
′·x + e−iq

′·x)]J(−x1, x2, x3, τ).

(5.90)

Note that

P1

∫
d3xP1 = (−1)

∫ −∞
∞

dx1

∫ ∞
−∞

dx2

∫ ∞
−∞

dx3 =

∫
d3x.

And moreover if we do a substitution x→ y = (−x1, x2, x3), we have

q · x = q′ · y, q′ · x = q · y.

Hence

P1HFHP1 =−
∫
d3y
[
λ1

(
eiq
′·y + e−iq

′·y)+ λ2

(
eiq·y + e−iq·y

)]
J(y, τ), (5.91)
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making the change of variables x→ y = (−x1, x2, x3).

If λ1 = λ2, Eq. 5.91 implies that the perturbing Hamiltonian commutes with the

operator P1, and therefore so does the full Hamiltonian:

[H(λ1 = λ2),P1] = 0.

Hence we take A = P1, and the eigenstates of P1 are the eigenstates of the Hamiltonian

at λ1 = λ2.

On the other hand, if λ1 = −λ2, then we have that HFHP1 = −P1HFH; it anti-

commutes. Hence A 6= P1. Instead, we want to combine P1 with an operator that flips

the sign of Eq. 5.91 without changing anything else. Note:

Pji(x, τ)P = −ji(−x, τ), Tji(x, τ)T = −ji(x,−τ), Cji(x, τ)C = −ji(x, τ).

Therefore, if we take the operator CP1,

CP1HFHP1C =CP1

∫
d3xP1CCP1HFHP1C

=−
∫
d3y
[
λ1

(
eiq
′·y + e−iq

′·y)+ λ2

(
eiq·y + e−iq·y

)]
CJ(y, τ)C

= +

∫
d3y
[
λ1

(
eiq
′·y + e−iq

′·y)+ λ2

(
eiq·y + e−iq·y

)]
J(y, τ).

(5.92)

Hence CP1 commutes with the perturbing Hamiltonian at λ1 = −λ2:

[H(λ1 = −λ2),CP1] = 0,

and therefore A = CP1, and the eigenstates of CP1 are the eigenstates of the Hamiltonian

at λ1 = −λ2.

So if λ1 = λ2 and p1 = (p1, p2, p3) and p2 = (−p1, p2, p3), then the eigenstates of the

full Hamiltonian are are eigenstates of P1:

|ψ±〉 =
1√
2

(
|N(p1)〉 ± |N(p2)〉

)
. (5.93)

And for λ1 = −λ2 the eigenstates of the full Hamiltonian are eigenstates of CP1:

|φ±1 〉 =
1√
2

(
|N(p1)〉 ± |N̄(p2)〉

)
, (5.94)

|φ±2 〉 =
1√
2

(
|N(p2)〉 ± |N̄(p1)〉

)
, (5.95)

where |N̄〉 is the anti-nucleon state.

If we insert these into Eq. 5.87, we get for the λ1 = λ2 case

Cλ(τ,p′) ≈ 1

2E(p′)

[
e−Eψ+ t

(
〈Ω|χ(0)|N(p′)〉+ 〈Ω|χ(0)|N(p)〉

)
〈N(p′)|χ†(0)|Ω〉

+ e−Eψ− t
(
〈Ω|χ(0)|N(p′)〉 − 〈Ω|χ(0)|N(p)〉

)
〈N(p′)|χ†(0)|Ω〉

]
.

(5.96)
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Similarly, for the λ1 = −λ2 case,

Cλ(τ,p′) ≈ 1

2E(p′)

[
e
−E

φ+2
t
(
〈Ω|χ(0)|N(p′)〉+ 〈Ω|χ(0)|N̄(p)〉

)
〈N(p′)|χ†(0)|Ω〉

+ e
−E

φ−2
t
(
〈Ω|χ(0)|N(p′)〉 − 〈Ω|χ(0)|N̄(p)〉

)
〈N(p′)|χ†(0)|Ω〉

]
.

(5.97)

Equations 5.96 and 5.97 are important results. In the free case, 〈Ω|χ|N(p)〉 = f(|p|) (that

is, they only depend on the magnitude of the momentum), and the same applies for the

anti-nucleon. Therefore,

〈Ω|χ(0)|N(p′)〉 − 〈Ω|χ(0)|N̄(p)〉 = 0 = 〈Ω|χ(0)|N(p′)〉 − 〈Ω|χ(0)|N(p)〉. (5.98)

However, once we introduce the FH perturbation, the vacuum term has shifts proportional

to λ and higher powers. Therefore,

〈Ω|χ(0)|N(p′)〉 − 〈Ω|χ(0)|N(p)〉 ∼ O(λ), (5.99)

and the same applies for the anti-nulceon overlap.

One immediate consequence of Eq. 5.96 and 5.97 is that we can show the assumption

we made at the end of our FH derivation: all but one of the amplitudes vanish as the

perturbation couplings go to zero.

From Eq. 5.87, we know that we can parameterise the perturbed correlator by

Cλ(τ) =
1

2E

[
A1(λ)e−E1(λ)τ +A2(λ)e−E2(λ)τ

]
+ suppressed terms, (5.100)

From Eq. 5.96, along the line λ1 = λ2,

A2(λ) =
1

2

[
〈Ω|χ(0)|N(p′)〉 − 〈Ω|χ(0)|N(p)〉

]
〈N(p′)|χ†(0)|Ω〉, (5.101)

and therefore

A2(λ)
λ→0−−−→ 0, (5.102)

along this line. However, since we assumed that the perturbed correlator is at least twice

differentiable in its λ variables, the above property must hold along all paths to the origin.

Hence, if we take τ sufficiently large for our nucleon terms to dominate, then the

time-enhanced term from section 5.2 is

−
∑
a

e−EN,a(p′)ττ
∂2EN,a(p

′)

∂λ1∂λ2
AN,a(p

′)

∣∣∣∣
λ1=λ2=0

=

(
e−EN,1(p′)ττ

∂2EN,1(p′)

∂λ1∂λ2
AN,1(p′) + e−EN,2(p′)ττ

∂2EN,2(p′)

∂λ1∂λ2
AN,2(p′)

)∣∣∣∣
λ1=λ2=0

= e−EN,1(p′)ττ
∂2EN,1(p′)

∂λ1∂λ2
AN,1(p′)

∣∣∣∣
λ1=λ2=0

,

(5.103)

since AN,2
λ→0−−−→ 0.
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Here, AN,1 = AN , the unperturbed nucleon coefficient. Note that the simplifying

assumptions at the start of the chapter, which amounted O(λ) corrections to the perturbed

correlator, doesn’t affect the above argument. Those higher order terms will of course

vanish as the perturbation couplings go to zero, too.

5.3.3 Extracting the Energy Shift

In a more practical sense, Eqs. 5.96 and 5.97 tell us that the perturbed correlator is

dominated by a single exponential term. This is because, along the lines λ1 = ±λ2, one

of the coefficients is O(1) and the other is O(λ). Therefore, we need not make a two-

exponential fit to extract the eigen-energies of the perturbed Hamiltonian: these results

ensure that only one of these eigen-energies dominates the correlator.

That is,

Cλ(τ)
∣∣∣
λ1=λ2=λ

≈ A(λ)e−Eψ+ (λ)τ , (5.104)

and

Cλ(τ)
∣∣∣
λ1=−λ2=λ

≈ Ã(λ)e−Eφ+ (λ)τ , (5.105)

for λ ≈ 0.

From Eqs. 5.96 and 5.97,

A(λ)e−Eψ+ (λ)τ , Ã(λ)e−Eφ+ (λ)τ λ→0−−−→ ANe
−EN τ , (5.106)

the unperturbed propagator. Therefore, Eψ+(λ) and Eφ+(λ) are the same eigen-energy of

the Hamiltonian, but evaluated at different values of λ1, λ2:

E(λ1, λ2)
∣∣∣
λ1=λ2=λ

= Eψ+(λ), and E(λ1, λ2)
∣∣∣
λ1=−λ2=λ

= Eφ+(λ). (5.107)

Hence we can approximate the energy shift with a centered finite difference††:

∂2E

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

= lim
λ→0

E(λ, λ) + E(−λ,−λ)− E(λ,−λ)− E(−λ, λ)

4λ2
, (5.108)

and extract the centered difference by fitting to the correlator ratio

C(λ, λ)C(−λ,−λ)

C(λ,−λ)C(λ,−λ)
≈ Ae−∆Et, (5.109)

where ∆E = E(λ, λ)+E(−λ,−λ)−E(λ,−λ)−E(−λ, λ). Once again, the assumptions that

ignored some O(λ) corrections to the perturbed correlator doesn’t affect this conclusion

either. Since the O(λ) corrections will be suppressed, the correlator is dominated by one

exponential along the lines λ1 = ±λ2. Therefore, even in a more complete treatment that

considers O(λ) corrections to the state, the above results will still hold.

††It is easy to derive this equation by taking E(λ1, λ2) as a Taylor expansion in its λ variables.



Chapter 6

Off-Forward Scattering

In this chapter, we will examine the theoretical behaviour of the off-forward Compton

tensor (OFCT), and show how generalised form factors (GFFs) can be extracted from a

lattice calculation. Widespread interest in off-forward scattering began with a series of

papers on generalised parton distributions (GPDs) [8, 9, 48, 49]. In particular, Ji showed

that GPDs could be used to probe the spin structure of hadrons [9] (the Ji sum rule

Eq. 4.32). Since then, almost all aspects of the OFCT have been intensively studied: its

scaling [8, 48, 49, 143], factorisation [50, 144], electromagnetic gauge invariance and higher

twist terms [145–149], among other properties have all been the subject of many papers.

However, almost all analyses of the nucleon OFCT are limited to a frame in which

kinematics are dominated by two collinear lightlike vectors, and usually to deeply virtual

Compton scattering (DVCS) kinematics. While this frame is a good approximation for

high-energy scattering, it is the opposite of what we would like for our lattice kinematics.

As we have already discussed in previous chapters, the Euclidean spacetime of the

lattice implies that we may only have spacelike momentum vectors. As such, the exist-

ing perturbative expansions in terms of lightlike Minkowski vectors can not be directly

compared to our lattice calculation. Moreover, this means we can not compare to DVCS

kinematics where the outgoing photon is on-shell (lightlike). Finally, since we extract the

Feynman-Hellmann energy shift using lattice spectroscopy, we need small nucleon mo-

menta for a clean signal. Therefore, we must do much of the theoretical work ourselves to

derive results that match onto our lattice calculation.

First, in section 6.1 we will decompose the OFCT into its tensor structures and Lorentz

scalar coefficients. Similar decompositions were performed by Bardeen and Tung [150] and

Tarrach [151], and more recently by Lu [152]. In particular, we specialise our decomposi-

tion to suit the kinematics used in the lattice calculation.

In section 6.2 we will perform an OPE on the OFCT, using almost exactly the same

method as in section 3.2. There have already been numerous perturbative calculations of

the OFCT, in multiple different formalisms. Most prominently, the collinear factorisation

method of Ellis, Furmanski and Petronzio [67, 68] has been used to calculate the OFCT

up to twist-two [9] (recall Eq. 4.11) and twist three [146, 147] accuracy. Less prominent

but still quite common is the light-ray operator method∗ [153, 154], which was used to

calculate a perturbative expansion of the OFCT to twist three accuracy [148,155]. These

methods suffer from the aforementioned difficulty: they use a frame in which the nucleon’s

∗This is sometimes also referred to as the ‘non-local operator product expansion’, since it is an OPE in a
basis of non-local operators. However, to avoid confusion in this thesis, we always refer to the local OPE
as just ‘the OPE’ and the non-local OPE as ‘the light-ray method’.

79
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momenta are dominated by collinear lightlike vectors, and hence they can not be compared

to our lattice calculation.

As has already been discussed in section 3.2, the OPE has a natural correspondence

with lattice calculations: it uses Euclidean kinematics, and allows for arbitrarily slow-

moving hadrons. There already exist multiple OPEs of the OFCT in the literature, starting

with very early studies by Watanabe [156, 157] that pre-date interest in GPDs, and are

therefore unsuited to compare to the lattice calculation. Later OPEs were also carried

out by Chen [143] and White [145]. Neither of these analyses can be compared directly

to results from the lattice calculation in the present thesis, since they assume the target

hadron is a boson, and therefore the twist-two local operators (as in Eq. 3.50) have a much

simpler off-forward matrix element:

〈P ′|O(n)µ1...µn
f |P 〉 =

n∑
i=0,2,4

∆{µ1 ...∆µiP̄µi+1 ...P̄µn}Gfn+1,i(t). (6.1)

Of course, for those more theoretical studies, this assumption avoids a cluttered and a

messy final result, while not impinging on results regarding, for instance, factorisation

and scaling. However, dealing with the far messier form of the nucleon off-forward matrix

elements (see Eq. 4.15) is necessary if we want to extract nucleon GFFs from our lattice

calculation. For this reason, we must also do our own OPE on the OFCT.

Finally, in section 6.3, we will look at the analytic structure of the OFCT, first by

delineating where the OFCT has cuts in the complex plane when the relevant momentum

variables are taken complex. Secondly, we will derive a non-perturbative dispersion re-

lation, and lastly, we will discuss the analytic continuation of the OFCT from Euclidean

space, where the lattice calculation takes place, to Minkowski space.

6.1 Tensor Decomposition

To decompose the OFCT into its tensor structure and scalar coefficients, we use a general

recipe with Bardeen and Tung [150] and Tarrach [151] as our guides:

1. take all the relevant tensor structures given in Tarrach [151];

2. reorganise these with the Gordon identity;

3. construct a gauge projector from the conditions given by Bardeen and Tung [150],

and use this to find the gauge invariant form of the Compton tensor.

6.1.1 Kinematics and Definitions

Before we begin, let’s reiterate all the relevant definitions. Note that for the whole of this

chapter, we are working in Minkowski space.

First, we use the following basis of linearly independent momentum vectors:

P̄ =
1

2
(P + P ′), q̄ =

1

2
(q + q′), ∆ = P ′ − P = q − q′.
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Then, due to the fact that P 2 = M2 is fixed in Minkowski space, we can form at most

four linearly independent Lorentz scalars. We choose the following (as in Eq. 4.3),

Q̄2 = −q̄2, ω̄ =
2P̄ · q̄
Q̄2

, t = ∆2, ξ = − q̄ ·∆
2P̄ · q̄ .

In this thesis, the main kinematic region we consider is the zero-skewness region†:

ξ = 0 ⇐⇒ ∆ · q̄ = 0 ⇐⇒ q2 = 0 = q′2. (6.2)

Using these kinematics we can isolate the twist-two A and B GFFs introduced in chapter 4,

and hence these are what we calculate from our lattice calculation in chapter 7. Therefore,

this is the kinematic region we will restrict ourselves to in the tensor decomposition.

Finally, as in section 3.2, we only consider the component of the OFCT that is sym-

metrised in its Lorentz indices:

Tµνsymm =
1

2

[
Tµν + T νµ

]
. (6.3)

Since we will calculate the diagonal component T 33 (by Eq. 5.79), only the symmetric part

of the OFCT is relevant to our lattice calculation.

6.1.2 Relevant Tensor Structures

The OFCT is invariant under the discrete symmetries (parity, time-reversal and charge

conjugation), and it must further satisfy the crossing symmetry,

Tµν(q, P ; q′, P ′) = T νµ(−q′, P ;−q, P ′). (6.4)

Using these restrictions and the basis {γµ, Pµ, P ′µ, qµ, q′µ}, Tarrach [151] determined all

possible tensor structures that can contribute to the off-forward scattering of a nucleon.

Of these‡, we only select structures that are gauge-independent (that is, no q or q′ terms

with uncontracted indices)§ and that are symmetric under µ↔ ν:

gµν , gµν /̄q, P̄µP̄ ν , P̄µP̄ ν /̄q, P̄µγν + P̄ νγµ, (P̄µγν + P̄ νγµ)/̄q − /̄q(P̄µγν + P̄ νγµ).

(6.5)

The unprojected OFCT T̃µν is then built up from the linear combination of these tensor

structures:

T̃µν = ū(P ′)
[∑

i

Ki`
µν
i

]
u(P ), (6.6)

where `µνi is one of the terms in the statement 6.5, and Ki is a Lorentz scalar coefficient

that depends on the variables Q̄2, t and ω̄ (we have chosen ξ = 0 and hence we lose one of

our Lorentz scalars).

†Recall that we referenced this fact in section 5.19 in deriving the symmetries of the perturbed Hamiltonian.
‡See Tarrach [151] for the full list.
§One can always construct a general gauge invariant tensor structure in this way, since the Ward identities
ensure that gauge-dependent (e.g. qµqν) parts, and gauge-independent (e.g. gµν) must cancel one another,
and hence the Lorentz scalar coefficients of the gauge-independent contributions determines that of the
gauge-independent — they’re linearly dependent.
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Once again referring to Tarrach [151], the coefficient of the (P̄µγν+P̄ νγµ)/̄q− /̄q(P̄µγν+

P̄ νγµ) component vanishes in the region q2 = q′2, and hence we do not consider it.

Since they will come up a lot, we define the Dirac bilinears

τµ1 = ū(P ′)γµu(P ), τµ2 = ū(P ′)
σµαi∆α

2M
u(P ).

Therefore, the unprojected component of the OFCT is

T̃µν = K1g
µν ū(P ′)u(P ) +K2g

µν q̄ · τ1 +K3P̄
µP̄ ν ū(P ′)u(P ) +K4P̄

µP̄ ν q̄ · τ1 +K5P̄
{µτ

ν}
1 .

