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ABSTRACT 

The aim of this thesis is to map the distribution of alteration minerals and pathfinder elements 

from deposit to regional-scale within the IOCG mineral system of the eastern Gawler Craton, 

South Australia, and understand fluid-rock interactions that control that distribution. I present 

geochemistry, petrology and mineral chemistry from a range of metasomatically altered rocks 

including four protolith types; siliciclastic metasedimentary rock, calc-silicate 

metasedimentary rock, granite and mafic magmatic rock. Techniques employed included; 

transmitted light microscopy, electron microprobe analyses (EM), scanning electron 

microscopy (SEM) and laser ablation inductively coupled plasma mass spectroscopy (LA-

ICPM). Thermodynamic modelling using the HCh software was then applied in order to further 

understand the temperature, pressure, fO2 and fluid-rock ratio conditions responsible for a 

range of alteration types 

Multiple, overprinting paragenetic relationships and unusual alteration textures in four 

contrasting protolith rocks from the central eastern Gawler Craton can be interpreted within the 

framework of five paragenetic stages (protolith; skarn; stage 1, K-feldspar-magnetite; stage 2, 

hematite-chlorite-muscovite, including the major Cu-ore minerals; stage 3, post mineralization) 

corresponding to different mineral assemblages in the four protolith types. The paragenesis is 

consistent with successive periods of Fe-K-metasomatism, with early higher temperature, more 

reduced (magnetite stable) alteration being consistently overprinted by lower temperature, 

more oxidized (hematite stable) alteration and with the bulk of Cu-sulphide mineralization 

occurring at close to the transition from magnetite to hematite.    

Minerals that pre-date the main sulphide phase (namely from the protolith, skarn and stage 

1 assemblages) typically have major and trace element concentrations within expected ranges 

for comparable rock types outside the eastern Gawler Craton mineral province. Hematite 

associated with stage 2 assemblages has higher average concentrations of Ba, Cu, Mo, Nb, Pb, 

Th, Ta, U and ∑REE compared to magnetite (between 1 and 2 orders of magnitude higher). In 

addition hydrothermal hematite contains elevated concentrations of Cu, U, Sb and Bi compared 

to the average crustal abundance. Hematite is the main host of Sb even when there are co-

existing sulphide phases in the rock. Where sulphide minerals are present most chalcophile 

pathfinder elements (e.g. Ag, As, Bi, Cu, and Se) are dominantly deported in the sulphides, 

even at low concentrations, far from mineralisation. Pyrite is the most common sulphide, with 

chalcopyrite increasing in abundance closer to mineralisation. The pyrites are p-type, with 

S/Featom ratios of > 2 and Co/Ni ratios ranging between 0.4 and 10, but mostly above 1. This is 

consistent with a moderate-temperature hydrothermal origin for the pyrite. Concentrations of 

Co, As, Bi, Se, Te and Au in pyrite reach 2 to 3 orders of magnitude above crustal abundance. 

The chalcopyrite grains show variable enrichment in pathfinder elements and are most enriched 

in Bi, Se, Te and Ag, with values ranging between 1 and 4 orders of magnitude above crustal 

abundance. At elevated whole rock concentrations, within altered rocks, the REE are deported 

in hydrothermal apatite. This is consistent with the extreme capacity of the hydrothermal 

system to mobilise, and locally accumulate, even the most refractory elements. REE 

enrichment (up to 2604 ppm) is a good proximity indicator to ore, since it only occurs around 

the mineral system.  

 

Thermodynamic modelling was conducted using the HCh software to calculate equilibrium 

mineral assemblages predicted for model granite and calc-silicate protoliths mixed with a range 
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of model hydrothermal fluids. Fluid compositions were consistent with fluid inclusion studies 

from the eastern Gawler Craton. Models were created in the C-H-O-Cl-S-Na-K-Mg-Fe-Si-Al-

Cu-Ca-Mn chemical system at temperatures from 150⁰ to 500⁰C, fO2 of -34 to -26 and fluid-

rock ratios from 10-3 to 104. The modelling provides semi-quantitative constraints for mineral 

assemblages associated with IOCG mineral systems of the eastern Gawler Craton. The 

transition from protolith assemblages to magnetite-K-feldspar assemblages to chlorite-

magnetite-K-feldspar assemblages to hematite-chlorite-muscovite assemblages with 

decreasing temperature, increasing fluid-rock ratio and increasing logfO2. This is consistent 

with the petrologic observations presented in this thesis, namely the consistent overprinting of 

stage 1, magnetite-K-feldspar alteration by stage 2, hematite-chlorite and muscovite alteration. 

Although Cu-sulphides are predicted to be stable over a range of temperature and fO2 

conditions, they are predicted to be most abundant between temperatures of ~300⁰ to 250⁰C, 

fO2 of -26 to -34 and at fluid-rock ratios >10. This corresponds to alteration assemblages at the 

magnetite and hematite boundary, with abundant chlorite and muscovite alteration.  

The distribution of pathfinder elements (measured in whole rock chemistry) within the 

central eastern Gawler Craton IOCG province can be predicted by combining petrological 

observations with mineral chemistry and thermodynamic modelling and are consistent with the 

observations of Fabris (2012, 2013). Elements associated with hematite alteration (notably Sb 

and W) are expected to have a wide geographic footprint. Elements enriched in pyrite (notably 

As, but also S and Se) are likely to have a broad geographic distribution in line with the 

presence of pyrite in both magnetite and hematite stable alteration assemblages. Elements most 

enriched in copper sulphides (Cu, Ag and Au) are largely restricted to within <5 km of known 

deposits. 
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1 Introduction 

1.1 IRON-OXIDE COPPER GOLD DEPOSITS 

Iron-oxide copper gold (IOCG) deposits are an important type of copper (Cu), gold (Au), 

uranium (U) and rare earth element (REE) mineralisation (Ferris et al., 2002; Espinoza, 2002; 

Naslund et al., 2002; Billström et al., 2010; Corriveau et al., 2010; McLellan et al., 2010; Porter 

2010; Rusk et al., 2010; Xavier et al., 2010; McPhie et al., 2011). South Australian IOCG 

deposits account for 6% of global Cu resources, 8% of Au resources and 19% of U resources 

(Porter, 2010; Kathleen et al., 2014; Senior, 2016; NEA/IAEA, 2016).  

The IOCG deposit type, first recognised by Hitzman et al. (1992), includes deposits with 

a range of morphologies (e.g. veins, hydrothermal breccias, tabular replacement bodies and 

composite deposits comprising two or more of the preceding) characterised by Cu-Au 

mineralisation associated with abundant iron-oxide minerals. IOCG deposits are commonly 

associated with crustal-scale hydrothermal systems and high volume magmatic systems. IOCG 

deposits are classified separately to porphyry Cu deposits, as IOCG deposits display substantial 

accumulations of iron-oxide minerals, association with sodium-calcium (Na-Ca) rich felsic-

intermediate intrusives, and lack of complex element zonation and alteration mineral 

assemblages commonly associated with porphyry Cu deposits (Hitzman et al., 1992). There is 

often little internal metal zonation within recognised examples of IOCG deposits. The 

relatively simple Cu-Au ± U ore assemblage is distinct from the wide spectrum of porphyry 

Cu deposits. IOCG deposits tend to accumulate within faults as epigenetic mineralisation distal 

to coeval intrusions, whereas porphyries are proximal to intrusive bodies. IOCG deposits are 

defined as ‘iron-oxide alkaline altered’ by Porter (2010) in reference to the common 

observation of large-scale Na and K alteration of country rocks in IOCG districts. 

IOCG deposits have widespread geographic distribution and occur in rocks of Archaean 

to Cainozoic age (Figure 1, Table 1), (e.g. Williams et al., 2005; Groves et al., 2010; Porter, 

2010). The inferred age of IOCG deposits cluster in five periods of Earth history: 2.4 to 2.8 Ga, 

1.45 to 1.6 Ga, 0.75 to 0.85 Ga, 0.51 to 0.57 Ga and 0.095 to 0.165 Ga.  

Some authors (e.g. Gandhi, 2003 and 2004; Corriveau, 2006) have defined IOCG sub-type 

classifications, and in many cases use an individual deposit as the type-case for classification 

(e.g. Olympic Dam-type, Cloncurry-type, Kiruna-type, Palabora-type, Bayan Obo-type). 

However, Porter (2010) subdivided the full spectrum of IOCG deposits into four sub-types on 

the basis of host rock, type of alteration and commodity elements, as follows: 

1. IOCG sensu stricto deposits have significant hematite and/or magnetite enrichment and 

extensive alkali alteration. These deposits contain Cu and/or Au as the principal economic 

commodity and commonly contain elevated concentrations of REE (e.g. Olympic Dam, 

Earnest Henry). Williams et al. (2005) describes a further sub-division of this class as 

being iron-oxide skarn deposits that have significant volumes of calc-silicate minerals as 

gangue (e.g. Hillside, Emmie Bluff). 

2. Iron-oxide-apatite IOCG deposits are rich in phosphorous and typically contain 

abundant apatite. These deposits tend to have lower grades of Cu and Au than IOCG sensu 

stricto deposits (e.g. Kiruna). 
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Table 1. Global IOCG sub-types and age, size and commodities (data are extracted from Porter, 2010 and from 

the South Australian Resources Industry Geoserver (SARIG) website). 

Deposit Location Age of host rock Age of deposit  Size Resource Main 

commodities 

Sub-

type 

Olympic Dam Australia 1590 Ma 1590 Ma 9080 Mt (0.87% Cu, 0.32ppm Au, 0.27kg/t 

U3O8) 

Cu-Au-U 1 

Carrapateena 1857±6 Ma 1.59-1.57Ga 203 Mt (Cu 1.31%, Au 0.56ppm, 0.27Kg/t 

U3O8) 

Cu-Au-U 1 

Prominent Hill 1760 to ~1740 Ma 1.59-1.57Ga 283 Mt (Cu 0.89%, Au 0.81ppm, Ag 

2.48ppm) 

Cu-Au-Ag 1 

Emmie Bluff 1760-1730 Ma 1595 Ma  25 Mt  (Cu 1.3%) Cu-Co-Ag-Zn 1 

Oak Dam ~1850 Ma 1.57-1.59 Ga ~560 Mt (Fe 41-56 wt %) Cu-Au-U 1 

Khamsin 1860-1841 Ma 1595 Ma? 202 Mt (Cu 0.6%, Au 0.1 ppm, Ag 1.t ppm) Cu-Au-Ag 1 

Punt Hill 1850 Ma 1580 Ma 122 Mt (Cu 0.47%, Zn 0.38%, Ag 6.6%, 

Au0. 1ppm) 

Cu-Zn-Ag-Au 1 

Ernest Henry 1760-1660 Ma 1525 Ma 226 Mt (Cu 1.1%, Au 0.51ppm) Cu-Au 1 

Mount Eliot 1890 to 1610 Ma 1.55-1.50Ga 570 Mt (Cu 0.44%, Au 0.26ppm) Cu-Au 1 

Osborne 1695-1650 Ma 1595 Ma 27 Mt (Cu 1.4%, Au 0.8ppm) Cu-Au 1 

Roseby Corridor Mesoproterozoic Unclear 132 Mt (Cu 0.7%, Au 0.06ppm) Cu 1 

North Portia 1703Ma 1605 Ma 11.3 Mt (Cu 0.89%, Au 0.64 ppm) Cu-Au 3 

Warrego 1920±60 Ma Unclear 6.95 Mt (Cu 2%, Au 6.6ppm, Bi 0.32%) Au-Cu-Bi 1 

Candelaria Chile 116-114 Ma 120-112 Ma 470 Mt (Cu 0.95%, Au 0.22ppm, Ag 

3.1ppm) 

Cu-Au 1 

El soldado 116-114 Ma 108- 95 Ma >200 Mt (Cu 1.4%, Ag 6ppm) Cu 1 

Manto Verde 116-114 Ma 120-112 Ma 410 Mt (Cu 0.58%, Au0.11ppm) Cu-poor Au 1 

Raul Condestable Peru 177 to 95 Ma Unclear >32 Mt (Cu 1.7%, Au 0.3ppm, Ag 6ppm) Cu-Ag 3 

Mina Justa 177 to 95 Ma 108- 95 Ma 347 Mt (Cu 0.71, Au 0.03ppm) Cu 3 

Marcona 177 to 156 Ma 162-156 Ma 1.9 Gt (Fe 55.4%, Cu 0.12%) Fe-poor Cu 3 

Cristalino Brazil 2.76-2.51 Ga 2.74-2.57 Ga ~500 Mt (Cu 1%, Au 0.3ppm) Cu-poor Au 1 

Salobo  2.76-2.51 Ga 2.74-2.57 Ga 986 Mt (Cu 0.82%, Au 0.49ppm) Cu-Au 1 

Sossego 2.76-2.51 Ga 2.74-2.57 Ga 245 Mt (Cu 1.1%, Au 0.23ppm) Cu-Au 1 

Pea Ridge  USA Mesoproterozoic 1.48-1.45 Ga Unclear Fe-Apatite 2 

Wernecke Canada Proterozoic 1.6 Ga Unclear Cu-Au-U 1 

Sue Dianne 1.9-1.8 Ga 1.9-1.8 Ga 8.4 Mt (Cu 0.8%, Au 0.07ppm) Cu 3 

NICO 1.9-1.8 Ga 1.9-1.8 Ga 31.7 Mt (Au 0.91ppm, Co 0.12%, Bi 0.16 %) Au-Co-Bi 4 

Cerro de Mercado Mexico 30.8-30.1 Ma 30.8-30.1 Ma Unclear Fe-apatite 2 

Bayan Obo China Proterozoic  555-420Ma 40 Mt (REE 3.5-5.4%, F 130ppm)  Fe-REE-Nb 3 

Palabora South 

Africa 

2.05 Ga 2.05 Ga 1200 Mt (Cu 0.59%, Au U PGE recovered Cu 3 

Vergenoeg 2.05 Ga 2.05 Ga Unclear Fe-F-REE 4 

Shimyoka Zambia 2.7-2.5 Ga Unclear Unclear Fe-P 2 

Mumbawa 2.7-2.5 Ga 535 Ma 87 Mt (Cu 0.94%, Au 0.05ppm) Cu 2 

Kiruna Sweden 1.90−1.88 Ga Unclear Unclear Fe-P 2 

Kiirunavaara 1.9-1.8Ga 1.9-1.8Ga Unclear Fe-Apatite 2 
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Figure 1. A) Global location of major IOCG districts (Modified from Groves et al., 2010 and Porter, 2010). B) Grade-

tonnage diagram displaying reported resource (Mt) vs copper (%). Modified from William et al. (2005) after Seedorff 

et al. (2005). 

3. IOCG deposits directly associated with carbonate and alkaline or alkali altered 

intrusives are typically REE-rich and Cu and Au poor (e.g. Palabora, Bayan Obo, Raul 

Condestable, Sue Dianne). 

4. Overlap and miscellaneous IOCG deposits contain some aspects of the IOCG class (e.g. 

large proportion of Fe-oxide minerals, alkali alteration, Cu and/or Au enrichment), but do 

not fall easily within the other three categories and may overlap in characteristics with 

other recognised ore types (e.g. Vergenoeg, Andean mantos). 

A 

B 
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Alteration 

IOCG mineral provinces are typified by kilometre-scale alkali alteration that is classified into 

four main types: muscovite-chlorite-hematite associated with core zones of IOCG sensu stricto 

deposits; K-feldspar-biotite-magnetite associated with core zones of some IOCG deposits and 

often observed as a pre-ore alteration assemblage in muscovite-chlorite-hematite altered 

IOCGs; calc-silicate alteration and regional Na-Ca alteration (e.g. Mark, 2004). Na-Ca 

alteration is generally centred on major transcrustal faults over tens to hundreds of kilometres, 

or within regionally pervasive zones controlled by complex fault networks (e.g. Gawler Craton), 

or by lithological and structural permeability (Punta del Cobre, Chile).  

The spatial distribution and type of alteration assemblages preserved differs between 

deposits. The Candelaria deposit in Chile displays vertical zonation, ranging from Na-K at 

depth and grading up to a dominantly K-rich suite (Robert et al., 2002). Chlorite-sericite 

alteration occurs in upper sections of the IOCG system, with vertical zonation in Fe-oxides 

from magnetite to hematite, the latter of which only appears in the upper most parts of the 

system. In Punta del Cobre and Mantoverde, Chile, regional Na-Ca alteration has produced 

albite and scapolite bearing assemblages which spatially coincide with K-feldspar-magnetite 

alteration (Benavides et al., 2007; Baton et al., 2010). Ernest Henry, in northwest Queensland, 

is accompanied by potassic-iron alteration as early intense biotite-magnetite, followed by K-

feldspar and sulphides (Cleverly and Oliver, 2005; Rusk et al., 2010). Olympic Dam, South 

Australia, is characterised by hematite-sericite alteration in combination with fluorite, barite 

and Cu sulphides, which typically overprint earlier magnetite-carbonate-chlorite-pyrite±Cu 

sulphide assemblages (Gow et al., 1994, 1996; Haynes et al., 1995; Kathy et al., 2012). 

 

Inferred tectonic setting 

When the IOCG deposit class was first described in 1992 no particular tectonic setting was 

identified (Hitzman, 1992). The distribution and scale of IOCG deposits suggests that the 

processes responsible for their formation should be considered on a crustal- to lithospheric-

scale (Groves et al., 2010; Porter, 2010). The IOCG deposit sub-types, as described above 

(Porter, 2010), have tectonic settings ranging from Mesozoic suprasubduction zones (e.g. 

Andean IOCG deposits) to Proterozoic intracontinental with no plate margin recognised (e.g. 

Olympic Dam) (e.g. Groves et al., 2010). Depths of formation have been estimated between < 

2 km (Olympic Dam) to ~12 km (Salobo) with alteration zones >1000 km2 (Skirrow et al., 

2002). Recently, a near plate margin setting was proposed for Olympic Dam (Hand et al., 2007) 

and there is growing consensus that plate margin processes influence the geodynamics of ore 

deposition (shown in Figure 2) (Williams et al., 2005; Groves et al., 2010). Major IOCG 

systems appear to be spatially related to crustal to lithospheric–scale structures (Skirrow et al., 

2002; Xavier et al., 2010), implying that lithospheric-scale tectonic processes have a strong 

influence on the mineral system (Groves et al., 2010). In a majority of IOCG provinces there 

is demonstrated spatial and temporal coincidence of mineralisation with voluminous 

batholithic complexes, composed of anorogenic granitoids and mantle related mafic to 
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intermediate magmatic rocks in varying proportions. All are characterised by numerous and 

widespread small juvenile mafic dykes, sills and stocks, while some include layered mafic 

complexes that range from small to giant (Williams et al., 2005; Groves et al., 2010; Porter, 

2010). Qiuyun et al. (2016) suggested the mafic components of the Gawler Range Volcanics 

generally have higher Zr contents and Zr/TiO2 ratios than those of high-Mg basalts and picrites 

produced in variable tectonic settings worldwide, possibly reflecting continental crustal 

components involved in their mantle source.  

Skirrow et al. (2007) used the link between magmatic rocks and isotopic data from IOCG 

deposits in South Australia to argue the importance of mantle input into IOCG systems. IOCG 

systems are associated with magmatic and volcanic activity where vertical depth is determined 

by mantle heating sources and presence or absence of metal sources, and high temperature 

processes causing K-feldspar and magnetite alteration. Although Olympic Dam likely formed 

at < 250⁰C (Haynes et al., 1995), heat was the initial driver for the alteration sequence. Other 

tectonic settings of IOCG systems are related to tectonic thickening of the upper plate during 

collision, symmetric rifting and asymmetric rifting events. 

 

1.2  UNRESOLVED QUESTIONS 

There are a number of unresolved questions regarding the formation of IOCG deposits. This 

thesis focuses on three pertinent areas of research: source of fluids and metals, mechanism of 

precipitation and nature of, and controls on, district-scale alteration. These issues are briefly 

introduced below.   

Source of fluids and metals 

The source of metals and fluids responsible for transporting them in IOCG systems is a subject 

of debate. Hypersaline fluids are considered responsible for forming IOCG deposits. For 

instance, the major difference between barren breccia pipes and IOCG mineralisation in the 

Cloncurry district is an absence of multiphase high salinity, high temperature fluid inclusions 

in the former, suggesting that these factors are critical in the genesis of IOCG deposits (Bertelli, 

2007).   

Five potential fluid sources for IOCG deposits have been proposed: 

1. Fluid released from a fractionating mantle or from intraplate intrusive rocks. Johnson 

(1995) noted the correlation of Cu grade with primitive Nd isotope signatures in the 

Olympic Province, and suggested a direct link to mantle derived magmas or mantle 

metasomatism. Groves (2010) inferred that ultrabasic to basic intrusions were the 

ultimate driving force and fluid source based on high salinity ore fluids and available 

stable and radiogenic isotope data.  

2. Exsolved from large intermediate to felsic intrusions and associated with early 

widespread K and Fe metasomatism. Metasomatism is manifest as orthoclase and 

magnetite alteration of granitoid and volcanic rocks (Benavides et al., 2007).  

3. Produced by high temperature metamorphism (Clark et al., 2005; Conor, 2006; Oliver 
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et al., 2008; Yang, 2009).  

4. Sedimentary formation / basinal water ultimately of meteoric origin (Benavides et al., 

2007). For example, Monteiro et al. (2008) indicated that hot metalliferous fluid (> 

500°C) mixed with meteoric fluids may be the main mechanisms responsible for 

deposition of metals transported as metal chloride complexes in orebodies of the 

Sossego deposit. 

5. Surface derived bittern brines or re-dissolved evaporite. Such fluids are typically 

hypersaline and have the potential to leach a range of elements Ni, Co, Cr, Mn, Mo, 

Cu, Pb, Zn, Ba, Sr, U and REE and result in widespread albite alteration (Yang, 2009).  

 

Various authors have proposed multiple fluid models in which mixing between fluids of 

different sources is an important mechanism for ore deposition (e.g. Haynes et al., 1995; 

Bastrakov et al., 2007). As an example, Hou et al. (2017) proposed that the Vergenoeg deposit 

was formed during two stages, the first dominated by CO2-rich magmatic hydrothermal fluids 

and the second involving a mixture of magmatic and oxidised meteoric water. Barton (2010)  

 

Figure 2. Schematic diagram showing tectonic and lithospheric setting of IOCG deposits in Precambrian cratons 
and extensional parts of Cordilleran arcs. The Candelaria and Vergenoeg have a proposed metamorphosed mantle 
source and subcontinental lithospheric mantle source, respectively. Modified after Groves et al. (2010). 
 
 
 

proposed a model for Candelaria which involves mixing of magmatic derived fluids with 

sedimentary-meteoric fluids. Conversely, other authors suggest that only one fluid type was 

involved in IOCG mineralisation. For example, Sillitoe (2003) argues that fluids involved in 

the formation of Andean IOCG deposits were derived from mafic magmas, and that mixing 
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with other fluids (e.g. metamoprhic, evaporitic, seawater, metoric) is circumstantial. 

Mechanism of metal precipitation 

A number of models have been proposed to explain deposition of ore minerals in IOCG systems 

(Figures 3 and 4) (Haynes et al., 1995; Bastrakov et al., 2007). These models typically involve 

successive periods of mineralisation during fluid-rock interactions with variations based on 

relative importance of fluid-rock chemistry, temperature, fO2 and pH.   

 Bastrakov et al. (2007) proposed a model for the Emmie Bluff IOCG deposit in which 

early magnetite-sulphide mineralisation was replaced by hematite with coincident 

upgrading of ore minerals (Figure 3).  

 Groves et al. (2010) proposed that a range of IOCG deposits with slightly varying 

metal content, morphology and alteration signatures could be formed from magmatic 

source rock fluids with variable interaction with fluids derived from country rock.  

 Benavides et al. (2007) and Monteiro et al. (2008) proposed a mixing model where 

Na-Ca alteration is overprinted and mixed with meteoric water as the major metal 

precipitation process. 

 Haynes et al. (1995) proposed a fluid mixing model for the Olympic Dam IOCG 

deposit in which a high-temperature, metal-rich fluid (>300⁰C) mixed with a low 

temperature fluid (<150⁰C) to cause metal precipitation (Figure 4).  

 Porter (2010) proposed that the Palabora IOCG deposit was a result of fluid mixing or 

fluid-rock reactions, rather than changes in temperature or pressure.  

The above models commonly show that temperature and pressure variations have minimal 

influence on ore deposition and that changes in fluid chemistry (in particular fO2) driven by 

fluid-rock or fluid mixing interactions are paramount in IOCG deposit formation. 
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Figure 3. Fluid-rock interaction model for Cu and Au precipitation in IOCG systems. Copper precipitation occurs 
by reduction of a copper gold–bearing oxidised (hematite-stable) fluid interacting with a magnetite bearing 
assemblage. Modified from Bastrakov et al. (2007). 

Figure 4. Fluid mixing model showing generation of the Olympic Dam deposit from mixing of a deeply sourced, 

reduced magmatic fluid or hot circulating fluids and oxidised cooler ground water/meteoric fluids. Modified after 

Haynes et al. (1995). 

 

Nature of district-scale alteration 

A broad link between the range of deposit-scale alteration features of IOCG mineralisation (e.g. 

K-feldspar-biotite, hematite-sericite-chlorite alteration) and Na-Ca regional alteration is 

recognised (Gow et al., 1996; Haynes et al., 1995; Bastrakov et al., 2007). However, there is 

relatively little information on the distribution of alteration minerals and elemental 
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geochemistry, and a poor understanding of the processes controlling alteration mineral 

distribution, in particular, the links between IOCG deposit and regional-scale geochemistry. As 

a result, the geoscience commity does not have a good understanding of the whole IOCG 

mineral system or how to use geochemistry and alteration mineralogy to explore within the 

system. 

Fabris (2012, 2013) conducted research in the Olympic Dam region, the same study region 

as examined in this research, to develop an empirical index that utilises pathfinder elements as 

the vector to orebodies, ranging from distal to proximal to the orebody. Ten pathfinder elements 

were selected for the index - Au, Ag, As, Bi, Cu, Mo, S, Sb, Se and W. Fabris (2012, 2013) 

applied a threshold value of ten times average crustal abundance for each of the ten elements, 

then divided the number of elements above the threshold by the number of elements below the 

threshold to generate the index. Calculated index values thus range from 0 (no elements > 

10*crustal abundance) to 10 (all ten elements >10*crustal abundance). The index appears to 

have a spatial correlation, whereby higher values occur more proximal to mineralisation and 

lower values more distal. This led Fabris (2012, 2013) to propose that the IOCG element index 

might have value as a mineral exploration tool, with the potential to vector toward 

mineralisation using geochemical data.    

An important unknown in the work of Fabris (2012, 2013) is which minerals host the 

various pathfinder elements and in what way those minerals are associated with the IOCG 

alteration system. Empirical observations of mineralogical controls on element distribution are 

required as well as understanding of the processes involved in element Alteration systems 

evolve during multiple stages over a range of conditions and with varying degrees and types of 

fluid-rock interactions. These processes may lead to local enrichment or depletion of pathfinder 

elements and minerals. Empirical observations of mineralogical controls on element 

distribution are required as well as understanding of the processes involved in element 

deportment. 

This thesis addresses a series of questions related to the nature of, and controls on, district-

scale alteration in IOCG systems using the central eastern Gawler Craton of South Australia as 

a case study. This study uses a sample set outside of known mineral deposits that incorporates 

a range of alteration types and abundances of potential pathfinder elements to understand the 

breadth of fluid-rock interactions in the mineral system. Thus, this work provides insight to 

potential mechanisms of ore deposition (within the smaller, often uneconomic satellite deposits 

as well as well-known larger deposits) and potential sources and evolution of mineralising 

fluids.  

 

1.3 BACKGROUND GEOLOGY, THE EASTERN GAWLER CRATON 

 

The Gawler Craton is a globally important IOCG province, containing the prospective Olympic 

Domain in the east of the Craton (Figure 5). This area contains numerous economic and sub-

economic occurrences of IOCG mineralisation, including the supergiant Olympic Dam and 

giant Prominent Hill deposits (McPhie et al., 2011; Schlegel and Heinrich, 2015). The Olympic 
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Dam deposit is the world’s fourth largest Cu resource, fifth largest Au resource and the world’s 

largest U resource in a single deposit (BHP, 2012). The IOCG system preserves extensive 

alkaline and iron-oxide alteration, and mineralisation is often recognised as being structurally 

controlled (Williams et al. 2005; Groves et al. 2010). Many studies of mineralization in the 

Olympic Domain have focused on deposit-scale issues (e.g. Oreskes and Einaudi 1990; Gow 

et al., 1994; Davidson et al., 2007). Relatively fewer studies have focused on regional alteration 

(Johnson and McCulloch 1995; Skirrow et al., 2007). The IOCG deposits themselves are only 

a small part of the system, and are often used to understand the alteration core. Therefore, to 

develop holistic models, and in particular to increase our understanding of the broad 

geochemical footprint related to the IOCG deposits, there is a need to understand regional fluid-

rock interactions, even at low fluid-rock ratios.  

The area studied in this research covers approximately 1200 km2 and is located ~40 km 

south of the giant Olympic Dam IOCG deposit and ~240 km north of the Hillside deposit. The 

region is within the middle of the Olympic Domain of the eastern Gawler Craton, which hosts 

numerous economic IOCG deposits and prospects (Figure 6). Exploration within the Olympic 

Domain is hampered by deep cover and has relied on sparse drilling into potential field 

geophysical anomalies, which are proxy measures for IOCG systems. The interpreted 

geographic extent of the Olympic Domain (~600 km x 200 km), the clustering of mineralisation 

(Belperio et al., 2007; Porter, 2010; Skirrow et al., 2007) and the diversity of protoliths that 

host IOCG deposits (Gow et al., 1994; Hand et al., 2007; Fairclough, 2005) point to a 

hydrothermal mineralising system of significant scale and intensity.  

The Palaeoproterozoic basement rocks of the Olympic Domain are poorly exposed, and 

are extensively overlain by Neoproterozoic to Cambrian cover sequences of the Adelaide Rift 

Sequence and Stuart Shelf (e.g. Drexel and Preiss, 1995). The oldest rocks recognised in the 

eastern Gawler Craton are the c. 1850 Ma Donington Suite (Reid et al., 2008) and the c. 1760-

1730 Ma Wallaroo Group (Cowley et al., 2003). These units were emplaced at a time of rift-

basin development and deposition of a series of volcanosedimentary packages throughout the 

Gawler Craton (Hand et al., 2007; Reid and Hand, 2012). Basin development was terminated 

by the c. 1730-1690 Ma Kimban Orogeny (Hoek and Schaefer, 1998; Hand et al. 2007), which 

involved extensive magmatism, high-grade metamorphism, crustal-scale shearing and 

transpressional deformation (e.g. Reid and Hand, 2012). The extent and intensity of Kimban 

Orogeny deformation within the Olympic Domain is not entirely resolved (e.g. Mount Woods 

Domain: Betts et al., 2003).   

The Kimban orogeny was followed by a period of extensive magmatism and localised 

sedimentation mostly within the central Gawler Craton. The next major tectonothermal event 

within the Gawler Craton occurred between c. 1640-1550 Ma, and is broadly termed the 

Kararan Orogeny (Daly et al., 1998; Hand et al., 2007). The Kararan Orogeny involved a 

complex history including high-temperature metamorphism, intense deformation, voluminous 

magmatism and extensive mineralisation (e.g. Stewart and Foden 2003; Johnson and Cross, 

2005; Hand et al. 2007; Skirrow et al. 2007; Forbes et al. 2011; Morrissey et al. 2014). 

Magmatism included emplacement of shallow level intrusions of the felsic-dominated Hiltaba 

Suite (c. 1595-1575 Ma) and extrusion of the Gawler Range Volcanics (1593-2592 Ma) (e.g. 

Johnson and Cross 2005; Jagodzinski 2014). The most precise zircon U-Pb ages for Hiltaba 



21 
 

Suite granitoids in the study area cluster around c. 1588 to 1596 Ma (Johnson and Cross, 1995). 

Mafic intrusions of comparable age have been increasingly identified in the Olympic Dam 

district (Johnson and Cross, 1995; Jagodzinski, 2005).  

Widespread NW-SE contractional deformation occurring at the time of the Hiltaba Suite 

is expressed by the formation and/or reactivation of shear zones ranging up to crustal scale. 

Deformation of the Hiltaba Suite granites and GRV (Gawler range volcanics) in the early 

Mesoproterozoic, during IOCG formation, was restricted to local brittle-style fracturing, 

brecciation and faulting (Direen and Lyons, 2007; Hand et al. 2007). Extensive IOCG 

mineralisation was emplaced throughout the eastern Gawler Craton at c. 1590 Ma, including 

the Olympic Dam, Prominent Hill and Carrapateena deposits (e.g. Johnson and Cross 2005; 

Skirrow et al. 2007; Reid et al. 2011) (Figure 5). Northwest-trending structures, such as those 

in the vicinity of the Olympic Dam deposit, are likely to have accommodated dilation 

associated with strike-slip movements. Intersection between these structures and NE-trending 

contractional faults, c.1590 to 1580 Ma, may have formed suitable structural traps for 

mineralisation within the eastern Gawler Craton.  

In addition to IOCG mineralisation, Au-only mineralisation was emplaced within the 

‘Central Gawler Gold Province’, and includes the Tunkillia, Tarcoola and Barns deposits 

(Budd and Fraser, 2004; Fraser et al. 2007) (Figure 5). The IOCG and Au-only provinces 

preserve lithospheric compositional differences that are indicated by modern-day heat flow in 

the IOCG province which is significantly higher (90 ± 10 mWm−2) compared to the Au-

dominated province (54±5mWm−2) (Hand et al., 2007). This is interpreted to possibly reflect 

deposition of Au occurring prior to IOCG in craton assembly (Hand et al., 2007). Qiuyue et al. 

(2017) suggested that at least two time-punctuated hydrothermal events have occurred at 

Olympic Dam and both generations of mafic rocks could provide copper to the deposit. 

IOCG mineralisation is hosted within a range of basement rock types including the c. 1850 

Ma Donington Suite granite (Carrapateena: Fairclough, 2005; Sawyer, 2013), Mesoproterozoic 

granites (e.g. Roxby Downs granite at Olympic Dam: Johnson and Cross, 1995) and 

sedimentary rocks (e.g. Emmie Bluff: Gow et al., 1994). The dominant lithology hosting IOCG 

mineralisation in the eastern Gawler Craton is hematite breccia. Ore minerals commonly 

include chalcopyrite, bornite and chalcocite. Hydrothermal alteration includes chlorite, K-

feldspar, hematite alteration (Bastrakov et al., 2007) and carbonate alteration of various 

basement protoliths including granite and calc-silicate rocks. 

This study is focussed on the area of the eastern Gawler Craton that includes the 

Carrapateena, Punt Hill, Emmie Bluff, Khamsin and Oak Dam deposits (Figures 5 and 6). The 

eastern Gawler Craton IOCG system contains a range of alteration types related to fluid-rock 

interactions, with three broadly defined end-members (Skirrow et al., 2002): calc-silicate–

alkali feldspar–magnetite (CAM), magnetite–biotite (MB) and hematite–sericite–chlorite–

carbonate (HSCC) alteration. Typical CAM assemblages include magnetite-actinolite-K-

feldspar-pyrite-dolomite±apatite (Skirrow et al., 2002). Mineralisation at Punt Hill and 

Emmie Bluff exhibits magnetite and calc-silicate alteration of carbonate bearing 

metasedimentary rocks of the Wallaroo Group (Gow et al., 1994; Reid et al., 2008; Daly and 

Rowett, 2007). At Emmie Bluff there are four recognised alteration stages in which early 
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magnetite alteration was overprinted by hematite, late-stage veins and sericite alteration. (Gow 

et al., 2004). Cu-Au-REE mineralisation at Carrapateena is associated with intense HSCC 

alteration of the host Donington Suite granite (Figure 6). Magnetite bearing (CAM and MB) 

alteration has been linked to high temperature, hypersaline (>30% NaCl equivalent), Cu-rich 

fluid inclusions (Bastrakov et al., 2007) and inferred to have formed at temperatures of 350⁰ to 

500⁰C. In contrast, hematite bearing (HSCC) alteration has been linked to low salinity (1-7 wt % 

NaCl equivalent) fluids and inferred to have formed at temperatures below 300⁰C (Bastrakov 

et al., 2007).  

HCh models have previously been used to establish relationships between the three 

mineralisation styles of CAM, MB and HSCC and to model ore genesis. I used samples of the 

three mineralisation styles to run C-H-O-Cl-S-Na-K-Mg-Fe-Si-Al-Cu-Ca-Mn hydrothermal 

system experiments using the HCh thermodynamic numeric computing calculation for 

alteration. Our approach was different to previous modelling, as I used true rocks and fluids 

from the study area. As about 40% of fluid in the study area is hypersaline, and HCh modelling 

requires about < 35 wt % equiv fluid, I selected fluid samples within the range suitable for HCh 

modelling. I applied temperatures between 500° and 150°C within the temperature-pressure (T-

P) grid (P=8*T-1100 bar) and examined additional models out of the T-P grid for 300⁰-400⁰C 

and 390⁰-200⁰C with 4000 bar isothermal models generated. Sulphur (S) is important to HCh 

modelling of ore minerals, whether S is derived from fluids or rocks. 
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Figure 5. Simplified geological map of the Gawler Craton, South Australia (modified form Geoscience Australia 

and SARIG) showing major geological units and location of IOCG and Au deposits/prospects. The location of the 

study area in the eastern Gawler Craton is shown. 
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Figure 6. Simplified solid geology map of the eastern Gawler Craton study area showing basement geology and 

location of IOCG deposits and prospects. Locations of drill holes sampled in this study are also shown. The location 

of the study area is shown in Figure 5 (Modified from SARIG: https://sarig.pir.sa.gov.au/Map). 

Thesis aim 

The aim of this thesis is to map the distribution of alteration minerals and pathfinder elements 

https://sarig.pir.sa.gov.au/Map
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from deposit to regional-scale within the IOCG mineral system of the eastern Gawler Craton 

and understand fluid-rock interactions that control that distribution. 

Research findings may allow mineral explorers to better understand mineral assemblages 

and geochemical patterns observed from drillholes within the context of a regional mineral 

system. In turn, findings inform decision making during the exploration process, such as 

determining drillhole location to improve exploration success. 

Three related objectives were important to addressing the thesis aim:  

1. Establish the mineralogical characteristics of altered rocks within the mineral system 

including: A) a range of protolith rocks collected from a broad geographic area, B) a 

range of alteration type characteristics of the IOCG mineral system and C) a range of 

alteration intensity as measured by concentration of commodity and pathfinder 

elements. 

2. Understand the mineral deportment of trace elements, including commodity and 

pathfinder elements, within alteration assemblages as a means of reconstructing fluid-

rock interactions driving regional geochemical patterns. 

3. Model thermodynamic constraints on the nature of fluid-rock interactions. 

 

1.4 THESIS STRUCTURE 

This thesis contains five chapters: Chapters 1 and 5 are general introduction and conclusions, 

respectively. Chapters 2 to 4 contain new data and interpretations relating to the three objectives 

stated above. Chapters 2 to 4 have been prepared such that they can be easily reformatted for 

submission to a journal and thus have a stand alone introduction with elements that may be 

repeated in each chapter. 

Chapter 1: Introduction 

In chapter 1, I present a review of IOCG deposits, in particular the eastern Gawler Craton 

deposit, study outline, general aims, thesis structure and modelling method. The chapter 

includes a brief introduction of background geology of the eastern Gawler Craton. 

Chapter 2: Spectrum of fluid/rock alteration in the IOCG system of eastern Gawler 

Craton, Australia 

In chapter 2, I present geochemical and petrological data that characterises the spectrum and 

intensity of alteration types within the eastern Gawler Craton mineral system. This chapter 

presents whole rock geochemistry and HyLogger hyperspectral mineralogy from 2276 samples 

of drill core. Of these, 44 samples were selected for detailed petrology representing a range of 

protolith types (e.g. granite, amphibolite, calc-silicate metasediment and siliciclastic 

metasediment), alteration types (e.g. K-feldspar, magnetite, calc-silicate, chlorite and hematite)  

and variable concentrations of Cu, Au, U and REE, and pathfinder elements proposed as a 

measure of alteration intensity (Fabris, 2013). The petrologic study was underpinned by 

transmitted and reflected light microscopy, focusing on mineral textures and paragenesis. Of 
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44 petrology samples, 11 were selected for scanning electron microscopy (SEM) as a means 

observing micron-scale textures and mapping elemental concentrations within individual 

mineral phases. 

Chapter 3: Mineral chemistry mapping within an IOCG system, Olympic Cu-Au Province, 

South Australia 

In chapter 3, I present elemental chemistry of single mineral phases within the context of 

alteration mineralogy and textures identified in Chapter 2. The aim of this chapter is to establish 

the trace element budget within each studied sample and use those data to understand fluid/rock 

interactions responsible for trace element deportment. Mineral chemistry was analysed by 

electron microprobe and laser ablation inductively coupled mass spectrometry (LA-ICPMS) 

on the same 11 samples chosen for SEM. Electron microprobe analyses were conducted on 234 

individual minerals, with concentrations of selected elements used to calibrate subsequent LA-

ICPMS analyses on the same minerals. Discussion of mineral chemistry focusses on: 

 Fe/S and Co/Ni ratios in pyrite as a means of identifying geological processes responsible 

for pyrite growth. 

 REE patterns as a means of identifying protolith types and quantifying REE mobility due 

to alteration. 

 Trace element abundances and patterns of enrichment as a means of characterising nature 

and intensity of alteration. 

In samples with sufficient trace element data from minerals that constitute a significant 

volume of the rock, trace element data combined with estimated mineral abundances was used 

to calculate a ‘model’ trace element budget for comparison with whole rock data from the same 

sample intervals. 

Chapter 4: HCh thermodynamic models of IOCG systems of the eastern Gawler Craton, 

South Australia  

In chapter 4, I present results of thermodynamic modelling, describing constraints on physical 

(temperature, pressure, fluid/rock ratios) and chemical (fO2, pH, fluid composition and rock 

composition) conditions at which alteration assemblages described in Chapters 2 and 3 were 

formed. Rather than attempting to contrive a series of models describing paragenesis of 

individual samples, this research instead used model protoliths (representing generic unaltered 

granite and generic unaltered calc-silicate rock) mixed with a model fluid (of a composition 

consistent with fluid inclusions from across the eastern Gawler Craton) at a range of fluid/rock 

ratios, temperatures and pressures. Outcomes are presented as a model volume in which 

equilibrium alteration mineral assemblages and fluid compositions were mapped against three 

parameters considered by previous authors to be important in IOCG systems: A) combined 

temperature and pressure, B) fO2 and C) fluid/rock ratio.  

Chapter 5: Conclusions 

In chapter 5, I summarises and highlights major findings of the research project and broader 

implications for hydrothermal processes and mineral exploration.  
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2 Spectrum of fluid/rock alteration in the IOCG system of eastern Gawler Craton, 

Australia 

ABSTRACT 

In this chapter, I present petrology and geochemistry from a range of metasomatically altered 

rocks collected from the central eastern Gawler Craton of South Australia. Rock samples used 

in this study represent four protolith types: siliciclastic metasedimentary rock, calc-silicate 

metasedimentary rock, granite and mafic magmatic rock. Multiple, overprinting paragenetic 

relationships can be interpreted within the framework of five paragenetic stages, with 

characteristic mineral assemblages in the four protolith types summarized as follows: 

 Protolith assemblages include; quartz and K-feldspar in siliciclastic metasedimentary 

rocks; dolomite in calc-silicate (carbonate) metasedimentary protoliths; quartz, K-

feldspar, plagioclase, biotite and ilmenite in granitic protoliths, and; quartz and 

amphibole in mafic magmatic protoliths.   

 Skarn assemblages include anhydrous calc-silicate minerals garnet, pyroxene and 

actinolite and occur exclusively in calc-silicate protoliths. Skarn assemblages most 

commonly occur early during the paragenesis.  

 Stage 1: K-feldspar, magnetite and chlorite assemblages with pyrite and minor Cu-

sulphides. These assemblages correspond to MB (magnetite, biotite ± K-feldspar) and 

CAM (chlorite, alkali feldspar and magnetite) alteration styles as previously reported 

on the eastern Gawler Craton by Skirrow et al. (2002).   

 Stage 2: Hematite, chlorite and muscovite assemblages with Cu-sulphides. This 

represents the main Cu-mineralisation phase and corresponds to the HSCC (hematite, 

sericite, chlorite and carbonate) alteration style of Skirrow et al. (2002).    

 Stage 3: Post-mineralisation assemblages which include hematite, chlorite, carbonate, 

apatite, quartz and manganite.   

The paragenesis is consistent with successive periods of Fe-K-metasomatism, with early 

higher temperature, more reduced (magnetite stable) alteration being consistently overprinted 

by lower temperature, more oxidized (hematite stable) alteration and with the bulk of Cu-

sulphide mineralization occurring at close to the transition from magnetite to hematite. It is 

possible that variable overprinting (e.g. Bastrakov et al., 2007) and/or mixing (e.g. Haynes et 

al., 1995) of two discrete fluids was responsible for the observed paragenesis. However it is 

also possible that an initially highly-saline, hot and reduced fluid evolved toward a cooler, 

lower-salinity and more oxidized fluid as it migrated through the crust. In all rock types, 

alteration intensity was greatest in samples with breccia textures, intermediate in samples with 

veining and micro-fractures and least in samples with little evidence of deformation. These 

observations are consistent with a link between alteration intensity and increased fluid-rock 

ratios due to transient structurally controlled permeability. 
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2.1 INTRODUCTION 

Iron-oxide copper gold (IOCG) deposits are important global copper gold uranium and REE 

resources. While there has been considerable study of these systems (Ferris et al., 2002; 

Espinoza, 2002; Naslund et al., 2002; Billström et al., 2010; Corriveau et al., 2010; McLellan 

et al., 2010; Porter, 2010; Rusk et al., 2010; Xavier et al., 2010; Kontonikas-charos et al., 2014 

and 2017; Verdugo-Ihl et al., 2017), there remains uncertainty regarding the geodynamic setting 

of deposits and specific controls on mineralisation. Importantly, there is a need to better 

understand the nature and source of mineralising fluids and how they interact with various rock 

types as they pass through the crust. Johnson (1995) suggested that mineralising fluids have 

chemistry consistent with a mantle source, while Barton (2010) contended that mixing with 

sedimentary (meteoric fluids) is important to IOCG formation. Bastrakov and Skirrow (2007) 

found two fluids present in samples from the eastern Gawler Craton: a high-temperature, metal-

rich fluid and a low temperature fluid. But there remains a need to understand how these fluids 

interacted with each other and the suite of rocks in the district. 

In the chapter, I use a combination of petrology and SEM element mapping to show that 

the two fluids recognised by Bastrakov et al. (2007) could be responsible for the range of 

alteration and mineralisation styles observed in the eastern Gawler Craton mineralised province. 

Whole rock geochemistry is used to characterise alteration trends associated with the IOCG 

mineral system. There is an important relationship between ore mineral phases and alteration 

mineral phases in rock sequences, classified by an alteration spectrum.  

 

2.2 CHARACTERISTICS OF IOCG MINERALISATION 

IOCG deposits have been found on every continent (except Antarctica), in a variety of host 

rocks, over a range of geologic time (with a concentration in the Proterozoic), in a variety of 

interpreted tectonic settings (convergent margins to ‘intracratonic’ basins) and have a range of 

proposed mechanisms of formation (Benavides, 2007; Monteiro, 2008; Groves et al., 2010; 

Porter, 2010). Consistent elements of these models include; 1) IOCG mineral systems are 

associated with significant lithospheric-scale fluxes of heat and fluid, including coincident 

magmatism, potentially linking to mantle processes; 2) that IOCG systems are controlled by 

lithospheric-scale fluid pathways (faults and shear zones) that are located in dynamic tectonic 

settings (eg. at the margins of continental plates, or in actively deforming intracratonic areas; 

3) that local structure intersections are common emplacement sites of IOCG orebodies and that 

the orebodies typically contain evidence of complex, syn-mineralisation structural reworking 

and brecciation (Fairclough, 2005; Daly and Rowett, 2007; Huntington et al., 2006); 4) that the 

dominant IOCG processes are hydrothermal, with a variety of characteristics that vary 

according to location (Ferris et al., 2002; Espinoza, 2002; Naslund et al., 2002; Billström et al., 

2010; Chen, 2010; McLellan et al., 2010; Rusk et al., 2010; Xavier et al., 2010; Ismail et al., 

2014); 5) that these processes result in a spectrum of deposit styles and alteration products 

related (amongst other things) to a range of formation depths between 2-15 km depth (Ferris et 

al., 2002; Espinoza, 2002; Porter, 2010); that the key alteration feature is abundant iron-oxide 

minerals (dominantly hematite and magnetite), both within the ore envelope and in widespread 

regional alteration.   
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IOCG mineral systems display a range of alteration styles that have been interpreted to 

represent complex interactions between various protolith rocks with fluids of different origin 

(magmatic, metamorphic, meteoric and surface derived brines) over a wide range of crustal 

depths (eg. Hitzman et al., 1992; Bastrakov et al., 2007; Porter, 2010; Rusk et al., 2010; 

Kontonikas-charos et al., 2014 and 2017; Verdugo-Ihl et al., 2017). One potential source of 

magmatic fluids are I-type and A-type granites that are often observed to be coincident with 

IOCG mineralisation (Benavides et al., 2007; Porter, 2010). Such fluids have been implicated 

in regional Na-alteration (albitisation) and proximal K-alteration in IOCG systems (Cleverley 

et al., 2005; Yang 2009). Fluid inclusions in ore minerals point to hot brines (>30 wt % NaCl 

equiv) that were progressively cooled and diluted by low-salinity fluids (<10 wt % NaCl) 

(Xavier et al., 2010). Hence, incursion of evaporite-sourced basinal brines, or seawater, has 

been proposed as a prerequisite for IOCG deposits (Chen, 2010). Hypersaline fluids from above 

550°C decrease to below 300°C during fluid mixing, accompanied by a fO2 increase from 

magnetite-chalcopyrite to hematite-bornite (Xavier et al., 2010). Low temperature (~300°C) 

muscovite and biotite may have influenced IOCG mineralisation in the Gawler Craton (Hand 

et al., 2007), similar to the function of chlorite, at below 300°C, in the Sossego IOCG deposit 

(Monteiro et al., 2008). GRV and HS (Hiltaba Suite) are high temperature magmatic and 

metamorphic geological systems (Hand et al., 2007) link to the sodic–calcic event at ~500 °C 

(1.4 kbar) (Monteiro et al., 2008).  

 

2.3 MINERALISATION OF THE GAWLER CRATON 

The largest IOCG deposits in the eastern Gawler Craton IOCG system are, from north to south, 

Prominent Hill, Olympic Dam and Carrapateena (Figure 5). In addition there are numerous 

known mineral occurrences including Emmie Bluff, Oak Dam and Punt Hill. Mineralisation 

occurs in a range of host rocks including granite, felsic volcanic rocks and metasedimentary 

rocks (particularly calc-silicate metasediments). Common to all deposits is the intimate 

association of iron-oxides, dominantly hematite, with mineralization. Heterolithic, hematite-

rich breccia being consistently associated with sulphide mineralisation in the largest known 

deposits (Olympic Dam, Prominent Hill and Carrapateena). This association with iron-oxides 

has informed previous exploration efforts on the eastern Gawler Craton which have focused on 

testing magnetic and gravity anomalies (Fairclough, 2005; Belperio et al., 2007). Ore minerals 

contained within hematite breccia include chalcopyrite, bornite and chalcocite. Hydrothermal 

alteration associated with iron-oxides and sulphide mineralisation has resulted in widespread 

K-feldspar, biotite, chlorite, muscovite and carbonate alteration (eg. Bastrakov et al., 2007; 

Verdugo-Ihl et al., 2017). Skirrow et al. (2002) subdivided alteration associated with the IOCG 

mineral system on the eastern Gawler Craton into three end-members: 

 Magnetite-Biotite (BM): Syn- to post-compressional district- to deposit-scale 

magnetite-rich alteration characterized by Fe+2 metasomatism and generally minor Cu-

Au mineralization (magnetite, K-feldspar or biotite, actinolite, quartz, apatite, pyrite, 

chalcopyrite).  
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 Calc-silicate, Alkali feldspar and Magnetite (CAM): Related to calc-silicate protolith 

and alkali environments and also minor Cu-Au mineralisations and  

 Hematite–Sericite–Chlorite–Carbonate (HSCC): above magnetite-bearing zones; 

higher grade uranium mineralization is generally associated with gold-rich and/or more 

oxidized mineral assemblages. Combinations of hematite, chlorite, sericite, carbonate, 

pyrite, gold, chalcopyrite, bornite, chalcocite, barite and various REE and phosphate 

minerals. 

 

The host rock of Carrapateena is a brecciated granite complex of Donington Suite (Figure 

5; Fairclough, 2005). Silicate mineral assemblage varies from plagioclase, feldspar, biotite, and 

hornblende, K-feldspar, quartz assemblages variably altered to chlorite, sericite. Carrapateena 

Breccia Complex is cut at its centre by an EW- to ENE-trending complex zone of faulting. A 

near vertical pipe chalcopyrite with sulphidic vein-fill and blebs related to a hematite-rich 

breccia (Fairclough, 2005). Host rock is a strongly brecciated granite complex (granitoid, 

variably foliated, sheared gneissic quartz-granite and quartz-diorite) of Palaeoproterozoic 

Donington Suite (Ca. 1857±6 Ma) (Figure 6). Alteration is HSCC style, hematite, sericite, 

chlorite and carbonate alteration with abundant quartz and (siderite and/or ankerite), and 

secondary barite, monazite, anatase, magnetite, apatite, fluorite and zircon (Fairclough, 2005). 

Ore is vertically downward from bornite to chalcopyrite-bornite to chalcopyrite to 

chalcopyrite-pyrite. Chalcopyrite-bornite zone contains U-REE (Ce-La) minerals and 

chalcocite, covellite, trace sphalerite and galena and digenite. Mineralisation zone is from 

upper hematite-rich zone, to a lower magnetite-rich zone. Apatite occurs at hang wall and foot 

wall, stratabound characteristics.  

The host rock of Emmie Bluff is Wallaroo Group sandstone, a stratabound zone of 

metasedimentary rocks (1760-1730Ma). Silicate mineral assemblage is amphibole, 

clinoproxene, K-feldspar, sericite, chlorite and quartz (Bastrakov et al., 2007; Gow et al., 1994). 

Alteration is CAM and HSCC multiple alteration styles with late-stage veins (carbonate or 

mangnesite) (Gow et al., 1994). Ore is chalcopyrite ± bornite ± covellite with significant silver, 

cobalt and minor zinc credits.  Mineralisation is zoned vertically from an upper hematite-rich 

zone, with chalcopyrite–bornite–covellite mineralisation, to a lower magnetite-rich zone 

(Huntington et al., 2006). Apatite at hang wall and foot wall, stratabound characteristics. 

The host rock of Punt Hill is brecciated Gawler Range Volcanics (1596-1590Ma) and 

altered metasedimentary rocks of Wallaroo Group (1760-1730 Ma) (Reid et al., 2008; Daly and 

Rowett, 2007). Silicate minerals are garnet, pyroxene, biotite, feldspars, sericite, chlorite, 

diopside, amphibole, epidote and tourmaline (Reid et al., 2011). Alteration is chlorite-rich 

CAM style and hematite- sericite-rich HSCC style (Skirrow et al., 2007). Ore is chalcopyrite, 

sphalerite, chalcocite and bornite. Top of ore is rich-bornite. In addition to copper 

mineralization Punt Hill contains elevated concentrations of Ag, Zn, Au, Pb and REE, with 

elevated Au and Pb occurring over wider than the Cu-rich core zone and elevated REE 

occurring vertically above the Cu-rich core zone. 

.  
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2.4 METHODS  

 

I used a combination of petrological and geochemical techniques on selected samples from the 

central eastern Gawler Craton (Figure 6) to establish patterns of alteration and paragenetic 

relationships. 

2.4.1 Sample selection 

To characterise alteration throughout the central eastern Gawler Craton, I selected 44 samples 

from 10 drillholes (see appendix 1) surrounding the Carrapateena, Emmie Bluff and Punt Hill 

prospects, within an area of ~120×100 km2 and over a vertical depth extent of 400-1200m 

(Figure 6). The samples were distributed to represent different protolith types, as well as 

different styles and intensity of alteration. Samples were initially chosen based on previous 

logging recorded in the online South Australian Resources Industry Geoserver (SARIG) 

database (Fabris, 2013). For many samples, there is uncertainty regarding protolith 

classification due to widespread metamorphic recrystalisation, metasomatic alteration and 

textural overprinting. Thus protolith classification decisions for the 44 selected samples were 

also based on detailed re-logging of drillholes by the author and reference to multi-element 

geochemistry (see below), HyLogger data and handheld XRF geochemistry (see appendix 2). 

This selection process ensured variation in protolith types (where protolith could be identified) 

and degrees of alteration intensity of the 3D space in the eastern Gawler Craton.  

2.4.2 Geochemistry  

Whole rock geochemical data were obtained from the SARIG database 

(https://sarig.pir.sa.gov.au/Map). The SARIG database contains data from one meter intervals taken 

every tenth meter for approximately 600 drillholes in the eastern Gawler Craton. A small 

proportion of drillholes have been completely analysed, i.e. each one meter interval, to provide 

additional data (e.g. IHAD5). Six analytical methods were consistently used to determine 

whole rock geochemistry for 65 elements (Table 2). Ten major elements were reported at % 

level, with Au, Pd and Pt trace elements reported at ppb level and another 42 elements reported 

at ppm level.  

I examined whole rock geochemical data using ioGasTM software to determine rock types 

and alteration trends and to inform selection of the 44 representive samples from the central 

eastern Gawler Craton. Ternary plots of major elements (Figures 7 and 8), in particular, 

provided a useful means of characterizing various protolith and alteration trends.   

Table 2. Six data analysis methods used to examine 65 elements reported in the SARIG database 

Method Description Elements 

FB6/OE Lithium borate fusion, ICP-OES  SiO2 Al2O3 CaO Fe2O3 K2O MgO MnO TiO2 P2O5 Na2O V Cr Sc 

FA25/MS Lead collection fire assay 25g charge, ICP-MS  Au Pd Pt 

FB6/MS Lithium borate fusion, ICP-MS Ba Zr Rb Sr Ce La Nd Y Ga Th Nb Pr Hf Sm U Gd Dy Sn W Be Yb Er Eu Ta Ho Tb Tm Lu 

FC7/SIE Carbonate fusion, Selective Ion Electrode  F 

4A/OE Four acid digests, ICP-OES S Cu Zn Ni Pb 

4A/MS Four acid digests, ICP-MS Co Li Cs Se Mo Bi Ge Sb Tl As In Te Ag Re Cd 

https://sarig.pir.sa.gov.au/Map
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2.4.3 Petrography 

Polished thin sections were prepared Adelaide Petrographics Laboratories for all 44 of the 

selected samples. The thin sections were prepared from 2 cm × 4 cm subsamples and polished 

to a consistent thickness of 40-45μm. Petrographic observations were conducted using a 

petrographic microscope under plane and polarized, transmitted and reflected light. The thin 

sections were examined to determine mineralogy, structures (including micro faults and veins), 

textures (including mineral filling and replacement textures) and paragenetic overprinting 

relationships. Reflected and transmitted light photomicrographs were taken of key textures and 

petrogenetic relationships. I took particular care to identify and document textural overprinting 

relationships, at scales ranging from 2 mm to 10 μm, between mineral phases to establish a 

mineral paragenesis for each sample (Appendix 1).  

As a result of petrographic observations 11 of 44 samples were selected as representative 

of various protoliths, alteration styles and intensity of IOCG alteration on the central eastern 

Gawler Craton and prepared for more detailed semi-quantitative microanalysis (see chapter 1.2, 

chapter 3.2 and appendix 1). 

2.4.4 Scanning Electron Microscopy (SEM – XL30) 

For the 11 representative samples selected above, semi-quantitative elemental mapping was 

conducted using scanning electron microscopy (SEM) at Adelaide Microscopy. The SEM 

instrument used was a Philips XL30 FEG SEM - with EDX detector, mapping capability, 

Oxford CT1500HF Cryo stage and HKL Channel 5 Electron BackScatter Diffraction System 

(EBSD). The XL30 instrument has the ability to identify 1-5 μm size minerals because the thin 

film EDS detector allows X-ray analysis. Quality images are produced at 100 μm scale where 

an electron beam is focused onto a small spot to give 2 nm resolution and magnification of up 

to x106. Major element compositions can be determined from the SEM data with effective 

limits of detection of ~1% within ~10% errors. 

A number of single element SEM maps at a magnification of x100 and covering areas with 

side lengths ~2-3 mm size are reproduced in this chapter. The SEM images are a useful 

reference for identification and confirmation of minerals at grain sizes down to ~5μm, for 

recognition of chemical zonation within minerals and for detailed textural relationships 

between minerals of varying chemistry.   

2.5 RESULTS   

2.5.1 Whole Rock Geochemistry 

There is considerable overlap in the major element chemistry between rocks identified in the 

SARIG database as belonging to four common protolith types (granites, calc-silicate 

metasedimentary rocks, otherwise unclassified metasedimentary rocks and mafic rocks).  

“Metasedimentary” protoliths include a large proportion of CaO-MgO-rich samples that 
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overlap with the dominant population of “calc-silicate” protoliths. The extent to which this 

subset of the metasedimentary protoliths reflects intermixing of carbonate sedimentary 

lithologies or overprinting of carbonate alteration can not be determined from the ternary plot.  

SiO2 and Al2O3-rich metasedimentary protoliths have considerable overlap with the dominant 

population of “granitic” protoliths. Whilst the granitic protoliths also have a subpopulation 

drawn toward the CaO+MgO apex, which likely reflects carbonate alteration. For all protolith 

types there is a clear trend toward the Fe2O3 apex consistent with widespread and locally 

intense iron-oxide alteration (Figure 7).  

Each of the four protolith types have a prominent subpopulation that can be inferred to 

represent the range of “least altered” examples of the protolith type (Figure 7). Least altered 

granites plot as a coherent geochemical group (Al2O3 > 50 and CaO+MgO < 20 in Figure 7) 

which corresponds to whole rock chemistry of SiO2 (72-78 wt %), Al2O3 (12-20 wt %) and 

K2O+Na2O+CaO (8-12 wt %). The least altered calc-silicate metasedimentary protoliths occur 

within an area bound by Al2O3 > 10, Fe2O3 > 20 and CaO+MgO > 60 on Figure 7. The 

metasedimentary rocks include a significant subpopulation with CaO+MgO < 10, 45<Al2O3 > 

70 on Figure 7 and with whole rock SiO2 of > 70%. This subpopulation of “siliciclastic” 

metasediments represent a mixture between quartz rich (silica dominated) metasediments and 

arkosic or shale end-members with similar whole rock chemistry to granites. The dominant 

population of “mafic” protoliths occupies a region between 25 < Al2O3 > 40 and 25 < Fe2O3 > 

55 on Figure 7. A discrete group of high-Al2O3 and high-SiO2 samples, logged as “mafic” may 

represent a discrete, more felsic magmatic rock type.   

Whole rock sulphur is a measure of the sulfide (and sulphate) component of the mineralogy. 

Elevated Sulphur concentrations occur in all protolith types in the SARIG database but are 

more common in the metasedimentary and calc-silicate protoliths than in the granitic and mafic 

protoliths. The whole rock geochemistry illustrates a tendency for iron-rich rocks (those 

dragged toward the Fe2O3 apex by Fe-alteration) and carbonate-rich rocks (with an unknown 

mixture of sedimentary and alteration carbonate) to have elevated sulphur contents, in some 

cases exceeding 10 wt % (Figure 8). In contrast the region of Figure 8 corresponding to the 

least altered granite and metasedimentary protoliths, centred on approximately 75% Al2O3, 25% 

Fe2O3 and 10% CaO + MgO, is characterized by low sulphur concentrations. 
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Figure 7. Ternary plots of Al2O3 vs CaO + MgO vs Fe2O3 and coloured for SiO2 content, for four common protolith 

types (as identified in the SARIG database) of the central eastern Gawler Craton.  
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Figure 8. Whole rock geochemistry from four common rock types from the central eastern Gawler Craton coloured 

for sulphur (S) content. A. The eleven samples selected for detailed petrography and SEM analysis. Blue outlined 

samples = granite protoliths (2066656, 2066178, 2066174 and 2066169), green = calc-silicate (2066166, 2066199, 

2066635 and 2066203), red = metasedimentary rocks (2066641 and 2066655) and purple = mafic rock (2066177).  

B. All data shown in Figure 7. Note that consistently highest sulphur contents occur in association with Fe-rich and 

CaO+MgO rich rocks at two areas.  

  

A 

B 
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2.5.2 Petrography 

Siliciclastic metasedimentary protoliths 

In this research, identification of siliciclastic protolith samples was based on visual recognition 

of sedimentary textures and dominant quartz and aluminosilicate mineralogy. The siliclastic 

grouping included a range of protoliths with varying mixtures of quartz and clay (psammitic to 

pelitic) at varying metamorphic grade. Many drill core samples identified as siliciclastic 

metasedimentary protolith also contained significant proportions of carbonate minerals and 

iron-oxides, which may represent combinations of primary sedimentary mineralogy and 

alteration. Variable proportions of carbonate, similar to calc-silicate protolith samples 

(discussed below), demonstrate a continuum between siliciclastic and calc-silicate protolith 

end-members. Siliclastic protolith samples grouped by original visual logging in the SARIG 

database were retained in this grouping, except for two samples (2066166 and 2066199) which 

were regrouped as calc-silicate. 

A hematite-altered metasediment sample (2066641) was selected for further investigation. 

This sample was taken from a depth of 799.8 m in drillhole IHAD3 (Figure 9), within a 58 m 

intersection of metasediment logged as Wallaroo Group in the SARIG database. The interval 

has a distinctive dark brown colour due to abundant hematite. The sample contains ~ 25% 

hematite, 35% quartz, 20% chlorite, 10% K-feldspar and 10% minor phases including fine-

grained micas, goethite, manganite and apatite. The sample has two broad domains: K-

feldspar+chlorite-rich and hematite-rich, with a diffuse gradual boundary of 5mm width in the 

centre of the sample (Figure 9). Elongate irregular blebs of quartz 0.5-0.8 cm length and 0.2-

0.3 cm width occur within the K-feldspar+chlorite zone. Hematite (+ minor apatite) veins of 

~200 μm width cut through K-feldspar+chlorite domain and are in turn cross cut by manganite 

veins (50 μm) and quartz veins (10 μm) cut manganite veins.  

Detailed investigation was conducted on sample 2066655, a brecciated chlorite-altered 

metasediment taken from a depth of 1016.6 m in drill core IHAD5, located ~1.5 km north of 

the Emmie Bluff prospect (Figure 10). The sample was taken from within a 159 m wide 

intersection of metasedimentary rocks logged as metasandstone and assigned to the Wallaroo 

Group in the SARIG database. The entire Wallaroo Group interval in IHAD5 has a distinctive 

green colour due to abundant chlorite. The sample was taken from a zone cross cut by 0.1-1 

cm scale carbonate veins. The sample contains ~30% chlorite, 25% quartz, 20% hematite, 15% 

K-feldspar, 5% dolomite and 5% minor phases including calcite, magnetite, pyrite and 

chalcopyrite. The sample contains sub-millimeter grains of quartz, K-feldspar, pyrite and 

magnetite overprinted by fine-grained intergrown hematite and chlorite with minor 

chalcopyrite (Figure 10A). Elongate hematite partially replace a K-feldspar at the lower left 

corner of Figure 10A and the blocky shape of hematite and chlorite zones also imply 

replacement of feldspar. The sample includes distinctive ~millimetre-scale ring textures within 

a zone of fine grained chlorite, K-feldspar and hematite (Figure 10B). Hematite grains form 

the outer zone of the ring texture and display inward-growing space-filling textures. The 

hematite grains are overgrown by chlorite. The inner zone of the ring texture consists of 

chalcopyrite with complex discontinuous and embayed margins with the surrounding chlorite 

and containing ~10 µm inclusions of quartz and chlorite.    
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Figure 9. Petrographic images from the hematite-rich metasedimentary sample 2066641. A. Photograph of the 

entire thin section. Left hand side of the image (lablled a) is K-feldspar+chlorite rich with fine-grained hematite, 

irregular quartz blebs and narrow (grey) hematite veins. Right hand side (labelled b) is hematite-rich dominated. 

B. Backscatter SEM image from location (a) highlighting vein overprinting relationships in the K-feldspar+chlorite 

rich domain. Ap = apatite, Chl = chlorite, Hem = hematite, Kfs = K-feldspar, Man = manganite, Qtz = quartz. C. Mn, 

Si, Al, Fe, P and K SEM element maps from location a.  

  

Ap 

Ap 
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Figure 10. Petrographic images from the chlorite-rich metasedimentary sample 2066655. A. Photograph of the 

entire thin section. Labels b and c show the locations of Figure 10B and 10C respectively. B. Fine grains intergrowth 

hematite + chlorite replace a blocky rectangular mineral. Chlorite decorates margins of intergrown chlorite + 

hematite; and has irregular boundaries and partly replaces K-feldspar grains at their margins. Pyrite (euhedral) is 

surrounded by chlorite. Anhedral magnetite occurs as the inclusions in hematite-chlorite zones. Chalcopyrite (5 

μm) occurs at the margins of pyrite (0.5 mm). C. Millimetre-scale ring texture of chalcopyrite, with inclusions of 

chlorite and quartz; chlorite and hematite within a matrix of fine grained chlorite, K-feldspar and hematite. Mineral 

abbreviations: Kfs=K-feldspar, Chl=chlorite, Hem=hematite, Mag=magnetite, Py=pyrite, Ccp=chalcopyrite. 
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Calc-silicate protoliths  

Identification of calc-silicate protoliths in drill core was based on visual recognition of 

sedimentary textures and dominant carbonate and calc-silicate mineralogy. The grouping 

includes a range of protoliths with varying mixtures of carbonate and calc-silicate (garnet, 

pyroxene and amphibole) and at varying metamorphic grade. Many of the samples contain 

significant proportions of chlorite and iron-oxides. A proportion of rocks classified as generic 

metasedimentary rocks in the SARIG database contain high concentrations of CaO + MgO 

(chapter 2.5.1; Figure 7) and abundant calc-silicate minerals and have been reclassified as calc-

silicate protoliths in this study. These include samples 2066166 and 2066199.    

The calc-silicate sample 2066166 was taken from drill core CSD1, ~40 km northwest of 

Emmie Bluff prospect (Figure 6), at a depth of 970.6m. The sample was taken from within a 

128 m wide intersection of metasedimentary rocks logged as metasiltstone and assigned to the 

Wallaroo Group in the SARIG database. The entire Wallaroo Group interval in drill core CSD1 

has a distinctive dark grey colour with an abundance of carbonate, chlorite, calc-silicate 

minerals (e.g. garnet) and magnetite. The sample contains ~30% quartz, 30% chlorite, 20% 

magnetite, 10% hematite, 10% carbonate and trace pyrite (Figure 11). Euhedral garnet (50 μm 

size) is intergrown with quartz and overprinted by magnetite and chalcopyrite (Figure 11B). 

Chlorite and hematite occur as fine-grained replacement of magnetite and garnet at grain 

boundaries and in a network of complex internal fractures within grains of garnet.  

Sample 2066199 is a K-feldspar bearing calc-silicate rock taken from drill core WWDD1, 

~12 km NWW of the Punt Hill prospect (Figure 6), at a depth of 683.8m. The sample was taken 

from within a 190 m intersection of sandstone/siltstone assigned to the Wallaroo Group. The 

Wallaroo Group interval in WWDD1 is characterized by interbedded layers of grey dolomite, 

light brown K-feldspar rich metasediment and green chlorite-rich metasediment at scales of ~1 

cm thickness. The sample contains ~10% quartz, 20% K-feldspar, 20% chlorite, 9% hematite, 

20% dolomite, 10% calcite and 11% accessory minerals including apatite, biotite, muscovite 

and rutile. The sample has two mineralogical zones, a K-feldspar and hematite-rich zone and a 

carbonate-rich zone separated by a ~500 µm hematite-rich band at the transition.   

Dolomite grains (~200μm) are overprinted by manganese-rich calcite (the latter containing 

dolomite inclusions (lower right hand corner of Figure 11D), and thence by K-feldspar with 

irregular embayed boundaries. K-feldspar contains numerous 10μm scale inclusions of chlorite, 

quartz and apatite. In the left hand side of Figure 10D manganese-rich calcite nucleates on 

dolomite grains and exhibits space filling textures growing radially toward the centre of 

irregular shaped sub-millimetre cavities. Manganese-rich calcite is subsequently overgrown by 

manganese-poor calcite and then by TiS2 which fills the centre of the cavity. The TiS2 contains 

numerous inclusions of K-feldspar, dolomite and calcite with highly irregular grain boundaries 

(Figure 11D).  
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Figure 11 (page 40). Petrographic images from the calc-silicate metasedimentary samples 2066166 and 2066199. 

A. Photograph of the entire thin section of sample 2066166. Label b shows the location of figure 11B. Patchy, 

diffuse mineralogical zones are chlorite rich (olive green), carbonate-rich (pale) and magnetite-hematite rich (dark 

grey). B. Backscatter SEM image from location b in 2066166, see text for description. C. Photograph of the entire 

thin section of sample 2066199. Label d shows the location of Figure 11D. The thin section has two zones; K-

feldspar and hematite-rich on the left hand side and carbonate-rich on the right hand side, with an ~500 µm 

hematite-rich area at the transition. D. Backscatter SEM image from location d in 2066199, see text for description. 

Mineral abbreviations: Ap = apatite, Cal= calcite, Cal(Mn) = manganese-rich calcite, Dol = dolomite, Grt = garnet, 

Chl = chlorite, Hem = hematite, Mag = magnetite, Ccp = chalcopyrite, TiS2 = titanium disulfide. 

 

Figure 12 (Page 41). Petrographic images from the calc-silicate metasedimentary sample 2066635. A. Photograph 

of the entire thin section. Labels b, c and d show the location of Figures 12B, 12C and 12D respectively. The 

sample has three zones: hematite-rich on the left hand side, K-feldspar and chlorite-rich breccia zone in the centre 

and a carbonate-rich zone on the right hand side. B. Backscatter SEM image from location (b) in Figure 12A. Lower 

half of the image is representative of textures from the central mineralogical zone and the upper half of the image 

is representative of the carbonate-rich zone. C. Backscatter SEM image from location (c) in Figure 12A showing 

detail of a quartz, gypsum and chalcopyrite ‘patch’. D. Transmitted light photomicrograph from location (d) in Figure 

12A centred on a pyroxene, gypsum, quartz and chalcopyrite vein with chlorite alteration selvage within the 

carbonate-rich zone. Mineral abbreviations as for Figure 11 with the addition of Gp = gypsum, Px = pyroxene, Sp 

= sphalerite. 

 

Sample 2066635 is a hematite-altered calc-silicate which was taken from drill core IHAD6, 

located ~2 km north of Emmie Bluff prospect (Figure 6) at a depth of 855.8 m. The sample was 

taken from within a 38m wide intersection of carbonate-bearing metasedimentary rock 

assigned to the Wallaroo Group in the SARIG database. The entire Wallaroo Group interval in 

IHAD6 has a distinctive brown colour with variable abundance of chlorite, carbonate, mica 

and hematite. The sample contains ~25% quartz, 20% hematite, 20% dolomite, 10% K-feldspar, 

15% chlorite and 10% accessory minerals including apatite, bornite and gypsum. The sample 

has three mineralogical zones (Figure 12A): a grey hematite-rich zone (left hand side of Figure 

12A), a central zone exhibiting breccia textures and containing a mixture of K-feldspar, chlorite, 

hematite and carbonate and a pale carbonate-rich zone with minor chlorite and apatite (right 

hand side of Figure 12A). Narrow veins and irregular millimeter-scale ‘patches’ within the 

carbonate-rich zone contain pyroxene, gypsum, quartz and chalcopyrite and are surrounded by 

a selvage of chlorite which overprints interlocking dolomite grains in the carbonate matrix 

(Figure 12D). Well-formed euhedral quartz crystals occur in the centre of some of these patches 

and are surrounded by inclusion-rich chalcopyrite (Figures 12B and 12C). Sphalerite with 

space filling texture also occurs in ~100 µm scale patches. In the central zone fine-grained K-

feldspar and chlorite, along with apatite, pyroxene and sulphide minerals (lower half of figure 

12B) are texturally distinct from more coarse-grained dolomite bearing assemblages of the 

carbonate zone (upper half of Figure 12B). The hematite zone is near monomineralic with fine-

grained interlocking hematite and no sulphide minerals.  

 



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Petrographic images from the calc-silicate metasedimentary sample 2066203. A. Photograph of the 

entire thin section. Labels b, c show the location of Figures 13B and 13C respectively. Folded and faulted banding 

is defined by variable proportions of K-feldspar+hematite (pale brown), actinolite (dark green), chlorite (mid-green) 

and pyroxene (pale green). B. Backscatter SEM image from location (b) in Figure 13A. Randomly oriented actinolite 

blades are overprinted by K-feldspar, quartz and chalcopyrite, with mutual inclusions. C. Backscatter SEM image 

from location (c) in Figure 13A. Apatite, chalcopyrite and inclusion-rich K-feldspar overprint actinolite. Euhedral 

quartz grains exhibit space filling textures and are surrounded by coarse-grained chalcopyrite. Mineral 

abbreviations as for Figures 11 and 12 with the addition of Act = actinolite.    

 

Sample 2066203 is a chlorite-altered calc-silicate sample which was taken from drill core 

GHDD4, located ~2 km SW of the Punt Hill prospect (Figure 6), at a depth of 854 m. The 

sample was taken from within a 155 m intersection of carbonate bearing metasedimentary rocks 

logged as “skarn” and assigned to the Wallaroo Group in the SARIG database. The drill core 

has a distinctive light grey and green colour due to an abundance of chlorite and carbonate. The 
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sample is composed of ~25% quartz, 20% chlorite, 15% K-feldspar, 15% actinolite, 8% calcite, 

8% hematite, 3% pyroxene and 5% accessory minerals including apatite, pyrite, chalcopyrite 

and sphalerite. Discontinuous mineralogical banding at 3-5mm scale is defined by variable 

proportions of carbonate, calc-silicate minerals and hematite and is tightly folded and offset by 

microfractures (Figure 13A). Randomly oriented ~100 µm scale blades of actinolite are 

texturally overprinted by K-feldspar, quartz and sulphide minerals, including chalcopyrite 

(Figure 13B). K-feldspar, quartz and chalcopyrite all contain ~10 µm scale of inclusions of 

actinolite and have mutual overprinting relationships, each containing inclusions of the other 

two minerals (Figure 3B). In other parts of the sample (Figure 13C) K-feldspar and apatite 

overprint actinolite, with later euhedral quartz grains exhibiting space-filling textures and 

subsequently surrounded by coarse-grained inclusion poor chalcopyrite.   

 

Granitic protoliths  

Rocks identified as ‘granite’ within the SARIG database (see chapter 2.5.1) include a range of 

protoliths with varying mixtures of quartz and feldspar (granite to granodiorite) and varying 

degrees of alteration. Many of the identified granite protoliths contain significant proportions 

of carbonate minerals and iron-oxides, which are likely products of IOCG alteration. This 

variable mineralogy can create difficulty in distinguishing granite and calc-silicate protoliths. 

Thus, for the purposes of this study I deferred to the SARIG classification regardless of the 

intensity of alteration and sought to confirm that classification based on visual recognition of 

igneous textures (in some cases pseudomorphed by other minerals) and observed or inferred 

quartz, feldspar and biotite protolith mineralogy. 

Sample 2066178 was taken from drill core HL002, located ~25 km SSW of Carrapateena 

deposit (Figure 6), at a depth of 529.2 m and within a 70 m intersection of granite assigned to 

the Donington Suite. Sample 2066178 is composed of ~35% quartz, 30% K-feldspar, 25% 

biotite, 5% plagioclase and 5% accessory minerals including chlorite, magnetite and pyrite 

(Figure 14A). At hand specimen scale the sample appears to be little effected by alteration.  

However, in thin section K-feldspar aggressively replaces biotite and relict plagioclase grains 

with complex, embayed grain boundaries. Minor magnetite occurs as ~50μm grains included 

within K-feldspar. K-feldspar (along with biotite and plagioclase) is overprinted by fine-

grained intergrown chlorite and hematite, with 50-100μm size euhedral apatite occurring within 

the chlorite-hematite zones and at the grain boundaries of biotite (Figure 14B).  

Sample 2066656 was taken from drillhole IHAD2, located ~ 1 km north of Emmie Bluff 

prospect (Figure 6), at a depth of 819.6 m, within a 134 m intersection of granite assigned to 

the Donington Suite in the SARIG database. The Donington Suite interval within IHAD2 

contains abundant submillimetre-scale white mica, K-feldspar and hematite, cross cut by 1 mm 

carbonate veinlets, giving the rock a distinctive mottled white and brown appearance. The 

sample contains ~20% quartz, 20% muscovite, 20% K-feldspar, 15% hematite, 10% chlorite, 

and 5% ilmenite (Figure 14C). Fine-grained (<10μm) intergrown randomly oriented muscovite 

and hematite combine to produce pale brown/orange patches in the thin section. Within zones 

of muscovite, hematite alteration ilmenite grains of ~200μm size (potentially a magmatic 



45 
 

mineral in Donnington Suite granites) are aggressively replaced by hematite, with ragged grain 

boundaries (Figure 14D). 
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Figure 14 (previous page). Petrographic images b shows the location of Figures 14B. The coarse-grained green 

mineral is biotite, pale zones contain quartz, K-feldspar and lesser plagioclase. B. Backscatter SEM image from 

point b in sample 2066178. C. Ca element map showing the same field of view of Figure 14B. D. P element map 

showing the same field of view of Figure 14B. E. Photograph of the entire thin section of sample 2066656. Label f 

shows the location of Figures 14F. Areas of intense muscovite-hematite alteration are coloured brown to orange. 

F. Backscatter SEM image from location f in Figure 14E. Hematite aggressively replaces ilmenite. Mineral 

abbreviations as for Figures 11, 12 and 13 with the addition of Bt = biotite, Fsp = Feldspar, Ilm = ilmenite, Ms = 

Muscovite. 

 

Sample 2066174 was taken from drill core PSC4_SASC2, located ~10 km NWW of 

Carrapateena deposit (Figure 6), at a depth of 539.5 m. The sample was taken from within a 

29.5 m intersection of granodiorite assigned to the Donington Suite in the SARIG database. 

The Donington Suite interval within PSC4_SASC2 is composed dominantly of quartz, white 

mica, chlorite and hematite, cross cut by K-feldspar veinlets and dolomite veins, giving the 

rock a distinctive mottled pink and green-grey appearance. Sample 2066174 is compromised 

of ~30% quartz, 15% K-feldspar, 10% biotite, 20% chlorite, 15% dolomite, 5% hematite and 

5% apatite.  The sample is centred on a 2mm wide hematite-rich alteration zone, this zone 

occurs within a 2.5cm wide zone where fine-grained chlorite and hematite incompletely replace 

K-feldspar (Figure 15). This zone gives way to a zone of less intense chlorite alteration at the 

margins of the sample.  These alteration zones are cross cut by a ~1mm wide dolomite vein 

with a selvage of elongate apatite crystals exhibiting space filling textures on the vein wall.   

Sample 2066169 was taken from drill core DRD1, located ~40 km north of Emmie Bluff 

prospect (Figure 6), at a depth of 1139.4 m and within a 121 m wide intersection of granite 

assigned to the Donington Suite in the SARIG database. The entire interval of granite in DRD1 

contains abundant submillimetre-scale chlorite and white mica in roughly equal proportions, 

cross cut by numerous hematite-rich veinlets and alteration zones, giving the rock a distinctive 

mottled green and orange appearance. Sample 2066169 is composed of ~20% quartz, 5% 

feldspar, 5% muscovite, 35% chlorite, 30% hematite and 5% pyrite. The sample is centred on 

an irregular centimeter-scale mass of mixed pyrite and hematite (Figure 16A). Millimetre-scale 

pyrite grains in this mass are completely mantled by inclusion-rich hematite and contain 10-50 

µm sized chalcopyrite grains along internal fractures. Quartz grains at the margins of the 

sulphide-hematite masses have euhedral form, with well-faceted projections facing radially 

inward toward the mass. These textures imply a close genetic relationship between hematite 

and pyrite and are reminiscent of reaction rims between porphyroblasts and wall rocks in 

metamorphic settings.  
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Figure 15. Petrographic images from the granite protolith sample 2066174. Points of a, b are dolomite vein fault 

K-feldspar, K-feldspar fault hematite respectively, c and d are chlorite and mica alteration respectively. A. 

Photograph of the entire thin section. Label b shows the location of Figure 15B. Narrow hematite-rich zone is 

surrounded by hematite-chlorite and weak chlorite alteration zones. B. Backscatter SEM image located at b in 

Figure 15A. Fine-grained hematite and chlorite overprint K-feldspar and are cross cut by a ~1mm wide dolomite 

vein with apatite selvage. C. K element map showing the same field of view as Figure 15B and highlighting the 

distribution of K-feldspar (overprinted by fine-grained chlorite and hematite) in the wall rock of the dolomite vein.  

D. Ca element map showing the same field of view as Figure 15B and highlighting the late dolomite vein with 

apatite selvage. 
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Figure 16 (previous page). Petrographic images from the granite protolith sample 2066169. A. Hand specimen 

of quarter drill core from which the thin section was made. B. Photograph of the entire thin section. Labels c and d 

show the location of Figures 16C and 16D respectively. The central part of the thin section features an irregular 

centimeter-scale zone of millimeter sized sulphide minerals completely enclosed by hematite. C. Backscatter SEM 

image located at c in Figure 16B. Well-faceted quartz grains at the margins of the sulphide-hematite mass project 

inward. Hematite contains numerous quartz inclusions arranged in concentric rings. Pyrite-hematite grain 

boundaries are irregular and embayed consistent with disequilibrium between these phases. D. Backscatter SEM 

image located at d in Figure 16B. Textures are comparable to Figure 16C with the additional observation of hematite 

needles within the wall rock and location of fine grained chalcopyrite associated with the hematite ‘mantle’ of the 

sulphide-hematite mass and within microcracks within pyrite. 

 

Mafic protoliths  

The ‘mafic’ protolith grouping in SARIG includes varying mixtures of amphibolite at varying 

metasomatic grade. Many mafic protolith samples contain significant proportions of carbonate 

minerals and iron-oxides, which may represent combinations of primary amphibolite 

mineralogy and alteration. Variable proportions of carbonate, reaching abundance comparable 

to samples recognised as calc-silicate rocks, demonstrates a continuum between mafic and calc-

silicate protolith end-members. For the purposes of this study samples included in the mafic 

grouping were consistent with original visual logging recorded in SARIG, with additional 

confirmation attained by visual recognition of igneous textures and mafic mineralogy by the 

author. 

Sample 2066177 was taken from drill core HL002 (the same drillhole as sample 2066178), 

located ~25 km SSW of Carrapateena deposit (Figure 6), at a depth of 471.2 m. The sample 

was taken from within a 0.45m intersection of mafic intrusive rock, logged as amphibolite and 

assigned to the Donington Suite. The interval contains abundant chlorite and amphibole, cross 

cut by complex carbonate and hematite veins. The sample is composed of ~30% chlorite, 20% 

calcite and 50% of fine-grained intergrown amphibole, hematite, quartz, and K-feldspar 

(Figure 17). The bulk of the sample is dominated by fine-grained chlorite which overprints and 

replaces minor relict quartz, pyroxene and garnet. The complex veins contain calcite, dolomite, 

hematite, pyroxene, K-feldspar, biotite and traces of rutile, gypsum and apatite. (Figure 17). 
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Figure 17. Petrographic images from the mafic protolith sample 2066177. A. Photograph of the entire thin section. 

Labels b and c show the location of Figures 17B and 17C respectively. Labels a, b and c are carbonate vein, 

hematite vein and boundary between calcite and amphibole respectively. B. Transmitted light photomicrograph 

from the margin of a carbonate-hematite vein at location b in Figure 17A. C. Backscatter SEM image from location 

b. D. Fe element map of the same location. Note that Figure 17C and 17Fe are rotated 90o counter-clockwise in 

comparison to Figure 17B. 
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2.6 DISCUSSION  

2.6.1 Interpreted petrogenesis  

Siliciclastic metasedimentary protoliths  

Interpreted paragenesis for the two metasedimentary protolith samples 2066641 and 2066655 

is summarised in Figure 18. There is little evidence of primary minerals or mineral textures in 

either of these highly altered rocks. Quartz grains are the most likely relicts of the sedimentary 

mineralogy and the smaller grain size of quartz in 2066641 compared to 2066655 might reflect 

grain sizes in the protolith rock - 2066641 coming from a Wallaroo Group sequence logged as 

metasediments and 2066655 from metasandstone.   

Textural evidence in 2066641 (Figure 9) is consistent with intense Fe-K-metasomatism 

involving mobilization of silica. The fine-grained hematite+K-feldspar+chlorite-rich domain 

is cross cut by numerous hematite veins varying in width from 200 µm to <10 µm. Larger veins 

bifurcate into smaller veins. Although having a preferred orientation (top left to bottom right 

in Figure 9B) the smaller veins have contorted geometry, wrapping around boundaries of 10s 

of micron scale quartz grains. This implies a transition from high fluid/rock ratio fracture 

controlled (larger hematite veins) to pervasive grain-scale fluid flow (resulting in pervasive 

hematite, K-feldspar and chlorite alteration in the matrix) during the same alteration event. In 

this context, the hematite-rich domain in this sample does not necessarily represent a second, 

overprinting alteration event but rather a zone of higher fluid/rock ratio within the same 

alteration event. The irregular, elongate quartz blebs within the hematite+K-feldspar+chlorite-

rich domain illustrate that silica was a mobile phase during this period of alteration. The form 

of the quartz ‘blebs’ quartz is not consistent with deposition in crack-seal veins but rather 

deposition within cavities created by dissolution of pre-existing minerals. Manganite and 

quartz veins cross cut hematite veins at a high angle and represent the final paragenetic stage 

in this sample. 

Sample 2066655 exhibits intense chlorite alteration and brecciation with quartz filling 

cavities between angular breccia clasts (Figure 10A). Approximately 1mm sized, euhedral 

grains with 90o crystal faces occur within a 1cm sized breccia clast and have been 

pseudomorphed by K-feldspar and hematite (lower left of Figure 10B) and fine-grained 

mixtures of hematite and chlorite (Figure 10B). I interpret that selective hematite alteration 

within these grains indicates a Fe-rich precursor mineral, likely to be pyroxene. The spaces 

between these grains comprise a mixture of quartz, K-feldspar, pyrite and magnetite which are 

overgrown and replaced at grain boundaries by fine-grained chlorite (and lesser hematite).  

Texturally equivalent fine-grained chlorite also mantles the hematite and chlorite 

pseudomorphs. Chalcopyrite occurs within masses of fine-grained chlorite and at pyrite-grain 

boundaries. Distinctive ring textures in the chlorite-rich matrix of the breccia (Figure 10C) are 

reminiscent of reaction rims formed around porphyroblasts in metamorphic rocks and are 

interpreted to be evidence of disequilibrium between the core phase (chalcopyrite) and fluids 

within the matrix of the rock. Chalcopyrite within the core contains numerous inclusions of 

quartz and chlorite with comparable grain size to material in the surrounding matrix. In contrast 

the complex, embayed outer margin of the chalcopyrite demonstrates that the sulphide mineral 
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was destabilized during a later phase of chlorite alteration. The outer rim of hematite exhibits 

space filling textures consistent with nucleation on the matrix wall and growth toward the 

center of the ring. These textures indicate a paragenesis in which chalcopyrite post-dated a 

significant phase of chlorite alteration and in turn was post-dated and remobilized by a phase 

of chlorite+hematite alteration. Similar textures have recently been reported from the Emmie 

Bluff prospect by Uvarova et al. (2018) and interpreted to be the result of reaction with a late, 

oxidized and Cl-rich fluid which dissolved chalcopyrite and resulted in local deposition of the 

Cu-chloride mineral atacamite. 

In combination the observations from 2066641 and 2066655 are consistent with three main 

stages of alteration (Figure 18). The first stage (quartz, K-feldspar, magnetite, pyrite stable) is 

only evident in 2066655. The second stage is dominant in both samples and includes abundant 

chlorite and hematite. Chalcopyrite is associated with this stage and appears relatively late in 

the paragenesis (contains chlorite inclusions). I have grouped chlorite and hematite, which 

post-dates chalcopyrite in 2066655, and late-paragenetic manganite and quartz in 2066641 into 

Stage 3 (effectively “post-mineralisation”). However there are no specific timing constraints 

minerals occurring in the different samples.     

 

Minerals Protolith* Stage1 Stage2 Stage 3 

Quartz     

K-feldspar     

Magnetite     

Pyrite     

Chlorite     

Hematite     

Apatite     

Chalcopyrite     

Manganite     

Figure 18. Composite paragenetic summary for metasedimentary samples 2066641 (blue) and 2066655 (red). 

 

Calc-silicate protoliths 

The interpreted paragenesis of the four calc-silicate protolith samples is summarised in Figure 

19. A consistent theme of the paragenesis is that dolomite, anhydrous calc-silicate minerals 

(including garnet, pyroxene and actinolite) and anhydrite occur early in the paragenesis (High 

T Skarn stage) and are overprinted; firstly by a combination of quartz, calcite, K-feldspar, 

chlorite, apatite, magnetite and various sulphide minerals (Stage 1) and secondly by a 

combination of chlorite and hematite (Stage 2). Textures in all samples are consistent with 

aggressive, although incomplete, replacement of pre-existing minerals along grain boundaries 

and internal fractures, dissolution of pre-existing phases with later phases exhibiting space-

filling textures and focused fluid flow in veins. 
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Minerals Protolith* High T skarn Stage1 Stage 2 

Dolomite     

Quartz     

Garnet     

Pyroxene     

Actinolite     

Calcite (Mn) 

Calcite 

    

K-feldspar     

Apatite     

Magnetite     

TiS2     

Chalcopyrite     

Sphalerite     

Gypsum 

 

 

    

Hematite     

Chlorite     

Figure 19. Composite paragenetic summary for calc-silicate metasedimentary samples 2066166 (blue), 2066199 

(red), 2066635 (green) and 2066203 (orange). 

 

I interpret the zoning in sample 2066635 (Figure 12) to be an alteration front recording the 

interaction of a Fe-K-rich fluid with a dolomite dominated metasedimentary rock. The 

carbonate zone in this sample is dominated by 50 - 100 µm interlocking grains of dolomite, 

with small patches and veinlets of gypsum, pyroxene, quartz and sulphide minerals (including 

chalcopyrite and sphalerite) surrounded by millimeter-scale zones of chlorite alteration.  

Sulphide-rich ‘patches’ (Figures 12B and 12C) commonly contain well-faceted euhedral quartz 

crystals surrounded by a moat of sulphide. These textures are reminiscent of daughter crystals 

grown in fluid inclusions and are interpreted here to indicate that the quartz and sulphide were 

deposited in a cavity produced by dissolution of a pre-existing (carbonate) phase. The 

brecciated central zone of this sample is more intensely overprinted by fine-grained chlorite, 
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K-feldspar and hematite, with partial destruction of the pre-existing interlocking dolomite 

textures. Compositional banding in this zone (which is highlighted by variable proportions of 

alteration minerals) is interpreted to be sedimentary. The hematite zone is close to mono-

mineralic with complete destruction of pre-existing textures and compositional banding.   

Space-filling, dissolution – precipitation textures are also characteristic of the sulphides 

present in 2066199 (TiS2) and 2066203 (chalcopyrite). Such textures are common in skarn 

mineral systems, in which acidic hydrothermal fluids destabilize and locally dissolve pre-

existing carbonates, stabilize calc-silicate minerals and/or iron oxides and deposit sulphides 

(Uvarova et al., 2018). The characteristic of skarn deposits to display early high-temperature 

phases (± magnetite), overprinted by lower temperature, hydrous phases (± hematite) (Ismail 

et al., 2014) is also comparable to the paragenesis observed here. 

 

Granite protoliths 

The interpreted paragenesis of the four granite protolith samples is summarised in Figure 20.  

All of the granite samples display preservation of protolith textures with 200 to 500 µm 

interlocking quartz, biotite and feldspar grains – the latter variably altered by combinations of 

hematite, chlorite and muscovite. I also interpret relict ilmenite in sample 2066656 as a 

protolith phase. Ilmenite is a common accessory in granites of the Donnington Suite (Reid et 

al., 2011)).  

K-feldspar is both a magmatic protolith phase and an alteration phase in these samples.  

In 2066178 K-feldspar (plus minor magnetite) replaces biotite and plagioclase, with 

plagioclase persisting as relict cores and inclusions within second stage K-feldspar (Figure 

20B). Minor fine-grained intergrown chlorite and hematite, accompanied by apatite, overprints 

hydrothermal K-feldspar in 2066178. In sample 2066656 K-feldspar is the only remaining 

feldspar phase and locally is overprinted by fine-grained muscovite, hematite and chlorite.  

Ilmenite in these parts of the sample is aggressively replaced and pseudomorphed by hematite.    

The unusual pyrite+hematite masses in sample 2066169 have comparable textures to the 

above mentioned sulphide ring structures in sample 2066655. In the case of 2066169 irregular 

masses of millimeter-scale pyrite grains are completely mantled by fine-grained hematite with 

numerous inclusions of quartz and chlorite. In Figure 16C, quartz with inward-projecting 

space-filling textures occurs at the margin of the pyrite-hematite mass. Chalcopyrite occurs in 

within the hematite mantle, at the grain boundaries of pyrite and within internal fractures of the 

pyrite. These textures are consistent with pyrite being an early paragenetic phase with a reaction 

rim forming at the pyrite margins (pyrite being replaced by hematite with coincident 

chalcopyrite deposition). Chlorite and hematite alteration within the matrix of 2066169 are 

interpreted to be part of the same alteration event.   

In addition to Fe and K metasomatism in the form of K-feldspar, hematite and chlorite, 

sample 2066174 provides an example of carbonate alteration of a granite protolith. The latest 

paragenetic stage in this sample is a dolomite vein, with apatite selvages) which clearly cross 

cuts an earlier hematite alteration zone (Figure 15). The carbonate and phosphate components 

of this vein must have been sourced external to the granite. Nearby highly altered carbonate 
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rocks with ample evidence of dissolution provide a potential source for these components in 

the fluid. 

 

Minerals Protolith* Stage 1 Stage 2 Stage 3 

Quartz     

K-feldspar 

 

 

    

Plagioclase     

Biotite     

Ilmenite     

Magnetite     

Pyrite     

Chlorite     

Hematite     

Muscovite     

Apatite     

Chalcopyrite     

Dolomite     

Figure 20. Composite paragenetic summary for granite samples 2066178 (blue), 2066656 (red), 2066174 (green) 

and 2066169 (orange). 

 

From the combination of these observations I interpret the alteration petrogenesis in the 

granites to consist of four stages; magmatic, with variably preserved quartz, K-feldspar, 

plagioclase, biotite and ilmenite; Stage 1, dominated by K-feldspar but also including 

magnetite and possibly pyrite; Stage 2, characterized by widespread chlorite, hematite and 

muscovite alteration and including chalcopyrite and; Stage 3 late carbonate veining (Figure 20). 
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Mafic protolith 

In comparison to the other samples examined here, the paragenetic sequence in the mafic 

sample 2066177 is relatively simple. The standout feature of this sample is intense chlorite 

alteration. I interpret relict quartz and amphibole in the sample matrix to be earlier phases. 

These are potentially magmatic and/or metamorphic phases and I make no attempt to 

differentiate between those options. The complex, multi-mineralic veining in this sample is 

dominated by carbonate minerals (both dolomite and calcite) but also includes hematite, K-

feldspar, pyroxene, biotite and chlorite. Chlorite occurs along the vein margins, in with a 

transition to pervasive chlorite alteration in the matrix. This relationship suggests that carbonate 

veining was synchronous with chlorite alteration. Pyroxene and biotite are concentrated toward 

the vein margins and I interpret them to be the result of partial equilibration of the vein fluid 

with wall rocks. Thus the observations from 2066177 are consistent with one stage of veining 

and alteration. In Figure 21, I have labelled this “Stage 2” alteration because the intense chlorite 

alteration and presence of hematite cut through calcite to “Stage 3” alteration from the 

metasedimentary, calc-silicate and granite protoliths.  

 

Minerals Protolith* Stage1 Stage2 Stage 3 

Quartz     

Amphibole     

Calcite     

Dolomite     

Pyroxene     

Biotite     

Hematite     

Chlorite     

K-feldspar     

Figure 21. Paragenetic summary for the amphibolite sample 2066177. 

 

2.6.2 Summary and alteration stages  

 

Multiple, overprinting paragenetic relationships and unusual alteration textures in four 

contrasting protolith rocks from the central eastern Gawler Craton can be interpreted within the 

framework of five paragenetic stages, with characteristic mineral assemblages summarized as 

follows: 

Protolith assemblages 

Mineral assemblages identified as being inherited from the protolith rock were interpreted here 

on the basis of: 

1. They are the first group of minerals in the paragenetic sequence; 
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2. They have textures consistent with those expected in the inferred protolith rock, and; 

3. They are consistent with mineral assemblages expected from the inferred protolith rock. 

The minerals which fulfil these requirements were different for the four protolith rock types 

examined these were: 

Quartz and K-feldspar and siliciclastic metasedimentary rocks, quarts, K-feldspar, 

plagioclase, biotite and ilmenite in granites, dolomite in calc-silicate rocks and quartz and 

amphibole in mafic rocks.  

 

Skarn assemblages 

Skarns are rocks rich in calc-silicate minerals including garnets, pyroxenes, amphiboles and 

epidote. In this study skarn assemblages occur only in calc-silicate protoliths. Skarn minerals 

include quartz, garnet, pyroxene and actinolite. In 2066166 garnet intergrown with quartz are 

the earliest minerals in the paragenesis. In 2066203 pyroxene and quartz are the earliest 

minerals in the paragenesis but are overprinted by actinolite, demonstrating that ‘skarn’ 

alteration can involve multiple stages. In 2066635 pyroxene occurs as a vein mineral associated 

with chlorite alteration of a dolomite-rich protolith. In this case the skarn mineral occurs 

relatively late in the paragenesis. These observations suggest that there is no particular skarn 

stage of alteration but that skarn minerals form due to processes that could occur over a range 

of conditions at different stages of the paragenesis. 

Einaudi et al. (1981) discuss three processes for the formation of skarn mineral 

assemblages; metamorphism of impure carbonate rocks, diffusion metasomatism between 

rocks of contrasting mineralogy (typically silica-rich and carbonates) and reaction between 

silica-rich (and often iron-rich) hydrothermal fluids and carbonate rocks. Skarn mineral 

deposits are most often formed by the latter process. In these deposits skarn mineral 

assemblages are strongly influenced by rock and fluid chemistry (importantly the concentration 

of CO2) which can lead to the formation of anhydrous, calc-silicate minerals over a range of 

temperatures and pressures. Ismail et al. (2014) describe skarn assemblages similar to those 

observed here (garnet, pyroxene, actinolite with the addition of clinozoisite) at the Hillside 

IOCG prospect on the Yorke Peninsular in South Australia. Ismail et al. (2014) interpreted such 

assemblages to be part of a multistage fluid/rock system which evolved from temperatures of 

~660oC (garnet and pyroxene), through decreasing temperatures (actinolite and clinozoisite) to 

a post-skarn ore deposition phase estimated to occur at a temperature of ~100oC.  

Overprinting of dolomite-rich protolith rocks by iron bearing calc-silicates (garnet, 

pyroxene and actinolite) in this study is consistent with alteration by a silica and iron-rich 

hydrothermal fluid. 

 

Stage 1: K-feldspar+magnetite+chlorite assemblages  

This stage is characterized by K-feldspar and magnetite assemblages in all protolith types, with 

the addition of chlorite as a major alteration mineral in calc-silicate rocks. K-feldspar and 

magnetite alteration is evident in granite protoliths even when there is little visual evidence of 
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alteration at hand-specimen scale (e.g. sample 2066178). In calc-silicate rocks chlorite occurs 

in close association with K-feldspar (e.g. 2066199) and as an alteration product of pre-existing 

iron-bearing calc-silicate minerals (e.g. 2066166). Magnetite occurs in abundances of ~ 1 to 

20 %, which are relatively low compared to hematite associated with Stage 2 alteration (see 

below). Pyrite is the dominant sulphide phase but there is also minor chalcopyrite.   

K-feldspar, magnetite and chlorite bearing assemblages in this study correspond to the MB 

and CAM styles of alteration described by Skirrow et al. (2002). Skirrow et al. (2002) described 

that CAM (350-550℃) having calc-silicate-alkaline feldspar -magnetite and MB having 

magnetite-biotite ±Cu-Au minerals. MB and CAM were major mineralisation in some case 

(Porter, 2010; Barton et al., 2010) are consistent with Skirrow et al. 2002).  

Bastrakov et al. (2007) also identified these styles of alteration in the central eastern 

Gawler Craton and attributed a generation of high-salinity ‘Type C’ fluid inclusions to this 

phase of alteration. Type C fluid inclusions contained multiple daughter minerals (including, 

halite, iron-oxides and silicates), high concentrations of Fe, K and Cu (up to percent levels) 

and decomposition temperatures of ~450°C. 

These data are consistent with K-feldspar, magnetite and chlorite alteration occurring as 

the result of infiltration of a relatively high temperature (>400oC) and relatively reduced 

(magnetite and pyrite stable) fluid.  

 

Stage 2: Hematite+chlorite+muscovite assemblages 

Summary observations 

This stage is characterized by locally intense chlorite, hematite and muscovite alteration.  

Muscovite is abundant in the granite protoliths and rare in the other rock types, whereas chlorite 

and hematite are ubiquitous. Some altered rocks are dominated by hematite and it is a common 

vein mineral. Chalcopyrite mineralization is most commonly associated with Stage 2 and 

occurs in four paragenetic scenarios: 

1. Filling voids in carbonate rocks along with quartz, gypsum and pyroxene. (Sphalerite 

also occurs in this context) (e.g. 2066635). 

2. At grain boundaries and within internal fractures if pre-existing pyrite (e.g. 2066655, 

2066169). 

3. As sub-millimeter grains within intergrown hematite and chlorite alteration zones (e.g. 

2066635) 

4. At the center of complex ring structures, in which the chalcopyrite both overprints 

previously chlorite alteration and is in turn overprinted (and dissolved at its margins) 

by later chlorite and hematite (e.g. 2066655). 

Hematite, chlorite and muscovite bearing assemblages in this study correspond to the 

HSCC style of alteration described by Skirrow et al. (2002). Skirrow et al. (2002) described 

that HSCC contained hematite-sericite- chlorite-carbonate ± Cu- Au-U minerals at <300℃. 

These HSCC may overprinted the CAM (350-550℃) and MB. Skirrow et al. (2002) described 

that HSCC overprinted CAM and MB in Moonta-Wallaroo and Mt Woods Inlier; and HSCC 



59 
 

overprinted CAM (calc-silicate -K-feldspar-muscovite-apatite). 

Hematite-chalcopyrite-pyrite ± chlorite–carbonate assemblage observed in hematite 

alterations showed that chalcopyrite mineralisation (Bastrakov et al., 2007; Xavier et al., 2010). 

More oxidized (hematite vs magnetite) occurred at a lower temperature <300℃. 

My observations are consistent with those of Skirrow et al. (2002) (Gow et al., 1994 and 

1996; Bastrakov et al., 2007) and I interpret that stage 2 alteration involved the infiltration of 

a relatively oxidized (hematite vs magnetite stable), lower temperature fluid than stage 1 

alteration. Although hematite replacement of magnetite is commonly observed (e.g. 2066166), 

the occurrence of abundant magnetite in the protolith or in previous alteration assemblages is 

not a pre-requisite of hematite alteration. Sample 2066635 provides an example of intense 

hematite alteration of a carbonate protolith without pre-existing magnetite - or indeed any pre-

existing Fe-rich phase. These observations demonstrate that significant amounts of iron were 

introduced during Stage 2 alteration - the presence of hematite is a reflection of Fe-

metasomatism and the relative abundance of hematite is a measure of high fluid-rock ratios.   

Although sulphide minerals including chalcopyrite are commonly associated with Stage 2 

alteration, intense Stage 2 alteration can occur without sulphide minerals (e.g. 2066641, 

2066656). This is consistent with hydrothermal fluids that contain the elements necessary for 

sulphide mineralisation (Fe, Cu and S), for example the Type C fluids described by Bastrakov 

et al. (2007), but for which sulphide saturation only occurs in specific circumstances. The four 

paragenetic scenarios for chalcopyrite suggest that these specific circumstances include; 

solution-precipitation reactions between the hydrothermal fluid and carbonate protoliths; 

reactions between the hydrothermal fluid and pre-existing sulphur bearing phases (particularly 

pyrite); transient periods of sulphide stability within the fluid-rock evolution which correspond 

to the transition from magnetite to hematite stable redox conditions.     

 

Stage 3:   Final stage (post-mineralisation) assemblages 

These assemblages include hematite, chlorite, quartz, manganite, dolomite and apatite, 

commonly occuring as veins which overprint pre-existing mineral assemblages. In samples 

which contain sulphide minerals Stage 3 assemblages post-date the sulphides. In samples 

without sulphide minerals Stage 3 assemblages post-date hematite-chlorite alteration.  

An interesting aspect of the paragenesis presented here is that hematite and chlorite occur 

broadly synchronous with sulphides (in Stage 2 assemblages) and also post-date sulphide 

mineralization - sometimes in the same sample (Figure 10C, 2066655). Dissolution of 

chalcopyrite at grain boundaries and deposition of chlorite and hematite demonstrates that the 

late-stage hydrothermal fluid was capable of remobilizing copper. The presence of intense 

hematite alteration (without sulphide mineralization) adjacent to less intense hematite+chlorite 

alteration of carbonate (with sulphide mineralization) in sample 2066635, suggests that the 

same fluid could be responsible for both sulphide deposition and remobilization. Close to the 

boundary of intense Fe-metasomatism sulphides are deposited as a result of solution-

precipitation reactions, but with more intense alteration and oxidization the sulphide minerals 

are unstable. This suggests that post-mineralisation assemblages may not post-date 
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mineralization by a long period of time, but rather might represent the evolution of the 

hydrothermal fluid immediately subsequent to the mineralizing phase. 

This is similar to the late stage paragenesis described at Emmie Bluff by Uvarova et al. 

(2018). Uvarova et al. (2018) interpreted chalcopyrite dissolution, associated with late Mn-rich 

chlorite, and local precipitation of the Cu-chloride mineral atacamite to be the result of the 

infiltration of late-stage highly oxidized fluids. 

 

2.6.3 Nature of the hydrothermal fluids 

The paragenetic stages discussed above suggest a broad evolution from higher temperature, 

more reduced (magnetite stable) alteration to lower temperature, and more oxidized (hematite 

stable) alteration over time. This could be achieved in three ways: 1) Evolution of the same 

hydrothermal fluid, from hotter and reduced to cooler and oxidized, as it migrated through the 

crust. Cooling might simply have been a function of transport from deeper hotter rocks toward 

shallower, cooler rocks. Oxidisation might have occurred via interaction with oxidized rocks 

and/or fluids, however simple cooling could also be responsible for the fluid crossing the 

magnetite-hematite redox buffer. 2) Variable mixing of a hotter, reduced fluid with a cooler, 

oxidized fluid. 3) Separate hydrothermal fluids, not interacting, but overprinting the same 

volume of rock with the cooler, oxidized fluid consistently post-dating the hotter, reduced fluid. 

Bastrakov et al. (2007) identified three types of fluid inclusions in their study of alteration 

in the eastern Gawler Craton. Type A are vapour-rich high temperature fluid inclusions, Type 

B are medium to low temperature liquid vapour inclusions and Type C are high-temperature 

hypersaline, multiphase fluid inclusions. Type A and C inclusions were documented within 

magnetite-bearing assemblages at Titan (BD1), Torrens (TD2), and Emmie Bluff (SAE7). Type 

A and type C inclusions survive in quartz grains overprinted by hematitic assemblages (e.g. 

Torrens). Type B inclusions are ubiquitous in association with hematitic assemblages but also 

occur as trails of secondary inclusions in quartz of magnetite-bearing assemblages. Bastrakov 

et al. (2007) described that fluid inclusion temperature type B <300℃ and Type C in 

microthermometric studies, complete homogenization was not attained and decrepitated at 

temperatures ≥400°C. 

Even though the fluids associated with Stage 1 alteration had high copper - they didn’t 

result in abundant copper mineralization. I interpret that the physical conditions associated with 

Stage 1 alteration were such that copper was soluble and remained in the fluid phase. In contrast, 

fluids associated with extensive hematite alteration, and commonly containing copper bearing 

minerals, do not contain high concentrations of copper. I interpret that the physical conditions 

associated with hematite alteration resulted in low copper solubility and the precipitation of 

copper into solid phases.   

An alternative to the fluid mixing ore deposit model of Haynes (1995) and the upgrading 

model of Bastrakov et al. (2007) is that the various stages of alteration presented here were the 

result of the evolution of the same fluid. The fluid began as a high temperature (>450℃), 

hypersaline, reduced fluid with percent level concentrations of Fe, K and Cu. This fluid 
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produced widespread Fe-K-metasomatism manifest as K-feldspar and magnetite assemblages 

but only low grade Cu-mineralisation. As the fluid cooled, it crossed the magnetite-hematite 

buffer resulting in deposition of voluminous hematite, which has low solubility in hydrothermal 

fluids compared to magnetite. This redox reaction resulted in co-precipitation of sulphide 

minerals (Cleverley and Oliver, 2005) close to the magnetite-hematite buffer. The evolving 

fluid would have lower overall salinity and decreased concentrations of Cu, S, Fe and K and 

would resemble the Type B fluid inclusions of Bastrakov et al. (2007). In this context I raise 

the possibility that the Type B fluids that are ubiquitous in hematite alteration in the eastern 

Gawler Craton are effectively ‘spent’ fluids from the mineralizing phase - which would have 

had the potential to dissolve pre-existing mineralization. 

 

2.7 CONCLUSIONS   

Iron-oxide Cu-Au deposits form through successive periods of Fe-K-metasomatism, where 

alteration stages represent reactions that occur at progressively lower temperature and more 

oxidized conditions. While alteration intensity is controlled by the degree of fluid-rock 

interaction, alteration mineralogy is largely controlled by fluid composition rather than 

protolith. Although carbonate-rich protoliths lead to skarn assemblages, certain alteration 

minerals are common to all protoliths observed in this study, namely siliclastic metasediments, 

calc-silicate, granite and amphibolite. Three main alteration stages were recognized in this 

study and are consistent with observations of previous studies in the Olympic Cu-Au Province. 

Stage 1 involved K-feldspar, magnetite and chlorite alteration with minor Cu-sulfides, and 

occurred as a result of a relatively high-temperature (>400℃) and relatively reduced (magnetite 

and pyrite stable) fluid. Stage 2 involved locally intense chlorite, hematite and muscovite 

alteration in more oxidized and lower temperature (<300℃) conditions. Although hematite 

replacement of magnetite is common, abundant magnetite in the protolith or in previous 

alteration assemblages is not a pre-requisite of hematite alteration and demonstrate that 

significant amounts of iron were introduced during Stage 2 alteration. Although sulfide 

minerals including chalcopyrite are commonly associated with Stage 2 alteration, intense Stage 

2 alteration can occur without sulfide minerals indicating that sulfide saturation only occurs 

where hydrothermal fluids interacted with either carbonate protoliths, pre-existing sulfur 

bearing phases, or during transient periods of sulfide stability which correspond to the 

transition from magnetite to hematite stable redox conditions. In this context, cooled fluids in 

these systems are effectively ‘spent’ fluids from the mineralizing phase and have the potential 

to dissolve pre-existing mineralization. The final stage of alteration includes hematite, chlorite, 

quartz, manganite, dolomite and apatite, commonly occurring as veins which overprint pre-

existing mineral assemblages. This third alteration phase causes dissolution of sulfides and 

remobilization of copper.    
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3 Mineral chemistry mapping within an IOCG system, Olympic Cu-Au Province, 

South Australia 

ABSTRACT 

In this chapter I present the results of optical microscopy, Scanning Electron Microscopy 

(SEM), Electron Microprobe (EM) and Laser Ablation Inductively Coupled Plasma Mass 

Spectrometry (LA-ICPMS) analyses on selected samples from the eastern Gawler Craton iron-

oxide–copper–gold (IOCG) system in South Australia. I use these data to comment on the 

mineralogical deportment of trace pathfinder elements that hold potential to map 10s of 

kilometer-scale exploration vectors within the IOCG system. Early silicate mineral 

assemblages are either magmatic (granites), metamorphic (amphibolites and metamorphosed 

siliciclastic sedimentary rocks) or high-T metasomatic (skarn altered metasedimentary rocks). 

Hydrothermal mineral assemblages associated with the main sulphide stage of the petrogenesis 

are dependent in part on the protolith but typically include hematite, chlorite, and muscovite ± 

K-feldspar ± pyrite ± chalcopyrite. Minerals that pre-date the main sulphide phase typically 

have major and trace element concentrations within expected ranges for comparable rock types 

outside the eastern Gawler Craton mineral province. Abundant hydrothermal hematite, 

overprinting all previous mineral assemblages, is a characteristic feature of the sulphide stage 

of petrogenesis. Where hematite and magnetite occur in the same rock, hematite consistently 

overprints magnetite in the paragenesis and has higher average concentrations than magnetite 

(between 1 and 2 orders of magnitude higher) of Ba, Cu, Mo, Nb, Pb, Th, Ta, U and ∑REE 

(Rare Earth Elements). Hydrothermal hematite contains elevated concentrations of Cu, U, Sb 

and Bi compared to the average crustal abundance. Petrologic overprinting provides evidence 

for two stages of hydrothermal chlorite growth; prior to and subsequent to chalcopyrite 

deposition. Hydrothermal chlorite contains elevated concentrations of Cu, S and a range of 

chalcophile “pathfinder” elements including As, Bi, Mo and Sb. The first stage of chlorite has 

relatively lower concentrations of Cu (up to ~80 ppm) and S (~ 500 ppm) than the second stage 

of chlorite (up to ~7500 ppm Cu and ~1000 ppm S).Second stage chlorite contain Cu mineral 

inclusions.    

Where sulphide minerals are present most chalcophile pathfinder elements (e.g. Ag, As, 

Bi, Cu, and Se) are dominantly deported in the sulphides, even at low concentrations, far from 

mineralisation. Pyrite is the most common sulphide, with chalcopyrite increasing in abundance 

closer to mineralisation. The pyrites are p-type, with S/Featom ratios of > 2 and Co/Ni ratios 

ranging between 0.4 and 10, but mostly above 1. This is consistent with a moderate -

temperature hydrothermal origin for the pyrite. There is considerable chalcophile trace element 

enrichment within pyrite. Concentrations of Co, As, Bi, Se, Te and Au reach 2 to 3 orders of 

magnitude above crustal abundance. Cu, Bi, Te, Au, Ag and Pb display large variations in 

concentration (up to 4 orders of magnitude for Bi) and are most abundant in hydrothermally 

altered rocks of metasedimentary protoliths. The chalcopyrite grains show variable enrichment 

in pathfinder elements and are most enriched in Bi, Se, Te and Ag, with values ranging between 

1 and 4 orders of magnitude above crustal abundance. At elevated whole rock concentrations, 

within altered rocks, the REE are deported in hydrothermal apatite. This is consistent with the 

extreme capacity of the hydrothermal system to mobilise, and locally accumulate, even the 

most refractory elements. REE enrichment (up to 2604 ppm) is a good proximity indicator to 

ore, since it only occurs around the mineral system. Semi-quantitative mass balance 

calculations show that Cu, Ag, Au, As, Bi, Se and Te are dominantly contributed by sulphide 

minerals with pyrite particularly important for As and the Cu-sulphides important for Cu and 

Ag. Antimony preferentially occurs in iron-oxide phases, even if sulphides are present. If 

sulphides are not present the chalcophile elements are distributed in a range of oxide and 
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silicate alteration minerals at low concentrations.  

 

3.1 INTRODUCTION 

The iron-oxide–copper–gold (IOCG) mineral province of the eastern Gawler Craton plays host 

to economically important large to giant mineral deposits and has potential to host additional, 

as yet undiscovered resources. Exploration in the province is hampered by deep cover and has 

relied on sparse drilling into potential field geophysical anomalies, which are proxy measures 

for IOCG systems at best (measuring hematite and magnetite rather than copper and gold). The 

geographic extent of the Gawler Craton IOCG province (~600 km×200 km), the clustering of 

mineralisation ages at ~1590 Ma (e.g. Belperio et al., 2007; Skirrow et al., 2007; Porter, 2010) 

and the diversity of protoliths that host mineralisation (e.g. Gow et al., 1994; Fairclough, 2005; 

Hand et al., 2007) point to a hydrothermal mineralising system of significant scale and intensity. 

Such a system can be expected to result in fluid-rock interactions with a measurable 

mineralogical and chemical footprint much larger than the economic concentrations of 

commodity elements. In this study we ask what can we learn from the mineralogy and 

chemistry of the sparsely distributed drillholes within the eastern Gawler Craton that can 

inform us about the nature and size of the IOCG mineralising system, and how can we use that 

to improve our chances of exploration success?   

The study area covers a 100×120 km region and is located within the eastern Gawler Craton 

in South Australia (Figure 5). The northern boundary of the study area is ~40 km south of the 

supergiant Olympic Dam deposit. The area includes a number of known, as yet unexploited 

IOCG occurrences (Carrapateena, Emmie Bluff, Punt Hill and Oak Dam) located beneath Late 

Proterozoic to Quaternary cover sequences of between 250 m and 1070 m thickness. The South 

Australian Geological Survey open file data repository available via SARIG contains 

information from ~600 drillholes that intersect the prospective basement rocks within the study 

area for an average density of drilling of 1 hole per 20 km2. Many of the drillholes are tightly 

clustered around the known mineral occurrences, such that the drilling density for much of the 

area is considerably less than this.  

Previous research has focused on the characteristics of known prospects and regional whole 

rock analysis using available drillholes (e.g. Oreskes and Einaudi, 1992; Haynes et al., 1995; 

Williams and Skirrow, 2002; Skirrow et al., 2002. 2007 and 2010; Williams et al., 2010; Porter 

et al., 2002 and 2010). Fabris et al. (2012) has shown that these drillholes intersect rocks with 

concentrations of a number of commodity and potential pathfinder elements that are commonly 

well in excess of average crustal abundances. Further, there appears to be a broad spatial pattern 

within the element distribution, even within these sparsely distributed holes, that hints at their 

potential use as geochemical vectors within the IOCG system. However, it is not yet clear to 

what extent the geochemical signatures recognised by Fabris et al. (2012, 2013) are related to 

the IOCG mineralising system. It is therefore necessary to establish the mineralogical controls 

of the geochemical signatures and relate those to an alteration paragenesis that is recognisable 

and characteristic of IOCG systems. 

3.1.1 Mineral deportment of trace elements as exploration tools 

Trace element concentrations within alteration minerals have the potential to be used as 

measures of hydrothermal activity and as exploration tools (McIntire, 1963; Bajwah et al., 1987, 

McDonough and Sun, 1995; Clark et al., 2004; Carew et al., 2006; Cook et al., 2009; Yang, 

2009; Schmidt et al., 2010; Zhao et al., 2011; Tauson et al., 2013; Cook et al., 2013b; Ismail et 
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al., 2014). Much of this previous work has focused on trace element deportment in pyrite, 

which is the most abundant sulphide mineral commonly occurring peripheral to ore in many 

mineral systems (Abraitis et al., 2004; Clark et al., 2004; Carew et al., 2006; Benavides, 2007; 

Monteiro, 2008; Cook et al., 2009; Grove et al., 2010; Ye at el., 2011; Cook et al., 2013). Co/Ni 

ratios have been used to differentiate between an inferred sedimentary, magmatic or 

hydrothermal origin of pyrite (Abraitis et al., 2004; Clark et al., 2004). In hydrothermal systems 

n-type pyrite, with Fe/Satom > 0.5, forms at high temperatures (250-500⁰C) and p-type pyrite, 

Fe/Satom < 0.5, forms at lower temperatures (100-350⁰C) (Ares et al., 1998; Gomes et al., 2003; 

Abraitis et al., 2004). Elevated Te, Se and As (Abraitis et al., 2004; Zhao et al., 2011) 

incorporated within the lattice of pyrite are considered to be an indication of low temperature 

(190-250⁰C) hydrothermal processes (Ares et al., 1998; Gomes et al., 2003). High-As pyrite 

(and arsenopyrite) often have a spatial association with Au mineralisation (Abraitis et al., 2004; 

Zhao et al., 2011; Cook et al., 2013a). Large et al. ( 2014), Cook et al. (2103a) and Deditius et 

al. (2014) have shown that hydrothermal pyrite can incorporate a range of trace elements (e.g. 

As, Au, Bi, Cu, Hg, Pb, Sb, Tl, Ti and Zn) either within the crystal lattice or as micro-inclusions 

of other minerals. These pyrites commonly dominate the budget of chalcophile elements within 

the rock and may display internal zonation which can be used to infer the evolution of fluid-

rock relationships (Abraitis et al., 2004; Clark et al., 2004). 

Other minerals that have been assessed for trace element deportment in mineral systems 

include iron-oxides, apatite, chlorite, epidote and sulphide phases other than pyrite (McIntire, 

1963; Nakamura, 1974; Monteiro et al., 2008; Yang, 2009; Ye et al., 2011; Cook et al., 2013b). 

Cook et al. (2011) suggested that Cu-sulphide minerals with elevated concentrations of Ag, Bi, 

Te and Se but poor Co, Ni, Ga and Ge are characteristic of a broad suite of Cu-sulphide deposits 

(12 deposits of syn-metamorphic Cu–vein systems in Norway, and skarn, porphyry and 

epithermal systems in SE Europe). Trace element concentrations within chlorite have been 

applied as vector tools in exploration for Cu porphyry deposits by Cooke et al. (2014) and 

Wilkinson et al. (2015). Ti, V and Mg decrease exponentially in concentration with increasing 

distance and Mn and Zn display a maximum in chlorite at a distance of ~1.3 km from the 

mineral deposit. In the case of IOCG mineral systems, which are characterized by enrichment 

in a wide range of elements (Groves, 2010), the potential mineralogical hosts of the 

geochemical signature are diverse. Carew et al. (2006) identified trace element-rich magnetite 

(with detectable Sc, Co, Ni, Cu, Zn, Ga, Sn, Pb, Mn and Mo) at the Ernest Henry IOCG deposit 

in North Queensland, and suggested that elevated concentrations of Mo and Sc in particular 

have potential as proximity indicators to economic mineralisation. In addition, Zhang et al. 

(2009) suggested that the concentration of V and Ni in magnetite could be used as a vector 

toward mineralisation in the area around Ernest Henry. Andrea et al. (2010) suggested the high 

concentration of fluorine and other complexing agents in this phase allowed trace elements to 

be transported in solution. Ismail et al. (2014) found that REE patterns of apatite have the 

potential to be used as vectors toward mineralisation in the LREE enriched IOCG system of 

the southern Gawler Craton.  

In this study I assess the deportment of a range of trace elements in silicate, oxide and 

sulphide phases from a lithologically and spatially diverse sample set collected in the vicinity 

of known IOCG deposits and prospects in the eastern Gawler Craton. I seek to characterise the 

deportment of trace elements, particularly potential pathfinder elements, and determine to what 

extent they may be a measure of hydrothermal processes related to the IOCG mineral system.  

3.1.2 Geological background  

Eastern Gawler Craton 
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Basement rocks of the eastern Gawler Craton are Archaean to Early Mesoproterozoic age 

(Hand, 2008; Reid, 2008; Reid and Hand, 2012) (Figure 5) and are extensively overlain by 

Neoproterozoic, Cambrian, and younger sedimentary rocks of variable thickness 

(commonly >500m) (see Chapter 1.3 and Chapter 2.3). The distribution of basement rock has 

been interpreted from potential field data and relatively sparse drilling (e.g. Direen and Lyons, 

2007). 

The oldest rocks in the eastern Gawler Craton belong to the Archaean aged Christies 

Gneiss, which is a diverse suite of metamorphic rocks including quartzite, schist, dolomite, 

iron formations, calc-silicate metasediments, marble and amphibolite. These are overlain by 

the Hutchison Group metasedimentary package, which contains psammite and pelite with 

minor carbonate and iron formation, deposited between 1885 and 1995 Ma (Daly et al., 1998). 

This was intruded by granitoids of the Donington Suite (c.1850 Ma) (Reid and Hand, 2008) 

including quartz-gabbronorite, hypersthene gneissic granite, syenogranite, monzogranite, 

granodiorite, tonalite and megacrystic granitoid gneiss (Reid et al., 2008). These were overlain 

by metasedimentary and metavolcanic rocks of the Wallaroo Group deposited between c. 1760 

and 1730 Ma (Cowley et al. 2003). The Wallaroo Group contains schist, argillite, and carbonate 

bearing sedimentary rocks, siltstone, sandstone, felsic volcanics, amphibolite, dolerite and 

basalt. The Gawler Range Volcanics have widespread distribution in the study area, and were 

extruded between 1593-1592 Ma (e.g. Fanning et al., 1988; Jagodzinski, 2014). The Gawler 

Range Volcanics are volumetrically dominated by dacite and rhyolite with lesser andesite and 

basalt (e.g. Blissett et al., 1993; Daly et al., 1998). Intrusion of the Hiltaba Suite granites 

occurred at c. 1595-1575 Ma (e.g. Fanning et al., 1988; Johnson and Cross, 2005; Fanning et 

al., 2007). The granites are K-feldspar rich and include quartz syenite to quartz poor phases as 

well as hornblene bearing monzodiorite and quartz monzonite in the Olympic Dam area 

(Creaser, 1989; Reeve et al., 1990). Hiltaba Suite granites are typically described as A-type 

granites (Drexel et al. 1993) and show evidence of deformation (e.g. Stewart and Foden, 2003). 

Dating of alteration and ore phases associated with IOCG mineralization at numerous locations 

within the eastern Gawler Craton indicates that primary mineralization formed at 

approximately 1590 Ma (e.g. Johnson and Cross, 2005; Skirrow et al., 2007; Reid et al., 2011) 

broadly synchronous with the Hiltaba Suite Granites and Gawler Range Volcanics and 

metamorphism.  

The IOCG Mineral System 

IOCG deposits are globally distributed with ages ranging from Archean to Cainozoic, but with 

most occurrences of Precambrian age (Williams et al. 2005; Groves et al., 2010; Porter, 2010). 

IOCG deposits are characterized by (e.g. Williams et al. 2005; Groves et al., 2010; Porter, 

2010):  

1. Abundant iron-oxide (hematite or magnetite) mineralogy; 

2. Cu-Au as the main commodity elements but also potentially including U and REE;  

3. Widespread hydrothermal alteration which is characterised by hematite-sericite-

chlorite-carbonate (HSCC), calc-silicate-alkaline feldspar-magnetite (CAM) and 

magnetite-biotite (MB) mineral assemblages; 

4. Emplacement depths of between the surface and 15 km; 
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5. Links to the mantle as a source of heat, magma and potentially fluids; 

6. Conjectural fluid and metal sources, with the possibility of multiple fluids of varying 

salinity, temperature, redox and composition (Haynes et al. 1995; Bastrakov et al. 2007; 

Groves et al. 2010). However there is increasing evidence that metal-rich fluids were 

hypersaline and relatively high-temperature, see chapter 2.6.3 (Williams et al., 2005; 
Bastrakov et al., 2007). 

The eastern Gawler Craton is a globally important IOCG province which contains the 

supergiant Olympic Dam deposit and the giant Prominent Hill deposit as well as numerous as 

yet unexploited prospects including Carrapateena, Punt Hill, Oak Dam and Emmie Bluff 

(Figure 5 and 6). Studies of hydrothermal alteration associated with the eastern Gawler Craton 

IOCG deposits have identified a spectrum of mineral assemblages related to fluid-rock 

interactions (Haynes et al., 1995; Johnson et al., 1995; Bastrakov et al., 2007), with three 

broadly defined end-members (Skirrow et al., 2002). 

Calc-silicate, alkali feldspar and magnetite assemblages (CAM): Typical minerals within the 

CAM alteration type include magnetite, actinolite, K-feldspar, dolomite, apatite and pyrite. 

These assemblages are inferred to have been formed from carbonate-rich sedimentary 

protoliths (Ismail et al., 2014) and contain hypersaline (> 30% NaCl equivalent), Cu-rich fluid 

inclusions with homogenization temperatures of 350⁰-500⁰C (Bastrakov et al., 2007). 

Magnetite-biotite assemblages (MB): These assemblages also often include pyrite and 

chalcopyrite. Biotite in these assemblages is iron-rich (tending toward end-member annite) 

compared to biotite from unaltered granites in the eastern Gawler Craton which is phlogopitic 

(Skirrow et al., 2002). The magnetite-biotite is inferred to form at tempreatures of 460⁰-500⁰C 

due to the constraints of magnetite - actinolite -biotite formation at ~500⁰C and biotite-K-

feldspar formation at 460⁰C (Porter, 2010). 

Hematite-sericite-chlorite-carbonate assemblages (HSCC): The HSCC style of alteration is 

commonly associated with the main phase of Cu-sulphide mineralization (pyrite, chalcopyrite, 

chalcocite, and bornite) and consistently overprints MB and CAM assemblages. HSCC 

alteration ranges from incipient (hematite dusting of feldspars) to intense (near complete 

replacement of previous mineralogy and textures, brecciation). Incipient hematite alteration is 

a widespread phenomenon on the eastern Gawler Craton, whereas greater intensity HSCC tends 

to occur in the core zones of economic deposits (e.g. Olympic Dam, Prominent Hill). This style 

of alteration is associated with relatively low salinity (1-7 wt % NaCl equivalent) fluid 

inclusions with homogenization temperatures of <300⁰C. 

IOCG deposits of the eastern Gawler Craton display variable components of these end 

member alteration assemblages. Mineralisation at the Carrapateena deposit (Figure 5) is hosted 

by Donington Suite granite that is strongly overprinted by HSCC alteration (Skirrow 2002). 

Alteration minerals include secondary barite, monazite, anatase, magnetite, apatite, fluorite and 

zircon (Cleverley et al., 2005). Punt Hill mineralisation occurs in brecciated Gawler Range 

Volcanics and Wallaroo Group metasedimentary rocks (Daly and Rowett, 2007; Reid et al., 

2008) which are overprinted by CAM and HSCC alteration (Skirrow et al. 2007). Emmie Bluff 

mineralisation occurs in stratabound magnetite-skarn of the Wallaroo Group and includes 

examples of both CAM and HSCC alteration, typically with hematite alteration occurring 

vertically above magnetite alteration (Gow et al., 1994; Huntington et al., 2006). 

3.2 METHODS 

Our approach is to take a spatially diverse suite of samples representing a range of protoliths, 
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alteration types and alteration intensity from within the eastern Gawler Craton mineral system.  

By determining the mineral deportment of pathfinder trace elements in these samples I aim to 

link whole rock geochemistry to particular alteration assemblages. By mapping trends in the 

alteration paragenesis throughout the system I may then be in a position to utilise whole rock 

geochemistry as a proxy for alteration intensity at the key mineralising stage of the system (and 

thus evaluate using whole rock geochemistry in assessing proximity to mineralisation). 

Contributions to elemental whole rock chemistry depend on concentrations of the 

elements in the individual minerals and the modal abundance of the mineral in the rock (Table 

3). From our larger set of forty-four samples (see chapter 2.4.1) I chose eleven samples for 

detailed mineralogy and mineral chemistry based on the following criteria:  

 Broad spatial distribution (Figure 6) including a 2.5 km geological cross section 

through the Emmie Bluff deposit (four samples)； 

 Four protolith rocks, including granite, carbonate bearing metasediment-calc-silicate 

rocks, siliciclastic metasediment and amphibolite; 

 Variable alteration intensity as identified by petrologic examination and HyLogger 

observation (see chapter 2);  

 Having 10 pathfinder elements at concentrations over ten times average crustal 

abundance as index Au, Ag, As, Bi, Cu, Mo, S, Sb, Se and W. The pathfinder elements 

are defined by the whole rock IOCG alteration index of Fabris et al. (2013). Of 11 

samples selected, there were 2 samples with 1 pathfinder element, 3 samples with 2 

pathfinders, 2 sample with 3 pathfinders, 1 sample with 4 pathfinders, 2 sample with 6 

pathfinders and 1 sample with 9 pathfinders that were over ten times natural crustal 

abundance (also see chapter 2). 

The location of the eleven samples is shown in Figure 6. Detailed mineralogy is given in Table 

3. 
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Table 3. Mineralogical, alteration and lithological details for the eleven samples used in this study.  

Sample 2066641 2066655 2066169 2066178 2066656 2066174 2066166 2066203 2066635 2066199 2066177 

DH IHAD3 IHAD5 DRD1 HL002 IHAD2 PSC4_SASC2 CSD1 GHDD4 IHAD6 WWDD1 HL002 

From 799.8 1016.7 1139.4 529.13 819.61 539.46 970.6 854 855.87 683.75 471.1 

To 799.88 1016.8 1139.5 529.27 819.76 539.53 970.7 854.15 855.99 683.86 471.26 

Alteration HSCC CAM HSCC MB HSCC HSCC CAM HSCC HSCC CAM MB 

Rock type Metasediment Granite Calc-silicate Amphibolite 

Quartz% 35 25 15 35 10 30 30 25 25 10 10 

K-feldspar% 10 15 5 30 20 15  15 10 20 10 

Chlorite% 20 30 25 2 10 20 30 20 15 20 20 

Hematite% 25 20 30 1 15 5 10 8 20 9 9 

Magnetite%  1  1   20    1 

Dolomite%  3    15   20 20  

Calcite%  2      10  10 20 

Pyrite%  3 20    1 2    

Chalcopyrite%  1     1 3 2 Bn   

Apatite% 1   1  5  1 3 5  

Mica% Bt5  Ms5 Bt25 Ms40 Bt 10    Ms 1  

Rest %    An 5   Grt 8 Act15   Am 30 

Other% Man4    Ilm 5   Sp 1 Gp 5 Rt 5  

Act=actinolite, An=anorthoclase, Am=amphibole, Bn=bornite, Bt=biotite, Gp=gypsum, Grt=garnet, Ilm=ilmenite, 

Man=manganosite, Ms=Muscovite, Rt=rutile, Sp=sphalerite. 

 

3.2.1 Mineral abundance estimation 

Mineral abundances in each sample were estimated from polished thin sections using a 

petrological microscope in combination with Scanning Electron Microscopy (SEM) over 

selected areas. The 60×20 mm polished thin sections were prepared commercially by Pontifex 

and Associates with an average thickness of 40-45 µm. The SEM provides detailed textural 

analysis combined with mineral identification and semi-quantitative element concentrations.   

3.2.2 Scanning Electron Microscopy 

Eleven samples were used for electron back scatter imaging and semi-quantitative elemental 

mapping using the SEM at Adelaide Microscopy. Polished thin sections were coated with 3-5 

nm of carbon prior to analysis. A Philips XL30 FEG SEM - with EDX detector, mapping 

capability was used. Maps of sample surface (2-3 mm dimensions) were created by rastering 

the electron beam over the sample using a 2 nm beam size. The EBSD system provided a high-

resolution image that is dependent on the mean atomic mass of the surface atoms and allows 

mineral identification and observation of sub-micron textures. Elemental maps were 

constructed with a resolution of 1-5 μm using an EDS detector. 
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3.2.3 Electron Microprobe Analysis  

Petrological analysis combined with the SEM elemental mapping were used as a guide to select 

234 analysis points from 22 minerals grains from the eleven samples for quantitative elemental 

analysis using a Cameca SXFive Electron Microprobe equipped with five WDS detectors 

housed at Adelaide Microscopy, University of Adelaide. Analysed mineral phases included 

pyrite, chalcopyrite, bornite, hematite, magnetite, feldspar, chlorite, muscovite and biotite. The 

analytical suite included Si, Zr, Ti, Zn, Al, V, Cr, Fe, Mn, Mg, Ca, Ba, Na, K, P, Cl, F, O and 

H measured with detection limits of 0.01%. Individual mineral grains were analysed using a 

primary electron beam accelerated to 1.5*103 eV. A current of 15kV and 20nA was used for 

silicates and oxides. For sulphides, a current of 20 kV and 20nA was used. Spot sizes of 3-5 

µm were used for all analyses. Major element concentrations were calibrated against reference 

materials which were analysed at the beginning of each analytical session. Silicates and oxides 

were calibrated against the same standard allowing for concentrations to be determined for a 

suite of 18 elements (Al-Astimex garnet, Ba-Astimex Barite, Ca-Astimex plagioclase, Cr-

Astimex, Chromium metal, Cl-Astimex Tugtupite, F-P&H Developments Apatite, Fe-Astimex 

garnet, Mg-Astimex garnet, Na-Astimex albite, O-calculate oxygen from the stoichiometry of 

the cations, Si-Astimex albite, P-P&H Developments Apatite, K-Astimex Sanidine, Ti-P&H 

Developments Rutile, Mn-Astimex Rhodonite, V-Astimex Vanadium metal, Zn-Astimex 

Willemite, Zr-Taylor zircon). Sulphide minerals utilised pyrite package: S-Astimex marcasite, 

As-P&H Developments Gallium Arsenide, Fe-Astimex marcasite, Cu-P&H Developments 

Chalcopyrite, Bi-P&H Developments Bismuth Selenide, Co-Astimex Cobalt metal), providing 

concentrations of 6 elements (Co, Cu, Fe, S, As and Bi). The results are presented in Table 4 

and Appendix 3. 

3.2.4 LA-ICPMS analysis 

Individual minerals identified by SEM and analysed using the electron microprobe were further 

analysed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) to 

collect trace element data to lower detection limits (ppm to ppb) than the microprobe for a wide 

range of trace elements including Ag, As, Au, Bi, Cu, S, Sb, Se, Mo, W and REE. As the LA-

ICPMS data requires calibration based on major element concentrations, which can be provided 

by electron microprobe data, the approach was to co-locate electron microprobe and LA-

ICPMS analytical spots where possible. 290 analyses were collected. An Agilent 7500cx with 

attached New Wave UP-213NdYag solid state laser ablation system at Adelaide Microscopy, 

University of Adelaide was used. The laser was operated under conditions of 0.47 to 0.53 mJ, 

5Hz and 6.63-7.62 J/cm3 with a spot size of 30 μm. The depth of ablation was dependent on 

the laser pulse parameter, and the thermal conductivity and density of analysed minerals. 

Sample ablation and analysis involved two stages. The first stage of ~28 seconds was used to 

measure the background; the second stage of ~67 seconds analysed the plasma produced by 

the laser ablation.  

A total of 290 LA-ICPMS analyses were conducted in this study, including 218 analyses 

that were conducted at the same location as a previous electron microprobe analysis of the same 

minerals. Three standards for sulphide minerals (Mass-01), silicate minerals (Nist 612) and 
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oxide minerals (BHVO-1) were routinely analysed along with the unknowns. However, due to 

the potential for matrix dependent elemental fractionation during LA-ICPMS analyses it is 

desirable to calibrate against a robust independent concentration measurement from the same 

mineral and same analytical location. As such, the LA-ICPMS trace element concentrations 

reported here were calibrated relative to the content of selected major elements as measured by 

electron microprobe analysis at the same location．In 72 cases where there was not a matching 

electron microprobe analysis the LA-ICPMS data were calibrated using the average 

concentration of the selected elements for the mineral in question (Table 4). 

  

Table 4. Minerals analysed by electron microprobe and LA-ICPMS, showing the number of grains analysed by 

electron microprobe, the elements used for LA-ICPMS calibration and the average concentration of those elements 

determined by electron microprobe analyses and used to calibrate LA-ICPMS in cases where there was no 

matching electron microprobe analysis.  

Minerals 

No. of EM 

analyses 

  

A an 

Calibration 

Element 1 

WT 

% 

Calibration 

Element 2 

WT 

% Minerals 

No. of EM 

analyses 

1 

Calibration 

Element 1 

WT 

% 

Calibration 

Element 2 

WT 

% 

Apatite 9 P 18 Ca 40 K-feldspar  18 Si 30 Al 10 

Biotite  25 Si 20 Al 9 Magnetite 6 Fe 71 O 30 

Calcite  9 O 11.

5 

Ca 41 Manganosite 4 
    

Bornite 7 S 20 Fe 11 Monazite  2 
    

Chlorite 34 Si 12 Al 10 Muscovite  8 Si 22.5 Al 15 

Dolomite  17 O 12 Ca 21 Pyrite 11 Fe 42 S 
 

Plagioclas

e 

4 Al 13.

5 

Si 27.5 Pyroxene  10 Si 23 Ca 8.2 

Garnet 2 Si 17 Ca 23 Rutile  2 
    

Gypsum  1 
    

Quartz 1 
    

Hematite 47 Fe 66 O 29 Sphalerite 3 
    

Ilmenite  3 
    

Chalcopyrite 11 Fe 29 Cu 33 

Subtotal 158 
     

76 
  

Total 234 

Note: 14 minerals were calibrated as: K-feldspar, plagioclase, biotite, muscovite, chlorite, pyroxene magnetite, 

hematite, apatite, calcite, dolomite, pyrite, bornite and chalcopyrite. The GLITTER software program was used to 

obtain a uniform signal for the remaining 8 minerals. 

 

Data review and calibrations were conducted using the GLITTER software program. The 

data review allowed checking analytical times and ensuring that the analytical signal was stable 

over the period of analysis. A suite of 29 elements are reported for sulphide elements (Na, Si, 

S, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Mo, Ag Cd, In, Sn, Sb, Fe, Ba, W, Ir, Au, Hg, 

Tl, Pb and Bi), whereas silicates and oxides have a broader suite of 55 elements (Na, Mg, Si, 

Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, 

Cd, Sn, Sb, Te, Ba, Hf, Ta, W, Au, Hg, Pb, Bi, Th, U; La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Tm, Yb, Lu). Results are given in Appendix 4. 

Note that as a result of the relatively large size (30 μm) and finite depth of the LA-ICPMS 

spots compared to the electron microprobe spots (<5 μm) there is potential for inclusion of 

internal compositional variations and/or additional phases in the LA-ICPMS data (for example 

by overlap onto other minerals, inclusions at a scale below detection by SEM or drilling into a 

new phase during laser ablation). Analytical sites were carefully selected in an attempt to avoid 
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this. However a number of analyses, particularly of the iron oxide phases, displayed large 

variations from the expected chemistry which indicate contamination by other phases.  

Selected trace element abundances in individual minerals are presented in spider diagrams 

(figures 25, 27, 30, 33, 36, 38, 41) in which each element is normalized to average upper crustal 

abundance as reported by Taylor and McLennan (1985). I chose to normalize to average upper 

crustal abundance in order to provide a sense of the relative contribution to whole rock 

geochemistry that each of the examined minerals might make. For example, a mineral 

occurring at an abundance of ~1% in the rock but having an element at a concentration of ~100 

times crustal abundance could account for the entire whole rock budget of that element and 

should be considered an important host for that element. 

 

3.2.5 Bulk rock calculation 

In most instances mineral exploration geochemistry will be collected by whole rock analysis.  

A relevant question for explorers, with the potential to help interpret processes and rank 

geochemical anomalies, is which minerals control the whole rock concentrations of ore and 

pathfinder elements? By multiplying estimated mineral abundances by elemental 

concentrations of the mineral phases I have derived a “calculated whole rock chemistry” which 

can be used to make first order comparisons with the measured whole rock geochemistry. There 

are some obvious limitations to the approach. Foremost is that the material submitted for whole 

rock analysis（typically 1 m intervals of half drill core）is of greater volume than the thin 

section chosen to represent it and may contain different proportions of minerals (and indeed 

different minerals) compared to the thin section. Trace minerals, most notably the sulphides 

and apatite in this study, will be particularly susceptible to estimation errors. As a result, the 

most robust results of this study relate to elements deployed within the abundant alteration 

minerals (silicates and oxides) with less quantitative results for elements deposited in sulphides 

(see chapter 2.5.2).  

 

3.3 RESULTS 

Sulphides 

3.3.1 Pyrite (FeS2)  

Electron microprobe analysis 

Twelve pyrite grains in three samples were analysed using an electron microprobe to measure 

elemental concentrations of Fe, S, Cu, Co, As and Bi. The sample from drillhole IHAD5 

(2066655) contains siliciclastic metasediment with CAM alteration. The sample from drillhole 

IHAD6 (2066635) contains calc-silicate rocks with HSCC alteration, and from drillhole DRD1 

(2066169) the sample contains granite with HSCC alteration (Figure 6). In the granite sample, 

six analyses were conducted on two grains of pyrite (2 mm) with three analyses per grain: one 

site at the centre of the grain, one site toward the margin and another site between them. Three 

analysis were conducted independently pyrite grains in metasediments and calc-silicate 

samples respectively. Tabulated results for Fe, S, Cu, Co, As and Bi are provided in Appendix 

3, however I found that the S and Fe concentrations were the most useful for classifying pyrite 
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chemistry. S/Fe atomic ratios are close to the stoichiometry of ideal pyrite (~2) for all samples, 

but almost all pyrite analysed are slightly Fe deficient (Figure 22), placing them within the field 

of pyrites which typically display p-type semiconducting properties (Abraitis et al., 2004).  

 
Figure 22. S vs Fe plot for pyrite grains from various protoliths analysed by electron microprobe in this study. The 
red line indicates ideal pyrite stoichiometry. Slight Fe deficiency is displayed in the majority of analyses, and is 
typical of pyrites that are p-type semiconductors (Abraitis et al., 2004). 

 

LA-ICPMS analysis 

Thirteen pyrite analyses were collected on three rock samples (granite, metasedimentary and 

calc-silicate) using LA-ICPMS to measure trace element abundance. Six analyses were 

conducted at the same sites as electron microprobe analyses for granite sample 2066169. Five 

analyses were conducted on metasedimentary sample 2066655, three at the same sites as 

electron microprobe analyses and two duplicate analyses to check internal consistency of pyrite 

grains. Two additional pyrite analyses from calc-silicate sample 2066166 are shown in Figure 

23, and were calibrated based on average Fe concentrations of pyrite in the electron microprobe 

data. 

LA-ICPMS analysis on the samples described above showed 17 elements are present in 

concentrations above detection limits (Appendix 4). Co and Ni concentrations vary 

significantly between the three rock types and are higher in the granite than metasedimentary 

protoliths (Figure 23). Co/Ni ratios are <1 for calc-silicate, between 0.75 and 9.75 for 

siliciclastic metasedimentary rock and between 0.18 and 7.1 for granite (Figure 23). Two pyrite 

grains from granite sample 2066169 show differing Co/Ni ratios, with grain 2066169B having 

Co/Ni ratio between 2.2 and 7.1, and grain 2066169A having Co/Ni ratio between 0.18 and 

0.42. For the two calc-silicate rock samples the Co/Ni ratio is 0.25 and 0.43. 

The trace element pattern identified in this study is similar for pyrite in granite, 

metasedimentary and calc-silicate rock types. Se, Te, Co, As, Ni and Au content of pyrite is 

considerably above average crustal abundance (Figure 25A). Se, Te, Co and As content of 

pyrite 1-3 orders of magnitude higher compared to average crustal abundance. All other trace 

elements show high variation from well below to well above crustal abundance (see Appedix 
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4).  

With the exception of Co, Ni, Se and Hg, other trace elements are consistently more abundant 

in pyrite hosted within calc-silicate and siliciclastic metasedimentary rock than in granite, with 

the most pronounced enrichments in Cu, Bi, Te, Au and Ag. Ag and Bi are above average 

crustal abundance in siliciclastic metasediment and below crustal abundance in the calc-silicate 

and granite. Zn, In, Sn, Sb, Tl, Ba and Pb are below average crustal abundance in all analyses. 

Hg preserves concentrations approximating average crustal abundance.  

 

 

 

 
Figure 23. A) Plot of Co versus Ni for pyrite from granitic, calc-silicate and metasedimentary samples. The blue 

lines depict the Co/Ni ratios that have been used as an indicator of the origin of pyrite (e.g. Bralia et al., 1979; 

Bajwah et al., 1987; Bettina 1989; Abraitis et al., 2004; Clark et al., 2004). The red, brown, green and blue circles 

outline the fields identified by Xiao-wen et al. (2015) within which pyrite of volcanic, hydrothermal, sedimentary and 

magmatic origin respectively will fall. For this study, pyrite in granite is of magmatic origin. Pyrite from 

metasediments is a mixed sedimentary, hydrothermal and volcanic origin, depending on which interpretation of 

Co/Ni ratios is used. Pyrite in calc-silicate is of sedimentary origin. B) Plot of Au and vs As from the pyrite samples 

analysed in this study. The Au saturation line is from Reich et al. (2005). The chemistry of pyrite is consistent with 

Au incorporated within the crystal lattice of pyrite, rather than Au inclusions. 
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3.3.2 Cu-sulphides  

Electron microprobe analysis 

Fifteen Cu-sulphide grains from four samples (one siliciclastic metasediment, two calc-silicate 

and one granite) were analysed using an electron microprobe. The samples included siliciclastic 

metasediment with CAM alteration (2066655, from drillhole IHAD5), calc-silicate 

metasediment with HSCC alteration (2066635, from drillhole IHAD6), granite with HSCC 

alteration (2066169A, from drillhole DRD1) and calc-silicate with strong CAM/HSCC 

alteration (2066203, from drillhole GHDD4) (Figure 24). Analytical sites were chosen with 

reference to petrological observations reported in Section 2.6.2. Seven analytical sites on calc-

silicate metasediment with HSCC alteration (2066635) show Cu between approximately 49 

and 58 wt %, Fe between approximately 10 and 13 wt % and S between approximately 19 and 

24 wt %, consistent with the stoichiometry of bornite (Cu5FeS4). Eight sites analysed for the 

other three samples show Cu between 25 and 34 wt %, Fe between 24 and 29 wt % and S 

between 23 and 37 wt %, broadly consistent with the stoichiometry of chalcopyrite (CuFeS2) 

(Figure 24). 

LA-ICPMS analysis 

Thirty-six Cu-sulphide grains were analysed by LA-ICPMS. Twelve analyses returned data 

inconsistent with the target minerals and were presumed to contain significant inclusions of 

other mineral phases. Of the 24 remaining analyses, six are bornite and eighteen are 

chalcopyrite. In addition to high Cu concentration, trace element patterns for bornite and 

chalcopyrite are similar, showing consistent enrichment in Bi, Se, Te, Au and Ag of 1 to 4 

orders of magnitude above average crustal abundance (Figure 25B, C) and variable enrichment 

in In, As and Sb. 

 

 
Figure 24. Fe-Cu-S ternary diagram showing the chemistry of the 8 analysed chalcopyrite (CuFeS2) and 7 bornite 

(Cu5FeS4) grains. 

   Chalcopyrite 

   Bornite 

   Stoichiometric chalcopyrite 

   Stoichiometric bornite 
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Figure 25. Trace element abundances normalized to average upper crustal abundance in A) pyrite; B) chalcopyrite; 
and C) bornite analysed in this study and coloured by protolith. Normalisation to average upper crustal abundance 
provides a comparable measure for all elements from which to determine the likelihood of the mineral being a 
significant host of each element in the rock.  
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Oxides 

3.3.3 Magnetite  

Electron microprobe analysis 

Six magnetite grains from two samples were analysed by electron microprobe (Figure 26A), 

namely calc-silicate rock with CAM alteration (2066166, from drillhole CSD1) and an 

unaltered granite with incipient MB alteration (2066178, from drillhole HL002). Analysis of 

two magnetite grains show significant concentrations of Si and Al and low Fe (40 to 50% 

calculated as Fe2O3). These analyses presumably overlapped with silicate inclusions. The 

remaining four analyses are consistent with magnetite. These grains contain detectable 

concentrations of a number of trace elements, including 0.43-0.48 F wt %, as well as Si, Ti, Zn, 

Al, V, Cr, Mn, Mg, Ca, Ba, Na, K, P and Cl at <0.1 wt %. 

LA-ICPMS analysis 

Eleven magnetite sites were analysed for 48 elements. Four sites (two sites of calc-silicate 

2066166, two sites of granite 2066178) show Fe concentrations between 70.3 and 71.3 wt % 

Fe with low Al, Si, Mg and Ca content, consistent with magnetite (Figure 27). Remaining 

analyses show significant concentrations of other major elements (Si, Al, Mg and K) indicating 

the sites overlapped with silicate mineral inclusions. W, Sn, Sb and Bi are preserved at 

concentrations slightly above average crustal abundance in the calc-silicate sample. All other 

elements are at or below average crustal abundance (Figure 27). All are below Post Achaean 

Average Shale (PAAS, Figure 28) with slight LREE depletion compared to HREE.  

3.3.4 Hematite 

Electron microprobe analysis 

Hematite grains from 10 samples were analysed at 53 sites (Figure 26, Appendix 3). Fourteen 

analyses were not used as they had Fe concentrations less than 55.6 wt %, indicating significant 

Si and Mn alteration and silicate inclusions. In total, 39 hematite grains from 10 samples were 

included. Nineteen grains hosted in granite were used, including eight grains from granite with 

HSCC alteration (2066169, from drillhole DRD1), five grains from granite with HSCC 

alteration (2066174, from drillhole PAS_SASC2), three grains from unaltered granite 

(2066178, from drillhole HL002), and three grains from granite with CAM/HSCC alteration 

(2066656, from drillhole IHAD2). Five grains from calc-silicate samples were analysed, 

including one from a calc-silicate with CAM alteration (2066199, from drillhole WWDD1), 

one from calc-silicate with HSCC alteration (2066635, from drillhole IHAD6) and three from 

calc-silicate with HSCC alteration (2066203, from drillhole GHDD4). Six grains from 

metasediment with CAM alteration (2066655, from drillhole IHAD5) and six grains from 

metasediment with HSCC alteration (2066641, from drillhole IHAD3) were analysed. Three 

analysed grains were from amphibolite with MB alteration (2066177, from drillhole HL002). 

Hematite grains preserve Fe concentrations between 55.6 wt % and 69.5 wt % (Appendix 3).  

A number of elements are at detectable concentration, including F averaging 0.29 wt %; Si, 

Mn, Al and Ti averaging between 0.2 and 0.5 wt %; and Cr, Zn, Ba and P at <0.1 wt %.  
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Figure 26. A) Fe2O3 vs SiO2 + Al2O3 plot of 53 LA-ICPMS analyses of magnetite (yellow) and hematite (blue) from 

the study area. The spread toward high SiO2 + Al2O3 (>5%) reflects silicate inclusions in the iron-oxide whereas 

SiO2 + Al2O3 <5% is consistent with matrix substitutions in the iron oxide framework. B) Ca+Al+Mn vs Ti+V diagram 

for iron oxides analysed in this study. With fields of common iron oxide bearing mineral deposits determined from 

the empirical data of Dupuis and Beaudoin (2011). Most analyses fall within the skarn field. C) Ni/(Cr+Mn) vs Ti + 

V wt% diagram after Dupuis and Beaudoin (2011) and D) Al+Mn wt% vs Ti+V wt% after Nadoll et al., (2014). In 

Figure 26 C) and D) most analyses also lie in the skarn field. 

 

LA-ICPMS analysis 

Ninety sites from hematite in 10 samples were analysed by LA-ICPMS. Analyses were 
conducted on sites previously analysed by electron microprobe. Data with high concentrations 
(> 2 wt %) of Al, Si, Ca or Mg were omitted due to potential contamination from phases other 
than hematite (e.g. silicate or carbonate inclusions). As a result, only 24 hematite analyses 
(those with Al + Si < 4 wt %) are presented here. Of these 24 hematite analyses, one is from a 
calc-silicate sample (2066635), seven are from a granite sample (2066169), three are from a 
granite sample (2066656), five are from a metasediment sample (2066641) and eight are from 
a metasediment sample (2066655) (Figure 27, Appendix 4).  

    Concentrations of trace elements normalised to crustal abundance show a general increase 
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based on the periodic table from alkali metals (left) to metalloids (right) (Figure 27). High 
concentrations of Nb and Ta in one granite sample may reflect an inclusion of a Ti-rich phase, 
with Nb and Ta being common substitutes for Ti. Hematite shows consistently elevated 
concentrations of Mo, W, Co, Cu, Sn, Sb, Pb and Bi up to two orders of magnitude greater than 
average crustal abundance (Figure 27).  

    REE concentrations in hematite are almost exclusively below PAAS with similar patterns 
of LREE depletion and flat HREE for all samples (Figure 28). Hematite grains in granite and 
metasedimentary samples have variable positive Eu anomalies. No Eu anomaly is evident in 
the three hematite grains host in calc-silicate rock. 

 

Figure 27. Multi-element diagrams for A) magnetite; and B) hematite normalised to average upper crust. Four 
magnetite grains preserve high Ge and Sb contents and variable Zn, Ga, Bi, W, Sn, Cu and U contents. Co and 
Ga are enriched in the granite magnetite. Ge, Sb, Bi, W and Sn are enriched in calc-silicate magnetite. Ba, Sr, Zr, 
Hf, Pb and Th are depleted in magnetite within calc-silicate rock and granite. As, Se and Ag are below the detection 
limit. Hematite (24 grains) contains elevated Sb, Bi, and Sn concentrations, variable Ni, Pb, W, U and Th, and low 
Ba, Rb, Sr, Zr, and Hf. Cu is present in granite (up to 10 times average upper crustal abundance) and 
metasediments (up to 100 times average crustal abundance).  
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Figure 28. REE patterns of hematite and magnetite. Magnetite in granite has less REE than magnetite host in 
calc-silicate rock. REE are depleted in hematite from metasandstone, granite, calc-silicate rock. Overall, magnetite 
has lower REE concentration relative to hematite. 

 

3.3.5 Feldspars 

Electron microprobe analysis 

Twenty-two feldspar grains were analysed by electron microprobe. Five grains are from granite 

with HSCC alteration (2066174, from drillhole PSC4_SASC2), and five grains are from 

unaltered granite with very little MB alteration (2066178, from drillhole HL002). Seven grains 

are from calc-silicate with HSCC alteration (2066203, from drillhole GHDD4), and four grains 

are from calc-silicate with CAM alteration (2066199, from drillhole WWDD1). One grain is 

from mafic rock (amphibolite) with MB alteration (2066177, from drillhole HL002).  

  Eighteen of the 22 feldspar grains analysed are K-feldspar, two are sanidine and two are 

andesine (Figure 29). The K-feldspars show a narrow range of major element concentrations 

(29-31 wt % Si, 9-10 wt % Al, 12-14 wt % K), with an average chemical formula of 

K0.91Al1.03Si3.03O8.12. The exception is one grain from 2066199 with 30.2 wt % Si, 11.8 wt % 

Al, 8.1 wt % K, 1.3 wt % Fe and 0.51 wt % Mg. The two sanidine and two andesine grains 

from granite sample 2066178 contain 13.1-15.0 wt % Al, 26.5-29.7 wt % Si, 3.6-6.4 wt % Na, 

0.59-3.8 wt % K and 0.65-2.9 wt % Ca. Other elements in feldspar grains with concentrations 

in the range of 10-30 % of rock included Ba, Na, Fe, Ca, Mg and Cl (Appendix 3). 

Concentrations of Ba, Na, Ca and Fe show considerable variation independent of protolith 

types.  
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Figure 29. K-Na-Ca ternary diagram showing the composition of the eighteen K-feldspar and four sanidine-

andesine grains analysed.  

 

LA-ICPMS analysis 

Twenty-four feldspar grains were analysed by LA-ICPMS with the beam focused on the 

location of previous electron probe analyses. Seven analyses have Al and Si concentrations 

inconsistent with the stoichiometry of feldspar or had high Mg and Ca content. These analyses 

presumably contained significant volumes of inclusions smaller than the scale of the laser 

ablation beam and were not included in the results presented here. Of the remaining seventeen 

analyses, twelve are K-feldspar (7.8-14.6 wt % K, 0.03-1.04 wt % Na and 0.09-1.1 wt % Ca), 

two sanidine (3.8-4.6 wt % K and 4.6-5.3 wt % Na, 0.4-0.7 wt % Ca), two andesine (2.0 -2.7 

wt % K and 5.7-6.2 wt % Na, 1.4-1.5 wt % Ca) and one anorthite (1.3 wt % K and 6.2 wt % 

Na, 2.4 wt % Ca). 

  The sanidine, andesine and anorthite grains show similar trace element patterns (Figure 

30) with all elements at or below average crustal abundance. The K-feldspar grains show a 

similar pattern to other feldspars at low concentrations, but had large variance from average 

crustal abundance compared to other feldspars for all elements (including REE) except Sr and 

Ag. In K-feldspar, the majority of elements show concentrations between 0.01 and 10 times 

crustal abundance. One analysis shows Cu at two orders of magnitude above crustal abundance.  

  Of the ten pathfinders identified by Fabris et al. (2013) (Au, Ag, As, Bi, Cu, Mo, S, Sb, Se 

and W), K-feldspar can only accommodate significant concentrations of Sb and to a lesser 

extent Sn. The K-feldspar characteristically preserves slightly higher REE concentrations 

compared to other feldspar (sanidine, andesine and anorthite). In some samples, K-feldspar 

displayed LREE enrichment (Figure 31). 

  The REE patterns for sanidine, andesine and anorthite feldspars are similar, showing 
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concentrations for most elements well below PAAS, flat HREE, variable LREE depletion 

relative to HREE and a consistent, pronounced positive Eu anomaly (Figure 31). The K-

feldspar shows a similar pattern to other feldspars at low concentrations of REE, but has greater 

variance at higher concentrations. At higher total REE (particularly in calc-silicate samples), 

the patterns changed, tending toward LREE enrichment without an Eu anomaly (Figure 31).  

 

 

Figure 30. Multi-element plot for analysed feldspar normalised to the upper crust. Analyses below detection limits 

are represented at half the detection limit. Relevant detection limits are Zr = 0.12-0.17 ppm, Nb =0.06-0.11ppm, 

Mo = 0.5-0.7 ppm, Ag =0.07-0.19 ppm, Hf =0.12-0.14 ppm and Bi =0.04-0.05 ppm).  

 

 

Figure 31 (previous page). REE patterns for analysed feldspar grains.  
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3.3.6 Chlorite 

Electron microprobe analysis 

 Thirty-two chlorite grains were analysed by electron microprobe. Two grains effected by Fe 

and Ca alteration are not presented here. Eleven grains are from a metasediment sample with 

CAM alteration (2066655, from drillhole IHAD5), eleven grains are from amphibolite with 

MB alteration (2066177, form drillhole HL002), five grains are from calc-silicate, two grains 

are from CAM alteration (2066166, from drillhole CSD1) and three grains are from calc-

silicate with HSCC alteration (2066635, from drillhole IHAD6). Five grains are from granite; 

four grains are from HSCC alteration (2066169, from drillhole DRD1) and one grain is from 

granite with CAM/HSCC alteration (2066656, from drillhole IHAD 2). Analysis of chlorite 

grains show Fe:Mg:Al compositions ranging between 40:30:30 to 70:10:20 with few out of the 

range. Three calc-silicate chlorite grains have slightly higher Mg and one granite chlorite and 

one amphibolite chlorite have slightly lower Al (Figure 32).  

 

Figure 32. Al-Fe-Mg ternary diagram showing analytical results for chlorite hosted in granite, amphibolite, calc-
silicate and metasediment. The Fe-rich and Mg-rich groups are circled. Fe-rich chlorite is preserved within all rocks. 
Mg-rich chlorite is preserved within granite and calc-silicate. Red lines showed the limits of the Fe:Mg:Al ratios 
used. 

 

LA-ICPMS analysis 

Fifty-six chlorite sites were analysed by LA-ICPMS, including all sites of previous electron 

probe analyses. Thirty-two analyses show major element stoichiometry consistent with chlorite. 

Twenty-four analyses show elevated concentrations of Ca, K, Na, Al, Si or Mn, indicating 

significant inclusions of other minerals and are not included in the data presented below. 

  Trace element patterns are similar for all chlorite analyses despite the diversity of rock type. 

The granite and amphibolite samples show a narrow range of trace element abundance, whereas 

there is a broader range of data for calc-silicate and metasediments (Figure 33). Chlorite from 

Granite 

Amphibolite 

Calc-silicate 

Metasediment 

 

 

 

 

  

Mg-rich 

Fe-rich 



83 
 

granite contains Co, Ni and Zn at an order of 1-2 magnitudes above average crustal abundance. 

In granite and amphibolite, most trace element patterns are at or below average crustal 

abundance. Calc-silicates and metasediments show higher trace element content compared to 

granite and amphibolite, except for Ni and Zn.  

  The highest concentration of Cu is in chlorite host within metasediments and calc-silicate 

rock. Chlorite in granite preserves the highest enrichment of Ni at >10 times that of chlorite in 

other lithologies (Figure 33). Ag concentration is highest in metasediments. Higher Cu, As, 

Mo, Sb, W and Bi is observed in some calc-silicate samples. Cu and Ag are high in siliciclastic 

metasediment. 

  Chlorite REE patterns in calc-silicate samples show flat HREE patterns with relative 

enrichment in LREE (Figure 34). Chlorite REE patterns for granite, metasediment and 

amphibolite samples all show lower concentration than for calc-silicate rocks, with granite 

being the lowest, then metasediment, then amphibolite at close to PAAS. Concentrations of 

trace elements and REE appear to be related to alteration intensity with more intensely altered 

rocks (in this case calc-silicate protoliths) being consistently enriched in trace elements and 

REE.   

 

Figure 33. Multi-element diagram for chlorite normalised to the upper crust. Chlorite is elevated in Co, Cu, Zn, Ga, 
Ge, Ag, Sb and Bi in all four rock types. Twenty-two elements were richer in calc-silicate rock except Ga, and Ag 
is highest in metasediments. Ni is highest in the granite and is 10 times higher than amphibolite, calc-silicate and 
metasediments. Cu is elevated in metasediments and calc-silicate rock. 
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Figure 34.  REE patterns for chlorite in the four rock types.   

 

Micas 

3.3.7 Biotite 

Electron microprobe analysis 

Fourteen biotite grains were analysed by electron microprobe. Two grains show evidence of 

Fe and chlorite alteration were excluded. Eleven grains are from unaltered granite (2066178) 

and one grain from amphibolite with MB alteration (2066177). The 12 biotite grains show a 

narrow range of major element concentrations (15.9-17.2 wt % Si, 8.2-8.9 wt % Al, 15.4-22.8 

wt % Fe, 1.5-6.4 wt % Mg and 5.0-8.0 wt % K; Figure 35 and Appendix 3). The average biotite 

chemical formula is KMg1.1Fe1.6Al1.7Si3.1O25, which is comparable to the standard biotite 

formula of K(MgFe)3(AlSi3O10)(OH)2. Biotite grains contain high Ti, Mn and F (up to 1.7 wt % 

Ti, 0.28 wt % Mn and 1.4 wt % F); moderate Ca, Na, Cl and V (0.08 wt % Ca and Na, 0.03 

wt % Cl and 0.04 wt % V average concentration) and low Zr, Cr, P and Zn (0.01-0.02 wt % 

average).  
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Figure 35. Al-Fe-Mg plot of biotite from granite and amphibolite samples showing the Fe- and Mg-rich nature of 
the biotite. 

 

LA-ICPMS analysis 

Twenty-one biotite grains from granite were analysed by LA-ICPMS with the beam focused 

on the sites of previous electron probe analyses. Fourteen analysis sites have Al and Si 

concentrations inconsistent with the stoichiometry of biotite or have high Mg, Ca, P and Mn 

content beyond the control of Al and Si calibration, thus data for these sites were not included 

in analysis. The remaining seven biotite grains show average Al 8.8 wt % and Si 16.3 wt % 

under Al and Si calibration. 

  The granite biotite shows relatively tight distribution patterns. In one grain of biotite, Au 

is present at 0.075 ppm. The As and Mo content of biotite are below average crustal abundance. 

Sr and Zr are well below average crustal abundance, indicating that bulk rock chemistry 

concentrations for these elements are not controlled by biotite. Biotite has Rb, Ta and Sn at 1-

2 orders of magnitude above average crustal abundance. For Th and U content of biotite, there 

were two groups: one group is below 0.1 and another group is equivalent to or above average 

crustal abundance, with the highest abundance being 1-2 orders of magnitude. The Hg, Se, Ag 

and Te content of biotite is below detection limits (Figure 36). 

 Two REE patterns are observed in the biotite grains. The first shows high concentration of 

La to Sm, and the second shows low concentration of La to Sm with an order of magnitude 

difference (Figure 37). REE concentrations are all below PAAS. LREE depletion is observed 

in biotite from granite samples. The biotite from granite shows a pattern of flat REE depletion 

and another pattern of generally low REE concentration and extreme LREE depletion. The total 

REE contents are generally depleted in biotite from within granite.  

Granite 

Amphibolite 



86 
 

 

 

Figure 36. Trace elements for biotite grains within granite (7 grains-2066178) normalised to the upper crust. Ag, 
Se and Te are below the detection limits of 0.08-0.15 ppm, 12-20 ppm and 0.005 ppm respectively. Cu, As, Sr, Bi, 
Zr, Hf, Th and U are depleted and Rb, Nb, Ta, Zn, Ga, Ge and Sn enriched in the biotite grains. 

 

   

Figure 37. REE patterns for biotite showing two general patterns. The first pattern is flat with higher LREE content.  
The second shows significantly lower LREE contents. All REE concentrations are below PAAS. 
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3.3.8 Muscovite 

Electron microprobe analysis 

Nineteen muscovite grains were analysed by electron microprobe. Nine grains are from granite, 

one grain is from an unaltered granite (2066178, from drillhole HL002), four grains are from a 

HSCC/CAM alteration (2066656, from drillhole IHAD 2), and four grains are from a granite 

with HSCC alteration (2066174, from drillhole PSC4_SASC2). Eight grains are from a calc-

silicate rock with MB alteration (2066199, from drillhole WWDD1). One grain is from a 

metasediment with HSCC alteration (2066641, from drillhole IHAD3) and one is from 

amphibolite (2066177, from drillhole HL002).  

 Eight muscovite grains preserve slightly broader range of major element concentrations 

(20.4-26.3 wt % Si, 11.3-17.8 wt % Al, 2.1-8.9 wt % Fe and 4.9-7.9 wt % K) relative to biotite 

(Appendix 3). The muscovite chemical formula is KFe0.39Al1.2(Al1.2Si4.8O13.8) (F,OH)2, which 

is similar to the standard muscovite KAl2(AlSi3O10)(F,OH)2 but less K and Fe-rich. The 

muscovite grains preserve high Mg, Ti, Ca and Ba (up to 1.7 wt % Mg, 0.9 wt % Ti, 0.2 wt % 

Ca and 0.3 wt % Ba), moderate Na, Mn and F (0.09 wt % Na, 0.08 wt % Mn and 0.19 wt % F 

on average) and low Zr, Zn, Cr, V and Cl (0.01-0.02 wt % on average). P averaged below 

0.01wt %. These data imply muscovite is Mg, Ca and Ba rich and P-poor. 

LA-ICPMS analysis 

Fifteen muscovite grains were analysed by LA-ICPMS with the beam focused on the location 

of previous electron probe analyses. The grains have 4.9-17.1 wt % Al, 20-30 wt % Si and 3.4-

8.7 wt % K and 0.8-17.1 wt % Fe in granite, calc-silicate and metasediment rocks. Au, Ag, Hg, 

Ge and Te are below the detection limit. Fifteen muscovite grains have high Rb, Ba, W, Co, 

As, Sb, and Th, and low of Sr, Zr and Hf (Figure 38). Three calc-silicate muscovite grains 

preserve 0.024-0.09 ppm Au.  

  Four grains preserve complex patterns. One grain shows enrichment ~100 times above 

average crustal abundance in Se and 10 times above average crustal abundance for Sb and W. 

A muscovite from metasediment (2066641) has high Bi, Cu, Pb, Ni and Sb at >10 times average 

crustal abundance 

 Muscovite REE patterns show REE content close to PAAS (Figure 39). LREE are depleted 

compared to HREE in granite samples. REEs show an overall depleted pattern relative to PAAS 

in granite. The muscovite REE patterns approximate PAAS in all but one calc-silicate sample 

(2066203) which shows extreme REE depletion. 
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Figure 38. Multi-element plot for 15 muscovite grains (normalised to average upper crust) from granite (2066656 
for 4 grains -2066174 for 1 grain), calc-silicate (2066199 for 8 grains and 2066203 for 1 grain) and metasediment 
(2066641 for 1 grain). 

 

Figure 39. REE plot for muscovite grains from granite, calc-silicate and metasediment.  

 

3.3.9 Carbonate 

Electron microprobe analysis  

Twenty-six carbonate grains were analysed by electron microprobe. Three grains are from a 
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granite with HSCC alteration (2066174, from drillhole PSC4-SASC2), five grains are from an 
amphibolite with MB alteration (2066177, from drillhole HL002), fifteen grains are from calc-
silicate, eight grains are from a calc-silicate with CAM alteration (2066199, from drillhole 
WWDD1), and seven grains are from a calc-silicate with HSCC alteration (2066635, from 
drillhole IHAD 6). Three carbonate grains are from a metasediment with CAM alteration 
(2066655, from drillhole IHAD 5). The carbonate compositions varied from end-member 
calcite (CaCO3) to dolomite CaMg(CO3)2 with a group of samples from calc-silicate rocks 
having significant Fe concentrations consistent with ankerite ((Ca, Fe, Mg)2(CO3)2) (Figure 
40). 

 

 

Figure 40. Ca-Mg-Fe ternary diagram for carbonate grains from granite, amphibolite and calc-silicate rocks.  

Dolomite is Fe- and Mg-rich. Calcite occurs in amphibolite. 

 

Dolomite 

LA-ICPMS analysis 

Fourteen dolomite grains were analysed by LA-ICPMS with the beam focused on the location 
of previous electron probe analyses (granite sample 2066174, amphibolite sample 2066177, 
calc-silicate sample 2066635 and metasediment sample 2066655). Eleven of fourteen grains 
have stoichiometry consistent with carbonate minerals. Three of the fourteen analyses have 
elevated concentrations of Si or Si and Al indicating significant inclusions of silicate minerals 
and are not presented below.  

 The trace element patterns are similar for all carbonate grains analysed. Concentrations of 
trace elements compared to average crustal abundance increase across the periodic table from 
alkali metal (left) to metalloids (right) on the multi-element diagram with most elements at or 
below average crustal abundance (Figure 41). The exceptions are Cu, Sb and Bi which range 
from below to ~ 1 order of magnitude greater than average crustal abundance. 
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 REE patterns are also similar for all carbonates analysed, with a convex pattern showing 

relative enrichment in the middle REEs (Sm, Eu, Gd, Tb, Dy, Ho) and Y compared to the LREE 

and HREE (Figure 42). Two analyses from a metasedimentary sample and two from the 

amphibolite preserve a high positive Eu anomaly. 

 

Figure 41. Multi-element diagram for 11 dolomite grains (normalised to average upper crust) within the four rock 

types. Se, Sb and Hg are below the detection limit. One grain preserves 0.12 ppm Ag, two grains preserve Ta 
(0.02 and 0.025 ppm) and Au (0.10 and 0.06 ppm). Dolomite shows enrichment of Co, Cu and Zn and depletion 
of Ba, Ni, Ga, Rb, Sr, Zr, Nb, Hf, W and U in the calc-silicate rock. 

 

Figure 42. REE plot for dolomite grain analysis. HREE is enriched in dolomite from calc-silicate rock. LREEs are 
more variable relative to HREEs, and are enriched in amphibolite and depleted in granite.  

 

3.3.10 Apatite and Nine other Minerals 

Electron microprobe analysis 

Eight apatite grains were analysed by electron microprobe. Four grains are from a granite with 

HSCC alteration (2066174, from drillhole PAS4_SASC2). Four grains are from calc-silicate, 

two grains are from a calc-silicate with CAM alteration (2066199, from drillhole WWDD1), 

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Rb Sr Ba Th U Zr Hf Nb Ta Mo W Co Ni Cu Ag Au Zn Hg Ga In Tl Ge Sn Pb As Sb Bi Te Se

Dolomite

granite amphibolite calc-silicate metasandstone

Granite        Amphibolite      

   Calc-silicate     Metasediment 



91 
 

and two grains are from a calc-silicate with HSCC alteration (2066203, from drillhole GHDD4 

and 2066635, from drillhole IHAD6). 

The eight apatite grains average 38.7 wt % Ca, 17.2 wt % P and 36.6 wt % O and satisfy 

the standard chemical formula Ca5(PO4)3(F,Cl,OH) (Appendix 3). The average apatite 

chemical formula is Ca5.05 P2.90O11.98F1.06. The apatite is enriched in F (3.9 wt %), Mg, Mn and 

Zr (0.12-0.25 wt % average of for each element). Na, Si, Cl, K and Al range from 0.04-0.09 

wt %. Zn, V, Ti, Cr and Ba are ≤ 0.01wt % concentration. Apatite can be seen clearly to replace 

the monazite at electron microscope. 

Additional analyses were done on garnet (2 spots), gypsum (2 spots), manganosite (4 

spots), pyroxene (10 spots), ilmenite (3 spots), rutile (2 spots), monazite (2 spots), sphalerite 

(3 spots) and quartz (1 spot). Garnet is andradite with 17.0 wt % Si, 18.4 wt % Fe, 23.6 wt % 

Ca and 1.73 wt % Al with the chemical formula Ca3Fe2Si3O12. Pyroxene contains 24.7 wt % 

Si, 14.7 wt % Fe, 7.0 wt % Mg, 8.6 wt % Ca and 1 wt % Al, and is classified as augite with the 

chemical formula Ca0.5Mg0.7Fe 0.6 Si2O6.  

It is noted that all trace element and REE concentrations in the nine additional mineral 

phases were analysed using LA-ICPMS, but the data as not a statistically large enough 

population to assess (Appendix 4) and are therefore not presented here.  

 

 

 

3.4 DISCUSSION 

3.4.1 Significance of pyrite chemistry 

Previous workers have attempted to use pyrite chemistry as an indicator of the conditions and 

geological setting at the time of pyrite growth (e.g. Bralia et al., 1979; Bajwah et al., 1987; 

Bettina 1989; Abraitis et al., 2004; Clark et al., 2004; Xiao-Wen et al., 2015). Fe deficient 

pyrite, as indicated by high S/Fe ratios, are typically interpreted as p-type semiconductors and 

tend to form in lower temperature conditions (Abraitis et al., 2004). The chemistry of these 

pyrite grains typically shows enrichment in As, Co, Ni, Sb and possibly Cu, Ag, Au and Sn up 

to percent level. S deficient pyrite grains, indicated by low S/Fe ratios, are typically interpreted 

as n-type semiconductors, form in higher temperature environments and are Co enriched 

(Abraitis et al., 2004). All of the pyrite grains observed in this study are Fe-deficient, p-type 

grains with S/Featom ratios of 2.02-2.05, and are enriched in Se, Te and As, which have likely 

substituted for S. As has a mostly positive relationship with Au (Figure 25A).  

Co/Ni ratios are also recognised to reflect the origin of pyrite grains (e.g. Bralia et al., 1979; 

Bajwah et al., 1987; Bettina 1989; Abraitis et al., 2004; Clark et al., 2004; Xiao-Wen et al., 

2015). Bralia et al. (1979) suggested the Co/Ni ratio in pyrite proved a more reliable indicator 

in ore genesis than previously presumed. Based on work at the CSA Cu-Pb-Zn deposit, Bettina 

et al. (1989) suggested that Co/Ni ratios were on average 2.4 when formed in relation to 

hydrothermal processes, and that enrichment of Se is indicative of a metamorphic origin. Based 

on work at the Cadia Fe-Cu deposit, New South Wales, Bajwah et al. (1989) suggest that Co/Ni 

ratios >10 are indicative of a volcanic origin. Based on work at the Tianhu Fe deposit, NW 

China, Xiao-Wen et al. (2015) argued that pyrite with Co/Ni ratio 0.6-9.75 formed in a 

sedimentary type deposit originally but was later overprinted by a hydrothermal event. Co/Ni 

ratios (and Co and Ni concentrations) are also suggested to be sensitive to temperature of 
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formation; with lower temperature tending to have lower Co/Ni ratios; and higher temperatures 

leading to higher Co/Ni ratios (Abraitis et al., 2004).  

The Co/Ni ratios for the samples used in this study cover a broad range of 0.24-9.75. The 
two calc-silicate samples, one metasediment and three granite samples have Co/Ni ratios <1, 
and are comparable with pyrite of a sedimentary origin (Figure 23). Four metasediment and 
three granite pyrite grains have a Co/Ni ratios between 1 and 10, suggesting a hydrothermal 
origin. It is noted though that two of the pyrite in metasediment samples have Co/Ni ratios 
close to 10 (9.42-9.75) and are therefore at the high end of being interpreted as hydrothermal 
in origin and border with values of pyrite with a volcanic origin (Figure 23 and Appendix 4). 
The large variations in Co/Ni contrast with the tight clustering of S/Fe ratios (Figure 22). 
Interesting that the petrogenetic context of the pyrite grains is similar in each sample (Figure 
10A, 11B and 16C; see Chapter 2) but the Co/Ni chemistry was very different. The granite 
pyrites have Co/Ni ratios that fall within the magmatic field (Figure 23 and 16C) defined by 
Xiao-Wen et al. (2015). The protolith is suggested to have a strong control on the Co/Ni ratios 
and Co/Ni ratio may not be a great measure of the fluid chemistry. 

As observed in pyrites from this study, Abraitis et al., (2004) have shown that As, Se, Co, 
Ni, Te and Au commonly occur at high concentrations in pyrite.  In addition, Ag and Bi also 
have elevated concentrations in some or all of the pyrite grains analysed here (Figure 25).  
Concentrations of Ag, Au and Bi are significantly enriched in pyrites from metasedimentary 
protoliths compared to calc-silicate or granite protoliths, whereas Co, Ni, As, Se and Te are 
enriched in pyrite grains from all rock types.  As-rich pyrite is considered by Abraitis et al. 
(2004) to be characteristic of pyrites formed at low temperature, consistent with the p-type S/Fe 
ratios of all pyrites analysed in this study.  It is not clear to what extent differences in the trace 
element concentrations of pyrites in the three protolith types reflect protolith control or the 
variable effects of hydrothermal alteration.  

 

3.4.2 Trace element deportment  

The behavior of trace elements and REE may differ depending on the process by which they 

may enter the sulphide mineral lattice, their ability to substitute for major elements, and their 

availability within different protoliths and from alteration processes (Abraitis et al., 2004). In 

this study, sulphide minerals (pyrite, chalcopyrite and bornite) showed consistently elevated 

concentrations of trace elements (Table 5). Elements of elevated concentration include those 

commonly observed to substitute for sulphur in the mineral lattice of sulphide minerals (As, Se 

and Te) (Bettina 1989; David et al., 1995; Abraitis et al., 2004), those which substitute for Fe 

in the mineral lattice (Co and Ni) (David et al., 1995; Abraitis et al., 2004) and those that 

substitute for Cu in the mineral lattice (Ag, Sn, Bi and In) (Bettina 1989; Carew et al., 2006). 

In particular, pyrite was consistently rich in Co, Au, As, Se and Te, and to a lesser extent Ag, 

Ni and Bi. Chalcopyrite was consistently rich in Cu, Se and Te, and some grains showed 

elevated Ag, Au and Bi, while bornite was consistently rich in Cu, Ag, Bi, Se and Te, with 

lesser Au and Sb.  

  Additionally, this study found that hematite consistently contained elevated concentrations 

of Sb, Bi, Cu, Mo and W, and to a lesser extent Co, Zn, Sn and Pb. Other studies with similar 

findings include Andrei et al. (2008), who found hematite with significant concentrations of W 

and Bi at Canadian Creek, Yukon, Canada; Carew (2004) who showed hematite from IOCG 

deposits in the Cloncurry district are characterised by elevated As, Ga, Sb and W 

concentrations; and Satoshi et al. (2010) who found Sb can substitute for Fe in iron-oxide 

minerals, particularly under oxidising conditions. Therefore, this study and others show that 

hematite has the capacity to incorporate a number of elements as lattice substitutions, including 

important pathfinder elements in IOCG systems. 
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  Magnetite analysed in this study did not show consistently elevated concentrations of trace 

elements. Ge, Sn, Sb and W showed variable concentrations, reaching ~10 times average 

crustal abundance in magnetite from one calc-silicate sample (Figure 27A). Sarah et al. (2014) 

showed that magnetite associated with magmatic-hydrothermal deposits including IOCGs and 

that forms at high temperatures (500°-700°C) typically preserves elevated concentrations of 

elements including Ni, V, Co, Zn, Mn and Sn. Conversely, magnetite forming at temperatures 

<500°C in hydrothermal (and other) environments will be notably depleted in these elements, 

likely due to their low solubility in low temperature fluids. The depletion of these elements 

within the magnetite analysed in this study is suggestive of formation associated with low 

temperatures (<500°C) in a hydrothermal environment. Carew (2004) showed that magnetite 

in IOCG systems in the Mt Isa district often preserve detectable concentrations of elements 

including Ti, Sc, Co, Ni, Cu, Zn, Ga, Sn, Pb, Mn, V, Cr and Mo. Similar patterns were observed 

in this study, although the concentrations of Mn, Ti, V and Cr are variable and Ga is consistently 

low (Figure 27A; Appendices 3 and 4).  

  In contrast to magnetite, hematite preserves elevated concentrations of trace elements.  

Hematite also often incorporates multiple inclusions of chlorite, quartz and sulphide minerals 

(Figures 10, 16 and 17) at a scale smaller than the ~30 micron laser ablation spot size used in 

analyses. Therefore, it is possible that elevated concentrations of trace elements resulted from 

inclusions (particularly, sulphide minerals), rather than from the hematite lattice. It is of note 

that apart from Co, the suite of elements enriched in hematite is different to the enriched 

elements in sulphide minerals.  

  Two feldspar types were identified: a sanidine-andesine-anorthite group and K-feldspar 

group (Figure 30). The former shows a higher concentration of Sr, lower concentrations of 

other trace elements and a narrower distribution range for trace elements normalised to upper 

crust values (Figure 30). Two K-feldspar samples (one from calc-silicate and another from 

amphibolite) contain Cu at ~100 time average crustal abundance. The trace elements including 

Th, U, Zr, Hf, Nb, Ta, W, Co, Ni and Cu are well below average crustal abundance in sanidine–

andesine–anorthite and vary from 0.1-10 times average crustal abundance in K-feldspar. K-

feldspar grains analysed in this study consistently contain Rb and Ga at a slightly greater 

concentration than average crustal abundance. K-feldspar from two locations was analysed - 

one from the centre of a hematite vein (sample 2066203) and the other from the within a 

carbonate vein (sample 2066199). The K-feldspar from within the hematite vein was found to 

be Ba-rich (~ 1.2 wt % Ba) and Fe-poor (~ 0.3 wt % Fe), and the calc-silicate K-feldspar is Fe-

rich (~ 1.2 wt % Fe) and Ba-poor (~ 0.03 wt % Ba). These results are consistent with the 

findings of Kontonikas-Charos et al. (2017), who also report Ba-rich and Fe-rich K-feldspar in 

the eastern Gawler Craton IOCG system. Furthermore, Viladkar (2015) suggested that 

substitution of K by Ba in K-feldspar is reflective of very high temperatures during magma 

crystallisation. This suggests that the Ba-rich feldspar may have grown under higher 

temperature conditions relative to the Fe-rich feldspar identified in this study. David et al. (2000) 

and Henry et al. (2015) also suggested that growth of Ba-rich and Fe-rich K-feldspar is 

reflective of involvement of Ba-rich and Fe-rich fluids. 

  Chlorite from calc-silicate sample 2066635 showed higher trace element concentrations 

(with the exception of Rb, Ni, Zn and Ga) than chlorite samples from metasedimentary rock 

and granite protoliths. Chlorites from the calc-silicate sample had elevated concentrations of 

Sb and Bi and a slightly elevated concentrations of Cu, Ag and Co. In contrast, chlorites from 

the metasediment sample had elevated Cu and Ag and slightly elevated concentrations of Bi. 

Furthermore, chlorite from the calc-silicate sample had higher ∑REE and LREE enrichments 

compared to chlorite from other sample types, which showed depleted LREE compared to 
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HREE. Uvarova et al. (2018) identified late chlorite recrystallisation is recorded by 

compositional variation of chlorite proximal to chalcopyrite, these are consistent with the 

observation results for remobilisation and deposits of Cu.  

  Chlorites from the same geothermal field can have wide compositional variations related 

to protolith and thermodynamic conditions, particularly temperature, but also pressure and fluid 

composition (Dodge et al., 1973; Cathelineau and Nieva. 1985; Hillier et al., 1991; Árkai et al., 

1997; Bertoldi et al., 2001). For instance, chlorite in this study contained elevated 

concentrations of Co, Cu, Zn, Ga, Ge, Ag, Sb and Bi. This suite of trace elements differed to 

trace elements identified by Wilkinson et al. (2015) - K, Li, Mg, Ca, Sr, Ba, Ti, V, Mn, Co, Ni, 

Zn and Pb - which can be incorporated in the chlorite lattice and display systematic spatial 

variations relative to centres of porphyry mineralisation. Three endmember chlorite sample 

types (Fe-rich, Mg-rich and Al-rich) are shown to be strongly influenced by composition of 

coexisting minerals (Dodge et al., 1973; Bernard et al., 1989; Patrice et al., 1993).   

  There have been various attempts to use major element chlorite chemistry as a 

geothermometer (Cathelineau and Nieva, 1985; De Caritat et al., 1993). Cathelineau and Nieva 

(1985) showed that Al content in hydrothermal chlorite was positively correlated to 

temperature and proposed that it could be used as a geothermometer. Application of the 

Cathelineau and Nieva (1985) geothermometer to chlorite from this study yielded formation 

temperature estimates between 250⁰and 290⁰C for a majority of samples (Figure 43). However, 

De Caritat et al. (1993) showed that no single geothermometer provides satisfactory 

temperature estimates over the range of conditions where chlorite might form. Thus, the 

temperature of formation estimates of 250⁰-290⁰C for chlorite in this study is equivocal.  

  Previous studies suggest that variations in trace element content within biotite associated 

with magmatic rocks is controlled by the anhydrous and volatile content of the melt (Nash and 

Crecraft, 1985) and can be used to correlate geographically disparate volcanic eruptions 

(Sliwinski et al., 2017). Biotite grains host within granite in this study contains consistently 

elevated concentrations of Rb, Nb, Co, Ni, Zn, Ga, Ge and Sn (Figure 36), and is consistent 

with the composition of magmatic biotite as described by Pearce et al. (1984). Two REE 

patterns were also observed in the biotite grains - one with relatively higher LREE content and 

a negative Eu anomaly, and the other with low LREE content and a positive Eu anomaly. The 

overall ∑REE for both groups is below average PAAS. Nash and Crecraft (1985) characterize 

biotite associated with silicic magmas as being enriched in LREE and having negative Eu 

anomalies. This suggests that the group of biotite grains with similar LREE and Eu anomaly 

patterns may also be related to a silicic magma. The Al content of biotite has also been 

suggested to be a useful vector towards potential IOCG mineralization (Porter 2010).  

However, our results identified a decrease in Al as a distal vector using biotite in unaltered 

granite (Figure 36). 

  Despite the common occurrence of white micas as an alteration product in hydrothermal 

mineral systems, there are few published studies on trace element chemistry of hydrothermal 

white mica. Zack et al. (2001) studied white mica from high pressure subduction zone settings 

and found that trace element behavior is complex and related to co-existing mineral 

assemblages, fluid-rock reactions, temperature and pressure, with significant trace element 

enrichment in Cs, Rb and Ba. Cohen (2011) showed that hydrothermal white mica associated 

with sericitic alteration from the Ann-Mason Cu porphyry deposit in Nevada is enriched in W, 

Sn and Tl. Yang et al. (2001) concluded that the composition of white mica does shows 

complex variation in major element chemistry from phengitic to muscovitic compositions in 

proximity to fluid channels and/or mineralization. Similarly, Tappert et al. (2013) showed that 
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variations in white mica major element chemistry is related to the degree of hydrothermal 

alteration, whereby phengite in heavily sericitized, ore-bearing rocks is Si- and Mg-poor, and 

Al-rich relative to phengite from weakly sericitized rocks. On the other hand, a number of 

studies have examined trace element chemistry of muscovite from granites and pegmatites 

associated with Sn, W, Li and rare metal mineral systems (Smeds, 1992; Neiva et al, 2002; 

Singh 2007; Wang, 2017). These studies highlight the potential for magmatic muscovite to 

incorporate elevated concentrations of Rb, Cs, Y, U, Nb, Ta, Pb, Sn, Bi, Be, W, Li, Ga, Ti and 

Mn, with the potential to be used as geochemical exploration tools. Magmatic muscovite 

associated with Li and Sn mineralisation typically show high concentrations of Sn, even in the 

absence of cassiterite (e.g. Smeds, 1992). Neiva et al. (2002) indicated that magmatic 

muscovite partitioned Sn, Sc, Sr and Ba compared to co-existing magmatic biotite in 

peraluminous granites from Portugal. Wang et al. (2017) analysed coexisting magmatic 

muscovite and biotite in granites from the Nanling Range (South China) and found that 

muscovite had typically flat REE profiles with prominent negative Eu anomalies and elevated 

incompatible trace elements including Rb, Cs, Y, U, Nb, Ta, W, Sn, Pb, Bi, Li, and Be compared 

to comagmatic biotite.  

  Muscovite analysed in this study preserves no negative Eu anomaly with most REE lower 

than PAAS and consistently elevated concentrations of Ga, Ge, Sn, As, Sb, Sn, Se, Rb, U and 

W (Figure 38), of which As, Sb, W, Bi, and Se are known key pathfinder elements for the 

eastern Gawler Craton IOCG alteration system (Fabris et al., 2013b). Trace elements in 

muscovite are generally incorporated by ionic substitution during magmatic crystallisation 

(Singh, 2007). Previous research suggests that Rb and Li are likely substitutes for K in 

muscovite structures, whereas W, Nb, Ga, Ti, Mn and Fe are likely substitutes for Al and Si in 

combinations that maintain charge balance (Graham and Morris, 1973). Of relevance to white 

micas from the eastern Gawler Craton, Sb5+ oxidation state has a similar ionic radius to W5+ 

and Ti4+ (Graham and Morris, 1973; Hans 1985) suggesting potential for ionic substitution in 

white mica. Thus, elevated concentrations of W and Sb in white micas of the eastern Gawler 

Craton require a coupled substitution tri- or divalent species (for example Fe or Mn) to maintain 

charge balance (see Appendix 6). Petrological results from this study show that muscovite in 

calc-silicate and metasediment was formed during hydrothermal alteration (Chapter 2) and may 

therefore show that hydrothermal white mica associated with IOCG deposits in the Gawler 

Craton is elevated in a variety of trace elements (Figure 38). Elevated W and Sn within the 

hydrothermal white mica is similar to the results of Cohen (2012).   

Consistent with Land (1980), this study found dolomite is depleted of trace elements, 

particularly Ni and Ga (Figure 41). With no unique geochemical fingerprint, dolomite results 

from a variety of evolutionary trends (Chakhmouradian et al., 2016). Large-ion lithophile 

elements (LILE), such as Sr, Ba and Pb, within magmatic dolomite that is preserved in 

carbonatite rocks can be depleted by crystal fractionation of minerals such as fluorapatite and 

monazite. Dolomite alteration is an important upgrading process for Au and Ag (Pan and Dong, 

1999). The highest trace element concentrations in dolomite identified in this study were 0.12 

ppm for Ag and 0.06 ppm for Au, a finding consistent with CAM and HSCC alteration intensity 

of the pathfinder index, with the exception of MB. Further, dolomite contains Cu, Sb and Bi 

above average crustal abundance, but most trace elements were below average crustal 

abundance. Cu and Bi are present in concentrations 1-2 orders higher in altered calc-silicate 

samples.  

  Apatite in the study area contains U (up to 85 ppm), W (up to 38 ppm), As (up to 130 ppm) 

and Sb (up to 10 ppm)-rich and was responsible for REE enrichment linked to mineralogy 

(Appendix 4). Mao et al. (2016) suggested that apatite is characteristically enriched in Ca with 
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have lower concentrations of trace elements that partition into the Ca sites (REE, Y, Mn, Sr, 

Pb, Th, and U) from mineralized carbonates relative to apatite from un-mineralized 

carbonatites. In particular, IOCG deposits in Canada, China, and Mexico were shown to 

typically preserve large negative Eu anomalies and low Mn contents. The positive Eu 

anomalies and high ΣREE in apatite in this study are inconsistent with Mao et al. (2016). 

Apatite is not the only mineral responsible for REE concentration but in the area apatite is one 

of major responsible for REE concentration. 

  High and low temperature mineral phases have been identified in this study from the 

mineral chemistry. These phases include magnetite, hematite and chlorite (Figs. 10, 12, 34). 

Magnetite and hematite in particular are useful phases because they are widespread and there 

is considerable empirical and thermodynamic evidence (Oreskes and Einaudi, 1990; Bastrakov 

et al., 2007; Skirrow, 2010; Chapter 4 of this thesis) to suggest that they are stable at contrasting 

temperature and redox conditions, magnetite being stable at hotter, more reduced conditions 

and hematite at cooler, more oxidized conditions. A general observation of this thesis is that 

low temperature mineral phases show higher concentrations of ore elements than high 

temperature phases. For instance, high temperature chlorite has less Cu, Au, U and REE 

elements, while low temperature chlorite has higher concentrations of these ore elements. The 

higher concentrations may be reflective of ore-element bearing micro-inclusions (Figure 10, 

12, 16 and 17) or substitution of ore elements into the crystal lattice. 

 

3.4.3 Relationship between trace elements and fluids 

The high Cu concentrations from chalcopyrite, hematite and chlorite in metasediments and 

calc-silicate indicate at least two Cu sources: metasediment and calc-silicate (hydrothermal). 

These findings were consistent with magmatic heat driver and two Cu sources for IOCG 

mineralisation proposed by authors including Bastrakov et al. (2007), Porter (2010) and Daroch 

and Barton (2011).  

Bonin et al. (1995) and Thomas et al. (2005) suggested that F enrichment in muscovite 

indicates a magmatic fluid source and input from the mantle. In this study, muscovite in granite 

and calc-silicate rocks were identified as either F-rich (0.3-0.5 wt % F) or F-poor (0 wt % F). 

F-rich muscovite may be consistent with Bonin et al. (1995) and Thomas et al. (2015). The 

elevated concentrations of F in chlorite, biotite and carbonate are also indicative of fluid 

circulation and these support Bonin et al. (1995) and Thomas et al. (2015). This can be used to 

infer that magmatic fluids were involved alteration which produced muscovite, chlorite, biotite 

and carbonate.  

The presence of K-feldspar with elevated Ba, Na and Fe concentrations along with Ba-rich 

muscovite may indicate Ba-rich fluids in the study area. The high concentration of As and p-

type S/Fe ratios of pyrite is consistent with pyrite formation at low temperature (200⁰-300⁰ C; 

Abraitis et al., 2004), which is in contrast to the interpretation of Bastrakov et al. (2007) who 

suggested ore fluid temperatures were 450⁰ -500⁰ C.  
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Figure 43. Calculated temperature estimates for chlorite using the method of Cathelineau and Nieva. (1985).  

 

Table 5. The trace elements of minerals contribute to whole rock data 

Minerals Typical abundance 

range % 

Average abundance of eleven 

samples approx.. % 

Approx. enrichment factor required to 

influence whole rock chemistry 

Elements in this range 

Pyrite 0-5 1 100 Co Au As Se Te (Ag Ni Bi) 

Chalcopyrite 0-3 0.5 200 Cu Se Te ( Ag Au Bi) 

Bornite 0-25 2.5 40 Cu Ag Bi Se Te ( Au Sb) 

Hematite 0-30 15 6 Sb Bi W Cu Mo (Co Zn Sn Pb)  

Magnetite 0-20 2 50 No 

K-feldspar 0-30 15 6 No 

Chlorite 2-35 19 10 Sb Bi (Cu Ag Co As) 

Biotite 0-25 3 30 No 

Muscovite 0-40 4 25 (Se) 

Dolomite 0-20 7 20 (Cu Bi) 

 

3.4.4 Significance of trace element patterns 

Trace element patterns in the minerals have the potential to be controlled by a number of factors, 

including similar physical properties of the elements (e.g. diameter, charge density, 

configuration of outer shell electrons). Here I consider factors related to protolith versus factors 

related to the IOCG mineralising system. As a general rule, the minerals that appear to have 

grown prior to mineralisation (biotite, anorthoclase) have tight trace element patterns, 

presumably representing protolith (or early alteration) controls. Conversely, minerals 

associated with alteration (e.g. hematite and chlorite) have a broader spread of trace element 

patterns with locally high values. Their trace element concentration might well be some 

measure of the mineralizing system.  

  Minerals associated with early high-T alteration (magnetite, sanidine and some calc-

silicate minerals) preserve local trace element enrichments, but analysis suggests these 

minerals contributed less trace elements than HSCC alteration minerals (hematite, chlorite and 
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dolomite). It is interesting to note that most minerals associated with the HSCC alteration type 

(hematite, chlorite, muscovite and sulphides) had some form of localised enrichment in a subset 

of pathfinder minerals.  

 

3.4.5 Mineral Contributions to Whole Rock Chemistry  

The trace element patterns preserved within minerals have the potential to be controlled by a 

number of factors, including similar physical properties of the elements (e.g. diameter, charge 

density and configuration of outer shell electrons) and the availability of elements from fluids, 

host rocks or other sources. Here I consider factors related to the protolith versus factors related 

to the IOCG mineralising system. As a general rule, the minerals that appear to have grown 

prior to mineralisation (biotite, anorthoclase) have tight trace element patterns, presumably 

representing protolith (or early alteration) controls. Conversely, minerals associated with 

alteration (e.g. hematite and chlorite) have a broader spread of trace element patterns with 

locally high values. Their trace element concentration might well be some measure of the 

mineralizing system. 

  Initially, I wanted to examine trace element deportment in minerals within a series of rock 

sequences. Specifically, I sought to determine whether variations in the alteration index of 

Fabris (2013) reflect different types of alteration and/or deportment of elements in different 

phases. For example, at low alteration index, was there less alteration and were the elements in 

silicates or oxides rather than in sulphides? Using trace element analyses of multiple minerals 

from individual samples, I explored the whole rock geochemical signal by looking at elemental 

deportment in each mineral. I identified ten pathfinder elements as those present in 

concentrations above ten times average crustal abundance. Different rock samples contained 

different pathfinder elements. For example, granite samples had only 1-3 pathfinder elements 

and calc-silicate samples had 2-9 pathfinder elements. The association between more 

pathfinder elements being present in elevated concentrations in whole rock analysis and higher 

trace element content in the mineral analysis, including REE (see Appendix 5) is very clear. 

The control of each mineral on the observed whole rock trace element geochemical signature 

was assessed by multiplying the average LA-ICPMS results by the average abundance for 

analysed minerals and summing the results. 

Metasedimentary rock with (CAM-HSCC alteration) 

The first metasedimentary rock with HSCC alteration (sample 2066641) came from a depth of 

799 m in drill hole IHAD3 outside Emmie Bluff. Assay for this whole rock sample showed 

high concentrations of the pathfinder elements As, Bi, Sb and Se (Table II in appendix 1). A 

second sample came from a depth of 1016 m in IHAD5 (2066655) with CAM alteration inside 

Emmie Bluff (Table II in appendix 1). Assay for this whole rock sample showed high 

concentrations of the pathfinder elements Cu, Mo, and Se. Analysed minerals in these samples 

include chlorite, dolomite, pyrite and chalcopyrite (Figure 44). Measured minerals contained 

S, Cu, Sb, Bi and Pb at average weight sums roughly equal to whole rock assay results. Other 

major constituents of these rock samples (quartz, feldspar and calcite) were not analysed. 

Sample 2066655 contained chalcopyrite with Cu, Ag and Bi trace element patterns, dolomite 

with Ce, and a combination of magnetite and hematite with Sb (Figure 44). No apatite was 
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measured in this sample which means that our findings may not reflect the complete whole 

rock geochemical signature for these samples. 

  For the above described metasedimentary rock sample 20066641, our results show that 

Ag and Pb was controlled by magnetite, but Cu, Sb, Bi, Ta, Ce, Th and U were controlled by 

a combination of hematite and biotite with no associated Cu minerals. Hematite in this sample 

contained Sb, Ta, Ce, Th and U at 57-92% of total weight average and was matched to 16-98% 

of the assay, with some uncertainty (see Appendix 5). For sample 2066655, results suggest 

hematite-pyrite contributed major concentrations of Sb, Ta, Th and U. Chalcopyrite contributed 

concentrations of Cu, Bi, Ag and Pb. Dolomite contributed major Ce to whole rock assay. 

Hematite contained Ta-Ce at 20-72% total weight average, matched to 1-26% for the assay, 

indicating some uncertainty. In general, it is also noted that element enrichment within hematite 

is not as high as in sulphide minerals, however, hematite still has the potential to influence 

whole rock chemistry because hematite is typically more abundant than the sulphides, with 

hematite commonly accounting for >10% of rock by mass.   

Unaltered and Altered Granite 

In this study, four granite samples were analysed, ranging from 2066178 (least altered), to 

2066174 and 2066656 (moderate alteration), to the highest HSCC altered sample, 2066169. 

Sample 2066178 (least altered) came from a depth of 529 m as unaltered granite in drillhole 

HL002. Whole rock assay for this sample show high concentrations of Bi with little MB 

alteration. Sample 2066174 came from a depth of 539 m as HSCC altered granite in drillhole 

PSC4_SASC2. Whole rock assay for this sample indicated concentrations of As and Se. 

Sample 2066656 came from a depth of 819 m as CAM/HSC altered granite in drillhole IHAD2. 

Whole rock assay for this sample indicated high concentrations of Sb and Se. Sample 2066169 

came from a depth of 1139 m in DRD drillhole with HSCC alterations. Whole rock assay for 

this sample indicated concentrations of Ag, S and W. 

 Trace element content was different among the four granite samples. Analysis of sample 

2066178 (unaltered granite) showed that Sb, Th and U were controlled by hematite, Ag was 

controlled by K-feldspar and Cu, Ce and Pb were controlled by a combination of hematite and 

K-feldspar. For sample 2066656 (muscovite altered granite), Sb, Bi and Ta were controlled by 

hematite, Ce was controlled by K-feldspar and other elements (Cu, Ag, Pb, Th and U) were 

controlled by a combination of hematite, K-feldspar and muscovite (Figure 45). For dolomite 

altered granite (sample 2066174), Ce and U were controlled by apatite, Ta was controlled by 

biotite and Cu, Ag, Sb, Bi, Pb and Th were controlled by K-feldspar-biotite-dolomite–hematite. 

For sample 2066169, hematite altered granite, Cu, Ag, Ta and Bi were controlled by 

chalcopyrite and Sb, U and Pb were controlled by hematite (Figure 45). 

 Concentrations of ore elements within minerals hosted by granite was used to determine 

alteration processes. Compared to unaltered granite (sample 2066178), the hematite altered 

granite sample contained K-feldspar with 6-30 times Cu, chlorite with 8.2 times Cu and 

hematite with 7.7 times Cu. Again comparing unaltered granite with hematite-altered granite, 

the hematite-altered granite contained Ce, Th and U enrichment at 94-197 times, 696-1740 

times and 80-823 times the level of unaltered granite, respectively, for K-feldspar (Appendix 

5). The profile of granite ore enrichment was K-feldspar alteration with enrichments of Cu, Ce, 

Th and U, chlorite alteration with enrichment of Cu, S, Ag, Bi and U, and hematite alteration 

with enrichment of Cu, Sb and Pb in a progressive alteration processes. Progressive alteration 

processes were accompanied by Ag depletion (muscovite vs dolomite vs hematite alteration), 

S, Sb, Pb, Th and U (muscovite vs dolomite alteration) and Ce and Th depletion (dolomite vs 

hematite alteration) (Appendix 5). Alternatively, progressive alteration processes were 
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accompanied by Pb depletion (muscovite alteration), Ta and Ce depletion (muscovite to 

dolomite alteration and Ce, Th and U depletion (dolomite to hematite alteration) (Appendix 5).  

Overall, the association between elevated concentrations of ore elements and alteration 

minerals suggests that the hematite-altered granite (sample 2066169) became enriched in ore-

elements during alteration. 

Calc-silicate with CAM and HSCC alteration 

In this study, four calc-silicate samples were analysed, and range from low (2066166), to 

moderate (2066199 and 2066635) to high (2066203) alteration intensity. The low alteration 

intensity sample (2066166) came from a depth of 970 m as chlorite altered calc-silicate in 

drillhole CSD1. Whole rock assay for this sample indicated high concentrations of Se and W 

with MB alteration. One moderate alteration intensity sample (2066199) came from a depth of 

683 m as CAM altered calc-silicate in drillhole WWDD1. Whole rock assay for this sample 

shows high concentrations of Au, Bi, S, Sb, Se and W. The second moderate alteration intensity 

sample (2066635) came from a depth of 855 m as HSCC altered calc-silicate in drillhole 

IHAD6. Whole rock assay for this sample shows high concentrations of As, Bi, Cu, S, Sb and 

W. The high alteration intensity sample (2066203) came from a depth of 854 m in drillhole 

GHDD4 and preserves HSCC alteration. Whole rock assay shows elevated concentrations of 

Au, Ag, As, Bi, Cu, S, Sb, Se and W. 

  In all samples, Cu, Bi and Ag concentration in the whole rock chemistry is controlled by 

chalcopyrite, with the exception sample 2066199 that does not contain Cu-minerals. For CAM 

altered calc-silicate in 2066166, Sb and Pb were controlled by magnetite and chlorite, 

respectively, and Ta, Se, Th and U were controlled by garnet (Figure 46). For carbonate altered 

calc-silicate (2066199), all trace elements were controlled by a combination of K-feldspar and 

biotite. For HSCC chlorite altered calc-silicate (2066635), Sb, Ta, Se, Pb, Th and U were 

controlled by a combination of hematite and chlorite. In the highest alteration intensity sample 

(HSCC altered calc-silicate, 2066203), Ta was controlled by K-feldspar, Th and U were 

controlled by a K-feldspar-pyroxene combination and Sb and Pb were controlled by a 

pyroxene-Cu minerals-biotite ±K-feldspar combination (Figure 46).  

  Our findings showed that the calc-silicate elemental profile was chalcopyrite-Cu, Ag and 

Bi enrichment, chlorite-Pb, magnetite-Sb, K-feldspar-Ce and Ta, chlorite-hematite-Ce, U and 

Pb, and hematite-Sb enrichment (Figure 46). Chlorite in moderate alteration intensity sample 

2066635 contained high Cu, Sb, Bi, Ce, Th and U, while chlorite in low alteration intensity 

sample 2066166 contained low Cu, Sb, Bi, Ce, Th and U. Thus, I found that, for chlorite in 

calc-silicate samples, alteration intensity influenced the composition and key element 

concentration, where the high alteration intensity sample contained between 12-1680 times of 

Cu, Sb, Bi, Ce, Th and U as compared to the low alteration intensity sample (see Appendix 5). 

Amphibolite 

Amphibolite sample 2066177 came from a depth of 471 m in drillhole HL002. Whole rock 

assay for this sample indicated high concentrations of Bi with little MB alteration. In the CAM 

altered amphibolite, Cu and Se were controlled by chlorite and dolomite respectively, and Ag, 

Sb, Bi, Ta, Pb, Th and U were controlled by a combination of chlorite and dolomite (Figure 

47). For this sample, whole rock analysis showed that 53% of Ce present was attributed to 

chlorite and dolomite (Figure 47). Further, our analysis showed that chlorite and dolomite 

contained 1-17% of S, Cu, Ag, Sb, Bi, Ta, Pb, Th and U, noting some uncertainty (Figure 47). 

Analysis of 11 hematite sites in this sample failed to show expected Fe content (at 47 wt % 
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content, rather than 69 wt % content), suggesting hematite in this sample was not pure. The 

presence of impure hematite influenced inclusion of other rock elements, including Si, Al and 

possibly Mg, K or Ca, and mineral inclusions such as quartz, chlorite, dolomite and biotite (1-

5 μm inclusions). 

 

Figure 44. Calculated mineral contribution of trace elements to the whole rock data. In figures 44 to 47 the y-axis 
represents the percentage of the total whole rock concentration of each element that can be attributed to different 
minerals in the rock. 100% is effectively the whole rock concentration. Each mineral component is calculated by 
multiplying the estimated mineral abundance in the rock by the measured element concentration in that mineral. 
There is no requirement that the sum of mineral components should equal 100% (because not all minerals in the 
rock have been analysed and because the whole rock data are measured from 1m composites whereas mineral 
chemistry is measured from individual mineral grains). The component labelled “assay” in each plot represents the 
difference between the whole rock concentration and the summed mineral components. Where the sum of mineral 
components is close to 100% I consider it reasonable to interpret that the trace element concentration is controlled 
by the minerals that have been analysed. A) Metasediment sample 2066641 preserving HSCC alteration. There 
was no analysis of 35% quartz, 10% K-feldspar, 20% chlorite and 1% apatite. Cu, Sb, Bi and Ce are from hematite 
and biotite. B) Metasediment sample 2066655 preserving CAM alteration. There was no analysis of 25% quartz, 
15% K-feldspar and 2% calcite in the sample. Cu and Bi are dominantly from chalcopyrite, Ce is dominantly within 
dolomite and Sb is within magnetite.  
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Figure 45. Calculated mineral contribution of trace elements to the whole rock data for granitic samples. A) Sample 

2066178 (least altered) preserving minor MB alteration. There was no analysis of 35% quartz and 1% apatite in 

our sample. Cu, Sb and Ce are from chlorite. B) Sample 2066656 (moderate alteration) preserving CAM/HSCC 

alteration. There was no analysis of 10% quartz, 10% chlorite and 5% ilmenite in our sample. Cu, Sb, Bi and Ta 

are dominantly from hematite and Ce is from K-feldspar. C) Sample 2066174 (moderate alteration) preserving 

HSCC alteration. No analysis is available for 30% quartz and 20% chlorite in the sample. Ce is in apatite and Cu, 

Sb and Bi are in K-feldspar and biotite. D) Sample 2066169 (most altered) preserving HSCC alteration. No analysis 

of 20% quartz, 5% K-feldspar and 5% muscovite is available. Cu, Ag, Ta and possibly Bi are in chalcopyrite Sb 

and U are in hematite.  
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Figure 46. Calculated mineral contribution of trace elements to the whole rock data for calc-silicate rocks. A) 

Sample 2066166 (least altered) preserving minor MB alteration. There was no analysis of 30% quartz and chlorite 

in the sample. Cu, Ag and Bi are in chalcopyrite, Ce is in garnet and Sb is in magnetite. B) Sample 2066199 

(moderately altered) preserving CAM alteration. There was only analysis of 20% K-feldspar and 1% biotite in the 

sample. Sb, Ce, Ta, Th and U are from K-feldspar. C) Sample 2066635 (moderately altered) preserving HSCC 

alteration. There was no analysis of 25% quartz and 10% K-feldspar and 3% apatite in the sample. Cu, Ag and Bi 

are in chalcopyrite and Sb, Ce, Ta, U and Th are in chlorite and hematite. D) Sample 2066203 (most altered) 

preserving HSCC alteration. There was only analysis of 15% K-feldspar, 3% chalcopyrite, 0.1% biotite and 15% 

pyroxene. Cu and Bi are in chalcopyrite.  
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Figure 47. Calculated mineral contribution of trace elements to the whole rock data for amphibolite sample 
2066177 that preserves CAM and minor MB alteration. There was only analysis of 20% chlorite and 20% dolomite 
in the sample. Cu is from chlorite and Ce is from dolomite.   

 

3.4.6 Relationship between paragenesis and fluid/rock interactions  

Overall, the genesis of IOCG deposits involves crustal and mantle contributions (Johnson and 
McCulloch 1995, Porter 2010) including for sources of Cu, Au and REE. The trace elements 
compositions of the minerals analysed in this study supports a system of complex fluid 
characteristics and multiple alteration phases as well as multiple fluid and metal sources, as has 
been interpreted by previous authors (e.g. Porter 2010). Pyrite interpreted to have a volcanic 
origin may be related to extrusion of the Gawler Range Volcanics and associated magmatic 
activity. The moderate temperature of fluids associated with pyrite mineralization may have 
been attained by mixing of high temperature fluids from magmatic sources with lower 
temperature fluids equilibrated with volcano-sedimentary rocks related to the Gawler Range 
Volcanics (Figure 23 and 24). The fluids migrated along fault systems that were active at the 
time of magmatism. Pyrite formed as S-rich, hydrothermal p-type pyrite and incorporated Cu 
that was derived from metasediment and granite sources.   

 The pathfinder elements have either been incorporated into the mineral lattice or are present 
as inclusions. For instance, chalcopyrite shows enrichment in Au, Ag, In, Bi, Se and Te, which 
display positive relationships with each other (Figure 25B) suggesting that these elements may 
be incorporated into the lattice of the chalcopyrite rather than within mineral inclusions. Where 
the pathfinder elements are present as inclusions, this is indicative of at least two phases of 
mineral growth. In this case, the ore elements entered the lattice of the mineral phase that was 
to become an inclusion at suitable temperatures (Figure 18, 19 and 20). The ore element-
bearing mineral inclusions either pre-existed the host minerals and the host mineral grew 
around them, or the minerals grew at the same time and one was enveloped around the other.  

 The trace element content of K-feldspar indicates an early phase of mineral growth under 
hot conditions, resulting in leaching of Cu, Au, U and REE to fluids (Yang 2009). The same is 
interpreted for magnetite, chlorite and pyrite. These mineral phases later underwent alteration 
under cooler conditions resulting in further mineral growth characterized as having lots of 1-5 
µm size mineral inclusions. The mineral inclusions are the host to the ore elements. The trace 
elements (Sb, Bi, W, Cu and Mo and lesser content Co, Zn, Sn and Pb) of magnetite–hematite 
support mineralisation in cool stage (Bastrakov et al., 2007). The host rocks for IOCG 
mineralization are mostly hematite breccia.   

 Fe alteration can result in an increase in the mineral Fe contents rather than new mineral 

growth. Fe metasomatism leading to higher Fe contents and replacement of Fe2+ by Fe3+ (e.g. 

hematite replacing magnetite) is linked to Au-Cu enrichments in minerals (such as pyrite with 
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high Co, Ni, Au, As, Bi, Se and Te) in metasediment, calc-silicate and granite, Cu and Ag in 

metasediment (Figure 25). These interpreted that CAM, MB and HSSC orebodies and nearby 

REE richest zones (Porter, 2010). Fe alteration is associated with leaching of REE from rock 

and to fluids.  

 Major ore formation is related to the S bearing fluids (p-type pyrite) and an oxidizing, 

hematite stable environment. Early phases of Cu-bearing minerals may have formed at high 

temperatures in a reducing environment and are associated with the K-feldspar-biotite-

muscovite assemblage (Figure 19 and 20). This Cu mineralization is characteristically low 

grade. As the fluids migrated to higher crustal levels, they became more hypersaline, ore 

elements were leached and a chlorite-hematite alteration occurred. As temperatures decreased, 

conditions changed to a more oxidizing environment resulting in ore formation or upgrading 

and development of a chlorite-hematite-K-feldspar±pyrite+quartz assemblage. K-feldspar 

preserving ore mineral inclusions and pyrite-quartz veins (Figure 19 and 20) formed at this 

time. Later dolomite-impure hematite-manganosite-apatite veins formed without Cu-Au-U and 

with REE mineralisation (Figure 18 and 20).  

  

3.5 CONCLUSION 

This study assesses drill core from a number of locations across the Emmie Bluff IOCG deposit 

and surrounding region. Samples include a progression of alteration intensities within different 

rock types to assess the behavior of element deployment during mineral growth and how this 

is influenced by protolith. The trace elements had the footprints for alteration/mineralisation 

systems in the study area. Two footprints were the phase change inside mineral zones, and 

processes of mineral replacement by another, for example, hematite replacing magnetite, 

chlorite replacing biotite and monazite replacing apatite. The high temperature K-feldspar and 

magnetite were responsible for ore element removal to fluids. The low temperature hematite 

and chlorite were responsible for deportment of ore elements. This may be lack of ore elements 

in the cool fluid inclusions. Magnetite decomposition to hematite was one of the mineralisation 

processes but also other minerals (e.g. chlorite) were. 

  However, the magnetite was also stable at low temperature without decomposition, such 

as MB and CAM remaining magnetite. The findings indicated that the low temperature mineral 

phase ΙΙ contained much more ore elements such as K-feldspar, chlorite, muscovite-biotite and 

magnetite-hematite. Furthermore, phase ΙΙ of minerals had much more 1-5 µm size mineral 

inclusions. It was believed that the 1-5 µm size mineral inclusion made one of the major 

contributions to ore. The multiple mineralisations had derived from the mineral trace element 

markers. 

  Fe-alteration was responsible for Au-Cu-U mineralisation upgrading in mineral trace 

elements. The magnetite and hematite had similarity of REE patterns for REE removal. This 

could be interpreted that the REE high grade ore was always nearby the main IOCG Cu-Au 

orebodies. 

  Carbonate alteration was the major contribution for Th, U and REE upgrading. The garnet, 

pyroxene and manganite phase had 10-70 times enrichments of ore elements. The apatite was 

the REE-richest mineral. Future mineralogy studies (garnet, manganite, pyroxene and apatite) 

might reveal the details of carbonate effects in them. The HCh models will produce the details 

of the alteration/mineralisation processes.  
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4  HCh thermodynamic models of IOCG systems of the eastern Gawler Craton, 

South Australia  

ABSTRACT  

In this chapter I present results of thermodynamic modelling undertaken to further understand 

the temperature, pressure, fO2 and fluid-rock ratio conditions responsible for a range of 

alteration types associated with iron-oxide copper gold (IOCG) mineralisation in the eastern 

Gawler Craton. Rather than demonstrating the conditions of ore formation - interested in effects 

in subeconomic and peripheral systems - e.g. where sulphide deposition is minimal. I modelled 

mixing of generic IOCG fluids (8-35 wt % NaCl equiv) with elemental concentrations 

consistent with measurements from fluid inclusion studies, and protolith compositions 

consistent with unaltered granite and calc-silicate sedimentary rocks. Modelling was conducted 

in a C-H-O-Cl-S-Na-K-Mg-Fe-Si-Al-Cu-Ca-Mn system at temperatures from 150⁰ to 500⁰C, 

fO2 of -34 to -26 and fluid-rock ratios from 10-3 to 104. The modelling provides semi-

quantitative constraints for mineral assemblages associated with IOCG mineral systems of the 

eastern Gawler Craton, namely:    

 The transition from magnetite to hematite is predicted to be temperature and fO2 

sensitive. Magnetite is predicted to occur at higher temperature and under more 

reducing conditions than hematite. 

 A progression from sanidine to microcline to muscovite with decreasing temperature is 

predicted. In low-K calc-silicate rocks this progression is predicted to occur at fluid-

rock ratios >1. In high-K granite protoliths, sanidine and microcline are predicted to be 

stable at low fluid-rock ratios and temperatures of >350⁰C and >250⁰C, respectively; 

whereas muscovite is predicted to be stable at temperatures <350⁰C and at fluid-rock 

ratios ≥1. 

 Chlorite is an expected alteration phase in calc-silicate and granite protoliths and is 

predicted to be more abundant in calc-silicate protoliths. 

 The Cu-sulphide minerals chalcocite, bornite and chalcopyrite are predicted to be 

temperature and fO2 sensitive and to occur only at fluid-rock ratios >1 in all models.   

Although Cu-sulphides are predicted to be stable over a range of temperature and fO2 

conditions, they are predicted to be most abundant between temperatures of ~300⁰ to 250⁰C, 

fO2 of -26 to -34 and at fluid-rock ratios >10. This corresponds to alteration assemblages at the 

magnetite and hematite boundary, with abundant chlorite and muscovite alteration. At 250⁰C, 

fluid-rock ratio 1-10, fO2 -26 to -34, the muscovite-hematite-chlorite-k-feldspar assemblage is 

very similar to the petrogenesis observation. 
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4.1 INTRODUCTION 

The IOCG system in the eastern Gawler Craton is an important Cu-Au-U resource and has been 

extensively explored for valuable minerals. Alteration zones are key exploration areas in 

mineralisation systems (Pearce et al., 2015; Cleverley and Oliver, 2005). Alteration zones are 

the result of fluid-rock interactions as hydrothermal fluids migrate through the crust (Ord et al., 

2012). Circulating hydrothermal fluids are significant agents of geological change. They advect 

heat and mass and are unlikely to be in equilibrium with the rocks through which they are 

passing. New minerals form as the combined fluid-rock system is driven toward a new 

equilibrium (although they may never reach equilibrium due to the transient nature of 

hydrothermal systems). Iron Oxide Copper Gold (IOCG) mineral systems, including the 

eastern Gawler Craton, are characterized by extensive alteration zones with abundant iron 

oxides, chlorite, muscovite and carbonate minerals (Hitzman et al., 1992; Gow et al., 1994; 

1996; Haynes et al., 1995; Skirrow et al., 2002; 2007; Bastrakov el al., 2007; Porter, 2010; 

Wilkinson et al., 2015). Skirrow et al. (2002) identified three alteration types in the eastern 

Gawler Craton IOCG system: magnetite-biotite (MB), carbonate-alkaline minerals-magnetite 

(CAM) and hematite-sericite-carbonate-chlorite (HSCC). In our samples, MB is kept with 

major magmatic minerals (2066178) with the least alteration. CAM is in calc-silicate, with 

quartz-magnetite-hematite-chlorite-garnet assemblage (2066166) and with quartz-K-feldspar-

chlorite-carbonate-hematite-apatite assemblage (2066199). HSCC is from granite with 

hematite alteration (2066169), dolomite alteration (2066174) and calc-silicate with chlorite 

alteration incluiding hematite-calcite-pyroxene (2066203), with hematite alteration including 

dolomite-chlorite-gypsum (2066635). However, fluid-rock reactions during IOCG system 

formation remain unclear.  

In this chapter I present a series of thermodynamic models aimed at better understanding 

the fluid-rock interactions responsible for the suite of alteration assemblages observed in the 

eastern Gawler Craton IOCG mineral system. HCh is a thermodynamic modelling software 

package specifically designed for modelling fluid-rock interactions (Oreskes and Einaudi, 1992; 

Haynes et al., 1995; Johnson and McCulloch, 1995; Oliver et al., 2004; Cleverley and Oliver, 

2005; Bastrakov et al., 2007; Tooth et al., 2008; Schmidt et al., 2010; Tauson et al., 2013). In 

HCh modelling, the model is continually updated with a series of equilibrium states from a 

fully interactive database system (UNITHERM) (Cleverley and Oliver, 2005). Such models 

have been previously applied to Australian IOCG systems. Oliver et al. (2004) and Cleverley 

and Oliver (2005) used the HCh software to model fluid-rock reactions involved with sodic 

and potassic alteration in IOCG system of the eastern Mount Isa Block in northwest 

Queensland. In the eastern Gawler Craton, Haynes et al. (1995) used HCh modelling to 

describe fluid mixing relevant to Olympic Dam IOCG deposits and Bastrakov et al. (2007) 

applied HCh models to determine upgrading of the IOCG system involved in the alteration of 

magnetite to hematite. Building on the work of Haynes et al. (1995) and Bastrakov et al. (2007) 

I have constructed equilibrium thermodynamic models for granite and calc-silicate protoliths 

at a range of temperatures, pressures, fO2 and fluid-rock ratios. This enables presentation of 

predicted mineral assemblages in T-P, fO2 and fluid-rock diagrams as a means of visualizing 

the likely conditions of alteration and mineralization. 

I conducted HCh modelling based on Donington suite granite and calc-silicate to predict 
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formation conditions in the eastern Gawler Craton. I applied the model granite represents the 

Donington suite granite and model calc-silicate represents Wallaroo Group calc-silicate rocks. 

Fluids covered the fluid inclusion data with representing a number of variables, namely fluids 

in eastern Gawler Craton IOCG system. HCh models will produce the multiple quantitative 

parameters to demonstrate geochemical processes and provide understanding of mineralisation 

(Andreas et al., 2009). 

4.1.1 Background Geology 

Geology of the eastern Gawler Craton IOCG system consists of basement rock including 

granite and calc-silicate rocks (Chapter 1.3 and Chapter 3.1.2). Donington Suite granite and 

Wallaroo Group calc-silicates were overprinted with three mineral assemblages (MB, CAM 

and HSCC) related to mineralisation (Figure 48). Bastrakov et al. (2007) identified Br/Cl ratios 

of the magnetite-forming fluids measured beyond the range of typical magmatic and/or mantle 

values, allowing for the possibility that the fluids originated as brines from a sedimentary basin 

or the crystalline basement in the eastern Gawler Craton IOCG system. 

It has been suggested that the isothermal fluid–rock reaction may account for some 

alteration zonation of the Olympic Dam IOCG deposit (Cleverley et al., 2005). At least two 

sources of fluids, of contrasting temperature, composition, and oxygen isotope characteristics 

were involved in the formation of Olympic Dam (Oreskes and Einaudi, 1992).  

Bastrakov et al. (2007) indicated a relatively oxidised fluid and a high temperature 

hypersaline with rich-Cu content. The S, O and H stable isotope have been done by previous 

authors indicating the fluid reequilibration with granite and Wallaroo Group with low fluid-

rock ratios predate mineralisation (Oreskes and Einaudi, 1992; Bastrakov et al., 2007). 

Figure 48. There is the simple alteration systems of the eastern Gawler Craton, modified from Giles. 2013. 

Commonwealth Agreement Milestone 3.2.1 Report-DET CRC September 2013 (unpublished report). 
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4.1.2 Models of ore formation for the Gawler Craton IOCG deposits 

Previous authors have proposed four scenarios for the formation of IOCG mineralisation on 

the eastern Gawler Craton. Each scenario recognises the fundamental importance of redox 

reactions but places different emphasis on the nature of fluid/fluid or fluid/rock interactions 

and on the ultimate source and mechanism of precipitation of Cu and Au, namely (Table 6): 

1. Early reduced, magnetite stable alteration phase was overprinted by an oxidised, 

hematite stable phase (Reeve et al., 1990; Oreskes and Einaudi, 1990 and 1992); 

2. Oxidised Cu-Au-U fluids overprint a pre-existing magnetite-pyrite alteration 

assemblage (Gow et al., 1994); 

3. Oxidised Cu-Au-U fluids mix with reduced fluids (Haynes et al., 1995); 

4. Oxidised fluids interplay with reduced magnetite Cu-Au mineralisation (Oreskes and 

Einaudi, 1990; Gow et al., 1994; Gow, 1996; Bastrakov et al., 2007). 

Skirrow (2010) suggested that two distinct processes in the formation of hematite bearing 

IOCG±U deposits: single-fluid-rock interaction, and two-fluid processes including mixing. 

The single fluid –rock reaction was the HCh models I had without consideration of two fluid 

processes.  

 Oreskes and Einaudi (1990) showed that hydrothermal processes associated with extensive 

hematite alteration and brecciation were a major contributor to REE mineralisation at Olympic 

Dam. The same authors (Oreskes and Einaudi, 1992) went on to present stable isotope and fluid 

inclusion evidence that at least two distinct hydrothermal events contributed to the formation 

of Olympic Dam - an early high-temperature magnetite stable event and a later lower 

temperature, oxidising event responsible for the formation of the hematite breccias. Gow et al. 

(1994) made similar conclusions based on their work at Emmie Bluff and inferred that Cu was 

introduced to the system by the later superimposed oxidising fluid and was deposited 

synchronous with magnetite alteration to hematite.  

In contrast, Haynes et al. (1995) proposed that fluid mixing between deeply-derived, hot 

and reduced fluids and shallow oxidised and metal-rich fluids was the dominant process 

responsible for mineralisation at Olympic Dam. Haynes et al. (1995) conducted simple 

thermodynamic models involving different mixtures of three components, a cooler (150⁰C) 

H2O-NaCl-Ca-HCO3-SO4 fluid, a hotter (250⁰C) H2O-NaCl-HS-K-Ca-Fe-F fluid and a granite 

protolith. Haynes et al. (1995) models predict that mixing of the two fluids (resulting in 

voluminous hematite precipitation as seen in the Olympic Dam breccias) and alteration of 

granite by the mixed fluid would result in mineral assemblages and zoning almost identical to 

those observed in the Olympic Dam deposit. Haynes et al. (1995) argued that oxidisation of 

magnetite to hematite and coincident reduction of sulphate to sulphide would have resulted in 

a decrease in pH which would account for the extensive sericite-chlorite alteration associated 

with the deposit.  
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Over a decade later, Bastrakov et al. (2007) developed a fluid-rock reaction model in which 

oxidised fluids interact with pre-existing magnetite-Cu-Au mineralisation resulting in 

magnetite alteration to hematite, addition of Cu and Au to the system and upgrading pre-

existing mineralisation. Bastrakov et al. (2007) described three types of fluid inclusions; type 

A high temperature vapor-rich inclusions; type B medium to low temperature, liquid-vapor 

inclusions, and type C high temperature, halite-saturated hypersaline multiphase fluid 

inclusions, with vapour, liquid and multiple solids, including chalcopyrite. Bastrakov et al. 

(2007) utilised thermodynamic modelling to test if alteration and ore phases in the Gawler 

Craton IOCG systems are consistent with alteration by the observed fluids. They specifically 

addressed the overprinting of pre-existing magnetite-bearing assemblages (formed by type C 

fluids) with lower temperature oxidised type B fluids. Their models were conducted using the 

HCh software package (see below) in a simplified chemical system H-O-Cl-S-Na-K-Mg-Fe-

Si-Al-Cu-Au. Bastrakov et al. (2007) argued that type C fluids carried significant Cu but that 

there was no efficient mechanism to bring copper minerals to saturation during the early 

magnetite-stable alteration phase resulting in only subeconomic magnetite Cu-Au 

mineralisation. Overprinting of subeconomic magnetite-Cu-Au mineralisation by type B fluids 

resulted in oxidisation of pre-existing magnetite to hematite with two possible Cu 

mineralisation scenarios; 1) coincident reduction of sulphate from the type B fluid and 

deposition of Cu-sulphides (with Cu added from the type B fluid), and; 2) coincident 

dissolution and reprecipitation of sulphides at the magnetite-hematite alteration front resulting 

in local upgrading of pre-existing Cu-Au mineralisation.  

Both the Haynes et al. (1995) and Bastrakov et al. (2007) models involve two fluids - a 

reduced, high temperature phase and an oxidised, low temperature phase - with the primary 

phase of sulphide mineralisation resulting from mixing of the two fluids or overprinting of the 

first by the second. Consensus is that ores tend to have high fluid-rock ratio, likely fluid mixing.  

But Bastrakov’s data suggests the deep sourced hot and reduced fluid was primary carrier of 

Cu and Fe and that sub-economic mineralisation and/or iron oxide mineralisation occurs where 

Cu doesn’t reach saturation. In contrast to Haynes et al. (1995) and Bastrakov et al. (2007) my 

modelling focuses on the interaction of a model metal-rich (type C) fluid with country rocks 

over a range of temperature, fluid/rock and redox conditions. My aim is to test if the range of 

observed alteration assemblages (both distal and proximal to mineralisation) are compatible 

with the passage of a single fluid or whether more complex, fluid mixing or overprinting 

relationships are required.  
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Table 6. Parameters of previous thermodynamic modelling of IOCG systems. 

Deposit Temperature 

(℃) 

Fluid Inclusion   

types 

Salinity 

(wt%) 

Model system Reactions References 

Olympic 

Dam 

150-250 Estimated two 

fluids 

  Oxidised U-bearing fluid mixed with 

Reduced Cu-Au bearing fluid 

Reeve et al., 

1990 

Olympic 

Dam 

200-400 L+V+S, 

L+V 

7-42 H2O-NaCl-KCl-CaCl2-

CaF2-BaCl2-CO2-FeCl2 

Magmatic fluid mixing with cooler 

meteoric fluid 

Oreskes and 

Einaudi, 1992 

Olympic 

Dam 

150-250 Estimated from mineral 

assemblages 

14-16 H2O-NaCl-KCl-CaCl2-

CaF2-MgCl2-MnCl2-HCO3-

SO4-ZnCl2-UO2-FeCl2 

Hotter saline water mixing with 

cooler meteoric water 

Haynes et al., 

1995 

Olympic 

Dam 

District 

400-500, 250 L +V-rich +S, 

L+V, (L+V+nS) 

13.9-

17.4  

H2O-NaCl-KCl-MgCl2-FeCl2-CaCl2-

FeS2-CuFeS2-Au 

Oxide brine with sub economic Cu-

Au mineralisation 

Bastrakov et 

al., 2007 

East 

Gawler 

Craton 

250-300 (L+V+nS) 

L+ V 

16.2-35  H2O-NaCl-KCl-CaCl2-FeCl2-MgCl2-

CuCl-FeSO4-FeS2-HCO3 

Variable fluid reacted granite and calc-silicate 

rock related fO2 and fluid-rock ratio and pH 

This study 

 

It is worth noting that the thermodynamic models of neither Bastrakov et al. (2007) nor 

Haynes et al. (1995) included CO2 as a component of the chemical system, despite the 

occurrence of abundant carbonate phases (calcite, dolomite, ankerite and siderite) in the IOCG 

alteration systems.   

 

 

4.2 METHODS  

The fluid-rock interactions involved in the formation of ore deposits are dependent on many 

variables (e.g. temperature, pressure, rock composition and fluid composition, including pH, 

salinity and oxygen fugacity) and are inherently complex. There are a multitude of possible 

outcomes (in terms of alteration mineral assemblages) and conversely, there are potentially 

multiple combinations of input parameters that might achieve the same predicted outcome. The 

aim of thermodynamic modelling is not to identify the specific conditions under which  

observed alteration assemblages were formed but instead, after reducing the range of possible 

input parameters based on observations, to determine the key controls on alteration and the 

‘family’ of conditions which are consistent with the observed alteration assemblages. The HCh 

software package is a useful thermodynamic modelling tool which has previously been applied 

to IOCG systems on the Gawler Craton (Haynes et al., 2005; Bastrakov et al., 2007). HCh was 

developed by Yuri Shvarov and Evgeniy Bastrakov at the Moscow State University (Shvarov 

and Bastrakov, 1999). It is based on the concept of minimising Gibbs free energy by using 

Debye-Huckel equations to calculate equilibria and reaction parameters for electrolytes. HCh 

utilises a continuously updated UNITHERM database (Oliver et al., 2004; Cleverley et al., 

2005). The modelling software facilitates use of 42 elements, 12 real gases, 107 basic species, 

106 complexes and 198 pure phases. The program allows users to calculate chemical, dynamic 

equilibria at variable temperatures of between 0 and 1000⁰C and pressures of between 1 and 5 

kbar (Cleverley and Oliver, 2005; Craig, 1996). The density and salinity of water are limited 

to above 0.35 g/cm3 and 3-5 mol/kg, respectively. A number of configurations of reaction 
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models are possible including closed system equilibrium models, titration models, fixed-

fugacity and sliding-fugacity models, kinetic reaction models, local equilibrium models and 

continuum models (Craig, 1996).  

I chose to use HCh in this study because it allowed rapid construction of numerous models 

for the eastern Gawler Craton IOCG system, over a range of conditions (particularly 

temperature, fO2 and fluid/rock ratios) inferred from petrological observations, geochemistry 

(see chapter 1 and 2) and previous fluid inclusion and isotope studies (e.g. Oreskes and Einaudi, 

1992; Bastrakov et al., 2007).     

4.2.1 HCh modelling General Method 

I used HCh to construct theoretical grids of the alteration products of model protolith rocks 

and starting fluids at a range of temperature (and pressure), fO2 and fluid/rock ratios in five 

steps: 

1. Select an appropriate geochemical system for the HCh models, including all elements 

sufficient to account for the chemistry of both solid and fluid phases; 

2. Set the input composition of rocks and fluids; 

3. Set variables, such as temperature, pressure, fluid-rock ratio and logfO2. Models can be set 

to calculate equilibria over a series of steps for one or more variables;  

4. Run the chosen model fluid-rock reaction with outcomes produced in Excel files as a list 

of the predicted stable solid phases and composition of the predicted co-existing fluid, 

including pH; 

5. Use these data to construct “grids” of predicted alteration assemblages over appropriate 

ranges of temperature (150⁰-500⁰C) fluid-rock ratios (10-3-104) and logfO2 (-22 to -34).  

4.2.2 Choice of System 

Haynes et al. (1995) utilized a 23 element model system (H-O-C-S-Cl-Si-Al-Fe-Mg-Ca-Na-K- 

Mn-Zn-Cu-Co-Pb-Ag-Au-Sr-Ba-F-U) in an attempt to model a complex suite of ore minerals 

resulting from fluid mixing and fluid rock reactions at Olympic Dam. More recently, Bastrakov 

et al. (2007) applied a simplified chemical system of twelve elements (H-O-S-Cl-Si-Al-K-Na-

Mg-Fe-Cu-Au) to their modelling of Gawler Craton IOCG alteration, intended as a reasonable 

approximation to a felsic rock type interacting with a saline, hydrothermal fluid and allowing 

for the presence of copper sulphide minerals and gold. Cleverley and Oliver (2005) took a 

similar approach and applied a simplified 13 element system (H-O-S-Cl-Si-Al-K-Na-Ca-Mg-

Fe-Ti-Cu) in order to model K-alteration at the Ernest Henry IOCG deposit in northwest 

Queensland. 

I chose a 14 element C-H-O-Cl-S-Na-K-Mg-Fe-Si-Al-Cu-Ca-Mn (see Table 7, 9 and 

appendix 7 for details). This system is similar to that used by Bastrakov et al. (2007) but 

includes C, Ca, Mn and excludes Au. This system allows for fluids with variable salinity and 

CO2 content and solid phases (quartz, feldspars, micas, chlorite, calc-silicate, carbonate 

minerals, oxides and iron and copper sulphides) consistent with the protolith rocks and 

observed major alteration and ore phases.   
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4.2.3 Modelling conditions 

I conducted a series of calculations using set rock and fluid compositions and varying 

temperature, pressure, fO2 and fluid-rock ratios. The temperature range I applied in our models 

was 500⁰C to 150⁰C consistent with temperature estimates from fluid inclusion and 

thermodynamic studies in the eastern Gawler Craton (Oreskes and Einaudi, 1992; Bastrakov 

et al, 2007). I set pressure according to temperature using the formula: 

P (bar) = T*8 – 1100 (Cleverley and Oliver, 2005), 

Resulting in a pressure range of 2900 bar to 100 bar. Using this relationship results a 

minimum temperature of 137.5⁰C, below this temperature the relationship produces negative 

pressure.  

The near ubiquitous observation of hematite replacement of magnetite in association with 

sulphide mineralization suggests that alteration occurred close to the magnetite/ hematite redox 

buffer, which occurs in the range of logfO2 -20 to -40 at temperatures of 500⁰ to 150⁰C.  

Redox conditions were varied from logfO2 -22 to -34, in increments of 2 log units. HCh does 

not accommodate logfO2 of less than -36. Fluid-rock ratios were varied from 10-3 to 104. 

Sodium to potassium ratios were maintained at Na/(Na+K) <0.16 because this is a requirement 

of K-feldspar precipitation in HCh modelling and K-feldspar is a common alteration mineral 

in both high and low temperature alteration assemblages in IOCG systems (Cleverley and 

Oliver, 2005; Chapter 2). Salinity was varied between 8 and 35 wt % consistent with the salt 

content of fluids observed in previous fluid inclusion studies (Bastrakov et al., 2007). Acid/base 

conditions are a calculated outcome of the equilibria computed by the HCh software. In the 

models conducted here pH was in the range of 2-13, and mostly between 6 and 7.  

4.2.4 Rock and fluid composition 

Rock composition 

To model the full potential range of alteration it is desirable to enter rock compositions 

representing a protolith with little or no alteration. This is difficult to apply for rock 

compositions common to the eastern Gawler Craton because alteration is a near ubiquitous 

phenomenon. All samples examined in this study have been altered to a greater or lesser extent. 

As such I sought to define a model ‘unaltered’ protolith for two of the most common rock types 

in the study area: granite and carbonate bearing metasedimentary rocks rocks.  

Model granite   

The eastern Gawler Craton database contains whole rock geochemical data for 504 granite 

samples from the study area, including granites of the Donington Suite and Hiltaba Suite. The 

least altered granites form a coherent geochemical group with SiO2 (72-78 wt %), Al2O3 (12-

20 wt %) and K2O+Na2O+CaO (8-12 wt %). Sixty five of the 504 granite samples have been 

identified as Donington Suite (Fabris et al., 2012; Chapter 2). The least altered group of 

Donington Suite granites typically have SiO2 (60-74 wt %), Al2O3 (11-15 wt %), 

K2O+Na2O+CaO (7-10 wt %) and Fe2O3 (2-10 wt %) (See Chapter 2). These compositions are 

similar to the chemistry of unaltered Donington Suite granite from the Eyre Peninsula reported 
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by Mortimer et al., (1988). The granitoids reported by Mortimer et al. (1988) are pyroxene 

granitoids, ferro-hypersthene granites and alkali-feldspar granites with pyroxene and 

amphibole as the dominant mafic phases, rare biotite and a combination of potassium feldspars 

and plagioclase. 

 

Table 7. Composition of granite used in HCh models 

Described Least Altered Muscovite-hematite-altered   Dolomite-altered   Hematite-altered  Designed 

Namely  Granite I Granite II Granite III Granite IV Model granite  

Sample 2066178 2066656 2066174 2066169 
 

DH HL002 IHAD2 PSC4-SASC2 DRD1 
 

From 529.13 819.61 539.46 1139.4 
 

To 529.27 819.76 539.53 1139.46 
 

Alteration MB CAM/HSCC HSCC HSCC 
 

Minerals % 

Quartz 35 10 30 20 35 

Albite 
    

9 

K-feldspar 30 20 15 5 30 

Anorthoclase 5 
   

9 

Biotite 25 
 

10 
  

phlogopite 
    

13 

Chlorite 2 10 20 35 2 

Muscovite 
 

40 
 

5 
 

Magnetite 1 
   

1 

Hematite 1 15 5 30 1 

Dolomite 
  

15 
  

Apatite 1 5 
  

Pyrite 
   

5 
 

Chalcopyrite 
   

0.1 
 

Ilmenite 
 

5 
   

Whole rock data from SARIG 

Samples wt % 

Al2O3 CaO Fe2O3 K2O MgO MnO Na2O S SiO2 

504 samples 10.85 4.04 15.3 4.16 3.1 0.34 1.23 0.31 55.96 

2066178 14.87 2.38 6.33 4.35 1.87 0.1 2.66 0.02 64.25 

2066174 12.87 1.19 6.09 5.26 2.75 0.25 0.21 0.02 66.72 

2066656 14.05 0.70 6.29 4.23 1.21 0.22 0.14 0.06 65.45 

2066169 12.68 0.22 13.55 4.8 1.77 0.11 0.21 0.98 61.77 
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Figure 49. Granite I, II, III and IV samples have lower Ca-Mn-Mg content than the average for 504 granite samples 

(whole rock data). Model granite applied the average of S and Mn due to zero is not in the log unit. 

 

The four altered granite samples described in chapter 2 (2066169, 2066174, 2066178 and 

2066656) are all interpreted to have formed from Donington Suite protoliths. These samples 

have a range of compositions from SiO2 (61-67 wt %), Al2O3 (12-15 wt %), K2O+Na2O+CaO 

(0.5-9.4 wt %) and Fe2O3 (6-14 wt %) (Figure 49). In contrast to the findings of Mortimer et 

al. (1988), the four samples of altered granite described in chapter 2 have no pyroxene and 

amphibole, very little plagioclase and significant components of alteration minerals (e.g. 

muscovite, chlorite, hematite and carbonate).   

Without the benefit of an unaltered starting material I chose to create a model granite 

consistent with the average granite chemistry in the area (Figure 49) and modified from the 

least altered granite sample (2066178). Sample 2066178 has an estimated mineral composition 

of 35% quartz, 30% K-feldspar, 25% biotite, 5% anorthoclase, 2% chlorite, 1% magnetite, 1% 

hematite and 1% apatite. In contrast the model granite has a mineralogy of 35% quartz + 30% 

K-feldspar + 13% phlogopite + 9% albite + 9% anorthite and minor 2% chlorite + 1% magnetite 

+ 1% hematite. The chemistry of model granite have been calculated by these minerals (Figure 

49). This mineralogy is consistent with biotite monzogranite which occurs as fractionated end-

member compositions in both the Donington Suite and Hiltaba Suite (see Creaser, 1996) and 

is thus a useful generic granite for the purposes of modelling.  

 

Model calc-silicate  

The eastern Gawler Craton database contains whole rock geochemical data for 205 calc-silicate 

samples from the study area, including 61 calc-silicate rocks assigned to the Wallaroo group 

   Model 

   504 granite 

   Granite IV 2066169 

   Granite III 2066656 

   Granite II 2066174 

   Granite I 2066178 
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(Fabris et al., 2012; Chapter 2). The least altered calc-silicate rocks, including most of the 

Wallaroo Group, form a coherent geochemical group with increasing CaO+MgO on plots of 

Fe2O3-Al2O3-CaO+MgO (Chapter 2, Figure 7).    

The four altered calc-silicate samples described in chapter 2 (2066166, 2066199, 2066203 

and 2066635) are all interpreted to have formed from Wallaroo Group protoliths. They have a 

range of chemical composition; SiO2 (35-52 wt %), Al2O3 (4.1-11.4 wt %), CaO+MgO (7.8-

24 wt %) and Fe2O3 (8.8-50 wt %) (See Chapter 2 and Table 8). These samples all exhibit 

significant mineralogical and textural evidence of alteration, including abundant iron oxides, 

chlorite and K-feldspar (Chapter 2). 

 

Table 8. The calc-silicate samples were used in the HCh models 

Namely Least altered Carbonate 

altered 

Hematite 

altered 

Chlorite altered Designed 

Sample 2066166 2066203 2066635 2066199 Unaltered  

Calc-silicate 
DH CSD1 GHDD4 IHAD6 WWDD1 

From 970.6 854 855.87 683.75 

To 970.7 854.15 855.99 683.86 

Alteration CAM HSCC HSCC CAM 

Rock type Calc-silicate 

Quartz% 30 25 25 10 17 

K-feldspar%  15 10 20  

Chlorite% 30 20 15 20 21 

Hematite% 10 8 20 9  

Magnetite% 20     

Dolomite%   20 20 2 

Calcite%  10  10 33 

Pyrite% 1 2   3 

Chalcopyrite% 1 3 2   

Apatite%  1 3 5  

Mica%    Ms 1 Bt 24 

Rest % Grt 8 Act 15    

Other%  Sp 1 Gp 5 Rut 5  

Whole rock data from SARIG 

Sample wt % 

Al2O3 CaO Fe2O3 K2O MgO MnO Na2O S SiO2 

205 samples 6.93 12.63 20.91 2.80 5.65 0.93 0.31 0.39 42.00 

CSD1 4.11 4.75 49.69 0.41 3.07 0.69 0.06 0.17 35.37 

GHDD4 6.92 12.49 13.70 1.23 11.66 1.18 0.24 1.94 41.00 

IHAD6 7.37 1.96 22.19 1.08 7.05 0.61 0.10 0.97 47.91 

WWDD1 11.43 5.76 8.83 5.49 3.73 0.56 0.08 0.35 51.57 
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Figure 50. The calc-silicate samples have a little lower Ca-Na content than the average of 205 calc-silicate (whole 

rock data). Model calc-silicate contains lower Fe than the average of calc-silicate samples which is influenced by 

widespread Fe metasomatism. Our model calc-silicate does not contain Na or Mn. 

 

Without the benefit of an unaltered starting material I chose to create a model calc-silicate 

with major element chemistry that is the average of the 205 calc-silicate samples from the study 

area (Figure 50). I added slightly more sulphur (1.6 wt % S) than the regional average because 

more Cu minerals will be production. The S concentration is 1.94 wt % in ore sample 2066203 

and the S concentration of average calc-silicate is 0.39 wt % so that the 1.6 wt % S is 

appropriate for providing the more Cu-S minerals. At temperatures of >350⁰C and low fluid 

rock ratios this produces a mineral assemblage of 17% quartz, 24% biotite, 21% chlorite, 33% 

calcite, 2% dolomite and 3% pyrite. This carbonate-rich mineralogy is comparable to the least 

altered parts of sample 2066635. I did not specify other high temperature calc-silicate phases 

(e.g. garnet, pyroxene, and amphibole) as observed in samples 2066166 and 2066203 because 

HCh models can produce all mineral assemblage in specified conditions.   

 

Model Fluid Compositions 

Our model fluid (Fluid A) is based on fluid inclusion data of type C (high temperature, 

hypersaline, metal-rich) fluids from the Emmie Bluff and Titan prospects presented in 

Bastrakov et al. (2007) see appendix 7. Type C fluid inclusions contain halite crystals as well 

as a number of other daughter crystals including silicates (ferropyrosmalite), oxides 

(mangnetite or hematite) and sulphides (chalcopyrite) (Bastrakov et al., 2007). Chemical 

analyses of the brines in Type C inclusions indicate high salinities (many in excess of 35 wt % 

NaCl eqiv) and concentrations of Fe, Ca, K, Mn and Cu at percent levels (Table 9). Our model 

0.01
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1.00

10.00

100.00

Al2O3_pct CaO_pct Fe2O3_pct K2O_pct MgO_pct MnO_pct Na2O_pct S_pct SiO2_pct

Model vs 4 sample and 205 calc-silicate rock analysis

Model 
205 calc-silicate
Carbonate altered 2066203
Chlorite altered 2066199
Least altered 2066166
Hematite altered 2066635
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Fluid A has concentrations of these elements in the range of Bastrakov et al’s (2007) fluid 

inclusion data (including 1.5 wt % Cu) with NaCl added to sum to a total of 35 wt % NaCl 

equiv, the maximum salinity which is allowed in the HCh software. I added a small 

concentration of sulphur to the fluid in the form of 1.5 wt % FeSO4 which corresponds to ~0.3% 

sulphur.  

The choice of composition for our model Fluid B was informed by the results of the Fluid 

A calculations (see below) and was modified to have lower total salinity (16.2 wt %), still with 

concentrations of Fe, Ca, K and Mn at percent levels but with a lower concentrations of Cu and 

S and without Na. Model Fluid B1 has the same composition as Fluid B but without sulphur 

(see appendix 7). 

Model Fluid C is the average of seven fluid inclusions presented by Bastrakov et al. (2007), 

with 80 g/L MgCl2 added and with 30 wt % NaCl equiv ( see Table 9).    

Table 9. Representative results of PIXE analyses of elemental abundances for multiphase brine Inclusions (type 

C) from quartz in CAM alteration assemblages from Bastrakov et al. (2007). 

Prospect Hole ID ppm Fluid 

Cl K Ca Ti Mn Fe Cu Zn As Br Ba Pb wt % 

Emmie Bluff BD1 335110 37395 38414 

 

6090 18710 499 2013 2182 910 7092 14619    46.3 

207346 23104 96396 

 

20045 137667 679 4623 1378 1330 5624 

 

49.8 

27768 15747 20888 162 8937 55468 288 1379 285 655 1705 

 

13.3 

Titan BD1 122429 69247 40015 1500 6532 277179 45934 1600 217 1716 3950 4229 57.5  

9177 11381 1477 2209 158890 19825 706 

  

2163 

 

20.6 

1960 1994 3427 536 2308 75171 344 490 63 201 719 1033 8.8 

15314 16397 3360 306 2395 86861 19045 352 50 383 1040 2223 14.8 

Avrage (Fluid C) 

C) 

118321 24723 30554 796 6931 115707 12373 1595 696 866 3185 5526 30 

Notes: Blank is below the detection limit for a given fluid inclusion. 

 

 

 

Figure 51. The seven fluid inclusions show the diagram in Olympic Dam (Emmie Bluff and Titan Data). The Emmie 

Bluff inclusions have the Cl-Ca-Mn-Zn-As-rich and the Titan inclusions have rich-Ti-Cu-Fe (Bastrakov et al., 2007). 

The element value is at ppm. 
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4.2.5 HCh Models   

Specific experiments I conducted using HCh modelling were: 

1. Model granite reacted with model Fluid A at a range of temperatures (from 150⁰ to 500⁰C 

in 50⁰C increments), pressures (linked to temperature as above) and fluid-rock ratio 

(from 10-3 to 104 in units of *10) with logfO2 varying from -34 (~ the magnetite/hematite 

buffer at 250⁰C) to -22 (Figure 52). Designed to predict the alteration assemblages 

resulting from equilibrating a Cu-rich “Type C” fluid with granite over a range of 

conditions.  

2. Model granite reacted with model Fluid B at a range of temperatures (from 150⁰ to 500⁰C 

in 50⁰C increments), pressures (linked to temperature as above) and fluid-rock ratio 

(from 10-3 to 104 in units of *10) with logfO2 varying from -34 to -22 (Figure 53). 

3. Model granite reacted with Fluid B1 (no sulphur) at a range of temperatures (from 150⁰ 

to 500⁰C in 50⁰C increments), pressures (linked to temperature as above) and fluid-rock 

ratio (from 10-3 to 104 in units of *10) with logfO2 at -34 (Figure 54).  

4. Granite I (based on sample 2066178) reacted with Fluid C at a range of temperatures 

(from 150⁰ to 500⁰C in 50⁰C increments), pressures (linked to temperature as above) and 

fluid-rock ratio (from 10-3 to 104 in units of *10) with logfO2 varying from -34 to -22 

(Figure 55). Designed to determine if magnesium-rich fluids are capable of stabilizing 

dolomite as a vein or alteration phase in granite protoliths.  

5. Model calc-silicate reacted with model Fluid B at a range of temperatures (from 150⁰ to 

500⁰C in 50⁰C increments), pressures (linked to temperature as above) and fluid-rock 

ratio (from 10-3 to 104 in units of *10) with logfO2 varying from -34 to -22 (Figures 56 

and 57). 

 

 

4.3 RESULTS 

Granite HCh models 

4.3.1 Model Granite equilibrated with Cu-rich model fluid A (35 wt % NaCl equiv) 

This set of calculations is represented in Figure 52. Notable observations from Figure 52A 

(Fluid-rock ratio vs temperature at logfO2 = -34) include: 

 The “least altered” mineral assemblages (most like the starting Model Granite) occur in 

the lower left of the diagram at temperatures of ≥400oC and fluid-rock ratio (F/R) of ≤0.1. 

With co-existing magnetite, biotite and K-feldspar, this part of the diagram most closely 

represents the MB style of alteration. 

 Starting in the lower left corner, at F/R of ≤0.1 and reducing temperatures, sanidine K-

feldspar is predicted to be replaced by microcline (between 400 and 350oC), biotite and 

plagioclase are replaced by chlorite and calcite (between 350 and 300oC) and magnetite is 

replaced by hematite (between 300 and 250oC). 
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 The boundary between hematite (lower temperature) and magnetite (higher temperature) 

is defined by the magnetite-hematite redox buffer and is vertical (between 250oC and 

300oC). This boundary is consistent for all of the models presented.  

 Chlorite is an important alteration mineral at F/R ≤1, particularly at temperatures of 

≤300oC. Microcline K-feldspar (potassium-rich) is an important alteration mineral at F/R 

≤10, and temperatures of ≤350oC. The presence of chlorite and microcline along with 

magnetite defines the CAM alteration field.   

 Muscovite is an important alteration phase at F/R ≥1 and temperatures of ≤350oC.  

Assemblages with co-existing hematite, muscovite and chlorite (HSCC) occur at 

temperatures of ≤250oC and moderate F/R of ~1. At higher F/R (≥10, ≤100) hematite and 

muscovite occur together without chlorite. 

 Copper bearing phases (including native copper, bornite, chalcocite and Cu-chloride) 

occur at F/R ≥10 at all temperatures. Native copper and bornite are the predominant Cu 

phases at temperatures of ≥400oC, bornite and chalcocite predominant at temperatures 

≤350oC and ≥250oC and CuCl(s) predominant at temperatures of ≤200oC. 

    Notable observations from Figure 52B (F/R vs logfO2 at temperature = 300oC) include:  

 The lower left corner (low F/R and low logfO2) is characterised by chlorite, microcline 

and magnetite bearing assemblages corresponding to the CAM style of alteration. 

 Magnetite is predicted to be replaced by hematite at logfO2 of approximately -30. 

 Chlorite is predicted to be stable at F/R ≤1 across the range of modelled logfO2, and 

replaced by muscovite at F/R ≥1. 

 Hematite and muscovite bearing assemblages are predicted to occur at F/R ≥1 and logfO2 

≥-30. Whereas hematite, muscovite and chlorite bearing assemblages, most characteristic 

of HSCC, alteration are restricted to a narrower range (10≥ F/R ≥1).  

 Copper bearing phases (including bornite, chalcocite and Cu-chloride) occur at F/R ≥10 at 

all logfO2. Bornite and chalcocite are the predominant Cu phases at logfO2 ≤-28 and 

CuCl(s) predominant at logfO2 ≥-26.  

 

    Notably absent from the assemblages shown in Figure 52 are pyrite (the most abundant 

sulphide observed in the eastern Gawler Craton samples presented in this thesis) and 

chalcopyrite (the most abundant Cu-bearing sulphide).    

 

In general terms, the equibration of a model granite protolith with the high-salinity model 

fluid A predicts a progression from MB, to CAM to HSCC styles of alteration with decreasing 

temperature, increasing F/R and increasing logfO2.   
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Figure 52. (Previous page). Simplified plots of calculated equilibrium mineral assemblages for the model granite 

+ model fluid A (35 wt % NaCl equivalent, 0.96 wt % Cu, 0.54 wt % Sulphur) for; A. Fluid-rock ratio vs Temperature 

with logfO2 fixed at -34, and B. Fluid-rock ratio vs logfO2 with temperature fixed at 300oC. Vertical shaded yellow 

areas are identical in the two plots. The calculated pH varies between 6.1 and 6.7. Fields for the commonly 

observed alteration assemblages in the eastern Gawler Craton are superimposed; Blue = Magnetite-Biotite±K-

feldspar (MB); Green = Chlorite-Alkali Feldspar-Magnetite (CAM); Red = Hematite-Muscovite-Chlorite±Carbonate 

(HSCC); Dashed Orange = copper minerals. Mineral abbreviations: Anh = anhydrite, An = Anorthite, Ab = albite, 

Bn = bornite, Cal = calcite, Cc = Chalcocite, Chl = chlorite, Hem = hematite, Kfs = K-feldspar, Mag = magnetite, 

Mc = microcline, Ms = muscovite, Phl = phlogopite, Po = pyrrhotite, Qtz = quartz, Sa = sanidine, Cu=copper, CuCl(s) 

= solid CuCl. 

 

4.3.2 Model Granite equilibrated with model fluid B (16.2 wt % NaCl equiv) 

The equibration of a model granite protolith with the model fluid B predicts a similar 

progression as the previous model; from MB, to CAM to HSCC styles of alteration with 

decreasing temperature, increasing F/R and increasing logfO2. This set of calculations is 

represented in Figure 53. Notable observations from Figure 53A: 

 The “least altered” mineral assemblages (most like the starting Model Granite) occurs in 

the lower left of the diagram at a temperature of 500oC and F/R of ≤0.1.  

 Co-existing magnetite, biotite and K-feldspar occur at F/R ≤0.1 and temperatures of 

≤450oC and ≥350oC. This part of the diagram most closely represents the MB style of 

alteration. Noting that the K-feldspar transitions from sanidine to microcline with 

decreasing temperature. 

 Starting in the lower left corner, at F/R of ≤0.1 and reducing temperatures, sanidine K-

feldspar is predicted to be replaced by microcline (between 400 and 350oC), biotite and 

plagioclase are replaced by chlorite and calcite (between 350 and 300oC) and magnetite is 

replaced by hematite (between 300 and 250oC). These changes mimic those in Figure 52. 

 The boundary between hematite (lower temp) and magnetite (higher temp) is defined by 

the magnetite-hematite redox buffer and is vertical (between 250oC and 300oC). This 

boundary is consistent for all of the models presented.  

 At temperatures ≥350oC chlorite is an important alteration mineral at F/R ≥1 and ≤10. At 

temperatures of ≤300oC chlorite is an important alteration mineral at F/R ≤10. The 

presence of chlorite and microcline along with magnetite defines the CAM alteration field.   

 Muscovite is an important alteration phase at F/R of ≥1 and temperatures of ≤300oC.  

Assemblages with co-existing hematite, muscovite and chlorite (HSCC) occur at 

temperatures of ≤250oC and F/R ≥1 and ≤10. At higher F/R (≥100, ≤1000) hematite and 

muscovite occur together without chlorite. 

 Pyrrhotite is a common alteration phase at F/R ≥10 and temperatures of ≥300oC whereas 

pyrite is a common phase at F/R ≥10 and temperatures of ≤250oC.   

 Copper bearing phases (including chalcocite, bornite and chalcopyrite) occur at F/R ≥10 

across a wide range of temperature. Chalcocite is the predominant Cu phase at the 

temperatures at the extremes of the model (≥450oC and ≤200oC), bornite is predominant 
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at temperatures ≤400oC and ≥350oC and chalcopyrite is predominant at temperatures of 

≤300oC and ≥250oC. 

 

Notable observations from Figure 53B (F/R vs logfO2 at temperature = 300oC) include:  

 The lower left corner (low F/R and low logfO2) is characterised by chlorite, microcline 

and magnetite bearing assemblages corresponding to the CAM style of alteration. 

 Magnetite is predicted to be replaced by hematite at logfO2 ≥-30. 

 Chlorite is predicted to be stable at F/R ≤100 at logfO2 of -34 and then at lower F/R as 

logfO2 increases, such that chlorite is only stable at F/R ≤1 at logfO2 ≥-26. 

 Hematite and muscovite bearing assemblages are predicted to occur at F/R ≥1 and ≤1000 

and logfO2 ≥-30. Whereas hematite, muscovite and chlorite bearing assemblages, most 

characteristic of HSCC, alteration are restricted to a narrower range (10≥F/R ≥1).  

 Pyrite occurs at F/R ≥10 and logfO2 ≥-32 and ≤-28.  

 Copper bearing phases (including chalcocite and chalcopyrite) occur at F/R ≥10 at logfO2 

≤-26. Chalcopyrite is the predominant Cu phase at logfO2 ≤-28 and chalcocite is 

predominant at logfO2 ~-26. 
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Figure 53. Simplified plots of calculated equilibrium mineral assemblages for the model granite + model fluid B 

(16.2 wt % NaCl equivalent, 0.64 wt % Cu, 0.36 wt % S) for; A. Fluid-rock ratio vs Temperature with logfO2 fixed 

at -34, and B. Fluid-rock ratio vs logfO2 with temperature fixed at 300oC. Vertical shaded yellow areas are identical 

in the two plots. The calculated pH varies between 6.1 and 6.7. Fields for the commonly observed alteration 

assemblages in the eastern Gawler Craton are superimposed; Blue = Magnetite-Biotite±K-feldspar (MB); Green = 

Chlorite-Alkali Feldspar-Magnetite (CAM); Red = Hematite-Muscovite-Chlorite±Carbonate (HSCC); Dashed 

Orange = copper minerals. Mineral abbreviations as Figure 52, Ann = Annite, Ccp = chalcopyrite.   
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4.3.3 Model Granite equilibrated with model fluid B1 (16.2 wt % NaCl eqiv. no sulphur) 

These calculations were designed to determine the importance of sulphur on the stability of Cu 

minerals. Two Figures are shown: an F/R vs temperature plot (Figure 54A) comparable to 

Figure 53A but lacking sulphide and sulphate phases, and a mineral abundance vs F/R plot at 

a temperature of 250oC and logfO2 of -34. The F/R vs temperature plot shows a similar 

progression as the previous model; from MB, to CAM to HSCC styles of alteration with 

decreasing temperature and increasing F/R. The magnetite to hematite transition occurs at 

between 250⁰ and 300⁰C (Figure 54A). Above 450⁰C magnetite is replaced by biotite. K-

feldspar is predicted to be a stable phase in all areas but the top right of Figure 54A, at F/R ≥10 

and temperatures of ≤300⁰C. Sanidine K-feldspars are favoured at higher temperatures and 

lower fluid-rock ratios than microcline K-feldspars. Muscovite is stable at temperatures 

≤300⁰C. Chlorite is stable across the modelled temperature range, at F/R ≤1 for temperatures 

≥400⁰C, F/R ≤10 for temperatures ≤350⁰C and ≥300⁰C and at F/R ≤100 at temperatures of 

≤250⁰C. 

Figure 54B illustrates a typical vertical profile through the F/R vs temperature plot. The 

minerals stable at low F/R are incrementally replaced by iron-oxide (in this case hematite but 

the same is true for magnetite at higher temperatures) and muscovite with chlorite being an 

important alteration phase at low to moderate F/R.  

  



126 
 

 

 
Figure 54: A. Predicted mineral assemblages for the model granite mixed with model fluid B1 for fluid-rock ratios 

of 10-3 to 104 and temperatures of 150⁰ to 500⁰C. Figure 54B occupies a vertical section at 250⁰C. Predicted 

mineral assemblages and relative mineral abundances for the model granite mixed with model fluid A at 250⁰C at 

fluid-rock ratios of 10-3 to 104. Main alteration fields and mineral abbreviations are as for Figures 52 and 53. 

 

4.3.5 Model Granite equilibrated with model fluid C (Mg-rich, 30 wt % NaCl eqiv) 

Granite I reacted with fluid C with models simulating calcite-hematite-quartz-microcline 

assemblage similar to dolomite alteration granite III. Calcite-hematite-quartz-

microcline±phlogopite-chlorite assemblage formed at fluid–rock ratio >1 at 250⁰C. HCh 

modelling produced K-feldspar-chlorite-quartz-hematite assemblage which changed to calcite-

hematite at fluid-rock ratio >10 with minor apatite and phlogopite. 
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HCh modelling of granite I-fluid C (30 wt % NaCl equiv) interactions was conducted for 

a range of temperatures 150⁰-500⁰C and fluid-rock ratios 10-3-104 at logfO2 -34 (Figure 55). I 

found that hematite assemblage was replaced by magnetite assemblage at >275⁰C, quartz–

hematite-anhydrite-manganosite±phlogopite formed at <225⁰C with fluid-rock ratio <10 and 

K-feldspar (sanidine) was replaced by microcline at 375⁰C with fluid-rock ratio >0.1. 

To understand the mechanism of dolomite replacing calcite in granite I, I altered 30 wt % 

NaCl equiv fluid composition in HCh modelling by reducing CaCl2 to 4.6 g and adding 5 g 

MgCl2 (Figure 55). Results predict that hematite-dolomite–anhydrite-manganosite assemblage 

occurred at fluid-rock ratio >10 at <275⁰C, and magnetite–dolomite assemblage occurred 

at >275⁰C with fluid-rock ratio >10. Bornite occurred at 350⁰-400⁰C and chalcopyrite occurred 

at 250⁰-300⁰C with fluid-rock ratio <1. 

 

Figure 55. The models added MgCl2 for making the dolomite alteration. The model has the pH 6-6.3, 500⁰ -150⁰ C 

with T-P grid with logfO2 -34. It supports the dolomite alteration surround the apatite cut through the sanidine veins 

in the petrogenesis. The dolomite area has the fluid–rock ratio >10, and the hematite-dolomite-anhydrite occurs at 

ratio 10 with low temperature 150⁰ C. The sanidine changes to microcline at 375⁰ C. Blue area = bornite 

aseembalge, Red area = hematite assemblage, Red dasing line = Dolomite assemablage, Green dasing line = 

calcite assemblage. Mineral abbreviations: Bn=bornite, Dol=dolomite, Man=manganite.  

 

Our modelling predicted that dolomite formation is dependent on fluid components and 

oxide environments. With rich-Fe fluids, HCh modelling predicted that dolomite–hematite–

manganosite-anhydrite assemblage resulted. When logfO2 was altered from -29 to -34, 

formation of magnetite-hematite-chalcopyrite-dolomite changed to chalcopyrite-bornite, 

where bornite was associated with magnetite and chalcocite was associated with hematite. 

Magnetite had a 275⁰C temperature boundary with hematite and sanidine replacing microcline 

above 400⁰C (Figure 55).  

Results of HCh modelling showed that calcite formation was restricted to >220⁰C and 

fluid-rock ratio of >0.1 under reduced conditions of fO2 -34. Modelling predicted that calcite 

 Fl
u

id
-r

o
ck

 r
at

io
 

Dol Mag Po Cal 

Dol Mag Po Cal Phl 

Mag Phl Cal Po Qtz Mc Mag Phl Cal Po Qtz Sa 
Mag Phl Cal 
Po Qtz Anh 

Sa Bt Phl 
Qtz Cal Po Sa Qtz Phl Cal Po An Mc Qtz Phl Mag Cal Po An 

Sa Qtz Chl Bt Phl An Po 

Sa Qtz Chl Bt Po 

Sa Qtz Chl 
Mag Phl Bn 

Mc Qtz Chl 
Mag Phl Bn 

 
 
Sa Qtz Chl 
Mag Bn 

 
 
Mc Qtz Chl 
Mag Bn 

Mc Qtz 
Chl Mag 
Ccp 

Hem Anh Dol Man Phl 

Hem Phl Anh Qtz Mc 

       Mc Qtz Hem Phl Anh Chl 

 
 
 
 
Mc Qtz Chl 
Hem Ccp  

    Mc Qtz Chl Hem Ms 

   Mc Qtz Chl Hem Anh 

Hem Dol 
Anh Phl Man 

Hem Dol 
Anh Phl Mc 
Qtz 

          Hem Dol Anh Man  



128 
 

and hematite formed together at 225⁰-275⁰C and fluid-rock ratio >1 (Figure 55). Calcite was 

replaced by dolomite at <275⁰C where fluids contained MgCl2 (Figure 55). Dolomite and 

calcite had a temperature boundary of ~250⁰C at fluid-rock ratio 10, while sanidine changed to 

microcline at 370⁰C at fluid-rock ratio <10 (Figure 55). Chlorite-hematite-quartz-K-feldspar 

assemblage occurred at fluid-rock ratio <1 and hematite-dolomite-anhydrite-manganosite with 

phlogopite and sanidine occurred at fluid-rock ratio >10. Results of our modelling describe the 

hematite-dolomite assemblage area similar to granite III. 

Results presented here suggest that magnetite and hematite in Emmie Bluff were formed 

from different fluids with contrasting oxygen isotope ratios (Oreskes and Einaudi, 1992). 

Hematite had the same <275⁰C boundary with magnetite when fluids changed from 16.2 to 35 

wt % in reduction environments. Hematite forms in reduction environments with ore minerals 

at <275⁰C. 

 

Calc-silicate HCh models 

4.3.6 Model calc-silicate -fluid B  

This set of calculations is represented in Figure 56 and 57 with calculated pH 6.2-6.7. Notable 

observations from Figure 56 and 57 (Fluid-rock ratio vs temperature at logfO2 = -34) include: 

 The “least altered” mineral assemblages (most like the starting Model calc-silicate) occur 

in the lower left of the diagram at temperatures ≥300℃ and F/R ≤0.1. With co-existing 

magnetite, biotite and K-feldspar, this part of the diagram most closely represents the MB 

style of alteration in Figure 57. 

 Starting in the lower left corner, at F/R of ≥10 and reducing temperatures, sanidine K-

feldspar is predicted to be replaced by microcline (between 400° and 350℃), plagioclase 

are replaced by chlorite (between 350° and 300℃) and magnetite is replaced by hematite 

(between 300° and 250℃). 

 The boundary between hematite (lower temperature) and magnetite (higher temperature) 

is defined by the magnetite-hematite redox buffer and is vertical (between 250℃ and 

300℃). This boundary is consistent for all of the models presented.  

 Chlorite is an important alteration mineral at 1 ≤ F/R ≤100, particularly at temperatures of 

~300℃ but minor chlorite up to 450℃ at F/R 10. Microcline K-feldspar (potassium-rich) 

is an important alteration mineral at F/R ≥100, and temperatures of ~350oC. The presence 

of chlorite and microcline along with magnetite defines the CAM alteration field.   

 Muscovite is an important alteration phase at F/R of ≥100 and temperatures of 250 to 350℃. 

Assemblages with co-existing hematite, muscovite and chlorite (HSCC) occur at 

temperatures of ≤250℃ and moderate F/R of ≥100. At higher F/R (≥1000) hematite and 

muscovite occur together without chlorite. 

 Copper bearing phases (including chalcopyrite and chalcocite) occur at F/R ≥10. Chacocite 

occur at almost temperatures but chalcopyrite occur at 300 and F/R ~10 without native 

copper and bornite. 
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Notable observations from Figure 57B (F/R vs logfO2 at temperature = 300℃) include:  

 The lower left corner (low F/R and low logfO2) is characterised by calcite, chlorite, and 

phlogopite bearing assemblages corresponding to the CAM style of alteration. 

 Magnetite is predicted to be replaced by hematite at logfO2 of approximately -30 from F/R 

1 to 10 and up to -34 at F/R ≥100. 

 Chlorite is predicted to be stable at F/R ≤1 across the range of modelled logfO2, F/R ≤ 10 

and logfO2 ≤-26 and replaced by muscovite at F/R ≥10 and logfO2 from -26 to -32, and 

F/R ≥1 from -22 to -26. 

 Hematite and muscovite bearing assemblages are predicted to occur at F/R ≥10 and logfO2 

from -22 to -26 and F/R ≥100 and logfO2 ≤-28. Whereas hematite, muscovite and chlorite 

bearing assemblages, most characteristic of HSCC, alteration are restricted to a narrower 

range (F/R ~10 and logfO2 ~-26).  

 Copper bearing phases (including chalcopyrite and chalcocite) occur at F/R ≥10 at 

logfO2≤-26, Chalcopyrite are are the predominant Cu phases at logfO2 ≤-28 and F/R ~10 

and chalcocite occur at F/R ≥ 100 and logfO2 ≤-26.  

 

    Notably pyrite assemblages shown in Figure 57 occur at F/R ≤ 0.1 and temperaure ≥ 300℃ 

which is consistent in the MB (the most abundant sulphide observed in the eastern Gawler 

Craton samples presented in this thesis) in Figure 57A and pyrite-chalcopyrite assembalges 

occur at F/R~10 and logfO2 -28 to -32 (the most abundant Cu-bearing sulphide).    

At 300⁰C our models produced 35 wt % chlorite very similar to sample 2066203 (Figure 

56). Specifically, models predict chlorite at 15 wt % to a peak of 35 wt % at fluid-rock ratio 1 

to 10 at 300⁰C. Thirteen minerals resulted from modelling at 300⁰C, with chalcopyrite-

chalcocite assemblage formation at fluid-rock ratio 1-100 and temperature 250⁰-300⁰C (Figure 

57). 

In HCh modelling, chlorite formed across a large fluid-rock ratio range of 1 to 100 at 

200⁰C. Dolomite formed at 200⁰C and fluid-rock ratio 1 with very less chalcocite without 

chalcopyrite. However, at 200⁰C mineral formation was simpler (10 minerals) as compared to 

300⁰C (13 minerals). Notably, anhydrite, a major S mineral formed at 200⁰C, but not at 300⁰C 

and chalcocite, a Cu mineral, occurred at both 200⁰C and 300⁰C. Pyrrhotite and chalcopyrite 

did not form at low temperature (200⁰C). At high temperature (300⁰C) magnetite replaced 

hematite which formed at low temperature (200⁰-250⁰C).  

In HCh modelling, I changed logfO2 to -36 to increase reduction. Results of the 300⁰C 

model did not change, but the 200⁰C model resulted in no bornite and less chalcocite. Results 

of the 400⁰C model predicted a small chlorite formation fluid-rock ratio range with 

chalcopyrite-chalcocite-bornite assemblage. The 500⁰C model predicted chalcopyrite-

chalcocite assemblage at fluid-rock ratio 0.1 to 1, but chlorite did not form.  

HCh modelling predicted that low temperature (150⁰C) resulted in less minerals being 

formed, with eight minerals forming at pH 6.1 (acid), and no ore mineral formation, but an 

increase in anhydrite (S mineral) formation. Chlorite formed at 200⁰C with a fluid-rock ratio 1 

to 100 at pH 6.2. Less chalcocite (ore mineral) formed at 200⁰C, as compared to formation at 

higher temperatures. Anhydrite formed at 200⁰C and no chalcopyrite or bornite formed at this 
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temperature. Temperature increase to 300⁰C resulted in chlorite becoming unstable as pH 

increased, but more minerals formed (13 minerals). Formation of bornite may occur at high 

temperature >300⁰C. Under reduction conditions of logfO2 -34, results of HCh modelling for 

calc-silicate predict that the best simulation was at 250⁰C with formation of 12 minerals, 

including hematite-pyrite-chalcopyrite-chalcocite-anhydrite assemblage as I seen most in 

chapter 2 exclude chalcocite. 

  

Figure 56. 12 minerals are simulated at 250⁰C with 35 wt % chlorite at fluid-rock ratio 10. The chlorite up to 40 

wt % are simulated with the hematite-chalcopyrite-chlorite- anhydrite as the observation in sample 2066203.  

 

In HCh modelling, I added 30 g pyrite to unaltered calc-silicate-fluid B reactions to 

consider S content of resultant mineral assemblages (Figure 57). I found that chalcocite 

occurred at logfO2<-24 and chalcopyrite-chalcocite occurred at -32<logfO2<-26. Magnetite-

muscovite-chalcocite assemblage occurred at logfO2 <-34. Thus, fO2 had a major effect on 

formation of ore minerals, where S content of rock or fluids resulted in ore mineral formation.  

HCh modelling with addition of pyrite predicted that Cu minerals formed at 300⁰C with 

fO2 between -28 to -30 and fluid-rock ratio >1. Chalcopyrite was a major ore mineral under 

these modelling conditions, with chalcopyrite being replaced by bornite in more reductive 

environments and by chalcocite in more oxide environments. At higher temperatures, hematite 

was replaced by magnetite (at temperature >275⁰C and fO2 <-30). Specifically, hematite was 

replaced by magnetite at fO2 <-32 with fluid-rock ratio >1 in fluid-calc-silicate modelling 

reactions (Figure 57). 
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Figure 57. The temperature affects the ore minerals (A) match with the fO2 affects the ore minerals at 3 wt % pyrite 

in calc-silicate rock at 300⁰C (B). The magnetite has the 275⁰C boundary with hematite in ~275⁰C in A. There is 

no Cu minerals formed at fO2 > -24 in B, the Cu minerals is formed above ratio 1. The 3D models have the same 

mineral assemblage as yellow areas. 

 

4.4 DISCUSSION 

Although the equilibrium models presented here are simplified representations of a complex 

system, involving numerous assumptions and approximations they share a number of common 

features and predict alteration assemblages and paragenetic sequences that occur in the eastern 

Gawler Craton. The following discussion highlights some of the consistent modelling 

outcomes, as influenced by the important variables fluid composition, rock composition, F/R, 

temperature (and pressure) and logfO2. 

The effect of fluid-rock ratio (F/R) 
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Fluid–rock ratio affects mineral assemblages. Major minerals changed at fluid-rock ratio >10, 

depending on rock and fluid compositions. Ore minerals changed at fluid–rock ratio in the 

range of 10-3 to 1, as ore mineral contents are far less than that of alteration minerals in samples. 

Fluid–rock ratio in the range 1 to 10 may be resulted in formation areas of 

mineralisation/alteration. Chlorite existed at fluid-rock ratio in range 10-100 with temperature 

275⁰-350⁰C as minor phases, and chlorite existed at fluid-rock ratio range 10-100 with 

temperature 200⁰-275⁰C and 440⁰-500⁰C as two major phases. In the temperature range 150⁰-

275⁰C, microcline-albite-chlorite-calcite-hematite changed to microcline-hematite-muscovite-

chlorite in fluid-rock ratios from 0.01-0.1 to 1-10. Increasing fluid-rock ratio to >10, mineral 

assemblage changed to hematite–muscovite-chlorite and then at fluid-rock ratio > 1000 final 

hematite-muscovite formed. The hematite-muscovite-chlorite assemblages depend on Fe-rich-

Ca-Mg-K-Mn fluids at 16.2 wt % NaCl equiv. Fluid-rock ratios have been argued with 

theoretical fluid infiltration through a saturated rock column, models using equilibrium steps 

should converge on reactive transport models only when the equilibrium steps are 

infinitesimally small and kinetic effects are ignored (Cleverley and Oliver, 2005). I applied 

HCh models to fix the fluid-rock ratio which was important in all reactions. 

The effect of protolith composition 

Protolith composition is a significant influence on mineral assemblages at F/R <10 and is the 

dominant influence at F/R <1. There is relatively little change in mineral assemblages present 

between F/R = 0.001 and 1.    

The effect of fluid composition 

The effect of fluid composition are dominant at F/R >1. The major mineral assemblage changed 

as fluid composition at F/R >10. S-bearing fluids form the sulphur minerals including 

chalcopyrite, bornite and chalcocite when fluids contained Cu in fluids. Specifically, Cu-

bearing fluids mixed with S-rich rock units, they formed the Cu sulphides in redox situations. 

In without sulphur situations, the rich-Cu hypysaline formed in flow processes.  

The effect of temperature (and pressure) 

Hematite transfered to magnetite at above 275⁰C. Muscovite formed below 350⁰C. Chlorite 

existed at all temperature ranges at fluid-rock ratio ≤1. Microcline transferred to sanidine 

above 400⁰C. Biotite existed at ≥500⁰C for all fluid-rock ratios and at temperature range 

350⁰-500⁰C at fluid –rock ratio <1. Our models predict Cu sulphide minerals are consistent 

with an orebody at temperatures of 250⁰-300⁰C (Cleverley and Oliver, 2005), rather than low 

temperature 150⁰C (Oreskes and Einaudi, 1992; Haynes et al. 1995). As pressure decreases, 

hematite may increase, consistent with fault system formaiton at lower pressure.  

Chalcocite formed between 150⁰ and 200⁰C and chalcopyrite formed at 250⁰-350⁰C, then 

bornite formed at 350⁰-400⁰C. Secondary chalcocite and chalcopyrite formed at >400⁰C. Our 

model supports mutlple processes with Cu–S minerals (chalcocite and bornite) precipitating at 

the coolest end of the model in response to unbuffered changes in pH and fluid redox (Cleverley 

and Oliver, 2005). 

The effect of LogfO2 
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In oxide conditions (logfO2 -24 to 1) ore minerals do not form, but ore element-rich fluids do 

form. The ore minerals involved in reduction environment and the fluid must be changed from 

oxide to reduction (redox) or say the redox controlled the formation of ore minerals. At fluid-

rock ratio >10, chalcocite formed at fO2 -26, but when fO2 >-26 no Cu minerals formed. At 

fluid-rock ratio >1, chalcopyrite formed at fO2 -28 to -30. When fO2 decreased to -32, pyrite 

occurred with chalcopyrite. Then, at fO2 -34 pyrrhotite-chalcopyrite-magnetite-muscovite 

assemblage formed. The fO2 -26 to -34 in our models is consistent with reduction environments 

of Bastrakov et al. (2007). Redox conditions are important for reduction Cu mineral formation 

and oxide conditions result in leaching processes.  

pH 

HCh models involved three parameters (fluid-rock ratio, temperature-pressure and fO2) 

associated with pH. In HCh modelling. pH is automatically calculated. pH of 2.1 to 4.1 in 

leaching fluids (18.7 wt % NaCl equiv) resulted in pyrite-muscovite-anhydrite assemblage 

formation and K-feldspar, albite, magnetite and chalcopyrite-chalcocite dissolved into fluids 

and the fluids are leaching most ore minerals and formed pyrite-muscovite-anhydrite 

assemblage. This situation is similar to the Emmie Bluff having the muscovite in hang wall 

and foot wall and the leaching processes may be the earlier stage fluid-rock reaction. Late stage 

fluid-rock reaction may not have pH 2.1 to 4.1. The idea of pH changes is that fluid-rock 

reaction will be leading to pH 7 neutral rather than go acid or alkaline. In contrast, alkaline 

fluids are leaching fluids carrying ore elements as described by Bastrakov et al. (2007). Haynes 

et al. (1995) applied pH 5.4 in hot water (250⁰C) with high Cl-Na-S content. In the study area, 

Na content is lower than that possible in HCh models. Cooler water (150⁰-200⁰C) is calculated 

at pH 4.5-6.9 with resulting hematite-calcite-manganosite assemblage. In calc-silicate models, 

pH is stable at 6.2-6.7 and forms rich chalcopyrite-chalcocite assemblage with 13 minerals at 

most. Calc-silicate models also show that pH leading to neutral accompanied with temperature 

increasing from 150⁰ to 300⁰C with the rich ore minerals. For dolomite alteration (17.4 wt %) 

with very alkaline fluid (pH 12.7), more muscovite-chlorite formed at 200⁰C than at 300⁰C. 

Pearce et al., (2015) suggested pH 7-9.8 of gold deposit related to carbonate of biotite and 

Bastrakov et al., (2007) did not mention pH but aplied the NaCl fluids. Our models with pH 6-

7.4 predicted Cu sulphide formation period not consistent with the ore form at pH 5.4 (Haynes 

et al. 1995) and pH 2.9 Cleverley and Oliver (2005) and pH 4.8-5.2 Oliver et al., (2004).  

 

Limitations of HCh models 

Hypersaline fluids of > 35 wt % saline, present in fluid inclusion data for the eastern Gawler 

Craton IOCG deposit, are beyond the limitations of HCh modelling requirements. Interesting 

is that the average 7 fluid inclusion data is 30 wt % NaCl equiv and these are good for HCh 

model requirements. The CO2 may exist at fluids mostly and the hematite veins may be the 

impure hematite. There are lots of ore metal related to carbonate and change the impure-

hematite with ore metal although far away to mineralisation. LA-ICPMS and EM (19 analysis) 

fail at 46-59 wt % Fe with lots of quartz-chlorite inclusions in the hematite of dolomite and 

these indicated the impure hematite.  
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IMPLICATIONS FOR PATHFINDER METALS 

Fabris et al. (2012) identified that ten pathfinder element index (Au, Ag, As, Bi, Cu, Mo, S, Sb, 

Se and W) empirically-spatially related to IOCG mineral deposits. This thesis present evidence 

that these elements hosted by different minerals in different rocks (Figure 58). The fluid 

controlled the minerals assemblage at fluid-rock ratio >10. The mineral assemblages are 

controlled by both protolith rocks and fluids when fluid-rock ratio between 0.1 and 10. The 

mineral assemblages are controlled by protolith rocks at fluid-rock ratio <1. 

Cu, Ag, Au, As, Bi, Se and S are dominantly hosted by sulphide minerals, with As being 

most strongly enriched in pyrite (but not the copper sulphides) and Cu and Bi being most 

strongly enriched in the copper sulphides. Sulphides occur over a range of temperature, fluid-

rock and redox conditions however pyrite and chalcopyrite are most abundant at relatively high 

fluid-rock ratios, at temperatures of 250-300ºC and logfO2 ~-32 to -30, corresponding to the 

magnetite-hematite redox buffer. Elevated concentrations of As and other chalcophile elements 

in pyrite are consistent with p-type pyrite formed from relatively low temperature hydrothermal 

alteration (Abraitis et al., 2004). However pyrite is observed in a wider range of alteration types, 

inferred to occur over a range of conditions. Thus the elements commonly enriched in pyrite 

(including As) are likely to have wider geographic distribution than the elements enriched in 

the copper sulphides. The conditions for elevated concentrations of 6 of the 10 pathfinder 

elements (enriched in the copper sulphides) are high fluid rock ratios (for example within faults 

or shear zones), presence of sulphur (either introduced by the fluid or pre-existing in the rock) 

and fluid-rock interactions (specifically redox reactions) resulting in sulphide precipitation. 

These correspond to the likely conditions of ore formation.  

Sb, and to a lesser extent Mo and W, are not strongly enriched in sulphide minerals and 

are dominantly hosted by Fe-oxide minerals in particular hematite. Sb and W also have elevated 

concentrations in muscovite are possibly linked to muscovite formation at temperatures 

<350⁰C and at fluid-rock ratios ≥1. Hemattite is an abundant and widespread alteration mineral 

on the central eastern Gawler Craton. The presence of hydrothermal hematite indicates 

temperatures and logfO2 below the magnetite-hematite buffer (<300oC and >logfO2 -30 in the 

models presented here). Although IOCG mineralisation is intimately linked to hematite, there 

is abundant hematite that is not enriched in sulphides. This means that Sb (Mo and W) will 

likely have a much broader geographic distribution, with elevated concentrations more distal 

to mineralisation than Cu, Ag, Au, Bi, Se and Te.    

In combination the observations and modelling suggest that the pathfinder elements are 

likely to be spatially distributed as follows: 

  Cu, Ag, Au, Bi, Se and Te associated with intense hematite alteration and sulphide 

mineralisation proximal to ore bodies. 

 As associated with pyrite, which might be present in both magnetite and hematite 

stable alteration assemblages and thus with a ptotentially broad geographic 

footprint. 
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 Sb (Mo, W) associated with widespread hematite alteration (not necessarily with 

sulphide) with a broad geographic footprint and potentially providing a distal 

indicator of the mineral system. 

The broader geographic footprint of Sb, W and As than other pathfinder elements is 

consistent with the observations of Fabris et al. (2012) and Fabris (2013a and b) who found 

enrichments of these elements of greater than 50 times crustal abundance at distances of greater 

than 20 km from known ore deposits. In contrast the elements most enriched in copper 

sulphides (Cu, Ag and Au) are largely restricted to within kilometres of known deposits.  
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Figure 58. The HCh models of model granite and model calc-silicate rock reacted with 16.2 wt % fluids with 

temperature decrease and fO2 increase vs fluid-rock ratio decrease.  
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4.5 CONCLUSIONS  

HCh models simulated all alteration intensities. However, ore elements in fluids are the 

important component for ore formation. A single fluid without ore elements does not result in 

ore formation (e.g. sample 2066178).  

HCh models simulated second minerals, K-feldspar, chlorite, hematite and muscovite, as 

observed in Donington Suite granite. Chlorite-carbonate-hematite assemblage did not produce 

ore bodies in HCh models as the fluid did not contain ore elements. Hypersaline fluids are 

important for mineralisation as these fluids carry metal elements and form magnetite 

assemblage. Fluid-granite reactions at ratio >10 predict primary mineral change. Major mineral 

assemblage was not changed at fluid-rock ratio <1, but did change at fluid-rock ratio >10. Ore 

forms in reaction with reduction fluids, but oxide fluids remove all trace elements. Second 

generation K-feldspar, chlorite and muscovite have considerable ore mineral inclusion as seen 

in petrogenesis (see Figures 10, 12 and 13). Second generation minerals may be important for 

ore formation as HCh models simulated second generation chlorite, K-feldspar, dolomite and 

muscovite.  

Log fO2 and temperature are important to formation of chalcopyrite-bornite-chalcocite.  

Ore minerals do not form under highly oxide environments against the oxide fluids (Bastrakov 

et al., 2007). S content is important, whether present in fluids or rock. S may be present in 

fluids as unaltered granite has no S content. The protoliths having pre-existing sulphides are 

potential hosts of mineralisation (eg. Bastrakov et al., 2007). From acid to weak alkaline and 

from high- to low-pressure hematite increased consistent with ore formation of fault systems. 

Main conclusions are presented in Figure 58. Ore formed at temperature 250°-300℃ and 

pyrite formed at 200°-300℃ at F/R ratio ≤ 10 and contains Se, Te, As, Au, (Co and Ni). 

Hematite formed at ~275℃ containing Sb, Bi, W, Co and Mo. Chlorite formed at larger range 

containing Sb, Bi, Zn (Cu, Ag, Co, As). Muscovite formed at F/R ≤1 containing Se (Sb). The 

granite HCh models are similar to calc-silicate HCh models in Figure 58. In general terms, the 

equibration of a model granite protolith with the high-salinity model fluid A predicts a 

progression from MB, to CAM to HSCC styles of alteration with decreasing temperature, 

increasing F/R and increasing logfO2. The progression from MB via CAM to HSCC is F/R 

increasing and temperature-pressure decrasing in all our models. The minerals stable at low 

F/R are incrementally replaced by iron-oxide (in this case hematite but the same is true for 

magnetite at higher temperatures) and muscovite with chlorite being an important alteration 

phase at low to moderate F/R.  
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5 Thesis conclusions 

The research focused on the IOCGs has provided the following: 

Chapter 2 

 Multiple, overprinting paragenetic relationships can be interpreted within the 

framework of five paragenetic stages.  

 The paragenesis is consistent with successive periods of Fe-K-metasomatism, with 

early higher temperature, more reduced (magnetite stable) alteration being consistently 

overprinted by lower temperature, more oxidized (hematite stable) alteration and with 

the bulk of Cu-sulphide mineralization occurring at close to the transition from 

magnetite to hematite.  

 It is possible that variable overprinting (e.g. Bastrakov et al., 2007) and/or mixing (e.g. 

Haynes et al., 1995) of two discrete fluids was responsible for the observed paragenesis. 

However it is also possible that an initially highly-saline, hot and reduced fluid evolved 

toward a cooler, lower-salinity and more oxidized fluid as it migrated through the crust.  

 In all rock types, alteration intensity was greatest in samples with breccia textures, 

intermediate in samples with veining and micro-fractures and least in samples with little 

evidence of deformation. These observations are consistent with a link between 

alteration intensity and increased fluid-rock ratios due to transient structurally 

controlled permeability. 

Chapter 3 

 Minerals that pre-date the main sulphide phase typically have major and trace element 

concentrations within expected ranges for comparable rock types outside the eastern 

Gawler Craton mineral province. Abundant hydrothermal hematite, overprinting all 

previous mineral assemblages, is a characteristic feature of the sulphide stage of 

petrogenesis. 

 Where hematite and magnetite occur in the same rock, hematite consistently overprints 

magnetite in the paragenesis and has higher average concentrations than magnetite 

(between 1 and 2 orders of magnitude higher) of Ba, Cu, Mo, Nb, Pb, Th, Ta, U and 

∑REE (Rare Earth Elements). Hydrothermal hematite contains elevated concentrations 

of Cu, U, Sb and Bi compared to the average upper crustal abundance.  

 Petrologic overprinting provides evidence for two stages of hydrothermal chlorite 

growth; prior to and subsequent to chalcopyrite deposition.  

 Hydrothermal chlorite contains elevated concentrations of Cu, S and a range of 

chalcophile “pathfinder” elements including As, Bi, Mo and Sb. The first stage of 

chlorite has relatively lower concentrations of Cu (up to ~80 ppm) and S (~ 500 ppm) 

than the second stage of chlorite (up to ~7500 ppm Cu and ~1000 ppm S).Second stage 

chlorite may contain Cu mineral inclusions.    

 Where sulphide minerals are present chalcophile pathfinder elements (e.g. Ag, As, Bi, 

Cu, Sb and Se) are dominantly deported in the sulphides, even at low concentrations, 

far from mineralisation. Pyrite is the most common sulphide, with chalcopyrite 

increasing in abundance closer to mineralisation. The pyrites are p-type, with S/Featom 



139 
 

ratios of > 2 and Co/Ni ratios ranging between 0.4 and 10, but mostly above 1. This is 

consistent with a moderate -temperature hydrothermal origin for the pyrite. There is 

considerable chalcophile trace element enrichment within pyrite.  

 Concentrations of Co, As, Bi, Se, Te and Au reach 2 to 3 orders of magnitude above 

the upper crustal abundance. Cu, Bi, Te, Au, Ag and Pb display large variations in 

concentration (up to 4 orders of magnitude for Bi) and are most abundant in 

hydrothermally altered rocks of metasedimentary protoliths.  

 The chalcopyrite grains show variable enrichment in pathfinder elements and are most 

enriched in Bi, Se, Te and Ag, with values ranging between 1 and 4 orders of magnitude 

above crustal abundance.  

 At elevated whole rock concentrations, within altered rocks, the REE are deported in 

hydrothermal apatite. This is consistent with the extreme capacity of the hydrothermal 

system to mobilise, and locally accumulate, even the most refractory elements. REE 

enrichment (up to 2604 ppm) is a good proximity indicator to ore, since it only occurs 

around the mineral system.  

 Semi quantitative mass balance calculations show that Cu, Sb, Bi, Ce are contributed 

by their different stages or phases of hematite, biotite, chlorite, K-feldspar, chalcopyrite 

(Ce is not contributed by chalcopyrite but instead of dolomite).  

Chapter 4 

 Thermodynamic modelling using the HCh software provides semi-quantitative 

constraints for mineral assemblages associated with IOCG mineral systems of the 

eastern Gawler Craton.    

 The transition from protolith assemblages to magnetite-K-feldspar assemblages to 

chlorite-magnetite-K-feldspar assemblages to hematite-chlorite-muscovite 

assemblages with decreasing temperature, increasing fluid-rock ratio and increasing 

logfO2. This is consistent with the petrologic observations presented in this thesis, 

namely the consistent overprinting of stage 1, magnetite-K-feldspar alteration by stage 

2, hematite-chlorite and muscovite alteration.   

 Although Cu-sulphides are predicted to be stable over a range of temperature and fO2 

conditions, they are predicted to be most abundant between temperatures of ~300⁰ to 

250⁰C, fO2 of -26 to -34 and at fluid-rock ratios >10. This corresponds to alteration 

assemblages at the magnetite and hematite boundary, with abundant chlorite and 

muscovite alteration.   

 The distribution of pathfinder elements (measured in whole rock chemistry) within the 

central eastern Gawler Craton IOCG province can be predicted by combining 

petrological observations with mineral chemistry and thermodynamic modelling and 

are consistent with the observations of Fabris (2012, 2013).  

 Elements associated with hematite alteration (notably Sb and W) are expected to have 

a wide geographic footprint.  

 Elements enriched in pyrite (notably As, but also S and Se) are likely to have a broad 

geographic distribution in line with the presence of pyrite in both magnetite and 
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hematite stable alteration assemblages. 

 Elements most enriched in copper sulphides (Cu, Ag and Au) are largely restricted to 

within <5 km of known deposits. 
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7 Appendixes 

Appendix 1: The summary of work 

Table I. The summary work has been done  

Methods Petrology PXRF SEM Electron Microprobe LA-ICPMS Calculated whole rock form mineral 

chemistry 

Analysis 44 

samples 

90 

points 

Element mappings and mineral identified in 11 

samples 

234 points with 22 

minerals 

133 of 139 silicate, 47 of 101 FeOx and 51 of 51 

sulphide points 

√ 

Chapter 2 2 2  3 and 4 3 3  

Table II. All analysis and observation and calculation 

Sample 

ID 

Drillhole From To Protolith Alt Type Pathfinder> 10 *Crust 

abundance 

Petrology PXRF SEM maps and mineral 

identified 

EMP LA-ICPMS Calc-

whole 

rock 

2066163 CSD1 865 866 Metasandstone CAM As Sb Yes BG No No No No 

2066164 CSD1 880.35 881.35 Metasandstone CAM As Bi Sb Yes Hem No No No No 

2066165 CSD1 880.35 881.35 Metasandstone CAM As Bi Sb Yes Kfel, BG No No No No 

2066166 CSD1 969.9 970.9 Calc-silicate CAM Se W Yes Mag, Hem 166B, 166E, Mon 3 Chlorite, 2 magnetite and 2 

garnet, 1 Fe. 

5 chlorite, 2 garnet, 4 

magnetite,  

3 chalcopyrite and 2 pyrite. 

Yes 

2066167 CSD1 976.8 977.8 Metasiltstone CAM Se Yes Hem, Mag No No No No 

2066168 DRD1 1080 1081 Granite HSCC Ag As Bi S Sb W Yes Py Hem, 

BG 

No No No No 

2066169 DRD1 1138.5 1139.5 Granite HSCC Ag S W Yes BG, ,Py 169A, Ap, Chal, Py 8 Hematite, 4 Chlorite, 6 pyrite and  

1 chalcopyrite. 

5 chlorite, 9 hematite, 6 pyrite 

and 3 chalcopyrite. 

Yes 

2066170 DRD1 1180.7 1181.75 Granite HSCC/CAM Au Ag As Bi Cu S Sb Se 

W 

Yes Py, ,Bre No No No No 

2066171 DRD1 1120.2 1121.2 Granite HSCC 0 Yes Kfel, Chl No No No No 

2066172 PSC4_SASC2 520 521 Granodiorite HSCC 0 Yes BG No No No No 
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2066173 PSC4_SASC2 529.6 530.6 Granodiorite HSCC Se Yes BG No No No No 

2066174 PSC4_SASC_2 539 539.9 Granodiorite HSCC As Se Yes Mal, Bre, 

BG 

Ap, Gnt 6 K-feldspar, 1 feldspar, 2 Biotite,  

3 apatite, 3 calcite, 6 Hematite 

3 K-feldspar, 1 biotite, 3 calcite 

and 2 apatite, 1hematite, 

Yes 

2066175 PSC4_SASC2 548.8 549.5 Granodiorite HSCC Se Yes BG, Kfel No No No No 

2066176 HL002 429 429.5 Granite MB Se Yes BG, Kfel No No No No 

2066177 HL002 471 471.45 Amphibolite MB Bi Yes Carb, BG 177B, 177C, Ap 1 K-feldspar, 1 feldspar, 2 biotite,  

10 chlorite, 3 calcite, 2 dolomite,  

2 magnetite, 10 hematite, 1 apatite. 

1 K-feldspar, 15 chlorite, 2 

dolomite and 2 diopside 

Yes 

2066178 HL002 528.9 529.65 Granodiorite MB Bi Yes Kfel, Dup, 

BG 

178B, Mag 1 K-feldspar, 5 feldspar, 11 biotite,  

5 hematite, 1 ilmenite, 1 unknow. 

3 K-feldspar, 4 feldspar,  6 

biotite,  

1 chlorite and 1 Qtz+Bio, 5 

hematite,  

3 magnetite. 

Yes 

2066179 HL002 539.45 540 Granodiorite MB W Yes Kfel, BG No No No No 

2066196 HL002 651 651.5 Granite HSCC Se Yes BG, Kfel No No No No 

2066197 WWDD1 624.35 625.2 Sandstone-

siltstone 

CAM Ag As Bi Cu Mo S Se Yes BG No No No No 

2066198 WWDD1 614.95 615.85 Sandstone-

siltstone 

CAM Bi Cu S Se Yes Kfel No No No No 

2066199 WWDD1 683.4 684.3 Calc-silicate CAM Au Bi S Sb Se W Yes Kfel, BG 199E, Gy 8 K-feldspar, 5 biotite, 4 carbonate, 

4 dolomite, 1 monazite, 1 Ti 

mineral, 2 apatite. 

5 K-feldspar, 9 biotite, 1 chlorite 

and 1 Qtz+Bio. 

Yes 

2066200 WWDD1 804.7 805.55 Sandstone-

siltstone 

CAM Bi Se Yes BG, Bre No No No No 

2066201 WWDD1 845.55 846.3 Sandstone-

siltstone 

CAM Se Yes Mus, BG No No No No 

2066202 GHDD4 846 847 Skarn HSCC Au Ag As Bi Cu S Sb Se 

W 

Yes BG, Py No No No No 
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2066203 GHDD4 854 855 Skarn HSCC Au Ag As Bi Cu S Sb Se 

W 

Yes Chl, BG, 

Py 

203A,203B, 203C, Ap, 

Chal 

1 K-feldspar, 4 feldspar, 1 biotite,  

1 chlorite, 10 pyroxene, 3 hematite,  

1 apatite 

2 K-feldspar, 1 feldspar, 1 

biotite, 3 pyroxene, 2 chlorite, 1 

apatite, 1 K-fel+Qtz and 6 

chalcopyrite. 

Yes 

2066204 GHDD4 905 906 Calc-silicate HSCC Au Ag As Bi Cu Mo S Se 

W 

Yes Kfel, ,Py No No No No 

2066205 GHDD4 915 916 Skarn HSCC Au Ag As Bi Cu S Sb Se 

W 

Yes Hem, BG No No No No 

2066206 GHDD4 934 935 Skarn HSCC Au Ag As  Cu Mo S Sb 

Se W 

Yes Py, BG, Chl No No No No 

2066634 IHAD6 827 828 Carbonate HSCC As Bi Sb W Yes Hem, Kfel, 

Bre 

No No No No 

2066635 IHAD6 855 856 Calc-silicate HSCC As Bi Cu S Sb W Yes Hem, Kfel, 

Chl 

635F, 635J. Apa 3 chlorite, 6 dolomite, 1 calcite,  

1 hematite, 2 apatite and 1 

gypsum, 2 pyrite, 7 bornite, 1 

chalcopyrite and 1 sphalerite. 

7 chlorite, 3dolomite, 2 apatite,  

1 gypsum, 1 quartz, 1 Dol+Qtz,  

1hematite, 10 chalcopyrite, 6 

bornite and 2 sphalerite. 

Yes 

2066636 IHAD6 859 860 Carbonate HSCC Bi Cu Sb Se Yes Mus, BG, 

Vein 

No No No No 

2066637 IHAD6 1000 1001 Metasandstone HSCC Sb Se Yes Mat, Clast No No No No 

2066639 IHAD3 761.13 762.17 Metasediment HSCC As Bi Cu Sb Yes Hem, Bre, 

Chl 

No No No No 

2066640 IHAD3 789 790 Metasediment HSCC Ag As Bi Cu Sb Se  Yes Hem, Bre No No No No 

2066641 IHAD3 799 800 Metasediment HSCC AS Bi Sb Se Yes Hem, Kfel 641C, Man 1 feldspar, 2 biotite, 6 hematite, 4 

manganite. 

1 biotite, 2 manganite and 1 

Qtz+Chl, 5 hematite. 

Yes 

2066642 IHAD5 850.5 851.3 Granite HSCC As Cu Sb Se Yes BG, ,Hem No No No No 

2066643 IHAD5 919 920 Granite HSCC Ag Bi Cu S Se Yes BG, Kfel No No No No 

2066644 IHAD5 926 927 Granite HSCC  Ag As Bi Cu S Sb Se W Yes Hem, Kfel No No No No 

2066645 IHAD5 1092 1093 Metasandstone HSCC As Bi Yes Chl, BG No No No No 
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2066646 IHAD5 1097 1098 Metasandstone HSCC 0 Yes Kfel, BG No No No No 

2066655 IHAD5 1016 1017 Metasandstone CAM Cu Mo Se Yes Mag, Bre 655A,655B.Py 11 chlorite, 3 calcite, 6 hematite,  

3 pyrite and 2 chalcopyrite. 

20 chlorite, 3 dolomite, 11 

hematite, 2 magnetite, 5 pyrite 

and 7 chalcopyrite. 

Yes 

2066656 IHAD2 819 820 Granite CAM/HSCC Sb S Yes Mus, Hem 656A,656B, Ti minerals 1 feldspar, 1 chlorite, 3 muscovite,  

3 hematite, 2 ilmenite, 1 monazite 

and 1 rutile. 

1K-feldspar, 4 muscovite, 5 

hematite 

Yes 

2066657 IHAD2 879 880 Granite HSCC As Se W Yes BG No No No No 

2066658 IHAD2 969 970 Metasediment HSCC 0 Yes Bre, BG, 

Hem 

No No No No 

Notes: The failed analysis are not in the tables, for example, 17 hematite spots in 2066177 due to Fe 41-58 wt % in LA-ICPMS analysis. 
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Appendix 2: The Handheld X-ray Data 

Sample ID Mineral Al Si S K Ca Ti V Cr Mn Fe Co Ni Cu Zn As Zr Bi 

2066163 BG 4.04 13.25   1.28 1.33 0.24 0.02 0.03 1.15 45.96   0.06 0.02 0.10 0.01 0.04 0.00 

2066164 Hem  1.40 34.24   1.24 1.07 0.08 0.00 0.01 0.50 21.06   0.02 0.01 0.06 0.00 0.04 0.01 

2066165-1 Vein 4.92 50.73 0.13 3.68   0.22 0.02 0.01 0.30 5.91   0.01 0.09 0.04 0.00 0.01 0.01 

2066165-2 BG 4.74 55.66   3.93   0.26 0.02 0.01 0.19 0.69   0.00 0.01 0.03 0.00 0.01 0.02 

2066166-1 Mag   30.72   1.25 5.31 0.07 0.01   0.50 41.09   0.03   0.02 0.00 0.00 0.01 

2066166-2 Hem 1.93 27.48 1.11 1.23 8.65 0.05 0.01   0.60 33.94   0.02 0.05 0.02     0.01 

2066167-1 Hem   44.53   1.24 0.28 0.05 0.01 0.01 0.25 14.78   0.01   0.03 0.00   0.01 

2066167-2 BG    37.90   1.37 2.36 0.07 0.00 0.01 0.54 24.64   0.02   0.03 0.00 0.01 0.01 

2066168-1 Pyrite   0.70 17.44 1.26 18.29 0.06 0.01 0.01 2.58 18.49   0.01         0.01 

2066168-2 Hem   17.33   1.42 2.03 0.10 0.02 0.02 1.55 43.24   0.05   0.04 0.01 0.00 0.01 

2066168-3 BG   1.27   1.29 16.60 0.12 0.01 0.01 0.99 1.06     0.00       0.02 

2066169-1 BG   45.09 0.17 1.24   0.05 0.01   0.05 22.35   0.06 0.01 0.06     0.01 

2066169-2 Pyrite   5.07 30.34 1.25     0.01   0.03 58.40   0.11 0.37 0.20     0.00 

2066170-1 Pyrite 5.44 29.03 10.20 3.97 0.38 0.16 0.02 0.01 0.08 20.92   0.01 0.10 0.00   0.01 0.01 

2066170-2 Breccia 11.24 37.48   5.13   0.28 0.04 0.03 0.07 10.17   0.00 0.01 0.01   0.01 0.01 

2066171-1 Kfel 8.08 44.10   4.68   0.25 0.02 0.01 0.07 4.46   0.00 0.01 0.01   0.02 0.02 

2066171-2 Chl 7.37 42.27   3.88   0.29 0.01 0.01 0.06 5.80   0.01   0.01   0.02 0.02 

2066172 GRT 13.17 44.67 0.30 4.37 0.18 0.40 0.02 0.01 0.09 6.75   0.00 0.02 0.02   0.02 0.01 

2066173 Grt 13.69 43.26   4.82 0.56 0.52 0.02 0.01 0.06 4.41   0.00   0.01   0.01 0.01 

2066174-1 Mala 7.02 53.83   3.34 0.54 0.25 0.02 0.01 0.11 1.73   0.00 0.01 0.01 0.01 0.01 0.02 

2066174-2 Breccia 5.09 50.73   3.02 1.93 0.20 0.02 0.01 0.23 1.85     0.00 0.01 0.00 0.01 0.02 

2066175-1 Grt 16.33 45.23   7.07   0.29 0.02 0.02 0.08 -0.03   0.00 0.01 0.00   0.01 0.02 

2066175-2 Kfel 9.13 49.74   4.17   0.33 0.02 0.01 0.09 1.51   0.00 0.00 0.01   0.01 0.02 

2066176-1 BG 7.90 25.65   2.50 0.40 0.51 0.01 0.01 0.11 8.14   0.01   0.01   0.02 0.01 

2066176-2 Kfel 14.40 37.62 0.09 7.34   0.29 0.03 0.01 0.06 -0.33   0.00 0.00 0.00   0.00 0.02 

2066177-1 Vein 2.11 26.63 0.12 1.31 4.75 0.53 0.01 0.00 0.44 13.34   0.01 0.01 0.02   0.01 0.01 

2066177-2 BG  3.51 24.80   1.84 1.32 1.20 0.02 0.00 0.19 18.34   0.01   0.02   0.02 0.01 

2066178-1 Kfel 6.85 57.35 0.13 4.51 0.70 0.18 0.02 0.01 0.03 -1.36     0.00 0.00   0.00 0.02 

2066178-2 Dup 7.02 57.35 0.11 4.51 0.70 0.20 0.02 0.01 0.02 -1.38     0.00 0.00   0.00 0.02 

2066178-3 BG 9.30 49.88   2.54 1.22 0.26 0.01 0.01 0.05 1.71   0.00   0.01   0.01 0.02 

2066179-1 Kfel 15.27 44.95   8.36 0.20 0.31 0.04 0.02 0.02 -1.52   0.00 0.00     0.00 0.02 

2066179-2 BG 13.69 41.71   3.90 1.49 0.29 0.02 0.01 0.04 2.51   0.00   0.00   0.01 0.02 

2066196-1 BG 7.02 37.76   2.97 1.94 0.56 0.01 0.01 0.08 7.53   0.01 0.00 0.02   0.02 0.01 

2066196-2 Fel 14.75 43.54   6.68 1.00 0.32 0.03 0.02 0.04 -0.16   0.00 0.01 0.00   0.01 0.02 

2066197 Kfel 4.04 41.00   2.84 5.91 0.19 0.01 0.01 0.43 1.87   0.00   0.01   0.02 0.02 

2066198 Kfel 11.41 34.80   3.71 5.71 0.29 0.01 0.01 0.34 3.12   0.00   0.01   0.02 0.02 

2066199-1 Kfel 12.29 31.14   4.17 7.21 0.38 0.03 0.02 0.63 3.65   0.01 0.00 0.00   0.01 0.02 

2066199-2 BG 8.25 16.91 0.34 2.40 12.26 0.57 0.07 0.02 0.95 6.98   0.01 0.03 0.01   0.01 0.01 

To be continued 
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Sample ID Mineral Al Si S K Ca Ti V Cr Mn Fe Co Ni Cu Zn As Zr Bi 

2066200-1 BG 7.55 49.32   4.77 0.69 0.17 0.02 0.01 0.14 2.30   0.00   0.01   0.01 0.02 

2066200-2 Breccia 8.25 45.79   4.21 1.63 0.24 0.02 0.01 0.19 4.36   0.00   0.01   0.01 0.02 

2066201-1 Vein 4.74 25.65 5.43 2.01 7.02 5.92 0.96 0.11 0.78 3.33   0.02 0.02 0.01   0.01 0.01 

2066201-2 BG 10.71 47.06 0.08 4.97 1.48 0.29 0.03 0.02 0.17 0.60   0.00 0.00 0.01   0.01 0.02 

2066202 BG 4.74 20.15 0.28 1.24 19.49 0.18 0.02 0.01 0.69 10.33   0.01 0.02 0.04   0.01 0.01 

2066202 Pyrite   18.32 10.00 1.25 7.43 0.06 0.00   0.30 14.15   0.02 2.89 9.59   0.00 0.01 

2066203-1 Chl 3.51 21.84 1.38 1.27 17.73 0.12 0.01 0.01 0.41 16.05   0.00 0.11 2.80 0.01 0.00 0.01 

2066203-2 BG 6.14 29.03   2.76 4.72 0.18 0.02 0.01 0.89 10.19   0.02 0.04 0.07   0.01 0.01 

2066203-3 Pyrite  5.97 31.70 5.01 3.11 3.77 0.17 0.01 0.01 0.57 10.90   0.02 1.78 2.03   0.01 0.01 

2066204-1 Kfel 13.69 36.92 0.47 5.64 2.61 0.36 0.04 0.02 1.62 3.22   0.01 0.08 0.50   0.01 0.01 

2066204-2 Pyrite 6.85 31.14   3.12 6.50 0.28 0.02 0.02 2.14 5.91   0.01 0.06 0.07   0.01 0.01 

2066205-1 Hem   15.08 1.56 1.24 14.03 0.07 0.01 0.01 0.38 26.21   0.04 0.99 0.10 0.01 0.00 0.01 

2066205-2 BG 3.69 14.23 0.94 1.24 21.42 0.15 0.01 0.01 0.46 12.91   0.01 0.58 0.06 0.00 0.00 0.01 

2066206-1 Pyrite 10.18 37.90 0.93 5.31 3.22 0.28 0.03 0.01 0.27 5.32   0.00 0.41 0.19   0.01 0.01 

2066206-2 BG 12.11 40.72 0.65 6.48 2.46 0.34 0.03 0.02 0.18 2.03   0.00 0.14 0.34   0.01 0.02 

2066206-3 Chl 3.69 29.87   2.54 10.42 0.26 0.02 0.01 0.88 5.17   0.01 0.01 0.08   0.01 0.01 

2066634-1 Hem   13.25   1.34 0.40 0.07     0.51 66.27   0.02 0.01 0.02 0.01 0.01 0.00 

2066634-2 Kfel   57.63   1.40   0.09 0.01 0.01 0.11 9.73 0.05   0.01 0.01 0.02 0.00 0.01 

2066634-3 Breccia 3.34 46.22   2.05 1.67 0.22 0.01 0.01 0.55 9.02   0.01 0.01 0.02 0.00 0.02 0.01 

2066635-1 Hem    3.38   1.24 0.30 0.04 0.00   0.12 81.87   0.01   0.01 0.01 0.01 0.00 

2066635-2 Kfel 2.98 9.72 0.94   12.91 0.12 0.01 0.01 1.99 5.22   0.00 1.66 0.37   0.00 0.01 

2066635-3 Chl  3.69 7.75 6.10 1.24 12.26 0.14 0.01 0.01 1.82 6.14   0.00 2.98 0.18   0.02 0.01 

2066636-1 Vein   1.27     9.44 0.04 0.00   0.72 38.95     0.02   0.00 0.00 0.01 

2066636-2 BG   3.24   1.23 16.44 0.17 0.01 0.01 1.38 2.38   0.00 0.02 0.00   0.01 0.02 

2066636-3 Vein   16.20 2.18 1.24 13.04 0.10 0.01 0.01 1.16 9.41   0.00 0.00 0.02 0.00 0.01 0.01 

2066637-1 Fine 5.44 58.19   3.63   0.44 0.01 0.01 0.01 2.70           0.03 0.02 

2066637-2 Coarse  6.32 52.42   3.53   0.74 0.02 0.01 0.01 6.81 0.03         0.07 0.01 

2066639-1 Hem   18.18   1.54 0.09 0.03     2.74 59.40   0.08 0.06 0.03 0.01   0.00 

2066639-2 Breccia   31.99   1.38 2.29 0.07 0.01   0.83 19.34   0.01 0.05 0.01 0.00 0.00 0.01 

2066639-3 Chl   52.98 0.08 1.51 1.33 0.13 0.01 0.01 0.07 -0.81   0.00 0.02 0.00 0.00 0.00 0.02 

2066640-1 Hem   29.59   1.82 0.44 0.05 0.00   1.47 53.25   0.07 0.24 0.04 0.02 0.00 0.00 

2066640-2  BG 3.51 60.17 0.10 2.64 0.40 0.26 0.02 0.01 0.20 -1.47   0.00 0.06 0.01 0.01 0.01 0.02 

2066641-1 Hem   29.87   1.84   0.07 0.01   1.43 50.82   0.06 0.11 0.03 0.01 0.01 0.00 

2066641-2 Kfel 12.82 43.40   3.91   0.48 0.05 0.01 1.62 5.56   0.00 0.04 0.02   0.01 0.01 

2066642-1 BG 13.52 40.72   5.91   0.25 0.02 0.01 0.14 4.20   0.00 0.15 0.01   0.01 0.01 

2066642-2 Hem  2.81 17.05   1.60   0.10 0.01 0.01 0.21 53.39   0.02 0.20 0.04 0.02 0.01 0.00 

2066643-1 BG 8.25 53.26 0.14 5.60   0.29 0.02 0.01 0.04 1.11     0.01 0.00   0.01 0.02 

2066643-2 Kfel  11.94 41.99 1.91 7.34 0.62 0.39 0.06 0.01 0.04 -1.00   0.00 0.03 0.00   0.00 0.02 

To be continued 
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Sample ID Mineral Al Si S K Ca Ti V Cr Mn Fe Co Ni Cu Zn As Zr Bi 

2066644-1 Hem    6.20 1.80 1.26 0.08       
 

79.29     5.99       0.00 

2066644-2 Kfel 4.04 2.11 8.23 1.29 0.28 4.12 0.66 0.05 0.23 44.52   0.03 4.58   0.01 0.01 0.00 

2066645-1 Chl   39.45 4.75 1.24 7.25 0.12 0.01 0.01 0.82 2.89     0.02 0.01   0.00 0.01 

2066645-2 BG   58.76   1.29   0.12 0.01 0.01 0.09 5.86       0.01   0.01 0.01 

2066646-1 Vein   22.26 0.27 1.52 14.67 0.12 0.01 0.01 1.58 1.57       0.00   0.00 0.02 

2066646-2 BG   60.87 0.08 2.35   0.14 0.01 0.01 0.03 -1.33           0.00 0.02 

2066655-1 Mag   13.67   1.26 0.59 0.04     0.10 77.86     0.04 0.01   0.00 0.00 

2066655-2  Breccia 4.21 35.79   1.25   0.10 0.01 0.00 0.08 27.93   0.00 0.01 0.01 0.00 0.01 0.01 

2066656-1 Mica  17.55 46.78   4.59   0.24 0.02 0.01 0.07 1.38   0.00 0.03 0.02   0.00 0.02 

2066656-2 Hem  12.29 45.94   3.79   0.25 0.01 0.01 0.17 8.85   0.00 0.01 0.01   0.01 0.01 

2066657 BG 7.02 34.52 6.10 3.01 2.75 0.44 0.02 0.01 0.08 7.99 0.04 0.00 0.00 0.01   0.01 0.01 

2066658-1 Breccia 1.40 42.69   1.25   0.10 0.01 0.01 0.10 21.20   0.01 0.01 0.01   0.00 0.01 

2066658-2 BG 3.51 44.10   1.70   0.12 0.01 0.00 0.07 18.63 0.03 0.00   0.03   0.00 0.01 

2066658-3 Hem    31.14   1.25   0.02 0.00 0.00 0.04 46.96   0.01   0.01 0.00   0.00 

Notes: Total of 90 spots has been analyzed with four standards controlled (901, 903, 163 and 165) 

1. Rb, Sr, Sb, W, Au, Ag, Se, Mo is under the detected limitation as zero value. 17 elements have the values and empty is 
zero. 

2. Four times of Standard have been applied by every twenty measuring spots. 

3. The soil mode data have to give up and the mining Plus mode has been used due to factors. 

4. The mining mode standard can be match to the references. 

5. Eleven highlight samples have been further analysis by SEM, EM and LA-ICPMS. 
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Appendix 3: The Electron Microprobe Data 

Table III.  The pyrite (11 grains) contains element Co and As, and ratios of Fe/S atom 

  SAMPLE   Fe wt %   Co wt %   Cu wt %    S wt %   As wt %   Bi wt % Fe atom S atom Fe/Satom 

2066169A1 48.00 0.13 0.01 55.20 0.00 0.00 0.86 1.73 0.50 

2066169A2 47.03 0.18 0.00 55.25 0.00 0.00 0.84 1.73 0.49 

2066169A3 47.35 0.22 0.02 55.25 0.04 0.00 0.85 1.73 0.49 

2066169B1 41.51 0.00 0.10 33.32 0.00 0.17 0.74 1.04 0.71 

2066169B2 41.32 0.00 0.11 33.22 0.00 0.17 0.74 1.04 0.71 

2066169B3 41.54 0.00 0.11 33.48 0.00 0.21 0.74 1.05 0.71 

2066655A1 41.44 0.22 0.12 33.49 0.00 0.00 0.74 1.05 0.71 

2066655A2 41.87 0.06 0.02 34.11 0.07 0.00 0.75 1.07 0.70 

2066655A3 41.91 0.14 0.07 34.46 0.00 0.00 0.75 1.08 0.69 

2066635B1 43.04 0.05 0.64 43.84 0.02 0.00 0.77 1.37 0.56 

2066635B2 42.33 0.06 0.35 43.34 0.05 0.00 0.76 1.35 0.56 

Re analysed data 

Sample  
SAMPLE 

   S 
WT% 

  Fe 
WT% 

  Co 
WT% 

Total   
TOTAL 

Co/Ni    S 
AT% 

  As 
AT% 

  Fe 
AT% 

  Cu 
AT% 

  Bi 
AT% 

  Co 
AT% 

Total   
TOTAL 

169A 53.82 46.20 0.41 100.51 0.4
93 

66.77 0.03 32.91 0.01 0.00 0.27 100.00 

169A 53.63 46.31 0.57 100.51 0.4
96 

66.59 0.00 33.02 0.00 0.00 0.38 100.00 

169A 53.89 46.47 0.43 100.84 0.4
95 

66.68 0.01 33.01 0.00 0.01 0.29 100.00 

169B 53.98 46.01 0.62 100.63 0.4
89 

66.85 0.01 32.72 0.01 0.00 0.42 100.00 

169B 53.82 45.91 0.57 100.30 0.4
90 

66.87 0.00 32.75 0.00 0.00 0.38 100.00 

169B 53.73 46.25 0.57 100.56 0.4
94 

66.66 0.00 32.94 0.01 0.00 0.38 100.00 

635B 53.61 46.55 0.10 100.58 0.4
99 

66.56 0.02 33.19 0.16 0.01 0.07 100.00 

635B 53.54 46.62 0.05 100.37 0.5
00 

66.58 0.00 33.29 0.10 0.00 0.04 100.00 
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635B 53.51 46.37 0.14 100.57 0.4
98 

66.48 0.01 33.08 0.33 0.00 0.09 100.00 

655A 53.98 46.47 0.11 100.59 0.4
94 

66.86 0.00 33.05 0.01 0.00 0.08 100.00 

655A 53.92 46.41 0.07 100.46 0.4
94 

66.87 0.04 33.05 0.00 0.00 0.04 100.00 

655A 53.77 46.16 0.23 100.18 0.4
93 

66.88 0.00 32.96 0.01 0.00 0.16 100.00 
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Silicate and Oxide Electron Microprobe Data: 1-8 grains (2066166) and 9-20 grains (2066199) 

Rock Calc-silicate - 2066166 

Sample ID   Si 

WT % 

  Zr 

WT % 

  Ti 

WT % 

  Zn 

WT % 

  Al 

WT % 

   V 

WT % 

  Cr 

WT % 

  Fe 

WT % 

  Mn 

WT % 

  Mg 

WT % 

  Ca 

WT % 

  Ba 

WT % 

  Na 

WT % 

   K 

WT % 

   P 

WT % 

  Cl 

WT % 

   F 

WT % 

   O 

WT % 

   H 

WT % 

TOTAL 

166B Mag1 0.06 0.00 0.00 0.00 0.02 0.00 0.00 71.28 0.08 0.01 0.01 0.01 0.03 0.01 0.01 0.02 0.43 30.59 0.00 102.5 

166B Mag2 0.11 0.06 0.02 0.05 0.03 0.00 0.00 71.34 0.14 0.07 0.08 0.04 0.01 0.01 0.01 0.00 0.46 30.80 0.00 103.2 

166B Gt 17.04 0.00 0.01 0.00 1.73 0.01 0.00 18.40 0.76 0.08 23.59 0.00 0.00 0.00 0.00 0.00 0.14 35.87 0.00 97.63 

166B Chl 11.52 0.00 0.00 0.00 8.37 0.02 0.00 26.27 2.76 4.42 0.03 0.00 0.02 0.00 0.02 0.00 0.16 31.79 0.00 85.37 

166E Fe 0.00 0.01 0.00 0.05 0.00 0.00 0.01 46.40 0.00 0.00 0.00 0.02 0.00 0.00 0.00 53.45 0.00 0.41 0.00 100.3 

166E Chl1 11.56 0.00 0.00 0.00 8.57 0.00 0.00 26.51 2.89 4.11 0.09 0.00 0.04 0.00 0.02 0.00 0.16 31.94 0.00 85.90 

166E Gt 16.94 0.00 0.07 0.00 1.58 0.01 0.00 19.49 1.16 0.01 22.53 0.00 0.00 0.00 0.01 0.00 0.13 35.63 0.00 97.54 

166E Chl2 15.57 0.00 0.00 0.04 5.74 0.00 0.02 8.13 0.65 15.03 0.32 0.00 0.05 0.02 0.05 0.02 0.23 35.38 0.00 81.24 

Rock Granite -2066169 

169A Hem4 0.80 0.00 0.01 0.04 0.33 0.02 0.01 65.14 0.04 0.03 0.03 0.00 0.52 0.01 0.01 0.04 0.40 29.30 0.00 96.75 

169A Hem5 0.12 0.01 0.07 0.05 0.04 0.04 0.00 67.32 0.06 0.01 0.06 0.00 0.05 0.00 0.02 0.01 0.43 29.08 0.00 97.35 

169A Hem6 0.19 0.00 0.01 0.03 0.05 0.01 0.00 66.01 0.04 0.02 0.04 0.00 0.04 0.01 0.01 0.01 0.39 28.55 0.00 95.41 

169A Chl1 12.85 0.00 0.00 0.00 10.72 0.00 0.00 15.14 0.04 11.53 0.02 0.00 0.00 0.00 0.00 0.04 0.35 35.97 0.00 86.66 

169A Chl2 12.66 0.00 0.01 0.01 10.47 0.00 0.00 15.44 0.04 10.99 0.04 0.00 0.00 0.00 0.02 0.05 0.34 35.29 0.00 85.35 

169A Hem1 0.80 0.00 1.20 0.00 0.14 0.06 0.01 63.72 0.02 0.06 0.05 0.03 0.05 0.02 0.00 0.02 0.38 29.18 0.00 95.73 

169A Hem2 0.01 0.00 0.07 0.00 0.02 0.00 0.01 68.35 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.43 29.28 0.00 98.18 

169B Hem2 0.18 0.01 0.00 0.00 0.05 0.00 0.01 67.24 0.00 0.02 0.02 0.00 0.07 0.03 0.02 0.03 0.46 29.02 0.00 97.13 

169B Hem3 0.02 0.01 0.00 0.03 0.02 0.00 0.01 67.70 0.02 0.00 0.01 0.00 0.06 0.01 0.01 0.01 0.45 29.01 0.00 97.35 

169B Hem4 0.12 0.01 0.11 0.00 0.14 0.03 0.00 67.20 0.00 0.04 0.00 0.02 0.09 0.02 0.00 0.03 0.43 29.11 0.00 97.35 

169B Chl1 12.39 0.00 0.00 0.01 10.41 0.00 0.00 15.48 0.10 10.41 0.05 0.00 0.04 0.03 0.00 0.06 0.35 34.57 0.00 83.90 

169B Chl2 12.82 0.00 0.00 0.01 10.74 0.00 0.00 15.20 0.04 11.30 0.02 0.00 0.02 0.01 0.00 0.05 0.33 35.83 0.00 86.36 
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Silicate and Oxide Electron Microprobe Data – 21-41 grains (2066174)  

Rock Granite-2066174 

Sample ID Si WT % Zr WT % Ti WT % Zn WT % Al WT % V WT % Cr WT % Fe WT % Mn WT % Mg WT % Ca WT % Ba WT % Na WT % K WT % P WT % Cl WT % F WT % O WT % H WT % TOTAL 

174A Cal1 0 0 0 0 0 0 0 0 3.85 13.39 22.98 0 0 0 0 0.01 0.08 12.29 51.83 104.44 

174A Cal2 0.03 0.02 0 0 0.01 0.01 0 1.35 3.51 12.13 19.59 0 0.01 0 0 0.02 0.18 12.53 50.59 99.98 

174A Cal3 0 0 0 0.04 0 0 0.01 0.01 4.57 12.61 20.74 0 0 0 0 0 0.05 12.46 51.11 101.59 

174A Hem1 0 0.13 0 0 0 0.02 0 0.09 0.01 0 41.12 0 0.02 0.01 18.66 0 4.66 38.65 0 103.36 

174A Bt1 21.22 0 0.06 0 12.31 0 0 8.89 0.04 1.27 0.06 0.05 0.22 6.12 0 0.05 0.18 39.83 0 90.3 

174A Bt2 22.06 0.01 0.05 0 17.76 0.04 0 2.5 0 0.66 0.04 0.23 0.15 7.03 0 0 0.11 43.62 0 94.26 

174A Ksp1 30.18 0 0.01 0 9.74 0 0 0.02 0 0.01 0.09 0.23 0.92 12.23 0 0 0 45.96 0 99.4 

174A Ksp2 30.35 0 0 0 9.87 0 0 0.02 0 0 0.01 0.47 0.39 11.94 0 0.14 0 45.96 0 99.15 

174B Ksp1 30.19 0.01 0.01 0 9.66 0 0 0 0 0 0.02 0.18 0.82 12.61 0 0.02 0 45.89 0 99.42 

174B Ap1 0.06 0.11 0.01 0 0.01 0 0 1.71 0.01 0.02 38.38 0 0.05 0 17.46 0.01 4.01 36.84 0 98.7 

74B Kfs2 29.15 0 0.01 0 9.21 0 0 1.15 0 0 0.03 0.21 0.24 12.94 0.01 0.03 0 44.52 0 97.51 

174B Ap2 0.06 0.13 0 0.01 0 0.01 0 0.08 0 0.01 39.67 0 0.58 0.13 18.1 0.33 5.58 37.17 0 101.85 

174B Fe1 1.1 0.01 0.46 0 0.6 0.02 0.03 59.97 0.05 0.04 0.48 0 0.13 0.18 0.03 0.11 0.44 28.03 0 91.68 

174B Fe2 0.75 0 0.28 0 0.39 0.03 0.02 60.3 0.06 0.01 0.42 0 0.2 0.08 0.02 0.13 0.29 27.48 0 90.46 

174C Kfs1 30.47 0 0 0 9.81 0 0 0.43 0.01 0.01 0.02 0.03 0.22 13.6 0 0.01 0 46.44 0 101.05 

174C Hem1 0.56 0 0.16 0.01 0.44 0.09 0.02 63.5 0.05 0.01 0.05 0 0.06 0.16 0.01 0.05 0.46 28.38 0 94.01 

174C Hem2 0.84 0.01 0.13 0.02 0.6 0.06 0.02 63.5 0.04 0.02 0.04 0 0.09 0.37 0 0.05 0.31 28.92 0 95.01 

174C Kfs2 24.12 0.03 0.02 0 14.46 0 0 2.76 0.03 0.65 0.07 0.08 0.1 7.36 0 0.02 0.28 43.05 0 93.03 

174D Ap1 0 0.08 0 0 0 0.02 0 0.17 0 0 40.23 0 0.03 0.01 17.94 0.01 4.82 37.29 0 100.6 

174D Fel1 23.57 0 0.02 0 14.49 0.01 0 2.97 0.01 1.11 0.18 0.1 0.07 6.79 0 0.14 0.16 42.74 0 92.36 

174D Fe1 1.22 0 0.8 0.02 0.62 0.05 0.04 61.9 0.4 0.09 0.46 0.06 0.02 0.26 0.01 0.05 0.38 29.39 0 95.76 
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Silicate and Oxide Electron Microprobe Data – 42-73 grains (2066177)  

Rock Amphibolite - 2066177 

Sample ID Si 

WT % 

Zr 

WT % 

Ti 

WT % 

Zn 

WT % 

Al 

WT % 

V 

WT % 

Cr 

WT % 

Fe 

WT % 

Mn 

WT % 

Mg 

WT % 

Ca 

WT % 

Ba 

WT % 

Na 

WT % 

K 

WT % 

P 

WT % 

Cl 

WT % 

F 

WT % 

O 

WT % 

H 

WT % 

TOTA

L 

177A Cal2 0 0 0 0.04 0 0 0 0.12 3.84 0.12 42.73 0 0.01 0.01 0 0 0.12 11.21 48.13 106.32 

177A Dol1 0 0.02 0 0 0.01 0 0 0.6 6.3 11.44 22.7 0 0 0 0 0.01 0.09 12.09 50.79 104.04 

177A Dol2 0 0.02 0 0 0 0 0 1.42 3.46 6.14 33.22 0 0.03 0.01 0 0.02 0.12 11.64 49.69 105.76 

177A Cal1 0 0 0 0.02 0 0 0 0 2.39 13.48 25.26 0 0 0 0 0 0.11 12.23 52.21 105.71 

177A Chl1 12.2 0 0 0 10.2 0.01 0 21.68 0.36 8.04 0.02 0 0.03 0.01 0 0.05 0.09 34.56 0 87.26 

177A Chl2 11.74 0.03 0.01 0.03 10.14 0.02 0 21.23 0.34 7.43 0.05 0 0.01 0.05 0 0.08 0.18 33.45 0 84.8 

177A Hem1 0.83 0.01 0.2 0 0.63 0.45 0.02 57.71 0.09 0.39 0.2 0 0.07 0 0 0.07 0.27 26.93 0 87.88 

177A Fel1 22.45 0 0 0 11.33 0.05 0 3.3 0.04 1.86 0.11 0 0.05 4.55 0 0.15 0.26 38.71 0 82.86 

177B Hem1 1.95 0 0.09 0 1.11 0.15 0 45.74 0 0.21 0.15 0 0.09 0.61 0.01 0.21 0.17 23.24 0 73.74 

177B Mag1 2.63 0 0.03 0 1.42 0.14 0 41.23 0 0.24 0.06 0 0.1 0.81 0 0.24 0.21 22.3 0 69.41 

177B Hem2 7.38 0 0.04 0 4.23 0.15 0 48.03 0 0.7 0.04 0 0.13 2.12 0 0.11 0.38 33.69 0 97.01 

177B Mag2 3.73 0 0.07 0 1.93 0.22 0 49.5 0.02 0.36 0.06 0 0.08 0.75 0 0.15 0.2 27.72 0 84.78 

177B Bt1 16.91 0 0.01 0 8.9 0.13 0 22.82 0.02 1.52 0.1 0 0 4.95 0 0.04 0.31 35.7 0 91.4 

177B Hem3 2.56 0.01 0.04 0 1.46 0.18 0.01 44.43 0.01 0.26 3.08 0 0 0.71 1.45 0.12 0.39 26.66 0 81.36 

177B Chl1 12.02 0 0.01 0.04 9.92 0.05 0 21.34 0.47 7.41 0.06 0 0.07 0.13 0 0.08 0.15 33.69 0 85.43 

177B Chl2 12.06 0 0 0 9.9 0.01 0 22.98 0.34 7.29 0.01 0 0.02 0.04 0.01 0.06 0.13 33.99 0 86.84 

177B Hem4 0.54 0 0.04 0 0.3 0.17 0 60.92 0.04 0.04 0.18 0 0.09 0.13 0.01 0.07 0.34 27.19 0 90.07 

177B Hem5 4.85 0 0.06 0 2.59 0.17 0 45.69 0 0.49 0.19 0 0.05 1.36 0.01 0.01 0.22 28.18 0 83.86 

177B Chl3 12.31 0.01 0 0.02 10.16 0.03 0 20.98 0.41 8.04 0.04 0 0.07 0.09 0 0.07 0.18 34.48 0 86.9 

177B Bt 16.2 0 0 0.09 9.28 0.03 0 13.84 0.51 7.02 0.1 0 0.09 1.99 0 0.07 0.26 35.84 0 85.33 

177B Hem5 1 0 0.03 0 0.58 0.16 0 51.91 0.03 0.14 0.07 0 0.14 0.26 0 0.08 0.28 24.17 0 78.85 

To be continued   
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Rock Amphibolite - 2066177 

Sample ID Si 

WT % 

Zr 

WT % 

Ti 

WT % 

Zn 

WT % 

Al 

WT % 

V 

WT % 

Cr 

WT % 

Fe 

WT % 

Mn 

WT % 

Mg 

WT % 

Ca 

WT % 

Ba 

WT % 

Na 

WT % 

K 

WT % 

P 

WT % 

Cl 

WT % 

F 

WT % 

O 

WT % 

H 

WT % 

TOTAL 

177C Hem1 0.646 0 0.212 0 0.508 0.444 0.004 58.678 0.079 0.149 0.201 0 0.035 0.011 0.008 0.07 0.326 26.83 0 88.2 

177C Chl1 12.27 0 0.009 0.007 9.893 0.017 0 21.229 0.291 8.279 0 0 0.021 0.024 0 0.056 0.109 34.365 0 86.57 

177C Kfs1 30.272 0 0.006 0 9.742 0 0.007 0.155 0 0 0.015 0.231 0.163 13.669 0.003 0 0 46.097 0 100.36 

177C Chl2 12.005 0 0.016 0 9.997 0.01 0 21.325 0.388 7.579 0.039 0 0.112 0.099 0.004 0.08 0.148 33.797 0 85.598 

177C Chl3 11.936 0 0.005 0 10.235 0.003 0.002 21.318 0.341 7.581 0.008 0.002 0.083 0.08 0.013 0.083 0.133 33.897 0 85.722 

177C Ap1 23.648 0.069 0.012 0.026 0.054 0 0.008 0.338 0.018 0.034 18.893 0 0.037 0.013 9.861 0.108 2.22 46.491 0 101.83 

177C Chl4 10.652 0 0 0 9.097 0.015 0 14.993 0.244 6.541 0.066 0 0.41 0.13 0.016 0.294 0.14 28.998 0 71.596 

177C Hem2 8.658 0.048 0.033 0.037 6.905 0.057 0 24.307 0.372 5.569 0.833 0 0.294 0.095 0.016 0.179 0.142 30.677 0 78.221 

177C Cal1 0 0 0 0 0 0 0.013 0.363 5.09 0.349 39.882 0.004 0.066 0.007 0 0.047 0.114 11.265 47.723 104.92 

177C Hem3 2.361 0 0.07 0 1.861 0.101 0 29.91 0.346 2.477 3.113 0 0.423 0.057 0 0.174 0.087 20.35 0 61.329 

177C Chl5 12.097 0 0.019 0 9.968 0 0 21.052 0.363 7.779 0.023 0 0.183 0.04 0 0.145 0.12 33.918 0 85.706 
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Silicate and Oxide Electron Microprobe Data - 74 to 97 grains (2066178) 

Rock Granite- 2066178  

Sample ID Si 

WT

 % 

Zr 

WT % 

Ti 

WT % 

Zn 

WT % 

Al 

WT % 

V 

WT % 

Cr 

WT % 

Fe 

WT % 

Mn 

WT % 

Mg 

WT % 

Ca 

WT % 

Ba 

WT % 

Na 

WT % 

K 

WT % 

P 

WT % 

Cl 

WT % 

F 

WT % 

O 

WT % 

H 

WT % 

TOTAL 

178AHem1 0.11 0.00 0.12 0.00 0.07 0.08 0.03 66.84 0.03 0.00 0.04 0.00 0.23 0.02 0.02 0.10 0.46 28.96 0.00 97.11 

178A Kfs1 26.5

1 

0.00 0.00 0.00 14.95 0.01 0.00 0.11 0.17 0.05 1.11 0.02 3.60 3.82 0.00 0.01 0.01 46.09 0.00 96.45 

178A Bt3 15.9

4 

0.04 1.24 0.05 8.24 0.02 0.00 17.50 0.28 4.89 0.18 0.16 0.09 7.10 0.02 0.02 1.04 35.82 0.00 92.61 

178A Fsp2 29.7

3 

0.00 0.00 0.01 13.10 0.00 0.00 0.12 0.00 0.02 2.92 0.02 6.34 0.59 0.00 0.05 0.00 49.06 0.00 101.94 

178A Fsp3 29.3

5 

0.03 0.01 0.00 13.10 0.00 0.00 0.47 0.00 0.07 2.76 0.00 6.44 1.45 0.00 0.02 0.01 48.91 0.00 102.61 

178A Bt1 16.6

5 

0.00 1.44 0.03 8.53 0.03 0.01 16.99 0.25 5.04 0.00 0.10 0.09 7.92 0.01 0.03 1.04 37.03 0.00 95.18 

178A Bt2 16.4

2 

0.00 1.27 0.02 8.62 0.03 0.01 17.56 0.26 5.40 0.04 0.04 0.07 7.46 0.01 0.03 0.97 37.07 0.00 95.26 

178A Bt4 17.2

3 

0.01 1.01 0.00 8.81 0.03 0.00 16.79 0.21 5.64 0.03 0.07 0.08 7.95 0.01 0.03 0.96 38.01 0.00 96.87 

178B Bt1 16.5

1 

0.02 1.67 0.04 8.33 0.03 0.00 17.29 0.25 5.00 0.10 0.10 0.15 7.72 0.01 0.05 1.28 36.82 0.00 95.35 

178B Fel1 27.1

8 

0.00 0.01 0.00 14.86 0.00 0.00 0.22 0.01 0.04 0.65 0.03 4.11 3.60 0.00 0.03 0.00 46.69 0.00 97.42 

178B Bt2 16.6

4 

0.01 1.25 0.03 8.22 0.07 0.00 16.60 0.22 5.32 0.04 0.13 0.08 7.85 0.00 0.05 1.01 36.70 0.00 94.22 

178B Bt1 16.8

4 

0.00 0.95 0.00 8.79 0.02 0.00 16.66 0.27 5.32 0.02 0.02 0.04 7.93 0.00 0.03 1.40 37.05 0.00 95.32 

178B ilm1 0.07 0.02 28.96 0.08 0.02 0.19 0.02 30.64 5.48 0.01 0.19 0.37 0.05 0.03 0.00 0.01 0.26 34.37 0.00 100.76 

178B Fsp2 21.8

0 

0.00 0.94 0.00 16.36 0.11 0.03 2.65 0.00 0.84 0.02 0.35 0.14 6.00 0.00 0.00 0.50 42.50 0.00 92.23 

178B unk1 15.7

5 

0.13 1.58 0.09 7.78 0.13 0.06 10.00 0.25 0.21 11.32 0.11 0.26 0.18 0.01 0.13 0.44 33.60 0.00 82.01 

178B Bt3 16.6

5 

0.00 0.66 0.02 8.72 0.03 0.00 16.61 0.22 6.44 0.06 0.05 0.06 6.90 0.00 0.03 1.16 37.22 0.00 94.82 

178B Fsp3 30.5

1 

0.00 0.00 0.00 9.88 0.00 0.00 0.01 0.00 0.00 0.02 0.48 0.54 12.52 0.00 0.00 0.00 46.37 0.00 100.33 

178BHem1 0.10 0.00 0.01 0.00 0.05 0.03 0.08 66.00 0.05 0.01 0.03 0.01 0.02 0.01 0.00 0.00 0.23 28.52 0.00 95.14 

178BHem2 0.00 0.01 0.01 0.04 0.00 0.04 0.01 71.11 0.02 0.00 0.02 0.01 0.11 0.01 0.01 0.03 0.44 30.49 0.00 102.37 

178FHem1 0.04 0.01 0.00 0.01 0.09 0.14 0.15 68.68 0.04 0.02 0.00 0.00 0.06 0.00 0.00 0.00 0.10 29.78 0.00 99.10 

178FHem2 0.01 0.00 0.02 0.00 0.03 0.12 0.14 70.32 0.02 0.00 0.00 0.02 0.03 0.02 0.00 0.00 0.48 30.21 0.00 101.43 

178F bt1 16.6

2 

0.01 1.61 0.03 8.50 0.05 0.02 17.30 0.25 4.72 0.02 0.06 0.08 7.93 0.00 0.02 1.20 36.91 0.00 95.34 

178F bt2 16.2

6 

0.00 0.95 0.01 8.16 0.02 0.00 15.39 0.23 5.18 0.18 0.07 0.09 7.51 0.01 0.04 0.68 35.67 0.00 90.41 

178F bt3 17.1

6 

0.00 1.21 0.05 8.89 0.04 0.01 16.50 0.21 5.30 0.15 0.11 0.09 7.71 0.02 0.02 1.22 37.77 0.00 96.43 
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Silicate and Oxide Electron Microprobe Data - 98 to122 grains (2066199) 

Rock Calc-silicate -2066199 

Sample ID Si WT % Zr WT % Ti WT % Zn WT % Al WT % V WT % Cr WT % Fe WT % Mn WT % Mg WT % Ca WT % Ba WT % Na WT % K WT % P WT % Cl WT % F WT % O WT % H WT % TOTAL 

199A Kfs1 24.47 0.00 0.14 0.02 11.54 0.00 0.01 6.78 0.03 1.30 0.11 0.04 0.05 6.50 0.01 0.03 0.20 42.37 0.00 93.58 

199A Kfs2 30.44 0.00 0.00 0.03 9.96 0.01 0.01 0.22 0.01 0.00 0.03 0.11 0.66 12.26 0.03 0.01 0.00 46.43 0.00 100.21 

199A Kfs3 25.12 0.02 0.08 0.01 13.35 0.01 0.03 3.59 0.01 1.65 0.11 0 0.16 5.26 0 0.03 0.31 43.73 0 93.47 

199A Bt4 25.44 0 0.11 0 13.73 0.02 0.01 3.67 0.01 1.68 0.18 0.03 0.04 4.9 0.03 0.03 0.33 44.43 0 94.63 

199A Car1 0 0 0 0.01 0.01 0 0 7.12 4.23 6.45 21.15 0 0.01 0.03 0 0.03 0.12 11.97 47.81 98.94 

199A Car2 0 0 0 0 0 0 0 6.59 1.13 10.32 22.07 0 0.01 0.01 0 0 0.12 12.1 50.02 102.37 

199A Bt5 30.17 0.02 0.03 0 11.84 0 0 1.25 0.02 0.51 0.07 0.08 0.1 8.11 0.01 0.02 0.04 47.36 0 99.64 

199A Kfs4 24.37 0.02 0.65 0 13.9 0.01 0.01 3.3 0.01 1.41 0.11 0.09 0.08 5.88 0 0.03 0.38 43.57 0 93.81 

199A bt1 25.72 0.00 0.11 0.03 12.74 0.01 0.02 3.44 0.02 1.58 0.10 0.06 0.06 5.81 0.02 0.04 0.34 43.88 0.00 93.96 

199A bt2 23.88 0.02 0.22 0.00 12.72 0.03 0.02 6.35 0.03 1.58 0.11 0.03 0.04 5.77 0.02 0.02 0.43 42.64 0.00 93.90 

199A bt3 26.28 0.02 0.10 0.02 11.40 0.01 0.00 4.05 0.01 0.91 0.07 0.05 0.06 7.48 0.01 0.02 0.19 43.43 0.00 94.08 

199A Kfs1 24.47 0.00 0.14 0.02 11.54 0.00 0.01 6.78 0.03 1.30 0.11 0.04 0.05 6.50 0.01 0.03 0.20 42.37 0.00 93.58 

199A Kfs2 30.44 0.00 0.00 0.03 9.96 0.01 0.01 0.22 0.01 0.00 0.03 0.11 0.66 12.26 0.03 0.01 0.00 46.43 0.00 100.21 

199A Ap1 0.50 0.07 0.00 0.00 0.33 0.00 0.00 2.27 1.54 1.92 33.25 0.00 0.00 0.16 12.07 0.07 3.34 30.71 0.00 86.23 

199ACaMg 0.04 0.00 0.00 0.00 0.01 0.00 0.00 3.79 0.70 7.20 12.40 0.00 0.03 0.02 0.00 0.00 0.11 11.01 0.00 35.32 

199ACaFe1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.13 1.28 9.56 21.06 0.00 0.06 0.01 0.00 0.06 0.00 17.12 0.00 56.27 

199D Ti 0.03 0.04 57.53 0.00 0.00 0.33 0.00 0.54 0.00 0.00 0.02 0.75 0.01 0.14 0.01 0.02 0.05 38.91 0.00 98.37 

199D Ap 0.01 0.17 0.00 0.00 0.00 0.01 0.00 0.21 0.00 0.01 40.41 0.01 0.01 0.07 18.79 0.01 4.35 38.72 0.00 102.77 

199DHem1 0 0 0 0.03 0 0 0 31.93 9.12 1.99 0.21 0 0.03 0 0 0 0.2 17.71 0 61.22 

199D Dol 0 0 0 0.01 0 0 0 13.65 6.33 2.66 19.27 0 0.04 0.01 0 0.01 0.22 11.36 45.39 98.96 

199D Dol1 0.02 0 0 0 0 0 0 6.51 4.77 8.84 22.49 0 0.03 0.03 0 0 0.14 11.76 49.37 103.96 

199D Dol2 0 0 0 0.03 0.15 0 0 6.12 0.97 11.52 22.87 0 0.05 0.03 0 0 0.07 12.04 50.97 104.84 

199D Dol3 0 0.02 0 0 0 0 0 8.38 9.77 4.12 20.13 0 0.02 0.01 0 0.1 0.17 11.42 46.35 100.5 

199DHem2 0.1 0 1.33 0 0.02 0.01 0 66.06 0 0.02 0.04 0 0.03 0.09 0 0.01 0.49 29.27 0 97.47 

199D Kfs1 30.95 0.00 0.01 0.00 10.06 0.00 0.00 0.32 0.02 0.04 0.04 0.03 0.10 12.67 0.00 0.02 0.00 46.98 0.00 101.25 

199D Kfs2 30.44 0.00 0.00 0.00 9.69 0.01 0.00 0.20 0.00 0.01 0.10 0.18 0.29 13.28 0.00 0.02 0.02 46.25 0.00 100.52 

199D Mon 24.47 0.01 0.26 0.00 11.79 0.03 0.01 6.92 0.01 1.46 0.12 0.02 0.08 5.85 0.04 0.02 0.28 42.70 0.00 94.06 
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Silicate and Oxide Electron Microprobe Data - 123 to143 grains (2066203) 

Rock Calc-silicate - 2066203 

Sample ID Si 

WT % 

Zr 

WT % 

Ti 

WT % 

Zn 

WT % 

Al 

WT % 

V  

WT % 

Cr 

WT % 

Fe 

WT % 

Mn 

WT % 

Mg 

WT % 

Ca 

WT % 

Ba 

WT % 

Na 

WT % 

K 

 WT % 

P  

WT % 

Cl 

WT % 

F  

WT % 

O  

WT % 

H  

WT % 

TOTAL 

203A Hem1 1.48 0 0.45 0.01 0.13 0.02 0.01 64.35 0.15 0.76 0.44 0.02 0.09 0.02 0 0.02 0 30.52 0 98.46 

203A Pyro1 24.65 0 0.01 0.2 1 0 0 14.67 0.3 6.95 8.63 0 0.23 0.32 0 0.16 0 41.45 0 98.58 

203A Pyro2 24.83 0.04 0.01 0.15 1.99 0 0 13.96 0.55 8.34 8 0 0.65 0.46 0 0.3 0 43.22 0 102.5 

203A Bt1 29.96 0 0 0.02 9.78 0 0 0.29 0.01 0 0.03 0.81 0.13 13.47 0 0 0 45.84 0 100.35 

203A Fel1 30.49 0 0.01 0.11 9.85 0 0 0.32 0.01 0 0.02 0.64 0.16 12.44 0 0.06 0 46.3 0 100.41 

203A Pyro3 23.67 0.01 0.02 0.04 1.86 0 0.02 14.86 1.8 5.7 8.61 0 0.16 0.81 0 0.8 0 40.68 0 99.05 

203A Hem2 0.53 0 0.31 0.06 0.16 0.02 0.02 65.18 0.09 0.26 0.09 0 0.12 0.02 0.01 0.01 0 29.29 0 96.17 

203A Pyro4 22.49 0.02 0 0.06 2.03 0 0.01 11.73 2.7 7.76 7.14 0 0.25 0.29 0 0.33 0 39.64 0 94.46 

203A Kfs2 29.77 0 0.01 0 9.93 0 0.02 0.09 0 0.01 0.15 1.21 0.63 12.77 0.01 0.04 0 45.84 0 100.48 

203A Pyro5 22.85 0 0.04 0.02 2.49 0 0 14.71 0.59 6.76 7.85 0 0.48 0.72 0 0.46 0 40.47 0 97.44 

203A Hem3 0.17 0.02 0.37 0 0.08 0.02 0 66.26 0.04 0.1 0.02 0 0.07 0.01 0 0.02 0 29.12 0 96.32 

203D Fel1 30.25 0 0 0 9.83 0 0 0.09 0 0 0.02 1.06 0.37 12.94 0 0 0 46.15 0 100.72 

203D Pyro1 21.3 0.02 0.04 0.01 3.82 0 0 15.42 0.31 6.05 8.59 0 0.72 0.97 0 0.5 0 39.96 0 97.7 

203D Pyro2 20.6 0.02 0.04 0 3.99 0.01 0 14.78 0.23 5.8 8.5 0 1.4 0.96 0 1.15 0 39.01 0 96.49 

203D Ap1 0.09 0.14 0 0.02 0.01 0 0.01 0.16 0.04 0.01 39.46 0 0.05 0.01 18.22 0.06 0 39.52 0 97.81 

203D Fel2 29.99 0 0 0 9.69 0.01 0 0.49 0.01 0.13 0.15 0.72 0.26 12.99 0 0.03 0 45.91 0 100.39 

203D Fel3 30.93 0.01 0 0 9.5 0 0 0.16 0 0.01 0.02 0.51 0.24 13.11 0 0 0 46.58 0 101.07 

203D Pyro3 23.31 0 0.03 0.01 2.43 0 0 11.86 0.28 7.78 8.61 0 0.65 0.59 0 0.2 0 41.08 0 96.84 

203D Pyro4 21.05 0 0 0 2.96 0.01 0 17.39 0.31 4.97 8.52 0 0.48 1.15 0 1.19 0 38.5 0 96.54 

203D Chl1 29.95 0.01 0 0.01 9.59 0 0 0.06 0 0.01 0.09 0.3 0.2 13.25 0 0.03 0 45.53 0 99.02 

203D Pyro5 21.49 0.01 0.04 0 3.7 0.01 0 15.25 0.27 6.04 8.55 0.02 0.69 0.97 0 0.49 0 39.98 0 97.51 
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Silicate and Oxide Electron Microprobe Data - 144 to157 grains (2066635) 

Rock Calc-silicate - 2066635 

  Sample ID   Si 

WT % 

  Zr 

WT % 

  Ti 

WT % 

  Zn 

WT % 

  Al 

WT % 

   V 

WT % 

  Cr 

WT % 

  Fe 

WT % 

  Mn 

WT % 

  Mg 

WT % 

  Ca 

WT % 

  Ba 

WT % 

  Na 

WT % 

   K 

WT % 

   P 

WT % 

  Cl 

WT % 

   F 

WT % 

   O 

WT % 

   H 

WT % 

TOTAL 

635B hem1 0.47 0.00 0.24 0.01 0.23 0.00 0.00 64.24 0.10 0.18 0.02 0.03 0.01 0.01 0.01 0.01 0.43 28.50 0.00 94.48 

635B chl1 12.29 0.00 0.01 0.04 8.60 0.01 0.00 14.40 0.73 11.40 0.04 0.00 0.02 0.00 0.01 0.02 0.20 33.47 0.00 81.26 

635F chl1 12.83 0.01 0.00 0.06 7.92 0.00 0.00 12.23 0.81 12.60 0.14 0.00 0.02 0.01 0.01 0.03 0.45 33.59 0.00 80.70 

635F chl2 12.20 0.00 0.00 0.01 8.75 0.00 0.00 13.60 1.51 11.04 0.08 0.00 0.03 0.00 0.01 0.03 0.29 33.21 0.00 80.77 

635F Ap1 0.00 0.11 0.00 0.07 0.00 0.00 0.00 0.08 0.04 0.00 36.68 0.00 0.01 0.00 16.12 0.16 4.08 33.79 0.00 91.14 

635B dol1 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.24 3.31 12.86 20.72 0.00 0.03 0.03 0.00 0.04 0.03 12.56 51.23 101.06 

635F cal1 2.56 0.02 0.10 0.04 1.46 0.01 0.00 9.86 4.33 2.80 22.99 0.00 0.05 0.01 0.01 0.01 0.27 11.73 50.57 106.81 

635F dol1 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.25 3.32 12.80 21.42 0.00 0.00 0.00 0.00 0.03 0.04 12.50 51.29 101.68 

635F dol2 0.17 0.00 0.00 0.09 0.03 0.01 0.00 0.41 2.89 12.89 21.28 0.00 0.00 0.00 0.00 0.03 0.01 12.53 51.56 101.91 

635G dol1 0.17 0.00 0.00 0.03 0.03 0.02 0.00 0.29 3.28 11.29 19.17 0.00 0.10 0.02 0.00 0.13 0.30 12.71 50.11 97.62 

635G dol2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.20 3.12 13.41 20.36 0.00 0.02 0.01 0.00 0.03 0.06 12.58 51.43 101.24 

635G gy1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.74 0.00 0.01 0.00 0.00 0.00 0.06 10.25 0.00 36.06 

635G dol3 0.00 0.04 0.00 0.05 0.00 0.00 0.00 0.09 2.30 13.43 20.40 0.00 0.01 0.01 0.00 0.02 0.04 12.68 51.48 100.54 

635J apa1 0.012 0.151 0.024 0.126 0.000 0.016 0.037 0.057 0.050 0.000 4.587 0.038 0.013 0.019 15.615 0.023 2.795 0.000 0.025 23.59 
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Silicate and Oxide Electron Microprobe Data - 158 to171 grains (2066641) 

Rock Metasediment - 2066641 

Sample ID Si 

WT % 

Zr 

WT % 

Ti 

WT % 

Zn 

WT % 

Al 

WT % 

V 

WT % 

Cr 

WT % 

Fe 

WT % 

Mn 

WT % 

Mg 

WT % 

Ca 

WT % 

Ba 

WT % 

Na 

WT % 

K 

WT % 

P 

WT % 

Cl 

WT % 

F 

WT % 

O 

WT % 

H 

WT % 

TOTAL 

641A Bt1 10.74 0 0.26 0 6.33 0.03 0 30.14 0.67 0.7 0.13 0.02 0.08 3.12 0.01 0.01 0.2 28 0 80.44 

641A Hem1 28.72 0.01 0.09 0 1.8 0.02 0 14.12 0.35 0.17 0.02 0.02 0 0.72 0 0.01 0.05 40.8 0 86.89 

641A Hem2 0.51 0.02 0.11 0.02 0.37 0 0.01 59.57 2.68 0.03 0.06 0.04 0.04 0.04 0.02 0.02 0.36 27.32 0 91.22 

641B Hem1 0.22 0 0.07 0.01 0.23 0.02 0 55.56 2.57 0 0.02 0 0.32 0.04 0.02 0.1 0.38 25.11 0 84.68 

641B Hem2 0.41 0 0.06 0.01 0.3 0 0 55.72 2.17 0.01 0.06 0.01 0.06 0.04 0.04 0.05 0.34 25.32 0 84.61 

641B Hem3 0 0 0.01 0 0.1 0.02 0.01 65.1 0 0 0.01 0 0.02 0 0 0 0.39 27.93 0 93.59 

641B Fel1 37.05 0 0.02 0 2.97 0 0 0.81 0 0.06 0.02 0 0.05 1.21 0 0.02 0 45.42 0 87.63 

641C Bt1 20.67 0.01 0.07 0 12.35 0 0 5.35 0.13 1.5 0.04 0.04 0.04 5.21 0.01 0.02 0.32 38.11 0 83.87 

641C Hem1 1.49 0 0.31 0 0.54 0.01 0 57.29 2.17 0.05 0.11 0.02 0.06 0.12 0.04 0.02 0.3 27.68 0 90.22 

641C Mn1 0 0 0.03 0.01 0.13 0 0 0.17 49.63 0 0.09 6.94 0.27 1.96 0.02 0.05 0.52 15.77 0 75.59 

641C Mn2 0.01 0 0.02 0 0.22 0 0 0 50.4 0 0.07 7.26 0.24 2.02 0.02 0.02 0.45 16.1 0 76.83 

641C Mn3 0.05 0 2.64 0 0.51 0.03 0 4.21 38.95 0 0 12.39 0.03 0.02 0 0 0.5 16.09 0 75.41 

641C Mn4 0 0 0.03 0 0.13 0 0 0 49.32 0 0.07 7.99 0.18 1.56 0 0.05 0.53 15.61 0 75.48 

641C Hem2 0.58 0 0.06 0.05 0.4 0 0 59.18 2.66 0.03 0.07 0.03 0.02 0.02 0.01 0.01 0.41 27.19 0 90.75 
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Silicate and Oxide Electron Microprobe Data – 171-191 grains (2066655) 

Rock Metasediment - 2066655 

 Sample ID   Si 

WT % 

  Zr 

WT % 

  Ti 

WT % 

  Zn 

WT % 

  Al 

WT % 

   V 

WT % 

  Cr 

WT % 

  Fe 

WT % 

  Mn 

WT % 

  Mg 

WT % 

  Ca 

WT % 

  Ba 

WT % 

  Na 

WT % 

   K 

WT % 

   P 

WT % 

  Cl 

WT % 

   F 

WT % 

   O 

WT % 

   H 

WT % 

TOTAL 

655A cal1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.71 6.47 9.60 21.03 0.00 0.03 0.02 0.00 0.07 0.00 17.66 58.60 117.19 

655A chl1 11.57 0.00 0.00 0.03 10.38 0.00 0.00 26.57 0.28 5.47 0.01 0.00 0.02 0.00 0.00 0.00 0.08 33.69 

 

88.11 

655A chl2 11.62 0.00 0.00 0.01 9.70 0.01 0.00 24.45 0.17 6.51 0.03 0.00 0.03 0.02 0.01 0.03 0.19 33.16 

 

85.93 

655A chl3 11.77 0.00 0.00 0.01 9.26 0.01 0.00 25.09 0.52 5.81 0.03 0.00 0.04 0.01 0.01 0.01 0.19 32.78 

 

85.54 

655A cal2 0.03 0.00 0.00 0.00 0.00 0.00 0.00 4.31 5.36 9.28 21.03 0.00 0.00 0.00 0.00 0.13 0.00 17.31 57.45 114.90 

655A cal3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.23 4.70 8.18 19.94 0.00 0.00 0.00 0.00 0.07 0.00 16.48 55.60 111.21 

655A hem1 0.02 0.00 0.08 0.00 0.02 0.03 0.00 67.94 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26 19.47 

 

87.85 

655A hem2 0.73 0.02 0.01 0.00 0.25 0.00 0.00 68.87 0.00 0.11 0.10 0.00 0.02 0.14 0.00 0.02 0.29 20.83 

 

91.39 

655B chl1 12.18 0.00 0.00 0.00 9.18 0.00 0.00 22.60 0.06 7.75 0.06 0.00 0.10 0.04 0.04 0.04 0.10 33.71 

 

85.86 

655B hem1 0.31 0.00 0.05 0.00 0.10 0.00 0.01 69.28 0.02 0.00 0.06 0.00 0.03 0.02 0.00 0.02 0.27 20.27 

 

90.45 

655B chl2 11.49 0.00 0.01 0.00 10.01 0.01 0.00 23.73 0.11 6.60 0.01 0.00 0.03 0.01 0.01 0.03 0.26 33.10 

 

85.41 

655B hem2 0.32 0.00 0.55 0.00 0.15 0.00 0.01 66.94 0.02 0.00 0.05 0.00 0.08 0.07 0.00 0.02 0.21 20.02 

 

88.43 

655B chl3 12.14 0.00 0.01 0.00 9.55 0.00 0.01 23.32 0.06 7.59 0.00 0.00 0.04 0.02 0.00 0.06 0.07 34.02 

 

86.89 

655B chl4 12.20 0.02 0.00 0.00 8.99 0.01 0.01 22.87 0.06 7.76 0.01 0.00 0.33 0.03 0.00 0.16 0.13 33.61 

 

86.17 

655B chl5 11.57 0.00 0.01 0.00 9.74 0.00 0.00 23.93 0.22 6.38 0.05 0.00 0.07 0.05 0.03 0.09 0.15 32.99 

 

85.27 

655B hem3 0.02 0.00 0.06 0.00 0.17 0.01 0.00 67.81 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.20 19.59 

 

87.90 

655C hem1 0.52 0.00 0.00 0.00 0.04 0.01 0.00 69.52 0.01 0.02 0.04 0.00 0.03 0.03 0.00 0.01 0.21 20.50 

 

90.94 

655C chl1 13.17 0.00 0.01 0.07 9.07 0.00 0.00 23.36 0.69 5.96 0.02 0.00 0.08 0.04 0.02 0.01 0.18 33.91 

 

86.57 

655C chl2 11.85 0.00 0.00 0.00 9.12 0.00 0.00 22.75 0.11 7.51 0.01 0.00 0.04 0.01 0.00 0.03 0.18 33.06 

 

84.68 

655C chl3 11.10 0.00 0.00 0.01 9.92 0.00 0.00 26.06 0.38 5.15 0.06 0.00 0.61 0.08 0.00 0.02 0.07 32.67 

 

86.12 
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Silicate and Oxide Electron Microprobe Data – 192-203grains (2066656) 

Rock Granite - 2066656 

Sample ID Si 

WT % 

Zr 

WT % 

Ti 

WT % 

Zn 

WT % 

Al 

WT % 

V 

WT % 

Cr 

WT % 

Fe 

WT % 

Mn 

WT % 

Mg 

WT % 

Ca 

WT % 

Ba 

WT % 

Na 

WT % 

K 

WT % 

P 

WT % 

Cl 

WT % 

F  

WT % 

O 

WT % 

H 

WT % 

TOTAL 

656A Mus1 21.55 0 0.05 0 14.98 0 0 4.46 0.13 0.9 0.04 0.08 0.07 7.86 0 0.02 0 41.48 0 91.64 

656A Mus2 20.36 0 0.15 0.02 13.9 0 0 7.52 0.24 0.9 0.05 0.06 0.06 7.3 0 0.03 0 40.02 0 90.63 

656AMus3 22.94 0.02 0.02 0.03 16.43 0.01 0 2.06 0.11 0.7 0.11 0.06 0.1 7.74 0 0.01 0 43.54 0 93.88 

656A Chl1 8.35 0 0.38 0 7.18 0 0 32.21 1.35 6.34 0.13 0 0.03 0.19 0.02 0 0 30.06 0 86.22 

656A Ilm1 0.01 0.02 32.31 0.01 0 0.28 0 29.41 0.08 0 0.02 0.47 0.33 0.01 0 0.19 0 30.32 0 93.48 

656B Hem1 0.09 0 0.36 0 0.29 0.07 0 66.43 0 0.02 0.01 0.02 0.02 0.02 0 0.01 0 29.21 0 96.54 

656BRut1 0.05 0.01 42.41 0 0 0.24 0 17.77 0.06 0 0.06 0.56 0.02 0.01 0.01 0.04 0 33.71 0 94.95 

656B Fel1 22.51 0 0.01 0 16.05 0 0 2.41 0.15 0.81 0.16 0.15 0.07 7.81 0 0 0 42.9 0 93.02 

656B Hem2 0.52 0 0.08 0 0.36 0.13 0.12 64.76 0.03 0.04 0.06 0.01 0.12 0.12 0.01 0.05 0 29.04 0 95.45 

656B Ilm2 0.03 0 31.63 0 0.01 0.16 0 31.33 0.12 0 0.02 0.42 0.02 0.02 0 0.02 0 34.8 0 98.57 

656B Hem3 0.51 0 0.14 0 0.41 0.09 0.09 64.65 0.04 0.03 0.05 0 0.17 0.16 0 0.09 0 29.03 0 95.47 

656B Mon1 13.78 0.11 0.15 0.45 0.7 0.09 0.13 2.74 0.16 0.08 0.33 0.34 0.08 0.44 8.06 0.09 0 28.24 0 55.98 
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Electron Microprobe Data (continued) - S minerals - 204 to 234grains (2066635 to 2066203) 

  Sample ID Mineral   Fe WT %   Co WT %   Cu WT %    S WT %   As WT %   Bi WT % TOTAL 

2066166 B1 Chalcopyrite 29.929 0.018 34.76 36.668 0.0207 0 101.40 

2066169A1 Pyrite 47.999 0.134 0.01 55.204 0 0 103.347 

2066169A2 Pyrite 47.028 0.18 0 55.248 0 0 102.456 

2066169A3 Pyrite 47.349 0.223 0.018 55.247 0.039 0 102.877 

2066169B1 Pyrite 41.512 0.1743 0.102 33.321 0.001 0 75.11 

2066169B1 Chalcopyrite 29.431 0.015 33.945 36.412 0 0 99.804 

2066169B2 Pyrite 41.321 0.167 0.105 33.215 0.001 0 74.81 

2066169B3 Pyrite 41.541 0.211 0.106 33.481 0.001 0 75.34 

2066203A1 Chalcopyrite 24.284 0.045 25.787 26.018 0 0 76.135 

2066203A1 Sphalerite 1.263 0.002 0.058 24.188 0 0 25.51 

2066203A2 Chalcopyrite 28.405 0.028 30.978 31.384 0.003 0 90.796 

2066203A2 Sphalerite 3.295 0 0.204 24.233 0 0 27.731 

2066203D1 Chalcopyrite 29.266 0.023 33.751 36.411 0.003 0 99.455 

2066203D2 Chalcopyrite 29.42 0.011 34.073 36.534 0.009 0 100.046 

2066203D3 Chalcopyrite 29.507 0.034 33.997 36.652 0.063 0 100.252 

2066635B1 Pyrite 43.044 0.049 0.643 43.836 0.018 0 87.59 

2066635B1 Bornite 11.007 0.021 52.073 23.634 0 0 86.735 

2066635B2 Pyrite 42.326 0.057 0.347 43.345 0.049 0 86.125 

2066635B2 Bornite 13.11 0.008 49.296 21.627 0.045 0.011 84.096 

2066635F1 Bornite 11.781 0.032 52.418 23.884 0.007 0 88.121 

2066635F1 Sphalerite 0.787 0 3.838 20.911 0.005 0 25.541 

2066635F2 Bornite 10.736 0.021 55.702 21.495 0 0 87.953 

2066635G1 Bornite 10.3 0.017 57.65 20.279 0 0.014 88.259 

2066635G2 Bornite 10.054 0.016 57.502 19.632 0.017 0 87.22 

2066635G3 Bornite 10.318 0.009 57.583 19.933 0 0 87.843 

2066635J 1 Chalcopyrite 2.238 0.025 11.57 13.574 0 0 27.406 

2066655A1 Pyrite 41.444 0.22 0.121 33.492 0.001 0 75.279 

2066655A1 Chalcopyrite 26.937 0.036 30.893 23.341 0.022 0 81.228 

2066655A2 Pyrite 41.872 0.055 0.017 34.112 0.065 0 76.122 

2066655A3 Pyrite 41.907 0.14 0.067 34.458 0 0 76.572 

2066655B1 Chalcopyrite 4.747 0.077 4.7 17.453 0.027 0 27.004 
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Appendix 4: The LA-ICPMS Analysed Data 

Table IV.  The Co/Ni ratio of pyrite in the rocks 

Rock Element Na23 S33 S34 Fe57 Co59 Ni60 Co/Ni 

Calc-silicate 166E-1 12.81 460493.3 498067 463899 271 674 0.40 

Calc-silicate 166E-2 483.79 488143.8 497556 463899 85 351 0.24 

Granite 169A-01 1.15 485784.9 490959 474937 1053 2586 0.41 

Granite 169A-02 1.2 485375.6 478992 474937 1228 2716 0.45 

Granite 169A-03 1.37 461690.2 473135 474937 533 3006 0.18 

Granite 169B-08 0.94 437807 429420 414929 5785 1323 4.37 

Granite 169B-09 0.93 416091.6 418973 414929 5581 927 6.02 

Granite 169B-10 0.96 435447.5 447938 414929 3674 1700 2.16 

Metasediment 655A-02 6.56 431613 429052 414401 769 82 9.42 

Metasediment 655A-03 3.86 434667.9 419427 418701 381 39 9.75 

Metasediment 655A-04 40.01 450154.5 425459 418701 208 57 3.63 

Metasediment 655A-05 6.27 426577.1 429019 419061 380 266 1.43 

Metasediment 655A-06 3.74 418135.4 427685 419061 397 624 0.64 

  

Table V.  Trace elements of 24 hematite grains of calc-silicate, granite and metasediments. 

Rock N Na23 Ca43 Ti49 Cr53 Mn55 Fe57 Co59 Ni60 Cu65 Zn66 

Calc-silicate  1 169 315 5176 18 2252 642401 58 13 85 225 

Granite 10 177 468 48062 237 831 661775 25 135 116 226 

Metasediment 13 1788 2045 2038 27 56977 635586 157 21 581 356 

Rock  Ga69 Sr88 Zr90 Nb93 Ba137 Ta181 W182 Pb208 Bi209 U238 

Calc-silicate  1 6 4 24 18 25 1.4 28 24 0.1 10 

Granite 10 12 5 5 328 46 42.5 46 79 5.5 6 

Metasediment 13 518 42 23 9 13104 0.6 12 624 6.5 13 

Notes: The element value is at ppm in the average. N=10 (ten hematite grains). 
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Silicate analyzed data (133) – 1 to 12 grains (2066166 to 1066169)  

Rock Calc-silicate-2066166 Granite-2066169 

Sample ID 166B-9 166B-10 166B-11 166B-12 166E-1 166E-2 166E-3 169A-7 169A-8 169B-5 169B-6 169B-7 

Mineral Garnet Chlorite Chlorite 

Na23 89.82 222.05 168.18 137.94 96.77 121.66 57.68 28.56 28.82 53.58 89.37 48.1 

Mg25 7780.9 3608.1 9131 21639. 47245.9 23430.1 1266.67 121581 125119 118903 116401 117199 

Al27 10112.0 24118.1 20044.2 32794.8 89557.9 38155.2 5566.48 112051 111734 115175 105473 106667 

Si29 170008 170008 119992 119992 119992 119992 119992 127985 127985 127985 127985 127985 

P31 25.77 68.54 20.44 15.41 31.14 23.08 11.93 27.68 36.42 35.57 26.66 37.37 

S34 154.87 438.91 118.39 151.78 290.74 265.91 186.53 248.84 306.76 282.75 272.09 284.2 

K39 47.72 28.04 84.48 62.11 64.92 74.38 23.49 41.18 42.73 133.97 178.12 124.68 

Ca43 647.11 231850 787.85 1398.79 525.22 100017 74708.7 449.18 319.99 290.55 377.08 333.07 

Ti49 50.88 1131.4 313.26 45.56 9.42 347.57 218.6 157.98 190.54 133.34 98.15 169.73 

V51 11.43 189.08 26.21 26.65 54.58 70.51 32.56 44.8 38.64 49.84 34.18 40.06 

Cr53 1.66 6.21 <1.17 <1.37 4.15 3.92 <1.36 <2.65 <2.99 <3.04 <2.64 3.37 

Mn55 3205.6 10329 5367.53 10309.3 27735.2 14643.7 3720.61 997.33 894.54 2019.52 1100.11 1042.44 

Fe57 13797 74078 20139 36378.2 80661.7 70480.1 22915.5 51190 49740.6 53421.0 48830.6 48106 

Co59 13.31 1.84 25.97 40.86 116 49.49 1.98 174.82 113.58 206.31 160.56 125.33 

Ni60 7.05 1.68 11.31 23.11 55.77 24.84 1.32 1124.76 1456.59 1689.25 1603.59 1301.27 

Cu65 437.41 641.65 112.87 256.5 180.28 163.26 8.51 11.73 7.52 21.93 19.29 9.49 

Zn66 169.64 25.04 301.23 497.21 913.18 516.36 21.9 619.98 457.33 796.14 685.28 391.95 

Ga69 4.43 10.65 8.52 14.42 33.69 20.69 5.42 61.36 59.92 62.07 60.25 57.63 

Ge73 1.24 2.34 0.86 <0.62 1.3 2.18 2.29 4.36 5.95 3.97 6.31 6.26 

As75 5.91 38.03 1.66 9.94 3.94 15.25 5.11 <0.78 1.1 1.38 2.1 1.28 

Se82 <3.89 <10.22 <4.15 <5.14 <10.09 <9.08 <5.02 <10.74 <10.50 <10.34 <9.82 <9.50 

Rb85 0.186 0.155 0.377 0.269 0.263 0.236 0.394 0.73 0.8 0.63 0.87 1.13 

Sr88 1.88 2.37 5.98 1.26 0.86 0.76 0.396 0.336 0.503 0.439 0.51 0.185 

Y89 2.64 234.89 2.2 3.08 1.08 20.13 29.25 0.138 0.091 0.124 0.182 0.055 

Zr90 0.55 29.19 2.29 0.48 0.45 5.42 2.72 <0.127 <0.146 <0.137 <0.080 <0.110 

Nb93 0.182 3.36 0.47 0.286 <0.068 2.01 1.26 <0.077 <0.040 <0.064 <0.068 <0.00 

Mo95 <0.16 0.96 <0.14 0.42 0.33 <0.26 0.15 0.17 0.17 <0.47 <0.19 <0.26 

Ag107 0.018 <0.104 0.055 <0.043 0.089 0.232 <0.022 <0.116 <0.106 <0.071 0.078 <0.090 

Sn118 3.49 32.28 16.68 5.2 4.79 26.29 8.75 2.32 2.24 2.25 2.42 2.1 

Sb121 0.437 1.53 0.53 0.6 <0.127 0.47 0.377 0.134 0.175 0.111 0.129 <0.084 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 1.61 5.83 6.59 4.45 1.77 2.32 1.31 0.97 5.9 4.88 5.11 1.39 

La139 0.536 22.36 0.08 0.95 0.206 1.86 0.543 0.093 0.076 0.057 <0.037 0.033 

Ce140 1.63 76.21 0.99 2.74 0.659 13.73 6.36 0.202 0.081 0.063 0.058 0.04 

Pr141 0.225 9.45 0.053 0.373 0.145 5.04 2.69 <0.0132 0.021 <0.025 0.032 <0.023 

Nd146 1.34 46.17 0.063 2.03 0.46 34.76 22.42 <0.106 <0.134 3.7 0.102 <0.092 

Sm147 0.38 12.77 0.082 0.43 0.109 7.88 7.47 <0.151 0.069 <0.187 <0.109 <0.106 

Eu153 0.072 2.61 0.032 0.126 0.059 2.61 1.44 <0.021 <0.022 0.016 <0.019 <0.018 

Gd157 0.39 20.65 0.26 0.66 0.22 4.33 5.65 <0.00 <0.126 0.032 0.118 <0.150 

Tb159 0.051 4.56 0.061 0.058 0.025 0.663 0.869 0.0095 <0.025 <0.0168 <0.0109 <0.0151 

Dy163 0.35 35.36 0.76 0.55 0.16 3.71 5.35 0.093 <0.050 <0.047 0.086 <0.073 

Ho165 0.09 7.71 0.12 0.085 0.053 0.634 1.12 <0.021 <0.0177 <0.0166 <0.0108 <0.00 

Er166 0.162 25.7 0.228 0.236 <0.055 2.68 3.24 <0.072 0.014 <0.049 <0.063 0.052 

Tm169 0.058 3.68 0.057 0.045 <0.0169 0.282 0.474 <0.0156 0.0131 <0.0150 <0.020 <0.0191 

Yb172 0.28 24.88 0.222 0.285 <0.043 1.64 3.8 <0.070 <0.113 <0.082 0.034 <0.043 

Lu175 0.042 3.51 0.082 0.046 0.032 0.272 0.541 <0.0161 <0.00 0.0084 <0.0101 0.0076 

Hf178 <0.018 0.398 0.111 <0.00 0.085 0.094 0.047 <0.072 <0.042 <0.040 <0.052 <0.050 

Ta181 0.028 0.141 0.031 <0.0100 0.022 0.149 0.101 <0.0144 0.024 0.027 <0.022 <0.0176 

W182 0.73 24.9 0.096 1.4 <0.113 5.56 0.417 <0.126 <0.065 <0.121 <0.111 0.088 

Au197 <0.0160 <0.037 <0.031 <0.025 <0.073 <0.00 <0.016 <0.037 <0.066 <0.051 0.041 <0.056 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 12.47 8.3 12.4 46.34 67.46 66.05 4.32 12.07 8.47 12.59 12.05 4.68 

Bi209 0.213 0.176 0.0098 0.032 0.021 0.067 <0.0125 <0.0293 <0.0213 <0.0244 0.036 <0.0200 

Th232 0.097 3.37 0.0149 0.139 <0.0144 0.724 0.329 <0.0162 0.0045 <0.0191 0.0125 <0.0140 

U238 0.724 7.93 0.309 1.174 0.326 5.26 1.98 0.046 0.0115 0.096 0.074 0.04 
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Silicate analyzed data (133) – 13 to 21 grains (2066174) 
Rock Granite -2066174 

Sample ID 174A-01 174A-02 174A-03 174A-05 174A-07 174B-02 174B-04 174C-03 174C-04 

Mineral Calcite 
 

White Mica Kfeldspar     Apatite Kfeldspar 

Na23 127.25 3123.07 2505.21 1481.71 1579.85 781.89 562.43 6135.18 4286.1 

Mg25 143894.8 139908.3 140645.2 36336.18 35295.82 23034.91 263854.7 3812.39 2595.43 

Al27 10.74 186.36 263.17 114177.2 165024.2 55745.07 120.61 34436.3 27696.85 

Si29 918.66 11793.94 10099.96 219999.8 301999.4 93030.56 2890.4 119999.6 119999.6 

P31 26.28 27.82 34.04 23.37 214.71 62792.02 78.88 17.24 14.23 

S34 232.37 258.19 221.1 <140.88 586.33 397.37 470.46 125.12 136.87 

K39 12.56 119.77 109.69 66017.78 92055.23 25977.55 42.13 19534.7 15207.06 

Ca43 209979.1 209979.1 209979.1 1420.7 2860.55 383800.8 383800.8 4153.05 2795.21 

Ti49 4.65 27.78 28.08 6734.87 5917.88 3214.41 9.41 91.69 72.35 

V51 5.2 26.26 49.21 246.44 455.23 133.07 38.71 25.72 15.39 

Cr53 <2.00 <1.93 <2.07 52.29 78.55 14.35 <3.62 9.73 3.21 

Mn55 34953.98 33424.99 41052.05 2002.66 2321.62 1399.49 69070.36 42.11 32.76 

Fe57 278.78 1787.35 4354.93 170824.4 215617.6 98781.02 9186.59 2154.74 1586.88 

Co59 8.33 8.36 15.14 64.41 54.79 15.27 13.96 2.11 1.307 

Ni60 1.66 0.82 0.81 60.26 59.56 12.69 <0.67 3.92 1.43 

Cu65 4.96 21.28 105.88 50.26 52.37 34.63 11.61 8.91 3.58 

Zn66 66.83 54.64 165.02 413.3 348.04 205.38 145.31 54.11 9.75 

Ga69 <0.073 0.287 0.18 93.19 134.02 47.89 0.157 13.2 15.89 

Ge73 0.71 <0.72 <1.17 7.06 11.29 23.14 1.71 1.41 0.86 

As75 1.11 9.12 16.4 29.4 43.15 129.5 18.22 3.28 1.38 

Se82 <7.08 <7.76 <7.91 <20.99 <22.56 20.97 <13.76 <6.02 <5.11 

Rb85 0.068 0.76 0.65 2071.5 1716.65 351.53 <0.140 171.04 110.86 

Sr88 102.74 85.58 108.6 15.22 30.65 230.26 177.97 5.79 5.19 

Y89 19.2 21.27 29.1 6.27 7.75 370.36 65.85 0.721 0.263 

Zr90 0.232 7.13 6.12 11.76 16.44 15.39 3.11 8.76 5.31 

Nb93 <0.036 0.083 0.209 15.16 21.53 13.64 <0.066 0.383 0.886 

Mo95 1.54 0.92 2.17 2.82 1.32 3.81 3.89 <0.120 0.092 

Ag107 <0.035 <0.035 <0.082 <0.089 <0.183 0.163 <0.128 <0.041 <0.041 

Sn118 <0.36 0.82 0.6 4.1 7.94 1.47 <0.70 3.47 1.84 

Sb121 0.211 1.14 4.32 8.24 15.63 10.2 1.42 0.637 0.627 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 1.47 7.27 5.65 1176.02 1747.62 672.41 2.28 154.27 276.72 

La139 6.26 6.7 9.74 15.1 24.44 307.56 13 12.18 0.415 

Ce140 16.86 18.24 19.79 28.86 51.32 572.72 30.08 27.82 0.842 

Pr141 2.57 2.88 2.96 3.3 5.83 129.43 4.84 2.69 0.09 

Nd146 12.29 13.32 13.29 12.78 18.4 668.45 26.7 10.28 0.342 

Sm147 4.36 5.9 4.91 2.66 4.27 189.33 11.44 1.52 0.082 

Eu153 1.38 1.42 1.35 0.71 1.2 29.23 3.32 0.22 0.027 

Gd157 6.38 7.06 7.29 3.87 5.54 176.2 17.45 0.82 <0.058 

Tb159 0.786 0.958 1.084 0.633 0.734 19.67 2.79 0.079 0.0149 

Dy163 4.31 4.76 5.61 3.07 3.08 92.07 14.52 0.16 0.042 

Ho165 0.637 0.843 0.979 0.342 0.295 12.85 2.48 0.0252 <0.0110 

Er166 1.43 1.43 2.32 0.96 0.96 24.34 5.81 0.07 <0.026 

Tm169 0.17 0.188 0.194 0.08 0.116 2.25 0.618 0.0123 0.0126 

Yb172 0.74 1.13 1.62 0.53 0.73 8.9 4.08 0.088 0.057 

Lu175 0.137 0.129 0.234 0.099 0.079 0.92 0.557 <0.0105 <0.0108 

Hf178 <0.027 0.203 0.302 0.97 1.81 0.82 0.186 0.386 0.166 

Ta181 <0.0191 <0.0166 <0.017 1.99 2.63 0.509 <0.030 0.074 0.159 

W182 <0.093 0.305 1.23 27.25 45.74 37.54 0.9 0.125 0.4 

Au197 <0.035 <0.035 <0.037 0.024 <0.076 <0.083 <0.046 <0.056 <0.041 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 5.63 11 16.61 122.76 133.47 143.7 10.47 2.43 1.37 

Bi209 <0.0138 0.369 1.53 1.76 2.11 1.02 3.07 0.071 0.042 

Th232 3.47 12.29 11.87 37.99 69.58 57.73 18.33 2.28 0.41 

U238 0.185 1.025 2.51 15.7 24.7 84.62 1.2 0.159 0.079 
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Silicate analyzed data (133) – 22 to 41 grains (2066177)  
Rock Amphibolite-2066177 

Sample ID 177B-06 177B-07 177B-08 177B-11 177B-16 177C-02 177C-05 177C-07 177C-08 177C-12 

Mineral Chlorite Diopside Chlorite 

Na23 155.45 231.86 111.71 45190.76 6733.97 1231.92 124.86 52.4 48.44 48.17 

Mg25 84370.05 90160.91 86673.22 188026.3 220919.2 86922.77 84087.08 91811.28 90952.48 82022.74 

Al27 108620.4 109096 110644 10327.24 1456.22 106676 100147 109345.1 108398.6 99571.53 

Si29 120199.7 120199.7 120199.7 169999.7 24231.84 122999.6 122999.7 119999.6 119999.6 106500 

P31 35.11 21.24 34.09 142.04 47.88 30.29 28.81 25.05 24.93 24.59 

S34 300.09 219.54 215.62 574.8 204.13 322.05 185.8 279.28 251.52 279.32 

K39 672 350.75 506.91 6686.97 641.55 671.84 512.28 312.28 267.42 229.77 

Ca43 307.34 522.97 337.41 441422.3 383800.8 1293.16 873.88 384.25 350.9 311.79 

Ti49 199.71 165.25 242.04 210.92 7.89 228.6 2869.85 253.49 290.71 192.75 

V51 309.45 301.82 290.36 313.9 8.72 294.34 289.51 280.15 268.86 261.23 

Cr53 <3.38 4.99 <3.22 4.73 <4.31 28.31 27.14 14.22 19.34 5.2 

Mn55 4062.74 4139.12 3977.59 38426.39 40119.17 3885.31 4069.9 3744.37 3650.7 3312.01 

Fe57 72176.55 68886.72 71275.16 59352.4 1426.1 67827.76 66162.62 68681.71 67370.45 61909.62 

Co59 65.63 86.68 69.78 12.21 18.83 48.76 55.29 53.76 51.21 49.34 

Ni60 101.12 83.8 92.91 1.52 1.05 110.81 98.07 86.92 81.99 89.37 

Cu65 36.38 59.62 28.37 14.61 5.43 10.67 9.86 5.46 4.62 6.97 

Zn66 552.41 609.51 526.77 45.3 48.78 409.72 580.31 402.62 364.09 338.43 

Ga69 50.39 54.37 53.78 8.41 1.64 50.58 46.98 52.91 50.21 48.11 

Ge73 1.44 1.77 2.36 13.79 2.76 <1.19 <1.01 1.99 <1.14 <0.80 

As75 <0.76 1.3 <0.67 21.68 7.01 <0.79 0.93 <0.75 0.69 <0.67 

Se82 <10.21 <10.37 <10.91 <19.54 <13.93 <10.72 <10.06 <11.25 <9.88 <9.93 

Rb85 9.64 3.96 5.29 107.72 9.04 10.96 5.19 3.26 2.6 3.13 

Sr88 1.08 1.53 0.93 245.64 85.86 1.35 1.03 0.521 0.38 0.463 

Y89 0.434 0.169 0.28 334.02 120.81 0.259 0.66 0.074 <0.047 0.065 

Zr90 0.188 <0.098 0.159 47.31 9.39 2.32 7.96 <0.104 <0.082 <0.077 

Nb93 <0.078 <0.067 <0.00 0.55 <0.071 <0.033 2.1 0.076 <0.059 <0.032 

Mo95 0.34 <0.32 <0.39 10.67 1.23 0.45 <0.31 0.09 <0.189 <0.176 

Ag107 <0.048 <0.066 <0.109 1.14 <0.172 <0.047 <0.079 <0.099 <0.048 <0.045 

Sn118 <0.52 0.61 <0.49 7.63 1.58 1.17 <0.43 <0.48 0.47 <0.47 

Sb121 0.225 <0.075 0.181 5.4 0.21 0.132 0.111 0.049 0.1 <0.083 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 3.81 4.23 3.64 72.74 56.48 5.1 4.26 1.58 2.37 1.7 

La139 0.14 0.14 0.074 281.63 145.62 0.189 0.085 0.061 <0.029 0.062 

Ce140 0.351 0.172 0.142 615.74 278.9 0.408 0.334 0.122 0.056 0.79 

Pr141 0.037 <0.026 0.037 76.79 32.93 0.029 0.067 <0.0122 0.014 0.0161 

Nd146 0.141 0.094 0.142 336.85 145.06 0.207 0.25 <0.099 0.083 <0.109 

Sm147 <0.080 <0.108 <0.114 88.99 34.02 <0.108 0.17 0.075 <0.078 <0.126 

Eu153 <0.033 0.021 0.049 34.6 11.47 <0.0181 <0.040 <0.019 <0.0185 <0.030 

Gd157 <0.111 0.17 0.122 102.79 33.13 0.087 0.17 0.135 0.079 <0.072 

Tb159 <0.019 0.0124 <0.016 14.98 4.6 <0.0215 <0.018 <0.0114 <0.0155 <0.0205 

Dy163 <0.077 0.025 <0.090 74.81 24.62 0.085 <0.059 0.042 0.067 <0.058 

Ho165 0.014 0.036 0.0115 11.07 3.75 <0.0151 <0.018 <0.0196 <0.0155 0.0109 

Er166 0.067 <0.044 0.041 22.61 9.89 <0.044 0.141 <0.066 <0.055 <0.042 

Tm169 <0.0142 <0.0167 <0.0143 2.43 0.801 <0.0166 <0.013 <0.0177 <0.0139 0.0033 

Yb172 <0.064 0.025 <0.064 12.41 5.18 <0.075 <0.059 <0.079 <0.062 <0.071 

Lu175 <0.0104 <0.0172 0.0128 1.57 0.708 <0.0242 <0.0167 <0.0105 <0.0175 <0.0164 

Hf178 0.046 0.062 <0.053 1.69 0.37 <0.086 0.34 <0.00 <0.051 <0.00 

Ta181 0.016 <0.025 <0.00 0.067 <0.037 0.025 0.088 0.014 0.019 <0.0167 

W182 0.51 <0.093 <0.137 9.18 0.6 0.162 0.238 <0.056 <0.093 0.16 

Au197 <0.035 <0.047 <0.061 <0.00 <0.100 <0.033 <0.033 0.016 <0.048 0.045 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 2.44 2.16 1.75 15.14 7.22 4.11 1.34 1.18 0.267 0.9 

Bi209 0.036 0.031 <0.027 0.693 0.053 <0.0128 0.044 0.0104 <0.021 <0.0194 

Th232 0.162 0.06 0.062 3.03 0.43 0.031 0.14 0.0113 <0.00 0.0143 

U238 0.255 0.101 0.121 2 0.108 0.055 0.145 0.028 <0.0136 0.0264 

To be continued 
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Rock Amphibolite 

Sample ID 177C-13 177C-14 177C-15 177A-01 177A-02 177A-03 177A-04 177A-05 177A-06 177A-07 

Mineral Chl Dol Chl Kfel Dol 

Na23 32.75 36.96 28.34 25383.76 329.03 64.17 83.98 2014.58 10422.03 82236.52 

Mg25 80105.07 42937.24 41872.25 145939 91375.19 88606.09 88560.34 84068.02 64170.89 1663971 

Al27 97011.78 51375.9 52565 717.16 110936.8 110846 115708.1 89683.4 166566.5 14796.1 

Si29 106500 56092.72 56092.72 84858.68 119999.6 119999.6 119999.6 119999.6 299999.8 299999.8 

P31 20.62 16.23 15.45 40.74 27.76 27.4 27.47 19.08 39.54 311.76 

S34 298.05 124.53 137.15 295.46 296.49 271.09 334.1 332.35 514.14 4459.09 

K39 215.48 122.35 287.48 867.15 960.04 683.82 331.47 618.34 78203.82 35120.11 

Ca43 282.21 353.37 185.59 252600.3 852.21 9583.06 330.25 22691.09 11228.05 3331921 

Ti49 152.07 96.3 93.64 40.56 321.45 194.13 162.89 184.68 222.72 145.45 

V51 254.98 148.56 148.69 1.37 288.31 288.79 273.46 262.86 799.43 108.19 

Cr53 2.57 <1.33 <1.30 <2.35 <3.21 <3.33 <2.65 <2.99 23.28 <32.14 

Mn55 3216.8 1793.18 1849.41 22924.73 3840.49 4609.91 4121.15 5735.6 2832.67 363721.8 

Fe57 62470.19 32292.92 34454.27 1248.63 69143.86 69923.29 74383.01 58341.66 40363.09 84263.66 

Co59 44.26 32.79 28.8 10.17 75.02 79.25 58.74 55.84 57.69 29.91 

Ni60 90.89 43.95 47.07 1.21 81 97.87 104.55 86.84 52.01 15.88 

Cu65 7.5 11.63 2.47 5.1 16.45 13.77 27.72 24.32 60.39 41.03 

Zn66 299.96 232.3 185.84 226.5 447.42 612.48 416.19 439.9 617.54 235.61 

Ga69 49.05 24.21 25.04 1.82 53.03 52.4 53.61 42.76 66.63 14.98 

Ge73 <0.96 <0.77 <0.58 2.03 <1.54 <1.30 <1.54 1.75 <2.05 88.27 

As75 0.82 <0.34 <0.42 1.69 <0.78 1.04 <0.63 <0.69 <1.04 22.06 

Se82 <10.48 <5.24 5.77 <11.42 <11.58 <11.02 <11.59 <10.27 <16.98 <124.14 

Rb85 3.87 1.69 4.59 3.91 10.16 9.85 5.61 9.99 1503.91 164.08 

Sr88 0.303 0.343 0.371 62.86 1.48 2.03 0.66 18.88 10.58 2015.81 

Y89 0.063 0.122 0.067 62.12 0.109 0.8 0.093 26.14 4.76 3340.56 

Zr90 <0.053 <0.041 0.054 26.19 1.27 <0.059 0.127 2.84 17.9 77.03 

Nb93 <0.044 0.0098 0.046 0.091 <0.070 <0.096 <0.052 0.067 <0.102 0.82 

Mo95 <0.24 <0.094 0.18 0.44 <0.33 0.33 <0.20 <0.37 <0.63 5.54 

Ag107 0.018 <0.042 <0.032 <0.092 0.019 0.075 <0.052 <0.068 <0.15 <0.83 

Sn118 <0.41 0.24 <0.20 3.52 0.81 <0.48 <0.46 1 15.63 12.58 

Sb121 0.106 0.057 0.077 0.15 0.198 0.101 0.028 0.41 1.53 1.58 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 0.66 0.84 1.53 34.7 8.24 5.14 2.4 6.31 80.91 138.21 

La139 <0.034 0.014 0.142 71.17 0.151 1.13 0.071 21.98 3.55 2153.19 

Ce140 0.101 0.051 0.255 163.64 0.558 2.49 0.113 47.1 7.03 4649.87 

Pr141 <0.019 <0.0083 0.037 20.14 0.064 0.334 <0.013 5.79 0.88 631.2 

Nd146 0.051 <0.058 0.054 79.75 0.118 1.06 <0.103 27.11 4.1 2842.67 

Sm147 0.097 0.045 <0.052 15.12 <0.161 0.35 <0.119 6.33 1.41 789.48 

Eu153 0.021 <0.016 0.015 6.4 0.031 0.14 <0.00 2.9 0.48 333.14 

Gd157 0.192 0.099 0.092 20.14 <0.112 0.39 <0.083 8.7 1.45 1064.65 

Tb159 <0.0141 <0.0095 0.0118 2.14 0.027 0.019 0.0068 1.17 0.142 148.7 

Dy163 <0.069 0.013 <0.036 11.17 <0.064 0.212 0.189 5.42 1.12 744.18 

Ho165 0.0136 <0.0094 0.0073 1.62 <0.0160 0.019 0.0136 0.87 0.181 111.52 

Er166 <0.0292 0.0092 <0.026 3.88 <0.033 0.056 0.049 1.68 0.251 226.38 

Tm169 <0.0127 <0.0085 <0.0046 0.4 <0.0203 0.022 0.0061 0.147 0.041 21.83 

Yb172 <0.070 <0.0220 <0.0295 1.68 <0.046 0.086 <0.067 1.19 0.27 122.29 

Lu175 <0.0130 0.0072 <0.0068 0.248 <0.0104 <0.0143 0.0126 0.138 0.051 15.08 

Hf178 <0.00 <0.0310 <0.038 0.57 <0.037 <0.036 <0.00 0.117 1.68 3.84 

Ta181 <0.0163 <0.0126 <0.0060 0.025 0.01 <0.0178 0.016 0.021 0.093 <0.152 

W182 0.067 <0.060 0.304 <0.082 0.084 0.027 0.081 0.158 0.8 <1.27 

Au197 <0.062 <0.0296 <0.032 0.104 <0.036 0.018 <0.037 <0.034 <0.052 <0.59 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 0.575 0.519 1.68 6.48 2.06 1.84 1.66 3.02 12.35 32.46 

Bi209 <0.0190 <0.0080 0.049 0.041 0.03 0.047 <0.025 0.07 0.095 <0.25 

Th232 0.0137 0.0246 0.121 1.22 0.027 0.098 0.031 0.86 1.37 13.66 

U238 0.036 0.0314 0.163 0.191 0.048 0.0136 0.048 0.155 0.515 0.81 
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Silicate analyzed data (133) – 42 to 57 grains (2066178) 
Rock Granite-2066178 

Sample ID 178A-01 178A-02 178A-05 178A-06 178A-07 178A-08 178A-09 178B-01 

Mineral Biotite Feldspar Chlorite Feldspar Biotite 

Na23 455.45 357.79 61765.18 384.94 57171.73 53435.62 436.43 517.98 

Mg25 54123.57 56170.78 1610.94 54265.14 1666.04 1806.45 60535.42 55465.46 

Al27 86300.52 87936.27 124263.7 87821.5 128373.6 134134.4 85992.7 88773.59 

Si29 159999.9 159999.9 289999.4 159999.9 289999.4 289999.4 159999.9 164999.6 

P31 33.49 33.54 39.62 23.07 41.05 43.36 40.4 31.61 

S34 261.76 511 554.32 455.99 348.48 404.57 427.79 504.57 

K39 78882.88 80468.46 19666.21 78432.48 26641.37 38222.64 75202.98 79860.5 

Ca43 295.14 <178.55 14977.56 <226.69 13572.31 6799.15 1129.48 <240.79 

Ti49 15085.56 14298.57 <7.97 14015.7 9.95 79.87 10418.17 18831.68 

V51 294.62 271.94 <0.203 237.14 <0.173 6.7 164.56 327.58 

Cr53 108.38 120.45 4.5 64.39 <3.91 <3.32 <2.84 110.26 

Mn55 2485.45 2194.02 61.6 2173.92 86.14 107.94 2124.55 2499.17 

Fe57 46975.97 46289.47 1175.62 45247.8 819.06 1929.36 44167.85 48391.34 

Co59 65.04 61.31 0.41 61.24 0.44 0.95 65.68 66.26 

Ni60 85.62 84.98 <0.83 84.59 <0.53 <0.69 78.67 82.4 

Cu65 <0.85 1.02 2.29 2.39 1.68 1.94 3.48 5 

Zn66 671.86 558.61 27.68 564.94 32.62 27.86 626.04 619.65 

Ga69 92.28 81.9 32.52 95.19 39.41 37.96 66.28 206.05 

Ge73 2.54 2.7 <2.44 6.79 2.19 <1.82 5.25 6.98 

As75 <0.80 <1.07 2.05 <0.95 <0.96 <1.22 <0.78 <1.00 

Se82 <19.44 <17.69 <24.92 <18.84 <21.71 <22.75 <18.14 <20.62 

Rb85 2287.87 2092.2 185.93 2050.68 207.88 585.81 1963.79 1294.47 

Sr88 0.354 0.32 333.95 0.313 365.69 151.02 0.88 0.597 

Y89 <0.054 <0.066 0.204 0.047 0.529 1.96 2.71 <0.073 

Zr90 0.143 <0.138 <0.205 0.103 <0.120 <0.140 1.46 <0.125 

Nb93 74.91 64.92 <0.063 72.63 <0.070 <0.114 54.58 71.49 

Mo95 <0.36 <0.41 <0.61 <0.26 <0.50 <0.60 <0.27 <0.49 

Ag107 <0.104 <0.104 <0.124 <0.121 <0.112 <0.172 <0.144 <0.101 

Sn118 30.68 32.75 1.36 28.54 <0.69 1.36 32.9 28.56 

Sb121 0.38 0.42 <0.147 0.29 <0.175 0.133 0.52 0.311 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 989 816.31 201.87 1137.4 357.19 202.1 357.29 3760.1 

La139 <0.051 <0.044 0.317 0.033 1.77 10.73 0.72 0.041 

Ce140 0.019 <0.043 0.489 <0.041 3.06 16.45 2.93 0.087 

Pr141 <0.030 <0.033 <0.026 <0.028 0.273 1.44 0.375 <0.026 

Nd146 <0.156 0.216 0.28 <0.081 0.66 5.69 2.28 <0.21 

Sm147 <0.163 <0.27 <0.224 <0.137 <0.16 0.73 1 <0.31 

Eu153 0.145 0.142 0.227 0.15 0.469 0.92 0.166 0.316 

Gd157 <0.22 <0.270 0.19 <0.186 <0.27 0.38 1.23 <0.25 

Tb159 <0.0136 0.017 <0.032 <0.049 <0.033 0.035 0.144 0.024 

Dy163 0.087 <0.120 <0.165 <0.096 0.112 0.31 0.55 <0.084 

Ho165 <0.024 <0.0240 <0.027 <0.025 0.046 0.057 0.112 <0.043 

Er166 <0.110 <0.042 <0.13 <0.086 <0.135 <0.126 0.249 <0.080 

Tm169 <0.032 <0.034 0.026 <0.0231 0.028 <0.036 <0.027 0.0055 

Yb172 <0.059 <0.178 <0.141 <0.136 <0.192 0.17 <0.106 0.111 

Lu175 <0.019 <0.033 <0.045 0.023 <0.033 <0.0166 <0.020 <0.033 

Hf178 <0.132 0.303 <0.137 0.311 <0.122 <0.137 <0.126 0.47 

Ta181 12.16 9.89 0.06 38.02 0.098 0.113 24.57 7.11 

W182 2.76 2.75 <0.162 2.7 <0.118 0.22 1.12 2.66 

Au197 0.075 <0.094 <0.111 <0.084 <0.115 <0.130 <0.119 <0.128 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 3.38 2.94 8.57 3.16 4.1 1.22 3.29 4.36 

Bi209 <0.028 <0.040 <0.051 <0.029 <0.049 <0.055 <0.036 <0.041 

Th232 <0.036 0.267 <0.053 <0.037 <0.0254 0.067 42.82 <0.023 

U238 <0.021 <0.027 <0.028 <0.03 <0.033 0.053 2.88 0.02 

To be continued 
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Rock Granite-2066178 

Sample ID 178B-02 178B-07 178B-08 178B-09 178B-10 178F-04 178F-05 178F-06 

Mineral Feldspar Kfeldspar Biotite Kfeldspar Biotite Quartz+Biotite Biotite 

Na23 45924.22 61692.04 277.35 3277.89 5236.44 494.52 76.16 414.48 

Mg25 575.63 513.23 68459.21 21.04 193.38 52269.2 20841.58 54087.84 

Al27 151697.2 124430.9 92037.77 90567.13 88564.51 89560.79 25097.61 88333.85 

Si29 289999.4 289999.4 164999.6 289999.4 289999.4 164999.6 164999.6 164999.6 

P31 35.96 32.82 33.99 43.34 34.69 41.78 19.08 40.32 

S34 399.6 380.96 260.37 191.23 275.64 337.03 169.68 469.51 

K39 46411.72 12884.6 70499.25 137884.8 130383.4 82670.11 18423.84 81997.26 

Ca43 4721.44 23497.64 3255.29 1827.83 913.24 430.67 467.64 <264.24 

Ti49 33.13 <9.75 11995.75 82.66 31.41 17486.7 2443.57 14534.47 

V51 <0.23 <0.259 190.22 <0.206 <0.161 364.94 78.22 313.65 

Cr53 <3.54 <2.91 <3.58 <2.92 <3.14 194.88 21.24 176.12 

Mn55 1237.13 64.34 2257.47 3.95 1.75 2461.39 577.67 2149.77 

Fe57 227.67 635.29 47969.59 40.88 24.09 47274.32 12971.16 46546.7 

Co59 <0.26 <0.25 70.75 0.117 <0.186 65.18 20.83 64.56 

Ni60 1.25 1.06 87.93 0.92 <0.57 76.6 24.96 77.12 

Cu65 3.54 <0.97 2.71 1.33 2.2 1.96 3.43 1.85 

Zn66 24.09 12.95 608.05 <4.47 <3.51 607.04 181.85 530.46 

Ga69 39.54 25.09 69.58 177.64 124.5 76.5 18.99 76.12 

Ge73 3.04 <2.42 3.41 <2.07 <1.61 4.27 <1.38 3.37 

As75 1.31 <1.12 <0.91 <1.05 <0.94 <1.36 <0.62 <0.88 

Se82 <25.56 <23.66 <21.65 <22.15 <18.48 <19.93 <10.80 <20.79 

Rb85 160 85.29 1879.51 596.44 618.75 2052.62 455.96 1758.17 

Sr88 327.15 249.16 1.54 65.43 18.33 0.353 0.168 0.388 

Y89 2.18 0.245 7.51 0.23 0.059 <0.073 0.051 <0.054 

Zr90 <0.134 <0.168 0.196 <0.184 1.21 <0.137 <0.091 <0.131 

Nb93 <0.090 <0.087 45.58 <0.099 <0.065 64.32 11.6 63.21 

Mo95 <0.70 <0.54 0.36 <0.59 <0.36 <0.44 <0.25 <0.42 

Ag107 <0.191 <0.070 <0.136 <0.092 0.04 <0.157 <0.056 <0.106 

Sn118 <0.81 <0.76 31.78 <0.64 0.76 27.81 6 28.15 

Sb121 <0.18 <0.123 0.35 <0.23 0.39 0.3 0.126 0.46 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 169.43 132.01 362.08 4345.7 3049.25 760.01 120.86 739.55 

La139 3.24 1.43 1.3 1.4 0.813 <0.043 0.016 <0.036 

Ce140 7.78 2.72 2.5 0.739 0.332 <0.020 0.14 <0.027 

Pr141 0.892 0.369 0.424 0.056 <0.030 <0.028 <0.022 <0.031 

Nd146 3.87 0.53 1.58 <0.192 <0.135 <0.094 0.104 <0.254 

Sm147 1.6 0.25 0.84 <0.200 <0.162 <0.34 <0.128 <0.188 

Eu153 2.35 0.88 <0.082 0.392 0.384 <0.070 <0.032 0.09 

Gd157 0.53 <0.21 0.96 <0.25 <0.180 <0.219 0.121 <0.209 

Tb159 0.124 0.034 0.175 0.026 <0.033 <0.023 0.021 <0.035 

Dy163 0.28 <0.142 1.3 <0.147 <0.107 0.214 <0.080 <0.138 

Ho165 0.108 <0.048 0.177 <0.029 <0.024 0.027 0.028 <0.047 

Er166 0.14 <0.135 0.73 <0.114 <0.058 <0.112 <0.035 <0.095 

Tm169 <0.050 <0.034 0.122 <0.0224 <0.026 <0.035 0.015 <0.015 

Yb172 <0.181 <0.191 0.68 <0.144 <0.101 <0.123 <0.062 <0.165 

Lu175 <0.032 <0.047 0.069 <0.043 <0.019 <0.032 <0.0162 <0.038 

Hf178 <0.117 <0.131 0.1 0.38 0.35 <0.118 <0.059 0.159 

Ta181 0.088 <0.037 15.51 1.18 1.15 5.33 0.791 5.05 

W182 <0.245 0.16 2.72 <0.117 <0.189 2.41 <0.081 2.64 

Au197 0.074 <0.125 <0.108 0.067 <0.094 <0.151 <0.057 <0.154 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 1.65 16.39 2.99 77.09 28.03 3.8 0.64 2.78 

Bi209 <0.043 <0.052 0.053 <0.038 <0.028 <0.041 <0.017 <0.032 

Th232 0.025 0.043 0.06 <0.040 0.037 <0.017 <0.017 <0.033 

U238 <0.040 <0.0221 0.336 0.034 <0.031 <0.037 <0.017 <0.030 
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Silicate analyzed data (133) – 58 to 73 grains (2066199) 
Rock Calc-silicate-2066199 

Sample ID 199A-01 199A-02 199A-05 199A-06 199A-07 199A-08 199A-09 199A-10 

Mineral Kfeldspar White Mica Chlorite White Mica 

Na23 152.82 188.51 182.17 431.23 659.43 383.56 546.53 321.03 

Mg25 6553.44 6485.46 6201.15 18762.8 31424.83 116882.6 18982.49 9358.88 

Al27 53787.69 53888.93 55004.37 118558.2 90309.95 50717.72 136253.6 82837.3 

Si29 119999.7 119999.7 119999.7 299999.8 299999.8 106847.5 299999.8 199999.6 

P31 81.34 51.32 121.67 399.64 193.8 79.6 185.24 295.68 

S34 182.58 139.93 167.37 547.71 462.59 460.37 331.23 351.66 

K39 38819.08 39272.15 39015.62 83938.15 74317.7 38528.32 94934.17 59047.34 

Ca43 1382.42 2112.84 942.61 16480.55 51965.77 332500.4 11298.55 4695.13 

Ti49 1149.06 2031.9 1922.46 9410.6 2592.8 1380.67 4988.15 4627.19 

V51 55.37 56.66 58.05 185.32 92.16 58.15 140.78 97.73 

Cr53 41.3 44.89 42.8 142.29 72.6 35.93 114.48 73.25 

Mn55 138.6 267.54 55.22 2078.9 4935.71 74507.88 1096.45 436.85 

Fe57 6314.94 6546.41 7112.16 65444.41 19253.65 40371.07 14209 19192.13 

Co59 4.21 2.52 2.63 9.69 6.09 11.34 7.34 4.52 

Ni60 15.91 12.62 11.16 33.08 20.31 16.02 40.81 19.47 

Cu65 5.62 3.36 7.31 13.44 6.61 7.19 12.48 10.06 

Zn66 37.78 30.37 27.2 73.32 56.75 50.36 77.52 61.04 

Ga69 19.78 19 19.78 41.47 34.03 25.54 49.09 27.47 

Ge73 1.28 1.85 1.97 2.72 <1.92 2.4 4.61 3.47 

As75 4.19 4.03 4.49 29.83 10.25 3.39 7.96 12.19 

Se82 <8.71 <7.64 <8.52 <24.13 <21.16 <23.42 <19.76 <12.78 

Rb85 185.71 175.87 190.97 427.32 312.41 168 454.28 290.79 

Sr88 4.56 6.59 4.98 16.38 22.39 19.48 16.94 10.35 

Y89 8.09 11.06 12.37 28.21 19 29.93 27.24 29.73 

Zr90 48.33 65.64 70.43 144.4 87.41 117.96 134.32 138.68 

Nb93 4.09 6.88 8 30.06 7.96 3.69 18.8 15.84 

Mo95 0.28 0.5 0.57 3 1.11 1.99 0.61 0.68 

Ag107 <0.063 <0.043 <0.051 <0.170 <0.091 <0.18 <0.149 <0.086 

Sn118 2.87 2.84 2.65 7.53 3.68 2.25 6.07 4.62 

Sb121 1.94 1.96 2.13 7.72 2.86 1.28 3.74 3.4 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 116.73 114.42 132.09 251.35 312.34 272.78 299.41 180.34 

La139 6.2 17.51 14.29 115.76 136.66 6.82 56.31 33.64 

Ce140 13.82 43.94 32.25 230.33 266.83 17.69 123.55 79.58 

Pr141 2.13 4.56 3.65 24.25 28.42 2.25 13.04 8.36 

Nd146 5.88 16.8 12.92 83.58 103.6 8.88 44.5 30.6 

Sm147 1.32 2.87 2.25 11.87 16.65 2.36 7.72 5.53 

Eu153 0.255 0.531 0.518 2.6 2.33 0.88 1.21 1.18 

Gd157 0.93 2.01 2.28 7.71 8.82 3.87 5.46 5.45 

Tb159 0.27 0.291 0.326 1 0.689 0.57 0.701 0.937 

Dy163 1.57 1.69 2.05 4.64 3.26 4.63 4.52 5.32 

Ho165 0.318 0.365 0.546 1.09 0.72 0.97 0.92 0.967 

Er166 1.03 1.13 1.64 2.59 1.45 2.93 2.22 3.98 

Tm169 0.161 0.14 0.235 0.356 0.226 0.51 0.402 0.564 

Yb172 1.21 1.22 1.36 2.62 1.3 2.82 2.4 4.06 

Lu175 0.157 0.203 0.181 0.39 0.209 0.389 0.424 0.547 

Hf178 1.59 1.98 2.26 4.36 2.21 2.84 4.91 4.99 

Ta181 0.454 0.734 0.713 2.65 0.774 0.272 1.56 1.51 

W182 1.04 1.82 1.63 17.05 3.49 1.85 2.77 7.95 

Au197 <0.032 <0.063 <0.039 <0.116 <0.099 <0.170 <0.102 <0.066 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 2.54 4.73 4.09 11.47 9.22 3.13 6.49 9.01 

Bi209 0.049 0.095 0.089 1.12 0.151 0.092 0.122 0.257 

Th232 6.48 10.08 11.58 34.96 29.19 8.58 22.31 32.24 

U238 3.49 4.66 5.45 12.67 6.11 5.03 9.1 14.12 

To be continued 
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Rock Calc-silicate-199 

Sample ID 199A-11 199A-12 199A-13 199D-04 199D-05 199D-07 199D-09 199D-10 

Mineral White Mica Kfeldspar White Mica Qtz +Bio 

Na23 239.24 332.59 344.08 297.01 295.51 337.06 310.72 9430.08 

Mg25 26788.69 10793.56 10656.66 10120.58 11593.67 13322.54 10411.23 26996.98 

Al27 65608.65 94243.48 88683.88 85874.73 89360.84 84899.21 91542.11 28144.93 

Si29 199999.6 199970.6 199970.6 199999.6 199999.6 214999.7 214999.7 214999.7 

P31 112.08 394.36 236.67 127.87 121.53 94.57 93.49 54.45 

S34 277.48 282.25 225.89 308.05 256.63 352.38 326.9 232.56 

K39 49380.36 66614.62 62827.39 61685.27 64222.43 64610.15 60606.9 19451.21 

Ca43 54210.87 3900.71 2567.6 2686.31 4536.56 9913.29 1894.73 53897.66 

Ti49 904.78 2918.02 2928.88 2816.33 2232.52 2361.46 4363.82 840.54 

V51 68.33 89.21 88.97 94.44 92.63 90.71 103.02 44.32 

Cr53 53.1 65.01 69.11 70.8 58.5 61.11 71.76 18.35 

Mn55 7546.8 281.33 267.1 261.93 549.48 943.25 154.05 5124.7 

Fe57 12359.87 7448.61 7566.52 13224.21 12616.52 14200.54 15014.98 9688.87 

Co59 11.46 4.46 3.98 4.31 4.68 5.01 3.25 4.8 

Ni60 33.97 21.8 20.24 20.94 20.79 22.49 17.92 11.97 

Cu65 6.48 7.47 5.83 9.52 10.14 5.73 10.82 5.94 

Zn66 58.25 53.7 51.76 47.72 43.86 49.99 71.13 39.78 

Ga69 23.62 31.85 31.01 28.27 29.82 29.64 33.45 10.76 

Ge73 2.5 1.71 10.15 2.79 2.65 <1.68 2.83 <1.66 

As75 4.09 5.81 6.36 7.45 6.32 7 8.72 2.9 

Se82 <13.47 <12.90 <12.59 <13.54 <12.51 <14.67 <15.47 <14.74 

Rb85 235.14 315.62 306.25 287.59 312.37 299.74 310.34 104.8 

Sr88 21.09 10.97 23.14 8.19 9.18 9.72 9.42 15.73 

Y89 22.53 20.43 23.22 46.01 13.94 11.5 27.3 11.01 

Zr90 66.38 143.39 99.18 354.27 75.45 60.59 152.53 46.63 

Nb93 3.3 10.06 11.05 11.34 7.57 7.24 15.11 2.91 

Mo95 <0.31 <0.34 0.51 0.91 0.84 1.17 1.12 0.71 

Ag107 <0.111 <0.098 <0.127 <0.089 <0.076 <0.110 <0.111 <0.135 

Sn118 3.19 3.55 4.8 4.33 4.66 3.73 5.29 2.78 

Sb121 1.63 2.84 2.59 4.04 3.04 3.22 3.45 1.14 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 158.68 172.58 175.92 187.57 179.71 213.55 235.55 64.51 

La139 20.22 52.75 514.3 12.15 31.51 7.59 31.59 20.68 

Ce140 42.54 114.4 1223.73 30.45 69.88 16.01 70.17 46.68 

Pr141 5.12 12.99 101.43 3.12 6.33 1.89 8.12 5.21 

Nd146 19.24 44.97 318.93 13.77 22.92 6.61 27.34 18.22 

Sm147 4.5 7.62 42.67 2.89 3.42 1.61 5.3 3.25 

Eu153 0.94 1.43 6.32 0.856 0.738 0.367 1.02 0.607 

Gd157 4.67 5.74 21.96 4.68 3.36 1.33 4.57 2.12 

Tb159 0.732 0.781 1.87 0.918 0.419 0.312 0.68 0.341 

Dy163 5.27 4.31 6.58 6.12 2.34 1.82 5.04 2.13 

Ho165 0.915 0.761 0.912 1.36 0.47 0.373 1.07 0.353 

Er166 2.82 2.49 2.52 4.85 1.2 1.44 3.39 1.16 

Tm169 0.391 0.391 0.285 0.607 0.224 0.17 0.494 0.199 

Yb172 2.66 2.51 2.12 4.63 1.6 1.16 3.3 1.29 

Lu175 0.422 0.284 0.333 0.667 0.207 0.252 0.433 0.226 

Hf178 2.02 4.66 3.22 8.48 2.14 2.33 4.56 1.83 

Ta181 0.311 1.1 1.06 1.08 0.694 0.556 1.19 0.372 

W182 1.2 1.31 2.27 2.23 1.99 2.27 4.26 6.6 

Au197 0.064 <0.078 <0.065 <0.103 0.09 <0.062 <0.076 <0.090 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 7.72 4.22 8.37 4.9 4.19 5.46 21.91 15.31 

Bi209 0.044 0.038 0.056 0.281 0.146 0.315 0.156 0.069 

Th232 10.88 22 66.27 22.41 11.73 7.77 22.09 9.71 

U238 4.32 7.43 7.49 12.69 5.58 4.67 11.23 3.07 
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Silicate analyzed data (133) – 74 to 85 grains (2066203) 
Rock Calc-silicate-2066203 

Sample ID 203A-06 203A-07 203A-08 203A-09 203A-10 203D-05 203D-07 203D-08 203D-09 203D-10 203D-11 203D-12 

Mineral Chlorite Pyroxene Kfeldspar Pyroxene Kfeldspar
r 

White mica  Pyroxene Apatite Feldspar Kfel+Qtz Chlorite 

Na23 1915.19 2829.21 2539.72 2653.06 2450.55 3515.63 2323.23 5299.64 1842.8 549.48 4286.73 965.22 

Mg25 39332.5 69984.6 77885.8 5934.01 95109.8 858.23 40546.2 74624.5 68822.9 4079.28 1904.61 25599.9 

Al27 14927.3 31448.5 22484.2 106357. 38528.8 87914.7 49461.0 28311.7 70868.2 31901.7 15197.9 5768.64 

Si29 119999 234999 234999 299999 234999 299999 219999 219999 537700 219999 299999 219999 

P31 23.04 39.16 46.84 29.65 4969.91 27.13 31.02 26.85 67459.7 24.95 25.78 29.51 

S34 135.88 400.27 339.54 188.53 422.7 635.65 304.43 530.45 1251.25 873.7 502.75 282.21 

K39 3403.93 19948.9 5212.72 139420 5917.55 145793 61392.5 7305.88 60790.3 47615.1 20574.7 1890.09 

Ca43 40269.5 66781.3 76013.1 8559.24 96944.9 2132.86 28539.8 73024.5 394601 3958.57 4587.36 33042.8 

Ti49 133.95 201 173.25 7502.1 3896.58 11.55 151.85 1242.28 31.16 498.53 247.72 68.32 

V51 36.24 56.99 61.73 21.32 66.75 0.168 30.58 67.84 23.49 4.28 2.78 30.33 

Cr53 46.75 73.57 72.92 9.89 171.36 <2.96 40.41 64.84 138.38 8.89 13.54 10.93 

Mn55 3913.62 8121.25 10516 1765.9 18557.1 51.23 4144.19 6740.4 9545.58 808.2 150.35 4660.06 

Fe57 22285.8 36892 42194.5 2917.74 41381.2 783.84 18239.6 37654.2 16094.2 5317.77 956.77 17102.4 

Co59 9.9 16.55 18.29 2.15 44.8 <0.181 11.22 18.05 34.37 1.52 2.92 3.8 

Ni60 85.43 143.76 163.73 4.25 880.3 1.13 125.47 174.59 199.68 11.23 6.13 66.68 

Cu65 43.37 15.55 90.29 1.98 45.18 2561.64 262.31 1003.11 229.17 6821.19 1474.83 254.8 

Zn66 492.33 1170.36 1301.71 93.63 2326.46 <4.39 282.13 392.13 1003.42 41.78 24.67 108.09 

Ga69 7.59 31.9 12.07 347.13 24.64 108.94 71.1 15.24 130.06 29.67 11.86 4.6 

Ge73 <0.90 <1.64 2.51 <1.80 2.13 <1.95 <1.30 2.97 7.86 <0.93 <1.59 1.15 

As75 3.26 5.76 6.85 1.81 79.07 <0.93 4.13 5.22 622.19 0.91 0.84 2.63 

Se82 <7.32 <14.48 <14.28 <17.59 <16.51 <15.92 <13.50 <16.26 <36.95 <10.51 <15.39 <12.21 

Rb85 3.74 77.83 6.55 719.21 22.65 769.47 367.29 9.43 390.53 249.81 100.8 2.06 

Sr88 1.83 9.49 3.29 151.64 9.13 19.1 20.86 3.44 113.08 21.41 5.99 1.65 

Y89 0.235 0.5 0.527 11.39 14.49 0.227 0.259 4.01 84.07 1.29 1.34 0.159 

Zr90 9.98 20.8 27.26 33.32 90.71 4.02 10.79 28.99 4.91 15.8 24.67 9.26 

Nb93 0.252 0.308 0.199 28.21 15.2 <0.102 0.201 7.22 0.19 2.62 1.55 0.09 

Mo95 <0.182 0.51 <0.35 <0.48 <0.43 <0.34 <0.35 0.42 <1.10 <0.37 <0.35 2.24 

Ag107 <0.06 <0.139 <0.090 0.121 <0.128 <0.131 <0.113 <0.13 <0.35 0.218 0.132 <0.113 

Sn118 7.76 10.6 10.42 5.85 18.34 <0.66 8.2 30.08 <1.40 1.6 1.52 4.75 

Sb121 2.05 3.5 3.98 1.66 3.15 0.89 2.11 3.31 3.26 0.86 0.59 2.72 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 11.84 590.32 14.49 11222 78.07 3813.26 2265.79 24.52 3623.08 915.33 373.97 45.27 

La139 0.067 0.241 0.228 1.06 9.89 0.264 0.046 0.583 173.26 0.279 0.292 <0.024 

Ce140 0.055 0.112 0.199 7.07 25.01 0.261 0.11 3.13 398.69 0.67 0.707 0.069 

Pr141 <0.0094 <0.024 <0.022 1.68 3.36 <0.032 <0.032 0.713 52.63 0.129 0.102 0.016 

Nd146 <0.115 0.166 <0.196 8.82 13.56 <0.167 0.14 3.75 202.7 0.71 0.62 <0.061 

Sm147 <0.114 <0.147 <0.155 3.56 3.79 <0.29 0.21 1.31 34.01 0.42 0.31 <0.147 

Eu153 <0.0200 <0.042 <0.059 1.05 0.678 0.262 <0.039 0.245 3.84 0.112 0.151 <0.055 

Gd157 <0.128 <0.203 <0.123 2.81 3.3 <0.197 <0.190 1.04 25.44 0.34 <0.24 <0.144 

Tb159 <0.0114 <0.030 <0.031 0.409 0.423 0.031 <0.023 0.219 3.18 0.053 <0.032 0.0116 

Dy163 <0.070 0.099 <0.134 2.51 2.65 0.148 <0.078 0.89 15.75 0.419 0.21 <0.072 

Ho165 0.0145 0.025 0.025 0.428 0.628 <0.025 <0.032 0.157 2.97 0.037 0.062 <0.026 

Er166 0.066 <0.082 <0.077 1.29 1.49 0.084 0.126 0.51 7.6 0.082 0.121 <0.077 

Tm169 0.015 <0.031 <0.027 0.133 0.189 <0.034 0.02 0.073 0.75 0.046 <0.024 <0.017 

Yb172 0.116 0.177 0.144 0.73 1.29 0.044 0.112 0.4 3.72 0.256 0.212 0.068 

Lu175 0.0221 0.106 0.062 0.068 0.127 <0.028 0.032 0.062 0.344 0.035 0.044 0.049 

Hf178 0.61 1.13 1.68 1.58 2.79 0.379 0.362 1.15 <0.26 0.54 0.66 0.47 

Ta181 0.026 0.029 <0.026 3.36 1.54 1.08 0.085 0.497 0.063 0.246 0.084 <0.027 

W182 0.074 0.139 <0.138 3.92 5.58 0.177 0.174 0.62 9.79 0.163 0.173 <0.101 

Au197 <0.041 <0.086 <0.102 <0.096 <0.101 <0.051 <0.099 0.12 <0.24 <0.048 <0.073 <0.084 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 15.96 36.22 50.43 1.53 164.96 9.59 30.37 42.61 39.42 29.54 412.52 13.12 

Bi209 0.035 0.041 <0.029 0.041 0.027 0.8 0.031 1.2 0.52 4.5 0.88 0.58 

Th232 0.025 0.063 0.063 1.05 4.38 0.102 0.211 0.693 19.49 0.63 0.694 0.054 

U238 0.164 0.314 0.35 4.92 10.75 0.175 0.184 1.16 6.54 1.5 1.91 <0.021 
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Silicate analyzed data (133) – 86 to 100 grains  
Rock Calc-silicate-2066635 

Sample ID 635B-01 635B-02 635B-09 635B-13 635G-04 635G-05 635J-01 635J-04 

Mineral Chlorite Dolomite Quartz Gypsum Apatite 

Na23 5582.37 675.28 13067.8 12916.67 286.06 415539.3 62336.96 68813.92 

Mg25 101634.1 114393.8 358590.2 76444.02 117878.7 115311.2 16317.61 19083.81 

Al27 76038.7 86904.57 189086.4 58042.45 8925.93 12397.96 1798.99 2064.49 

Si29 122999.7 122999.7 318626.1 122999.7 13014.72 1441118 210402.7 247186.3 

P31 50.98 64.05 222.06 326.58 48.19 262.89 39.19 35.48 

S34 319.37 469.33 872.74 376.22 216.36 2377.51 261.38 338.04 

K39 294.6 269.07 1042.48 706.29 192.99 13039.9 2005.9 2289.01 

Ca43 3961.25 1212.39 215000.6 9800.56 203600.5 257400.3 36399.72 45900.25 

Ti49 2439.76 3940.56 4589.96 3615.88 10.44 665.56 101.97 112.28 

V51 102.54 170.68 227.54 123.26 6.09 9.15 0.83 0.98 

Cr53 17.02 21.09 31.67 20.65 <1.84 13.1 1.87 <1.77 

Mn55 9702.35 10782.44 58156.79 7436.39 32914.61 235.45 31.19 34.76 

Fe57 109321.2 182302.1 240675 154390 4998.2 949.35 134.08 170.83 

Co59 430.28 448.33 734.33 267.35 26.13 3.19 0.206 0.223 

Ni60 56.24 64 98.02 35.23 3.63 6.27 1.1 1.35 

Cu65 346.03 6494.53 10730.57 321.48 528.43 33.23 3.53 74.77 

Zn66 920.41 1061.04 1894.48 703.61 124.03 <17.32 <2.67 262.07 

Ga69 19.34 20.87 47.71 14.33 2.31 10.27 1.79 2.04 

Ge73 4.56 4.32 <5.81 7.01 <0.98 <6.35 <1.00 <1.23 

As75 53.25 107.39 116.6 89.94 1.09 <3.06 <0.60 <0.70 

Se82 <13.02 <17.85 <41.39 <13.95 <8.79 <59.27 <8.15 <10.27 

Rb85 1.81 1.91 5.1 2.97 0.239 44.09 6.9 7.64 

Sr88 9.39 9.95 31.53 20.22 10.47 124.07 16.89 18.81 

Y89 13.62 23.49 100.41 21.65 43.22 12.86 2.16 2.38 

Zr90 18.24 16.81 127.94 30.33 0.133 359.27 55.68 62.92 

Nb93 5.54 9.84 10.38 7.93 <0.049 2.33 0.3 0.526 

Mo95 6.74 14.89 14.1 10.25 0.68 <1.55 <0.30 <0.36 

Ag107 <0.128 <0.192 <0.31 <0.104 <0.057 <0.46 <0.089 0.073 

Sn118 13.82 20.09 33.4 21.4 0.53 44.9 6.82 8.43 

Sb121 35.07 68.93 66.22 52.79 <0.063 0.75 <0.078 <0.111 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 24.43 29.4 75.76 46 4.4 411.2 61.59 68.4 

La139 33.84 40.14 62.12 253.47 18.42 15.25 1.99 2.42 

Ce140 70.29 85.4 143.73 499.13 53.76 22.1 3.61 4.14 

Pr141 7.02 9.01 17.07 50.36 7.45 3.29 0.444 0.466 

Nd146 27.68 32.91 68.98 232.95 31.74 10.07 1.45 1.83 

Sm147 5.25 6.31 18.35 28.23 11.16 2.16 0.45 0.33 

Eu153 0.92 1.69 4.85 5 2.83 0.6 0.071 0.058 

Gd157 4.02 7.16 17.21 15.95 9.51 2.05 0.58 0.4 

Tb159 0.577 0.98 3.35 1.42 1.61 0.171 <0.021 0.086 

Dy163 3.42 6.47 22.36 6.85 8.87 1.21 0.268 0.307 

Ho165 0.722 1.1 4.4 1.15 1.65 0.37 0.074 0.06 

Er166 2.08 3.62 13.09 3.35 4.95 1.09 0.08 0.282 

Tm169 0.295 0.471 2.43 0.447 0.552 <0.130 0.022 0.05 

Yb172 2.14 3.26 14.17 3.28 4.39 1.05 0.248 0.171 

Lu175 0.249 0.454 2.16 0.581 0.633 <0.135 0.026 0.03 

Hf178 0.45 0.58 3.03 1.02 <0.072 10.8 1.3 1.43 

Ta181 0.631 0.93 1.06 0.86 <0.022 <0.18 <0.022 <0.024 

W182 15.58 38.33 35.76 22.22 0.162 <0.46 <0.102 0.078 

Au197 <0.079 <0.097 <0.27 0.066 <0.040 <0.28 <0.070 <0.074 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 40.16 78.38 90.86 65.86 5.01 14.64 2.55 2.9 

Bi209 9.04 18.05 13.85 17.03 8.58 <0.22 0.028 0.295 

Th232 20.87 35.79 47.07 40.22 0.35 4.99 0.71 0.84 

U238 9.82 18.83 25.42 14.25 0.052 1.62 0.226 0.249 

To be continued 
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Rock Calc-silicate-2066635 

Sample ID 635J-05 635F-01 635F-02 635F-03 635F-04 635F-05 635F-06 

Mineral Apatite Chlorite Dol +Qtz Dolomite Chlorite Dolomite 

Na23 73211.68 6247.9 2414.06 63471.8 4071.77 44882.53 31635.07 

Mg25 19617.91 96017.91 89494.52 319267.2 132517.2 145409 222496.2 

Al27 2191.57 68467.26 64635.45 152802.9 15061.48 50017.97 24301.68 

Si29 255582.2 124999.8 124999.9 694263.2 33073.33 229337.1 155253.3 

P31 31.06 128.64 80.82 181.81 41.17 125.56 81.61 

S34 329.63 241.4 298.07 1459.51 325.43 3919.82 809.02 

K39 2260.95 295.02 170.82 2387.93 195.96 1559.34 1212.91 

Ca43 45900.25 4569.3 2455.94 215000.6 215000.6 215000.6 366800.3 

Ti49 122.93 792.67 59.27 243.79 539.88 491.39 314.97 

V51 1.14 53.54 43.16 102.01 22.93 41.63 18.37 

Cr53 <2.40 33.78 30.44 82.66 8.19 10.06 5.84 

Mn55 36.47 6675.92 7369.49 42612.76 36076.39 41133.09 55798.07 

Fe57 158.14 41819.38 28065.31 67676.97 15533.95 26772.48 14864.85 

Co59 0.34 153.12 263.19 396 40.83 106.59 71.91 

Ni60 1.34 26.73 40.31 68.5 6.03 16.89 10.34 

Cu65 3.71 2052.32 1942.65 9350.12 713.2 453.61 128.64 

Zn66 <3.31 789.23 727.66 1550.77 167.7 529.77 224.08 

Ga69 2.54 19.11 16.01 40.75 4.39 13.75 7.12 

Ge73 <1.55 3.52 1.62 9.22 <1.26 <1.89 2.15 

As75 <0.68 10.73 1.27 7.95 8.5 6.24 3.41 

Se82 <12.66 <9.52 <9.20 <38.53 <10.04 <18.94 <20.47 

Rb85 7.29 1.15 0.81 8.53 0.66 5.35 4.46 

Sr88 19.74 6.23 3.81 34.98 15.52 324.83 27.47 

Y89 2.7 23.44 2.79 44.04 55.92 51.15 64.21 

Zr90 69.82 150.18 5.31 86.58 5.74 47.76 35.68 

Nb93 0.422 1.54 <0.056 0.4 1.1 0.95 0.75 

Mo95 <0.30 1.13 0.22 1.37 0.93 1.83 1.15 

Ag107 <0.140 <0.095 <0.101 3.8 0.119 0.095 <0.122 

Sn118 7.23 5.01 1.85 19.8 2.96 12.18 7.66 

Sb121 <0.085 2.77 0.294 1.03 1.89 0.62 0.74 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 74.93 65.09 27.6 158.05 14.08 68.37 47.59 

La139 2.9 25.93 25.18 48.96 28.68 31.68 27.56 

Ce140 4.18 55.48 58.42 110.69 65.67 77.58 73.76 

Pr141 0.544 5.47 5.88 13.05 9.19 9.32 10.31 

Nd146 1.86 19.17 19.25 48.2 36.85 39.3 45.79 

Sm147 0.4 3.83 2.59 11.32 12.77 9.1 14.86 

Eu153 0.055 0.743 <0.206 2.64 3.24 2.67 3.83 

Gd157 0.28 3.32 1.44 9.71 11.16 8.98 14.1 

Tb159 0.058 0.567 0.162 1.44 1.83 1.48 2.01 

Dy163 0.45 4.62 0.66 7.57 9.6 8.97 12.45 

Ho165 0.105 1.24 0.128 1.42 1.78 1.75 2.3 

Er166 0.17 3.89 0.273 4.27 5.1 4.65 5.9 

Tm169 0.029 0.735 0.037 0.71 0.73 0.69 0.73 

Yb172 0.246 6.14 0.525 4.85 5.32 4.18 4.77 

Lu175 0.052 1.06 0.051 0.73 0.63 0.63 0.67 

Hf178 1.56 5.81 0.149 2.07 0.27 1.31 0.54 

Ta181 0.052 0.314 0.045 0.126 0.142 0.228 <0.041 

W182 0.149 9.79 <0.115 <0.33 2 1.27 0.66 

Au197 <0.066 <0.083 <0.066 <0.25 <0.069 <0.150 <0.11 

Hg202 <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN <-NaN 

Pb208 2.64 13.41 4.26 17.17 16 22.44 11.31 

Bi209 0.154 0.275 0.025 16.8 0.263 <0.052 0.164 

Th232 0.82 18.02 2.75 9.22 4.79 3.33 2.84 

U238 0.317 5.98 0.346 2.44 1.2 0.97 0.77 
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Silicate Analyzed Data (133) 101 to 109 grains (2066641-2066656) 
Rock Ironstone breccia-2066641 Granite-2066656 

Sample ID 641C-04 641C-07 641B-05 641C-01 656B-04 656A-01 656A-02 656A-03 656A-04 

Mineral Manganite Qtz+Chl Biotite K-feldspar Muscovite 

Na23 1895.64 1410.37 77.75 838.43 546.89 666.5 656.03 928.19 20932.65 

Mg25 43.08 47.12 931.47 5528.31 7593.32 8371.47 15476.64 8322.42 12110.02 

Al27 2210.98 1019.6 11887.38 62678.65 167426.6 168981 171059.4 169806.1 112768.3 

Si29 2106.9 1671.7 299999.8 199999.5 224999.6 229999.8 229999.8 229999.8 229999.8 

P31 17.92 10.46 39.64 70.67 92.24 31.64 57.83 18.31 <14.77 

S34 152.86 124.28 252.95 269.44 311.33 276.85 <140.82 463.02 312.35 

K39 19970.96 13082.72 6700.24 33994.09 78670.2 87253.09 82911.14 85370.44 54969.81 

Ca43 799.75 799.75 145.39 1198.87 1132.76 961.39 1274.83 1263.97 14546.09 

Ti49 566.24 347.65 718.7 3309.58 137.23 1337.29 4959.25 1468.24 1056.21 

V51 30.23 31.23 15.86 171.34 56.36 146.41 119.42 85.1 49.43 

Cr53 4.84 <0.85 16.51 43.29 46.96 79.59 93.81 56.92 36.91 

Mn55 392256.5 323442.2 1364.34 13226.33 1155.96 890.25 3521.39 1744.78 964.49 

Fe57 45303.63 2776.14 15605.78 136528.9 4501.28 12224.44 51805.89 17306.34 8207.12 

Co59 419.96 374.35 35.71 189.62 52.08 25.3 66.86 52.75 40.2 

Ni60 25.34 7.7 6.37 31.1 24.22 24.5 35.21 30.65 18.28 

Cu65 344.12 196.2 221.6 1307.89 8.51 16.37 100.39 51.32 20.07 

Zn66 824.81 1023.14 152.95 421.5 285.48 174.48 323.09 298.81 192.02 

Ga69 4328.77 4349.14 8.77 53.51 81.27 87.53 89.73 83.76 57.65 

Ge73 0.56 <0.52 1.39 5.14 3.01 <1.95 <1.98 <2.05 <2.05 

As75 19.78 19.42 3.6 58.54 4.36 9.97 20.16 14 5.53 

Se82 <6.88 <4.58 <9.01 <12.07 <13.37 21.57 <17.84 <18.05 <18.31 

Rb85 23.3 16.14 52.81 251.41 535.54 679.3 612.62 571.52 416.59 

Sr88 251.07 210.33 1.36 26.41 10.13 5.49 13.91 9.9 12.22 

Y89 2.82 3.73 1.43 7.91 0.91 3.87 14.11 4.54 4.93 

Zr90 2.29 1.42 17.91 44.84 3.15 5.33 11.05 5.06 34.55 

Nb93 3.21 0.694 2.22 13.4 <0.064 3.58 15.63 3.35 2.56 

Mo95 11.34 9.64 0.49 6.2 <0.34 <0.44 0.97 <0.46 <0.51 

Ag107 2.8 4.6 0.192 <0.110 <0.144 <0.158 <0.144 <0.14 <0.176 

Sn118 <0.32 0.213 <0.44 4.92 2.41 2.83 4.02 2.63 5.35 

Sb121 0.87 0.124 0.99 4.12 0.83 1.45 8.99 3.87 1.65 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 89947.1 90447.23 133.46 687.14 1263.39 908.88 1313.8 1055.41 857.28 

La139 2.73 3.28 0.412 11.04 48.54 3 11.6 2.77 3.35 

Ce140 10.35 7.83 3.28 69.9 82.53 5.81 22.24 6.2 5.96 

Pr141 1.07 1.41 0.157 5.44 9.61 0.492 2.37 0.58 0.653 

Nd146 3.74 5.53 0.47 19.93 108.43 2.18 7.56 2.51 2.9 

Sm147 0.9 1.11 0.141 3.22 6.19 0.43 3.33 0.76 0.72 

Eu153 1.18 1.09 0.028 0.566 1.35 0.355 1.45 0.66 0.306 

Gd157 1.45 5.47 0.118 2.55 2.08 1.07 4.12 1.86 2.1 

Tb159 0.056 0.113 0.024 0.234 0.186 0.222 1.11 0.439 0.214 

Dy163 0.4 0.593 0.154 2.09 0.41 1.68 5.92 1.42 1.57 

Ho165 0.097 0.11 0.041 0.41 0.064 0.248 1.05 0.417 0.141 

Er166 0.169 0.259 0.161 1.36 0.1 0.78 1.79 0.44 0.54 

Tm169 0.0241 0.0318 0.027 0.125 <0.019 0.114 0.308 0.115 0.102 

Yb172 0.19 0.187 0.156 1.13 0.184 0.68 1.44 0.74 0.4 

Lu175 0.0233 0.0404 <0.021 0.177 <0.033 0.074 0.206 0.154 0.119 

Hf178 0.148 0.049 0.478 1.7 0.219 0.36 0.42 0.26 1.06 

Ta181 0.065 0.0186 0.299 1.33 0.451 0.473 1.43 0.58 0.274 

W182 11.05 4.74 0.85 13.1 0.26 7.37 18.48 5.94 4.79 

Au197 <0.051 <0.032 <0.048 <0.086 <0.073 <0.095 <0.15 <0.100 <0.121 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 3556.52 3717.09 20.35 674.96 10.69 18.37 106.77 33.92 21.53 

Bi209 8.01 11.88 0.229 17.93 0.057 <0.051 0.387 0.293 0.087 

Th232 1.68 0.965 2.23 19.58 15.93 10.61 40.1 11.85 7.41 

U238 38.46 14.88 1.22 26.44 1.87 1.82 6.21 3.11 1.82 
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Silicate Analyzed Data - 110 to 132 grains (2066655) 
Rock Metasandstone-2066655 

SampleID 655A-07 655A-08 655A-09 655A-13 655A-14 655A-15 655A-16 655A-17 655B-04 655B-05 655B-08 

Mineral Dolomite Chlorite Dolomite Chlorite 

Na23 790.19 29.85 44.88 111.49 113.91 594.23 8304.05 6573.64 69.48 61.91 176.24 

Mg25 96648.3 53337 56559.2 65288.08 60250.58 60846.69 90270.06 108756 75832.49 75739.16 41797.64 

Al27 1416.9 108702 101833. 103365.5 97559.09 92452.51 277.91 267.23 100449.8 101699.8 64397.09 

Si29 2984.88 115999 115999. 115999.7 115999.7 115999.7 25788.91 21750.81 119999.6 119999.6 119999.6 

P31 24.05 32.12 32.67 29.62 32.06 28.68 22.4 21.37 37.95 24.38 19.97 

S34 202.54 365.28 469.27 233.83 213.39 268.65 215.76 315.64 1050.18 317.52 223.26 

K39 162.56 44.97 30.61 144.1 113.71 117.46 445.03 326.2 54.07 66.43 175.45 

Ca43 210300 296.58 352.44 336.29 349.63 635.66 210300 210300 205.78 184.58 189.76 

Ti49 3.77 85.31 236.75 258.11 196.36 149.15 17.89 15.33 163.15 200.33 124.81 

V51 0.44 33.06 40.49 56.76 67.06 69.62 0.48 0.69 53.6 50.22 31.85 

Cr53 <1.38 12.37 16.41 37.77 25.72 8.19 <1.58 <1.93 12.31 7.25 24.99 

Mn55 51827.9 2811.5 3427.96 2284.8 3044.54 3846.3 52161.46 53686.71 931.96 1246.49 884.37 

Fe57 12827.9 80756. 76682.2 71285.78 71178.26 68544.86 11129.73 32226.35 79593.61 76723.04 45401.15 

Co59 3.78 63.74 59.46 22.26 25.78 33.47 2.55 3.21 9.37 10.71 8.97 

Ni60 1.13 31 32.21 27.94 28.49 25.28 0.53 1.54 25.64 26.08 15.61 

Cu65 5.26 11.79 38.29 128.02 79.42 74.64 1.97 25.06 7513.56 263.06 450.87 

Zn66 17.71 780.49 660.93 382.87 588.78 780 61.9 9.92 122.05 163.35 152.88 

Ga69 2.64 141.05 137.65 88.44 70.17 53.52 0.469 0.411 114.99 104.11 61.14 

Ge73 <1.00 4.64 5.77 2.26 2.84 2.62 0.96 2.08 2.84 2.13 2.63 

As75 <0.62 1.65 2.21 1.71 0.84 2.7 <0.53 <0.63 6.81 4.11 2.38 

Se82 <8.95 <10.30 15.15 <10.94 <10.31 <9.56 <8.39 <10.21 15.56 <12.77 <7.83 

Rb85 0.348 0.213 0.187 1.47 0.98 0.536 1.42 0.84 0.454 0.475 1.72 

Sr88 9.64 0.579 1 2.1 2.1 2.41 15.68 13.4 0.344 0.265 0.99 

Y89 22.95 0.085 0.138 4.95 1.74 1.09 21.42 28.32 0.826 0.51 3.35 

Zr90 <0.063 <0.070 0.16 18.04 10.06 5.23 10.01 8.62 4.12 2.04 12.81 

Nb93 0.039 <0.041 0.39 0.198 <0.056 <0.057 <0.045 <0.058 0.232 0.097 0.066 

Mo95 1.34 <0.31 1.16 0.83 <0.34 <0.33 1.07 1.18 0.28 <0.36 0.23 

Ag107 <0.071 <0.107 0.131 <0.077 <0.103 <0.105 <0.073 <0.058 1.73 <0.101 <0.071 

Sn118 <0.39 <0.46 <0.47 1.6 3.26 4.28 1.07 1.52 1.95 1.49 0.78 

Sb121 <0.082 <0.130 0.385 0.194 0.223 0.199 0.175 0.26 0.63 0.298 0.428 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 3.16 0.68 0.86 3.34 2.54 4.51 16.5 11.81 1.57 1.67 3.41 

La139 5.35 <0.031 0.06 0.071 0.027 0.052 6.77 61.79 0.047 <0.036 0.162 

Ce140 11.51 0.0171 0.146 0.289 0.153 0.19 13.4 115.65 0.141 0.049 0.319 

Pr141 1.93 <0.021 0.025 <0.025 <0.027 0.0161 1.99 14.31 0.023 <0.026 <0.0184 

Nd146 10.33 <0.143 <0.149 0.35 <0.19 0.226 10.46 69.91 <0.079 0.129 0.15 

Sm147 6.56 <0.127 0.114 0.28 <0.137 <0.168 6.14 30.98 0.171 <0.128 0.15 

Eu153 4.07 <0.043 <0.030 0.057 <0.035 <0.034 3.89 8.99 <0.034 <0.049 0.041 

Gd157 8.98 <0.161 0.138 0.21 0.27 0.184 9.29 25.25 <0.189 <0.140 0.311 

Tb159 1.58 <0.021 0.025 0.083 0.051 0.027 1.46 3.01 0.023 0.029 0.096 

Dy163 7.48 0.104 <0.067 0.71 0.44 0.167 6.82 10.99 0.149 0.14 0.85 

Ho165 1.17 0.02 0.027 0.217 0.106 0.047 1.02 1.33 0.06 0.046 0.167 

Er166 2.25 <0.074 <0.063 0.66 0.232 <0.063 2.11 2.91 0.137 <0.079 0.387 

Tm169 0.313 <0.020 <0.023 0.092 0.082 <0.027 0.295 0.392 <0.018 <0.025 0.092 

Yb172 2 <0.090 0.121 0.52 0.235 0.155 1.69 3.4 0.178 <0.104 0.569 

Lu175 0.331 <0.018 <0.023 0.123 0.042 0.023 0.23 0.57 <0.027 <0.026 0.08 

Hf178 <0.072 <0.080 <0.091 0.324 0.265 0.158 0.227 0.179 <0.068 0.105 0.542 

Ta181 <0.0191 <0.030 0.045 0.035 <0.025 <0.020 <0.020 0.028 0.067 0.036 <0.0170 

W182 <0.059 <0.156 0.21 <0.101 <0.090 <0.124 <0.096 <0.088 0.185 <0.109 <0.066 

Au197 <0.059 <0.093 <0.080 <0.090 <0.084 <0.092 <0.051 0.059 <0.090 <0.093 <0.062 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 2.85 6.8 19.59 10.18 8.55 10.69 6.24 7.25 2.83 3.75 3.84 

Bi209 0.212 0.152 0.635 <0.032 <0.027 <0.030 <0.021 0.048 2.97 0.906 0.238 

Th232 <0.027 <0.023 0.164 2.63 1.44 0.291 0.143 10.42 0.511 0.95 1.36 

U238 0.021 0.028 0.258 1.38 0.96 0.353 0.044 0.063 0.44 0.234 0.956 

To be continued 
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Rock Metasandstone-2066655 

Sample ID 655B-09 655B-12 655B-13 655B-14 655B-15 655E-1 655E-2 655E-3 655E-4 655E-5 655E-6 655E-7 

Mineral Chlorite 

Na23 122.93 4879.01 93.5 53.83 2355.47 235.73 256.34 138.28 58.21 80.26 180.15 140.86 

Mg25 49040.8 70811.7 77153.4 76577. 31653.7 45012.5 31890.8 42985.5 66368.3 66654.7 44204.2 22970. 

Al27 79309.9 89696.1 95978.6 96918. 47095.5 72381.3 56202.4 70667.7 101623. 101843. 73493.2 36944 

Si29 119999. 119999. 119999. 119999 119999. 119999. 119999. 119999. 119999. 119999. 119999. 119999 

P31 26.09 49.38 25.78 32.43 20.79 25.64 17.2 105.5 26.63 27.67 26.18 16.46 

S34 284.6 20486.9 257.57 252.45 178.78 237.33 167 209.06 301.83 323.4 168.14 165.33 

K39 188.34 442.93 66.14 50.7 292.75 222.74 246.97 213.65 59.27 85.65 310.78 232.87 

Ca43 249.38 3908.93 250.96 277.52 1801.2 398.04 395.25 791.6 258.31 <196.69 189.93 <113.5 

Ti49 155.24 213.56 114.47 127.58 173.36 174.69 113.81 148.85 161.25 174.09 183.34 107.01 

V51 39.96 50.96 48.99 46.44 26.86 60.48 40.56 62.65 52.26 55.25 60.02 32.3 

Cr53 36.17 14.54 4.77 6.33 43.25 50.75 29.3 40.08 4.28 10.51 50.87 22.72 

Mn55 1297.65 853.62 662.53 878.55 936.82 4722.61 2899.68 5051.81 2548.2 2978.21 4749.94 2566.8 

Fe57 56492.4 114749 68976.2 69447. 37614.6 54573.1 42025.4 52089.8 72703.3 73661.9 52352.2 26435. 

Co59 13.45 4.9 4.66 7.65 9.09 30.54 23.85 27.33 18.39 21.38 28.7 14.26 

Ni60 18.21 24.18 29.03 29.53 12.56 20.73 14.63 18.71 22.75 24.38 19.41 9.78 

Cu65 186.57 195390. 334.32 227.86 6.33 12.52 17.79 9.73 7.97 10.42 10.27 5.66 

Zn66 246.96 217.3 44.14 100.64 176.01 971.97 623.49 1080.05 492.45 577.57 959 530.68 

Ga69 71.16 100.19 107.88 109.64 42.35 43.29 41.31 44.34 74.15 80.6 42.12 21 

Ge73 1.58 5.15 4.74 3.98 1.81 1.6 1.88 1.89 2.97 3.24 2.3 1.84 

As75 2.77 4.83 8.2 5.41 2.6 2.25 1.81 1.22 1.96 2.22 1.85 0.82 

Se82 <8.40 <15.47 <9.98 <10.73 <7.45 <8.01 <7.21 <7.77 <10.98 <10.18 <9.46 <6.07 

Rb85 1.41 3.59 0.94 0.682 2.66 1.84 2.56 1.9 0.385 0.304 2.41 2.89 

Sr88 0.781 3.91 0.294 0.293 3.07 2.48 2.31 1.65 0.675 0.997 1.64 1.62 

Y89 1.09 12.03 1.34 0.497 46.91 18.47 12.2 2.71 2.37 3.44 0.934 2.88 

Zr90 4.23 20.17 7.73 2.34 169.42 73.49 56.59 11.56 10.63 15.98 3.86 14.43 

Nb93 0.039 0.205 0.259 0.195 0.366 0.148 0.083 <0.039 <0.064 <0.050 0.096 0.128 

Mo95 0.76 0.6 <0.37 <0.30 0.32 38.2 19.07 0.48 0.37 2.14 0.65 <0.21 

Ag107 0.127 5.09 <0.084 <0.078 0.122 0.335 0.459 0.06 <0.086 0.189 <0.062 0.074 

Sn118 0.67 11.92 3.4 2.25 1.8 3.91 3.1 4.85 2.86 2.59 3.65 2.66 

Sb121 0.247 1.4 0.78 0.586 0.624 0.366 0.584 0.95 0.129 0.165 0.367 0.355 

Te125 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Ba137 3.08 16.53 0.46 0.76 5.73 2.74 4.05 2.21 1.05 1.68 3.11 2.56 

La139 0.043 0.619 <0.034 <0.036 12.86 0.184 0.374 0.147 <0.035 0.032 0.079 0.077 

Ce140 0.064 2.32 0.074 0.054 25.6 0.964 0.911 0.547 0.099 0.158 0.131 0.223 

Pr141 0.0242 0.404 0.023 <0.018 2.96 0.1 0.108 0.079 0.025 0.046 <0.023 0.0346 

Nd146 <0.138 1.68 <0.155 <0.118 11.51 0.74 0.621 0.399 <0.130 0.146 0.128 0.162 

Sm147 <0.103 1.08 <0.137 0.205 2.8 0.274 0.284 <0.120 0.169 <0.168 <0.110 <0.107 

Eu153 <0.039 0.612 <0.047 <0.035 1.12 0.251 0.264 0.063 <0.053 0.06 0.029 <0.026 

Gd157 <0.139 4.15 <0.154 <0.157 4.29 1.58 0.87 0.216 <0.120 0.25 0.163 0.185 

Tb159 <0.024 0.436 0.03 <0.027 0.953 0.404 0.229 0.083 0.029 0.073 0.042 0.069 

Dy163 0.104 2.75 <0.121 0.179 6.28 3.12 2 0.678 0.299 0.6 0.285 0.443 

Ho165 0.028 0.457 0.033 <0.023 1.44 0.791 0.548 0.197 0.109 0.169 0.12 0.092 

Er166 0.139 1.58 0.095 <0.072 3.66 2.42 1.46 0.524 0.24 0.423 0.107 0.315 

Tm169 0.033 0.124 0.035 <0.027 0.664 0.506 0.233 0.054 0.033 0.036 <0.021 0.059 

Yb172 0.09 1.07 0.122 0.119 5.35 2.74 1.68 0.635 0.437 0.52 0.12 0.428 

Lu175 0.024 0.082 0.029 <0.027 0.8 0.4 0.306 0.086 0.089 0.077 0.04 0.055 

Hf178 0.165 0.63 0.118 <0.064 4.22 1.91 1.82 0.87 0.347 0.447 0.19 0.515 

Ta181 0.023 <0.038 0.146 0.057 0.056 0.025 0.0337 <0.0187 <0.030 <0.0151 0.034 0.0224 

W182 0.058 <0.15 <0.128 <0.102 0.67 <0.078 0.082 <0.058 0.079 <0.124 0.179 <0.046 

Au197 <0.060 <0.105 <0.110 <0.072 <0.042 <0.060 <0.059 <0.070 <0.086 <0.098 0.029 <0.032 

Hg202 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

Pb208 4.02 53.67 2.63 1.93 5.85 9.22 10.52 2.2 2.8 2.41 12.78 6.31 

Bi209 0.26 13.74 0.205 0.239 <0.0202 2.17 1.117 0.223 0.18 0.541 0.104 <0.0150 

Th232 0.257 76.07 0.366 0.271 17.85 9.97 7.87 1.44 1.33 2.93 0.453 1.22 

U238 0.266 44.13 0.266 0.87 7.1 6.62 3.27 0.925 0.783 1.15 0.522 1.001 
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LA-ICPMS data-FeOx analysis data (47) – 1 to 4 grains (2066166) 

Rock Calc-silicate -2066166 

Sample ID 166B-1 166B-2 166B-3 166B-4 

Mineral Magnetite 

Na23 59.58 29.91 361.27 3384.64 

Mg25 17.13 21.29 1971.62 18214.35 

Al27 115 204.37 5313.55 13211.82 

Si29 1145.17 1574.85 122152.9 87175.3 

P31 64.53 52.66 113.44 130.06 

K39 64.61 23.37 183.54 209.92 

Ca43 <150.12 <148.30 968.41 86902.57 

Ti49 94.78 17.43 1177.96 1437.99 

V51 37.15 8.92 103.53 70.9 

Cr53 <3.11 <2.77 6.58 10.32 

Mn55 783.77 821.49 2057.37 4417.07 

Fe57 712794.1 712794.1 712794.1 712794.1 

Co59 22.54 19.62 18.03 70.27 

Ni60 13.41 14.39 60.83 69.68 

Cu65 4.55 0.98 4.85 2199.55 

Zn66 56.4 43.06 198.41 180.5 

Ga69 0.475 0.283 3.69 6.78 

Ge73 2.35 1.91 1.99 2.55 

Rb85 0.55 0.238 1.46 0.81 

Sr88 1.11 0.88 7.59 5.16 

Y89 5.61 3.95 11.99 42 

Zr90 0.56 0.13 6.94 14.25 

Nb93 2.5 0.503 4.58 8.77 

Mo95 0.58 0.52 1.26 0.6 

Sn118 39.54 6.05 163.52 19.4 

Sb121 15.48 13.64 9.59 6.15 

Ba137 4.57 1.79 14.25 14.55 

La139 1.25 0.427 4.21 18.68 

Ce140 2.38 1 6.02 55.27 

Pr141 0.271 0.143 0.86 8.54 

Nd146 1.42 1.15 4.62 43.37 

Sm147 0.71 0.38 1.6 11.68 

Eu153 0.136 0.078 0.32 2.48 

Gd157 0.62 0.44 2.05 9.21 

Tb159 0.106 0.045 0.411 1.27 

Dy163 1.04 0.74 2.31 9.86 

Ho165 0.273 0.122 0.504 1.75 

Er166 0.61 0.57 2.07 6.16 

Tm169 0.128 0.09 0.181 0.75 

Yb172 0.74 0.48 1.15 4.68 

Lu175 0.068 0.078 0.167 0.73 

Hf178 <0.065 0.052 0.198 0.26 

Ta181 0.047 <0.0230 0.054 0.478 

W182 16.78 2.28 17.96 7.59 

Pb208 9.28 7.65 14 328.24 

Bi209 0.65 0.48 0.25 14.47 

Th232 0.168 0.086 0.62 5.67 

U238 0.9 0.471 5.27 11.01 
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LA-ICPMS data-FeOx analysis data (47) – 5 to 14 grains (2066169-2066174) 

Rock Granite -2066169 2066174 

Sample ID 169A-1 169A-2 169A-3 169A-4 169A-5 169B-1 169B-2 169B-3 169B-4 174C-02 

Mineral Hematite 

Na23 47.6 63.9 98.54 <4.21 12.13 183.79 98.93 351.5 243.42 581.6 

Mg25 50.02 116.24 254.9 70.78 416.2 271.33 114.35 223.97 1866.33 9001.51 

Al27 180.93 487.19 617.24 170.98 498.16 732 521.16 2951.94 1641.24 74677.95 

Si29 1155.81 1931.06 2759.49 1109.45 10991.93 3252.23 3206.89 89512.84 4931.37 103960.8 

P31 153.95 172.15 169.57 58.71 82.5 45.94 87.04 133.19 66.36 279.15 

K39 18.94 42.65 50.5 34.81 212.16 59.44 52.71 325.45 309.97 36873.86 

Ca43 253.03 424.84 243.28 <166.41 <183.34 463.11 389.35 421.86 364.07 1211.4 

Ti49 110.03 574.28 100.12 1878.27 1559.25 119.8 76.72 171.14 6501.5 2061.11 

V51 23.56 286.11 71.68 87.95 37.67 131.89 114.65 166.21 451.69 412.71 

Cr53 3.15 <2.81 <2.42 3.33 <3.27 10.57 11.2 <3.07 <2.22 104.44 

Mn55 462.95 474.11 391.3 4.58 10.71 356.79 549.53 336.55 50.69 801.05 

Fe57 659936.9 659936.9 659936.9 659936.9 659937 671985.4 671985.4 671985.4 671985.4 635000.9 

Co59 49.85 27.27 25.8 <0.21 0.42 43.92 39.04 29.24 1.32 10.75 

Ni60 346.55 85.41 211.71 1.84 2.77 190.26 195.67 261.35 5.68 11.27 

Cu65 307.49 43.44 4.71 <0.56 <0.68 173.93 114.84 136.45 1.17 14.86 

Zn66 184.98 157.95 120.46 <3.41 <3.26 500.75 371.99 760.09 8.07 101.24 

Ga69 10.13 15.51 12.69 5.38 5.12 11.49 10.07 8.4 9.45 29.3 

Ge73 1.1 1.72 5.65 <0.56 <1.08 3.57 7.13 4.48 2.97 3.98 

Rb85 0.12 0.391 0.334 0.53 3.09 0.285 0.208 2.88 4.95 429.78 

Sr88 1.39 4.85 2.96 <0.039 0.049 3.49 2.34 6.26 1.81 11.73 

Y89 2.84 5.67 9.67 0.059 0.267 18.24 9.6 9.73 2.14 6.14 

Zr90 3.78 4 3.38 4.23 1.23 1.5 2.34 3.56 16.68 14.48 

Nb93 0.246 0.212 0.275 16.95 6.19 0.404 0.227 0.338 17.01 33.27 

Mo95 1.54 0.88 1.16 0.3 <0.26 2.85 2.39 6.87 2.82 1.82 

Sn118 1.03 2.88 1.77 455.4 516.62 4.55 3.87 5.97 95.9 6.04 

Sb121 8 7.37 7.57 0.61 1.25 4.62 3.86 12.07 43.98 11.75 

Ba137 5.16 46.55 7.86 0.26 <0.29 10.81 8.99 42.49 7.9 575.06 

La139 1.35 2.08 1.94 0.125 0.215 1.26 1.45 2.24 1.84 15.79 

Ce140 2.17 4.1 3.48 0.089 0.369 2.06 2.35 3.77 2.99 32.69 

Pr141 0.214 0.514 0.346 <0.0132 <0.024 0.282 0.264 0.344 0.389 3.81 

Nd146 0.53 1.87 1.62 0.029 <0.159 1.36 1.11 1.37 1.26 13.22 

Sm147 <0.149 0.5 0.7 <0.00 <0.096 0.55 0.138 0.38 0.2 3.06 

Eu153 0.09 0.25 0.232 0.016 <0.043 0.158 0.083 0.28 0.038 0.628 

Gd157 0.54 1.27 1.07 0.102 <0.132 1.03 0.57 0.65 0.49 3.47 

Tb159 0.088 0.244 0.231 <0.0266 <0.0197 0.347 0.199 0.143 0.064 0.465 

Dy163 0.63 1.25 1.49 <0.090 0.092 2.85 1.35 1.5 0.54 2.56 

Ho165 0.133 0.291 0.446 <0.0136 0.011 0.77 0.454 0.344 0.119 0.322 

Er166 0.45 0.75 1.41 <0.040 0.083 2.42 1.37 1.7 0.39 0.72 

Tm169 0.056 0.092 0.184 <0.0216 <0.0131 0.44 0.228 0.226 0.045 0.102 

Yb172 0.42 0.75 1.51 <0.074 <0.077 3.1 1.82 1.1 0.34 0.67 

Lu175 0.105 0.072 0.181 <0.0125 0.0152 0.47 0.252 0.235 0.109 0.053 

Hf178 0.107 <0.055 <0.060 0.121 <0.063 0.115 0.082 <0.099 1.04 0.75 

Ta181 <0.025 <0.028 <0.0124 0.1 0.229 <0.0119 0.015 <0.028 0.88 0.39 

W182 21.54 8.41 12.67 132.07 148.16 28.4 38.47 65.44 54.59 49.07 

Pb208 97.94 58.14 82.43 0.62 0.294 70.84 80.23 136.45 15.22 66.45 

Bi209 3.6 3.12 1.68 <0.010 <0.0126 18.38 11.25 11.87 0.51 1.35 

Th232 0.17 0.332 0.221 0.138 0.094 0.13 0.088 0.154 0.365 58.01 

U238 3.17 3.76 4.41 0.417 0.087 5.06 6.63 12.18 1.48 12.01 
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LA-ICPMS data-FeOx analysis data (47) – 15 to 23 grains (2066178) 

Rock Granite-2066178 

Sample ID 178A-1 178A-2 178B-2 178B-4 178B-5 178B-6 178F-03 178F-1 178F-2 

Mineral Hematite          Magnetite          Hematite Magnetite Hematite 

Na23 <5.76 15.34 1150.96 <5.49 522.25 973.36 133.21 <7.68 592.33 

Mg25 16.33 17.53 221385.5 40.32 886.63 1563.08 17888.68 17.29 162.71 

Al27 386.58 450.33 321419.4 310.45 8153.64 8667.27 22453.33 674.69 708.74 

Si29 <394.84 567.62 562664.5 655.77 14619.69 12722.39 40561.8 1094.6 2471.38 

P31 63.59 80.72 279.89 44.42 80.14 84.71 55.43 81.02 <49.33 

K39 61.29 <4.73 203300.9 33.58 243.33 913.03 12706.68 <5.59 43.8 

Ca43 <194.04 <185.32 16796.53 <164.36 7238.19 3967.48 1689.23 <274.63 502.78 

Ti49 263.42 388.69 37946.54 105.56 254.2 68.99 3503.57 533.27 1120.41 

V51 791.76 803.99 675.43 402.7 441.16 421.92 1011.94 1189.77 1239.78 

Cr53 32.04 48.03 20.56 6.04 9.37 8.57 1397.44 1719.36 1711.99 

Mn55 252.98 279.2 8292.49 181.59 329.47 221.26 724.53 313.14 482.41 

Fe57 668409.8 668409.9 660000.9 660000.9 660000.9 711101.4 703200.8 686801.1 686801.1 

Co59 20.72 21.88 253.12 21.25 18.86 23.39 37.18 22.69 21.89 

Ni60 38.27 38.03 315.99 26.39 25.38 33.26 59.86 43.09 37.91 

Cu65 0.78 <0.79 7.83 0.64 0.74 4.57 3.67 <0.99 5.46 

Zn66 28.02 34.01 1996.64 27.48 38.19 40.93 178.98 201.41 216.69 

Ga69 20.75 22.33 192.27 14.08 26.18 19.78 32.69 17.42 19.3 

Ge73 3.42 3.74 13.59 1.89 4 3.12 3.48 2.28 3.71 

Rb85 <0.112 <0.108 5242.42 0.61 2.04 14.83 365.32 <0.124 0.151 

Sr88 <0.060 0.063 6.79 0.085 11.28 7.19 2.55 <0.068 0.323 

Y89 <0.069 <0.073 36.32 <0.050 0.811 0.514 4.72 <0.087 0.094 

Zr90 <0.136 <0.170 4.91 <0.057 <0.099 <0.140 9.9 <0.189 1.28 

Nb93 <0.08 0.06 183.68 <0.063 <0.054 <0.049 13.22 <0.103 <0.105 

Mo95 <0.32 0.33 <1.08 <0.29 <0.37 <0.45 <0.53 <0.38 <0.60 

Sn118 1.14 <0.95 142.76 <0.84 1.18 <0.94 7.18 <1.04 3.16 

Sb121 <0.164 0.19 1.39 <0.140 0.26 0.29 <0.29 0.15 <0.29 

Ba137 0.57 <0.31 1139.12 0.48 1.47 10.48 135.66 <0.32 3.81 

La139 <0.043 <0.040 2.16 <0.039 19.13 0.717 1.15 <0.057 <0.058 

Ce140 <0.045 0.038 6.09 <0.023 24.81 1.14 3.33 <0.030 0.108 

Pr141 0.022 0.026 1 0.027 2.18 0.056 0.482 <0.025 <0.044 

Nd146 0.1 <0.172 5.46 <0.170 6.84 0.28 2.24 0.036 0.21 

Sm147 <0.174 <0.32 1.23 <0.184 0.54 <0.22 0.39 <0.24 <0.21 

Eu153 0.053 <0.052 <0.25 <0.051 1.08 0.067 <0.064 <0.042 0.052 

Gd157 <0.138 <0.145 1.5 <0.156 0.5 0.18 1 <0.207 <0.27 

Tb159 0.02 <0.043 0.63 <0.0212 0.064 <0.036 0.074 <0.047 <0.044 

Dy163 <0.087 <0.172 5.12 <0.127 0.191 0.118 1.07 <0.130 <0.186 

Ho165 0.019 <0.017 1.44 <0.029 0.045 <0.032 0.198 <0.038 <0.0194 

Er166 <0.066 <0.130 4.42 0.043 0.065 <0.092 0.71 <0.137 <0.170 

Tm169 <0.031 <0.043 0.68 <0.035 <0.020 0.022 0.048 <0.037 <0.042 

Yb172 <0.151 <0.112 2.97 <0.141 <0.100 <0.154 0.38 <0.205 <0.209 

Lu175 <0.036 <0.034 0.36 <0.0212 0.023 <0.043 0.074 <0.053 <0.041 

Hf178 <0.071 <0.092 0.96 <0.104 <0.139 <0.101 0.98 <0.107 <0.089 

Ta181 <0.041 <0.030 73.24 <0.038 <0.031 <0.034 0.91 <0.056 <0.030 

W182 <0.21 <0.21 15.61 <0.14 <0.24 0.11 1 <0.22 <0.19 

Pb208 0.396 0.82 8.81 0.356 0.86 1.22 2.51 0.235 4.6 

Bi209 <Inf <Inf <Inf <Inf <Inf <Inf <Inf <Inf <Inf 

Th232 <0.034 <0.032 0.86 <0.020 <0.020 <0.026 1.18 <0.037 0.064 

U238 <0.0222 <0.030 1.15 <0.0162 0.0143 0.034 0.38 <0.028 0.026 

 



192 
 

LA-ICPMS data-FeOx analysis data (47) – 24 to 29 grains (2066635-2066641) 

Rock Calc-silicate-2066635 Metasediment-2066641 

Sample ID 635B-1 641B-1 641B-2 641C-2 641C-3 641C-4 

Mineral Hematite 

Na23 168.98 189.87 4340.7 242.71 437.48 3628.89 

Mg25 26669.23 1448.54 4185.01 83.3 2768.15 488.33 

Al27 20515.87 16462.38 10975.85 3661.8 30319.37 7298.36 

Si29 29674.17 55533.04 27697.62 5696.89 71654.78 13265.03 

P31 135.63 63.17 46.01 67.39 216.7 179.08 

K39 161.19 8404.92 4400.58 486.27 15381.17 25969.79 

Ca43 315.31 239.92 2910.55 376.63 776.28 2138.2 

Ti49 5176.07 2340.25 412.59 860.78 3318.58 3880.57 

V51 278.39 65.24 62.3 40.33 159.13 119.82 

Cr53 18.13 19.08 16.11 9.24 27.73 20.61 

Mn55 2252.27 15363.69 22219.6 20970.03 17614.6 660411.4 

Fe57 642401.1 560000.4 600000.9 573001 592000.8 592000.8 

Co59 58.43 303.22 208.13 291.65 261.29 956.38 

Ni60 12.85 44.56 38.59 47.86 42.12 54.63 

Cu65 84.96 756.15 3200.19 640.97 1400.9 1270.42 

Zn66 225.07 762.8 1146.33 616.08 397.89 1374.34 

Ga69 5.76 15.94 14.28 7.19 33.91 6532.85 

Ge73 <1.52 1.52 1.78 0.77 3.38 4.33 

Rb85 0.92 71.12 38.04 3.07 131.77 44.11 

Sr88 4.48 7.92 7.25 13.09 28.52 464.42 

Y89 8.53 3.57 2.68 1.43 9.34 11.36 

Zr90 23.51 38.56 31.11 7.83 38.15 17.18 

Nb93 17.91 10.97 1.88 8.94 18.2 15.3 

Mo95 6.53 3.58 2.81 1.89 7.09 22.04 

Sn118 16.48 3.64 7.97 0.68 2.28 3.21 

Sb121 76.15 7.42 8.24 5.96 11.6 14.89 

Ba137 25.04 260.51 234.98 131.26 570.74 169030.4 

La139 40.25 4.66 2.36 2.58 15.86 11.56 

Ce140 80.74 16.56 9.12 21.38 80.08 44.8 

Pr141 8.4 1.265 0.846 1.175 6.82 4.9 

Nd146 29.37 3.19 2.68 4.11 22.81 17.26 

Sm147 5.11 0.49 0.48 0.5 3.61 3.25 

Eu153 0.83 0.103 0.088 1.62 0.685 2.63 

Gd157 2.84 0.58 0.304 0.47 2.76 3.75 

Tb159 0.442 0.105 0.052 0.104 0.377 0.41 

Dy163 2.19 0.67 0.542 0.342 2.31 2.05 

Ho165 0.61 0.137 0.103 0.086 0.362 0.369 

Er166 0.84 0.439 0.316 0.15 1.36 1.07 

Tm169 0.168 0.077 0.05 0.024 0.158 0.142 

Yb172 1.4 0.401 0.435 0.155 1.43 0.79 

Lu175 0.18 0.068 0.058 <0.018 0.165 0.159 

Hf178 0.91 0.87 0.597 0.16 1.09 0.371 

Ta181 1.35 0.83 0.171 0.243 1.07 1.01 

W182 27.67 8.28 9.86 3.93 13.92 38.04 

Pb208 23.75 202.75 139.57 155.93 664.52 6794.37 

Bi209 <Inf 5.56 5.59 6.88 24.45 34.44 

Th232 16.78 13.22 7.05 5.76 21.18 12.84 

U238 9.8 6.02 5.32 7.32 24.89 95.08 
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LA-ICPMS data-FeOx analysis data (47) – 30 to 42 grains (2066655) 
Rock Metasediment 

Sample ID 655A-18 655A-19 655A-2 655B-1 655B-2 655B-3 

Mineral Hematite Magnetite Hematite 

Na23 312.79 408.09 1085.52 318.42 3645.31 1576.27 

Mg25 20039.68 4595.53 24448.15 428.53 10100.47 647.38 

Al27 26717.43 5057.44 35861.58 1358.38 15482.44 1575.99 

Si29 36285.45 9771.59 44383.13 8068.01 124020.9 35960.52 

P31 86.98 99.4 36.36 52.98 93.88 44.71 

K39 412.64 737.97 290.09 280.25 692.38 775.25 

Ca43 1219.79 7188.6 793.75 780.24 2819.45 1554.24 

Ti49 172.33 1009.37 236.16 191.78 259.06 350.81 

V51 86.74 81.87 101.09 58.15 85.28 93.59 

Cr53 14.22 18.41 11.12 4.95 61.96 54.77 

Mn55 805.33 2069.41 1356.36 174.45 431.45 202.97 

Fe57 680001 680001 680001 692800.9 692800.9 669400.8 

Co59 11.14 4.02 11.98 4.74 6.81 4.21 

Ni60 13.13 5.38 13.6 7.69 11.32 4.19 

Cu65 141.59 20.84 106.03 242.28 1687.68 145.47 

Zn66 89.97 45.17 204.07 13.56 57.57 31.39 

Ga69 34.72 16.69 37.49 15.04 25.84 14.27 

Ge73 12.36 6.14 9.08 10.45 8.27 5.81 

Rb85 1.28 8.15 2.28 1.82 6.96 7.04 

Sr88 2.61 3.68 4.45 3.3 4.18 4.11 

Y89 10.64 14.55 2.99 5.31 25.24 6.83 

Zr90 0.289 49.63 0.245 2.22 113.52 20.08 

Nb93 1.11 3.26 0.84 0.82 1.07 1.99 

Mo95 14.6 9.06 0.72 0.68 4.44 3.42 

Sn118 1.39 2.64 1.49 1.33 3.52 2.76 

Sb121 2.18 4.26 2.08 4.58 6.32 9.01 

Ba137 5.75 6.15 4.85 6.67 14.04 12.65 

La139 0.066 0.932 0.23 0.396 0.604 0.452 

Ce140 0.087 1.94 0.744 0.733 1.66 1.139 

Pr141 0.057 0.286 0.076 0.079 0.162 0.118 

Nd146 0.241 0.99 0.28 0.142 1.6 0.33 

Sm147 <0.29 0.68 0.29 <0.19 0.69 0.34 

Eu153 0.083 0.46 0.069 <0.067 0.338 0.177 

Gd157 <0.29 1.7 <0.23 <0.22 1.32 0.82 

Tb159 0.139 0.379 0.072 0.084 0.604 0.187 

Dy163 1.16 2.27 0.369 0.63 4.79 1.07 

Ho165 0.266 0.538 0.151 0.118 1.025 0.299 

Er166 1.67 1.8 0.225 0.63 3.37 1.17 

Tm169 0.321 0.249 0.07 0.09 0.72 0.128 

Yb172 1.75 2.38 0.46 0.56 3.75 1.19 

Lu175 0.311 0.347 <0.035 0.146 0.74 0.218 

Hf178 <0.134 1.33 <0.125 <0.110 4.46 0.48 

Ta181 0.157 0.301 0.075 <0.043 0.152 0.402 

W182 0.51 1.92 0.39 0.78 0.77 3.94 

Pb208 12.86 39.93 24.32 9.01 17.85 20.84 

Bi209 0.6 0.25 0.12 4.52 4.8 3.54 

Th232 <0.038 6.63 0.305 0.615 14.47 2.3 

U238 0.147 3.41 0.346 0.505 7.58 2.45 

To be continued  
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Rock Metasediment -2066655 

Sample ID 655B-4 655B-5 655B-6 655E-1 655E-2 655E-3 655E-4 

Mineral Hematite 
Hem 
Hem 
Hem 
Hem 
Hem 
Hem 

Na23 704.14 137.64 379.82 1810.72 8495.34 787.04 804.57 

Mg25 451.39 135 252.54 3966.94 3632.53 2309.3 2782.85 

Al27 2335.09 2037.65 1576.31 7226.64 4368.86 5703.07 6135.54 

Si29 6916.64 1989.77 10646.97 21405.93 37145.37 12604.99 12543.75 

P31 74.14 87.17 179.61 98.42 90.42 47.11 83.11 

K39 438.48 124.06 332.23 1511.92 1147.82 1288.1 901.42 

Ca43 1218.64 272.06 590.64 1868.66 5830.56 1526.97 1309.77 

Ti49 123.34 10086.54 1984.54 358.68 723.9 560.15 608.38 

V51 71.1 176.82 125.04 76.31 120.73 90.45 102.72 

Cr53 8.7 42.32 84.23 10.8 22.04 11.92 16.38 

Mn55 193.44 210.1 269.36 383.61 292.68 321.19 378.45 

Fe57 669400.8 678101.3 678101.2 660000.8 660000.8 660000.8 660000.7 

Co59 4.04 2.49 2.13 4.27 2.77 3.14 3.73 

Ni60 6.33 <0.63 2.14 8.94 7.6 8.31 8.6 

Cu65 167.79 0.94 <0.80 3.54 28.54 38.7 47.15 

Zn66 16.6 17.51 20.07 49.81 59.45 47.67 61.82 

Ga69 16.91 12.65 13.69 19.98 18.3 19.57 20.4 

Ge73 8.97 3.16 6.18 9.41 10.66 8.86 8.55 

Rb85 2.12 1.37 3.19 18.95 10.66 14.57 8.87 

Sr88 4.39 2.37 3.9 3.31 6.8 2.97 2.54 

Y89 11.15 1.82 4.94 9.42 8.29 7.15 17.75 

Zr90 29.45 2.43 4.85 37.06 25.35 10.52 20.69 

Nb93 1.41 30.72 13.39 1.99 3.34 2.53 2.95 

Mo95 <0.46 4.32 5.32 14.5 2.37 1.08 1.75 

Sn118 2.53 24.2 9.53 2.64 4.93 3.67 4.62 

Sb121 3.84 27.72 19.38 2.31 6.3 2.74 3.79 

Ba137 9.05 12.14 50.35 9.8 16.82 6.08 7.14 

La139 <0.037 1.233 2.91 0.455 1.97 0.398 0.316 

Ce140 0.134 2.32 5.52 0.891 11.34 0.654 2.13 

Pr141 0.039 0.284 0.671 0.117 0.98 0.092 0.098 

Nd146 <0.180 0.81 3.03 0.37 98.42 0.179 0.3 

Sm147 <0.22 0.27 0.73 0.126 0.43 <0.17 <0.169 

Eu153 0.094 0.2 0.572 0.099 0.167 0.152 0.083 

Gd157 0.22 0.47 1.14 0.43 1.1 0.42 0.31 

Tb159 0.146 0.117 0.326 0.163 0.165 0.163 0.11 

Dy163 1.28 0.58 1.55 1.44 0.93 0.88 0.93 

Ho165 0.387 0.082 0.303 0.307 1.22 0.283 0.204 

Er166 1.47 0.315 0.552 1.32 1.16 1.1 0.8 

Tm169 0.26 0.034 0.072 0.185 0.129 0.145 0.12 

Yb172 2.13 0.203 0.58 1.8 0.74 1.07 0.69 

Lu175 0.5 0.032 0.138 0.31 0.163 0.216 0.175 

Hf178 0.73 0.273 0.249 1.45 0.81 0.473 0.35 

Ta181 0.176 1.86 0.86 0.251 0.45 0.348 0.532 

W182 0.69 59.46 11.75 0.2 2.77 0.99 1.46 

Pb208 7.87 27.83 15.71 7.22 14.28 12.89 16.03 

Bi209 2.09 0.67 1.24 0.64 0.24 0.21 0.12 

Th232 1.48 17.49 9.09 2.46 2.57 2.02 1.37 

U238 0.698 7.88 7.62 1.78 2.26 1.5 1.16 
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LA-ICPMS data-FeOx analysis data (47) – 42 to 47 grains (2066656) 

Rock Granite-2066656 

Sample ID 656A-06 656B-05 656B-06 656B-08 656B-09 

Mineral Hematite 

Na23 194.41 116.46 224 256.66 291.52 

Mg25 2201.23 124.34 1356 2045.66 2299.89 

Al27 19788.76 1679.97 29935 32311.05 45385.57 

Si29 28211.06 2683.77 39825 44232.33 92342.09 

P31 198.71 78.96 163 176.83 133.98 

K39 8266.15 292.79 13438 13994.87 21135.06 

Ca43 813.49 153.51 #VALUE! 412.56 656.28 

Ti49 4018.14 810.03 1275 86599.04 738.55 

V51 860.82 1187.13 1104 1165.47 697.49 

Cr53 1061.5 1382.19 1843 1225.16 317.71 

Mn55 3560.09 169.64 471 804.61 365.31 

Fe57 650000.6 650000.6 650000 650000.6 650000.6 

Co59 27.85 8.83 13 9.39 10.29 

Ni60 28.37 35.05 26 23.4 34.44 

Cu65 189.51 8.37 34 56.65 15.78 

Zn66 73.24 15.85 49 44.97 47.92 

Ga69 18.31 14.75 25 22.38 26.09 

Ge73 5.31 4.42 5 3.66 10.1 

Rb85 88.68 3.35 118 136.98 188.75 

Sr88 4.18 2.4 4 6.85 3.66 

Y89 7 0.505 2 26.74 1.84 

Zr90 4.76 <0.103 3 5.22 2.17 

Nb93 10.99 1.99 2 351.25 1.3 

Mo95 3.83 3.35 4 3.19 0.94 

Sn118 5.68 4.67 3 26.15 5.34 

Sb121 51.68 53.37 45 85.05 19.28 

Ba137 158.83 17.21 229 154.12 149.49 

La139 4.05 0.445 8 16.99 0.758 

Ce140 10.36 0.762 14 25.78 1.12 

Pr141 1.047 0.097 2 2.66 0.109 

Nd146 4.11 0.235 6 9.28 0.41 

Sm147 1.76 0.158 2 3.11 <0.18 

Eu153 0.647 <0.035 0 1.28 0.164 

Gd157 3.36 0.248 1 4.1 0.73 

Tb159 0.592 0.048 0 0.93 0.129 

Dy163 2.79 <0.097 1 6.73 0.296 

Ho165 0.444 0.033 0 1.47 0.091 

Er166 0.95 0.093 0 4.28 0.216 

Tm169 0.094 <0.0192 0 0.66 <0.025 

Yb172 1.18 0.082 0 5.23 0.46 

Lu175 0.151 <0.019 #VALUE! 0.73 0.029 

Hf178 0.08 <0.049 0 0.183 0.171 

Ta181 0.86 0.027 0 23.87 0.092 

W182 34 40.04 20 109.38 5.45 

Pb208 134.37 31.98 83 102.84 29.17 

Bi209 2.21 0.84 2 2.38 0.56 

Th232 28.2 20.91 41 53.13 9.26 

U238 7.68 7.95 7 10.05 3.8 

Notes: the Fe oxide analysis have been done for 100 spots. The spots have been failed to the low Fe contents due to the 
small inclusions, for example, 19 spots in 2066177 has the 41-58Fe%. The only 47 of 100 spot have been listed here for 
magnetite and hematite. 
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LA-ICPMS data-S mineral data (51) -1 to 5 grains (2066166) 

Rock Calc-silicate-2066166 

Sample ID 166B-1 166B-2 166B-3 166E-1 166E-2 

Mineral Chalcopyrite Pyrite 

Na23 <3.21 202.31 88.92 12.81 483.79 

Si29 <0.00 <0.00 <0.00 <0.00 <0.00 

S33 381644.4 341508.6 74176.4 460493.3 488143.8 

S34 378882.4 351916 70374.59 498067.2 497556 

V51 0.29 10.45 143.49 0.227 0.215 

Cr52 <2.95 <2.51 3.1 <1.07 <1.08 

Mn55 <0.93 10.35 4472.32 <0.33 1.23 

Fe57 304317.3 304317.3 304317.3 463899.3 463899.3 

Co59 <0.109 <0.101 13.77 271.45 85.3 

Ni60 <0.45 <0.44 7.47 674.38 350.76 

Cu65 309684.7 280159.4 50978.44 6 2.86 

Zn66 8.08 13.07 199.71 <1.26 5.17 

Ga69 <0.082 0.135 6.74 <0.036 <0.044 

As75 <0.71 4.58 40.94 208.63 54.83 

Se82 55.78 34.86 5.66 236.94 168.86 

Mo95 20.04 0.29 0.96 <0.110 <0.065 

Ag107 2.7 4.31 2.8 <0.022 <0.021 

Cd111 <0.38 <0.34 <0.204 <0.118 <0.134 

In115 12.72 10.01 2.66 <0.0109 0.0087 

Sn118 <0.51 15.61 181.96 <0.185 0.59 

Sb121 <0.091 0.46 3.33 <0.031 <0.037 

Te125 0.42 <0.31 <0.175 5.45 3.88 

Ba137 1.38 12.96 54.88 <0.33 9.3 

W184 <0.079 1.24 10.47 <0.029 <0.036 

Ir193 <0.0182 <0.0098 <0.0123 <0.0060 <0.0052 

Au197 <0.038 <0.042 0.026 <0.021 <0.0164 

Hg202 0.34 0.28 0.083 0.039 0.06 

Tl205 <0.0219 0.075 0.054 <0.0046 <0.0041 

Pb208 2.16 5.68 40.18 1.65 0.739 

Bi209 4.76 8.83 6.04 0.353 0.056 
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LA-ICPMS data-S mineral data (51) - 6 to 14 grains (2066169) 

Rock Granite - 2066169 

Sample ID 169A-01 169A-02 169A-03 169B-1 169B-2 169B-3 169B-1 169B-2 169B-3 

Mineral Pyrite Chalcopyrite 
 

Na23 <1.15 <1.20 1.37 <0.94 <0.93 <0.96 8.52 136.97 19.65 

Si29 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

S33 485784.9 485375.6 461690.2 437807 416091.6 435447.5 296605.4 189260.4 318479.8 

S34 490959.3 478992.3 473135.4 429420.2 418973.1 447938 303884.5 192001.2 308457.3 

V51 0.205 0.237 0.237 0.16 0.242 0.263 0.157 63.27 0.701 

Cr52 <1.02 <1.04 <1.05 <0.79 <0.77 <0.80 <0.62 1.82 <0.88 

Mn55 0.59 0.38 <0.33 0.57 0.26 0.49 2.54 127.75 1.92 

Fe57 474937.1 474937.1 474937.1 414928.7 414928.7 414928.7 294290 294290 294290 

Co59 1053.31 1227.89 532.85 5784.58 5580.72 3674.42 3352.39 27.48 5266.26 

Ni60 2586.26 2715.63 3006.2 1323.08 926.66 1700.34 918.82 25.33 104.55 

Cu65 0.49 0.65 1 0.41 0.72 0.46 11154.68 117173.2 46189.26 

Zn66 <1.89 <1.71 <1.68 <0.94 <0.96 <0.93 21.63 215411.2 70.37 

Ga69 <0.030 <0.034 <0.033 <0.022 <0.0200 <0.021 0.11 1.94 0.153 

As75 96.08 71.09 61.39 61.56 123.99 169.34 66.04 5.11 297.36 

Se82 42.68 39.01 50.17 23.35 34.69 47.2 26.08 34.24 14.58 

Mo95 <0.126 0.059 <0.061 <0.085 <0.089 <0.033 <0.076 4.8 <0.104 

Ag107 <0.0159 <0.0167 <0.0082 <0.0195 <0.0147 <0.0153 0.43 144.69 65.11 

Cd111 <0.135 <0.147 <0.121 <0.104 <0.088 <0.092 <0.071 360.56 0.53 

In115 <0.0075 <0.0083 <0.0065 <0.0053 <0.0047 <0.0049 0.339 3.31 0.0077 

Sn118 <0.168 <0.168 <0.178 <0.131 <0.126 <0.124 0.539 0.94 <0.144 

Sb121 <0.033 <0.018 <0.018 <0.0178 <0.0228 <0.022 0.051 4.78 0.163 

Te125 <0.110 0.61 <0.146 <0.147 <0.135 <0.165 3.33 3.75 105.49 

Ba137 <0.33 <0.45 <0.40 <0.43 <0.34 <0.28 17.27 67.57 0.36 

W184 <0.019 <0.0251 0.0068 <0.0218 0.016 <0.0144 <0.0169 13.87 0.229 

Ir193 <0.0068 <0.0071 <0.0057 <0.0052 <0.0041 <0.0037 <0.0033 <0.0104 <0.0045 

Au197 <0.0170 <0.0195 <0.018 <0.0083 <0.0058 <0.0134 0.037 0.245 0.026 

Hg202 0.101 0.073 0.081 0.039 0.038 0.038 0.029 0.36 0.103 

Tl205 <0.0043 <0.0055 <0.0050 <0.0033 0.004 <0.0029 0.0082 3.43 0.243 

Pb208 0.045 0.075 0.381 0.088 0.309 0.313 0.434 71080.46 43.75 

Bi209 0.0073 0.067 <0.0045 <0.0048 0.0076 <0.0041 1.23 402.13 19.46 

  



198 
 

LA-ICPMS data-S mineral data (51) - 15 to 21 grains (2066203) 

Rock Calc-silicate - 2066203 

Sample ID 203D-01 203D-02 203D-03 203D-04 203D-06 203C-01 203C-03 

Mineral Chalcopyrite 

Na23 12.97 769.19 1319.43 12.83 6217.19 2930.24 1428.73 

Si29 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

S33 414269.9 416666.6 225783.3 408208.3 225275.3 253152.8 306226.8 

S34 410091.3 409586.8 225464.8 415998.5 214966.1 256077.5 301433.5 

V51 0.203 0.38 46.8 0.34 74.03 59.57 27.15 

Cr52 <2.68 <4.49 18.63 <2.74 24.27 33.22 5.39 

Mn55 <1.01 7.51 41149.93 45.18 5565.36 11938.08 4422.76 

Fe57 293000.4 293000.3 293000.4 293000.4 293000.4 293000.4 293000.4 

Co59 <0.139 1.36 19 <0.129 12.55 15.64 3.44 

Ni60 <0.71 <1.00 348.94 <0.67 164.96 207.23 49.91 

Cu65 317540.3 321162.5 154544.1 323531.9 142004.3 187100.8 251364.5 

Zn66 7.72 <6.45 889.67 13.55 151.62 431.38 88.95 

Ga69 <0.098 17.69 2.09 <0.130 21.45 16.64 6 

As75 <0.69 <1.32 7.7 <0.72 2.01 5.74 2.41 

Se82 71.86 63.64 <21.49 81.82 <12.16 15.87 45.63 

Mo95 <0.37 <0.85 <0.90 <0.37 <0.37 0.4 <0.28 

Ag107 0.7 0.25 0.47 0.89 0.62 1.24 0.99 

Cd111 <0.68 <0.90 <1.03 <0.53 <0.56 <0.42 <0.57 

In115 4.96 4.37 5.34 4.99 3.62 2.94 2.57 

Sn118 <0.51 0.97 6.4 <0.52 23.67 26.84 8.38 

Sb121 <0.105 0.48 9.63 <0.120 3.87 4.68 2.78 

Te125 0.92 <1.38 <1.19 1.01 <0.91 <0.77 <0.81 

Ba137 <3.48 5401.89 16.29 <3.87 608.27 404.28 157.62 

W184 <0.127 <0.21 <0.233 <0.098 <0.137 <0.124 <0.110 

Ir193 <0.030 <0.044 <0.074 <0.029 <0.021 <0.042 <0.029 

Au197 <0.081 <0.146 <0.195 <0.078 <0.095 <0.097 <0.083 

Hg202 0.37 0.4 0.4 0.3 0.24 0.078 <0.072 

Tl205 0.051 2.2 1.26 0.027 2.71 0.79 0.616 

Pb208 5.41 38.48 71.88 6.69 711.83 16.43 100.51 

Bi209 2.36 33.87 63.79 1.69 28.08 39.2 29.76 
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LA-ICPMS data-S mineral data (51) - 22 to 39 grains (2066635) 

Rock Calc-silicate -2066635 

Sample ID 635B-1 635B-2 635B-3 635B-4 635B-5 635B-6 635B-7 635B-8 635G-1 

Mineral Chalcopyrite Bornite 

Na23 6864.43 22036.65 5140.36 115.63 7198.88 20604.25 369.03 918.77 97.99 

Si29 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

S33 578708.9 14861.78 513303.8 599894.2 223808.7 5363.79 151895.9 1728.96 281962.1 

S34 562410.1 8634.42 504131.8 610896.3 219687.8 3716.74 152905.5 763.83 286567.2 

V51 5.56 136.14 4.77 13.16 4.58 43.2 2 37.43 2.63 

Cr52 3.71 25 2.06 3.83 3.45 7.64 1.28 4.51 3.67 

Mn55 778.88 14590.71 180.63 66.55 807.86 14370.99 156.28 2697.85 4940.76 

Fe57 426000.7 426000.7 426000.7 426000.7 120000.5 120000.5 120000.5 120000.5 102000.3 

Co59 175.57 637.87 91.46 72.73 88.4 89.01 68.11 98.45 7.59 

Ni60 10.01 101.71 2.91 1.5 6.33 13.9 1.66 14.19 1.47 

Cu65 261807.3 40412.91 93703.83 124299.7 237140.7 6198.53 76872.2 1734.46 487663.1 

Zn66 68.71 2226.17 58214.62 319355.8 65.18 328.33 11.35 202.95 59586.44 

Ga69 1.59 26.44 0.668 0.108 1.81 9.67 0.271 4.5 1.03 

As75 3518.55 59.85 173.55 209.41 632.77 17.51 281.03 19.18 <0.72 

Se82 <6.87 <17.85 <5.40 12.17 7.68 <7.56 5.27 <2.43 <10.02 

Mo95 0.47 10 0.72 1.33 0.258 2.16 0.096 2.22 <0.34 

Ag107 7.32 0.16 15.42 49.21 6.31 0.049 5.42 <0.021 12.81 

Cd111 <0.38 3.27 143.57 825.28 <0.182 <0.34 <0.080 <0.114 142.04 

In115 0.088 0.884 4.66 32.21 0.0177 0.494 0.018 0.21 1.55 

Sn118 4.83 18 3.88 2.31 3.25 9.44 0.79 3.25 0.77 

Sb121 16.94 35.51 9.82 21.6 6.09 7.61 3.61 10.35 0.87 

Te125 5.17 <1.12 0.93 1.74 1.4 <0.55 1.16 <0.189 <0.71 

Ba137 142.29 610.88 109.12 41.2 112.5 381.25 28.4 76.18 8.61 

W184 0.422 21.17 1.12 3.57 0.84 4.8 0.302 8.39 <0.097 

Ir193 <0.0120 <0.045 <0.0122 <0.0228 <0.0099 <0.0133 <0.0036 0.0036 0.024 

Au197 0.133 <0.092 0.139 0.43 0.06 <0.059 0.1 <0.0168 <0.080 

Hg202 0.054 <0.126 0.146 0.5 0.029 <0.053 0.013 <0.0172 0.21 

Tl205 6.85 0.092 2.01 6.63 3.89 0.022 2.17 0.0074 1.22 

Pb208 230.24 57.71 552.36 906.48 83.13 10.47 237.18 10.29 107.95 

Bi209 382.81 60.94 205.08 435.39 339.16 1.98 181.04 3.18 706.36 

To be continued  
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Rock Calc-silicate -2066635 

Sample ID 635G-2 635G-3 635G-6 635G-7 635J-1 635J-2 635F-1 635F-3 635F-2 

Mineral Bornite Chalcopyrite Sphalerite Bornite Sphalerite 

Na23 1442.05 25.74 <6.91 9100.12 198.65 1121.76 142.3 50.37 4.7 

Si29 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

S33 300465.4 279947.8 280969.6 265274.4 69301.95 86193.38 619927.7 260771.3 47093.22 

S34 297941.3 283034.5 273935.5 269561.6 69794.84 85488.79 634453 259568.3 48348.24 

V51 0.63 0.56 <0.189 1.7 0.095 0.414 44.63 23.28 1.33 

Cr52 3.62 <3.19 <3.22 2.8 0.72 1.03 26.12 14.38 0.87 

Mn55 17.31 91.86 <1.19 440.12 3.59 5.35 5611.43 244.88 316.1 

Fe57 102000.3 102000.3 102000.3 102000.3 22370.23 22370.23 112000.4 112000.4 7864.83 

Co59 <0.184 1.96 <0.168 5.41 0.047 0.218 183.1 5.6 6.84 

Ni60 <0.76 <0.79 <0.86 <0.68 <0.171 <0.186 26.58 1.08 0.97 

Cu65 535738.3 541270.3 531370.8 516164.7 121222.4 117781.9 202274 374679.6 24787.41 

Zn66 8.76 31824.98 <4.38 57.77 10850.44 48491.47 1121268 112019.1 81994.94 

Ga69 <0.176 <0.19 <0.162 0.96 0.039 0.076 12.33 1.01 0.436 

As75 <0.99 <0.98 <0.92 <0.70 <0.196 <0.176 3.66 2.64 0.51 

Se82 <13.22 <13.24 <13.13 <10.86 3.56 5.39 <20.19 <8.60 <1.46 

Mo95 <0.41 <0.47 <0.45 <0.36 <0.106 <0.078 <0.70 1.01 <0.053 

Ag107 8.94 9.4 11.88 16.98 5.82 10.4 53.79 19.99 4.26 

Cd111 <0.74 33.88 <0.60 <0.46 34.22 115.18 2207.97 349.88 175.88 

In115 0.037 0.166 <0.037 0.087 0.694 1.51 106.57 2.67 12.38 

Sn118 4.98 1 <0.58 3.61 0.488 0.84 2.74 0.62 0.758 

Sb121 0.128 0.71 <0.125 1.24 0.165 2.07 13.03 3.98 1.39 

Te125 <0.70 <0.77 <1.03 <0.64 <0.155 <0.179 <1.25 <0.36 <0.107 

Ba137 63.66 <4.88 <3.50 148.85 8.49 34.58 24.97 187.61 2.57 

W184 0.37 <0.115 <0.121 <0.082 0.104 0.066 <0.142 2.85 0.0264 

Ir193 <0.038 <0.019 <0.044 <0.024 <0.0078 <0.0057 <0.051 <0.0245 <0.0038 

Au197 <0.116 <0.096 <0.089 <0.084 <0.0194 0.034 0.31 <0.083 0.025 

Hg202 0.22 0.105 0.16 0.103 0.088 0.18 6.46 0.12 0.22 

Tl205 1.48 1.4 1.76 0.79 0.143 0.219 5.69 0.85 0.9 

Pb208 27.78 24.13 27.82 21.94 4.95 21.79 346.31 45.95 170.25 

Bi209 744.15 1480.33 710.12 678.41 156.83 4251.84 522.59 608.14 109.27 

 

 

 

 

 

 



201 
 

LA-ICPMS data-S mineral data (51) - 40 to 51 grains (2066655) 

Rock Metasediment -2066655 

Sample ID 655A-1 655A-2 655A-3 655A-4 655A-1 655A-2 655A-3 655A-4 655A-5 655B-1 655B-2 655B-3 

Mineral Chalcopyrite Pyrite Chalcopyrite 

Na23 101.38 4641.32 400.85 1007.58 6.56 3.86 40.01 6.27 3.74 1362.16 3754.54 1087.17 

Si29 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 

S33 480148.2 338106.4 478781.8 474007.5 431613 434667.9 450154.5 426577.1 418135.4 79261.43 80437.63 77137.15 

S34 464251.3 327220.3 478206.8 455229.9 429051.9 419426.8 425458.9 429019 427685.5 79000.48 80904.99 75199.2 

V51 0.17 2.6 0.255 10.68 0.119 0.144 0.093 0.128 0.101 0.595 0.26 0.055 

Cr52 <0.58 2.83 1.15 7.15 <0.59 <0.57 <0.62 <0.62 <0.61 0.81 0.57 0.51 

Mn55 11.14 272.5 14.45 1249.52 1.62 0.46 6.22 0.71 1.02 23.15 9.09 1.89 

Fe57 414400.8 269360 419060.8 419060.8 414400.8 418700.9 418700.9 419060.8 419060.8 47400.43 47400.43 47400.43 

Co59 570.44 247.37 677.97 21.68 768.62 381.15 208.09 380.4 397.45 <0.0167 0.021 0.0215 

Ni60 64.83 21.85 67.23 10.08 81.58 39.11 57.34 265.82 623.97 <0.091 0.22 0.103 

Cu65 38437.21 107500.7 32966.45 335769 9.73 96.98 221.71 11.73 82.83 52945.38 53427.34 49883.64 

Zn66 8.34 68.51 9.03 259.48 <1.15 <1.11 4.85 <1.16 <1.13 4.37 7.06 3.03 

Ga69 0.041 10.19 0.512 49.3 <0.027 <0.025 <0.034 0.632 <0.035 0.21 0.263 0.072 

As75 314.98 155.4 361.77 360.72 529 253.6 501.34 580.6 841.96 <0.095 <0.111 <0.109 

Se82 14.63 11.05 15.18 14.02 12.41 19.31 29.4 9.54 12.94 2.26 1.96 3.59 

Mo95 0.13 3.57 0.153 4.31 <0.084 <0.075 <0.097 <0.098 0.155 <0.054 <0.057 <0.054 

Ag107 8.83 8.31 13.79 8.77 0.541 1.063 2.3 0.826 0.118 0.418 0.677 0.472 

Cd111 <0.150 <0.181 <0.132 <0.45 <0.161 <0.176 <0.161 <0.122 <0.130 <0.085 <0.100 <0.074 

In115 0.754 0.702 0.579 0.216 <0.0097 <0.0085 0.0293 <0.0103 0.0221 0.811 0.81 0.979 

Sn118 <0.137 0.92 0.29 1.05 <0.132 <0.135 <0.153 0.152 <0.150 19.12 2.1 0.375 

Sb121 0.734 40 1.85 211.88 <0.026 0.048 0.076 0.042 0.081 0.053 0.115 0.05 

Te125 14.93 18.58 43.89 <0.70 2.86 1.77 4.48 3.63 2.51 <0.110 0.206 <0.124 

Ba137 3.64 57.06 8.15 31.81 1.89 0.74 6.44 224.6 <0.75 50.31 61.06 17.29 

W184 <0.032 <0.046 <0.030 <0.110 <0.028 <0.032 <0.030 <0.032 <0.030 0.04 <0.0177 <0.0150 

Ir193 <0.0065 <0.0106 <0.0090 <0.020 <0.0076 <0.0087 <0.0089 <0.0090 <0.0102 <0.0054 <0.0039 <0.0045 

Au197 0.369 0.197 0.254 <0.085 0.136 0.05 0.362 3.52 1.49 <0.0161 <0.0160 <0.0116 

Hg202 0.052 0.071 0.025 0.109 <0.025 0.035 <0.026 <0.025 <0.024 0.0258 0.0303 0.0438 

Tl205 0.36 5.6 0.846 12.6 0.0304 <0.0094 0.0248 <0.0093 0.0196 0.0062 0.0094 <0.0051 

Pb208 68.28 110.65 76.25 92.81 13.79 7.01 17.69 13.81 3.31 4.67 8.16 1.676 

Bi209 61.41 84.86 83.81 14.07 6 15.62 37.33 22.12 5.39 1.009 4.81 1.511 
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Appendix 5: The multiple elements of minerals contributed to whole rock 
assay 

 Metasediments 

Two samples represent the altered protoliths of metasediments, hematite altered 2066641 and 

chlorite altered 2066655 (Table VIII). Ten elements are S-Cu-Ag-Sb-Bi-Ta-Ce-Pb-Th-U as ore 

related elements. Hematite-biotite-manganite (2066641) contain the weighted average S-Cu-

Ag-Sb-U, roughly equal to assay. Hematite contributed major Cu-Sb-U to whole rock and 

manganite contribute major Ag to. The weight average Bi-Pb are 2-5 times of the assay with 

some uncertain but believed hematite-biotite-magnetite contributed major Bi and Pb to whole 

rock. The weight average Ta-Ce-Th contributed 27-38% of assay. 

Table VI. Multiple elements of minerals contributed to whole rock assay in metasediments (2066641 and 2066655).  

2066641 Hematite altered metasediment (HSCC) 

Minerals  % S  S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 35 

            

Kfeldspar 10 

            

Chlorite 20 

            

Hematite 25 

  

1454 

 

9.62 15.4 0.66 34.4 1591 12.0 27.7 5 

Apatite 1 

            

Biotite 5 269.44 13.47 1308 0.06 4.12 17.9 1.33 69.9 675 19.6 26.4 1 

Manganite 4 138.57 5.54 270.2 3.7 0.5 9.95 

 

9.09 3637 1.32 26.7 2 

Weighted Average 19.01 

 

439.6 0.15 2.63 5.14 0.23 12.5 577.1 4.03 9.32 

 

Assay 25 

 

483 0.21 2.45 2.59 0.6 45.8 144 11.1 12.5 

 

2066655 Chlorite altered metasediment (CAM) 

Minerals  % S  S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 25 

            

Kfeldspar 15 

            

Chlorite 30 314.82 94.45 633.9 0.26 0.40 0.62 0.04 0.30 7.3 2.22 1.30 14 

Hematite 20 

  

35.75 

 

6.87 0.86 0.63 3.24 19.3 5.49 3.51 8 

Magnetite 1 

  

242.3 

 

12.9 4.52 0.04 0.73 9.0 0.62 0.51 1 

Dolomite 5 296.05 14.8 122.3 0.04 0.35 0.82 0.03 51.2 6.8 3.31 0.2 3 

Calcite 2 

            

Pyrite 0.2 426128 852 85 0.97 0.05 17.3 

  

11.1 

  

5 

Chalcopyrite 0.2 280001 560 95847 5.9 4 678 

  

21.9 

  

7 

Weighted Average 

 

1522 398 0.09 1.65 1.84 0.14 3.31 6.6 1.93 1.11 

 

Assay 

  

1600 797 0.29 1.57 1.24 7.2 93.9 5 7 3.2 

 

n=the number of grains. Element value is at ppm. Whole rock assay is for one meter interval. 

Unaltered vs altered granite 

Three minerals have been considered the important in the unaltered (2066178) and altered 

granite (2066178, 2066656 and 2066169) in Table IX. Three minerals are K-feldspar, chlorite, 

hematite. Ten elements are determined for enrichments/remobilize during alteration of the 

granite.  
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K-feldspar-anorthoclase-biotite (magnetite-hematite) contains the weight average S-Pb, 

roughly equal to whole rock assay (2066178) in Table II. K-feldspar contributed major S to 

assay in unaltered granite. These contain the weight average Cu-Ag-Bi-Ta-Ce-Th-U, 

contributed 0.4-53% of assay. Hematite contributed major Sb to whole rock. 

 K-feldspar-hematite-muscovite contains the weight average Bi-Th-U contributed 59-63% 

of assay U in muscovite-altered granite (2066656). Hematite contributed the major Bi-Th-U to 

whole rock. These contributed 1.6-10 times of assay with some uncertain. Believed hematite 

contributed major Sb-Ta-Pb to whole rock. These contributed 16-33% of assay with the 

weighted average. 

K-feldspar-biotite-dolomite-apatite contains the weighted average S-Th contributed 66-86% 

of assay (2066174). These contributed 1.3-3.8 times of assay Sb-Bi-Pb-U with the weighted 

average with some uncertain, but believed hematite-apatite contributed major Sb-Pb-U to 

whole rock. These contributed 32-46% of assay with the weighted average. Apatite contribute 

the major Ce to whole rock, biotite contribute major Ta to whole rock. 

 Chlorite-hematite contains the weighted average Pb-U, contributed 45% of assay in 

hematite-altered-granite (2066169). Hematite contributed the major Pb-U to whole rock. These 

contains 2.8-9.3 times of assay with uncertain. Chalcopyrite contributed major Cu-Bi to whole 

rock, pyrite contributed major S, and hematite contribute major Sb-Bi. These contributed 0.5-

9% of assay Ag-Ta-Ce-Th with the weighted average. 

K-feldspar contains low contents S-Cu-Ce-Sb-Th-U in unaltered granite (2066178) in 

Table II. The K-feldspar contains high value S-Cu-Ce-Sb-Th-U in altered granite (2066656 

and 2066174). The K-feldspar of altered granite has the 6-30 times Cu of the unaltered granite 

K-feldspar, 94-197 time Ce, 696-1740 time Th and 80-823 time U. This imply that the Cu, Ce, 

Th, U elements have been enriched greatly during alteration accompanying the S-Sb-Bi 

increasing. The Ag is decreasing; and Pb and Ta are up and down. 

Chlorite contains S-Cu-Sb-Pb in unaltered granite (2066178) in Table II. The altered 

chlorite contains S-Cu-Ce-Sb-Pb in altered granite (2066169). The chlorite of altered granite 

has the 8.2 times Cu of the unaltered granite chlorite. This imply that the Cu element have been 

enriched during alteration accompanying the S, Ag, Bi and U increasing. The Sb, Ta, Ce, Pb 

and Th is decreasing. 

Hematite contains Cu-Ce-Sb-Th-U in unaltered granite (2066178) in Table II. The 

hematite contains Cu-Ce-Sb-Th-U in altered granite (20666169). The hematite of altered 

granite has the 7.7 times Cu of the unaltered granite hematite accompanying the chalcopyrite 

and pyrite forms. This imply that the Cu elements has been enriched greatly during alteration 

accompanying the Sb-Pb increasing. The Ce-Th are extremely decreasing with U content down. 
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Table VII. Multiple elements of minerals contributed to of whole rock assay in granite (2066178 unaltered and 

2066656 muscovite-altered, 2066174 dolomite-altered and 2066169 hematite-altered granite).  

2066178 Unaltered granite 

Minerals  % S ppm S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 35 

            

K-feldspar 30 233 69.9 1.7 0.04 0.3 0 0.08 0.54 52.6 0.04 0.03 2 

Anorthoclase 5 417 20.85 2.08 0 0.13 

 

0 6.09 6.38 0.04 0.04 5 

Biotite 25 344 86 3.09 0 0.44 0.04 0 2.71 3.14 21.44 1.61 2 

Chlorite 2 456 9.12 2.39 0 0.29 0 0 0 3.16 0 0 1 

Magnetite 1 

  

4.12 

 

0.29 

 

0.47 2.24 1.87 0.6 0.21 2 

Hematite 1 

  

14.6 

 

10.97 

 

0 27.3 71.7 47 11.8 4 

Apatite 1 

            

Weighted Average 

 

185.9 1.62 0.01 0.32 0.01 0.03 1.44 17.68 5.85 0.53 

 

Assay 

 

195 43 0.1 0.6 2.83 7.2 105.4 22 20.9 4.99 

 

2066656    Muscovite-altered  granite 

Quartz 10 

            

K-feldspar 20 401 80.2 11 0.07 1.07 0.07 0.58 106.37 13.78 20.5 2.4 1 

Chlorite 10 

            

hematite 15 

  

95 

 

58.3 1.44 106 18.96 71.05 27.85 6.64 4 

Muscovite 40 298 119.2 47 0.06 3.99 0.2 0 10.05 45.15 17.5 3.24 4 

Ilmenite 5 

            

Weighted Average 

 

199 35.25 0.04 10.56 0.31 16.02 28.14 31.47 15.28 2.77 

 

Assay 

  

600 178 0.25 2.51 0.49 1.6 131.9 19.8 25.9 4.7 

 

2066174 Dolomite-altered granite 

Quartz 30 

            

K-feldspar 15 586 87.9 52 0.09 15 2.1 0.09 51 133 69.6 24.7 1 

Biotite 10 70 7 50 0.05 8.24 1.8 1.99 28.86 122 38 15.7 1 

Chlorite 20 

            

hematite 5 

  

14.86 

 

11.8 

 

0.39 32.69 66.5 58.0 12.0 1 

Dolomite 15 237 35.55 44 0.03 1.89 0.6 0.01 18.3 11.1 9.21 1.24 3 

Apatite 5 397 19.85 34.6 0.16 10.2 1.0 0.51 572.7 144 57.7 84.6 1 

Weighted Average 

 

150.3 21.9 0.03 4.46 0.64 0.26 43.6 44.3 21.4 10.3  

Assay 

  

174 48 0.08 1.17 0.49 0.8 101 24 32.4 3.62 

 

2066169 Hematite-altered granite 

Quartz 20 

            

K-feldspar 5 

            

Muscovite 5 

            

Chlorite 35 279 97.65 14 0.09 0.13 0.03 0.02 0.09 9.97 0.01 0.05 5 

hematite 30 

  

112 

 

12.5 7.2 0.14 2.99 77.3 0.21 5.24 7 

Pyrite 5 454000 22700 0.62 0.09 0.13 0.026 

  

0.31 

  

6 

Chalcopyrite 0.1 318000 318 46000 65 0.16 19 105 

 

43 

  

1 

Weighted Average 

 

23018 84.53 0.10 3.80 2.19 0.15 0.93 26.74 0.07 1.59  

Assay 

 

9840 397 1.1 1.13 0.77 1.6 136.1 57 15.13 3.49  
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 Low to high altered calc-silicate  

Alteration intensity of calc-silicate rock are considered from low (2066166) via mid (2066199 

and 2066635) to high (2066203) in Table X. 

Chlorite-magnetite-garnet (pyrite-chalcopyrite) contains the weighted average 0.06 ppm 

Ag, contributed 60% to the whole rock assay 0.1 ppm Ag (2066166) in Table III. Chalcopyrite 

contributed major Ag to whole rock (2066166). These contain 2-20 times of assay S-Cu-Sb-Pb 

with the weighted average with some uncertain. Believed chlorite contributed the major Pb to 

assay and magnetite contributed the major Sb. Chalcopyrite contributed the major Cu to assay; 

pyrite and chalcopyrite contribute the major S to. These contain 3-24% of assay Bi-Ta-Ce-Th 

with the weighted average. 

K-feldspar-biotite contributed 51-60% of assay Th-U with the weighted average 

(2066199). These contain 1.2 times of assay 67 ppm Ce with the weighted average 80 ppm, 

believed K-feldspar contributed the major Ce to whole rock. These contain 2-4% of assay S-

Cu-Ag-Bi; and contributed 19-39% of assay Sb-Ta-Pb.  

Chlorite-hematite-dolomite (chalcopyrite-gypsum) contributed 55-93% assay S-Cu-Ce-

Pb-U (2066635). Chalcopyrite contribute the major Cu-S to whole rock; chlorite-hematite 

contributed the major Ce-U-Pb to. These contain 3.2 times of assay 6.3 ppm Sb uncertain, but 

believed hematite contributed the major Sb to. These contain 17-32% of assay Ag-Bi-Ta-Th.  

K-feldspar-pyroxene (biotite-chalcopyrite) contributed 50-70% of assay S-Cu-Ta. 

Chalcopyrite contributed the major Cu-S to whole rock and K-feldspar contributed the major 

Ta to. These contain 0.2-7% of assay Ag-Sb-Bi-Ce-Pb-Th and U. 
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Table VIII. Multiple elements of minerals contributed to of whole rock assay in unaltered calc-silicate (2066166) 

and carbonate-altered (2066199), hematite-altered (2066635) and chlorite-altered granite (2066203). 

2066166  Calc-silicate (CAM) 
Minerals  % S  S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 30 

            

Chlorite 30 290.74 87.22 180.28 0.09 0.13 0.02 0.02 0.66 67.46 0.014 0.33 1 

Hematite 10 

            

Magnetite 20 

  

3.46 

 

9.59 0.46 0.04 3.13 10.31 0.29 2.21 3 

Pyrite 1 497811 4978.12 4.43 0.01 0.02 0.20 

  

1.19 

  

2 

Chalcopyrite 1 267057 2670.58 213608 3.3 1.28 6.54 

  

16.01 

  

3 

Garnet 8 296.89 23.75 539.53 0.04 0.98 0.19 0.08 38.92 10.39 1.73 4.33 2 

Weighted Average 7759 

 

2234 0.06 2.05 0.18 0.02 3.94 23.30 0.20 0.89 

 

Assay 

 

1716 

 

113 0.1 1.08 0.75 0.2 82 2.5 5.79 6.82 

 

2066199  Carbonate altered calc-silicate (CAM) 
Minerals  % S  S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 10 

            

Kfeldspar 20 386.38 77.28 12.19 0.07 4.49 0.21 1.59 392.6 8.96 37.5 10.9 6 

Chlorite 20 

            

Hematite 9 

            

Dolomite 20 

            

Calcite 10 

            

Apatite 4 

            

Biotite 1 360.43 3.60 9.10 0.05 3.67 0.31 1.10 100.7 9.24 21.41 8.92 8 

Muscovite 1 

            

Rutile 5 

            

Weighted Average 80.88 

 

2.53 0.01 0.94 0.05 0.33 79.54 1.88 7.72 2.27 

 

Assay 

 

3537 

 

120 0.23 2.44 2.08 0.9 67.1 10 12.85 4.47 

 

2066635 Hematite altered Calc-silicate (HSCC) 
Minerals  % S  S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 25 

            

Kfeldspar 10 

            

Chlorite 15 340.89 51.13 2231 0.12 32 8.88 0.56 153.7 40.41 23.53 9.85 5 

Hematite 20 

  

84.96 

 

76.15 0.12 1.35 80.74 23.75 16.78 9.8 1 

Dolomite 20 450.27 90.05 456.76 0.07 0.90 3.00 0.06 64.40 10.77 2.66 0.67 3 

Bornite 2 296073 5921 359849 9.5 5.6 505.9 

  

104.7 

  

6 

Apatite 3 

            

Gypsum 5 261.38 13.07 3.53 0.04 0.04 0.03 0.01 3.61 2.55 0.71 0.23 1 

Weighted Average 6076 

 

7640.21 0.22 20.32 12.08 0.37 52.27 15.19 7.45 3.58 

 

Assay 

 

9700 

 

8173 0.68 6.3 72.46 1.7 94.7 26.1 23.6 4.3 

 

2066203  Chlorite altered calc-silicate (HSCC) 
Minerals  % S  S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 25 

            

Kfeldspar 15 412.1 61.81 1281.81 0.09 1.28 0.42 2.22 3.67 5.56 0.58 2.55 2 

Biotite 0.1 304.4 0.30 262.31 0.06 2.11 0.03 0.09 0.11 30.37 0.211 0.18 1 

Chlorite 20 

            

Hematite 8 

            

Calcite 10 

            

Pyrite 2 

            

Chalcopyrite 3 321369 9641 242464 0.74 3.08 28.39 0.52 

 

135.89 

  

7 

Apatite 1 

            

Pyroxene 15 423.24 63.49 288.53 0.06 3.49 0.32 

 

7.11 73.56 1.30 3.14 4 

Sphalerite 1 

            

Weighted Average 9766.67 

 

7509.74 0.05 0.81 0.96 0.35 1.62 15.97 0.28 0.85 

 

Assay 19439  10692 10 11.98 19.7 0.6 1005 1330 17.38 42.1 

 

 



207 
 

Amphibolite 

Amphibolite is at low intensity alteration with dolomite-hematite alteration veins in Table XI. 

Hematite contained a great number of other mineral inclusions 1-10 µm. Great carefully I could 

not avoid the inclusions for 11 spots which is consistent with the Electron Probe. Believed 

hematite contributed Sb-Th-U and possible Cu-S with fine inclusions to whole rock.    

Table IX. Multiple elements of minerals contributed to of whole rock assay in amphibolite (2066177).  

Amphibole (CAM) 

Minerals  % S ppm S contribution Cu  Ag Sb Bi Ta Ce Pb Th U n 

Quartz 10 

            

Kfeldspar 10 

            

Chlorite 20 260.36 52.07 25.69 0.07 0.17 0.04 0.03 7.24 1.88 0.20 0.12 7 

Hematite 9 

  

          

Magnetite 1 

            

Amphibole 30 

            

Dolomite 20 249.80 49.96 5.27 0.07 0.18 0.05 0.02 221.27 6.85 0.83 0.15 2 

Weighted Average  102 6.19 0.03 0.07 0.02 0.01 45.70 1.75 0.20 0.05 

 

Assay  797 36 0.37 1.87 3.41 1.6 87 22 7.45 5.33 

 

Eleven hematite grains analysis failed here due to 47 wt % Fe only with 1-10 µm inclusions of quartz-biotite-chlorite.  
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Appendix 6: The element substitution of sulphur minerals, hematite, chlorite, muscovite 

and K-feldspar 

Mineral Ions Possible ionic substitutions 

Pyrite 

 

negative 

charge 

Same positive 

charge 

More positive 

charge 

Less positive 

charge  

Common 

substitution 

≥5 times of crust 

abundance in study 

areas 

Fe2+   Mg2+, Ca2+, Sr2+, Co2+, 

Ni2+, Cu2+, Zn2+, Mn2+, 

V2+, Ti2+, Ag2+, Hg2+,  

Pb2+ and Ba2+. 

Al3+, Au5+, As3+, Ga3+, Tl3+ 

and Mo3+,  

Li+, Ag+, K+ and Rb+ Ni, Co, As, Cu, 

Zn, Ag, Au, Tl,  

Se and V 

Co, Ni, Cu, Ag, Au, 

As, Bi, Se and Te 

S- OH-, O2-, Se2-, Te2- 

   

Chalcopyr

ite 

Cu+   Li+, Na+, Ag+ and K+ Au3+, Sb3+, In3+, Ga3+,  Ni2+, 

Mg2+, Co2+, Zn2+, Fe2+, Mn2+, Hg2+ 

and Pb2+ 

  Ag, Au, In, Tl, 

Se and Te 

Ba, Mo, Co, Ni, Ag, 

Au, Zn, Hg, In, Tl, 

Sn, Pb, As, Sb, Bi, 

Se and Te. Fe3+ 

 

Ga3+, Al3+, Sb3+, 

Ag3+, Au3+ and In3+ 

Mo6+, W6+, Te6+, V5+, Ge4+, 

Mn4+, Co4+, Ti4+, Sn4+, Pb4+ 

and Te4+  

Mg2+, Ca2+, Sr2+, Co2+, 

Ni2+, Cu2+, Zn2+, Mn2+, 

V2+, Ti2+, Ag2+, Hg2+,  

Pb2+ and Ba2+. 

S2- OH-, O2-, Se2-, Te2- 

   

Hematite Fe3+   Ga3+, Al3+, Sb3+, 

Ag3+, Au3+ and In3+ 

Mo6+, W6+, Te6+, V5+, Ge4+, 

Mn4+, Co4+, Ti4+, Sn4+, Pb4+ 

and Te4+  

Ni2+, Cu2+, Mg2+, Co2+, 

Zn2+, Mn2+, Hg2+, Pb2+, 

Li+, Cu+, Na+ and K+,  

Ti, Al, Mn, H2O Ba, U, Nb, Ta, Mo, 

W, Co, Cu, Zn, Ga, 

Sn, Pb, Sb and Bi 

O2- S2+, Se2+, Te2+ 

   

Chlorite Fe2+   Mg2+, Co2+, Zn2+, Mn2+, 

Ca2+, Hg2+, Sr2+, Pb2+ 

and Ba2+. 

Ta5+, Pb4+, V4+, Ti4+, Sn4+, 

Sc3+, In3+, Ce3+, La3+, Bi3+ 

and Cr3+ 

Li+, Ag+, K+ and Rb+ Mn, Ca, Na, K 

and Cr 

Th, U, Mo, W, Co, 

Ni, Cu, Ag, Zn, Ga, 

Ge, Sn, As, Sb, Bi 

and LREE Mg2+ 

 

Fe2+, Co2+, Zn2+, Mn2+, 

Ca2+, Hg2+, Sr2+, Pb2+ 

and Ba2+. 

 V4+, Ta5+, Ti4+, Fe3+, Sn4+, 

Sc3+, In3+, Pb4+, Ce3+, La3+, 

Bi3+ and Cr3+ 

Li+, Ag+, K+ and Rb+ 

Al3+ 

 

Ga3+, Fe3+, In3+, 

Sb3+, Ag3+ and 

Au3+. 

Mn7+, S6+, Mn6+, Mo6+, W6+, Te6+,  

Se6+, Mo5+, Mn5+, As5+, V5+, Ge4+, 

Mn4+, Co4+, Ti4+, Sn4+, Pb4+, Te4+ 

and Si4+ 

Ni2+, Cu2+, Mg2+, 

Co2+, Zn2+, Fe2+, 

Mn2+, Hg2+,  Pb2+, 

Na+, Li+, K+ and Cu+ 

Si4+ 

 

Ge4+, Mn4+, Co4+, 

Ti4+, Sn4+, Pb4+ and 

Te4+ 

Mn7+, S6+, Fe6+, Se6+, Mo6+,  

W6+, Te6+, As5+ and  V5+ 

Ni2+, Cu2+, Mg2+, Co2+, 

Zn2+, Fe2+, Hg2+, Pb2+,  

Ag2+ Li+, Cu+, Na+,  K+,  

Ag+ and Ag+ 

O2- OH-, S2-, Se2-, Te2- 

   

Muscovite K+   Li+, Na+, Rb+, Cs+, 

Ag+, Au+, Cu+ and 

Hg+ 

Ba2+, Pb2+, Sr2+, Ca2+, Mn2+, Fe2+, 

Zn2+, Co2+, Mg2+, Ge2+, Ni2+, Cr3+, 

La3+, Ce3+, Bi3+, In3+, Sc3+, V3+, 

Al3+, Sb3+ and Ga3+ 

Cr, Li, Fe, V, Mn, Na, 

Cs, Rb, Ca, Mg and 

H2O. 

Cr, Li, Fe, V, 

Mn, Na, Cs, 

Rb, Ca, Mg 

and H2O. 

Rb, Ba, Th, U, Zr,  

Mo, W, Co, Ni, Cu, Zn, 

Ga, Ge, Sn, Pb, As, Sb, 

Bi, Se and LREE 

Al3+ 

 

Cr3+, Ga3+, In3+, Tl3+, Mn7+, S6+, Fe6+, Mn6+, Mo6+, W6+, Ni2+, Cu2+, Mg2+, Co2+,  
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U3+, Nb3+,Ta3+, V3+, 

Mo3+, Cr3+, Mn3+, Fe3+, 

Co3+, Ni3+, Sb3+, Cu3+, 

Ag3+ and Au3+ 

Te6+, Se6+, Mo5+, As5+, V5+, Ge4+, 

Ti4+, Sn4+, Pb4+, Te4+ and Si4+ 

Zn2+, Fe2+, Mn2+, Hg2+,  

Pb2+, Na+, Li+ and K+  

Si4+ 

 

Ti4+, Ge4+, Mn4+, Co4+,  

Sn4+, Pb4+ and Te4+ 

Mn7+, S6+, Fe6+, Se6+, Mo6+, 

W6+, Te6+, As5+ and V5+ 

Ni2+,Cu2+, Mg2+, Zn2+, 

Fe2+,Mn2+, Hg2+, Li+, 

Cu+, Na+, K+ and Ag+ 

  

O2- F-, S2-,  Se2- , Te2- 

     

K-feldspar K+   Na+, Cs+, Rb+, Cu+, 

Hg+, Ag+ and Au+ 

Fe2+, Ca2+, Cr2+, Mn2+,Co2+, Ni2+, 

Zn2+ and Cd2+ 

  Na, Fe, Ba, Rb, 

Ca, Li, Cs, Rb, Pb 

and H2O. 

Rb, Ba, Th, U, Ta, W, 

Co, Cu, Zn, Ga, Ge, Sn, 

Pb, Sb, As and Bi Al3+ 

 

Cr3+, Ga3+, In3+, Tl3+, 

U3+, Nb3+, Ta3+, V3+, 

Mo3+, Mn3+, Fe3+, Co3+, 

Ni3+, As3+, Sb3+, Ce3+, 

Bi3+ Cu3+, Ag3+ and 

Au3+ 

 As5+, Sb5+ and Bi5+ Ni2+, Cu2+, Mg2+, Co2+,  

Zn2+, Fe2+, Mn2+, Hg2+,   

Pb2+, Na+, Li+ and K+ 

Si4+ 

 

Ti4+, Ge4+, Mn4+, Co4+,  

Sn4+, Pb4+ and Te4+ 

Mn7+, S6+, Fe6+, Se6+, Mo6+, 

W6+, Te6+, As5+ and V5+ 

Ni2+,Cu2+,Mg2+,Zn2+,Fe2+

,Mn2+,Hg2+,Pb2+,Li+, Cu+, 

Na+, K+ and Ag+ 

O2- OH-, S2-, Se2-, Te2- 

   

Notes: Element occurred in low and high positive charge and did not show in high positive charge. For example, 

Co3+ and Ni3+ did not showed in Fe2+ in pyrite because Co2+ and Ni2+ showed in the same charge. In hematite, Ag 

occurred in Ag3+ so that we did not showed in Ag+ and Ag2+. Fe, Ce, Mn, Ag and Mo has multiple positive charge 

so that more chance to substitute other elements. References are the webs; radii (Shannon, 1976) and mindat.org 

and Shao et al., 1979.   

 

Element substitution in minerals lattices involved in Sb5+ oxidation state has a similar ionic 

radius to W5+ and Ti4+ (Graham and Morris, 1973; Hans 1985) in chapter 3.4.2. Firstly, mineral 

web mindata.org showed the elements could be substituted each other in the minerals. Then 

the ionic radius database showed the potential for substitution for the elements of minerals. The 

minerals were chosen to pyrite, chalcopyrite, hematite, chlorite and muscovite and K-feldspar 

because important. The charge balance is important as the Li, Na, K, Rb, Ce in the first column 

as +1. Ga, In and Tl is the same column for Al as +3, and the Ge, Sn and Pb are the same 

column with Si for 4+. The REE is most with +3 charge. The radius of ionic are mostly increase 

from the top of period to bottom and also increase form the sequence of atom (see Table 

Appendix 6).  

Sulphur minerals had chosen pyrite and chalcopyrite as important for the study. Pyrite had 

the chemistry formula FeS2 and elements listed as Fe, S with common Impurities: Ni, Co, As, 

Cu, Zn, Ag, Au, Tl, Se and V. Chalcopyrite had Ag, Au, Cd, Co, Ni, Pb, Sn, and Zn which can be 

measured (at part per million levels), likely substituting for Cu and Fe. Se, Bi, Te, and As may substitute 

for sulfur without charge balance with uncertainty. Chalcopyrite elements listed as Cu, Fe, S; and 

common impurities: Ag, Au, In, Tl, Se and Te. 

Hematite had elements listed as Fe, O and had common impurities: Ti, Al, Mn, H2O. 

Hematite was important for Ba, U, Nb, Ta, Mo, W, Co, Cu, Zn, Ga, Sn, Pb, Sb and Bi substitute 
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of Fe3+ in eastern Gawler Craton with lots of uncertainty such as Abraitis (2004). Basically, 

chlorite (mindata.org) had two groups of chlorite as chamosite and clinochlore. The chamosite 

composition are Fe2+ Mg2+, Al3+, Fe3+ and Si4+, Al4+, O2
-, OH-. Chamosite has elements listed 

as Al, Fe, H, Mg, O and Si, and common impurity Mn, Ca, Na, K. The clinochlore composition 

are Mg2+, Al3+, Si4+, O2- and OH-. Clinochlore has elements listed as Al, H, Mg, O, Si and 

common impurity Cr and Ca. The K-feldspar has three groups of microcline, orthoclase and 

sanidine. Microcline has elements listed as Al, K, O and Si, and common impurity Fe, Ca, Na, 

Li, Cs, Rb, H2O and Pb. Orthoclase has elements listed as Al, K, O and Si and common impurity 

Na, Fe, Ba, Rb and Ca. Sanidine has elements listed as Al, K, O, Si - search for minerals with 

similar chemistry and common impurity Fe, Ca, Na and H2O. Muscovite had the same 

chemistry format with K-feldspar but muscovite had KAl3Si3O10(OH)1.8F0.2 and monoclinic 

system two dimensional platy forms with aggregates being flaky and K-feldspar had the 

triclinic system crystal often plate-like, prism-like crystal form. Muscovite had more Fe, Mg, 

Ba and Si substitution with different trace element patterns. Muscovite had elements listed as 

Al, H, K, O, Si and Common impurity Cr, Li, Fe, V, Mn, Na, Cs, Rb, Ca, Mg and H2O. The 

charge were complicated by combination of elements to replace one elements. The radius are 

complicated to match by two element substitute one elements. The muscovite had the wide 

substitution as Ba≦10%, Na≦2.9%, Rb≦1.4%, Fe3+≦6.6%, Cr≦4.8%, V≦3.5%, Fe2+≦3.2%, 

Mg≦2.8%, Li≦1.8%, Ca≦1.1% and F ≦2.1% (Shao et al., 1979). 
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Appendix 7: Fluid components and symbols used in HCh models 

Table X. fluid compositions used in HCh models 

Components A B B1 C 

 wt % 35 16.2 16,2 30 

Unit g/l 

KCl 60 38 38 31 

CaCl2 80 55 55 4.6 

FeCl2 100 40 45 139.6 

MgCl2   

 

80  

MnCl2 10 23 23 5.4 

NaCl 70  

  

CuCl 15 1 1 32.1 

FeS04 15 5 

  

 

 

 

Table XI. The important symbols and their meanings used in the construction of an HCh control file algorithm, 

from Cleverley et al. (2005). 

Symbol Variable 

T Current temperature (⁰C) 

P Current pressure (bars) 

i Current step number 

N Current wave number 

[1] Input composition (1 ¼ first, 2 ¼ second, etc.) 

[A] Bulk composition of aqueous phase in system from current wave, previous step 

[S] Bulk composition of solid phase in system from current wave, previous step 

[*] Current total system bulk composition (all phases) 

{A} Bulk composition of aqueous phase in system from previous wave, current step 

{S} Bulk composition of solid phase in the system from the previous wave, current step 

{A(i)1)} Bulk composition of aqueous phase in the system from the previous wave, step number i ) 1 

 


