COMPUTER ASSISTED INSTRUCTION

Peter G. Perry, B.Sc (Hons)
Department of Computing Sciernce,

University of Adelaide.

September, 1973

THE ADELAIDE UNIVERSITY C.A.I. SYSTEM

o

L T T e T e e e S R S R S i
g 5 .31 = B 3 =
W O ~N O ;AW N

INDEX

Introduction

General Design Philosophy
From the Author's Viewpoint
From the Student's Viewpoint
Administration and Operation
General Structure

The C.A.I. Consoles

The Central Program

Command Processing

Course Processing

.10 login, Logout, & Records
.11 Summary

THE ANSWER COMPARISON PROBLEM

2.0
2.1
2.2
2.3
2.4

Introduction

Current Methods of Answer Comparison

A Statement of the Problem
Examples and Discussion
Summary

WHAT IS MEANING

3.0
3.1
3112
I
3.4
3.5

Introduction

Structural Linguistics
Behavioural Psychology
Traditional Linguistics
A Working Definition
Summary

PRELIMINARY NOTATION AND RESULTS

4.0
4.1
4.2

Introduction
Basic Elements
Language

W ~N o N

11
13
16
20
21
28
33

34
34
36
38
40

41
43
45
47
48
49

51

51

53

INDEX (cont)

PRELIMINARY NOTATION AND RESULTS (cont)
4.3 Syntax and Semantics

4.4 Summary

A GENERAL MODEL FOR LANGUAGE BEHAVIOUR
5.0 Introduction

5.1 A Basic Model for Human Behaviour
5.2 A Basic Language Model

5.3 The Relationship Between M-and F
5.4 Summary

ASSUMPTIONS UNDERLYING THE MODEL

6.0 Introduction

6.1 General Assumptions

6.2 Specific Assumptions

6.3 Summary

TYPES OF LANGUAGE MODEL

.0 Introduction

Equivalence of Language Models
The Context Independent Model

The Recursive Model

The Metric Model

The Additive Model

.6 Summary

EXAMPLES AND DISCUSSION

8.0 Introduction

8.1 Comparison of Mathematical Expressions
8.2 The Work pf Osgood, Succi, & Tannenbaum

g W N =

7
7
7
7.
7
7
7

8.3 . Summary

LANGUAGE INTERPRETERS

9.0 Introduction

9.1 The Context Network
9.2 The Comparison Mapping

60
65

66
66

70
71

73
73
78
79

80
81
85
87
89
93
95

97
97
101
102

103
103
105

INDEX (cont)

9 LANGUAGE INTERPRETERS (cont)
9.3 The Effect Procedure
9.4 Summary

10 EXAMPLES OF LANGUAGE INTERPRETERS
10.0 Introduction
10.1 The Standard Method
10.2 A Fully Recursive, Context Independent
Language Interpreter
10.3 A More Complex Example
10.4 A Language Interpreter Based on Words
10.5 Summary
11 CONCLUSION

Appendix A Proof of the Triangular Properties of the
Common Selection Process.
Appendix B The Longest Common Selection Procedure-

BIBLIOGRAPHY

107
107

108
109

112

114
115

119

Pt b b = ek b fd pd
O O 0O O 0O o0 0O o o
PR R W W NN RO W W
W N = N N RN R e W

—t
o

W W W N N N NN N NoOVoOY o
. N
W N N PR W N W RN

I N I R e T R R S T T T T — e s
. N

FIGURES AND TABLES

Remote Console Hardware

Remote Console Data Formats

Remote Console I/0 Buffer

Central Memory Usage

Core Buffer Area Formats

Méster Status Table formats

Resident Central Program

Processing Sequence - Inactive Console
Processing Sequence - Active Console
Message Assembly Area

Course Instruction Formats

A Sample Page from a Course

An Assembled Page

Student Master Record Format

—
o
—

.10.2 Statistics Record Format
.10.3 Logout Record Format

Reference Set for Question

Four Grammers for a Simple Language
Strings Used to Compare Language Models
Results for Longest Selection Method
Representation in 2D - Comparison Method
Results for Language Interpreter #1
Representation in 2D - Model #1

Results for Language Interpreter #2
Representation in 2D - Model #2
Dictionary for Interpreter #3

Results for Language Interpreter #3
Representation in 2D - Model #3

SUMMARY .

This thesis considers only two aspects of the whole area of
Computer Assisted Instruction.

The first area is the design and implimentation of a practical
C.A.I. System. This system was designed to support up to five hundred
consoles, and an experimental implimentation was carried out on the
Control Data 6400 Computer at the University of Adelaide. The
experimental system, which involved some sixteen thousand cards of source
program, as well as several thousand more cards in off-line supporting
programs, was developed between 1967 and 1969, with minor modifications
and extensions since then. The description of this system covers both
its external features and the major aspects of the internal organisation;
although some of this work has been described in the papers Perry and
Lee (291, 1969) Perry (28], 1969) and Lee (€], 1971), much of the
internal description appears for the first time in this work.

The second area is the problem of answer comparison which
arises when the student is allowed freedom to construct his own responses.
These problems do not arise in the simple multiple choice response
situation, but it is felt that it is in many situations desirable to
ask the student to construct a response, rather than to merely select
one of a number of a]terngtives. This freedom and the resultant require-
ments for comparison, raise basic philosophical questions in the nature
and processing of meaning. It would be all too easy to consider only

the philosophy,or to ignore the philosophy and concentrate solely on

the practical aspects of the problem, and it is hoped that a balance
between these two extremes has been achieved.

Starting from a discussion of the nature of meaning, a general
structure for a language model is proposed, and some theory relating
to it is developed. A particular form for this model yields a sub-
class which are termed language interpreters, and it is shown that
these can lead to a practical method of comparing meaning. It is
also shown that language interpreters can be related to the work of
Osgood et.al. ([26], 1957) who described in a practical situation some

of the language behaviour predicted by the modetl.

This thesis contains no material that has been
accepted for the award of any other degree or
diploma in any University.

toi.the best of my knowledge and belief, this
thesis contains no material previously published
or written by another person, except where due
reference is made in the text of the thesis.

Peter G. Perry.

ACKNOWLEDGEMENTS

I wish to acknowledge the advice and assistance of my
supervisors, Professor J.0Ovenstone, Dr J.Sanderson, Professor
F.Hirst, and Dr C.Barter, and also of Mr J.Weadon, who helped
me during some of the transition periods.

It was a privilege to work with Lee Kim Cheng on the
design and implementation of the C.A.I. system described in the
first section of this thesis.

I am indebted to the staff of S.A. Office Machines Pty
Ltd for their assistance with typing and duplicating.

I gratefully acknowledge the support of Control Data
Australia Pty Ltd, and the University of Adelaide, for providing

the grants which made this work possible.

ca28e

TS

Lowe

(]

cd
[)

THE ADELAIDE UNIVERSITY C.A.I. SYSTEM.

1.0 INTRODUCTION

Some information about the Adelaide University computer-
assisted instruction (C.A.I.) system has already been published
(perry & Lee, [29], 1969; Perry, [28], 1969; Lee [16], 1971) but these
descriptions concentrate mainly on the external features and the author
Tanguage, and contain little detail of the structure and operation of
the system itself. This system represents the first attempt at large
scale C.A.I. in Australia, and it is therefore worthwhile to record
some of the internal features of it; I shall thus give a brief summary
of the overall system, outline some of the reasoning which led to its
final form, and describe some of its major mechanisms.

The system design was commenced in 1967; design and initial
implimentation were substantially completed by the end of 1968, with
minor improvements being added during 1969. As will be pointed out
during the description of it, this implimentation does not include all
features taken into account in the design; some features are entirely
absent, while others are present in a restricted form only.

The design and implimentation of the system has been a joint
effort with K.C. Lee. Although we both contributed to all phases of
the work, Lee concentréted mainly on the development of the author
language assembler, operator display processor, and disc driver, as well

as several smaller routines in the system, while I was

mainly responsible for the system Toaders, monitor, central program
and other equipment drivers.
The system was designed for, and implimented on a Control

Data Corporation 6400 computer[6Jusing both the existing hardware
and an interface and C.A.I. consoles designed specifically for the
project. At the time implimentation was commenced, the computer was
minimum configuration with 32K of 60 bit memory for the central pro-
cessor, ten autonomous peripheral processors, each with 4K of 12 bit
memory, a mass storage disc with a capacity of approximately a half
million bits, a twin screen display console, and six magnetic tape
drives; it also included a card reader, card punch incremental plot-
ter, and two line-printers, but these are not directly relevant to
the system. It was running under the manufacturers operating system
SCOPE 2; this was changed to SCOPE 3 about half-way through the pro-
gramming of the C.A.I. System.

In the description of the C.A.I. system hardware and soft-

ware features of the computer will be outlined where relevant; further

detail can be found-in the manufacturers manuals.

1.1 GENERAL DESIGN PHILOSOPHY

The first major decision in the design was to produce a
stand-alone, dedicated system. There were several reasons for this.

First, since the design of the console controlier was based
on a maximum of 512 student consoles, it was felt that there would

be no need to run normal jobs in parallel with C.A.I. courses,

and that the memory space, already barely large enough for effective
operation of the manufacturer's system, would not permit it.

The SCOPE 2 operating system made very inefficient use of
the disc, in particular permitting only sequential files with forward
Tinking, so that even a simple backspace operation required the whole
file up to that point to be searched. Disc accesses were not scheduled
to minimise unneccessary track changes, so that paging student work-
spaces onto disc would have resulted in a major bottleneck.

Finally, SCOPE is a batch processing system, and not readily
adaptable for providing facilities for interactive programming.

It was thus felt that the modifications nee&ed to adapt the
SCOPE operating system would require more effort than starting from
scratch, with very littie benefit to be gained.

The introduction of SCOPE 3 did in fact overcome some of
these objections; it included an optimising disc request processor
and permitted very efficient use of the disc; it also included an inter-
active programming package the response of which, however, gives
adequate justification to the final point made above. The main advant-
ages that were gained from SCOPE 3, from the point or view of the C.A.I.
system, were the more powerful program library maintenance facilities
and considerably more powerful assembler.

There are many people involved in the use of a C.A.I.system
and the réquirements of each class of user must be taken into account,

difficult though it is to predict all of the requirements in

advance.

Authors require a powerful, flexible course language,
giving full control of the capabilities of the student console and the
presentation of the course material, thelability to perform calcula-
tions, tHe ab%]ify to offer successively more detailed hints to a
student efperiencing difficulty with a question, and the ability to
set time limits if it is so desired. : The ability to branch between
parallel segments of a course, and to skip forwards or backwards,
depending on the responses of the student, is required, and multimedia
presentation facilities are highly desirable. For preparing courses,
authors need convenient methods for submitting an initial draft, and
on-line facilities for checking and editing. Detailed statistics of
student progress are needed to assist in course revision.

Students want data output and computer response to input
to be fast, so that théy do not spend a lot of time waiting for
material to appear. They need the ability to correct typing errors in
their responses, the ability to control the presentation cf material
to some extent - in particular, to be able to stop the programme at
any point and receive help, either from prepared material in the course
or, if necessary, from a supervisor - and the ability to ask for
revision of previous material before commencing a new session. The
ability to use the computational power of the computer through the
console is also desir .able.

SuperVisors want to be able to retrieve from the system

summaries of individual student's progress. During the time that a

Student is interacting with the system, the supervisor, who may be
physically distant from the students under his care, should be able
to carry on a conversation with any student through the consoles,
control devices on the student's console, change the position of the
student within the course and, after terminating direct contact with
the student, receive a Tog of the student's position and response

to questions as he proceeds.

Administrators and operators want automatic collection of
accounting statistics, and a system which requires 1ittle intervention
during operation. The system should be easy to shutdown at the end of
a run, and to restart after a failure.

The system was designed in a modular form, so that, although
not all of these features are present in the initial implimentation,
most of them can be added without major changes to the rest of the

system.

1.2 FROM THE AUTHOR'S VIEWPOINT.

The present implimentation does not have on-line author
facilities, although an author can log into the system to check his
course, and a command is provided to enable him to reposition
himself within the course while checking it.

Courses are prepared and punched on cards for processing
orito tape under the normal batch processing system. The course assembler
is in two passes, the first being an input formatting pass, and the

second the actual assembly; thus adapting the assembler for alterna-

tive input media involves only the writing of a new formatting program
and it would be possible to write a pre-processor to handle corrections
entered on a console and saved on tape. It would be a major task to
adapt the course assembler to run as part of the C.A.I. System, although
this could be done.

The author language is unique to the system; although
adding to the proliferation of course languages is undesir able from
several points of view, the most important being the resulting restric-
tions on the interchange of programmes between systems, it was felt
that COURSEWRITER, (see e.g.[10]) the most widely used C.A.I. language,
while being simple to learn and use, did not incorporatét%f the features
that were mentioned in the previous subsection. The system author
language may be briefly characterised as an extension of COURSEWRITER,
the major area of extension being the structure of the CUE sequence;
this does not, however, imply that the resulting language is super-
ficially similar to COURSEWRITER, as may be seen by referring to Fig.
1.9.2, where a short segment is shown.

The author language is extensively descibed by Lee ([16]
1971, see chapter III and appendix A), and therefore will not be
further discussed here; subsection 1.9 gives details of the way in
which the resulting object code language is processed by the system.

An important feature of the system is that it can in
principle handle more than one C.A.I. language; it would be feasible
to have several different courses, in quite different languages, all

running at the same time, although in the present implimentation only

one language is provided.

The system dumps raw statistics, as requested by the
author; on a magnetic tape; these may then be extracted off-1ine in
any form requested by the author; in particular, it is possible to
obtain summaries of the progress of individual students; and also data
about individual courses, including unanticipated responses to a

question, and the time taken to answer a question.

1.3 FROM THE STUDENT'S VIEWPOINT.

The student interacts with the system through a console.
The consoles were designed specifically for the C.A.I. System, and con-
sist of a desk with an IBM Selectric I/0 writer built into the top;
the design included a slide projector and tape player, but these were
not available on the consoles actually built.

Approaching any unused console, the student types the
command #LOGIN followed by his identification code; the system responds
with a reassuring message while it attempts to identify the student
by referring to its master file. When the record s found, it is check-
ed for the number of courses for which the student is enrolled; if he
is enrolled for more than one, he is asked to make a selection. On
selection of a course for which he is enrolled, and which is available
in the system, the login phase is completed. The system pauses, with

an appropriate message, until the student types a #G0 command.

During most of normal course processing, the console
keyboard remains locked; this is a hardware function designed to prevent
the accidental insertion of spurious characters into the printout, as
the printer, unlike a teletype,prints every character entered on the
keyboard. Courses are assembled so that the keyboard is unlocked
periodically, and should he wish to halt the presentation, he has
merely to rest his hand on the "return" key; when the keyboard un-
locks, the null Tine transmitted will cause the programme to pause.

Student input to the system should always be either an
answer to a question or a special command. Any message the student
types in is first checked to see whether it is a command (all commands
commence with the character#) and then to see whether a response
was requested; if neither is the case, then the system pauses if the
message is a null line, and otherwise responds with an admonitory
message. Commands may be abbreviated to any extent, and the variety
available is dependent on the console status.

The student can readily correct typing errors on the
keyboard; a backspace removes one character, while an ! deletes the
whole Tine, causing an indication to be printed, and a carriage
return so that input starts on the next line. Messages are not recog-
nised by the system until the "return" key is pressed.

When the student compietes his session, the command #
LOGOUT enables him to sign off from the system; however since the
student is always restarted at the beginning of a page on each

session, he is invited to continue and complete the current page,

thus avoiding repeating portion of it; The sign off at the end of the
page is automatic. Should the student wish to leave the console
immediately he can force the Tlogout by repeating the command.

Once the student has logged out, he should wait until the
master record is updated before continuing with that course, although
he may log in for other courses during the same session. Master record

updating is done under the standard batch processing system.

1.4 ADMINISTRATION AND OPERATION.

The system is initialised by a "dead start" procedure
similar to that of the standard SCOPE system: the system tape is
loaded on the appropriate tape transport, and the hardware automatic
load initiated.

It is possible at this stage to initiate any of a variety
of programs; currentiy, the choice is between the system loader, which
initiates the entire system from scratch, and a diagnostic program for
the remote console multiplexor/interface,but a release version of the
system would also contain restarting loaders for recovery after a
failure.

When system loading is complete, courses must be copied
onto the disc. Part of the system is a course loading program, which
reads courses from magnetic tape, and writes them onto the disc,
creating at the same time two levels of directories - one for chapters,
and one for pages; this program is designed to permit the loading of
single named courses, or blocks of courses , from the tape file. ,

It is convenient at this stage to assign the three tapes

10.

that the system requires when running; the first of these is the
student master tape, containing the codes and course enrollments for
all students recognised by the system; the other two are used for the
saving of statistical and accounting data. If these are not assigned
at this stage, assignment will be requested when they are needed, but
prior assignment saves some time.

The final step is to assign the remote console driver, so
that students can access the system.

The system as it currently exists does not include provision
for an operator initiated shutdown at the end of the run, but this
facility could be added; it would probably involve three stages, the
first preventing new students from signing on the the system, the
second setting the flag for a logout at the end of the current page
and issuing a warning message to each console which is signed on, and
the final step, initiated immediately before the system is shutdown,
would be to log out any active consoles.

As was mentioned earlier, the restarting procedures have
not yet been implimented. The addition of such procedures would not
involve any major probiems; during the loading procedure, the entire
system is written on the disc in parallel with the loading, and thus
the central and peripheral programs could be restored from there; ailso,
should the memory tables which define the status of every student and
console be destroyed, the disc areas which are used for swapping
student data blocks (see 1.7) provide a very recent picture of each

/ . .
consoles activity.

11.

The two sets of data tapes are processed off-1ine, under
the normal batch-processing system. One tape gives data on course
behaviour and details of individual students progress, intended for
use by authors and course supervisors. The second contains accounting
information which is used to update the student master tape ready for

the next run.