(6.7)

In the above expression, we have two Dirac bilinears: ū(P ′)u(P ) and ū(P ′)γµu(P ). It

will be convenient, when we need to compare this to the OPE, to use the Gordon identity

(Eq. 4.13),

ū(P ′)γµu(P ) = ū(P ′)

(
P̄µ

M
+
iσµν∆ν

2M

)
u(P ),

to reorganise Eq. 6.7.

First, using the Gordon identity, we have that

P̄µū(P ′)u(P ) = M
(
τµ1 − τµ2

)
⇒ ū(P ′)u(P ) =

M

P̄ · q̄
(
τ1 · q̄ − τ2 · q̄

)
. (6.8)

Hence Eq. 6.7 becomes

T̃µν =− M

P̄ · q̄K1g
µν q̄ · τ2 +

(
K2 +

M

P̄ · q̄K1

)
gµν q̄ · τ1

−MK3P̄
{µτ

ν}
2 +K4P̄

µP̄ ν q̄ · τ1 +
(
K5 +MK3

)
P̄ {µτ

ν}
1 .

(6.9)

Once again, we note the linear independence of the scalar coefficients to re-write the

Compton tensor as

T̃µν =K ′1g
µν q̄ · τ1 +K ′2g

µν q̄ · τ2 +K ′3P̄
{µτ

ν}
2 +K ′4P̄

µP̄ ν q̄ · τ1 +K ′5P̄
{µτ

ν}
1 . (6.10)

To compare this to the OPE it is helpful if our expression also has a P̄µP̄ ν q̄ · τ2 term. We

can easily re-express this, again using the Gordon identity:

P̄µP̄ ν q̄ · τ1 + P̄ · q̄P̄ {µτν}2 = P̄µP̄ ν q̄ · τ2 + P̄ · q̄P̄ {µτν}1 . (6.11)

Using this relation, Eq. 6.10 becomes

T̃µν =K ′1g
µν q̄ · τ1 +K ′2g

µν q̄ · τ2 + (K ′3 − P̄ · q̄K ′6)P̄ {µτ
ν}
2 + (K ′4 −K ′6)P̄µP̄ ν q̄ · τ1

+ (K ′5 + P̄ · q̄K ′6)P̄ {µτ
ν}
1 +K ′6P̄

µP̄ ν q̄ · τ2.
(6.12)

Clearly, we have just added zero to Eq. 6.10. Again, we redefine the coefficients in Eq. 6.12

to get

T̃µν =[K ′′1 q̄ · τ1 +K ′′2 q̄ · τ2]gµν + [K ′′3 q̄ · τ1 +K ′′4 q̄ · τ2]P̄µP̄ ν

+K ′′5 P̄
{µτ

ν}
1 +K ′′6 P̄

{µτ
ν}
2 .

(6.13)
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For convenience, in the future we will simply replace K ′′i → Ki.

6.1.3 Gauge Projection

We will define a gauge projector Iµν as a tensor that satisfies two conditions from [150]:

1. if Mµ is a fully gauge invariant quantity, then

IµνMν = Mµ; (6.14)

2. it satisfies the Ward identities; for us, these are qµI
µν = 0 = q′νI

µν .

However, even in the most general case, the gauge projector is not unique. Compare the

projector from Bardeen and Tung, Iµν = gµν − q′µqν/q · q′, to the two different projectors

used in Eichmann and Fischer [158], Iµµ
′

1 = gµµ
′ − qµqµ′/q2 and Iνν

′
2 = gνν

′ − q′νq′ν′/q′2,

for the µ and ν respectively.

Hence we will construct a gauge projector that is simplest for our situation but satisfies

our stipulations for a gauge projector. Since we are only interested in the symmetric

component of the Compton tensor, our Ward identities qµT
µν = 0 and q′νT

µν = 0 can be

added and subtracted to one another to get ∆µT
µν = 0 = q̄µT

µν .

Moreover, since we are focussed on the symmetric Compton tensor,

Tµν = Iµµ′Iν′νTµ′ν′ = Iνµ′Iν′µTµ′ν′ = Iνν′Iµ′µTµ′ν′ = Iµ′µIνν′Tµ′ν′ .

Hence a symmetrised gauge projector is sufficient.

A general ansatz for the symmetrised gauge projector is

Iµν = A1g
µν +A2∆µ∆ν +A3q̄

µq̄ν +A4

(
q̄µ∆ν + ∆µq̄ν

)
, (6.15)

where the Ai are Lorentz scalars. Since q̄ ·∆ = 0 in our kinematics (recall the Eq. 6.2), by

applying the gauge conditions we find that A4 = 0. Hence the restricted gauge projector

is

Iµν = gµν − ∆µ∆ν

∆2
− q̄µq̄ν

q̄2
. (6.16)

Acting with this gauge projector on the unprojected decomposition Eq. 6.13, we get our

final decomposition:

Tµν =[K1q̄ · τ1 +K2q̄ · τ2]

(
gµν − ∆µ∆ν

∆2
− q̄µq̄ν

q̄2

)
+ [K3q̄ · τ1 +K4q̄ · τ2]

(
P̄µ − P̄ · q̄

q̄2
q̄µ
)(

P̄ ν − P̄ · q̄
q̄2

q̄ν
)

+K5

(
P̄ {µ − P̄ · q̄

q̄2
q̄{µ
)(

τ
ν}
1 −

τ1 · q̄
q̄2

q̄ν}
)

+K6

(
P̄ {µ − P̄ · q̄

q̄2
q̄{µ
)(

τ
ν}
2 −

τ2 · q̄
q̄2

q̄ν}
)
.

(6.17)
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6.2 Operator Product Expansion

The tensor decomposition in Eq. 6.17 is entirely non-perturbative. As in chapter 3, we

want to perform a leading-order OPE to divide the coefficient functions Ki into their

perturbative and non-perturbative parts. The process we follow is exactly the same as the

forward OPE:

1. perform a coordinate space OPE; we will argue that the coordinate space OPE from

chapter 3 is sufficient for our purposes;

2. take the off-forward matrix element of this operator;

3. Fourier transform this using the same process as in chapter 3, only with more Fourier

conjugate variables.

6.2.1 OPE Kinematics

In this section we relax our restriction that ξ = 0. The physical Minkowski space gener-

alised Bjorken limit is

P̄ · q̄ →∞, Q̄2 →∞, |ω̄| ≥ 1, fixed and finite.

However, as in section 3.2, this is not the limit we take in the OPE.

If we have Euclidean momenta, then

ω̄ =
2P̄ · q̄
Q̄2

∼ |P̄ |
Q̄2

. (6.18)

In Minkoswki space, P̄ 2 = M2 − t/4 and hence P̄ 2/Q̄2 terms are target mass corrections

that should vanish on the physical light-cone. So, as in chapter 3, we define a large

Euclidean momentum limit:

Q̄2 →∞, ω̄ → 0.

Therefore, in our off-forward OPE we will use the same trick we used in the forward OPE:

keep terms of order ω̄ and throw out terms of order M2/Q̄2 and t/Q̄2, even they are of

the same order as ω̄∗∗.

Again, as in the forward OPE, even though the limit Q̄2 → ∞ and ω̄ → 0 is most

naturally taken in Euclidean space, we do not explicitly evaluate this in Euclidean space.

Nonetheless, our final expression can be compared to Euclidean lattice results.

6.2.2 Coordinate Space OPE

Recall the OPE of the leading-twist current product, symmetrised in its Lorentz indices

(Eq. 3.55), from section 3.2:

T [jµ(z/2)jν(−z/2)]symm = −2
∑
f

e2
fS

ρ(z)
{
Sµρνκ

∞∑
n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f

}
.

∗∗Of course, these corrections don’t actually vanish completely. In chapter 7 we will discuss some difficulties
related to this assumption when it comes to interpreting our lattice results.
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This expression is independent of what states it is sandwiched between. However, recall

that this expression was equivalent to taking the handbag contributions of the short-

distance OPE. Therefore, we need to be sure that handbag contributions dominate. Fol-

lowing the arguments of Diehl et al. [159], we note that for t � Q̄2 (that is, the soft

momentum transfer is much smaller than the hard) handbag terms should dominate the

off-forward process. Hence this OPE is a good approximation for our purposes so long as

we stay in a kinematic regime where t� Q̄2.

6.2.3 ‘Total’ Derivative Operators

Before we actually perform the OPE calculation, we will take a quick detour to discuss

‘total’ derivative operators. These operators have a vanishing forward matrix element

and are hence not considered in the standard deep inelastic scattering OPE. However, for

off-forward kinematics they contribute to the OFCT, and need to be discussed.

Recall the basis of local twist-two operators we have so far focussed on (Eq. 3.50):

O(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1i

↔
D
µ2
...i
↔
D
µn}

ψf (X)− traces.

We define the ‘total’ or ‘overall’ derivative operators as

Ô(m,n)µ1...µmµm+1...µn
f (X) = (−i)m∂µ1X ...∂µmX O

(n)µm+1...µn
f (X), n > m. (6.19)

Note that the derivatives need not be covariant, since they act on one of the operators in

Eq. 3.50, which are gauge invariant.

The off-forward matrix element of the operators in Eq. 6.19 is

〈P ′|Ô(m,n)µ1...µmµm+1...µn
f (X)|P 〉

∣∣∣∣
X=0

= ∆µ1 ...∆µm〈P ′|O(n−m)µm+1...µn
f |P 〉. (6.20)

Therefore, they vanish in the forward case (∆ = 0), and hence why they are generally not

considered in the classic derivations of the forward OPE.

Although the operators in Eq. 6.19 don’t have definite twist, we can get their leading-

twist component by symmetrising their indices and subtracting traces:

[Ô(m,n)µ1...µn
f (X)]twist-two

= (−i)m∂{µ1X ...∂µmX ψ̄f (X)γµm+1i
↔
D
µm+2

...i
↔
D
µn}

ψf (X)− traces, n > m.

(6.21)

Therefore, it is natural to ask why these operators don’t contribute to the leading-order

handbag terms (Eq. 3.55).

Scalar OPE

The OPE result from Eq. 3.55 is completely general, and is equivalent to a full OPE

at twist-two with leading-order Wilson coefficients. This is almost axiomatic, since the

leading-order term of the OPE should be the current product for zero coupling. However,

Eq. 3.55 doesn’t contain any of the operators from Eq. 6.21. Here, we show through a

simplified OPE how their contribution to the leading-order OPE vanishes.
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First, we will assume that our target particle is a spin zero particle (such as a pion),

and hence the matrix element of one of the usual twist-two operators is

〈P ′|O(n)µ1...µn
f |P 〉 =

n∑
i=0,2,4

∆{µ1 ...∆µiP̄µi+1 ...P̄µn}Afn+1,i(t). (6.22)

Where these Afn,i are generalised form factors (GFFs) are related to the Mellin moments

of (isosinglet pion) GPDs by∫ 1

−1
dxxnHf (x, ξ, t) =

n∑
i=0,2,4

(−2ξ)iAfn+1,i(t). (6.23)

Then, we consider a twist-two OPE, where we assume scalar currents for simplicity:

T (P, q;P ′, q′) =

∫
d4zeiq̄·z〈P ′|T [j(z/2)j(−z/2)]|P 〉

=
∑
i,n,m

c(i)
n,m(Q̄2)

2n

(Q̄2)n
q̄µ1 ...q̄µn〈P ′|Ô(m,n)µ1...µn |P 〉,

(6.24)

where Ô(m,n)µ1...µn are the operators from Eq. 6.19, so they include the leading-twist part

of the total derivative operators (Eq. 6.21) as well as the non-leading-twist. Note that i

here denotes the order to which the Wilson coefficients are expanded, and hence i = 0

corresponds to the tree-level expansion.

From Eq. 6.20, the OPE becomes

T =
∑
i,n,m

c(i)
n,m(Q̄2)(−2ξω̄)m

2n−m

(Q̄2)n−m
q̄µm+1 ...q̄µn〈P ′|Ô(n−m)µm+1...µn |P 〉, (6.25)

where we have dropped the momentum arguments of the scalar Compton tensor, T . Fur-

ther, we can insert Eq. 6.22 into this expansion:

T =
∑
i,n,m

c(i)
n,m(Q̄2)(−2ξω̄)m

n−m∑
j=0,2,4

(−2ξω̄)jω̄n−m−jAn−m,j(t)

=
∑
i,n,m

c(i)
n,m(Q̄2)(−2ξ)mω̄n

n−m∑
j=0,2,4

(−2ξ)jAn−m,j(t).

(6.26)

Finally, using Eq. 6.23, this becomes

T =
∑
i,n,m

c(i)
n,m(Q̄2)(−2ξ)mω̄n

∫ 1

−1
dxxn−m−1H(x, ξ, t). (6.27)

Therefore, the term ∑
i,n,m

c(i)
n,m(Q̄2)(−2ξ)mω̄n

can be compared to the tree-level parton amplitude to calculate the value of the Wilson

coefficients.
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A calculation of the leading-order Wilson coefficients diagrams to get c
(0)
n,m is fairly

straightforward; Chen found [143] that the tree-level amplitude is

M(0) ∝
∞∑

n=2,4,6

ω̄n. (6.28)

Therefore, the leading-order Wilson coefficients are

c(0)
n,m ∝ δm,0, (6.29)

and hence at leading-order all total derivative terms vanish, including their twist-two

components.

Leading Twist Gauge Invariance

The fact that these total derivative contributions vanish at leading-order has implications

for the EM gauge invariance of the OFCT. It is well-known that the symmetric component

of the leading-twist OFCT violates EM gauge invariance (see Refs. [146, 155, 160]). Since

we only consider a Compton tensor that is symmetric in its Lorentz indices, the final result

of our OPE will therefore not satisfy EM gauge invariance.

The EM gauge invariance of the symmetric OFCT may be thought of as satisfying its

Ward identities,

qµT
µν
symm = 0 = q′νT

µν
symm ⇒ q̄µT

µν
symm = 0 = ∆µT

µν
symm, (6.30)

or as current conservation,

∂

∂(X ± z/2)ρ
T [j{µ(X + z/2)jν}(X − z/2)] = 0,

∂

∂Xρ
T [j{µ(X + z/2)jν}(X − z/2)] = 0 =

∂

∂zρ
T [j{µ(X + z/2)jν}(X − z/2)].

(6.31)

Note that X is the center position of the current product, which we have so far set to zero

without loss of generality.

At leading-twist, it can be shown [155] that

∂

∂Xρ
T [j{µ(X + z/2)jν}(X − z/2)] 6= 0,

∂

∂zρ
T [j{µ(X + z/2)jν}(X − z/2)] = 0, (6.32)

and hence the leading-twist component of the current product doesn’t satisfy EM gauge

invariance.

Note that, due to translational invariance of the currents,

∂

∂Xρ
〈P ′|T [j{µ(X + z/2)jν}(X − z/2)]|P 〉 =

∂

∂Xρ
ei∆·X〈P ′|T [j{µ(z/2)jν}(−z/2)]|P 〉

=i∆ρei∆·X〈P ′|T [j{µ(z/2)jν}(−z/2)]|P 〉.
(6.33)
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Therefore, in the forward case where ∆ = 0, the matrix element of the current product is

EM gauge invariant, and hence our final result in section 3.2 satisfied its Ward identities. It

is only for off-forward kinematics, where ∆ 6= 0, that the leading-twist amplitude violates

EM gauge invariance. Moreover, as is suggested by Eq. 6.33, EM gauge invariance will be

satisfied up to terms linear in ∆.

In the light-ray operator method it has been found that, by including total derivatives

of leading-twist operators, EM gauge invariance can be restored [148, 149, 155]. Identical

results were found in the OPE formalism [145]. To give an example, take the matrix

element

〈P ′|Ô(2,n)µνµ1...µn
f (X)|P 〉

∣∣∣∣
X=0

= ∆µ∆ν〈P ′|O(n)µ1...µn
f |P 〉. (6.34)

Even though the operator Ô(2,n)µνµ1...µn
f (X) is a non-leading-twist operator, Eq. 6.34 is

a leading-twist term. And the term in Eq. 6.34 is what is needed to restore EM gauge

invariance.

In our OPE, we will find the same result: EM gauge invariance of the leading-twist

OPE is broken by terms linear in ∆. To restore it we could include total derivatives of

leading-twist operators as in the aforementioned studies. However, it has been found [155]

that including total derivative operators is equivalent to the ad hoc inclusion of minimal

terms linear in ∆ that restore gauge invariance (such as in Ref. [161]), plus twist-three

terms. As such, we will opt to simply include the minimal terms that restore EM gauge

invariance.

6.2.4 Matrix Element

Recall the decomposition of the off-forward matrix elements of the local twist-two operators

in Eq. 4.15:

〈P ′|O(n+1)κµ1...µn
f |P 〉 = ū(P ′)γ{κu(P )

n∑
j=0,2,4

Afn+1,j(t)∆
µ1 ...∆µj P̄µj+1 ...P̄µn}

+ ū(P ′)
σ{καi∆α

2M
u(P )

n∑
j=0,2,4

Bf
n+1,j(t)∆

µ1 ...∆µj P̄µj+1 ...P̄µn}

+ Cfn+1(t)mod(n, 2)
1

M
ū(P ′)u(P )∆{κ∆µ1 ...∆µn}.

(6.35)
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Therefore,

zµ1 ...zµn〈P ′|O
(n+1)κµ1...µn
f |P 〉

=
n∑

j=0,2,4

c
(1)
n,j(∆ · z)j(P̄ · z)n−j

[
τκ1 A

f
n+1,j(t) + τκ2 B

f
n+1,j(t)

]
+

n∑
j=0,2,4

c
(2)
n,j(∆ · z)j(P̄ · z)n−j−1P̄ κ

[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+

n∑
j=0,2,4

c
(3)
n,j(∆ · z)j−1(P̄ · z)n−j∆κ

[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+ ∆κ(∆ · z)nCfn+1(t)mod(n, 2)
1

M
u(P ′)u(P ),

(6.36)

where we determine the c from combinatorics.

The general expression for a symmetrised rank-(n+ 1) tensor is

T {κµ1...µn} =
1

(n+ 1)!

∑
σ∈Sn+1

T νσ(1)...νσ(n+1) , (6.37)

where Sn+1 is the group of permutations of the numbers 1, 2, ..., n+1, and σ is an element

of Sn+1. For instance, we can take an element of Sn+1 σ0 = (1, 2, 3, 4, ..., n+1), and denote

the ith term in σ0 by σ0(i). We let ν1 = κ and νj = µj−1. To calculate the c coefficients

in Eq. 6.36, we first note that there are (n + 1)! elements of Sn+1, and hence (n + 1)!

ways to permute the indices. If we fix the first index σ(1) = 1, and calculate the number

of permutations, we can then find c
(1)
n,j . Fixing one element of Sn+1 leaves n free terms;

therefore, there are n! such permutations with σ(1) = 1.

Similarly, if we hold σ(l) = 1 for some 2 ≤ l ≤ j + 1, this is equivalent to calculating

c
(3)
n,j . So there are n! permutations for each value of l, since for each we’re just holding

one index fixed. And furthermore, there are j values of l. Therefore, jn! permutations in

total.

Finally, if we hold σ(k) = 1 for some k ≥ j + 2, this is equivalent to calculating c
(2)
n,j .

There are n! permutations for each value of k, and n− j values of k. Therefore, there are

(n− j)n! permutations in total.

T {κµ1...µn} =
1

(n+ 1)!

( ∑
σ(1)=1

+
∑
σ(l)=1

2≤l≤j+1

+
∑

σ(k)=1
k≥j+2

)
T νσ(1)...νσ(n+1) .

(6.38)

The three c values are

c
(1)
n,j =

n!

(n+ 1)!
=

1

n+ 1
, c

(2)
n,j =

(n− j)n!

(n+ 1)!
=
n− j
n+ 1

c
(3)
n,j =

jn!

(n+ 1)!
=

j

n+ 1
. (6.39)
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Substituting these counting factors, Eq. 6.36 becomes

zµ1 ...zµn〈P ′|O
(n+1)κµ1...µn
f |P 〉 =
n∑

j=0,2,4

1

n+ 1
(∆ · z)j(P̄ · z)n−j

[
τκ1 A

f
n+1,j(t) + τκ2 B

f
n+1,j(t)

]
+

n∑
j=0,2,4

n− j
n+ 1

(∆ · z)j(P̄ · z)n−j−1P̄ κ
[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+

n∑
j=0,2,4

j

n+ 1
(∆ · z)j−1(P̄ · z)n−j∆κ

[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+ ∆κ(∆ · z)nCfn+1(t)mod(n, 2)
1

M
u(P ′)u(P ).

(6.40)

Finally, the leading-twist term of the matrix element is

〈P ′|T [jµ(z/2)jν(−z/2)]|P 〉 = −2
∑
f

e2
fS

ρ(z)Sµρνκ
∞∑

n=1,3,5

(−i)n
n!

×
n∑

j=0,2,4

{ 1

n+ 1
(∆ · z)j(P̄ · z)n−j

[
τκ1 A

f
n+1,j(t) + τκ2 B

f
n+1,j(t)

]
+
n− j
n+ 1

(∆ · z)j(P̄ · z)n−j−1P̄ κ
[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+
j

n+ 1
(∆ · z)j−1(P̄ · z)n−j∆κδj,0

[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+ ∆κ(∆ · z)nCfn+1(t)
1

M
u(P ′)u(P )

}
,

(6.41)

where we have dropped the mod(n, 2) due to the sum over n.

6.2.5 Fourier Transform

The off-forward Compton tensor (Eq. 4.5) is then simply the suitable Fourier transform

of Eq. 6.41:

Tµν = i

∫
d4zeiq̄·z〈P ′|T

[
jµ(z/2)jν(−z/2)

]
|P 〉.

Here, we will only give a basic outline of the process of the Fourier transform. Even

though it is simply an extension of the Fourier transform performed in section 3.2, the

details (given in appendix G) are quite involved and not very physically enlightening.

The general procedure is given below.

1. Substitute Eq. 6.41 into the OFCT.
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2. Introduce Fourier conjugates,

(P̄ · z)n = in
∫ ∞
−∞

dχeiχP̄ ·z
∂n

∂χn
δ(χ), (6.42a)

(∆ · z)n = in
∫ ∞
−∞

dηeiη∆·z ∂
n

∂ηn
δ(η), (6.42b)

τm · z = i

∫ ∞
−∞

dχ̃me
iχ̃mτm·z ∂

∂χ̃m
δ(χ̃m), m = 1, 2, with indices not summed.

(6.42c)

3. Pull the exponentials introduced above through to the reduced propagator

∫
d4zei(q̄+η∆)·zSρ(z) =

i(q̄ρ + η∆ρ)

(q̄ + η∆)2
, (6.43a)∫

d4zei(q̄+χP̄+η∆)·zSρ(z) =
i(q̄ρ + χP̄ ρ + η∆ρ)

(q̄ + χP̄ + η∆)2
, (6.43b)∫

d4zei(q̄+χP̄+η∆+χ̃mτm)·zSρ(z) =
i(q̄ρ + χP̄ ρ + η∆ρ + χ̃mτ

ρ
m)

(q̄ + χP̄ + η∆ + χ̃mτm)2
. (6.43c)

Here, ω̃i = 2q̄ · τi/Q̄2 and the m indices aren’t summed.

4. Use the identity, Eq. 3.60∫ b

a
dxF(x)

∂n

∂xn
δ(x− y) = (−1)n

∂n

∂xn
F(x)

∣∣∣∣
x=y

,

to evaluate the propagators.

The final result is

Tµν =
∑
f

e2
f

∞∑
n=2,4,6

n−1∑
j=0,2,4

{
4

Q̄2

1

n
ω̄n−2(−2ξ)j−1[τ

{µ
1 Afn,j(t) + τ

{µ
2 Bf

n,j(t)]

×
[
ω̄(−2ξ)q̄ν} +

2(n− j − 1)

n− 1
(−2ξ)P̄ ν} +

2j

n− 1
∆ν}

]
+

4

Q̄2

1

n
ω̄n−3(−2ξ)j−2[Afn,j(t)ω̃1 +Bf

n,j(t)ω̃2]

×
(

(n− j − 1)ω̄(−2ξ)2P̄ {µq̄ν} +
2(n− j − 1)j

n− 1
(−2ξ)P̄ {µ∆ν} + jω̄(−2ξ)∆{µq̄ν}

+
j(j − 1)

n− 1
∆µ∆ν +

(n− j − 1)(n− j − 2)

n− 1
ω̄(−2ξ)2P̄µP̄ ν

)
+ 2δj,0ω̄

n−3(−2ξ)n−2Cfn(t)(ω̃1 − ω̃2)
(

(−2ξ)ω̄∆{µq̄ν} + ∆µ∆ν
)

− gµν ω̄n
(

(−2ξ)j [Afn,j(t)
ω̃1

ω̄
+Bf

n,j(t)
ω̃2

ω̄
]

+ δj,0(−2ξ)nCfn(t)(
ω̃1

ω̄
− ω̃2

ω̄
)
)}

.

(6.44)



6.2 Operator Product Expansion 92

6.2.6 Restricted Kinematic Regions

Clearly, Eq. 6.44 is deeply unpleasant and contains far too many moving parts to be

compared to a lattice calculation. However, if we consider two restricted kinematic regions,

we can not only greatly simplify Eq. 6.44, we can arrive at equations that allow us to

extract the A and B form factors, and the C form factors separately.

First Region: Isolate C Form Factors

First, we consider the region P̄ · q̄ = 0 ⇒ ω̄ = 0. This region is less important to us

because we do not use these kinematics in our lattice calculation in chapter 7. However,

below we will show that in principle one can use this kinematic region to extract the C

form factors.

First, we look at just the metric term†† of Eq. 6.44, without yet applying the condition

ω̄ = 0:

∑
f

e2
f

∞∑
n=2,4,6

ω̄n
n−1∑

j=0,2,4

(
(−2ξ)j [Afn,j(t)

ω̃1

ω̄
+Bf

n,j(t)
ω̃2

ω̄
] + (−2ξ)nδj,0C

f
n(t)(

ω̃1

ω̄
− ω̃2

ω̄
)
)
.

(6.45)

Using the Gordon identity (Eq. 4.13), we can write (ω̃1 − ω̃2)/ω̄ = ū(P ′)u(P )/M . There-

fore, Eq. 6.45 becomes

∑
f

e2
f

∞∑
n=2,4,6

n−1∑
j=0,2,4

(
(−2ξ)jω̄n−1[ω̃1A

f
n,j(t) + ω̃2B

f
n,j(t)] +

ū(P ′)u(P )

M
ω̄n(−2ξ)nδj,0C

f
n(t)

)
.

(6.46)

Note that −2ξω̄ = 2∆ · q̄/Q̄2. It is convenient to define

ζ =
∆ · q̄
Q̄2

. (6.47)

Now when we apply the P̄ · q̄ = 0 condition, all terms in Eq. 6.46 will vanish when the

power of ω̄ is strictly greater than the power of ξ. Hence, at P̄ · q̄ = 0 Eq. 6.46 becomes

∑
f

e2
f

∞∑
n=2,4,6

(
ζn−1[ω̃1A

f
n,n−1(t) + ω̃2B

f
n,n−1(t)] +

ū(P ′)u(P )

M
ζnCfn(t)

)
. (6.48)

Note that the term that emerged from our Feynman-Hellmann relation Eq. 5.82 con-

tained a sum over spins and additional Dirac structure. Therefore, if we choose the Dirac

projector Γunpol as in appendix H, we have that ω̃m ∝ ω̄, which of course vanishes in this

kinematic regime. Hence we can safely ignore the ω̃ terms, and Eq. 6.48 becomes

ū(P ′)u(P )

M

∑
f

e2
f

∞∑
n=2,4,6

2nζnCfn(t). (6.49)

††We assume here that the lattice kinematics have been chosen so as to isolate the metric term; in practice
this is not too difficult to do.
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If we choose the kinematics that isolate the metric term (q̄3 = P̄ 3 = ∆3 = 0) and set

ω̄ = 0, we then have the result

1

4

∑
spins

Γunpol
βα uα(P ′)T 33(ζ, t, Q̄2)ūβ(P ) ∝

∑
f

e2
f

∞∑
n=2,4,6

2nζnCfn(t). (6.50)

Since ζ and ξ are linearly dependent, we need not write our amplitude as a function of

both.

Note that for DVCS kinematics ζ = 1 + O(t/Q2). Therefore, in the case of DVCS,

Eq. 6.50 is similar to results that have been obtained with dispersion relation methods

[82–85]. Physically, this region is interesting because it allows us to access the C2 term

(the D-term), and higher Cn GFFs.

Second Region: Isolate A and B Form Factors

The second kinematic region we consider is the zero skewness region (recall Eq. 6.2):

∆ · q̄ = 0 ⇐⇒ ξ = 0 = ζ ⇐⇒ q2 = q′2.

This is the more important kinematic region to this thesis, since it’s the kinematics for

the lattice calculation, and hence why we took time to do a tensor decomposition in this

region. Moreover, recall from section 4.2 that the zero-skewness region is where the Hf

can be interpreted as the Fourier transform of the spatial distribution of partons, and the

A2,0 and B2,0 GFFs are the form factors of the EMT that is relevant to the Ji sum rule.

Therefore, this is physically a very important region.

Here, we simply apply the condition ξ = 0 to Eq. 6.44, noting that while this term

may appear to have poles in ξ from the (−2ξ)j−1 and (−2ξ)j−2 terms, it doesn’t since

these terms have counting factors like j and j(j − 1), respectively. Therefore, in the zero

skewness case Eq. 6.44 becomes

Tµν =
∑
f

e2
f

∞∑
n=2,4,6

{
4

Q̄2

2

n
ω̄n−2[τ

{µ
1 Afn(t) + τ

{µ
2 Bf

n(t)]P̄ ν}

+
4

Q̄2

n− 2

n
ω̄n−3P̄µP̄ ν(ω̃1A

f
n(t) + ω̃2B

f
n(t)) +

4

Q̄2

1

n
ω̄n−1[τ

{µ
1 Afn(t) + τ

{µ
2 Bf

n(t)]q̄ν}

+
4

Q̄2

n− 1

n
ω̄n−2P̄ {µq̄ν}(ω̃1A

f
n(t) + ω̃2B

f
n(t))− gµν ω̄n−1(ω̃1A

f
n(t) + ω̃2B

f
n(t))

}
,

(6.51)

where we have introduced the notation An(t) = An,0(t) and Bn(t) = Bn,0(t). Notice

that Eq. 6.51 doesn’t satisfy EM gauge invariance (the Ward identities qµT
µν = 0 and

q′νT
µν = 0). While q̄µT

µν = 0,

∆µT
µν = −∆ν

∑
f

e2
f

∞∑
n=2,4,6

ω̄n−1(ω̃1A
f
n(t) + ω̃2B

f
n(t)), (6.52)

which is not zero. As we explained in subsection 6.2.3, this is what we what we should

expect.
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Therefore, as we discussed in subsection 6.2.3, we simply add in the necessary terms

to make it gauge invariant:

Tµν(ω̄, t, Q̄2) =∑
f

e2
f

∞∑
n=2,4,6

{
ω̄n−1

[
Afn(t)

2q̄ · τ1

Q̄2
+Bf

n(t)
2q̄ · τ2

Q̄2

](
− gµν +

∆µ∆ν

∆2
+
q̄µq̄ν

q̄2

)

+
4

Q̄2

n− 2

n
ω̄n−3

[
Afn(t)

2q̄ · τ1

Q̄2
+Bf

n(t)
2q̄ · τ2

Q̄2

](
P̄µ − P̄ · q̄

q̄2
q̄µ
)(

P̄ ν − P̄ · q̄
q̄2

q̄ν
)

+
4

Q̄2

2

n
ω̄n−2

[
Afn(t)

(
P̄ {µ − P̄ · q̄

q̄2
q̄{µ
)(

τ
ν}
1 −

τ1 · q̄
q̄2

q̄ν}
)

+Bf
n(t)

(
P̄ {µ − P̄ · q̄

q̄2
q̄{µ
)(

τ
ν}
2 −

τ2 · q̄
q̄2

q̄ν}
)]}

.

(6.53)

In the above equation, all we have done is add a term proportional to ∆µ∆ν ; that is, the

minimal tensor structure to make the leading twist term gauge invariant, as in Ref. [161].

Moreover, note that this result has the same tensor structure as our decomposition in the

previous section (Eq. 6.17).

Relation to Lattice Quantity

Finally, we insert the result of the leading-twist Compton tensor in Eq. 6.53 into Eq. 5.82,

which is related to the Feynman-Hellmann energy shifts. Recall, Eq. 5.82

T̃µν ≡ i
∫
d4zeiq̄·z

1

4

∑
spins

Γβαuα(P ′)〈P ′|T [jµ(z/2)jν(−z/2)]|P 〉ūβ(P ).

The leading-twist zero-skewness term is, restricting the Lorentz indices to i, j = 1, 2, 3,

T̃ij(ω̄, t, Q̄
2) =

∑
f

e2
f

∞∑
n=2,4,6

ω̄n
[
N1A

f
n(t) +N2B

f
n(t)

]
×
(
P̄iq̄j + P̄j q̄i

P̄ · q̄ +
Q̄2

(P̄ · q̄)2
P̄iP̄j +

∆i∆j

∆2
− gij

)
.

(6.54)

In Eq. 6.54, N1 and N2 are given by

N1p̄i =
1

8
tr
{

(I + γ0)(/P
′
+M)γi(/P +M)

}
,

N2p̄i =
1

8
tr
{

(I + γ0)(/P
′
+M)

σiαi∆α

2M
(/P +M)

}
,

(6.55)

where p̄i is the spatial component of P̄µ. The I+γ0 term simply corresponds to our choice

of Dirac projector that we use in the lattice calculation. Refer to appendix H for explicit
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calculations. Choosing the unpolarised projector and i = j = 3, Eq. 6.54 becomes

T̃ij(ω̄, t, Q̄
2) =

∑
f

e2
f

∞∑
n=2,4,6

ω̄n
[
(E +M)Afn(t)− t

4M
Bf
n(t)

]
×
(
P̄iq̄j + P̄j q̄i

P̄ · q̄ +
Q̄2

(P̄ · q̄)2
P̄iP̄j +

∆i∆j

∆2
− gij

)
.

(6.56)

6.3 Analytic Properties

We now wish to investigate the analytic properties of the OFCT. First, we will perform a

dispersion relation on the OFCT, which is useful since it is completely non-perturbative

(in contrast to the dispersion relation in section 3.2) and comes simply from the analytic

properties of the amplitude, rather than needing to use the OPE relation. Second, by

examining the analytic properties of the OFCT we will show exactly how the Euclidean

lattice calculation contains information relating to physical Minkowski GPDs.

6.3.1 Analytic Properties of the Off-Forward Compton Tensor

Before we start doing anything we need to know where the discontinuities in the complex

plane are when we take the relevant momentum variables complex. As is standard, we

assume that our scattering amplitudes are analytic functions of their momentum variables

at every point off the real axis.

One can show (see appendix C) that the OFCT has the form

Tµν =
∑
X

[〈P ′|jµ(0)|X(P + q)〉〈X(P + q)|jν(0)|P 〉
P 0
X − (P 0 + q0)− iε

+
〈P ′|jν(0)|X(P− q′)〉〈X(P− q′)|jµ(0)|P 〉

P 0
X − (P 0 − q′0)− iε

]
.

(6.57)

Therefore, we have discontinuities in our amplitude where the intermediate state goes

on-shell: at P 0
X = P 0 + q0 or P 0

X = P 0 − q′0.

In the incoming nucleon’s rest frame, this becomes

(P 0
X)2 = (P 0 + q0)2 ⇒ M2

X + q2 = M2 + 2q0M + (q0)2 ⇒ M2
X = (P + q)2.

Similarly,

(P 0
X)2 = (P 0 − q′0)2 ⇒ M2

X + q′2 = M2 − 2q′0M + (q′0)2 ⇒ M2
X = (P − q′)2.

Hence the discontinuities are where the invariant mass of the intermediate state is M2
X =

(P + q)2 or M2
X = (P − q′)2. We can use this to determine where the cuts of each of the

coefficient functions Ki in Eq. 6.17 are in terms of ω̄ and ζ = q̄ ·∆/Q̄2. To do this we note

that, as in the forward case, our inelastic condition means that M2
X ≥M2:

M2
X = (P + q)2 = (P̄ + q̄)2 = P̄ 2 + 2P̄ · q̄ − Q̄2 = −Q̄2(1− ω̄) + P̄ 2 ≥M2, (6.58)
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and

M2
X = (P − q′)2 = (P̄ − q̄)2 = P̄ 2 − 2P̄ · q̄ − Q̄2 = −Q̄2(1 + ω̄) + P̄ 2 ≥M2, (6.59)

for the crossed graph. Recall that P̄ 2 = M2 − t/4. Therefore, in the complex ω̄, Eq. 6.58

implies the discontinuities are for ω̄ ≥ 1 + t/(4Q̄2), and from Eq. 6.59, ω̄ ≤ −1− t/(4Q̄2).

Now if we set P̄ · q̄ = 0, we have in both Eqs. 6.58 and 6.59, M2
X = P̄ 2− Q̄2 ≥M2, for

intermediate state on-shell, and hence −Q̄2 ≥ −t/4. Since |Q̄| � M, |t|, we must either

have q2 > 0 and/or q′2 > 0. This implies two possible regions for a cut:

0 < q2 = (q̄ + ∆/2)2 = t/4 + ∆ · q̄ − Q̄2 ⇒ ζ > 1− t

4Q̄2
. (6.60)

0 < q′2 = (q̄ −∆/2)2 = t/4−∆ · q̄ − Q̄2 ⇒ ζ < −1 +
t

4Q̄2
. (6.61)

So, we consider two cases:

1. ∆ · q̄ = 0 and therefore there are no singularities in the amplitude due to ζ. The

amplitude is expanded in ω̄, and is analytic everywhere except the cuts at |ω̄| ≥
1 + t/4Q̄2;

2. P̄ · q̄ = 0 and therefore there are no singularities in the amplitude due to ω̄. The

amplitude is expanded in ζ, and is analytic everywhere except for the cuts |ζ| ≥
1− t/4Q̄2.

6.3.2 A General Dispersion Relation

Now it is possible to derive a dispersion relation using these analytic features.

Instead of deriving two separate dispersion relations for these two cases, we note that

they are essentially the same case with different momentum variables. Let the scattering

amplitude be M(α, t, Q̄2), with α being either ζ or ω and its thresholds either at ±(1 −
t/4Q̄2) or ±(1 + t/4Q̄2), respectively. For simplicity, we take 1 ± t/4Q̄2 ≈ 1, by the fact

that we have chosen t� Q̄2.

First, note that the Lorentz scalar coefficients of the scattering amplitude (the Ki in

Eq. 6.17) have the same analyticity as the whole scattering amplitude. Therefore, we

apply Cauchy’s theorem to one of the scalar coefficients of the OFCT Ki(α, t, Q̄
2) at some

fixed values of the momentum transfer variables t, Q̄2:

Ki(α, t, Q̄
2) =

1

2πi

∮
dα′

Ki(α
′, t, Q̄2)

α′ − α . (6.62)

To evaluate this integral we take the contour given in figure 6.1. Letting the contour along

the cuts be a distance ε > 0 above or below the real axis, we can write Eq. 6.62 as

Ki(α, t, Q̄
2) =

1

2πi

[ ∫ ∞
1

dα′
Ki(α

′ + iε, t, Q̄2)−Ki(α
′ − iε, t, Q̄2)

α′ − α

+

∫ −1

−∞
dα′

Ki(α
′ + iε, t, Q̄2)−Ki(α

′ − iε, t, Q̄2)

α′ − α
]

+ arc contributions.

(6.63)
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Reα

Imα

Figure 6.1: Contour for two dispersion relations with α = ω or ζ. The cuts on the real axis start

at α ≈ 1. The radius of the contour is taken to ininfity.

Now we let α′ → −α′ in the second integral. For simplicity we suppress the t, Q̄2 argu-

ments:

Ki(α) =
1

2πi

[ ∫ ∞
1

dα′
Ki(α

′ + iε)−Ki(α
′ − iε)

α′ − α

−
∫ 1

∞
dα′
−Ki(−α′ + iε) +Ki(−α′ − iε)

−α′ − α
]

+ arcs.

(6.64)

From the crossing symmetry, q → −q′ and q′ → −q, we note that under crossing ω̄ →
−ω̄ and ζ → −ζ, but the whole amplitude remains invariant. Hence Ki(α, t, Q̄

2) =

Ki(−α, t, Q̄2). Moreover, the Schwarz reflection principle states that a function with real

number boundary value on the real axis has the property f∗(z) = f(z∗) [47]. Therefore,

Eq. 6.64 becomes

Ki(α) =
1

πi

∫ ∞
1

dα′[Ki(α
′ + iε)−Ki(α

′ − iε)]
( 1

α′ − α +
1

α+ α′

)
+ arcs. (6.65)

By the Schwarz reflection principle Ki(z) − Ki(z
∗) = 2iIm

[
Ki(z)

]
, and hence we will

define a spectral function: ρi(z) = 2
π Im

[
Ki(z)

]
. Note that, unlike the forward (inclusive)

case, there is no way to associate this spectral function with the cross section of another

process; that is, the optical theorem can not be applied here.

Therefore,

Ki(α) = 2

∫ ∞
1

dα′ρ(α′)
( 1

α′ − α +
1

α+ α′

)
+ arcs. (6.66)

Further, we to subtract off the component of Ki(α) that is constant in α: Ki(α = 0). This

will allow for better comparison to the OPE, and remove the arc contributions. Using

Eq. 6.66,

Ki(0) = 2

∫ ∞
1

dα′
2ρ(α′)

α′
+ arcs. (6.67)
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Therefore,

Ki(α)−Ki(0) =2

∫ ∞
1

dα′ρ(α′)
( 1

α′ − α +
1

α+ α′
− 2

α′

)
=4α2

∫ ∞
1

dα′
ρ(α′)

α′(α′2 − α2)
.

(6.68)

Substituting the variable x = 1/α′, and assuming α is sufficiently small,

Ki(α)−Ki(0) = 4α2

∫ 1

0
dxx

ρ̃(x)

1− (αx)2
= 4

∞∑
n=2,4,6

αn
∫ 1

0
dxxn−1ρ̃(x). (6.69)

For instance, if α = ω̄, then looking at K1 in Eq. 6.17, we have from the OPE

K1(ω̄, t) =
∑

n=2,4,6

ω̄nAfn(t). (6.70)

Then, in zero-skewness kinematics∫ 1

0
dxxn−1H

(+)
f (x, t) = Afn(t), (6.71)

where H
(+)
f (x, t) = H(x, t) −H(−x, t) is the singlet GPD. An identical expression holds

if we replace H → E and A→ B. Therefore, the OPE prediction is

lim
Q̄2→∞

ρ̃(x, t, Q̄2) = H
(+)
f (x, t), and lim

Q̄2→∞
K1(ω̄ = 0, t, Q̄2) = 0. (6.72)

However, previous Feynman-Hellmann calculations of the forward Compton tensors [123,

162] found that in the forward case the ω = 0 term asymptotes to a non-zero value for

large Q2. We will discuss this ‘subtraction term’ for the OFCT in chapter 7.

6.3.3 Comparison to Euclidean Space and Lattice

In the preceding chapters, we have commented on the difficulties of extracting information

about physical Minkowski space from Euclidean lattice calculations. Here, as a conclusion

to our theoretical results, we will show exactly what information can be determined from

Euclidean space calculations, and how our continuum OPE performed in this chapter can

be interpreted in light of operator mixing on the lattice.

The OPE we have just performed (Eq. 6.53) essentially has the form

lim
q→∞

∫
d4zeiq̄·zT [j(z/2)j(−z/2)] '

∑
n

cn(q̄2)q̄µ1 ...q̄µnOµ1..µnn (0), (6.73)

here ignoring the Lorentz structure. Therefore, its matrix element is simply the sum of

the matrix elements of the local operators. As we discussed in section 4.4, local operators

are ‘signature agnostic’: they have the same value whether calculated in Minkowski or

Euclidean space. So as long as we stay in the region of Euclidean kinematics, we can

compare our results derived in Minkowski space (for instance, Eq. 6.56) to the Euclidean

lattice results.
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Moreover, unlike chapter 3, we do not need to perform a perturbative dispersion re-

lation to relate the matrix elements of the local operators to GPDs; we already did that

work in section 3.3, and arrived at the polynomiality relationship Eq. 4.19. Therefore, by

applying a polynomial fit to our lattice results, choosing the correct kinematics, we should

be able to extract GPD moments.

However, as we mentioned in section 4.4, the lattice breaks the Lorentz symmetry

of the continuum. Hence leading twist operators mix with non-leading twist operators.

Therefore, unless we perform a continuum extrapolation (varying the size of the lattice

spacing and fitting to this behaviour), we can only use the continuum OPE (and continuum

dispersion relation) performed in this chapter as guides of how we expect the lattice OFCT

to behave, and how to interpret it physically.

Moreover, the Euclidean kinematics do somewhat hamper our ability to access higher

GPD moments. This is most obvious when we look at a simplified OPE of a Compton

tensor:

lim
q̄→∞

T '
∑
n

ω̄nAn(t). (6.74)

Note that in the unphysical region, |ω̄| ≤ 1, only the first few operators, An(t) appreciably

contribute to the amplitude. By contrast, all the moments are required to full reconstruct

the GPDs.

In principle, analytic continuity ensures that we can recover the contribution of all

operators. However, this would require a lattice calculation with ‘infinite’ precision. In

reality, many of the terms in the polynomial ω̄NAN (t) will be smaller than the error

bars. This means that with traditional fitting procedures we can only accurately access a

finite number of moments, which are nonetheless enough to reconstruct the original parton

distributions [163].

In the next chapter, we present the results of our lattice calculation.



Chapter 7

Numerical Calculation

In this chapter we present the results of a lattice calculation of the off-forward Compton

tensor (OFCT), performed using the Feynman-Hellmann (FH) method as outlined in

chapter 5. It is an extension of previous work calculating the forward Compton tensor

using FH techniques [122, 123, 139, 140, 162]. We will further compare the results of this

proof-of-principle calculation to the leading-twist OFCT from chapter 6.

In contrast to other hadronic observables, relatively little work has been done to extract

GPD-related quantities on the lattice. In the vast majority of such studies, generalised

form factors (GFFs) are determined through standard three-point function methods [56–

64]. As we mentioned in section 4.4, due to the broken Lorentz symmetry on the lattice,

only the first few GFFs can be determined from this method. The highest GFF calculated

so far is A3,0 [61]. Most such studies, however, limit themselves to the A2,0, B2,0 and C2

form factors, which parameterise the QCD energy-momentum tensor. In addition to many

quasi-PDF papers (see Ref. [111] for a review), there has also been one investigation of

pion quasi-GPDs [65].

Consequently, the FH calculation of the OFCT presented in this chapter is quite dif-

ferent from previous lattice studies of GPD-related quantities. As such, it may allow us to

determine previously inaccessible GPD-related information. First and most importantly,

we can calculate many higher GFFs than the local operator methods. This would require

more work than is presented in this thesis, although the initial results are promising. From

a tower of GFFs, using the fact that they parameterise GPD Mellin moments (Eq. 4.19),

one can in principle reconstruct GPDs [163]. To fully extract many GFFs, however, we

would need a wide spread of t and ω̄ values. Moreover, we can investigate the scaling

behaviour of GPDs with Q̄2.

The structure of this chapter follows: In section 7.1, we explain how the lattice cal-

culation was performed, giving details of the FH perturbation, kinematics, and lattice

specifications. Then, we discuss, using results from chapters 5 and 6, how to extract

GFFs from this calculation.

In section 7, we present the main results of this lattice calculation:

1. An exponential fit to the relevant ratios of correlators. This shows the quality of our

signal.

2. The behaviour of the energy shifts as functions of λ1 and λ2, the FH parameters,

which confirms the quadratic λ behaviour of the energy shift.

3. The ω̄ dependence of this signal, which allows us to access the interesting physical

information.

100
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4. A comparison of the OFCT, as calculated in this work, to the forward Compton

tensor as calculated in previous Feynman-Hellmann lattice studies [123, 162], and a

comparison to a simple model GPD.

In the final section, we discuss the results, finding them to largely be in agreement

with the behaviour predicted in previous chapters as well as with previous lattice studies

and the simple phenomenological model. However, our method of comparison at this stage

only provides a glimpse of what may be possible in the future. Finally, we discuss some

obstacles to overcome and avenues of further investigation.

7.1 Introduction and Setup

7.1.1 Lattice Details

The key quantities of the lattice ensembles used in our calculations are given in the table

below. In particular, we highlight the fact that this calculation uses a larger-than-physical

pion mass (more than three times the physical mass), and is on the SU(3) flavour sym-

metric line: mu = md = ms.

Ensemble values for this calculation

(NL)3 ×NT 323 × 64

Nf 2+1

(κs, κl) (0.120900, 0.120900)

β 5.50

mπ 466(13) MeV

a 0.074(2) fm

7.1.2 Perturbed Correlators

In a Feynman-Hellmann calculation, we calculate the nucleon two-point correlators with a

perturbation to the standard QCD Lagrangian. As we mentioned in chapter 5, we choose

the following perturbation to the standard QCD Lagrangian:

LFH =
[
λ1

(
eiq·y + e−iq·y

)
+ λ2

(
eiq
′·y + e−iq

′·y)]ψ̄(y)γ3ψ(y).

Then, as discussed in chapter 6, we limit ourselves to zero-skewness kinematics (Eq. 6.2),

q2 = q′2. Therefore, since there is no temporal component of the q vectors in our FH shift,

we must have |q| = |q′|.
We calculated two sets of perturbed correlators for different kinematics. For the first

set of correlators, we chose L
2πq = (3, 2, 0) and L

2πq′ = (2, 3, 0), which satisfy the zero-

skewness condition. Note that L is the lattice length, and we ignore the factor of L/2π

from here on when giving momentum vectors. For the second set of correlators, we chose

q = (1, 5, 0) and q′ = (−1, 5, 0), which also satisfy zero skewness. The choice of the q(′)

vectors limits what our values of p(′) may be, since we must always have the intermediate

term of greater energy to extract a meaningful signal.

For both sets of correlators, we calculated eight different pairs of λ values that are

necessary to isolate the off-forward term∗:

∗Note that these λ values are chosen to give correlators that lie on the λ1 = λ2 and λ1 = −λ2 lines, as
discussed in chapter 5.3.
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Figure 7.1: Diagram in momentum space showing how the momentum values mix under the

perturbing Lagrangian for the first set of correlators. For each momentum value there is a tower

of hadronic states with the same quantum numbers as the nucleon. The red lines are q vectors,

and the blue lines are q′ vectors.
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With these sets of correlators, we then choose a value of the three momentum to Fourier

project onto; this is the outgoing nucleon momentum p′. We also define p ≡ p′ − q + q′.

In general, the source momenta may be p′ + n1q + n2q
′ for n1 and n2 integers (see figure

7.1). However, as we showed in chapter 5, the sink momentum will be p for the dominant

contributions to the energy shift.

Recall that we defined ω̄ = 2P̄ · q̄/Q̄2. For our lattice kinematics this becomes

ω̄ =
2(p + p′) · (q + q′)

(q + q′)2
.

First Set

The first set of correlators have q = (3, 2, 0) and q′ = (2, 3, 0). The OFCT extracted from

this has t = −2 and Q̄2 = 12.5. We will neglect factors of (2π/L)2 in momentum squared

variables. In physical units, this is t = −0.55 GeV2 and Q̄2 = 3.44 GeV2. Therefore, the

only reasonable ω̄ value we can extract is given in the table below.
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Figure 7.2: Diagram in momentum space for the second set of correlators. The red lines are q

vectors and the blue lines are q′ vectors.

p p′ ω̄ momentum sq.

(1, 0, 0) (0, 1, 0) 2/5 1

We can only use these values of p and p′, since any higher momentum values (for instance,

(2, 1, 0) and (1, 2, 0)) will have intermediate states of lower energy than the incoming

outgoing states, thus preventing us from extracting a meaningful signal.

Second Set

The second set of correlators had q = (1, 5, 0) and q′ = (−1, 5, 0). So the OFCT extracted

from this calculation has t = −4 and Q̄2 = 25. In physical units, this is t = −1.10 GeV2

and Q̄2 = 6.85 GeV2. The momentum mixing induced by the perturbing Lagrangian for

these kinematics is given in figure 7.2.

Using this set of correlators, we can calculate a wider range of ω̄ values:

p p′ ω̄ momentum sq.

(1,−2, 0) (1,−2, 0) -4/5 5

(1,−1, 0) (1,−1, 0) -2/5 2

(1, 0, 0) (−1, 0, 0) 0 1

(1, 1, 0) (−1, 1, 0) 2/5 2

(1, 2, 0) (−1, 2, 0) 4/5 5

This wider spread in the possible ω̄ values means that most of the analysis was performed

on this second set of correlators.
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7.1.3 Ratios

Recall the expression for a finite difference equation that approximates a mixed derivative:

∂2EN
∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

=
EN (λ, λ) + EN (−λ,−λ)− EN (λ,−λ)− EN (−λ, λ)

4λ2
, (7.1)

for some λ ≈ 0. We denote the energy shift

∆E(λ) ≡ EN (λ, λ) + EN (−λ,−λ)− EN (λ,−λ)− EN (−λ, λ). (7.2)

Then, we define the correlator ratio,

R(p′, λ) ≡ C(p′, λ, λ)C(p′,−λ,−λ)

C(p′, λ,−λ)C(p′,−λ, λ)
, (7.3)

where C(p′, λ1, λ2) is the perturbed correlator calculated with the FH shift Eq. 5.15 and

projected onto three momentum p′ at the sink.

Therefore, as we argued in section 5.3, for large Euclidean time and the right choice

of λ values,

R(p′, λ)→ Ae−∆Eτ . (7.4)

So if we fit an exponential to a ratio such as Eq. 7.3, we can extract the energy shift

Eq. 7.2.

Recall the FH relation Eq. 5.79 from chapter 5:

∆E(p′)

4λ2
≈ −〈Ω|χ(0)|N(p′)〉T33〈N(p)|χ†(0)|Ω〉

4EN |〈Ω|χ|N(p′)〉|2 , (7.5)

where T33 is the µ = ν = 3 component of the OFCT, as defined in Eq. 4.5.

Then the overlaps are

〈Ω|χα(0)|X(p)〉 = Zχ,X(p)uα(p, s),

〈X(p)|χ†α(0)|Ω〉 = Z∗χ,X(p)ūα(p, s).

Therefore, inserting this into the FH relation, we get

∆E(p′)

4λ2
≈ − Z∗N (p′)ZN (p)T̃33

4EN |〈Ω|χ|N(p′)〉|2 , (7.6)

where T̃ 33 is the OFCT-like object we defined in Eq. 5.82, which was the OFCT sandwiched

on either side by spinors and a sum over spins and Dirac projector out the front.

Therefore, isolating the OFCT part of this equation we get

− ∆E(p′)

λ2

EN |〈Ω|χ|N(p′)〉|2
Z∗N (p′)ZN (p)

≈ T̃ 33, (7.7)

To evaluate the term on the LHS of Eq. 7.7, first note that by rotational invariance (of

integer values of π/2), we have that

ZN (p1)u(p1) = 〈Ω|χ|N(p1)〉 = 〈Ω|χ|N(p2)〉 = ZN (p2)u(p′).
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And moreover, since we have been carrying around the same sum over spins and trace, we

have

|〈Ω|χ|N(p)〉|2 =
1

4
|ZN (p)|2

∑
s,s′

[
Γunpol

]
βα
uα(P, s′)uūβ(P, s) =

1

2
|ZN (p)|2(EN +M).

Inserting this into Eq. 7.7, we get

− ∆E(p′)

2λ2
EN (EN +M) ≈ T̃ 33, (7.8)

Now, we need to use our results from chapter 6 to match the Feynman-Hellmann shift

at large Q̄2 to the OPE.

Recall Eq. 6.56 from the OPE:

T̃ij(ω̄, t) =
∑
f

e2
f

∞∑
n=2,4,6

ω̄n
[
(EN +M)Afn(t)− t

4M
Bf
n(t)

]
×
(
P̄iq̄j + P̄j q̄i

P̄ · q̄ +
Q̄2

(P̄ · q̄)2
P̄iP̄j +

∆i∆j

∆2
− gij

)
.

In our kinematics with P̄ 3 = q̄3 = ∆3 = 0, this becomes

T̃33(ω̄, t) =
∑
f

e2
f

∞∑
n=2,4,6

ω̄n
[
(EN +M)Afn(t)− t

4M
Bf
n(t)

]
. (7.9)

However, since we only choose one flavour of current at a time with unit charge, this is

really

T̃ f33(ω̄, t) =
∞∑

n=2,4,6

ω̄n
[
(EN +M)Afn(t)− t

4M
Bf
n(t)

]
. (7.10)

Inserting this result in Eq. 7.8, we get

− ∆E(p′)

2λ2
EN (EN +M) ≈

∞∑
n=2,4,6

ω̄n
[
(EN +M)Afn(t)− t

4M
Bf
n(t)

]
, (7.11)

where the choice of f = u, d depends on what quark current we use in the FH perturbation.

It is then convenient to define the following

Af (ω̄, t) ≡
∞∑

n=2,4,6

ω̄nAfn(t), Bf (ω̄, t) ≡
∞∑

n=2,4,6

ω̄nBf
n(t). (7.12)

Of course, these have ΛQCD/Q̄ corrections when we compare to the lattice calculation,

but for ease of notation we will not consider such corrections for the moment.

In particular, we will calculate the quantity

− ∆E(p′)

λ2
EN ≈

2

(EN +M)

[
(EN +M)Af (ω̄, t)− t

4M
Bf (ω̄, t)

]
, (7.13)
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as this reduces to the forward Compton tensor, as calculated using Feynman-Hellmann

techniques in Ref. [123,162], as t→ 0.

Moreover, for a conjugate pair of momenta, p1 and p2, such that p2 = p1 −∆, we

will calculate the product of two ratios,

R(p1)×R(p2),

which should give us four times Eq. 7.10.

And the ratio of the two ratios

R(p1)/R(p2),

which we expect to be consistent with zero.

7.2 Results

In this section we present all the main results of our lattice calculation: (1) the effective

mass as a function of Euclidean time, which tells us the quality of the signal; (2) the

λ dependence of the energy shift, which confirms that it is dominated by second order

terms; (3) the energy shift as a function of ω̄, which allows us to compare our results to

the OFCT; and finally, (4) the towers of GFFs (Eq. 7.10), normalised using the results

from the previous section. We will compare these final results to the forward Compton

tensor, as calculated using lattice FH techniques, and a simple phenomenological model.

For the sake of brevity, we have only included a small selection of plots that best

convey our results. Additional plots, including many down quark results, can be found in

appendix I.

7.2.1 Effective Mass

First, recall that we are interested in two different types of ratios:

1. The ratio that isolates the off-forward component, R(p′) as in Eq. 7.3,

R(p′, λ) ≡ C(p′, λ, λ)C(p′,−λ,−λ)

C(p′, λ,−λ)C(p′,−λ, λ)
.

2. And the product and ratio of this ratio: R(p1)×R(p2) and R(p1)/R(p2).

The effective mass may be taken of each both types of ratio. This is defined by

∆Eeff(τ) =
1

δτ
log

(
R(τ)

R(τ + δτ)

)
. (7.14)

For the first set of correlators, the effective mass plot for the ratio, R(p′), as defined

in Eq. 7.3, is given in figure 7.3. Similarly, for the second set of correlators, the same ratio

R(p′) is given in figure 7.4.

The exponential fits to the ratios (figures 7.3 and figure 7.4) are largely ‘good’: they

have small error bars, low noise/signal ratio, and conform to the effective mass plot.

However, the fitting window starts quite early in Euclidean time: τ = 4a− 11a for figure

7.3, and τ = 3a− 8a for figure 7.4.
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Figure 7.3: Effective mass plot for the ratio R(p), with the first set of correlators. Shaded bands

are exponential fits to the energy shift.

The effective masses for other kinematics, for all down quark results, and for the

R(p1)×R(p2) and R(p1)/R(p2) ratios results can be found in appendix I.

7.2.2 λ Dependence

In our Feynman-Hellman derivation from chapter 5, we assumed that there were no linear

terms in λ in our energy shift. We can test this explicitly by taking the quantity defined

in Eq. 7.2, ∆E(λ), and subtracting off the energy shift at ω̄ = 0. Then, we fit the function

f(λ) = aλ+ bλ2 to this subtracted ∆E(λ).

For the case of p̄ = (0, 1, 0), we find that the parameters of the model function are

a = 0.0012± 0.0168, and b = −5.29± 0.54. Hence the linear term is consistent with zero,

in line with our assumption for the FH derivation. We plot bλ2 against the subtracted

energy shift in figure 7.5.

7.2.3 ω̄ Dependence

Next, we are interested in how these energy shifts behave as functions of ω̄. For this

analysis, we limit our focus to the second set of correlators, since we only calculated one

ω̄ value from the first set. The ω̄ dependence of the up quark energy shifts from R(p1)

and R(p2) are given in figures 7.6 and 7.7. The ω̄ dependence of the up quark energy

shifts of R(p1)×R(p2) and R(p1)/R(p2) are given in figure 7.8. Additional results are in

appendix I.

We expect the energy shift of the ratios R(p1) and R(p2) to have quadratic dominated

ω̄ dependence from Eq. 7.11. Moreover, we should see that the energy shift extracted from

R(p1) is consistent with that extracted from R(p2).
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Figure 7.4: Effective mass plot for the ratios R(p1), with the second set of correlators. Note that

the values of the sink momentum all have px = 1.
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Figure 7.5: The energy shift ∆E(λ) with the ω̄ = 0 term subtracted for up quarks.
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Figure 7.6: The energy shift normalised by 1/λ2 as a function of ω̄. The two λ values have been

averaged.

However, there is also a very large ω̄ = 0 term (see figure 7.6), which we call the

‘subtraction term’ — we will consider this in greater detail in the discussion. So we also

present the energy shifts with the ω̄ = 0 term subtracted in figure 7.7.

We also expect that the product of the two ratios R(p1)×R(p2) isolates Eq. 7.10, and

therefore has quadratic-dominated ω̄ dependence. The R(p1)/R(p2) should be consistent

with zero. The subtracted energy shifts of these ratios is presented in figure 7.8.

This is largely what we see; however, note that the ω̄ > 0 values of R(p1)/R(p2) are

not consistent with zero as we would expect.
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Figure 7.7: The same energy shift as figure 7.6, except with the ω̄ = 0 terms subtracted off.
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Figure 7.8: The energy shifts of R(p1)×R(p2) and R(p1)/R(p2) with the ω̄ = 0 value subtracted.
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Figure 7.9: The energy shifts from figure 7.8 normalised to give the towers of up quark GFFs.

7.2.4 Towers of GFFs

Finally, we apply all the correct normalisations to get the two towers of GFFs, which we

will combine into the quantity

T̃ f (ω̄, t) =
2

(EN +M)

[
(EN +M)Af (ω̄, t)− t

4M
Bf (ω̄, t)

]
.

The results for this quantity are given in figure 7.9 for up quarks and figure 7.10 for down

quarks.

Note that

T̃ u(ω, t = 0) = 2

∞∑
n=2,4,6

ωnaun,

where aun are up quark PDF moments (recall the relationship between PDFs and GPDs

from Eq. 4.21). This allows us to compare directly the off-forward and forward towers

of moments, which we do by comparing our calculation to the calculation of the forward

Compton tensor with lattice Feynman-Hellmann techniques in Re. [162]. This comparison

is presented in figures 7.11 and 7.12.
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Figure 7.10: The down quark energy shifts, normalised to give the towers of down quark GFFs.
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Figure 7.11: The forward Compton tensor (Au(ω, t = 0)), as calculated in Ref. [162], compared

to the towers of GFFs.
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Figure 7.12: The same comparison as figure 7.11, with a different value of Q2 for the forward

Compton tensor.
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Figure 7.13: PDFs extracted from experiment used to find the zero-skewness forward and off-

forward Compton tensors.
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We can use a rough phenomenological model of GPDs to test whether our results are

of the right magnitude. We use PDFs from the MMHT 2014 set at Q2
0 = 1 GeV2, next-to-

next-to leading-order [164]. Then, we can construct a comparable tower of PDF moments

from

Au(ω, t = 0) =
∞∑

n=2,4,6

ωn
∫ 1

0
dxxn−1

[
qu(x) + q̄u(x)

]
.

For the GPDs we use a very simple Regge-based ansatz [55,165–167], which at zero skew-

ness is

Hf (x, t)−Hf (−x, t) = x−α
′t(qf (x) + q̄f (x)),

for α′ = 0.9 GeV−2. Hence the off-forward Compton tensor is

Au(ω̄, t) =

∞∑
n=2,4,6

ω̄n
∫ 1

0
dxxn−1−α′t[qu(x) + q̄u(x)

]
.

These towers of moments from the phenomenological fits are given in figure 7.13. Note

that our use of these results is very rough: we have not got the same values of the scaling

variable Q2 (or Q̄2) and we have not done any error analysis.

Summary of Results

To summarise the first three main results: (1) from the effective mass plots, the fits are

largely good, but start quite early in Euclidean time; (2) the λ behaviour is consistent

with a quadratic, as we expect from chapter 5; (3) the ω̄ behaviour is consistent with the

OPE, except the perhaps the ω̄ > 0 behaviour of the R(p1)/R(p2) energy shift (figure

7.8).

7.3 Discussion

In this section, we interpret the results from the proof-of-principle calculation. Of course,

since this calculation is exploratory, much of the discussion in this section is premature

and not as rigorous as we would like. Nonetheless, we can conclude that our results present

a great deal of potential for future studies.

First, we look at the t behaviour of our results, and compare this with previous studies.

Then, we note some of the unique features of the method we have used in this calculation,

such as the subtraction term and spacelike target mass corrections, and propose how these

can be interpreted and controlled. Finally, we outline some avenues of further research.

7.3.1 t Behaviour

The t dependence of our results is particularly important because this reflects the non-

perturbative behaviour of the GFFs.

t = −2 versus t = −4

We can investigate the t behaviour by comparing the two sets of correlators: the first set at

t = −2 and the second at t = −4. In physical units, t = −0.55 GeV2 and t = −1.10 GeV2,

respectively. Therefore, by this comparison, we can tentatively compare the t dependence
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of the OFCT. This is tentative because there is a very large difference in Q̄2 between the

two sets. Moreover, we have no subtraction term for the t = −2 set that would allow us

to compare the GFF towers of each.

However, we can get the ω̄ = 2/5 term from each set of correlators, which gives some

credence to our comparison. The results are given in the table below.

p′ aλ Q̄2 ω̄ ∆E/λ2

First Set (1, 0, 0) 0.025 12.5 2/5 −1.572± 0.403

(t = −2) (1, 0, 0) 0.05 12.5 2/5 −1.531± 0.357

(t = −0.55 GeV2) (0, 1, 0) 0.025 12.5 2/5 −1.421± 0.328

(0, 1, 0) 0.05 12.5 2/5 −1.428± 0.228

Second Set (1, 1, 0) 0.025 25 2/5 −1.336± 0.075

(t = −4) (1, 1, 0) 0.05 25 2/5 −1.364± 0.083

(t = −1.10 GeV2) (−1, 1, 0) 0.025 25 2/5 −1.371± 0.058

(−1, 1, 0) 0.05 25 2/5 −1.379± 0.059

Taken at face-value, therefore, there is a decrease in the signal with increased t, as we

would expect.

t = 0 versus t = 4

We can make a more robust comparison of the forward Compton tensor, as calculated

in [123, 162], and the OFCT calculated in the present thesis. There is a relatively small

difference in the scaling variable: Q2 = 17 and Q2 = 26, compared to Q̄2 = 25 for

the OFCT. In physical units, Q2 = 4.66 GeV2 and Q2 = 7.13 GeV2, respectively, and

Q̄2 = 6.85 GeV2.

Similarly, the λ values for the forward Compton tensor are aλ = 0.0125, and 0.025 for

Q2 = 17, and aλ = 5× 10−5, and 5× 10−6 for Q2 = 26. This is compared to aλ = 0.025

and 0.05 for the OFCT. Moreover, we have the subtraction term (ω = 0 or ω̄ = 0) for

both calculations.

Finally, we note the difference between the coefficients of the two towers of GFFs:

∞∑
n=2,4,6

ω̄n
[
(EN +M)Afn(t) +

t

4M
Bf
n(t)

]
.

Since −t/[4M(EN +M)] ≈ 0.08, our results are dominated by the Af (ω̄, t) towers.

Therefore, we can interpret the comparison of these two calculations as the tower of

GFFs Au(ω̄, t) at different values of t: the forward Compton tensor is the tower of GFFs

at t = 0 (i.e. a tower of PDF moments), and the OFCT is the same object at t = −4 (or

t = −1.10 GeV2 in physical units). From figures 7.11 and 7.12, we can see a significant

decrease in the size of the OFCT from t = 0 to t = −4.

Comparison to Simple Phenomenological Model

The t behaviour of figures 7.11 and 7.12 is consistent with the t behaviour of the phe-

nomenological PDF and GPD towers in figure 7.13. However, the FH-calculated quanti-

ties are approximately twice the magnitude of the model ones. This is similar to the case

of PDF moments, where lattice calculations from three point functions are significantly



7.3 Discussion 116

larger than those extracted from experiment [111]. However, we must caution that the

simple Regge-based ansatz used here is no substitute for a complete analysis, using more

advanced and accurate phenomenological fits.

Comparison to Three-Point Functions

Previous lattice studies that calculate GFFs from three point functions [56–62] have con-

sistently found the t behaviour of the n = 2 GFFs has a dipole form:

Af2,0(t) =
Af2,0(0)

(1− t/M2)2
,

with a similar behaviour for the other n = 2 GFFs. As such, we expect the towers of

quadratic term in the towers of moments to decrease with −t. This is what we see in

figures 7.11 and 7.12.

7.3.2 Unique Features of the Present Calculation

Subtraction Term

In previous studies of the forward Compton tensor from lattice FH techniques, it was

found that there was a significant contribution from the energy shift at ω = 0; this term

is known as the subtraction term [122, 123, 162]. Moreover, it was found that this term

doesn’t scale to zero with Q2 → ∞, as we’d expect from the OPE†, but rather scaled to

a non-zero value with large Q2. Similarly, in our results for the OFCT, we find a large

contribution at ω̄ = 0 (see figures I.5 and 7.6). While we don’t have the Q̄2 behaviour to

see whether this term vanishes, it is likely that it won’t.

There are two possible sources of the subtraction term. First, it is possible that it’s

a discretisation error. As we argued in chapter 3, the large Q2 (or Q̄2) limit probes the

short distance limit |zµ| → 0. However, on the lattice have a non-zero minimum spacing,

the lattice spacing. As such, this subtraction term could simply be a lattice artefact from

discretisation. In Refs. [123, 162], it was found that at least part of the subtraction term

was a lattice artefact.

On the other hand, the subtraction term could contain interesting physical information

(of course, once the part that’s a lattice artefact is removed). However, for this to be the

case would require us to rethink the validity of the OPE for deep inelastic processes, which

has so far been very successful.

Following previous studies of the forward Compton tensor, we will assume that once we

subtract off the term at ω̄ = 0, the subtracted quantity behaves like the OPE prediction

for the OFCT (Eq. 6.56). As such, we interpret our subtracted quantities as towers of

GFFs.

Spacelike Target Mass Corrections

Here, we will briefly outline one subtlety in using the twist-two OPE. In the following

section for simplicity we will limit our discussion to forward scattering, but the results

†However, non-perturbative results such as the dispersion relation (section 6.3) don’t make any strict
predictions about its value.
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apply equally to off-forward. From chapters 3 and 6, the leading-twist local operators in

the operator product expansion (OPE) are (Eq. 3.50)

O(n)µ1...µn
f = ψ̄fγ

{µ1i
↔
D
µ2
...i
↔
D
µn}

ψf − traces,

where traces were any terms proportional to gµiµj . These traces are suppressed by powers

of P 2/Q2, which may be large with Euclidean kinematics. Therefore, the trace terms may

actually contribute significantly to the Euclidean Compton tensor due to these spacelike

target mass corrections, and hence we must consider their contributions.

Consider the forward matrix element of the spin two operator (flavour index sup-

pressed) without the traces subtracted :

4qµ1qµ2
Q4

〈P |O(unsub)µ1µ2
2 |P 〉 = ω2a2 +

P 2

Q2
ã2, (7.15)

where a2 is the usual parton distribution function (PDF) moment, and ã2 is the reduced

matrix element of the operator that is usually subtracted.

Then, we can subtract off the ω = 0 term, which corresponds to the p = 0 in the usual

kinematics, where this is the spatial component of Pµ. Therefore, we get

4qµ1qµ2
Q4

〈P |O(unsub)µ1µ2
2 |P 〉 − 〈P |O(unsub)µ1µ2

2 |P 〉
∣∣∣∣
ω=0

= ω2a2 +
P 2 −M2

Q2
ã2. (7.16)

Hence so long as (P 2 −M2)/Q2 = 2p2/Q2 � ω, this first moment is fine. This problem

stems from the Euclidean signature, where it is possible for P 2 6= M2.

Now consider the n = 4 operator:

16qµ1 ...qµ4
Q8

〈P |O(unsub)µ1...µ4
4 |P 〉 = ω4a4 +

P 2

Q2
ω2ã

(1)
4 +

(
P 2

Q2

)2

ã
(2)
4 . (7.17)

Note that the ω = 0 subtraction term will not remove the P 2

Q2ω
2 term. However, it will be

suppressed compared to the leading ω2 term, especially if p is kept small.

Analogous conditions hold in off-forward kinematics, where we now would like to keep

ω̄ � p̄2/Q̄2 and ∆2/Q̄2. This only means we need to be judicious in how we choose our

kinematics; it isn’t a fundamental problem.

Similarly, in quasi-distributions studies trace terms need to be suppressed by taking

Pz large [109]. Therefore, borrowing ideas from quasi-distributions, it may be useful to fit

at each power of ω̄ to the ansatz a+ b/Q̄2 [168,169].

Here we have shown how to avoid only one type of higher twist correction — there are

of course other sources of higher twist terms.

7.3.3 Future Prospects

The exploratory calculation carried out in this chapter is just a first step in extracting

GPDs from lattice Feynman-Hellmann techniques. In this section we suggest possible

avenues of investigation for future studies.
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Separation of A and B Towers

Since our ultimate aim is the calculation of GFFs, we need to first separate out the towers

of A and B GFFs. This may involve changing the spin-parity projection, or calculating

different elements of the OFCT such as T 44.

Higher Moments

The most exciting feature of this calculation is that it allows us to extract higher GFFs,

from which it is possible in principle to reconstruct GPDs.

Already, sophisticated fitting techniques have been applied to similar studies of the

forward Compton tensor [170]. The moment fitting would largely be the same as in the

forward study, since for zero-skewness kinematics the GFFs are straightforward Mellin

moments of GPDs:∫ 1

−1
dxxn−1Hf (x, ξ = 0, t) = Af2,0(t),

∫ 1

−1
dxxn−1Ef (x, ξ = 0, t) = Bf

2,0(t). (7.18)

For an extraction of the t dependence of higher GPD moments, we would need to calculate

many more sets of correlators, vary both momentum transfer variables t and Q̄2, and ω̄.

Moreover, it is likely that the kinematics would need to extend beyond a two-dimensional

plane, and as such we would have to use the ‘conserved’ current operator (see Ref. [162]).

Similarly, larger lattice volumes will likely be needed for more densely distributed values

of ω̄ and t.

Non-zero Skewness and D-term

Recall from chapter 6 that the kinematic regime P̄ · q̄ = 0 allows us to extract Cn GFFs

(Eq. 6.50):

1

4

∑
spins

Γunpol
βα uα(P ′)T 33ūβ(P ) ∝

∑
f

e2
f

∞∑
n=2,4,6

2nζnCfn(t),

where ζ = ∆ · q̄/Q̄2. For lattice studies this becomes

ζ =
2(q− q′) · (q + q′)

(q + q′)2
.

This calculation is completely achievable; the only drawback being that it is more

computationally expensive than the calculation carried out in this chapter. This is because

if we want a range of ζ values, we must vary q̄, and hence each new ζ value requires a new

set of correlators.

q q′ ζ

(1, 5, 0) (−1, 5, 0) 0

(4, 4, 0) (2, 4, 0) 12/25

(5, 3, 0) (3, 3, 0) 16/25

(6, 0, 0) (4, 0, 0) 20/25

Note that p = (−1, 0, 0), p′ = (1, 0, 0), ω̄ = 0 and Q̄2 = 25 are fixed in the table above. See

figure 7.14. This would give us access to the quark D-term, which we discussed extensively

in section 4.2.
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px

py

p′p

Figure 7.14: Diagram representing the kinematics to isolate the Cn GFFs. Note that the lines

along the px axis have been made slightly off-axis for clarity.

Therefore, the present lattice calculation is simply the start of many possible applica-

tions of FH techniques to help unravel the structure of hadrons through GPDs.



Chapter 8

Conclusions and Outlook

Generalised parton distributions (GPDs) offer us the opportunity to significantly deepen

our understanding of hadron structure. However, on the lattice and in experiment, they are

hard to determine. On the lattice, the fundamental problem to overcome is the mismatch

between the high-energy partonic description and the Euclidean spacetime of numerical

calculations.

In this thesis, we presented a novel method to calculate GPDs through lattice Feynman-

Hellmann techniques. This required first developing the Feynman-Hellmann formalisms

necessary to calculate the off-forward Compton tensor (OFCT) in chapter 5. These results

are analogous to previous Feynman-Hellmann derivations (for instance, Refs. [133, 139,

162]). Due to the non-trivial mixing induced by our perturbing Lagrangian, we considered

the effects of this mixing on the perturbed correlator in detail. This analysis guided our

choice of the perturbation couplings, λ1,2. However, we didn’t perform any numerical

calculations at other combinations of λ values, and further investigation (numerical and

analytic) of this mixing behaviour would be interesting.

In chapter 6, we performed an operator product expansion (OPE) on the OFCT, and

thereby related it to the Mellin moments of GPDs. The behaviour of the nucleon OFCT

found in this chapter is consistent with previous studies in different formalisms. Moreover,

with the correct choice of kinematics, the OPE allows for the extraction of generalised form

factors (GFFs). Since lattice calculations must use large but finite Q̄2, further study of

the higher twist contributions to the OFCT will make GFF fits more accurate.

Finally, in chapter 7, we presented a proof-of-principle numerical computation using

these methods. Although this calculation and its analysis was exploratory, the initial

results look very promising. Most notably, the comparison of the forward Compton tensor

to the OFCT showed t behaviour consistent with a simple phenomenological model. Hence

this exploratory calculation sets the stage for far more work calculating the Euclidean

OFCT.

However promising these initial results are, it will still require a great deal more work

to realise the full potential of this method. First, we need to be able to separate the A
and B towers of GFFs. Then, to calculate higher GFFs, we need a greater spread of ω̄

and t values than the ones presented in this thesis. Moreover, since the subtraction term

is so poorly understood, greater work must be done (both for off-forward and forward

calculations) to determine to what extent it is a lattice artefact.

Second, it will be highly revealing to look at the Q̄2 behaviour of the amplitude. This

may be compared to theoretical predictions of the scaling behaviour, and will moreover

help isolate the leading-twist part of the OFCT.
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Additionally, there are certain systematic improvements to the lattice calculation that

would likely improve the results, including excited state control, physical point extrapo-

lation, and application of the parity expanded variational analysis (PEVA) [171].

In summary, we have shown the first steps in determining GFFs from lattice Feynman-

Hellmann techniques, and presented the results of an exploratory calculation. Although

there is still much work to do, these results lay the groundwork for future studies.



Appendix A

Notation and Standard Results

Metrics

We use the convention for the Minkowski metric,

gµν = gµν = diag(1,−1,−1,−1).

Units

We use physical units ~ = c = 1, and so we measure all quantities in terms of their energy

dimension:

[energy] = [mass] =
1

[length]
=

1

[time]
.

Minkowski Triangle Inequality

For two future-pointing timelike Lorentz vectors a and b, we have the Minkowski triangle

inequality: √
(a+ b)2 ≥

√
a2 +

√
b2.

Note that this is the reverse of the Euclidean triangle inequality. Then, as with the

Euclidean triangle inequality, we can get the reverse triangle inequality:√
(a− b)2 ≤

∣∣∣√a2 −
√
b2
∣∣∣.

This last result is an easy way to check if a virtual photon must be spacelike or timelike.

Symmetrisation of Indices

Symmetrisation and anti-symmetrisation of two indices, respectively, is denoted

a{µν} =
1

2
(aµν + aνµ), a[µν] =

1

2
(aµν − aνµ). (A.1)

Therefore, aµν = a{µν} + a[µν].

The general expression for a symmetrised rank-n tensor is

T {µ1...µn} =
1

n!

∑
σ∈Sn

T νσ(1)...νσ(n) , (A.2)
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where Sn is the group of permutations of the numbers 1, 2, ..., n, and σ is an element of

Sn. Here, we denote a component of some group element σ ∈ Sn as σ(1) ∈ [1, 2, ..., n].



Appendix B

Operator Product Expansion:

Traditional Approach

In this appendix, we show how to perform the operator product expansion (OPE) using

the traditional approach (we use Refs. [14,28,31] as our guides). The basic argument goes:

1. Assume that the OPE relation (Eq. 3.34) applies to the time-ordered product of

currents. As we mentioned before, for non-perturbative operators, the OPE is merely

a conjecture.

2. Use dimensional power-counting arguments to deduce a basis of leading-order oper-

ators.

3. Given this basis of operators and constraints such as Lorentz covariance, current

conservation etc., one can construct the leading-order (as z → 0) OPE of the current

product.

4. Using perturbation theory, one can calculate the Wilson coefficients to a given order.

Therefore, for the time-ordered product of currents, we start with the assumption that

a relation of the form

A(z)B(0)
z→0−−−→

∑
i

ci(z)Oi(0)

applies to the product of currents.

As is convention, we parameterise the OPE for the current product in an equivalent

but slightly different way:

T [j(z)j(0)]
z→0−−−→

∑
n,i

C(i)
n (z2)zµ1 ...zµnOµ1...µni (0). (B.1)

Note that C
(i)
n (z2) are the reduced Wilson coefficients, and the full Wilson coefficient is

C(i)
n (z2)zµ1 ...zµn . (B.2)

Here, we must play a subtle game similar to section 3: even though we are doing a short-

distance expansion, we actually want the part of the OPE that is relevant to the light-cone.

For the term

C(i)
n (z2)zµ1 ...zµn ,
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in the light-cone limit z2 → 0, the terms zµ1 ...zµn do not affect the singularity of the

overall Wilson coefficient, but for the short-distance limit they do. Therefore, we will only

consider the singularity of the reduced Wilson coefficients C
(i)
n (z2), so that we keep all the

terms we need to analytically continue back to the light-cone.

Power Counting: Canonical Dimension

Now we are ready to consider the degree of the singularity in C
(i)
n (z2). Let’s start by

considering the canonical dimension of each operator (for an interacting theory, this will

be altered by the anomalous dimension). We count dimension in terms of mass, so [M ] = 1

and for a spacetime coordinate [z] = −1. Then, since the RHS of Eq. B.1 must have the

same dimension as the LHS, the dimension of C
(i)
n (z2) is

dCi,n = −dOi,n + n+ 2dj , (B.3)

where dOi,n is the dimension of the operator Oµ1...µni , we get a dimension of −n from

zµ1 ...zµn , and dj is the dimension of a current. Then, since the only dimensionful parameter

that C
(i)
n (z2) can depend on is z2, we have that in the limit z2 → 0,

lim
z2→0

C(i)
n (z2) ∼ lim

z2→0
(z2)

(dOi,n−n−2dj)/2. (B.4)

Therefore, we introduce the ‘twist’ of an operator as τ = dOi,n − n. And hence from

Eq. B.4, the operator with the lowest twist will have the most singular coefficient, and

hence will contribute the most in the limit z2 → 0. Note that if we only considered the

operators that were relevant in the short-distance limit, it wouldn’t be the lowest twist

operators that contribute most, but those with lowest dimension dOi,n .

Leading Twist Operators

More generally, the twist of an operator is defined as τ ≡ dimension − spin [172]. For

instance, the spin of a quark field is 1/2, while its dimension is [ψ] = 3/2 (recall the QCD

Lagrangian, Eq. 2.10), and hence the twist of a quark field is 1. Similarly, the twist of the

gluon field strength tensor is also 1. Therefore, the lowest twist terms one can have are

twist-two, since our operators must be bilinears in our particle fields. On the other hand,

the covariant derivative has canonical dimension [Dµ] = 1 and spin 1, so overall twist 0.

Hence we can add as many of these as we like, and so the light-cone OPE has an infinite

number of leading-order terms in contrast to the short distance OPE.

Moreover, to have definite spin, an operator must belong to an irreducible represen-

tation of the Lorentz group. This means it must be symmetrised in its Lorentz indices

and have any terms proportional to gµiµj (traces) subtracted (the justifications for this

are quite involved; see Ref. [173]).

Therefore, the basis of twist-two operators is

O(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1i

↔
D
µ2
...i
↔
D
µn}

ψf (X)− traces, (B.5)

Õ(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1γ5i

↔
D
µ2
...i
↔
D
µn}

ψf (X)− traces. (B.6)
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These are the same operators used in chapter 3. As per the discussion in section 6.2,

technically we also need to include operators with total derivatives. However, we will

follow the standard presentation of the OPE and leave these out.

For gluons, the twist two operators are

O(n)µ1...µn
g (X) = F {µ1α (X)i

↔
D
µ2
...i
↔
D
µn}

Fαµn}(X)− traces. (B.7)

The leading-order Wilson coefficients for any operators with gluon fields will be zero, since

adding gluon lines to the leading order handbag diagrams introduces terms of order α2
S .

Therefore, once again going by the traditional presentation of the OPE, we do not give

these operators in our final result.

Form of Current Product

Getting this basis of operators is really the difficult part of the expansion. Once we know

them, we can find the OPE by applying general properties of the current product: Lorentz

covariance; crossing symmetry, which eliminates q-odd terms in the symmetric Compton

tensor; and current conservation (∂zj(z) = 0).

Then, the OPE of the time-ordered current product is

T [jµ(z)jν(0)]
z→0−−−→ (∂µ∂ν − gµν∂2)

∞∑
n=0,2,4

C(1)
n (z2)zµ1 ...zµnOµ1...µnn (0)

+ (gµκ∂ρ∂ν + gρν∂µ∂κ − gµκgνρ∂2 − gµν∂ρ∂κ)
∞∑

n=0,2,4

C(2)
n (z2)zµ1 ...zµnOµνµ1...µnn+2 (0).

(B.8)

After evaluating the Wilson coefficients to first order (born-level diagrams), this OPE

gives the same result as the free field approximation from chapter 3.



Appendix C

Analyticity of the Compton Tensor

In this appendix, we show how to derive a form of the Compton tensor in which the

coordinate space integral has been performed and hence the cuts along the real axis are

manifest.

We start by expanding the time-ordering of the OFCT:

Tµν = i

∫
d4zeiq̄·z

[
〈P ′|jµ(z/2)jν(−z/2)|P 〉Θ(z0) + 〈P ′|jν(−z/2)jµ(z/2)|P 〉Θ(−z0)

]
,

(C.1)

where Θ is the Heaviside step function∗. Inserting a complete set of states, and using the

translation operator,

Tµν =
∑
X

i

∫
d3PX
(2π)3

1

2P 0
X

∫
d4z
[
ei(q̄+P̄−PX)·z〈P ′|jµ(0)|X〉〈X|jν(0)|P 〉Θ(z0)

+ ei(q̄+PX−P̄ )·z〈P ′|jν(0)|X〉〈X|jµ(0)|P 〉Θ(−z0)
]
,

(C.2)

where PX is the four momentum of state |X〉. Now apply the definition of the Dirac delta:

Tµν =
∑
X

(2π)3i

∫
d3PX
(2π)3

1

2P 0
X

∫
dz0

×
[
δ(3)(q̄ + P̄−PX)eiz

0(q̄0+P̄ 0−P 0
X)〈P ′|jµ(0)|X〉〈X|jν(0)|P 〉Θ(z0)

+ δ(3)(q̄ + PX − P̄)eiz
0(q̄0+P 0

X−P̄
0)〈P ′|jν(0)|X〉〈X|jµ(0)|P 〉Θ(−z0)

]
.

(C.3)

The integral representation of the step function is

Θ(z0) =
1

2πi
lim
ε→0+

∫ ∞
−∞

ds
eisz

0

s− iε , (C.4)

where we evaluate Eq. C.4 with a semi-circle contour in the upper half of the complex

plane, whose radius goes to infinity. Then,

Θ(z0) = lim
ε→0+

{
e−εz

0
if z0 > 0

0 if z0 < 0,
(C.5)

∗Even though quark fields anti-commute, quark currents commute, since they contain two quark fields
that pick up two negative signs.
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Θ(−z0) = lim
ε→0+

{
0 if z0 > 0

eεz
0

if z0 < 0.
(C.6)

Now we can evaluate Eq. C.3:∫ ∞
−∞

dz0eiz
0(q̄0+P̄ 0−P 0

X)Θ(z0) =
−i

P 0
X − q̄0 − P̄ 0 − iε , (C.7)

∫ ∞
−∞

dz0eiz
0(q̄0−P̄ 0+P 0

X)Θ(−z0) =
−i

P 0
X + q̄0 − P̄ 0 − iε , (C.8)

where from now on we suppress the limit ε→ 0+. Putting Eqs. C.7 and C.8 into Eq. C.3,

we get

Tµν(P, q;P ′, q′) =
∑
X

[〈P ′|jµ(0)|X(P + q)〉〈X(P + q)|jν(0)|P 〉
P 0
X − (P 0 + q0)− iε

+
〈P ′|jν(0)|X(P− q′)〉〈X(P− q′)|jµ(0)|P 〉

P 0
X − (P 0 − q′0)− iε

]
.

(C.9)

Therefore, we have discontinuities in our amplitude where the intermediate state goes

on-shell: at P 0
X = P 0 + q0 or P 0

X = P 0 − q′0.

For the forward Compton tensor ∆ = 0, Eq. C.9 becomes

Tµν(P, q) =
∑
X

[〈P ′|jµ(0)|X(P + q)〉〈X(P + q)|jν(0)|P 〉
P 0
X − (P 0 + q0)− iε

+
〈P ′|jν(0)|X(P− q)〉〈X(P− q)|jµ(0)|P 〉

P 0
X − (P 0 − q0)− iε

]
.

(C.10)

This gives that the discontinuities are at |ω| ≥ 1.



Appendix D

Light-Cone Coordinates

In this section, we show how to expand a set of momentum vectors, in a hadron’s infinite

momentum frame, in terms of the collinear light-cone vectors that appear throughout this

thesis.

Given two lightlike vectors aµ and āµ such that a · ā = 1, we write any Lorentz vector

as

kµ = (ā · k)aµ + (a · k)āµ + kµ⊥, (D.1)

where k⊥ · a = 0 = k⊥ · ā. This is sometimes called the ‘Sudakov decomposition’.

We will apply this to the case of off-forward scattering, where we choose a frame (the

centre of mass frame) such that a · P̄ = 1 and ξ = −a ·∆/2. Then, Eq. D.1 implies that

P̄µ =
M2 − t/4

2
aµ + āµ, (D.2a)

∆µ = (M2 − t/4)ξaµ − 2ξāµ + ∆µ
⊥, (D.2b)

q̄µ = − 1

ω̄
āµ +

Q̄2ω̄

2
aµ, (D.2c)

where we have assumed that the transverse components of P̄ and q̄ are very small. More-

over, we only recover the usual Lorentz scalars from the above light-cone decomposition

up to terms of order M2/Q̄2 and t/Q̄2, which of course we take to be vanishingly small.

In the forward case, we have the same a and ā but chosen so that a · P = 1. Then,

Pµ =
M2

2
aµ + āµ, (D.3a)

qµ = −xāµ +
Q̄2

2x
aµ, (D.3b)

where x is the Bjorken variable.

Finally, for some vector k it is common to see the notation k+ = k · a and k− = k · ā.
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Appendix E

Electromagnetic Form Factors

Throughout this thesis, we discuss electromagnetic (EM) form factors. Like parton dis-

tribution functions, these are some of the most important hadronic observables, and are

related to GPDs by Eq. 4.24.

EM form factors parameterise elastic electron-nucleon scattering: e−(k) + N(P ) →
e−(k′) +N(P ′). See figure E. The scattering matrix of this process is given by

iM(e−N → e−N) = ū(k′)γµu(k)〈P ′|jµ(0)|P 〉, (E.1)

where, as in all previous chapters, jµ is the hadronic current:

jµ(z) =
∑
f

e2
f ψ̄f (z)γµψf (z).

We denote Q2 = (P ′−P )2. Note that, by the Minkowski triangle inequality, we can show

that q is a spacelike vector.

Therefore, the matrix element can be expanded

〈P ′|jµ(0)|P 〉 = ū(P ′)

[
γµF1(Q2) +

iσµν∆ν

2M
F2(Q2)

]
u(P ). (E.2)

The Lorentz scalar functions F1 and F2 are the EM form factors of the nucleon, known as

the Pauli and Dirac form factors, respectively. They are non-perturbative quantities, and

therefore can only be measured from experiment or calculated from first principles on the

lattice.

In the GPD-form factor comparison (Eq. 4.24), the momentum transfer denoted Q2

here is actually the soft momentum transfer in GPDs: Q2 = t.

Non-relativistically, form factors have been interpreted as the three-dimensional Fourier

transforms of charge and magnetisation distributions. However, a more correct interpreta-

tion [174] is that the Pauli and Dirac form factors are two-dimensional Fourier transforms

of the charge and magnetisation densities, respectively, in the infinite momentum frame:

ρE(b) =

∫ ∞
0

d|Q|
2π
|Q|J0(|Q||b|)F1(Q2) (E.3a)

ρM (b) = |b| sin2(φ)

∫ ∞
0

d|Q|
2π

Q2J1(|Q||b|)F2(Q2), (E.3b)
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P

k k′

q

P ′ = P + q

N

e−

N

e−

Figure E.1: The Feynman diagram for elastic electron-nucleon scattering.

where J0,1 are the cylindrical Bessel functions of the first and second kind, b is the impact

parameter and φ is the angle between the polarisation and the impact parameter. The

formalism used to derive this relation is the same as the one used in section 4.2 when

discussing the interpretation of GPDs as the Fourier transform of spatial distributions of

quarks.



Appendix F

Three- and Four-Point Functions

(Ch. 5)

In this appendix, we derive the form of three- and four-point functions necessary for the

Feynman-Hellmann calculation in chapter 5.

Three-Point Function

Note that for a complete set of states {|X(p)〉}, we have that

I =
∑
X

∫
d3p

(2π)3

1

2EX(p)
|X(p)〉〈X(p)|. (F.1)

Therefore, for three translationally invariant operators, we define the three-point correlator

C
(3)
O1O2O3

(x1, x2, x3) ≡〈Ω|O1(x1)O2(x2)O3(x3)|Ω〉

=
∑
X,Y

∫
d3p1

(2π)3

d3p2

(2π)3

1

4EX(p1)EY (p2)

〈Ω|O1(x1)|X(p1)〉〈X(p1)|O2(x2)|Y (p2)〉〈Y (p2|O3(x3)|Ω〉,

(F.2)

where we have made the vacuum states explicit. Then, using translational invariance

Eq. F.2 becomes

C
(3)
O1O2O3

(x1, x2, x3)

=
∑
X,Y

∫
d3p1

(2π)3

d3p2

(2π)3

1

4EX(p1)EY (p2)

× e−EX(p1)τ1+ip1·x1e(EX(p1)−EY (p2))τ2−i(p1−p2)·x2eEY (p2)τ3−ip2·x3

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Ω〉

=
∑
X,Y

∑
p1,p2

∆3p1

(2π)3

∆3p2

(2π)3

e−EX(p1)(τ1−τ2)

2EX(p1)

e−EY (p2)(τ2−τ3)

2EY (p2)
eip1·(x1−x2)eip2·(x2−x3)

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Ω〉.

(F.3)
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The Fourier-projected three-point function is defined as

C
(3)
O1O2O3

(p1,p2; τ1, τ2, τ3) ≡
∫
d3x1d

3x2e
−ip1·(x1−x2)e−ip2·(x2−x3)C

(3)
O1O2O3

(x1, x2, x3).

(F.4)

Using the delta definition and Eq. F.3, this becomes

C
(3)
O1O2O3

(p1,p2; τ1, τ2, τ3) =
∑
X,Y

e−EX(p1)(τ1−τ2)

2EX(p1)

e−EY (p2)(τ2−τ3)

2EY (p2)

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Ω〉.
(F.5)

Four-Point Function

As before, we can simplify our working by introducing the general four-point function of

four translationally invariant operators:

C
(4)
O1O2O3O4

(x1, x2, x3, x4) ≡ 〈Ω|O1(x1)O2(x2)O3(x3)O4(x4)|Ω〉

=
∑
X,Y,Z

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

1

8EX(p1)EY (p2)EZ(p3)

× 〈Ω|O1(x1)|X(p1)〉〈X(p1)|O2(x2)|Y (p2)〉〈Y (p2)|O3(x3)|Z(p3)〉〈Z(p3)|O4(x4)|Ω〉,
(F.6)

Then, using translational invariance Eq. F.6 becomes

C
(4)
O1O2O3O4

(x1, x2, x3, x4)

=
∑
X,Y,Z

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

1

8EX(p1)EY (p2)EZ(p3)

× e−EX(p1)τ1+ip1·x1e(EX(p1)−EY (p2))τ2−i(p1−p2)·x2e(EY (p2)−EZ(p3))τ3−i(p2−p3)·x3eEZ(p3)τ4−ip3·x4

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Z(p3)〉〈Z(p3)|O4(0)|Ω〉

=
∑
X,Y,Z

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

e−EX(p1)(τ1−τ2)

2EX(p1)

e−EY (p2)(τ2−τ3)

2EY (p2)

e−EZ(p3)(τ3−τ4)

2EZ(p3)

× eip1·(x1−x2)eip2·(x2−x3)eip3·(x3−x4)

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Z(p3)〉〈Z(p3)|O4(0)|Ω〉.
(F.7)

The Fourier-projected four-point function is defined as

G
(4)
O1O2O3O4

(p1,p2,p3; τ1, τ2, τ3, τ4) ≡∫
d3x1d

3x2d
3x3e

−ip1·(x1−x2)e−ip2·(x2−x3)e−ip3·(x3−x4)C
(4)
O1O2O3O4

(x1, x2, x3, x4).
(F.8)
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Using the delta function and Eq. F.7, Eq. F.8 becomes

G
(4)
O1O2O3O4

(p1,p2,p3; τ1, τ2, τ3, τ4)

=
∑
X,Y,Z

e−EX(p1)(τ1−τ2)

2EX(p1)

e−EY (p2)(τ2−τ3)

2EY (p2)

e−EZ(p3)(τ3−τ4)

2EZ(p3)

× 〈Ω|O1(0)|X(p1)〉〈X(p1)|O2(0)|Y (p2)〉〈Y (p2)|O3(0)|Z(p3)〉〈Z(p3)|O4(0)|Ω〉.

(F.9)



Appendix G

Details of Off-Forward OPE

(Ch. 6)

Here, we give the details of the Fourier transform of the coordinate space OPE from

chapter 6.

To begin, we insert our coordinate space matrix element (Eq. 6.41) into the off-forward

Compton tensor (OFCT),

Tµν = i

∫
d4zeiq̄·z〈P ′|T

[
jµ(z/2)jν(−z/2)

]
|P 〉.

This gives us

Tµν =− 2i

∫
d4zeiq̄·z

∑
f

e2
fS

ρ(z)Sµρνκ
∞∑

n=1,3,5

(−i)n
n!

×
n∑

j=0,2,4

{
1

n+ 1
(∆ · z)j(P̄ · z)n−j

[
τκ1 A

f
n+1,j(t) + τκ2 B

f
n+1,j(t)

]
+
n− j
n+ 1

(∆ · z)j(P̄ · z)n−j−1P̄ κ
[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+
j

n+ 1
(∆ · z)j−1(P̄ · z)n−j∆κ

[
Afn+1,j(t)τ1 · z +Bf

n+1,j(t)τ2 · z
]

+ ∆κδj,0(∆ · z)nCfn+1(t)
1

M
u(P ′)u(P )

}
.

(G.1)

Now, as in the forward case, we introduce Fourier conjugate variables, this time using four

Fourier conjugates:

(P̄ · z)n = in
∫ ∞
−∞

dχeiχP̄ ·z
∂n

∂χn
δ(χ), (G.2a)

(∆ · z)n = in
∫ ∞
−∞

dηeiη∆·z ∂
n

∂ηn
δ(η), (G.2b)

τm · z = i

∫ ∞
−∞

dχ̃me
iχ̃mτm·z ∂

∂χ̃m
δ(χ̃m), m = 1, 2, with indices not summed. (G.2c)
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So Eq. G.1 becomes

Tµν =− 2i
∑
f

e2
fSµρνκ

∞∑
n=1,3,5

(−i)nin
n!

{ n∑
j=0,2,4

[
1

n+ 1
[τκ1 A

f
n+1,j(t) + τκ2 B

f
n+1,j(t)]

×
∫
dηeiη∆·z ∂

j

∂ηj
δ(η)

∫
dχeiχP̄ ·z

∂n−j

∂χn−j
δ(χ)

+
n− j
n+ 1

P̄ κ
[
Afn+1,j(t)

∫
dχ̃1e

iχ̃1τ1·z ∂

∂χ̃1
δ(χ̃1) +Bf

n+1,j(t)

∫
dχ̃2e

iχ̃2τ2·z ∂

∂χ̃2
δ(χ̃2)

]
×
∫
dηeiη∆·z ∂

j

∂ηj
δ(η)

∫
dχeiχP̄ ·z

∂n−j−1

∂χn−j−1
δ(χ)

+
j

n+ 1
∆κ
[
Afn+1,j(t)

∫
dχ̃1e

iχ̃1τ1·z ∂

∂χ̃1
δ(χ̃1) +Bf

n+1,j(t)

∫
dχ̃2e

iχ̃2τ2·z ∂

∂χ̃2
δ(χ̃2)

]
×
∫
dηeiη∆·z ∂

j−1

∂ηj−1
δ(η)

∫
dχeiχP̄ ·z

∂n−j

∂χn−j
δ(χ)

]
+ ∆κCfn+1(t)

1

M
u(P ′)u(P )

∫
dηeiη∆·z ∂

n

∂ηn
δ(η)

}∫
d4zeiq̄·zSρ(z).

(G.3)

Pulling all the exponentials through to the propagator terms we have∫
d4zei(q̄+η∆)·zSρ(z) =

i(q̄ρ + η∆ρ)

(q̄ + η∆)2
, (G.4)

∫
d4zei(q̄+χP̄+η∆)·zSρ(z) =

i(q̄ρ + χP̄ ρ + η∆ρ)

(q̄ + χP̄ + η∆)2
, (G.5)∫

d4zei(q̄+χP̄+η∆+χ̃mτm)·zSρ(z) =
i(q̄ρ + χP̄ ρ + η∆ρ + χ̃mτ

ρ
m)

(q̄ + χP̄ + η∆ + χ̃mτm)2
, (G.6)

where ω̃m = 2τm · q̄/Q̄2, and again the m indices are not summed. Physically, it is useful to

think of χ, χ̃i as the longitudinal momentum fractions, and η as the transverse momentum

fraction.

Now, using the identity Eq. 3.60∫ b

a
dxF(x)

∂n

∂xn
δ(x− y) = (−1)n

∂n

∂xn
F(x)

∣∣∣∣
x=y

,

we can evaluate all the terms in Eq. G.3. First, using Eq. G.4,∫
dη

∂n

∂ηn
δ(η)

∫
d4zei(q̄+η∆)·zSρ(z) = (−1)n

∂n

∂ηn
i(q̄ρ + η∆ρ)

(q̄ + η∆)2

∣∣∣∣
η=0

= − i

Q̄2
(−1)n

∞∑
k=0

(q̄ρδk,nk! + ∆ρδk+1,n(k + 1)!)(−2ξω̄)k

=
i

Q̄2
n!((−2ξ)ω̄q̄ρ + ∆ρ)(−2ξω̄)n−1,

(G.7)

where we can Taylor expand around η = 0, since this is where the derivative is taken.
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It pays to do the integral with Eq. G.5 more carefully. First, since we will end up

evaluating χ = η = 0, we can take these variables arbitrarily small and expand the

propagator as a Taylor series in them around zero:∫
dχ

∂n−j

∂χn−j
δ(χ)

∫
dη

∂j

∂ηj
δ(η)

∫
d4zei(q̄+χP̄+η∆)·zSρ(z)

=

∫
dχ

∂n−j

∂χn−j
δ(χ)

∫
dη

∂j

∂ηj
δ(η)

i(q̄ρ + χP̄ ρ + η∆ρ)

(q̄ + χP̄ + η∆)2

= − i

Q̄2
(−1)n

∂n−j

∂χn−j
∂j

∂ηj

∞∑
k=0

k∑
l=0

k!

(k − l)!l! (χω̄)k−l(η(−2ξω̄))l[q̄ρ + χP̄ ρ + η∆ρ]

∣∣∣∣
χ=η=0

=
i

Q̄2

∞∑
k=0

k∑
l=0

k!

(k − l)!l! ω̄
k−l(−2ξω̄)l

[
δl,jδk−l,n−jl!(k − l)!q̄ρ

+ δl,jδk−l+1,n−jl!(k − l + 1)!P̄ ρ + δl+1,jδk−l,n−l(l + 1)!(k − l)!∆ρ
]

=
i

Q̄2
ω̄n−1(−2ξ)j−1n!

[
ω̄(−2ξ)q̄ρ +

n− j
n

(−2ξ)P̄ ρ +
j

n
∆ρ
]
.

(G.8)

For the largest propagator Eq. G.6,∫
dχ̃m

∂

∂χ̃m
δ(χ̃m)

∫
dχ

∂J

∂χJ
δ(χ)

∫
dη

∂K

∂ηK
δ(η)

∫
d4zei(q̄+χP̄+η∆+χ̃mτm)·zSρ(z)

=

∫
dχ̃m

∂

∂χ̃m
δ(χ̃m)

∫
dχ

∂J

∂χJ
δ(χ)

∫
dη

∂K

∂ηK
δ(η)

i(q̄ρ + χP̄ ρ + η∆ρ + χ̃mτ
ρ
m)

(q̄ + χP̄ + η∆ + χ̃mτm)2

= − i

Q̄2

∫
dχ̃m

∂

∂χ̃m
δ(χ̃m)

∫
dχ

∂J

∂χJ
δ(χ)

∫
dη

∂K

∂ηK
δ(η)

× (q̄ρ + χP̄ ρ + η∆ρ + χ̃mτ
ρ
m)

∞∑
k=0

(χω̄ − 2ηξω̄ + χ̃mω̃m)k.

(G.9)
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Then, using the trinomial theorem∗, we get∫
dχ̃m

∂

∂χ̃m
δ(χ̃m)

∫
dχ

∂J

∂χJ
δ(χ)

∫
dη

∂K

∂ηK
δ(η)

∫
d4zei(q̄+χP̄+η∆+χ̃mτm)·zSρ(z)

= − i

Q̄2
(−1)n

∂

∂χ̃m

∂J

∂χJ
∂K

∂ηK

×
∞∑
k=0

k∑
j,l,m

j+l+m=k

k!

j!l!m!
(χω̄)j(−2ηξω̄)l(χ̃mω̃m)m[q̄ρ + χP̄ ρ + η∆ρ + χ̃mτ

ρ
m]

∣∣∣∣
χ=η=χ̃m=0

=
i

Q̄2

∞∑
k=0

k∑
j,l,m

j+l+m=k

k!

j!l!m!
ω̄j(−2ξω̄)lω̃mm[δm,1δJ,jδK,lj!l!q̄

ρ + δm,1δJ,j+1δK,l(j + 1)!l!P̄ ρ

+ δm,1δJ,jδK,l+1j!(l + 1)!∆ρ + δm,0δJ,jδK,lj!l!τ
ρ
m]

=
i

Q̄2
(J +K + 1)!ω̄J−1(−2ξω̄)K−1

[
ω̄(−2ξω̄)ω̃mq̄

ρ +
J

J +K + 1
(−2ξω̄)ω̃mP̄

ρ

+
K

J +K + 1
ω̄ω̃m∆ρ +

1

J +K + 1
ω̄(−2ξω̄)τρm

]
.

(G.10)

Noting that J +K + 1 = n for both cases, Eq. G.10 becomes

=
i

Q̄2
n!ω̄J−1(−2ξω̄)K−1

[
ω̄(−2ξω̄)ω̃mq̄

ρ +
J

n
(−2ξω̄)ω̃mP̄

ρ +
K

n
ω̄ω̃m∆ρ +

1

n
ω̄(−2ξω̄)τρm

]
.

(G.11)

∗The trinomial theorem is a straightforward extension of the binomial theorem: (a + b + c)n =∑
i,j,k

i+j+k=n

(i+j+k)!
i!j!k!

aibjck.
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Putting Eq. G.7-G.11 into Eq. G.3, we get

Tµν =
2

Q̄2

∑
f

e2
fSµρνκ

{ ∞∑
n=1,3,5

n∑
j=0,2,4

[
1

n+ 1
[τκ1 A

f
n+1,j(t) + τκ2 B

f
n+1,j(t)]ω̄

n−1(−2ξ)j−1

×
[
ω̄(−2ξ)q̄ρ +

n− j
n

(−2ξ)P̄ ρ +
j

n
∆ρ
]

+
n− j
n+ 1

ω̄n−2(−2ξ)j−1P̄ κ
[
Afn+1,j(t)

×
(
ω̄(−2ξ)ω̃1q̄

ρ +
n− j − 1

n
(−2ξ)ω̃1P̄

ρ +
j

n
ω̃1∆ρ +

1

n
ω̄(−2ξ)τρ1

)
+Bf

n+1,j(t)
(
ω̄(−2ξ)ω̃2q̄

ρ +
n− j − 1

n
(−2ξ)ω̃2P̄

ρ +
j

n
ω̃2∆ρ +

1

n
ω̄(−2ξ)τρ2

)]
+

j

n+ 1
ω̄n−2(−2ξ)j−2∆κ

×
[
Afn+1,j(t)

(
ω̄(−2ξ)ω̃1q̄

ρ +
n− j
n

(−2ξ)ω̃1P̄
ρ +

j − 1

n
ω̃1∆ρ +

1

n
ω̄(−2ξ)τρ1

)
+Bf

n+1,j(t)
(
ω̄(−2ξ)ω̃2q̄

ρ +
n− j
n

(−2ξ)ω̃2P̄
ρ +

j − 1

n
ω̃2∆ρ +

1

n
ω̄(−2ξ)τρ2

)]]
+ (−2ξω̄)n−1∆κCfn+1(t)

1

M
u(P ′)u(P )

(
(−2ξ)ω̄q̄ρ + ∆ρ

)}
.

(G.12)

After expanding Sµρνκ = gµρgνκ + gµκgνρ − gµνgρκ (ignoring terms of the order M2/Q̄2

and t/Q̄2 as usual) and collecting like terms, we have

Tµν =
∑
f

e2
f

∞∑
n=1,3,5

n∑
j=0,2,4

{
4

Q̄2

1

n+ 1
ω̄n−1(−2ξ)j−1[τ

{µ
1 Afn+1,j(t) + τ

{µ
2 Bf

n+1,j(t)]

×
[
ω̄(−2ξ)q̄ν} +

2(n− j)
n

(−2ξ)P̄ ν} +
2j

n
∆ν}

]
+

4

Q̄2

1

n+ 1
ω̄n−2(−2ξ)j−2[Afn+1,j(t)ω̃1 +Bf

n+1,j(t)ω̃2]

×
(

(n− j)ω̄(−2ξ)2P̄ {µq̄ν} +
2(n− j)j

n
(−2ξ)P̄ {µ∆ν} + jω̄(−2ξ)∆{µq̄ν}

+
j(j − 1)

n
∆µ∆ν +

(n− j)(n− j − 1)

n
ω̄(−2ξ)2P̄µP̄ ν

)
+ 2δj,0ω̄

n−2(−2ξ)n−1Cfn+1(t)(ω̃1 − ω̃2)
(

(−2ξ)ω̄∆{µq̄ν} + ∆µ∆ν
)

− gµν ω̄n+1
(

(−2ξ)j [Afn+1,j(t)
ω̃1

ω̄
+Bf

n+1,j(t)
ω̃2

ω̄
]

+ δj,0(−2ξ)n+1Cfn+1(t)(
ω̃1

ω̄
− ω̃2

ω̄
)
)}

.

(G.13)
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Finally, shifting the indices of Eq. G.13, we get

Tµν =
∑
f

e2
f

∞∑
n=2,4,6

n−1∑
j=0,2,4

{
4

Q̄2

1

n
ω̄n−2(−2ξ)j−1[τ

{µ
1 Afn,j(t) + τ

{µ
2 Bf

n,j(t)]

×
[
ω̄(−2ξ)q̄ν} +

2(n− j − 1)

n− 1
(−2ξ)P̄ ν} +

2j

n− 1
∆ν}

]
+

4

Q̄2

1

n
ω̄n−3(−2ξ)j−2[Afn,j(t)ω̃1 +Bf

n,j(t)ω̃2]

×
(

(n− j − 1)ω̄(−2ξ)2P̄ {µq̄ν} +
2(n− j − 1)j

n− 1
(−2ξ)P̄ {µ∆ν} + jω̄(−2ξ)∆{µq̄ν}

+
j(j − 1)

n− 1
∆µ∆ν +

(n− j − 1)(n− j − 2)

n− 1
ω̄(−2ξ)2P̄µP̄ ν

)
+ 2δj,0ω̄

n−3(−2ξ)n−2Cfn(t)(ω̃1 − ω̃2)
(

(−2ξ)ω̄∆{µq̄ν} + ∆µ∆ν
)

− gµν ω̄n
(

(−2ξ)j [Afn,j(t)
ω̃1

ω̄
+Bf

n,j(t)
ω̃2

ω̄
]

+ δj,0(−2ξ)nCfn(t)(
ω̃1

ω̄
− ω̃2

ω̄
)
)}

.

(G.14)



Appendix H

Dirac Bilinears and Traces (Ch. 6)

In our lattice calculations, we project our the spin structure of the nucleon correlator with

a projection matrix Γ:

cχχ(z, 0) =
1

4

∑
spins

Γβα〈Ω|χα(z, τ)χ†β(0)|Ω〉.

This projection is carried through the Feynman-Hellmann calculation, and hence our off-

forward Compton tensor also has its spin structure projected out as above∗.

Therefore, we define

F(Γproj,Γop) ≡ 1

4

∑
s,s′

[
Γproj

]
βα
uα(P ′, s′)ūγ(P ′, s′)

[
Γop

]
γδ
uδ(P, s)ūβ(P, s)

=
1

4
tr
{

Γproj(/P
′
+M)Γop(/P +M)

}
.

(H.1)

For our lattice calculation, we only use the unpolarised projector, which in Minkowski

space is

Γunpol =
1

2
(I + γ0). (H.2)

Note that this is using the Minkowski Clifford algebra.

F(Γunpol, γ
i) =

1

2

((
E(p′) +M

)
pi +

(
E(p) +M

)
p′i

)
.

F(Γunpol,
iσij∆j

2M
) =

1

4M
εijk∆j [p× p′]k =

1

4M

[
∆× (p̄×∆)

]
i
.

In the frame of our lattice calculation, we have E(p′) = E(p) = E, and p̄ ⊥∆. Therefore,

the above results become

F(Γunpol, γ
i) = (E +M)p̄i.

F(Γunpol,
iσij∆j

2M
) =

1

4M

[
∆× (p̄×∆)

]
i

= − t

4M
p̄i.

We have used the vector triple product identity, a × (b × c) = (a · c)b − (a · b)c, in the

last line above.

∗Since the form of off-forward nucleon Dirac bilinears is so non-trivial [175], this projection tidies up a
great deal of the unpleasant form of our nucleon OPE.
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Hence, for their spatial components, the bilinears become

τ i1 → (E +M)p̄i, τ i2 → −
t

4M
p̄i.

And in the frame of our lattice calculation, the ω̃i terms become

2q̄ · τ1

Q̄2
→ (E +M)ω̄,

2q̄ · τ2

Q̄2
→ − t

4M
ω̄.



Appendix I

Additional Lattice Results (Ch. 7)

In this appendix, we present the additional results of our lattice calculation. For the up

quarks, these largely consist of different effective mass results. For the down quarks, this

appendix includes all results except the down quark GFF towers, which were presented in

chapter 7.
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Figure I.1: Effective mass plot for the ratios R(p), with the first set of correlators. Shaded bands

are exponential fits to the energy shift.
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Figure I.2: Effective mass plot for R(p1)×R(p2) for up quarks.
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Figure I.3: Effective mass plot for R(p1)/R(p2) for up quarks.
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Figure I.4: Effective mass plot for the ratios R(p2) for up quarks. Note that the values of the

sink momentum all have px = −1.
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Figure I.5: The up quark energy shifts of the ratio and product as functions of ω̄.
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Figure I.6: The effective mass of R(p1) for down quarks.
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Figure I.7: The effective mass of R(p2) for down quarks.
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Figure I.8: The effective mass of R(p1)×R(p2) for down quarks.
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Figure I.9: The effective mass of R(p1)/R(p2) for down quarks.



152

0.00 0.01 0.02 0.03 0.04 0.05
λ

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

∆
E

(λ
)

su
b

tr
ac

te
d

b = −5.29± 0.54

Figure I.10: The energy shift ∆E(λ) with the ω̄ = 0 term subtracted for down quarks.
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Figure I.11: The energy shift for down quarks normalised by 1/λ2 as a function of ω̄. The two

λ values have been averaged.
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Figure I.12: The same energy shift as figure I.11, except with the ω̄ = 0 terms subtracted off.
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Figure I.13: The down quark energy shifts for the ratio and product as functions of ω̄.
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[54] K. Kumerički, S. Liuti, and H. Moutarde, “Gpd phenomenology and dvcs fitting,”

The European Physical Journal A, vol. 52, Jun 2016.

[55] M. Guidal, H. Moutarde, and M. Vanderhaeghen, “Generalized parton distributions

in the valence region from deeply virtual compton scattering,” Reports on Progress

in Physics, vol. 76, p. 066202, May 2013.
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[72] F. Belinfanté, “On the current and the density of the electric charge, the energy, the

linear momentum and the angular momentum of arbitrary fields,” Physica, vol. 7,

no. 5, pp. 449 – 474, 1940.

[73] Wikipedia, the free encyclopedia, “Components of the stress-energy tensor,” 2008.

[Online; accessed January 15, 2020].

[74] M. Burkardt, “Impact parameter space interpretation for generalized parton dis-

tributions,” International Journal of Modern Physics A, vol. 18, p. 173–207, Jan

2003.

[75] D. E. Soper, “Infinite-momentum helicity states,” Phys. Rev. D, vol. 5, pp. 1956–

1962, Apr 1972.

[76] M. Diehl, “Generalized parton distributions in impact parameter space,” The Euro-

pean Physical Journal C, vol. 25, p. 223–232, Sep 2002.

[77] J. P. Ralston and B. Pire, “Femtophotography of protons to nuclei with deeply

virtual compton scattering,” Physical Review D, vol. 66, Dec 2002.

[78] N. G. Stefanis, C. Alexandrou, T. Horn, H. Moutarde, and I. Scimemi, “Round

table: Nucleon tomography. what can we do better today than rutherford 100 years

ago?,” EPJ Web of Conferences, vol. 137, p. 01003, 2017.

[79] M. V. Polyakov and C. Weiss, “Skewed and double distributions in the pion and the

nucleon,” Physical Review D, vol. 60, Nov 1999.



Bibliography 160

[80] M. V. Polyakov and A. G. Shuvaev, “On ”dual” parametrizations of generalized

parton distributions,” 2002.

[81] N. Kivel, M. V. Polyakov, and M. Vanderhaeghen, “Deeply virtual compton scatter-

ing on the nucleon: Study of the twist-3 effects,” Physical Review D, vol. 63, May

2001.

[82] I. V. Anikin and O. V. Teryaev, “Dispersion relations and subtractions in hard

exclusive processes,” Physical Review D, vol. 76, Sep 2007.

[83] O. V. Teryaev, “Analytic properties of hard exclusive amplitudes,” 2005.

[84] M. Diehl and D. Ivanov, “Dispersion representations for hard exclusive processes:

beyond the born approximation,” The European Physical Journal C, vol. 52,

p. 919–932, Oct 2007.

[85] B. Pasquini, M. Polyakov, and M. Vanderhaeghen, “Dispersive evaluation of the d-

term form factor in deeply virtual compton scattering,” Physics Letters B, vol. 739,

p. 133–138, Dec 2014.

[86] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, “The pressure distribution inside

the proton,” Nature, vol. 557, pp. 396–399, 2018.

[87] C. Adloff, V. Andreev, B. Andrieu, T. Anthonis, V. Arkadov, A. Astvatsatourov,
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S. Niccolai, P. Stoler, K. Adhikari, and et al., “Cross sections for the exclusive pho-

ton electroproduction on the proton and generalized parton distributions,” Physical

Review Letters, vol. 115, Nov 2015.

[95] E. Seder, A. Biselli, S. Pisano, S. Niccolai, G. Smith, K. Joo, K. Adhikari,

M. Amaryan, M. Anderson, S. Anefalos Pereira, and et al., “Longitudinal target-

spin asymmetries for deeply virtual compton scattering,” Physical Review Letters,

vol. 114, Jan 2015.

[96] J. Dudek, R. Ent, R. Essig, K. S. Kumar, C. Meyer, R. D. McKeown, Z. E. Meziani,

G. A. Miller, M. Pennington, D. Richards, and et al., “Physics opportunities with

the 12 gev upgrade at jefferson lab,” The European Physical Journal A, vol. 48, Dec

2012.

[97] A. Accardi et al., “Electron ion collider: The next qcd frontier - understanding the

glue that binds us all,” 2012.

[98] M. Guidal, “A fitter code for deep virtual compton scattering and generalized parton

distributions,” The European Physical Journal A, vol. 37, p. 319–332, Sep 2008.
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