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Abstract: Lying between optical and microwave ranges, the terahertz band in the electromagnetic
spectrum is attracting increased attention. Optical fibers are essential for developing the full
potential of complex terahertz systems. In this manuscript, we review the optimal materials,
the guiding mechanisms, the fabrication methodologies, the characterization methods and the
applications of such terahertz waveguides. We examine various optical fiber types including tube
fibers, solid core fiber, hollow-core photonic bandgap, anti-resonant fibers, porous-core fibers,
metamaterial-based fibers, and their guiding mechanisms. The optimal materials for terahertz
applications are discussed. The past and present trends of fabrication methods, including drilling,
stacking, extrusion and 3D printing, are elaborated. Fiber characterization methods including
different optics for terahertz time-domain spectroscopy (THz-TDS) setups are reviewed and
application areas including short-distance data transmission, imaging, sensing, and spectroscopy
are discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Terahertz regime in the electromagnetic spectrum lies midway between microwaves and visible
light [1,2], loosely covering the frequency range 0.1-10 THz or wavelengths between 3 mm
to 30 um. The advance of terahertz technology and the growing interest in applications have
increased the demand for developing new sources, detectors, waveguides, and other components
for efficient control of terahertz waves. Low loss and low dispersion waveguides represent one
of the critical technologies for a new generation of terahertz systems. The focus on terahertz
has increased because of the recent availability of convenient sources and detectors, bridging
the so-called "terahertz gap" that was traditionally due to the lack of practical, low-cost and
efficient components. The new frontier includes exciting applications such as non-destructive
testing (NDT), label-free and non-invasive molecular detection, detection of DNA hybridization,
pharmaceutical drug testing, and broadband short-range communications [3—13]. Terahertz
also has potential for biomedical spectroscopy with a photon energy that is lower than that
of mid-IR radiation, yet with stronger polar molecular interactions than microwave radiation
[14-34]. Moreover, it is in demand for defense and security screening as it can easily penetrate
plastics, cardboard and clothing [35]. Despite all the potential applications, terahertz is still in
the development phase because most present terahertz systems are bulky and typically depend on
free-space transmission. Whilst the availability of sources and detectors has enabled recent work
in this area, other components remain primitive in comparison to their optics counterparts (i.e.,
designed for visible and infrared).

Terahertz radiation is highly sensitive to the atmosphere due to water vapor content. The free
space transmission of terahertz experiences various undesirable losses due to the coupling with
atmospheric components that significantly reduces the transmission efficiency. Therefore, in order
to upgrade some terahertz systems, it is necessary to build up low loss waveguides. As a primary
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solution, prior studies have proposed several waveguides including metallic wires, parallel plates,
dielectric tubes with metal coating, polystyrene foams, sub-wavelength fibers, Bragg fibers,
hollow-core fibers, porous-core fibers, and anti-resonant terahertz fibers [3 —176]. Metal wires
were proposed in the early days of terahertz technology development [3,36,113]. Single metal
wire can operate as a waveguide for terahertz pulses with reduced dispersion and low attenuation
[4,115]. However, the coupling of the free-space terahertz beam to the metal wire-guided mode
is very ineffective, since the fundamental mode of metal wire waveguide is radially polarized
while the photoconductive antennas produce linearly polarized terahertz signal [115]. Two-wire
waveguides gained attention with low loss and improved coupling properties [4], however, not
practical for real-world applications. In spite of metallic wires possessing desirable propagation
characteristics, the most promising device for guiding terahertz is a dielectric waveguide and its
principal category is the terahertz optical fiber. Since the introduction of the solid dielectric rod,
there are now a large number of proposed designs for terahertz optical fibers—the most advanced
designs are based on the concept of specialty optical fibers [4]. Terahertz optical fibers have, for
example, the potential to be designed to allow waveguiding through air and much deeper control
of the waveguide optical properties such as loss, birefringence, dispersion, transmittance bands,
modal areas, etc.

In this review paper, we aim to combine the recent development of terahertz optical fibers with
different geometries and guiding mechanisms, the background materials, the fabrication and
measurement techniques, and potential applications. The manuscript is organized as follows:
section two outlines the optimal materials for terahertz applications, section three outlines
different terahertz optical fiber geometries and their guiding mechanisms, sections four and
five address the possible fabrication and characterization mechanisms, section six discusses the
potential applications, section seven addresses the future prospects of terahertz optical fiber and,
finally, this will be followed by a conclusion.

2. Optimal materials for terahertz applications

The background material to build a terahertz waveguide plays an essential role in obtaining a low
loss waveguide. Therefore, careful attention must be taken in considering the bulk material during
a terahertz fiber design. Recent terahertz studies on different glasses and polymers demonstrate
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Fig. 1. Absorption coefficients of materials at terahertz, (i) Zeonex, Topas, HDPE, Teflon,
Silica, BK7 and uv-resin [177,178], (ii) Teflon, Picarin, TPX, COC, and PP [179], and (iii)
HDPE, polystyrene, polycarbonate, and perspex (PMMA) [180,181].
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that polymers show better optical properties than glasses [123,177,178]. From a very recent study
of materials for terahertz fibers [177], Fig. 1(i), it was found that the cyclo olefin polymer (COP)
(commercially known as Zeonex), cyclic olefin co-polymer (COC) (commercially known as
Topas), Teflon, and HDPE show similar optical characteristics. Their absorption coefficient has an
average value of 0.2 cm~! in the 0.2 to 5.0 THz [177,178]. At high frequencies, however, Zeonex
and Topas present lower losses than Teflon and HDPE [177]. Another study, Fig. 1(ii), shows
that COC has lower absorption coefficients than Teflon, Picarin, TPX, and PP (Polypropylene)
[179]. Naftaly et al. [180] demonstrates that HDPE shows lower absorption than polystyrene,
polycarbonate, and perspex (Fig. 1(iii)). From Fig. 1(i), we find that, among the glasses the silica
shows lower absorption that is the most used material to fabricate fibres applicable in the optical
regime. Note that UV-resin is a typical material used in stereolithography (SLA) printing. It
provides higher resolution in printing however with much higher loss compared to Zeonex and
Topas. Therefore, from the terahertz optical properties of glasses, polymers, and UV-resin, it can
be concluded that polymers have lower absorption coefficients than others where Zeonex and
Topas perform better [177,178].

3. Terahertz optical fiber categories and guiding mechanisms

In this section, the main advances in the development of terahertz waveguides are summarized.
A large variety of terahertz waveguide concepts have been proposed in the last two decades and,
usually, are based on metal wires and dielectric waveguides. As a classical optical fiber, the
terahertz wave propagation in dielectric waveguides can be supported by the following physical
mechanisms: the total internal reflection effect (TIR) [38], the modified total internal reflection
(mTIR) [39] in microstructured fibers (or Photonic Crystal Fiber-PCF), the photonic bandgap
effect (PBG) [40], the anti-resonant effect with inhibited coupling of core and cladding modes
[41] and the topological channel effect in helically twisted structures [42]. The TIR and mTIR
effects are related to the refractive index contrast between core and cladding of an optical fiber,
allowing the fiber to propagate electromagnetic waves at the high index core. The mTIR is
essentially the same TIR physical effect and is present when the cladding is a microstructured
region with lower refractive index material formed by low index inclusions (usually air holes)
in the background fiber material [43]. The PBG effect in microstructured optical fibers leads
to a condition where the electromagnetic wave is not allowed to propagate in the transverse
directions but is able to propagate longitudinally at a defect region [40]. The defect region is
a perturbation in the periodic microstructure of the cladding and defines the fibre core region
[40]. In this condition, the electromagnetic wave can be guided via an “out-of-plane”photonic
bandgap and low loss longitudinal transmission occurs in spectral bands where the two-dimension
microstructured lattice exhibits forbidden wavelengths for transverse electromagnetic waves
[40,43,44]. These narrow spectral bands depend on the periodic cladding structure, geometry, and
refractive index contrast between the background material and the low index periodic inclusions
in the microstructured cladding [43,44]. The PBG effect allows wave propagation in hollow-core
waveguides that opens the possibility of applications in telecommunications and sensing [43—45].

Some hollow-core PCFs have a cladding microstructure with a high air filling factor (thin
webs between large air-holes). This lattice structure is called kagome and it does not support the
PBG effect. An optical fiber with kagome cladding lattice exhibits a lower density of photonic
states and, in this situation, core and cladding modes can coexist without coupling [4,46—49]
(guidance based on inhibited coupling). The probability of core and cladding modes to couple
depends on the match of their effective indexes and their spatial mode overlap [46]. The low
density of cladding modes is a critical condition, reducing the probability of core and cladding
mode coupling. This opens the possibility of low loss core guidance in wide spectral range in
kagome lattice fibers [49].
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In such structures, the cladding is formed by a complex lattice of air-holes with high filling
factor, and the fiber core is surrounded by a thin dielectric ring [45—49]. If we consider simplifying
this structure to a thin dielectric ring surrounding the hollow-core, this is called a tube fiber (or
pipe fiber). Like a kagome structure, the very low density of modes supported by the ring reduces
the probability of coupling in core and cladding modes (inhibited coupling). In fact, it is possible
to analyze the guidance condition in the tube fiber considering the structure as an anti-resonant
reflecting optical waveguide (ARROW) [47]. As a double-layered Fabry-Perot resonator, at the
anti-resonant wavelengths the constructive interference occurs inside the hollow-core supporting
terahertz transmission, and at the resonant wavelengths the light couples to lossy modes inside
the dielectric ring [45-48].

This guidance mechanism is known as the anti-resonant eftect with inhibited coupling and
has been explored in terahertz waveguide design with low loss and wideband transmission. A
new guidance effect was recently demonstrated in coreless PCF with a helical twist [42]. The
twisted structure presents a topological channel that creates favorable guidance conditions. The
helical twist causes a quadratic increase in the optical path as a function of fibers radius and twist
rate, impacting more strongly the effective indexes of cladding modes with field distribution far
from the fiber center. As a result, a helical twist causes a decoupling (or an inhibited coupling)
between modes with field close to the fiber center from modes with field far from the fiber
center. The result is a waveguide with low confinement loss, even when the structure is a coreless
microstructured fiber [42,52]. Figure 2 presents one example of terahertz optical fiber structure
to each possible guidance mechanism.

mTIR PBG

N\
J

Inhibited coupling ~ Anti-resonance with ~ Topological channel
(kagome structure) inhibited coupling (twisted fiber)

Fig. 2. Representative sketches of terahertz optical fibers with corresponding guidance
mechanism indicated.

Terahertz optical fibers have been proposed in the literature building upon the developments in
specialty optical fibers [4,53,54]. The designs have explored almost all the guidance mechanisms
already applied in photonics. The main categories of terahertz optical fibers are: solid rod fiber
(or microwire fiber) [4,53], porous fiber [53-57], porous-core fiber [58—60], slotted core fiber
[10,62—-64], suspended core fiber [74,94], hollow-core fiber [95-99], hollow-core fiber based on
anti-resonances and inhibited coupling mechanism [41,100-106], Bragg fiber [57,101,108,109],
porous fiber with embedded metallic wires [37,110-112], and helically twisted fiber [129].
Figure 3 presents the variety of terahertz optical fibers presented in the literature, where black
and white colors represent the dielectric material and the air region, respectively.

The main problem in the development of terahertz optical fibers is the strong absorption of
terahertz in dielectric (polymers or vitreous) materials. As discussed in Section 2, polymers



m Vol. 28, No. 11/25 May 2020/ Optics Express 16093 |

Optics EXPRESS

(vii)

(viii) (ix) (xii)

mmm \[aterial

Fig. 3. Optical fiber categories. (i) solid rod fiber, (ii) Microstructured optical fiber,
(iii) Porous fiber, (iv) Suspended porous-core fiber, (v) Suspended slotted core fiber, (vi)
Hollow-core bandgap fiber, (vii) Hollow-core tube fiber, (viii) Hollow-core fiber with
negative curvature, (ix) Hollow-core fiber based on anti-resonances and inhibited coupling,
(x) Hollow-core nested anti-resonant nodeless fiber, (xi) 3D printed hollow-core fiber based
on anti-resonances and inhibited coupling, and (xii) Bragg fiber.

show low absorption losses than glasses [177]. The high absorption loss demands specialized
designs to achieve the desired properties for terahertz optical fibers. A solid rod fiber, the
most straightforward terahertz fiber, has high confinement of modal power at the dielectric
material, resulting in very high absorption loss. Microstructured solid core terahertz fibers have
a similar issue resulting in high absorption losses. However, a coreless porous terahertz fiber
with subwavelength air-holes, can reduce the absorption loss by adjusting the fraction of modal
power at the air (air-holes plus air-cladding) and at the dielectric background material [56,57].
Porous terahertz fibers reaching 85% of modal core power fraction were demonstrated in [53-57],
resulting in reduced propagation losses.

Porous-core terahertz fibers are those in which a dielectric core has a microstructure of
subwavelength air-holes and the surrounding cladding is built with larger air-holes [58-61].
Porous-core terahertz fiber provides high confinement with low loss terahertz propagation.
However, some designs add extra effort to prepare the fiber preform by including air-holes with
very different diameters to build the microstructured core and cladding regions. This kind of
porous-core terahertz fiber was proposed in [59,60] leading to high power confinement at the
porous-core (40%—40%) region and propagation losses of about 0.07 cm™!. Porous-core fiber
design based on the PGB effect allows the use of similar air-hole diameters. This approach
was firstly demonstrated in terahertz fibers built with cyclic olefin copolymer (COC-TOPAS)
operating at 0.75-1.05 THz with losses lower than 1.5 dB/cm [58]. An even more difficult design
was proposed in a porous-core fiber with elliptical air-holes that was proposed to obtain high
birefringence of about 0.119 and low-loss propagation of 0.0689 cm™" at the 1.0 THz [68]. In
general, a core porosity of 50% to 60% allows reduction of the absorption loss to 45% and 38%
of the bulk material loss, respectively [59].

An alternative design to porous-core terahertz fiber is the slotted-core terahertz fiber developed
with the purpose of providing high birefringence of about 0.02 to 0.075 at 1 THz [10,62-64]
and low loss below 0.06 cm™![10,148]. Basically, fiber core has high porosity due to the
inclusion of rectangular or elliptical slots filled with air [10,62—64]. Slotted-core fibers were only
numerically studied because the extra challenge of preparing the fiber preform and integrating
rectangular or elliptical slots at the core region into a cladding with circular air-hole macrostructure
[10,62—64,148]. Note that Figs. 4(a)—(d) present examples of porous-core and slotted-core
terahertz optical fiber designs and their material absorption loss as function of core-diameter and
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porosity [59,148]. Slotted-core terahertz fibers have the potential to result very low propagation
losses, but experimental demonstration must be presented.
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Fig. 4. Porous-core and slotted-core terahertz optical fiber designs and absorption loss
as function of core diameter and porosity. (a)-(b) Microstructured porous-core terahertz
fiber design and its absorption loss [59]. (c)-(d) Sloted-core terahertz fiber design and its
absorption loss [148].

Another category of terahertz fiber is the suspended core fibers that are characterized by a
central very small fiber core surrounded by a large porous outer cladding. The fiber core can
be solid, hollow-core or microstructured, as a porous-core fiber, and the main characteristic of
this kind of terahertz fiber is the high intensity of evanescent field around the core [74,149—-151].
An experimental demonstration of suspended-core (150 um) subwavelength terahertz fiber was
presented in [74] with guidance from 0.28-0.48 THz with low-loss of 0.02 cm~!. The main
features of this low-loss fiber design is mechanical flexibility, allows ease of fabrication and has a
fiber core isolated from external disturbances—this allows convenient hand manipulation that is
useful to real world applications. Other suspended-core designs were numerically proposed and
a combination of techniques to increase the core porosity and reduce the propagation losses were
explored: hollow-core [149,150], slotted-core [151], and graded porous-core [74] (Figs. 5(a)—(d)).
However, the increase of design complexity of these alternative designs is an issue that invariably
leads to not practical and cost-effective devices.

An optimized design of porous terahertz fiber, or suspended core terahertz fiber can reduce
the absorption loss to less than 1/10 of the bulk material loss. However, considering the high
absorption losses of dielectric materials, a hollow-core fiber seems to be a more effective option.
Based on the established hollow-core fibers for phonics applications in the optical regime,
hollow-core terahertz fibers have been proposed based on different guiding mechanisms: the
bandgap effect, low cladding mode density in fibers with kagome structure and the anti-resonant
effect [41,95-104].

Hollow-core terahertz fibers, based on kagome structures, were demonstrated with remarkable
low absorption losses of 0.6 cm™! over 0.65-1.0 THz [97] and 0.02 cm™" over 0.2—1.0 THz, with
minimum of 0.002 cm™! at 0.75 THz [98]. The kagome terahertz fiber presented in [97] was
fabricated by the stack and draw technique and resulted in single-mode operation with propagation
loss about twenty times lower than the loss of polymer PMMA used as manufacture material.
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(c)

Fig. 5. Suspended-core terahertz fibers. (a) Subwavelength core [74]. (b) Hollow-core
[149]. (c) Graded porous-core [74]. (d) Slotted-core [151].

The hollow-core kagome structure presented in [98] was manufactured by 3D printing leading to
broadband propagation (above 0.4 THz) and enables mechanical splicing by connecting separated
parts without any additional alignment issue. Figures 5(a)—(d) present both kagome based
hollow-core fibers and their spectral propagation losses [97,98]. These hollow-core structures
are representative of two most promising fabrication techniques applied to terahertz optical
fiber manufacture. The first technique (stack and draw) allows obtaining flexible single-mode
waveguides and the second technique (additive manufacturing by 3D printing in polymer) open
the possibility to fabricate special designs that are impossible to by prepare with any other
manufacturing technique.

Despite the efficacy of low-loss PBG and kagome based hollow-core terahertz fibers, a simpler
design is even possible and has been explored for terahertz wave propagation. Anti-resonant
hollow-core terahertz fibers (tube terahertz fibers) enable wave propagation with extremely low
absorption losses of 0.0005 cm~! at 1.0 THz [99,152] over large bandwidths. An anti-resonant
waveguide can be formed by just one dielectric tube or a design based on connected tubes as
presented in Figs. 6(a) and 6(c). These waveguides present wider transmission bands than that of
PBG based hollow-core terahertz fibers. Figures 6(b) and 6(d) present the attenuation constant
and loss coefficient to the single tube waveguide and tube lattice waveguide, respectively [99,152].

Besides the search of appropriated designs to obtain low loss terahertz propagation, the another
very important parameter to enable broadband terahertz transmission is the chromatic dispersion
of terahertz optical fibers. A very simple anti-resonant terahertz fiber, based on just one dielectric
tube with absorptive cladding, might provide low loss (0.05-0.5) cm™! and low dispersion
propagation (|82|<10 ps/THz/cm) in 0.3-1.0 THz [100]. The authors demonstrated that an
absorptive material, placed outside the dielectric tube, reduces the slope of dispersion curves
especially in the vicinity of resonant loss maxima, what causes a strong reduction in the group
velocity dispersion (GVD), reduction of bending losses (remains <0.2 cm™!for bending radii
down to 10 cm) and propagation bandwidth much larger that the classical ARROW waveguide
[100].
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Fig. 6. Hollow-core terahertz fiber based on anti-resonant effect. (a-b) Simplest dielectric
tube terahertz waveguide [99]. (c-d) Negative curvature hollow-core tube lattice terahertz
waveguide [152].

Another possible design of hollow-core fiber is the Bragg terahertz fiber that consists of a
hollow-core surrounded by circular concentric rings of high and low refractive indexes (Bragg
reflector). In this category of fiber, usually the fiber core is much larger than the operating
wavelength what ensures high coupling efficiency with different terahertz sources [57]. Few
studies about Bragg terahertz fibers are available in the literature [57,108,109], but the numerical
and experimental results demonstrate transmission from 0.2-2.0 THz and loss of 0.1 cm™! to
1.0 THz [108,109]. Figures 7(a) and (b) present a terahertz Bragg fiber design, manufactured
by rolling two different polymer films, and its spectral transmission loss, respectively [108].
This design and manufacture process has the advantage of simplicity, cost effective, besides
enable flexible waveguides and propagation from 0.2-2.0 THz. Figures 7(c) and (d) show a 3D
printed terahertz Bragg fiber, with diameter core of 7.2 mm, and its spectral transmission loss,
respectively [109]. The 3D printed Bragg fibers in low-cost printers, as presented in [109], are
also very simple to be fabricated, but the low spatial printing resolution and the use of only one
printing material limits the designs to achieve the operation in Bragg regime. An alternative
would be filling the air gap with a liquid polymer or another dielectric where the high-index
contrast leads to omnidirectional reflection.

An alternative design of hollow-core terahertz fiber is a hybrid terahertz fiber that is based on
porous fiber with embedded metallic wires [37,106,110,112]. More details about terahertz fibers
with embedded wires will be presented in the next section.

A new frontier of terahertz fiber optic development is the proposal of helically twisted hollow-
core terahertz fibers. Considering the new features demonstrated by this category of fibers in
photonic applications, there is a significant opportunity to develop devices to manipulate terahertz
modes with circular polarization and modes with orbital angular momentum (OAM) [129].
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Fig. 7. Hollow-core terahertz Bragg fiber, design and its spectral transmission loss. (a)-(b)
Manufactured by rolling two polymer layers [108]. (c)-(d) Fabricated by 3D printing [109].

3.1.  Hollow-core waveguides having single and hybrid cladding

In this section, various hollow-core metallic single and hybrid cladded waveguide are discussed.
The single clad waveguide refers to a structure with a single layer of material (metal or polymer)
(Fig. 8(i)); whereas hybrid clad (metamaterial) waveguides contain a minimum of two different
materials, creates conjugate layers (Figs. 8(ii)—(viii)) [37,106,110,112]. The net idea is to
combine the low-loss, low-dispersion terahertz propagation properties of metal wires/sheet based
waveguides with the mechanical robustness of porous terahertz fibers.

3.1.1. Hollow-core single-clad metallic pipe waveguides

In 1999, McGowan et al. reported the first experimental investigation on a long circular stainless-
steel hollow pipe waveguide [113]. The next year, Gallot ef al. extended the idea by reporting a
brass circular hollow waveguide [3]. In all of these cases, the terahertz transmission is limited
not only by the high loss of the metal but also by group velocity dispersion of the guided waves.
Hadika er al. [144] in 2005 developed a flexible, hollow terahertz waveguide and compared the
results by using both polymer (ferroelectric polyvinylidene fluoride (PVDF)) and metal (copper).
An improved loss performance was found by using the polymer than the copper. Alongside
the ohmic losses, the inner surface roughness [144] introduced from the washing process and
inconsistency of the waveguide cross-section [3] introduced from extrusion over the length are
the main limitations of the metal waveguides.

3.1.2. Hollow-core metamaterial waveguides

Hybrid-clad also known as metamaterial waveguide refers to the waveguides having a minimum
of two different layers of materials. Each layer has different functionalities, for example, the use
of polymer as a supporting tube [110] can introduce the flexibility to deposit metal on polymer
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[121], (v) two-wire dlelectrlc claddlng [111,112,114]; (vi) three wire dielectric cladding
[37], (vii-viii) cladding with multiple metal wire inclusions [37,111,121].

inner surface. The inner thin metal layer serves as a reflector and maintains the optical properties.
In 2004, Harrington et al. adapted metal coating idea using liquid-phase chemistry method from
the mid-IR region and applied it to the terahertz spectrum [110]. The ejection of a thin metal
layer of correct optimal thickness inside and/or outside of the transparent polymer is the main
concept of liquid-phase chemistry method. However, this method possesses complex procedures
and limits the coating diameter and length. Various hybrid cladded waveguides are shown in
Fig. 8.

A 3D printed porous fiber with embedded metallic wires was reported in [37] reaching low-loss
absorption coefficients of 0.05 — 0.4 cm™! and close to zero dispersion (Fig. 8(vii)). A challenge
of embedded metal wire design is the careful maintenance of inter-wire gaps along the fiber
length, because any variation of this distance can increase the radiation losses significantly
[112]. Anthony et al. in 2013 analysed two-wire and four-wire configuration of metamaterial
waveguide [111]. The reported power loss was 0.3 cm™! for the two-wire fiber, and 0.5 cm™! for
the four-wire fiber. To obtain the desired wire-based hybrid cladding geometries, the dielectric
waveguide preform can be made first and then metal wires can be inserted manually [37].

The dielectric coating on metal is another type of metamaterial waveguide that facilitates the
transmission over a metallic tube waveguide. For example, polystyrene coated metal enhances the
reflectivity of the metal via an interference effect and the metal acts as a mirror. An experimental
characterization on a silver/polystyrene-coated hollow glass waveguide [116,118] shown that
the transmission loss reduces to 0.95 dB/m, in contrast to the high loss of 3.5-5.0 dB/m for the
metal-only waveguides. This is due to the low extinction coefficient [119] and low dielectric
absorption [120] of the dielectric loaded waveguide. A drawback of introducing the dielectric
layer in a metallic waveguide is that the dielectric coating introduces interference peaks, which
limits the bandwidth of operation [119]. Thus, the thickness of the dielectric should be optimized
in such a way that a low transmission loss window can be located in the desired frequency region.
The addition of a thin dielectric layer of an oversized waveguide can reduce losses but enlarging
the core size increases the number of modes so that modal coupling and modal dispersion become
problematic. A single layer of subwavelength metal wires with optimal thickness is sufficient to
provide the required guidance through hollow-core with dielectric cladding environment [121].
The waveguide reported by Li et al. was fabricated using co-drawing technique [122] with indium
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wires and Zeonex. Within the single-mode window, the propagation loss of their waveguide is as
low as 0.28 dB/cm.

For the wire-based hybrid clad hollow waveguide, the dominant guided mode is a HE11-like
mode [37,111]. It should be noted that coated dielectric layer thickness plays an important role
in defining the dominant mode between HE11 and TEO1. It is found that for correct optimal
thickness the dominant mode for the dielectric coated metal waveguide is the HE11 mode
[116,117,119,120]. The loaded dielectric film reduces the loss of TM mode, which is higher
for the metal waveguide. This results in the dominant mode for the dielectric loaded waveguide
to be the HE11 mode with a lower attenuation constant. Table 1 summarizes the main features
of terahertz optical fiber categories and address selected works representing the advances in
terahertz dielectric waveguides development.

Table 1. Terahertz optical fibers main features.

Terahertz fiber Highlights Concerns Extra comments

categories

Solid core, Design simplicity, ease of | High absorption and Tapered subwavelength

[4,53,155] manufacture. bending losses, High fiber to evanescent field
dispersion (GVD). sensing, can be flexible.

Porous Average absorption loss High bending loss, high Tapered subwavelength

[4,53-60,62-67, and design and dispersion (GVD), fiber to evanescent field

135,139] manufacture complexity, multimode guidance. sensing.

mechanical robustness.
PCF Mechanical robustness, High absorption and Solid, porous or slotted

[53,68-71,137]

average design and
manufacture complexity,
single-mode guidance.

bending loss.

core

Suspended core
[11,64,72-74,94]

Reduced absorption loss,
Isolated fiber core, High
evanescent field into the
air cladding, Single-mode
guidance.

Design and manufacture
with average complexity.

Solid, porous or slotted
core Special design to
guide with near-zero
dispersion.

PBG and kagome
hollow-core
[71,75,76,95-99]

Reduced absorption and
bending losses, Low
dispersion.

Design and manufacture
complexity, Reduced
manufacturing tolerance,
Multimode guidance,
Large outer diameter.

Bandgap guidance of PBG
fiber, wideband guidance
of kagome fiber, terahertz
signal well coupled to
large core diameters.

Anti-resonant
[77,100-107]

Low absorption loss,
Design simplicity, Ease of
manufacture.

‘Weak mechanical
robustness, Multimode
guidance.

Single tube fiber,
absorptive cladding,
terahertz signal well
coupled to large core
diameters, possible
manufacture with 3D
printing.

Bragg
[57,78,96,101,
108,109]

Reduced absorption loss,
Isolated fiber core.

Average manufacture
complexity, Reduced
manufacturing tolerance,
Multimode guidance.

Possible manufacture with
3D printing, terahertz
signal well coupled to
large core diameters.

Hollow-core with
hybrid
metallic-dielectric
cladding
[79-82,106,107,
110-112,114,116,
117,119-122,135]

Low absorption loss, High
field confinement in a
wide frequency range.

Design and manufacture
with high complexity,
Reduced manufacturing
tolerance.

Low-loss air-bound
ARROW modes at high
frequencies, close-to-zero
dispersion with two-wire
configuration, Plasmonic
modes at lower
frequencies, possible use
of embedded metal wires
or layers in different fiber
designs.
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Table 2 presents selected experimentally demonstrated terahertz optical fibers with description
of fiber category, background material, core diameter, effective material loss (EML in cm™!)
or confinement loss (CL in dB/cm), and dispersion (GVD). The material abbreviations means:
Polystyrene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), polytetrafluoroethylene
or teflon (PTFE), cyclic olefin copolymer (COC), cyclo-olefin polymer (COP), VeroWhitePlus
(photopolymer), Somos EvoLVe 128 (photopolymer), acrylonitrile butadiene styrene (ABS),
polylactic acid (PLA), high-density polyethylene (HDPE), Silica (SiO2), arsenic sulfide (As2S3),
high resistivity silicon (HRS).

Table 2. Selected experimentally demonstrated terahertz optical fibers.

Terahertz fiber | Material Core dia. Loss (EML or CL) Dispersion Reference

categories (um) (year)

Solid core PE 200 0.0l cm ! at03THz | - [135] (2006)

Solid core PS, COP 1600x1600 0.3 cm™! (PS) and - [84] (2019)
0.04 cm™! (0.12 THz)

Porous Silica 182 1.2-2.0 dB/cm - [67] (2006)
(0.4-0.6 THz)

Porous PE 350 0.01 cm™! at 0.3 THz - [139] (2009)

Porous PMMA 200-600 0.25cm™! at 0.8 THz - [65] (2009)

Porous PE 445, 695 <0.02em™! (0.1-0.5 <1 ps/THz/cm [83] (2010)
THz) (0.1 = 0.5 THz)

Porous PTFE 430 <0.27 em™! (0.1-1.0 - [85] (2019)
THz)

PCF PTFE 1000 <0.12cm™! (0.1-1.3 - [137] (2004)
THz)

PCF CcOoC 870, 4200 0.09 cm™! (0.35-0.65 <1 ps/THz/cm [69] (2009)
THz)

Suspended PE 150 0.02 cm~! (0.28-0.48 - [74] (2011)
THz)

Kagome PMMA 1600, 2200 | 0.8 cm™! (0.75-1.0 - [97] (2011)
THz)

Kagome VeroWhite | 9000 0.02cm™! (0.2-1.0 - [98] (2016)
THz)

Anti-resonant PTFE 2100 0.05 dB/cm - [77] (2013)

Anti-resonant PMMA 4000 0.05-0.5 cm™! <10 [100] (2015)
(0.3-1.0 THz) ps/THz/cm, <1

ps/THz/cm

Anti-resonant Resin 9000x4500 | 0.005 cm™! - [86] (2019)

Anti-resonant PLA 25000 0.005 cm~'(0.1 THz) - [87] (2019)

Anti-resonant Resin 5000 0.11 em™1(0.2-1.0 - [88] (2020)
THz)

Bragg PTFE 6700 0.00l cm™! (1.0 THz) | - [108] (2011)

Bragg ABS 7200 0.52 dB/cm (0.35 - [109] (2015)
THz)

Bragg PMMA 4500 0.12cm™! (0.18 THz) | - [166] (2017)

Hybrid (metal) | COC 2000 0.2cm™ (>0.85 THz) | <5 ps/THz/cm [111] (2013)

(0.65-1.05 THz)

Table 3 presents selected numerically studied terahertz optical fibers with description of
fiber category, background material, core diameter, effective material loss (EML in cm™) or
propagation loss (dB/cm)propagation loss, and dispersion (GVD).
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Table 3. Selected numerically studied terahertz optical fibers.

Terahertz fiber Material Core dia. (um) | Loss (EML or CL) Dispersion (ps/THz/cm) | Reference
categories (year)
Porous coc 560, 600, 760 0.007 cm™! (0.2 THz) - [62] (2009)
Porous PMMA 400 0.01 cm™ (0.2 THz) - [66] (2008)
Porous Ccop 300x400 0.06 cm™! (0.2 THz) +0.02 [89] (2018)
PCF porous core COoC 350-500 0.1 -02cm™'(0.7-12THz) |- [56] (2013)
PCF porous core COC 350 0.07 cm~'(1.0 THz) - [59] (2013)
PCF porous core cocC 200 0.05-0.14 cm™'(0.7-1.6 THz) 1-2.7(0.7-1.6 THz) [94] (2016)
PCF slotted core COoC 350 0.07 cm~'(1.0 THz) <4 (0.8-1.3 THz) [148] (2015)
PCF porous core CcoC 450 0.024-0.46 cm™' (1.0 THz) 0.15 (1.0-1.5 THz) [90] (2017)
PCF porous core CcocC 350-500 0.02 cm™'(0.98-1.64 THz) 0.16(1.0-1.58 THz) [91] (2017)
PCF porous core cocC 350-400 0.04 cm™!(1.0 THz) 0.10 (0.9-1.1 THz) [92] (2017)
PCF porous core CcocC 137-142 0.06 cm~!(1.0 THz) - [68] (2017)
PCF porous core CcocC 290x870 0.06 cm™'(1.0 THz) 0.03 (1.0-1.8 THz) [13] (2018)
PCF porous core HRS 100 0.04 cm™'(0.9-1.0 THz) 0.6 (0.8-1.1 THz) [14] (2018)
PCF porous core COoC 400 0.34 cm~'(1.0 THz) 0.38 (0.72-2 THz) [15] (2018)
PCF porous core COC 350x116 0.07 cm~'(1.0 THz) 1.1 (0.8-1.2 THz) [16] (2018)
PCF porous core CcocC 350 0.02-0.05 cm™!(0.5-1.8 THz) | 0.53 (0.5-1.5 THz) [10] (2018)
PCF porous core cocC 396408 0.003-0.05 cm™! (1.0 THz) 0.01 (0.97-1.09 THz) [17] (2018)
PCF porous core COC 130-225 0.07 cm’l(lAZO THz) 1.2+0.32(1.1-1.5 THz) [18] (2019)
PCF slotted core CcocC 150-750 0.053 cm™!(1.0 THz) +0.32 (1.0 THz) [19] (2019)
PCF slotted core cocC 350 0.07 cm™!(1.0 THz) 4(0.8-1.3 THz) [151] (2014)
PCF porous core COoC 300450 0.053 cm™' (1.0 THz) - [76] (2009)
Suspended porous core | COC 432 0.01-0.1 em~'(0.35 - 1.0 THz) | 0.14 (0.7-0.9 THz) [74] (2019)
Suspended slotted core | COC 320 0.39 dB/cm (0.95 THz) 0.5 (0.7-0.9 THz) [64] (2018)
Kagome PTFE 4200 0.023 cm™! (2.1 THz) 0.03 (1.2-2.9 THz) [71] (2009)
Kagome porous core CcoC 300 0.029 cm™! (1.30 THz) 0.49 (1.0-1.76 THz) [20] (2019)
Kagome porous core COP 300400 0.05 cm™! (1.0 THz) 0.49 +0.05 (0.8-1.7 THz) | [6] (2018)
Kagome porous core COP 250-350 0.04 cm™! (1.0 THz) 0.98 +0.09 (1.0-2.0 THz) | [93] (2019)
PBG PTFE, HDPE 882 0.01 dB/cm (0.9-1.1 THz) - [76] (2009)
PBG Ccop 1500 x 2034 0.01 cm™ (0.82-1.05 THz) 0.16-1.12 (0.82-1.05 [21] (2018)
THz)
PBG PTFE, PMMA, | 960-1020 0.0001-0.001 cm™! (1.73 THz) | close to zero (1.6-1.8 [75]1 (2019)
Si0, THz)
Anti-resonant PMMA 7000, 9000 0.0007-0.004 cm™! (0.7 THz) | - [99] (2009)
Anti-resonant PTFE 2100 0.05 dB/cm - [77] (2013)
Anti-resonant PC 6000, 10000 <0.01 dB/cm (0.45 THz) - [127] (2018)
Anti-resonant COC 3000 0.05 dB/cm (0.60 THz) 0.1 (0.8-1.4 THz) [102] (2018)
Anti-resonant PP 1300 0.17 cm™' (2.1 THz) 0.1 (0.8-1.4 THz) [22] (2018)
Anti-resonant COoC 3625 <0.021 dB/cm (2.2 THz) - [23] (2018)
Hybrid (metal) PE 200 0.64 cm™!(>1.514 THz) 2-3 (0.3-0.55 THz) [79] (2013)
Hybrid CcocC 1000 0.25 dB/cm (0.3-0.46 THz) - [80] (2016)
Hybrid (Metamaterial) COop 3000 0.01 dB/cm (1.0 THz) (Center | - [107] (2020)

of bandgap)
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4. Terahertz polymer optical fibers fabrication methods

Fabrication constraints are crucial when designing and developing a new polymer optical fiber.
Polymers are considered as the most efficient material for manufacturing terahertz waveguides as
they can show low loss and flat dispersion properties in the terahertz regime. The fabrication
processes of terahertz polymer fibers are adapted from the microstructured optical fiber. In
general, the microstructured optical fibers can be fabricated by drilling, stacking and drawing,
extrusion, casting/molding and solvent deposition, and 3D printing. In this section, we discuss
the methodology of these fabrication methods and point out a few practical examples of the same.

4.1. Drilling

The drilling method is widely used to fabricate microstructured and photonic crystal preforms
with circular holes. Such preforms need to be subsequently drawn to optical fibers to guide
visible and infrared signals. The computer numerical controlled (CNC) drilling machine offers
to ability to fabricate complex structured preforms with high precision [132]. It should be noted
the need to optimize the drilling parameters such as cutting speed, spindle speed and depth of
cut to avoid air hole surface roughness or polymer melting due to high drilling temperature. A
detailed drilling procedure has been discussed in [131]. The size of the drill imposes a limitation
on the maximum length of the preform and determines the number of holes that can be drilled
[132]. To control the system temperature and hole deformation, a liquid coolant is required
during drilling. Also, the drill bit has a very short lifetime and frequent replacement makes the
whole fabrication process complex and time-consuming. Drilling is not suitable for porous-core
and anti-resonant fiber because its geometrical complexity. It is also difficult to maintain the
mechanical strength of a thin wall between adjacent air holes in fiber structures with a high air
filling fraction [132]. A possible geometry is a Bragg fibre with a larger central hole and small
holes forming the concentric layers (Fig. 9(a)).

4.2. Stack and draw

Stacking is another approach for creating hole patterns in a preform [134-137,140,141]. A
number of polymer capillaries are stacked manually and bundled together with a polymer jacket
to prepare the final preform. The microstructured layers of a suitable preform are fastened
together with ordinary thin plastic tubes. A wide range of complex structures with different
hole patterns has been made using passive or active pressure. This freedom allows changing
the shape of originally circular holes like shown in Fig. 9(b) [128,138,139]. Staking is the most
common method for fabricating the preforms for hollow-core fiber and porous fiber with high
air proportion. The handmade stacking is very labor-intensive and time-consuming for mass
production. However, the limitation in the preform length and drawbacks of drill bit imposed by
the drilling method can be overcome by this technique. The maximum achieved porosity with
stacking is 8—18% [139]. A more detailed stacking procedure has been discussed in [131].

4.3. Sacrificial-polymer technique

The sacrificial polymer technique is a subtraction process, where the sacrificial rods are stacked
in the microstructured mold without touching and co-drawn with polyethylene granules [83,139].
The advantage of this technique is that complete hole collapse during drawing can be removed as
the preform contains no holes. The PMMA rods are dissolved in tetrahydrofuran (THF), and
the air holes reveal in the fiber. The sacrificial material should have a higher glass transition
temperature than casting material. A microstructured sub-wavelength fiber with 29-45% porosity
has been possible to fabricate with a fiber length of several meters [83,139]. However, to remove
the unwanted material and dry the fiber (few days) requires lengthy post-processing [139].
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Fig. 9. Terahertz optical fiber fabrication methods. Various geometries of optical fiber
fabricated by, (a) drilling [58,123,124,130]; (b) stack and draw [134-137,140,141]; (c)
sacrificial-polymer method [83,139], preform-molding/fiber-inflation technique [83,133],
and extrusion [55]; (d) 3D printing [105,125,127,142,143].

4.4. Preform-molding/fiber-inflation technique

Molding is a procedure where the fiber preform is cast in a microstructured mold. The
microstructured mold features a special structured alignment to assemble a number of polyte-
trafluoroethylenes coated alloy steel wires [133] or bottom end sealed silica capillaries [83]. The
bundle of steel wires/silica capillaries is placed in the bottom end sealed of a large diameter of a
quartz tube to enable pressurization in the preform. The tube is filled with polymer granules and
placed into a furnace to melt it. Upon cooling, the steel wires/solid rods are removed from the
solidified cast preform. The air holes in resultant preform are pressurized to prevent the complete
hole collapse during drawing, and the sufficient air pressure inflates the holes with maximum
porosity of 86% [83]. The molding technique is suitable for the arbitrary shapes and size in hole
patterns by varying the mold structure and arrangement [133]. A drawback of this approach is
that the deformation of the porous cross-section can happen with unusual pressurization.

4.5. Extrusion

Extrusion is a common technique to fabricate either the polymer preforms or directly fiber
from a billet or from granules. The extrusion dies exit geometry defines the fiber cross-section.
Extrusion technique has been applied in microstructured fiber designs named as spider web
porous fiber [55], rectangular porous fiber [55], including anti-resonant fiber. The obtainable
porosity using extrusion are 57% and 65% [55]. The critical step in extrusion is designing and
machining the dies. A new die (or an intensive cleaning process) is required for each extrusion,
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making the fabrication technique expensive and time-consuming. An interesting characteristic is
that,different fiber structures can be fabricated using the extrusion technique. Figure 9(c) shows
various fibers fabricated using the sacrificial-polymer, preform-molding, and extrusion technique.

4.6. 3D Printing

Note that 3D printing is a well established and comparatively easier method of fabricating
terahertz optical fibers. The most widely used 3D printing techniques are stereolithography
(SLA) (uses a laser scanner to solidify the liquid resin which are photocurable) [126], fused
filament method (FDM) (uses a nozzle to soften Zeonex, Topas, PMMA, PC, PE, ABS, Nylon)
[127], polymer jetting technique (uses UV lamps on print heads to cure acrylic polymer and
water-soluble polymer layer) [125,142], each of which are suited to a range of terahertz fiber
fabrication techniques. An example of an FDM 3D printing sample is shown in Fig. 9(d).
The 3D printing process allows preparation in a single-stage process, forming complex fiber
geometries without any further processing or drawing. The 3D printing technique allows for
rapid prototyping of fiber designs as the fabrication cycle is significantly shorter. The limitation
of 3D printing technology is that the choice of material needs to be compromised for improved
surface roughness. The use of FDM has the ability to use many different polymers. That comes,
however, with higher surface roughness. The SLA technique can improve surface roughness but
the choice of material is restricted.

5. Characterization procedures of terahertz waveguides

In this section, two most commonly used measurement systems such as terahertz time-domain
spectroscopy (THz-TDS), and continuous-wave terahertz (CW-THz) spectroscopy are discussed
as the tool for terahertz waveguide characterization. In THz-TDS, coherent detection of time-
domain signal can directly measure the transient electric field that is then Fourier transformed
to provide the properties of the sample under study as a function of the frequency. A basic
linear THz-TDS consists of a terahertz source (emitter) and terahertz detector, pumped by a
femtosecond laser system where terahertz optics (mirrors/lenses) are optional. The three different
THz-TDS setups are explored in this review, as illustrated in Fig. 10, and capable of transmission
mode measurement.

In the first setup, the input and output faces of waveguide are directly positioned inline to the
emitter and detector (Fig. 10(a)). In this case, the terahertz pulse is directly propagate towards
the core of the fiber that is then received by the detector. The emitter and detector are the
fixed components for the THz-TDS, where the path length between them is altered according
to the waveguide length, [55,127]. Generally, large core fibers can be excited directly by solely
using the transmitter and receiver, where additional lenses are not required. An alternative
approach for waveguide characterization is using mirrors and hyperspherical silicon/polymer
lenses at the front and end interface of the waveguide, 10(b). This kind of setup is generally
necessary in order to achieve smaller beam size and strong beam coupling with the waveguide.
As an example, [3,99,111,113,123-125], uses this method of waveguide characterizations where
smaller beam size was required. A similar kind of beam size can be achieved by using four
lenses (silicon/polymer) as shown in Fig. 10(c). The lenses in this case need to be positioned and
optimized according to their focal length, [182].

Note that CW-THz is another commonly used system for waveguide characterization (Fig. 10(d)).
The setup shown in Fig. 10(d) has two distributed feedback lasers that has slightly different center
wavelength. The wavelengths are equally distributed to the emitter and detector arm by the 50:50
coupler. The fiber stretchers in this CW-THz system create additional path delay and cancel the
phase noise.

Generally, there are two different methods for waveguide characterization. In the first method,
measurements of the same sample with different lengths can be carried out by inserting and
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Fig. 10. Characterization methods of terahertz optical fiber. (a) THz-TDS setup where the
waveguide placed in between emitter and detector [55,127]; (b) THz-TDS setup by using
high resistive silicon lenses [99,113,125], (c) a four lens setup of THz-TDS [182], (d) a
CW-THz setup [183].

removing them in the setup [3,113,121]. This method of measurement introduces a coupling
loss that varies from measurement to measurement as every time a sample is inserted the beams
needed to be re-alignment. Another approach is the cut-back technique, where the waveguide
entrance is kept fixed on the setup while the sample has its length shortened and the transmission
power measured [110,116,117]. The use of the cutback method is limited to fibers that can be
easily cut without being moved out from the characterization setup.

Over the last few years THz-TDS has become a reliable, and commercial available product,
however the high cost of the femtosecond laser needed to excite the photoconductive antenna
hinders their widespread use for commercial applications [184,185]. One of the advantage of the
CW-THz system is their high spectral resolution that depends on laser linewidth. Moreover, the
full CW-THz system can be driven by laser diodes that makes the system much more compact
and inexpensive [184,185].

Here and in the previous sections, the types of terahertz optical fibers, their guiding mechanisms,
suitable materials for terahertz guidance and possible fabrication and characterization methods
were discussed. On a general note, we find that loss is a significant issue for terahertz wave
propagation, which can be significantly reduced by optimal choice of fiber geometry and
background material. One of the main hurdles in the field is the imperfect fabrication of terahertz
fibers. For example, 3D printing technology can produce complex fiber structures but, in
general, with non-ideal materials and/or with high surface roughness and low transparency. Other
processes can be time-consuming or require multiple steps. Some fibers can also be very thick
(many mm in diameter) reducing its flexibility or be very fragile making it difficult the cleaving
process of a high-quality surface. A practical consequence is an extra effort in doing a cut-back
loss measurement and getting reliable experimental coupling and transmission loss data.

6. Applications of terahertz optical fibers

The field of terahertz optical fibers is still in development. The main applications of terahertz
fibers include short-distance data transmission, sensing, and imaging. For propagation, terahertz
fibers must present low losses, low dispersion and, in some cases, have mechanical flexibility.
The principal issue in the realization these fibers is high absorption loss of most materials in
the terahertz regime, which implies increased fiber transmission loss. While negligible loss
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materials are not available, one method to overcome and control the losses is via optimization
of fiber design. In sensing applications, fibers are used to increase the interaction of terahertz
power with the analyte, leading to sensors with higher sensitivity. This interaction may occur
outside the fiber, as in rod fibers, or the core of a hollow-core fiber. The use of hollow-core
fibers goes beyond refractive index analyses, and has been employed for real-time monitoring and
molecular concentration sensors. Moreover, imaging systems employ terahertz fibers as probes to
deliver and collect signal dfor biological sensing, for example. All these mentioned applications
depend on low loss fibers, thus research effort for overcoming these material losses are critical
for real-world applications and continued improvement is expected over the coming years.

6.1. Transmission and communication

The primary use of terahertz optical fibers is to transport T-waves with minimal influence of the
external medium. Since the 2000s, significant effort has been carried out in the development of
low loss and low dispersion terahertz waveguides to improve fiber transmission properties. The
first circular dielectric terahertz waveguide was a solid polymeric rod which guided terahertz
waves with an attenuation constant of 0.01 cm™! [145]. To date, several studies have proposed
low loss waveguides optimization of fiber design and improved choice of available fabrication
materials [57,59,74,146].

A recent study [147] presented a combination of a porous-core circular PCF fabricated
with the low loss material, Topas. In this case, 52% of the power fraction was present in the
microstructured core region, which reduces the overlap between the terahertz modal power and
the host material. This effect leads to an effective material loss (EML) of (0.034 cm™') and an
ultra-flattened dispersion variation of 0.09 ps/THz/cm (Fig. 11(i)). This numerical approach also
showed guiding characteristics such as single mode propagation and birefringence. Generally,
these propagation characteristics are required for transmission and communication applications.
In 2019, a suspended graded-index porous-core fiber was proposed [74] (Fig. 11(ii)). The
guiding mechanism is based on TIR, and the numerical where numerical investigation shows
that by introducing a graded-index in the fiber core an extremely flat dispersion of 0.14 + 0.07
ps/THz/cm and an intermodal dispersion of 0.0152 + 0.0004 ps/THz/cm are achieved. These
dispersion values were found over 0.75 to 1.0 THz when the fiber core diameter is 432 ym. An
asymmetrical terahertz fiber was also reported [9] (Fig. 11(iii)), with a high fiber birefringence of
0.063, an EML of 0.06 cm™! and nearly zero dispersion flattened property of +0.02 ps/THz/cm.
The anti-resonant hollow-core terahertz fiber [102] (Fig. 11(iv)) is also a promising candidate
for low loss terahertz transmission. An investigation on this type of fiber shows a loss of 0.05
dB/m and 600 GHz wide dispersion flattened bandwidth [102]. Based on the results above, it
is possible to find out a promising path to guide terahertz waves in short and long distances.
Although these designs were investigated only numerically, the authors rely on the available
fabrication methods discussed in Section 4 for practical applications.

6.2. Sensing

As in the optics regime, terahertz fibers can also be used for sensing applications to detect
substances as liquids, vapors, solid particles or thin material layers. Terahertz rod fibers, or
subwavelength rod fibers, for example, guide electromagnetic waves with a frequency dependent
high power fraction due to the infinite air cladding. The evanescent field is sensitive to changes
in the cladding refractive index, shifting the waveguide dispersion curve. As an example, in
2009, a liquid sensor based on a polystyrene wire was demonstrated. In the experiment, water
and alcohol were readily distinguished and a variation of 58% in the dispersion curve between
those two liquids was observed. Moreover, melamine and polyethylene alcohol solutions were
investigated. It was observed that by increasing the melamine and PE concentrations from 0
ppm to 100 ppm, a change in the dispersion curve occurred up to the solution saturation limit,
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Dehre

Fig. 11. Low losses Terahertz optical fibers. (i) PCF like fiber with microstructured
core [147]. (ii) Graded-index core fiber [74]. (iii) Asymmetrical terahertz fiber [9]. (iv)
Antiresonant terahertz fiber [102].

80 ppm for melamine and 40 ppm for PE [158]. The sensor was able to detect variations of 20
ppm in the solution concentration, equivalent to refractive index changes of 0.01. Also, based
on a solid core fiber, a numerical study showed an interferometric fiber sensor for terahertz
frequencies [153]. The sensor was formed by a Singlemode-Multimode-Singlemode structure,
and the operation principle was based on multimodal interference in the multimode fiber. A
sensitivity of 5 GHz.RIU over a refractive index range of 1.4—1.5 was obtained. Apart from
the chemical sensors listed, several sensing schemes based on Bragg gratings have also been
proposed for strain sensing [154], distributed sensing [155], and thickness monitoring [156].

Terahertz Bragg fibers also have been used as sensors [157,166]. Cao et al. [157] showed
an interesting result regarding a 3D printed terahertz Bragg fiber as a resonant fluidic sensor.
There, a modal analysis for the rectangular Bragg fiber (Fig. 12(i)) was numerically studied with
a defective layer located in the reflective Bragg structure. This layer simulates the region filled by
the fluid analyte to be characterized. The spectral changes in the resonant absorption peaks were
investigated as a function of fluid RI using a continuous-wave terahertz spectroscopy system. An
sensitivity of 110 GHz/RIU was achieved (Fig. 12(ii)). A study by Li er al. [166] showed the
application of a 3D printed terahertz Bragg fiber as a powder and thin-film sensor with sensitivity
close to 0.1 GHz/ um.

Hollow-core fibers and hollow-tubes present resonant characteristics in its spectral transmission.
Many sensors in the optical and terahertz regimes have been proposed based on anti-resonant
mechanism. The resonant peaks present in the waveguide spectral transmission are sensitive
to refractive-index variations inside and outside the core, leading to shifts in their resonant
frequency. For powder and vapor detection, for example, a glass tube waveguide was presented
by You et al. [159], where, the hollow-tube was filled with ammonia, acetone, HCI, and water
separately. The changes in the tube spectral transmission showed a limit of molecular density
around 1.6 nano-mole/mm?> and sensitivity around 22.2 GHz/RIU. Other work [160] demonstrated
a hollow-tube based sensor to analyze subwavelength-thick molecular overlayers in the fiber
core. The lowest thickness detectable was about 2.9 um of aqueous concentrations of carboxy
polymethylene powder (carbopol) [160]. Plasmonic fiber [161], sapphire fiber [162] and a
large number of numerical studies have shown promising fiber designs for sensing of alcohol
and petroleum derivatives [32,163], chemical agents [29,32,163,164], for example, but further
practical results on fiber sensing applications are still needed.
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Fig. 12. Application of terahertz optical fiber in sensing and imaging. (i) Micro-fluid sensor
based on 3D printed Bragg fiber [74,166]; (ii) Sensitivity of the pipe sensor to different
samples: water, HCI, acetone and ammonia [159].

6.3. Fiber-based terahertz imaging

A considerable number of terahertz imaging and spectroscopy systems were demonstrated over
the last twenty years [74,147,165,167]. Among the different approaches to near-field imaging
[167], fiber-scanning systems have been proposed as a powerful option to non-destructive testing,
investigation of concealed objects, and endoscopy. In 2008, Lu et al. [168] proposed a terahertz
scanner using a subwavelength plastic fiber as a probe. The imaging system consisted of a
polyethylene solid core fiber, a continuous wave Gunn oscillator, and a Golay cell. In this system,
one end of the fiber was free to move, and the other end was fixed. This configuration was
suitable for scanning a 6 x 6 cm? area, and allowed measuring the terahertz transmission through
transparent samples, such as dry seahorses and fishes, and concealed objects (Fig. 13).

Fig. 13. Schematic of the all-terahertz fiber scanning near-field microscope. Here, (ii)
and (iii) are terahertz near-field absorption coeflicient images of the breast tissue sections,
cancerous and normal samples, respectively. Also, (iv) and (v) are photomicrographs of the
corresponding breast tissue.

A study on fiber based terahertz near field microscopy was carried out to diagnose breast
tumors [169] where the bulls eye corrugated structure designed to enhance the spatial resolution.
This imaging system was capable of being interconnected with an optical microscope, and
samples were able to be observed simultaneously, where images of cancerous cells and healthy
tissues could also be distinguished. Based on the same principle, equivalent systems were used
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to diagnose breast tumors and liver cancer in [169,170]. A fiber based in-vivo detection system
of breast cancer was also reported where the system has the ability to detect cancer before it was
evident with other techniques [171]. Their study indicates that the system has the potential to
be used in a pre-clinical investigation of cancer, and other applications in terahertz microscopy.
Other fibers as metamaterial fibers [172] and sapphire fibers [173] have also been studied as
potential subdiffraction imaging probes for terahertz near-field systems.

7. Future remarks

Free-space terahertz wave propagation is still widely used, but terahertz waveguides and, in
particular, optical fibers are gaining increasing attention. Their importance is related to the
concept of developing complex terahertz configurations that potentially combine sources and
detectors with a reliable and simple way of terathertz transmission. Many materials and optical
fiber geometries have been studied and analyzed and most promising results indicate the use of
low loss polymers to manufacture fibers where most of the transmitted power can be guided
in air. Anti-resonant fibers stand out among other hollow-core fibers, due to their robustness
to fabrication tolerances, geometrical simplicity, and hence fabrication feasibility. Combining
simplicity and low attenuation with high bandwidth, single-mode guidance, and low dispersion is,
for most applications, the main target. Fibers possessing composite cladding, with metamaterial
inclusion, better confine the terahertz signal [121], and fibers with helically twisted to guide
modes with orbital angular momentum are two of the most exciting directions for actual and near
future investigations.

Different manufacturing techniques are being used to produce such fibers, but 3D printing
technology represents a clear advantage in terms of cost, time, easiness, and potential for
manufacture of specialty fibers [96] already integrated with other components required for a
particular application. The use of filaments, made of low loss polymers (listed in section 3), is
required, but they are not always available commercially. Another clear drawback is the poor
surface roughness of 3D printed fibers when low-cost desktop printers are used. It should be noted
that sophisticate 3D printers able to produce higher quality samples usually require proprietary
filaments preventing the direct usage of special polymers. Post-processing a 3D printed fiber is
likely an excellent strategy to enhance its quality (roughness, layers adhesion, transparency, etc.).
Here we can include the concept already applied to produce 3D printed fibers for the optical
and infrared regime [174], i.e., printing a fiber preform and subsequently drawing it to a fiber
stage. Extrusion is another powerful technique that is likely to be applied to mass production
of high-quality specially designed THz optical fibers. There, the whole fiber cross-section can
be produced simultaneously [55]-different from 3D printing or stacking-and-draw, for example.
Simple and complex waveguides can be obtained by carefully designing the extrusion die, ram
speed and furnace temperature profile. Extrusion of fiber projects with intrinsic low confinement
loss due mostly air guidance, and while using low THz loss materials, is an interesting route to
be wider explored.

Due to their large overall dimensions, with external diameters as big as 10 mm in some situations
[98,175], some terahertz fibers are not mechanically flexible and this reduces the practical interest
in applications requiring long waveguide lengths. Investigating ways of producing flexible fibers
via selection of the required mechanical properties the fiber material and the fiber geometry (such
as fibers with high air filling fraction and thin external jackets), as well as studying waveguide
curvature loss will help develop this field further. Combining special coatings such as graphene
[176] could extend the functionalities of terahertz fibers and will likely be a hot topic in this
vibrant research area.

Terahertz waves have been demonstrated as promising technology to non intrusive analysis
in biological, medical, chemical, and industrial applications. However, compact, portable, cost
effective and robust devices need to be developed. In this scenario, the terahertz optical fibers,
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usually fabricated in short lengths, represent a challenge and a great opportunity to make such
devices a reality.

8. Conclusion

The work on terahertz optical fiber discussed throughout the manuscript combines, the analysis
of suitable materials that can be used to make a low loss terahertz optical fiber; a comprehensive
review of various geometry including the microstructured photonic crystal fiber, the hollow-core
fiber, the antiresonant fiber and the metamaterial-based fibers; the guiding mechanism of each
type of fibers; an analysis of different methodology of fiber fabrication and characterization;
and finally an outline of suitable application areas with further directions of future work. From
the analysis of various glasses and polymers, it has been found that polymers perform better
as compared to glasses. From the polymers, the Zeonex, Topas, TPX, Teflon and HDPE show
comparatively lower absorption losses and therefore suitable to be considered as a building
material of terahertz optical fiber. Various geometries of terahertz optical fibers including
their guiding mechanisms have been reviewed and discussed. This fiber includes the hollow
pipe waveguides (polymers/metals), microstructured optical fibers including hollow-core and
porous-core, the hollow-core photonic bandgap fibers and the antiresonant terahertz fibers.
From the discussion, it can be noted that every fiber has some advantages and disadvantages
and there is a trade-off between low loss, bandwidth and fabrication feasibility. For example,
hollow-core fiber can provide low loss terahertz guidance and comparatively simple fabrication
at the expense of low bandwidth of operation. On the other hand, porous fiber can provide larger
bandwidth but with higher loss and increased fabrication complexity as compared to hollow-core
fibers. Metamaterial-based waveguides are still in their infancy by comparison. The various
fabrication methodologies discussed in the manuscript indicate the possibilities of fabricating
various geometries of terahertz optical fibers. For example, as discussed in section 6, the drilling
method is suitable for fabricating circular hole patterns only, whereas the extrusion and 3D
printing technique can fabricate any type of complex and asymmetric fiber geometries. The
most common method for terahertz fiber characterization is the use of THz-TDS where different
optics setups can be used to focus signal onto the fiber core. Among the various terahertz
applications short-range high throughput transmission, gas, and chemical sensing and imaging
show significant promise.
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