1.5 GENERAL STRUCTURE.

The Control Data 6400 Computer System contains two distinct
types of computer; the central processor (C.P.) is very fast, has a
large (60 bit) word length, and a wide range of arithmetic and logical

peripheral processors
instructions, but no access to peripheral processorsﬁ(PPs),of which
there ten, are much smaller and slower, with limited arithmetic, but
convenient access to peripheral devices through the twelve bi-
directional data channels, unlimited access to the memory of the ceniral
processor, and complete control over the action of the central
processor.

The system thus works on a division of labour between the
central and peripheral processors; this division is conceptuaily
similar to that used by SCOPE, bg; differs somewhat in the details.

The central processor schedules students for attention,
processes courses and command words,and controis all messages to and
from the C.A.I. consoles. Becagée of its more efficient shifting and
masking instructions, it also hgid1es a bit-table showing which disc .

sectors are available for use.

12.

Except during the hardware load sequence, it is not
possible to distinguish the ten peripheral processors, but it is
convenient to follow the SCOPE practise of placing one of them in
control. Thus one of them, designated PPO, is loaded with a monitor
program; this program maintains the real-time clock, and co-ordinates
the work of the other peripheral processors, acting as an interface
between them and other segments of the system.

The system status is constantly displayed on the twin-
screen operator console by a program running in PP1. This program
also enables the operator to control the system by entering commands
through the console keyboard.

A1l data transfers to and from disc are queued and
scheduled by a disc driver in PP9.

The remaining seven peripheral processors form a pool
upon which the monitor can draw whenever necessary. Each has a small
resident program which links it to the monitor through a communication
area in central memory; on request from the monitor, this resident
program will Toad as an overlay (by communicating with the disc driver
along a data channel) any of the system library routines; when the
task is complete, the processor returns to the pool of free units.
Examples of these transient tasks are course loading, dumping statis-
tical data from a memory buffer onto magnetic tape, and performing
data transfers between central memory and the C.A.I. consoles. The
mechanism for assigning pool processors and inte§1ocking their actions

does not differ significantly from that used by SCOPE, and hence will

13.

not be further discussed.

1.6 THE C.A.I. CONSOLES.

The C.A.I. Consoles and their multiplexor/interface were
designed by Dr. R.J. Potter, of the Adelaide University, and constructed
under his supervision.

The design provides for consoles consisting of up to seven
independent input or output units, but the four consoles actually
constructed contain only the typewriter, which is accounted two units.
These typewriters are IBM Selectric 1/0 Writers; they type at over
fifteen characters per second. Data is transferred to and from these
in "correspondence code", a six bit code; however, case changes are
handled automatically by the console logic, an extra bit being added
to the code for this purpose.

A group of up to eight consoles share a "local controller"
to which they are connected by a short daisy chained 1ine. The Tlocal
controller transmits and receives data from the transmission line,
acting as a relay between it and the consoles; it also polls consoles
for keyboard data if a reject or status response is not to be returned,
transmitting either a data character or a "no data" signal, and gener-
ates reject signals for consoles which do not respond to the data
sent to them.

The multiplexor/interface is designed to send and receive
signals over up to sixty four transmission lines; these 1ines, which

1ink it with local controliers, may be of any length, so that the group

14.

of consoles could be scattered in many different locations; to allow
for differences in transmission rates, a status bit is set in the line
register if a reply has not been received from the local controller

by the time the driving peripheral processor calls for it. So far,
only two lines have been built.

The general structure of this equipment is shown in Fig.
1.6,1 and the data format in Fig. 1.6,2. It is described in more
detail by Potter (301, 1967).

There are three programs in the system which communicate
with this console complex, and a further program which simulates its
behaviour on the operators display screen.

The first of these programs is a hardware diagnostic for
the interface itself. Because any adjustment or malfunction of the
interface can cause the peripheral processor to hang up with no
possibility of recovery without a new dead start, this is a stand-
alone program - one of the options of the system preloader is to load
this instead of the main system loader - and runs in two peripheral
processors; one processor drives the interface, and the second maintains
a display of its status, so that when the driver is hung, it is stili
possible to see the 1§st data transmitted. The program can send
functions and data to the interface at various speeds, and input
data from it; although designed chiefly to test the interface function
limited testing of the consoies is also possible.

The second program is used to check the individual consoles

and runs as a transient job in two peripheral processors under the

\

oo

Oi

Up Fo 6H " Data kink
dalta =
regisrers

Channd

16

11

Buffer [nterface

-

¥

4 Lecal

-;/ C oller
//2 onte 0
]

IBM Selectnic
1/0 wriker

L up o %

1 Consale
Controllers

||

Fig 1.6.1 Remote Console Hardware

I o .
GeENERAR DATA W oR D

T Al M i fT; [FormAT (Il bt'f‘j)'

i
Conscle L ‘ — Da Fa (7 bits)
Add ress Function BiF

(3 5h5) Link nol ready

OuTpUT CODES

c.A. |olo| data paTA Ourvur (7 biF char
‘n correspondence cocle)

|
c.A. lolr] i ooounit senect UniT (0-7)
. | N o
!
C.A. |o|/|o I o ():0 O 0 sTATLS KERUVEST
|

ek : No . OPERATION (Permits
reievent.|O) (10 O 1 ()':0 ae cany console to rekurp dota

INPUT CODES

C.A. |00 daka DatA From CoiNsOLE
c.Aa loliloroo,000 Comnsone REeJEET
C.A. lolllo O }Bi(/’nil- CoNSUALE STATUS Ke pry
I; ; Ne (Shows selecked unit no
B=1 : console busy)
ooololili ocpoioo00 No DATA

Fig 1.6.2 Remote Console Data Formats

15z

C.A.I. System.

The third program is the remote console driver. This
permits the central processor to communicate with up to the maximum
complement of 512 consoles, and runs in one peripheral processor.

It continually checks the performance of the consoles, reporting any
malfunctions to the operator; except in very severe cases, recovery is
automatic. Under this program, limited testing of any one data
transmission 1ink is possible without affecting normal activity on the
other links. In order to allow for maximum transmission time with-
out sacrificing its cycle time, the program processes one set of input
data, producing a new set for output, while the previous output data
is being transmitted; this avoids the processor being idle during the
transmission time, and them delaying the interface while it prepares
new output data.

The driver communicates with the central processor through
a buffer in central memory. This .has one {60 bit) -entry for each
console; any entry can contain up to three characters (see Fig. 1.6,3)
More detailed tables of console status are kept internally by the driver.

Functions such as unit selection and changing ribbon colour
to red for output and black for input are carried out automatically by
the driver, which also locks the keyboard shouid the central memory
buffer become full on input.

As well as normal output, the driver supports output
in "special mode" allowing the sending of select codes for the control

of devices other than the printer. This mode is aiso used by the

7% 4% 36

14 43 %)
1 l 2 | 3
Sra l-u‘s A;s:;nab/j Stack For up bo Luere
W
(see beo) or deio&j Chars (moj/’ r‘CCCnf’

I'n /Dosi')-l'on l)

ConNsoLe BUFFER ForRMAT
(one 60 biF bu FEer per con;o/g)

o0 -~ _clear"‘—
o) - inpu
Skakus o - oup}pu!—

it - oukpuk (slaecfa/)

End of message Flag

AHtention Flag — _Number of charackers
/— v

in bufFer.
v '
59 5:' 27‘9:‘55'.54’{3 52'5(50 4] A% (
Unusged _ 0= rnpuktin 3
{/ = o';;;pu#f;?y Addihona’
SelF sludenkF processing Flavg stakus bits
When bufFer emplty (biks used by
36~-477 \7;\/: de/ay Frme) Ce;af'fa/
Message ASSGMb/y area ?rog/ram
Olssignco/ (area number Cui\ais, fm:
in bi'ks 36-47)

ForMAT fFor STATUS BiTs

Fig 1.6.3 Remote Console I/0 Buffer

16.

system for certain messages where the carriage return normally sent at
the end of a message before the keyboard is opened is not required.

1.7 THE CENTRAL PROGRAM.

The heart of the system is the program which runs in the
central processor, and controls all course presentation. A number of
tables are used to keep track of the activities of all students and
consoles in the system; the layout of the major tables is shown in
figure 1.7.1 .

Every student active at a console in the system has a
"student working record" which contains most of the information relevant
to his activity. This record may be resident in the central memory, or
stored on the disc in a fixed place which is a function of the console
number. During normal processing, this record consists of a header part,
containing pointers and counters, and a body which is a copy of the
current segment of the student's course (figure 1.7.2)

There are only a few central memory buffer areas for this
data, and in a full scale system a simpie scheduling algorithm would
determine which data records would be kept in core; however, since only
four consoles were actually built, this part of the system has not been
implemented, although the main mechanisms are present in the program:
every time the working record is altered, it is copied back onto its disc
area; most aiterations only involve the header, and if this is the case
only that part is copied - it is only a change of page which neccessitates
copying out the whole record. As a rough estimate, the console would not

again need processing for an average of about four seconds { this estimate

Unusged

$/1136
Core BuffFer Areas 1[
i
T.CBA 11135 P oNobe: he
Core Buffer Pornkers . si1ze$ of
T.CBRP 11655 4 Fhese I»z.bl’c?
Console Message are a‘“'?:’é
Ascem blv Areas parome
T. ASA]]065 ssembiy }
Console Message Agen,b{r J

T. 145 P /1 03.5— A’fea TPoinkers

Resident Cenkral
’Proé«f*mm.

ML OO O85522

Records BuffFer _l
RP.RCDB U045 20

OHLLO Dise Track Table

Congole I/o

bu Ffer
RP.RMTB 03460

Studenlr Shkabus

Tab'le
RP.S5T O2Hb0 =

Conscle Statlus

Table
RP.CST Clie0 “

Monitor Tables
ebe

Figure 1.7.1 CENTRAL MEMORY USAGE.

57 he

b 2

Cons Ole
number

Pege head
theremenk

Avnto Lengrn
{in looo:a's)

g
W Cor-aAB o Fl»e'e r;Aren:

‘..—-— =

Ll |
N

f——— permanently Fired inFormaklion—,

00 = Free
o) = assigned
10 = assigned - header

1] « assigned- body allered

A\ I Lockoul for dise fronsfer

allered

R

T.C8P Cort BurrFerR AREA PoiNTER
. o
—_ -

RPI.COE = 000 Skudent Code T
RPIr.NME= OO} $l—(udcn" Name s
o mox 30 chars
RPI.TNE = 004 hogin Time
RPITBI g 09;' Keyword Table
RPI.SIM= 006 Simulabor Table _
RPI.A@C = 007 Course Kocation Counker.| Area Header

RBI.ANS =010
RII.CUE=OTI
RPL. KCY € OTZ
RPI. PR =013
RPTI.LXAT =0 9
RPI.SCE - OIS
RPI.AC8 =0 35
LPL.CDL ¢« OS5S
RPI.CSE: 056
RPLCHN 5 O57
RrI., PN s 060

TLC8A

Answer Sequence Pesnker

Cue Sequenee Pornker

Aogeut Flag

[Problem Block Neme

Answer Lalency Time

Shudenk Colcounlankor
. Slore

Aukbhor Caleulator
Shire. :

Course Index Dise Addcess

Course pNeame

——

_g'h_upl'er Name Indea
Pagese MNome Inden

#Simulater Loe occc

Course Inskrackions

11

L

Core BurpeR AREA

Figure 1.7.2 CORE BUFFER AREA FORMATS.

17.

is based on the assumption that most courses involve mainly data to be
printed - a full block takes five seconds to print - and questions, which
might average five to ten seconds for an answer; this is counterballanced
by branch instructions, which take a negligible amount of time) so that
the overhead of possibly unneccessary transfers would not be high. The
existence of a very recent copy of this data in a fixed place on disc
would also facilitate recovery in the event of a failure.

A computer with the minimum 32K memory could run approximatel,
fifty consoles without requiring the swapping routine.

Only consoles with their data records in core are scheduled
for processing; each console which requires processing has a bit set in
its student status table entry (figure 1.7.3) together with the time
(in seconds) at which it should be processed. This allows delay times
and maximum times for questions to be set by a course. On each cycle of
its processing loop (figure 1.7.4) the program selects from all the
consoles requiring processing at the current time the most urgent, and
handles it.

A console which is not logged in does not have an associated
data record, and so if there is no console to be processed, a second
phase is entered, checking for any inactive console with a message ready;
such an input message should be a command word - probably #LOGIN, aithough
a few other commands are available to an inactive console, including a
request for the console status. The processing sequence is shown in
figure 1.7.5 . In a sWapping version, this second phase of the master

loop would also attempt to scheduie a console to have its record read

kv 24 ig o
H =) =3 - L7 7 7] - P
Dys¢ Backng sShore (// 1 Core BuFfer Area
\ L Addriss jff,/‘y,// Peinler Address
\—)= console achve

(0000 = noFin cere)
RP.C35T Consont STATVS TABLE
This lable shows y here ir'nformakion
relevant }o the console |18 skpred.

Noke dise addressts are- ass:‘gned a}-
assemm b{_y Fime . :

49 3é 1g o
Tulor Consvle|llessage Aree Time For next
Number ‘ N Number Processina

59 \1 I

55 4¢
e p v

: : \ : /ogaul’ F‘/aj.
tubsr mode

processing Login (bik 55 seF For selecking
t < =
‘ Oubput messagc a’e/t}'ed (duc: :Ds c.émp.re!':'on
Inpu t message ready

of on Inpulk msg.)
Pro cessing Y“-?ufred F/ag

RP.SST STUPENT STATUS TABAE

This Fable grives details of the
ackivity of the shudenk al Fhe
console.

Figure 1.7.3 MASTER STATUS TABLE FORMATS.

Process

/_completed %
dise

trans Fers

Proccs_s
Monibor Fns.

and consple
\ T/Oo. J
PRI

|

Prepare fo scan
Core ‘aréas

}
|
|
|
.'

Fekch core

bafFfer
pornkler

55!" v one I

| Processect.

Figure 1.7.4 (a) RESIDENT CENTRAL PROGRAM.

_/ﬂ‘ Process
[Adhive ; | >

\ Consolg /

L PR

Process
compleled
disc

trons Fers

Pre pare to
scon ol
tonsoles

Felceh
console
stedus
el

Process
Inackiyve
Conscle

Process
Inactive Cons

inpuF
message

No
Selech Clenr all
command associalked
Pbo cessd Et‘?of
commaond message
N
V_

bn

z> ML.og

Figure 1.7.5 PROCESSING SEQUENCE -.Active Console.

18.

back into memory, where it could then be processed.

As well as course instructions, the completion of an output
message can cause a request for processing to be set, thus placing the
console in the queue for a core area and eventual processing. The
processing sequence is shown in figure 1.7.6 ; note that the term
"active console" includes a console whose initial request for a login
has been acknowledged, and also one on the verge of being logged out.

Since it is possible for a student to complete an input
message after the system has scheduled an output message for the console,
but before the message has been sent, special care is taken to restore
the status of the console should this happen, so that it does not lead
to anomalous results. An input message which is only partially completed,
however, is simply deleted when output is scheduled.

The processing sequence also contains a test for "tutor
mode", which permits two consoles to carry on a conversation through their
typewriters, the central program simply acting as a message exchange.

This was the first step towards implementing the supervisor facilities,
which are not fully present in the current system.

A11 console messages are stored in the console code, using
cne twelve bit byte per character; a message unit may be up to eighty
characters long, and consists of a header, showing the Tength of the
message, whether it is to be sent in normal or special mode, and what is
to be done on completion, and a body which contains the console characters
completion actions may include selecting input mode on the console, and

reguesting processing of the console with a delay of as much as an hour.

PRAC .

| L\ PRAC.0O6
| (Fig L26¢)

gou k-
fo process
4

Process ;
Aclive Consele

Yes

‘Feleh COurseE,
L §imulabor '

: pqmme!—er‘si e
g . Resel | !/ Process

inskruckion o \
sequence ' logout, /
eounker /
Simu Ia}'e\ i

'nsFruckion
sequence
| TS

P i)

ML.OQ
Resep =
,.___<E FESPGW
flag

S > (5\’3 16 b)

Figure 1.7.6 {a) PROCESSING SEQUENCE - Active Console.

febch 'cansofe

1 command
Fable address

Process
Command

Werd.

Evaluate answer
|a|’encg. Sel-

parameéters fFor
answer pracessing

Simulate
inskruclkion
sequence

Rejens e
rmpul

messad e/
areaq,

Redireck
;‘npuf' msg

fo ascociaked

console

alfow for
Command.

A4

Figure 1.7.6 (b) PROCESSING SEQUENCE - Active Console (cont).

>

i%
this firsk

Yes

enfr
n?g

Expand
message

requesk
i to

hurr:j wp.

clear

Stakus
code

Yes

(- console -

PRAC.0b (5ign-on Process)

was

99in code

valid
7

/ messagqe
Jout ko

code nokt
\ registered

set console
(inackive

Y

fetch course
name from

sel command|
param ekers

<

Proces s
command

Figure 1.7.6 (c)

\another

fo seleck

coyursi e

seleck a

PROCESSING SEQUENCE - Active Console (cont).

Re fo rma o
student qrea,
tSeluyp a
CHAPTER
I‘hekruchion

Bimulate
inskruckion
S'eq yenee

clea¢
processing
requesk.

Tell the
student ke

has made
it

clear
stalus
cade

Figure 1.7.6 (d) PROCESSING SEQUENCE - Active Console (cont).

19.

An output message may consist of several units, but input messages are
automatically terminated on the eightieth character.

A1l messages, both input and output, are stored in the
message assembly areas (figure 1.7.7). When a new input message is
started, it is assigned one of these assembly areas, and characters are
moved from the I/0 buffer into it; if no area is available, the console
buffer can hold the first three characters, after which the keyboard will
lock until an assembly area is found. Editing of the input line is done
by the central program as it copies characters from the buffer to the
assembly area. On completion of the input message, the console is
scheduled for immediate processing.

The formats of input and output messages are identical;
by simply setting a few bits in the header, an input message immediately
becomes an output messagedestined for another console. System messages
are stored in the same format, and are simply copied into an assembly
area with the appropriate console number preset in the header; the same
is true of text from any course.

When input messages are being processed, they are first
copied into a dual buffer area, where they are stored one character per
word; one area holds the original console code, and the second holds a
display code (the standard 6400 internal character-code) translation.
The display code version also includes some additional bits to indicate
whether the code is alphabetic, numeric, or punctuation; most processing

1s done using this code because it does not involve case changes.

e s 24 24 _ 12 o
skalus | Delay Time| Console no|/nput Point Outpu - Pointef

\aa

59 5b
f %,,,,“,,9, e il

\—5el— deay on oulpal
compleHon .

Spécfal mode onkpuk
56’80!’ J'ﬂpu." or com‘_,-jfc/-':on
Console bufFFer np}\]ita"je}

Area assigne d

TASP [EssAGE Asseriziy AReA FoINTeR

Note: Inpub g Oulput poinkers give word and
shift counks relobive ko Fhe shart of rhe
Siakeen word message area (wiFh a capaci by
of lbxs =90 chars). Formak [s such thal
i the console no. is resel jpn brds 24735,
and biF s8¢ sel, an fnpulk message may be
duPom-cha/Ly redirecked fo ancther console.

Fige 1.7.7. MESSAGE ASSEMBLY AREA.

20.

1.8 COMMAND PROCESSING.

Commands are recognised by the initial character # ; this
overcomes possible problems due to either conflict between command words
and responses to questions, or misspelling of a command. The set of
commands available to any console isdefined by a table whose address is
stored in the header of the student working record; thus author language
statements to restrict the range of available commands could be readily
implemented.

The table entries are to the addresses of subroutines;
each subroutine contains the command name and the code to process it.

The input line, from the character after the # up to (but not including)
the first non-alphanumeric, is compared with the command name, and the
routine is entered if they match; this mechanism permits commands to

be abbreviated to any desired extent, the order of the table entries
defining which will be used if the resulting abbreviation is not unique.

Most commands leave the console idle - that is with no
further processing scheduled - so that it is up to the student to initiate
further action; the major exception to this is the #G0 command. Other

commands available include:
#5TOP which is a do-nothing command.

#STATUS which is in fact three separate commands (one
for each of console free, being logged in, and
active.) and returns the appropriate staus

message.

#LOCATE

#COMPUTE

1.9 COURSE PROCESSING.

21.

enabling named chapters and pages within a
course to be selected, as an author aid and

for debugging purposes.

giving the student access to a powerful desk
calculator with his own set of sixteen registers;
the first register, named $, contains the result
of the last calculation, and the others, named
A to @, may be used freely to hold results.
Calculation is all in floating point, with an
INT function permitting integer values to be
obtained.

A=B+2*(INT(C/D)+3.24)

A=B=C=D=E+F

3+4*(B=C)
are typical expressions for evaluation. The

registers are saved from session to session.

as well as, of course, #LOGOUT and #LOGIN.

A course is divided into a maximum of sixtyfour chapters,

typing on a console.

each with up to sixtyfour pages. A page may, in its assembled form, be
as long as four hundred and sixty (decimal) words; a page consisting

solely of text could contain up to two thousand characters of data for

The course assembler codes the instructions and writes the

22.

result on tape; this process is essentially one-for-one - that is, one
author language instruction results in one course simulator instruction -
with the exception of text, where a single block of text in the source
may become several units in the coded form. The tape is copied by the
system into a random file on the disc; this file is given the name of
the course; each chapter has an index giving the name and location of
every page within it, while every chapter is named, and the location of
its index is given, in an overall course directory. Memory space being
limited, these indices are stored with the course on disc.

The course instructions are processed by a simulator which
breaks up each instruction into its constituent fields (figure 1.9.1)
and branches to the operating code. The address of the branching table
to be used is a parameter to the simulator, and is stored in the header
of the student working record, thus permitting the use of several quite
distinct languages within the system, although only cne has been implemen-
ted.

The conventions for the use of the instruction fields are
shown at the top of figure 1.9.1 ; a non-zero modifier usually indicates
that a request for further processing is to be set, with a delay as
given in the delay field, while a zero modifier indicates that further
processing is to be undertaken only on a response from the console.

The simulator uses a location counterstored in the header of the student
working record; this is normally set from the "next instruction" field.
A1l addressing is done relative to the start of the page; the first

word contains the page name, and the first actual instruction in the

5y 4g 3¢ 24 iz e}

N N

¥ \ \ i L ——e > -
\ L Next rnstruckion.
Alternake ivskruckron.
Unused far' mosk operaktions

Deloy FMime (seconds)
tnskruckron mod:fFrer
Operakion cocle

TyrPicak Course OPERATION FormAT

TEXT
ol Nex F _H
§ QOO |delay ©goo |daka . | 0000 \}
L : , for E.O0.M. =
e fiela '{'2%% F:: spicia!. Conssele Code I
T 1 sel regquest (B0 chars max) /'I
k/
ANSWER
03 mode Corref_l- ;‘s;\i’gl
A
= Comparison ONSWEr iR
T (end\: on nuil), ; T
==
PACE (nole:some Formal used For
NEXT CHAPTER, BLOCK, RECORD)
o5 PACE NANMg
CHAPTER
06 PACE NANE
CHAPTER MNAIME
COMPUTE
16 .:\"l?d!’t Allerncte Nex ¥ =
1
== Expression (ends on null) p—t i
> A
&

Fig 1.9.1 COURSE INSTRUCTION FORMATS.

35

page is at address 0001 .

are:

00

01

02

03

04

The instructions and their actions during normal processing

SIGN OFF
The console is immediately logged out. At the next session,

the student will recommence at the start of the current page.

TEXT

Immediately after the instruction is a message header word,
followed by a block of console code. This is copied into a
message assembly area, and the console number set into the

header. No processing request is set, although the message

header may cause one to be set after the data has been typed.

CUE

A question mark is typed at the start of a new line on the
console, and a flag is set to show that a response has been
requegted. The "next instruction” field points to the first
answer supplied by the author. The Tocation counter is

incremented by one.

ANSWER
The location counter is set from the "alternate instruction
field, and the next instruction is processed immediately.

This is equivaient to ignoring the instruction.

BRANCH

This is a branch within the current page. If the "spare"

05

06

07

10

24.

field is non-zero, a record is made of the student's current
position. This instruction may be a genuine branch, a pause,

or simply a no-operation.

PAGE

This is a branch to a page within the current chapter. The

Tow order thirtysix bits of the instruction contain the page
name, left justified and in display code; if this is zero,

the next page after the current one is required. Processing
of the console will continue with the location counter reset
to the start of the page as soon as the disc transfer is

completed.

CHAPTER
Similar to the PAGE instruction; the chapter name is in the
word immediately after the instruction. A zero page name

indicates the first page of the chapter.

GIVECUE

This instruction is only valid after a question has been
asked and answered. If the modifier is zero, it causes a
branch back to the last CUE instruction issued; a non-zero
modifier causes a branch to the instruction immediately after

the CUE. The next instruction is processed immediately.

TUTOR
This instruction was intended to enable a course author to

assign the student tc a tutor or supervisor, and to send the

11

12

13

14

15

25.

tutor an explanatory message. It currently acts as a TEXT

instruction.

DEVICE

This is currently a dummy, as consoles do not contain any
special devices. Note that text instructions could also be
used to control special devices; the additional instruction

would have been a more compact way of storing the commands.

BLOCK

This instruction sets a block name (from its lower thirty-
six bits) and recording mode (from the modifier field)
for the recording of answers. The location counter is
incremented by one, and the next instruction obeyed

immediately.

RECORD
A record of the student's position and time, including an
identifier from the Tow thirtysix bits of the instruction,

is made. The location counter is incremented by one.

CUE
This is equivaient to the 02 CUE instruction, except that
a W is printed instead of a question mark; it is used in

the WAIT instruction in the author language.

NEXT CHAPTER

Similar in format to a PAGE instruction, the given page is

16

17

20

26.

taken from the chapter following the current one:

COMPUTE

This instruction permits an expression to be evaluated, and
a branch to be made on the result. The expression is stored
in display code, ending on a zero (null) code, immediately
after the instruction. The author has a set of sixteen
registers (see student command #COMPUTE) which are saved
from session to session. The result can be compared with
zero in any of the six possible ways, depending on the
contents of the modifier field, and either the next or
alternate branch taken; a zero modifier means that no test
is to be made. The calculator routine uses an algorithm
suggested by Sanderson (private communication), and permits
operations of assignment, addition and subtraction, and
multiplication and division, as well as functions of one

or two variables.

END
The student has completed the course; he is signed off,
with an indication in the sign-off record that he should be

deregistered for this course.

ERROR MESSAGE
This code is used by the disc driver to indicate a non-
existent course segment; it sets the logout flag and acts

as a text.

27.

A1l other instruction codes are illegal, and result in a
request to the student to logout of the system. Note that in instruction
execution, normally only one instruction is executed at a time; even a
simple branch with zero delay does not cause the next instruction to be
obeyed immediately; the request flag is set, and the console re-enters
the queue for processing. Exceptions to this rule are the ANSWER, BLOCK,
and GIVECUE instructions.

When the student responds to a question, the instruction
codes have a different significance (achieved quite simply by using a
different instruction table). The current location counter is saved to
permit possible later processing of.a GIVECUE instruction, and a new value
set which was the "next instruction" field of the CUE. At this stage the
student response has been expanded out and converted into display code.
Each answer points to the next one in sequence via its "next instruction"
field, and to the next instruction to be executed when a match is made
via its "alternate instruction" field; the answer for comparison (if
there is one) is stored after the ANSWER instruction.

Simulation proceeds with any instruction except an ANSWER
being illegal; each ANSWER in turn is compared with the student's
response, the method of comparison being determined by the modifier field;
1f there is no match, the instruction addressed by the "hext instruction”
field is processed immediately. The last ANSWER instruction has a zero
"next instruction" field, and if that one does not match, the system
responds with the message "incorrect.", and simulates a GIVECUE instruct-

ion; the message is suppressed if the student response was a null line,

PAGE,T34A.
Let us find out how much you know about the structure

of English sentences.
PROBLEM (M=3) NAME
What is the subject of the sentence
"The old man sat on the bench."

rEhE (T=40)
!

what? is spoken about.
CUE (T=30)

The subject of a sentence is found by asking who? or

Who sat on the bench?

Cue Sequence

EXPLAIN.
The subject of the sentence is "The old man", because

this answers the question "Who sat on the bench?"
Let us try some more examples on this.
| GO TO PAGE (T27A) '

ANSWER (M=2) *THE OLD MAN*
That is correct.
GOTO PAGE (*)
ANSWER (M=2) *MAN*
ANSWER (M=2) *THEMAN*OLDMAN*
You are nearly correct, but that is not the complete

subject. Now tell me the whole subject.
WAITCUE.
ANSWER (M=2) $THEBENCH$BENCH$
No, that is part of what is said about the subject.
ANSWER, #NO# :
GIVECUE.

Answer Sequence

! ENDANS (M=0)
_ How about a Tittle hint to help you.
| GIVECUE.

Figure 1.9.2 A SAMPLE PAGE FROM A COURSE.

Cue Sequence

Answer Sequence

o000
ool

o23%

oko
oAl

ob3
Ob4

10b

to1

131

194
1585

157

2014
202,

204

|

T3A A
o | oo}
Teal Block \
o1 | 0040
Texl Block v
12103 NAME
ol ©CC63
Text Block
o2l 0V | oos50 o555
ol ' 0106
Text+ Blodk
OAlO1l | Qo036 ols55
ol o113
Text Blodk
AL i00 Ciss
ol O!54
Tex b Block
05| T27A
03 02 ois7t 210
Answer for comparison
o] Q204
TJext Bicek
05
03 0% o204 0104
Comparison Answer
0% O 206 o206
—AA
Fig 1.9.3 AN ASSEMBLED PAGE.
(see Fig 1.9.2 for source code.)

PAGE

\ TEXT
p

PROBLENM
CUE (T=40)
CUE (T=30)

EAPLALN

PACE
ANSWER

NEXT PACE
ANSWER

Answef

28.

thus giving him a convenient means of asking for any help that the author
has provided. If an answer is matched, the location counter is set from
the “"alternate instruction" field, and a.request for (normal) processing
entered.

Various forms of recording are possible, including recording
of the student's complete answer, or simply the number of the answer that
was matched, depending on the mode set up by the last BLOCK instruction.

Currently, only a few modes af answer comparison have been
implemented; mode zero will match any input, and other modes are based
on character-by-character comparisons, with various classes of characters
being ignored. There is provision, however, for over fifty further answer
comparison modes; it would be particularly simple, for example, to
evaluate the student's answer as an expression, and compare the result
within specified limits, using the desk calculator, and many further
possibilities could be implementedwith varying degrees of difficulty.
Further types of instructions, for example to allow editing or transform-
ing the student's response, could also be permitted to appear in the
ANSWER seguence.

1.10 LOGIN, LOGOUT, AND RECORDS.

When a student uses the #LOGIN command, he is assigned a
core area, and the login processor is called into a PP to search the
student master tape.

The student master tape consists of one or more files, each
commencing with an index record and ending on a file mark. The second

character of the student's five character registraticn code designates

29.

the file in which the entry should appear. This format permits the use

of the hardware "sense for file mark" operation available on the tape
transport, thus enabling the record to be located very quickly within a
Targe number of records. As a rough estimate, a single tape could be used
for approximately four thousand student records. Although there could be
up to thirtysix files, with up to five hundred and ten records per file,

a reascnable compromise might be twenty files of up to two hundred records
each.

The format of the student master record is shown in figure
1.10.1 . The short header contains the student's code, his name, two
words which might be total time used and time not yet paid for (they are
reserved for accounting purposes, and not referenced by the system),
the student's block of sixteen calculator registers, and a status word
which contains the number of courses for which the student is registered.
A student may not be registered for more than twentythree courses; this
limitation is required by the restricted length of the core area into
which the record is copied. The status word would also indicate whether
the record was that of a student, author, or supervisor. Following the
header is a block for each course, containing course name, current positior
and the contents of the author calculator registers.

When the central program makes the request to copy this
material, it sets the lockout flag on the core buffer area pointer (see
figure 1.7.2); on completion of the transfer, this is cleared, enabling
the console to enter the queue for servicing; notethat it is now consider-

ed to be "active" in the system.

oco

StudenF Code

ool

Student name
(mox 30 chars)

Reserved For accpun}-l'nj'

MRSCB = 006

Student Calcuiaker
Store (16,0 words)

MR.STS = 02b

e of shudent. No of Courses

Record Header 5

000 | Course Name
00! | Chaptler
002 | Puge

Reserved for actounting

CR_ACB = 005

i
i

Aubhor Calculator
slore (16,, Words)
%
Other course units
Cmax L3 courses

ol) 1

Uik]
o5

Course
LC RC

-

Fig 1.10.1 STUDENT MASTER RECORD FORMAT.

30.

If the student code is not present on the tape, the peripheral
program clears the first word of the core area, and clears the lockout;
sensing this, the central program responds to the console with the approp-
riate message, and sets it idle again.

When a course has been selected, either because it is the
only one for which the student is registered, or because the student makes
a choice of those for which he is registered, the record is rearranged
into the format shown in the buffer area in figure 1.7.2 . Note that the
course selection is checked for availability before acceptance, and that
the student may logout if the course he wants is not available in the
system. A PAGE instruction is inserted in the empty body of the buffer
area, and the course simulator entered; on return from the simulator,
the normal request for immediate processing (which would take effect as
soon as the transfer were complete) is cleared, and a message indicating
successful completion of the Togin is sent; this pause gives the student
a chance to request help before continuing with the course. For account-
ing purposes, the time spent on the console from the insertion of the
PAGE instruction is recorded; no record is thus made of a student who
logs in but does not select a course.

Whenever a request for recording is encountered, the record
is entered into a wrap-around buffer in central memory. The format of an
entry is shown in figure 1.10.2 ; for simple position records (see
section 1.9, operations 04 and 13) the record is six words long; if an
answer match number (the position of the matching answer in the ANSWER

sequence , zero indicating no match) is recorded, the record is eight

T Record Size (lguwords mog
Qe po
fg Trme (HH.Mr1.53) | ot
< Studenk Code !00 o™
3 ' Ve |- © D
o Course Mamc¢ | }j v o
3 e " P2V &
&3 1 Blotk: Nome i _ P >
i Reecord type ! L

[T takeney Fime |

CMatkeh nomber |

Aol-u"’o_@i respon s¢
{in console code,
seeFormat below)

= 4

[type 3 reword only]
Record Typesi 00 =. position (from €4T8)
e Lt O [='_;90-séfh'b3w (From Recornj

02 = makh number only
03 = enswer record.
58 49 42 - as‘ 22 a8 oy i o)
3 I, T) T o T T ERE g
L L - k I i i L .'s Lk i}

_ | Max eighbcodes of seven biks edch
Neo' cf codes (f-g) shored. '

ForMat Fok 5TORING RESPONSE

Fig 1.10:2 STATISTICS RECORD FORMAT.

31L.

words long; for recording of an entire response, the record could be up
to eighteen words long, the response being recordedin the original console
code packed eight characters to a word.

A peripheral program periodically empties the buffer onto
magnetic tape; no interlocking with the central program is needed, as the
output and input pointers to the buffer are stored separately, and the
central program only updates its input pointer after the record has been
stored. The peripheral program is called by the central program if the
buffer becomes more than half full, and on completion of its task it
requests to monitor to reload it after approximately 15 seconds; if this
is not adequate to keep the buffer relatively clear, the central program
will call it again, thus giving an effective clearance of eight times per
minute, and so on.

A logout can be initiated by the student using the #LOGOUT
command, by aninstruction in the course, or by an error in the course.

It will have been noticed that when a student signs on, he is restarted
at the beginning of a page; this enables courses to be modified, with
very few limitations, without interfering with students part way through
it:; Tlocations within the page will be changed, but the page and chapter
names are allways referred to symbollically.

Because the student will recommence at the start of a page,
it is desireable that he sign-off at the end of a page, to avoid repeating
a portion of it. Thus when the student requests a logout, it is not
processed immediately, but a flag is set, and he is invited to continue

with the current page. Should he not wish to do so, he has the option

32.

of forcing the logout by repeating the command (or of changing his mind
by using an #UNLOGOUT command). When any instruction which changes the
page is encountered, the page access is processed, and the logout bit set
in the student status table entry; this results in the logout being
processed when the access is completed.

Course logout instructions are processed immediately; the
student recommences at the start of the current page. Course errors
cause the logout flag to be set, and a message requesting the student to
Togout is sent; because the flag is set, the logout will be processed
immediately. Course errors are also displayed on the operator console;
they should only occur if warning messages from the course assembler are
ignored.

The logout is processed by clearing the status tables and
calling in a PP program which dumps the header of the core buffer area
onto a tape. The format of the resulting record is shown in figure
1.10.3 . The program then clears the reservation of the buffer area,
and the Togout is complete.

Since logout records and statistics records may be readily
distinguished by the contents of their first word, the two may be inter-
spersed on a single tape; this could be improved by having the central
program process the logout by entering the relevant data directly into
the records buffer. Several interchangeable disc packs have since been
added to the computer, and an alternative would be to have the student
records on disc packs, updated immediately on logout; the present method

could be readily adapted to this.

000 | STUDENT CODE
o0l Skudent Nainc 1|
|
. i
004 | TIME spenkin system (secs)|
A g, ;
'_‘:,-/’/; 7 - " -~ | ../.-/. /:
94 : Skudent Calcn a-or |
I shore.
|
o35 | } _ |
Author Caleulebar
Shore.
??: : 1ézzgf§{;;:a;{‘_ e
056 | COURSE _NAME ;
05T | CHAPTER NANE i
040 |PAcE NAME !

Fig 1.10.3 LOGOUT RECORD FORMAT.

33;

1.11 SUMMARY.

The Adelaide University C.A.I. system is by current standards
a medium scale system offering Timited facilities at considerable expense.
However, at the time of its design and implementation, it was, by compar-
ison with other available systems, quite large.

It was estimated (by Ovenstone, the project supervisor) that
the system could be run for approximately $1 per student-console hour,
although this figure does not include the not inconsiderable cost of
course preparation.

Many of the decisjons made during the design phase have
inevitably imposed restrictions on the resulting systme, but it is never-

the-less a powerful and flexible approach to C.A.I.

34.

THE ANSWER COMPARISON PROBLEM.

2.0 INTRODUCTION.

The correct matching of an actual student response to a
question with one of the answers specified by the course author is
clearly the central problem in free response Computer-Assisted-
Instruction. In order to deal with this problem it is first necessary
to state it clearly and in a geéneral form.

In this section, we will examine briefly some methods
currently in use, and propose a general statement of the problem,

together with some examples to illustrate it.

2.1 CURRENT METHODS OF ANSWER COMPARISON.

Teaching programmes have traditionally taken one of two
forms, the linear or the branching programme.

In the linear teaching programme, the student is permitted
to construct his own response to the question given, and then compare this
with the correct one supplied by the course author. The result of this
comparison has no effect on the subsequent presentation of the programme.
Because of this, answer matching in computer implementations of linear
teaching sequences is not critical, especially as a well constructed
frame will usually permit only on correct answer.

The branching programme traditionally uses multiple choice
questions, and once again there is 1ittle difficulty in a computer
system; it is only necessary to decide whether the student responded

with A, B, C, or D.

35.

However, it is often desireable to allow the student
freedom in contructing his own answer, and it is then necessary to
decide which of several branches provided by the course author should
be followed. In this situation, it is reasonable to give the author
the responsibility of anticipating the import of all relevant responses,
but it is not always reasonable to require him to anticipate the exact
form which the responses will take, and this poses the major problem in
the matching process.

The simplest, and almost certainly the most widely used
method is that of character-by-character comparison. In its basic form
even a single unexpected space or comma will cause an unwarranted
failure in comparison and so the method is usually modified so that
only the "important" characters are compared, the others being passed
over: thus, for example, by ignoring punctuation, vowels, and the
second letter of a double consonant, some measure of independence from
misspellings can be attained.

An elaboration of this allows for possible missing or
erroneously introduced characters: the two character strings being
compared are scanned to find the maximum possible number of matching
characters, and a score which is the ratio of this to the number of
characters in the longer string is compared with a threshold value
to determine acceptance. This method, which is about as sophisticated
as a character-by-character comparison can be, will be discussed in

more detail in a later section.

36.

‘A paper by C. N. Alberga ([1] , 1967) discusses these and
related methods of comparison of character strings.

However, while it is possible to improve the technique of
character-by-character matching, it is not possible to alter the basic
requirements that the student must have attempted to reply with the
same words or symbols in the same order for matching to succeed,
whereas. the course author is usually more interested in the meaning
of the response than its form.

Some work has been done on the equivalence of mathematical
formulae, and in particular the work of K.C. Lee (6], 1971) on

trigonometric proof supervision goes well beyond the minimum requirement
of being based on meaning. For natural language answers, however, the

selection of keywords from the response js the best available method.
When several classes of words are permitted, this method can cope with
many cases of synonymy, antonymy and negation and so is to a large extent
based on meaning.

It can be seen that answer comparison has used ad hoc

methods in the past, with little attempt to form a unified basis for the
development of new methods; as a new situation arises, a special method

which gives satisfactory results in most cases is developed.

2.2 A STATEMENT OF THE PROBLEM.

An experimental system designed by R.D. Smallwood ([34}
1962, see in particular page 89) used a method which highlights the

nature of the problem. The student was presented with a question, and

37

permitted to constuct a response. When this was completed, he was

presented with a set of alternatives, and asked to choose the one which

most nearly matched the meaning of his answer. Since one of the altern-

atives was always a tatch all", an explicit choice was always possible,
and the student them entered the number of the matching alternative.
This system thus used a human to carry out the answer
matching process; the fact that the human so used was the actual student
is irrelevant, as it would be possible to refer the comparison to an
independent person. It is apparent that, if this arbitrator is honest,
accurate, and familijar with any special terms or symbols used, any answer
could be processed in this way.
Using this as a basis, we may state the problem of answer
comparison in general terms:
Given the finite set S = {S;, S5, ...Sk}
(the reference set) of strings in some language,
the answer comparison problem is, for an arbitrary
string s (the response), to determine;
1. to which of the strings of S the string
s is closest in meaning.
2. whether the degree of closeness in meaning
indicates a significant relationship between
the strings.
A string may, in the most general sense be considered to be
the ordered sequence of actions, as perceived by the computer, which

constitute the student's response; in a more restricted sense, it may

38.

be convenient to consider it to be a sequence of characters, or even
words, being processed. More precise definitions of some of the terms
used in this statement will be given in later sections; at the present
stage, intuitive notions of such terms as "language" or "meaning" will
suffice.

If the string s is closest in meaning to some string S;
of the reference set, and the degree of closeness is significant, we
shall say that the response matches S;. If it is not significant, we
shall say that s has no match in the reference set. If the response
is not in the language from which the reference set is chosen, and in
which we assume the arbitrator to be proficient, it would normally be
defined to have no match.

The current work will be mainly concerned with the first
part of the problem, namely the selection of the string "closest in

meaning" to the given string.

2.3 EXAMPLES AND DISCUSSION.

We take a first example, a very simple case where the
difference in meaning may be explicitly defined. The language is the
set of real numbers, and we can define the difference in meaning between
two real numbers x and y to be |[x-y| Two numbers will be considered to
be significantly related if this does not exceed 0.1.

Let the reference set be

{1.5, 1.7, 2.1, 2.3}
and consider first the response 1.63 which is clearly closest in meaning

to 1.7 and since

39.

|1.63 - 1.7] = 0.07 < 0.1
we see that this is significant so that the response 1.63 matches 1.7
A response of 1.85 is also closest to 1.7, but
|1.85 - 1.7| = 0.15 >0.1
so that 1.85 has no match in the given reference set. Similarly,a
response of -231, although closest to 1.5 has no match. This illustrates
the need for the second part of the general statement.

A response such as 'x + y/z' poses a problem in that the
definitions of difference in meaning and the significance of the
relationship no longer apply. However, the problem is easily dealt
with by rejection - the response is not in the language being dealt with.

Another problem case is the response 1.6, which is seen to
match both 1.5 and 1.7. In a practical situation, this would usually be
resolved by taking the one which appears first in the reference set.

The work of K.C. Lee ([16] , 1971, see especially chapters
IV and V) on trigonometric proofs can also be related to this statement

of the answer comparison problem; in this case the reference set contains
only one string, the result of the previous step in the proof, and the
response is the proposed next step. His concept of a small step correspond
to the idea of significance of the relationship. This could be extended by
including in the reference set anticipated incorrect steps to give the
student help in the nature of his error on an incorrect step.

As a Tast example, we turn to the English language, and

consider possible answers to the question "What is an enzyme?". For

A. An enzyme is a catalyst in a biological

system.
B. An enzyme is a catalyst in a biochemical
reaction.
C. An enzyme acts as a catalyst.
D. An enzyme speeds up a biochemical reaction.
E. Enzymes are formed in biochemical reactions.

F. Many reactions would not take place

without enzymes.

TABLE 2.3,1 A reference set for the Question -

"What is an Enzyme?"

40.

our reference set, we take the strings shown in table 2.3,1.

Let:ds\First supbése fhat the question is presented as a
multiple choice one, with the six choices in the table presented to the
student and labelled A, B, C, D, E and F. In this case a response of
A clearly matches the first string, while a response of G has no match.

However, presenting the question in that form would perhaps
give the student too much assistance in forming his answer and it might
be considered desirab]e to allow the student to construct his answer
and then match it against the original strings. Then if his response is

An enzyme is a catalyst.
it would normally be considered closest in meaning to the third string
in the reference set, with a significant degree of closeness, while a
response of

A catalyst acts as an enzyme
might also be closest in meaning to the third string but this would not

be considered significant.

2.4 SUMMARY

We have seen in this section how it is possible to formulate
the answer comparison problem in general terms. The statement is
adequate to cover both the simple multiple choice situation and the more
complex case of a freely constructed response.

We are now faced with the more formidable task of

formulating the solution to the problem.

41.

WHAT IS MEANING

3.0 INTRODUCTION.

Everyone knows what the word "meaning” means, but a closer
examination shows that the situation is not as simple as it may appear
at first; in fact there are so many definitions of meaning that to
attempt to 1ist them all would be unpractical. The classic study of the

subject,0gden and Richards The Meaning of Meaning,1ists at Teast

sixteen fundamentally distinct definitions ([23], 1923, p306) and more
recent avenues of research have almost certainly added several more.
Osgood, Succi and Tannenbaum in discussing the approach

used in The Measurement of Meaning state

There are at least as many meanings of

meaning" as there are diciplines to deal

with language and of course many more than

this. ([261, 1957, p2)
This does point to one major aspect of the problem; language is a very
complex form of behaviour and there are many ways of approaching its variot
aspects; proponents of each approach have tended to use familiar terms
and give them more specialised meanings, as has occurred in most other
areas of scientific endeavour. However, with many related avenues of
approach to language, each with its own terminology, there has been
an almost irresistable temptation to 1ink the distinct meanings of
one word, and eventually to confuse them. This accounts for much of
the confusion in the use of the term "meaning" and in order to clarify

the problem we will examine briefly some of the different approaches

42.

that can be made to the study of language with a view to selecting an
appropriate working definition of "meaning".

There is another aspect of the problem which stems from a
quite different source, and it is worth a brief mention here. An
utterance is processed by a listener at several levels; thus Miller
(18], 1968, pp72-74) differentiates hearing, matching, accepting,
interpreting, understanding and believing. Many of the approaches to
language are distinct because they are primarily concerned with different
levels of processing, and certainly when discussing meaning it is possible
to discuss it at several distinct levels in this hierarchy (irrespective
of whether such hierarchy is real in the sense of being distinct and
distinguishable processes in the human listener or not). The study by
Osgood, Succi and Tannenbaum (op. cit) used factor analysis and found
that "meaning" could be accounted for by three independent factors and
in commenting on this, Osgood states:

It should be stressed that these regularly reproducible

factors seem to represent the most generalisable and

gross representational processes of the human animal...

not the precise denotative discriminations of which

this animal is capable. The aspect of the meaning of

signs indexed by this technique is thus more their

affect, connotation or "feeling tone" than their

denotative or referential properties.

(@51, 1963, p271)

43.

Thus we may also anticipate that some definitions of meaning will differ
chiefly because they place major emphasis on different facets of the
same idea. This corresponds to the different criteria which a person
might use in comparing different groups of statements; for one group,
the chief criterion might be the refernential meaning, for another, the
structure, for a third the metre, for a fourth the implications and so
on. To claim that the problem is solely one of different disciplines
working in the same general area would be a gross oversimplification.

With this reservation in mind, we consider some of the
approaches which have been made to the study of language.

3.1 STRUCTURAL LINGUISTICS.

Linguistics is a descriptive science. It describes

the code of any language, the set of distinctions

that differentiate alternative messages... The Tinguist

. is never concerned with what things mean in a
referential sense.
(Osgood, [251, 1963, p261)

For many Tlinguists, the "meaning" of a unit is
simply the amount of information it gives about the structure as a whole;
thus Martin Joos defines ‘the meaning of a morpheme as;

the set of conditional probabilities of its

occurrence in context with all other morphemes.

([141, 1958)

and this has been the basis of a number of statistical studies

44,

(Rubenstein and Goodenough, [31], 1965; Lewis, Baxendale and Bennett [17]
1967) which have shown correlations between these probabilities and the
synonymy/antonymy relationship which is one aspect of referential
meaning. Such studies illustrate the tendency to generalise very precise
definitions of the term "meaning" outside of their field of applicability;
Joos definition, which is essentially based on the concepts of the
Mathematical Theory of Communication (Information Theory), is quite
acceptable within the frameworks of structural linguistics and it is

only when "amount of information®in the communication theory sense is
equated with "meaning" in a referential rather than a structural sense,
that confusion results. This point is extensively discussed by Bar -
Hillel ([31, 1964, ch 16; op. cit, ch 2)

It is not, however, practical to entirely divorce thestudy
of structure from semantic considerations; thus a structural description
of a language would not in general be considered adequate unless the
structural units (for example, the separation into phrases and clauses)
correspond closely to semantic units. Also, many syntactic catagories
are based on semantic considerations - for example, the subdivision of
the class "noun" into (among others) "mass nouns” and "collective nouns"

to explain why some do not take a plural form after the quantifier "some"

thus ; some families (collective)
but
some butter (mass)

Thus while Chomsky agrees that

45.

The fundamental aim of Tinguistic analysis

~

. 1s to separate the grammatical sequences

. from the ungrammatical sequences

. and to study the‘structure of the grammatical
sequences.
(in Allen and Van Buren[2 1 1971 pl8)
he also states that

a linguistic description which treats the

grammer and the Texicon as two separate entities

without rules to inter-relate them cannot serve as

a descriptively adequate specification of the

facts of language.

(op.cit. plo2)

However, while it must be accepted that there is a close
link between the study of structure (syntax) and reference (semantics)
structural definitions of meaning will not in general form an acceptable

basis for the comparison of answers on C.A.I.

3.2 BEHAVIQURAL PSYCHOLOGY.

The behaviourists and in particular B.F. Skinner, have made
a considerable contribution to the study of language. The central theme
of their approach is that only behaviour that can be observed and measured
is valid data for -the consideration of the psychologist. Thus Osgood
describes Skinner as

Rejecting meanings and all other non-observables

([251, 1963 p250)

46.

A behaviourist does not neccessarily reject the concept of
meaning but defines it operationally as the response evoked from the
listener.

This approach to psychology is an enthusiastic use of the
principle of William of Occam, and is undoubtedly one of the factors which
has helped Tift pschology from its former unscientific state to its
present position (which may be termed pre-scientific or scientific,
depending on the point of view)., However, the application is over-
enthusiastic when applied to the study of language, and Chomsky has
criticised Skinner's approach in a penetrating review, stating that

One would naturally expect that the prediction

of the behaviour of a complex organism...

would require, in addition to information

about external stimulation, knowledge of the

internal structure of the organism, the ways

in which it processes in-put information and

organises its own behaviour.

(in De Cecco, [81, 1968, p325)
Osgood (op. cit. pp249 ff) suggests that the one stage model must be
supplanted by a two stage one, and in some cases even a three stage model
is neccessary to explain language behaviour; such models neccessarily
incorporate the postulation of processes which cannot be directly measured
but whose behaviour must be inferred as part of the model.

Thus a purely behaviourist model of ianguage is not an

adequate basis for a definition of meaning.

47.

3.3 TRADITIONAL LINGUISTICS

This title might be used to cover the rest of the field,
but instead of trying to survey the whole area we shall look at only a
few points which are more directly relevant to our topic; a more detailed
survey can-be found, for example in Ullmann Semantics ([37], 1962)

The traditional linguists have tended to have a more philos-
ophical bent than either of the two previous categories; both the
structuralists and behaviouralists are chiefly concerned with describing
linguistic behaviour as it exists, whereas the traditionalists prefer
explanation to description.

A suitable starting point is the work of C.S. Peirce on
"Semiotics", his views are largely reflected by C.W. Morris who divides
meaning into several related areas including syntactic meaning - the
relation of signs to other signs - and semantic meaning - the relation
of signs to their significates ([20], 1946). However, as early as 1923

Ogden and Richards has criticised the "sign - significate“ definition of
meaning as inadequate ([23 1 1923; see also Ullmann,[371 , 1962, ch. 3

for a more modern interpretation); this criticism has a striking modern
parallel in the criticism of the behaviourist model by Chomsky and by
Osgood, cited in the previous subsection: in essence, while it is
theoretically possible to simply relate the sign to either its "evoked
response" (behaviourist) or “significate" (traditionalist) unless an
intermediate stage is postulated, the model does not explain learning
transfer phenomena which are basic to human language behaviour. Such

an intermediate stage might be termed "understanding by the listener"

48.

- it is the "thought or referen ce" of the Ogden and Richards model, and
the "representational-mediational process" of the 0sgood, