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32

33 Abstract 

34 Trace evidence such as touch (also known as contact) DNA has probative value as a vital 

35 forensic investigative tool that can lead to the identification and apprehension of a criminal. 

36 While the volume of touch DNA evidence items submitted to forensic laboratories has 

37 significantly increased, recovery and amplification of DNA from these items, especially from 

38 metal surfaces, remains challenging. Currently little is understood with regards to the 

39 underlying mechanisms of metal-DNA interactions in the context of forensic science and how 

40 this may impact on DNA recovery. An increased understanding of these mechanisms would 

41 allow optimisation of methods to improve outcomes when sampling these materials. This paper 

42 reviews the basis of DNA binding to metal substrates, the merits and limitations of current 

43 methods and future perspectives of improving recovery and amplification of touch DNA from 

44 metal surfaces of forensic interest.

45

46 Keywords: Forensic Science; metals; touch DNA and/or contact DNA; direct PCR; swabbing; 
47 tape lifting; Bardole M-vac.
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59 1. Introduction

60 DNA evidence has become an indispensable tool in forensic investigations globally. Due to 

61 advances in DNA extraction and amplification technologies, most biological samples can now be 

62 tested to yield critical genetic evidence [1,2]. It is now possible to produce a forensic DNA 

63 profile from trace sources, such as touch (also known as contact DNA). Forensic laboratories 

64 currently receive numerous requests for touch DNA analysis. These relate to property and 

65 violent crimes with no blood or semen, in anticipation that touch DNA testing may provide 

66 investigative leads [3]. Further, cold cases where body fluids are absent, or samples had 

67 extensively degraded are now being resubmitted for touch DNA analysis [4]. Touch DNA testing 

68 is, however, impacted by the difficulty in obtaining not only enough quality DNA to generate a 

69 complete DNA profile but also sufficient material to allow re-testing.

70 Touch DNA evidence results from the transfer of biological material to a substrate upon human 

71 handling or contact. Touched surfaces may retain genetic material in many forms including  

72 epithelial cells, fragmented cells/nuclei, cell-free DNA [5–7]; and anucleated corneocytes [6,8]. 

73 These cells are not visible to the naked eye [9], hence, are typically recovered speculatively. At 

74 a crime scene, DNA may be present in very low amounts, so there are practical difficulties in 

75 recovering enough nuclear or mitochondrial DNA for typing. DNA is routinely recovered from 

76 plastic, glass and fabric surfaces to obtain relevant profiles [10–12]. However, it has proven to 

77 be more difficult to consistently recover touch DNA from metal surfaces [13]. 

78 Metals are ubiquitous and generally encountered in forensic investigations as part of the built 

79 environment (such as window frames and doorknobs), wearable material (such as jewellery, 

80 belt hooks, shoe buckles and eyeglass frames), weapons (such as firearms, ammunition, razors, 

81 knives and screwdrivers) used in commission of crime or as coatings of other materials. The 

82 continual increase in knife (e.g. the UK [14]) and gun-related (e.g. Australia, New Zealand and 

83 the USA [15–17]) crimes has, undoubtedly, had a ripple effect on the forensic interest of DNA 

84 recovery from such surfaces. Knives, firearms and spent cartridge casings are frequently 

85 encountered evidence types in the instance of hate crimes, terror attacks, homicides and 

86 wildlife poaching [13,18,19].
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87 Regarding crimes which involve guns (Fig. 1), it may be possible to find touch DNA on the butt, 

88 trigger or slide when handled or operated without wearing gloves. Criminals, when attempting 

89 to remove evidence, may attempt to clean weapons after use but are probably less likely to 

90 wipe the ammunition, which may have been loaded with bare hands. Similarly, a burglar’s 

91 fingerprints - a source of touch DNA - may, for instance, be left on a brass door handle or 

92 aluminium window frame.

93

94

95

96

97

98

99

100 Figure 1: A disassembled pistol with the inside of the hand grip shown. The red arrows (SP3) indicate the inside 
101 surface of the hand grip (a protected area), which was swabbed. The firearm was discarded in a stormwater drain 
102 and recovered nine days later following a period of torrential rain. A good DNA profile was obtained after 
103 swabbing under the grip (plastic), while other parts of the firearm swabbed yielded no profile. (Picture Courtesy: 
104 Dr Jennifer Raymond, Research Coordinator, Forensic and Technical Services Command, NSW Police Force, 
105 Australia. Image used with permission).

106

107 The recovery and subsequent amplification of DNA is one of the key challenges encountered in 

108 the analysis of forensic DNA samples from metal surfaces as a result of nucleic acid – metal 

109 interactions. Metals have an array of ionisation and electron affinities that enable their reaction 

110 with negatively charged molecules such as DNA [20]. Anastassopoulou [21] , suggested that 

111 metal cations interact directly or indirectly with the negatively charged phosphate backbone of 
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112 DNA as well as the nitrogen or positive atoms of the nucleobase, allowing the formation of ionic 

113 bonds that may impede the release of touch DNA from metal surfaces. This interaction may 

114 explain, to some extent, the poor DNA recovery from metal substrates reported by Wood et al. 

115 [13] and the presently inconsistent success rate between 0% and 26% noted [22]. This review 

116 explores the basis of DNA persistence on metal surfaces and attendant impact on the success of 

117 recovery and amplification. It scrutinises the scope and efficiency of current sampling, 

118 extraction and direct amplification techniques, and provides relevant recommendations for 

119 improving forensic trace DNA recovery from problematic metal surfaces. 

120

121 2. DNA and metals

122 The array of ionisation energies and electron affinities of metals impact their degree of 

123 interaction with negatively charged molecules such as DNA. Metal cations may interact directly 

124 or indirectly with two distinct positions on a DNA molecule: the negatively charged residues site 

125 (phosphate backbone) [23] and the characteristic high electron density sites (Nitrogen (N) and 

126 Oxygen (O) of atoms of nucleobases) [21].  Pages et al  [20] posits that a partially or fully 

127 hydrated metal ion exhibits the tightest binding to the hydrated nucleic acid. 

128 The extent of interaction and reactivity of metal ions with DNA is, in part, determined by their 

129 position on the Periodic Table. The polymorphic nature and attendant variable structural 

130 complexity of DNA offers at least three possible intermolecular interactions intercalation; 

131 irreversible covalent binding and groove association [19, 22] (Fig. 2). Generally, alkali metals do 

132 not strongly bind to DNA, and their monovalent ions preferentially interact with AT-rich regions 

133 of minor grooves [25]. On the other hand, divalent alkali earth metals have a rather high 

134 reactivity given their ability to coordinate with mono or bi-dentate ligands and to form basic 

135 oxides whose reaction with water yields relatively insoluble hydroxides.
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136

137

138

139 Figure 2: DNA interaction with metals. Ions of metals (M+) may bind to one or two sites of a single strand 
140 (intrastrand) or opposite strands (interstrand), or by complex intercalation between the nucleobases. M+ binding 
141 can cause single strand break (ssb) or double strand breaks (dsb) [21]. Complex intercalation from transition 
142 metals can alter the double helix [26], causing damage via oxidative stress when bound to GC rich sites. The M+ 
143 binding sites (arrowed) in Adenine: N1, N3 and N7; Guanine: N3, N7 and O6; Cytosine: N3 and O2 and; Thymine: 
144 O2 and O4, disrupts DNA integrity [27]. 

145
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146 Ions of magnesium (Mg2+) are, for instance, known to be key intracellular metal ions existing in 

147 all nucleic acid (both DNA and RNA) processes of activation, functioning as a link between 

148 certain enzymes and nucleotides, nucleosides and their derivatives [28]. Using combined data 

149 from X-ray, Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra, 

150 the interaction of magnesium ions (Mg2+) with oligonucleotides was reported to primarily occur 

151 at the electronegative phosphate group (PO2
-) [21]; however, the C = O, NH2, N1, N3 and N7 

152 positions of nucleobase moieties have also been documented as additional binding sites [29–

153 31] (Fig. 2). Hydrated Mg2+ is also generally encountered in the major groove located between 

154 GC base pairs of specific oligomers [31,32].

155 DNA is a recognised efficient metal ion chelator as demonstrated by the need for magnesium 

156 ions in PCR reactions [33,34]. The chemistry of Mg ions, pertaining to their role in nucleic acid 

157 amplification, makes magnesium an important alkali earth metal for studying metal-DNA 

158 interaction. As noted by Kornbeg [35], Mg2+ is a vital cofactor for all DNA polymerases, including 

159 reverse transcriptase. During the polymerisation step of the polymerase chain reaction (PCR) by 

160 Taq Polymerase, the 3’-OH of the growing chain contains a lone electron pair which facilitates 

161 phosphodiester bond formation. The ensuing nucleophilic attack on the phosphate group of the 

162 incoming deoxynucleoside triphosphate (dNTP) releases pyrophosphate (β and γ – phosphates) 

163 molecule while bonding the remaining α – phosphate to the O atom on the 3’ carbon of the 

164 template strand. However, the four negative charges carried on the dNTP overwhelm and 

165 retard the nucleophilic attack. Mg2+ ions subsequently chelate the extra anions enabling the 

166 latter, bond formation and polymerisation [36]. Thus, Mg2+ forms Mg-dNTP-complexes with the 

167 single nucleotides which then serve as the substrate for polymerase activity in a PCR. The 

168 foregoing is the basis for the requirement for an increase in Mg2+concentration when higher 

169 than usual quantities of DNA are present in the PCR reaction mixture [34]. A lack of Mg2+ leads 

170 to no amplification; thus, optimisation of magnesium concentration is routine in most PCR 

171 method development. The metal chelating ability may, therefore, contribute to the poor yield 

172 of PCR product of samples obtained from metal surfaces, since metal ions and metal-derived 

173 contaminants may damage DNA or act as DNA polymerase inhibitors [37,38].
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174 Transition metals present the most complicated interaction due to their ability to form more 

175 than one cation with varied ionic charges and subsequent multi-site binding activity with DNA 

176 [20]. Through chemical reactions with the N3 atom of pyrimidine (Cytosine or Thymine) or the 

177 N7 of purine (Adenine or Guanine), transition metals can alter the double helix [26] and their 

178 binding to GC rich sites has been reported to cause in vivo oxidative damage to DNA via H2O2 

179 generated radicals [39]. The coordinated complexes forming feature of these metals facilitates 

180 direct and indirect binding to nucleobases and phosphate groups, respectively [21]. Using Zinc-

181 DNA crystal structural complexes and spectroscopic data, it was postulated that Zn2+ tends to 

182 bind to “four oxygens of four different phosphates” as well as to the N7 position of guanine 

183 base [21]. Copper (II) (Cu2+), Nickel (II) (Ni2+) and Zn2+, albeit different in DNA-binding ability, are 

184 known to form complexes with the same ligands due to their qualitatively similar properties 

185 and structure [40]. As discovered by Govindaraju et al. [41], Cu2+ ion binding efficiency is 

186 positively correlated with the extent of unwinding of the DNA double helix caused by 

187 denaturation, and the metal’s redox physiognomies facilitate the generation of reactive oxygen 

188 species (ROS) that causes oxidative damage. The latter makes copper a potent antimicrobial 

189 surface [42,43] and is probably the cause of the difficulty in collecting sufficient DNA from such 

190 surfaces.  

191 Most metals of forensic interest, on account of the difficulties encountered during recovery of 

192 DNA and fingerprints in casework, either belong to the transition group or are alloys with at 

193 least one transition group component. This is due to the fact that they make up a group of the 

194 so-called ‘common workhorse’ (excepting lead, tin and aluminium) as well as all the ‘precious 

195 metals’ [44]. For example, the alloys: brass (copper and zinc); steel (iron and carbon); and 

196 stainless steel (steel plus chromium) are routinely used in the construction of the built-

197 environment and most importantly, the manufacturing of firearms and ammunition. The 

198 limited ability to obtain and amplify DNA from brass, an alloy of copper (Cu) and zinc (Zn), for 

199 example, has been reported [45–48] and attributed to the physicochemical properties of the 

200 copper component of this alloy. Subsequently, copper-induced damage of DNA on fired and 

201 unfired cartridge casings have been reported [45,46]. However, other works have reported 

202 increased recovery when DNA was directly treated with Cu2+ [49], though Cu is expected to 

203 inhibit amplification and generation of interpretable short tandem repeat (STR) profiles. 
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204 Currently, no available literature has investigated the potential contribution of Zn2+ to the 

205 limited DNA recovery or inhibition during amplification, although its involvement is possible. 

206 More research is thus required to explore the synergies or complementarities of Cu2+ and Zn2+ 

207 metal ion – DNA interactions and the associated effect on recovery and profiling; and to 

208 facilitate the development of relevant techniques for efficient nucleic acid amplification.

209 Numerous studies illustrating the basis of metal-DNA interaction have been reported in the 

210 literature [21,40,50]. These studies mostly employ genomic, biophysical and spectroscopic 

211 techniques with highly pure, 12 base pair (bp) synthetic oligonucleotides deemed “sufficiently 

212 close to real DNA” [28,51], and as realistic models for determination of metal binding sites of 

213 DNA. While these works from multi-disciplinary viewpoints make for plausible extrapolations, 

214 they are not directly applicable to forensic science and do not precisely represent real-life 

215 scenarios for the following reasons. Firstly, the nucleic acids found deposited on metal 

216 substrates at crime scenes are mostly complex and typically within a cellular construct (most 

217 DNA extraction protocols are optimised to target nucleated cells and rarely utilise cell-free DNA 

218 [52]) . The interaction of the other cellular components, such as proteins with metal ions and 

219 their influence on the extent of ion accessibility to DNA cannot be fairly juxtaposed with putting 

220 the “naked” molecule directly in contact with metal ions, as is the case in experimental setups. 

221 The “naked” DNA increases the magnitude and success of metal ion-nucleic acid interaction 

222 (due to increased surface-area-to-volume ratio) while discounting the effect of other cellular 

223 materials, as is the case in routine forensic scenarios. Secondly, techniques requiring 

224 crystallisation (used in studies, e.g. [30,48]) utilise reagents such as 2-Methyl-2,4-pentanediol 

225 (MPD), as a dehydrating agent to expel DNA out of solution. The associated dehydration has 

226 been documented to enhance DNA interaction with cations, enabling non-preferential binding 

227 to any accessible site [25,28]. Thirdly, it is impractical to evaluate the impact of solid metal 

228 surface physicochemical characteristics (e.g. texture, the extent of rust) and environmental 

229 conditions on recovery and amplification of DNA from research solely focussed on ionic 

230 bonding in a strictly controlled in vitro setup. Finally, the interaction of metal alloys, which 

231 consist of multiple metal ions, with DNA is likely complex but is as yet not elucidated. Whether 

232 or not there is inter-ionic competition for DNA binding sites and the scope of impact on 

233 extraction and amplification process is of useful forensic research interest. 



10

234

235

236 3. Sampling methods for DNA recovery from metal surfaces of forensic interest

237 An important aspect of forensic DNA analysis is the collection of trace evidence from the 

238 substrate surface. The convention is to use various swab types pre-wet with some buffer or 

239 sterile water. The swab is applied to the surface and rubbed using consistent pressure while 

240 ensuring maximum swab-surface contact through a measured rotation. It is generally 

241 recommended to limit rotation to no more than once in order to avoid compromising the 

242 sample through the redeposition of specimen [54,55]. 

243 Research targeted at improving trace DNA recovery from problematic metal surfaces centres 

244 along: swab type (tip) and/or extraction buffer modification(s); substrate soaking to facilitate 

245 solubilisation of DNA into solution for subsequent purification; and tip optimisation for direct 

246 sample introduction into amplification systems without conventional extraction [56–59]. 

247 Sample collection from metal surfaces can be categorised into five methods, namely: standard 

248 swabbing; tape lifting; soaking, the Bardole MVAC and direct PCR (Fig. 3).

249

250

251

252

253

254

255

256

257

258

259
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260 Figure 3: Sampling methods for recovery of DNA from metals (e.g. spent cartridge casings). Current method 
261 development is focusing on how best to recover trace DNA from metals with techniques including swabbing, 
262 soaking, Bardole M-VAC, lifting with tape or direct PCR —and within those methods, determining which specific 
263 techniques are most successful. Excepting direct PCR, the standard extraction process is undertaken after 
264 sampling, before conventional DNA amplification via polymerase chain reaction (PCR).

265

266 3.1 Standard Swabbing method

267 Swabs are used in various forensic science settings, and an extensive range is available for DNA 

268 sample collection. What constitutes the “standard swab” is a matter of choice based in part on 

269 the cost, experience, efficiency, specific in-house (validation) techniques, and compatibility with 

270 particular instrumentation. Nonetheless, it appears that the fundamental determinant of the 

271 most effective swab device is the substrate on which it is to be used [60,61]. 

272 Standard cotton swabs are traditionally preferred for collection of biological fluids (e.g. semen, 

273 blood, saliva). Various law enforcement agencies have historically employed cotton swabs as 

274 reliable collection devices. This is based on cost-effectiveness, ease of storage, and amenability 

275 for high-throughput processing. Furthermore, cotton swabs are simple to use, requiring 

276 minimal training for efficient sample collection [54,62]. When trace or touch DNA evidence is 

277 envisaged, the double swabbing technique [63] is employed. This method entails an initial wet 

278 swab of the sample area, followed by a dry swab aimed at maximising recovery [60,63]. The 

279 problems associated with the use and removal of biomaterial from the cotton matrix of swab 

280 devices have inspired research into the modification of same or alternative materials to 

281 improve evidence collection. Notably, electron micrograph data showed a tendency for trace 

282 DNA to get physically trapped and entwined within cotton fibres of swab devices, resulting in 

283 significantly reduced efficiency of DNA recovery [64,65].  

284 Lazzarino et al. [66] similarly noted that spermatocytes stuck to cotton swabs as a result of 

285 sperm membrane saccharic composition, adversely affecting DNA recovery from semen 

286 specimens. Furthermore, the occasional inability to generate expected DNA profiles even from 

287 DNA rich sources, such as blood, collected with cotton swabs have been reported [56]. This 

288 limitation influenced the development of a more efficient alternative, self-saturating foam 

289 swabs called mini-popules [67,68], through the collaborative efforts of an Australian forensic 
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290 laboratory (Forensic Science South Australia) and Puritan Medical Products Co. [56]. Research 

291 for improving swabbing has primarily focused on simplification of specimen collection; 

292 maintainence of DNA integrity during storage; reproducibility of cell collection, buffer 

293 requirements and compatibility with modern robotic extraction systems, when applicable. For 

294 example, it has been demonstrated that, in contrast to cotton swabs, mini-popules have no 

295 drying requirement to forestall microbial degradation of sampled DNA; are compatible with 

296 robotics and increase trace DNA recovery [67,68]. 

297 Isohelix™ swabs are supplied sterilised with ethylene oxide (EtO), hence, they are guaranteed 

298 DNA-free, in contrast to the popules. A number of modified sample collection devices such as 

299 Dacron, Rayon, FLOQSwabs™, Bode SecurSwab™, and nylon and polyester tipped swabs [69–

300 71], have been developed for trace DNA. These swabs are generally designed to have no 

301 internal absorbent core to avoid dispersion and entrapment of the specimen [72], ensuring 

302 rapid and complete elution of samples during extraction. There is currently no consistency in 

303 swabbing devices used in different forensic laboratories. While a particular swab performs best 

304 for non-porous surfaces, it may be ineffective for porous ones. Moreover, the advent of robot-

305 ready tubes may dictate which swabs can be used. Thus, what a laboratory may consider as the 

306 most effective swab device is determined primarily by its practicality, as well as the substrate 

307 containing the evidence sample. However, none is as yet explicitly acclaimed for touch DNA 

308 collection from metal surfaces. 

309 3.1.1 Buffer Solutions 

310 Buffer solutions are integral to conventional swabbing methods and may consist exclusively of 

311 deionised water, or deionised water with other constituents, whose functions are related to 

312 their chemical compositions. These reagents often include detergents (e.g. Triton-X, sodium 

313 dodecyl sulfate (SDS)), a chelating agent (e.g. ethylenediaminetetraacetic acid (EDTA)) or 

314 phosphate buffered saline (PBS). EDTA binds metal ions which deplete metals available to 

315 metal-dependent enzymes. The resultant ion depletion inactivates enzymes such as 

316 deoxyribonuclease (DNase) [73] that could catalyse the hydrolytic cleavage of the 

317 phosphodiester bonds, causing DNA damage. SDS, a robust anionic detergent denatures 
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318 secondary and non-disulfide linked tertiary structures to enhance the release of bound DNA 

319 [74]. 

320 It has become standard practice to moisten swabs when sampling trace biological stains. This 

321 facilitates stain rehydration and material transfer to the collection device maximimising the 

322 quantity of biological material collected. Deionised water (dH20) is frequently used for this 

323 purpose [75]; however, the hypotonic nature results in cell lysis, releasing DNA that can 

324 become entrapped and tangled within swab fibres leading to a decrease in DNA recovery 

325 [64,76]. Isotonic PBS offers better rehydration by maintaining cell integrity via its neutral 

326 osmotic pressure [77], minimising nucleic acid entrapment during the sampling process and 

327 enhancing the quantity of recoverable DNA [76,77]. Buffer solutions can chemically aid 

328 solubilisation of nucleic acids from surfaces facilitating adsorption onto the swab and may bind 

329 to metal cations that have been released from the surface, minimising the potential for 

330 degradation of DNA [78]. 

331  The type of buffer solution utilised has been reported to be vital to the ability to dislodge and 

332 recover trace DNA bound to surfaces [59,62]. In a study comparing effects of multiple buffer 

333 solutions on touch DNA samples, Thomasma and Foran [59] found that pre-wetting swabs with 

334 buffers containing detergents (Triton-X or SDS) performed better at recovering touch DNA from 

335 glass slides than using distilled water only. Similarly, a protocol using phosphate buffered saline 

336 (PBS) was successful in the recovery of trace DNA from ridged plastic lids [61]. In a double swab 

337 technique using Type I (ultrapure) water as the buffer, Horsman-Hall et al. [79] recovered DNA 

338 from touched cartridge cases sufficient for STR typing. Phetpeng et al. [80] conducted 

339 comprehensive research of different swab brands and moistening agents (PBS, sterile H2O, SDS, 

340 ethanol, isopropanol and lysis buffer) for collection of touch DNA from improvised explosive 

341 device (IEDs) parts. Their results demonstrated that, while swab types and buffers affect the 

342 DNA collection process, there was no individual “best swab brand or moistening agent” and 

343 recommended rigorous method validation in each forensic laboratory, to maximise the 

344 probative value of trace sample DNA. 

345
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346 3.2 Tape Lifting method

347 The tape lifting technique for the collection of trace biological evidence for subsequent nucleic 

348 acid analysis has become a well-established procedure in forensic casework [81]. The 

349 technique, intended initially for firearm discharge residues (FDR) recovery [82], is employed in 

350 evidence collection from fabrics (e.g. bedding, garments), skin, solid surfaces in vehicle and 

351 other crimes scenes and evidence where touch evidence is required [83].

352 Taping for trace biological evidence with forensic adhesive tapes consists of repeatedly pressing 

353 the sticky side (after UV irradiation to remove extraneous DNA) against the material or surface 

354 and lifting for subsequent DNA extraction [82,83]. Tapes with stronger adhesion have been 

355 reported to give a higher yield of trace DNA than swabbing [55,84,85]. However, the stickiness 

356 complicates DNA extraction process [82,83,86], and sampling can be labour intensive [82]. The 

357 method has also been adapted for successful trace DNA recovery from ridged metal surfaces 

358 [61]. Lawson et al. [87] evaluated the effectiveness of tape lifting, submersion and standard 

359 swabbing methods on touch DNA from cartridges fired in a revolver including their respective 

360 casing. The authors found low quantification values and usable short tandem repeat (STR) 

361 profiles were slightly below the laboratory’s stochastic threshold and interpretation guidelines, 

362 though tape lifting resulted in better DNA recovery than the swabs. 

363

364 3.3 Soaking method

365 Soaking or submersion method (also known as the Netherlands soaking method due to its 

366 origin) for touch DNA collection and extraction has been explored especially for firearms. The 

367 rationale of this technique is that, by submerging the metal harbouring the biomaterial in a lysis 

368 buffer, most cells are freed or lysed into solution, afterwards, a dry swab of the metal surface is 

369 made to secure residual cell material. The lysis solution and swab are combined for subsequent 

370 extraction to increase DNA yield [57].

371 The proof of concept for this method was advanced by Dieltjes et al. [57] in their quest to 

372 generate profiles from trace skin cells which are transferred to cartridges, bullets and casings 
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373 (CBCs) due to the strong force required for magazine loading in non-military situations. CBCs 

374 were soaked in Buffer ATL (lysis buffer of QIAamp® DNA Mini kit), dry swabbed, DNA extracted 

375 and amplified with PowerPlex® 16. The authors obtained reproducible profiles in 26.5% of 616 

376 cases and 6.9% of 4,085 individual CBCs examined over six years, showing the potential of the 

377 submersion technique for forensic casework. However, it was observed that CBCs underwent 

378 oxidation in the ATL buffer, releasing copper ions which turned the lysis buffer blue. 

379 Furthermore, CBCs specifically began turning blue when incubated in the lysis solution for a 

380 longer time. Montpetit and O’Donnell [88] from the San Diego Police Department Crime 

381 Laboratory modified the Netherlands soaking method using an in-house lysis buffer [2% SDS, 

382 10mM EDTA, 10mM Tris-Cl, 50mM NaCl] with Proteinase K and limiting submersion time to 

383 thirty minutes for unfired and spent ammunition. This optimised method resulted in 

384 interpretable profiles for 26.1% of requested casework evidence samples. In a recent study 

385 simulating deposition of DNA via touch, Booth and Chapman [89] loaded serially diluted buccal 

386 suspensions from a volunteer on hollow point ammunition, fired and recovered DNA from 

387 bullets and respective fragments using a modification of the soaking method described by 

388 Dieltjes et al. [57]. While the concentration of recovered DNA showed a trend incumbent on 

389 the initial amount of cellular material deposited on the substrates, “repeatable partial profiles 

390 with five reportable loci pairs” that matched the donor’s samples was only achieved in one 

391 undiluted replicate [89].   

392 The soaking technique has been asserted to be more useful than just conventional swabbing of 

393 surfaces [90], but it suffers some critical limitations. Firstly, it is only suitable for samples within 

394 the size range of CBCs. Relatively bigger pieces of evidence (e.g. knife) will require an enormous 

395 amount of lysis buffer, extending processing times and complicating the extraction process due 

396 to the large volume of solution. Secondly, the submersion enhances the leaching of metal ions 

397 and contaminants, which are detrimental to nucleic acid integrity and adversely impact 

398 achieving interpretable profiles. Thirdly, as noted by Lawson et al. [87], the oxidation effects of 

399 lysis buffer on CBCs may cause the erosion of microscopic striations or riflings on casings that 

400 may have been useful to subsequent ballistic work. Finally, the destructive nature of 

401 submersion makes the technique unsuitable as a multi-stage investigation option. A typical 

402 multi-stage forensic analysis will entail, for instance, developing and examining fingerprints, 
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403 and sampling for DNA on a spent casing afterwards. Submersion in lysis buffer will destroy 

404 secretion (mainly amino acids, proteins, urea, lipids) etched into the metal surface, making 

405 subsequent fingermark enhancement infeasible.

406

407 3.4 Bardole MVAC method

408 This technique was developed by Francine Bardole of West Jordan Utah Police Department with 

409 support of Microbial Vacuum Systems Incorporated (M-Vac Systems Inc). It is the most recent 

410 of methods aimed at enhancing nucleic acid recovery from problematic metal surfaces and has 

411 been acclaimed by some forensic scientists as “revolutionary” [91]. The M-Vac is a sterile-wet 

412 vacuum that loosens and sucks trace DNA evidence from samples that are difficult to swab for 

413 subsequent extraction [92,93]. The initial concept entailed washing down spent cartridge 

414 casings in a sterile buffer to cause skin cells to loosen into solution, followed by a filtering 

415 process that collects the cells for DNA extraction. The human skin sheds cells as part of a 

416 homeostatic regulation [94] and, at least, 500 million skin cells are lost per day [95,96] 

417 composed of fragmented or cell-free DNA enough to yield a genetic profile via PCR [52]. Spent 

418 casings typically have rough surfaces with many divots and grooves and microscopic crevices 

419 into which shed skin cells can embed, limiting the prospects of obtaining DNA evidence by 

420 swabbing from the surface. Bardole, utilising this prior knowledge and experience of working 

421 with an M-Vac, applied the this concept to a shell casing, which was the only evidence available 

422 in an unsolved case involving a random road-rage shooting incident [91]. The quantified extract 

423 yielded 0.847 ng of DNA and resulted in a full profile which matched the reference sample from 

424 a suspect, leading to a rightful conviction. In collaboration with M-Vac Systems, the “Bardole 

425 DNA Collection Method” was developed and is now a subject of scientific validation research 

426 [97]. A schematic of the technique is presented in Fig. 4.

427 The Bardole method is relatively simple, expeditious and does not cause leaching of metallic 

428 ions, which causes DNA damage, or erode ballistically vital rifling as in the soaking method. 

429 Furthermore, it increases DNA yield to the extent not possible with standard swabbing due to 

430 its ability to recover shed cells from small irregularities on the metal surface.
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455 Figure 4: The Bardole M-Vac Method. Schematic representation of the Bardole DNA collection method 

456

457 3.5 Direct PCR 

458 Direct polymerase chain reaction (direct PCR) is a sample processing technique proposed to 

459 circumvent DNA loss from trace sample during DNA extraction [98]. In the direct PCR process a 

460 sample (from standard swabs or a small piece of the substrate) is directly introduced into an 

461 amplification reaction without DNA extraction, quantification and purification steps [58,98,99]. 

462 The advocacy for the use of direct PCR has gained traction in recent times owing to 

463 advancements in touch DNA analysis, and the increasing tendency for touch DNA evidence to 

464 be submitted to forensic laboratories for examination [98]. The quest to limit processing time 

465 to potentially cater for casework backlogs and the knowledge that standard DNA extraction 

466 methods can cause an estimated 20% to 90% loss of initial template amount due to multiple 

467 wash steps and tube changes [100,101], make direct sample amplification attractive. Linacre et 

468 al. [102], as well as Vandewoestyne et al. [103], questioned the basis of touch DNA sample 

469 extraction given their already minuscule amounts and propensity for sample loss through the 

470 extraction process. Vandewoestyne et al. [103] demonstrated that cell-free DNA, which is a 

471 constituent of touch samples, was frequently lost through extraction and could be detected in 

472 90% of supernatants of biological samples assessed. Hence, the inclusion of the retained cell-

473 free DNA constituent of touched substrates in sample processing was mooted by Quinones and 

474 Danie [52] as a measure to maximise touch DNA typing, and this could be achieved through the 

475 exclusion of the extraction step, the fulcrum of the direct PCR method.
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476 Templeton et al. [104] in a mock study, evaluated the utility of direct PCR on some surfaces 

477 including metals (brass, nickel and aluminium cartridge casings) through volunteer handling of 

478 uncleansed surfaces for approximately 15 seconds to facilitate fingermarks deposition. 

479 Sampling was performed after 24 hours and eight days via targeted swabbing [105], - in the 

480 case of the metals – subsequent to direct PCR using NGM™ kit. A 54% overall successful DNA 

481 recovery was realised, with highest from glass surface but none from the brass casing. Though 

482 the authors observed mixed DNA profiles, the major informative ones always matched the 

483 donor. The method has also been used to generate full genetic profiles from single hair follicles 

484 [58], fingernails clippings [101], clothing fibres [106] and touch DNA from various sources [107].

485 The direct PCR sample processing approach has been deemed a feasible alternative for forensic 

486 trace human DNA recovery and analysis, with attendant improvements in efficiency, sensitivity, 

487 as well as the quality of results [58]. Despite the above mentioned merits; extensive use in 

488 other fields [108–110]; potential for diverse applications in the forensic and investigative 

489 sciences domain - especially for metal exhibits that rarely yield informative DNA profiles (low 

490 copy DNA samples) [107]; - and development of commercial products tailored for its application 

491 [98,111], the method is as yet not widely used in an operational sense in most forensic 

492 laboratories. The problem in operationalising the direct amplification approach is primarily 

493 related to:

494 1. PCR inhibition which ensues once substances interact with the polymerase enzyme, the 

495 DNA molecule or cofactors necessary for polymerase function, thus, preventing either 

496 partial or full amplification of DNA [99,112] and

497 2. The total lack of the possibility to perform any repeat measurements (re-testing) from 

498 the same sample. 

499 Metals encountered in crime scenes may habour other trace biological matrices together with 

500 deposits from the touch, on their surfaces. These biomaterials may be potential sources of 

501 inhibitors when swabbed and directly introduced into a PCR reaction, and may include humic 

502 acid from soil/settled dust particles [113,114]; haematin and other compounds contained in 

503 trace bloodstains [115,116]; metal ions, notably, in oxidized state [49] as well as other 

504 environmental contaminants. McCord et al. [117] found that, for an inhibited DNA sample, 
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505 there was a steady loss of larger amplicons in STR analysis with increasing inhibitor 

506 concentrations. However, the influence of inhibitors on PCR has been minimised due to 

507 advancements in polymerase buffer technology [118]. A potential inhibition source that has 

508 been overlooked in the move towards direct PCR for trace DNA work is the sampling devices – 

509 the swabs. The presence of metal-derived ions and other contaminants within the commercial 

510 swabs has not been investigated. The presence of inhibitors going straight into the PCR is 

511 undesirable and will impact on the uptake of this method. 

512

513

514 4. Effect of substrate surface 

515 The surface characteristics of a substrate are relevant to nucleic acid persistence and recovery. 

516 For example, roughness (compared to smooth surfaces) was linked to an increase in recovery of 

517 bacterial spores from different spacecraft-related surfaces, using nylon-flocked swabs [119]; 

518 and a parallel observation regarding efficient trace DNA recovery was made for ridged bottle 

519 tops [61].  A study examining fired weapons observed higher success rates of recovery from 

520 rough and textured surfaces of handguns than smoother surfaces [120]. However, as noted by 

521 Verdon et al. [70], some swabs materials may be left on rough-textured surfaces limiting 

522 sample collection capacity, and the loose fibres, when retained in a reaction mixture, could 

523 result in PCR inhibition [54]. 

524 Touch DNA on guns may be degraded by the percussive shock and high temperatures 

525 generated during firing, as well as by interaction with other substances such as unburned 

526 gunpowder, gun lubricant and gunshot residues [57,121]. Despite this Fan et al. [120] 

527 demonstrated the ability to recover touch DNA from different parts of fired guns and CBCs. 

528 The abrasive nature of rough-textured substrates surfaces such as slide serrations, grip panel 

529 and magazine releases of handguns enhances epithelial cell shedding during the process of 

530 handling a firearm and may facilitate the accumulation and retention of cellular material [61]. 

531 Notwithstanding, the available studies utilising various metallic materials including firearms and 
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532 CBCs (for example [13,122,123] or exploded improvised explosive devices (IEDs) [123–126] 

533 have focused on method validation (i.e. extraction efficiency of various reagents, buffers, 

534 swabs, and protocols) and provide no further insight on the relevance of specific substrate or 

535 surface conditions (such as metal type and alloy composition, surface cleanliness and/or extent 

536 of rust, gross/microscopic surface topography) and their effect on recovery and subsequent 

537 downstream forensic processes. Further, sample collection (mostly swabbing) in these works 

538 are undertaken almost immediately following touch sample deposition or within 24 hr, 

539 presenting a difficulty in establishing the influence of the ‘touch interval’ (the time elapsed 

540 since the initial touch sample deposition) on sampling and recovery efficiency. Broader 

541 research, employing larger sample sizes with different ranges of bio-analytical experimental 

542 approach to the existing research, is required to address the enumerated problems to inform 

543 frontline forensic practice.   

544

545 5. Future directions

546 Extensive research is needed to enhance understanding of metal-DNA interactions in the 

547 context of forensic investigations. This should include a systematic study to evaluate the effect 

548 of conditions including alloy composition, surface texture, extent of rust and the effect of 

549 environmental exposure on persistence, recovery and amplification of trace DNA samples.This 

550 will inform better sample collection, extraction and clean-up to improve profiling of DNA 

551 recovered from metal surfaces. Testing across a range of metals will also enable the triage of 

552 metal exhibits, facilitate cost-effectiveness and fast analytical throughput. While consistent 

553 development and validation of new methods and refinement of existing techniques should 

554 ultimately culminate in improvements, it is instructive that the standard swabbing methods, 

555 along with direct PCR, have the highest prospects owing, especially to the relative cheap cost 

556 and ease of training needs. Research is thus required to explore the possibility of metal-derived 

557 contaminants/inhibitors inherent in the swab devices (from manufacture) and to examine their 

558 impact on recovery and downstream processes. 

559 6. Conclusions
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560 Understanding metal-DNA interactions, including the impact of specific metal composition and 

561 surface conditions on DNA recovery, are fundamental to improving the chances of obtaining 

562 interpretable profiles from trace sample sources. This review has highlighted the current scope 

563 of research, enumerated some limitations and suggested further research directions to address 

564 them. Such investigations will enhance the forensic capabilities of law enforcement in general 

565 and benefit crime laboratories during investigations by improving the prospects of producing 

566 interpretable DNA profiles, especially in situations where there is a lack of other probative 

567 evidence. 

568

569
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930

931 Forensic touch DNA recovery from metal surfaces – a review

932

933 Highlights

934  Metal surfaces are difficult substrates for trace DNA recovery and amplification. 
935
936  Metal cations interact with DNA via complex intercalation, irreversible covalent binding 
937 and groove association
938
939  Five methods of touch DNA sampling include swabbing, tape lifting, soaking, Bardole 
940 MVAC and direct PCR 
941
942  There is at most 26% DNA recovery success rate from cartridges, bullets and casings 
943 (CBCs)
944
945  The surface characteristics of metal substrates are relevant to nucleic acid persistence 
946 and recovery
947
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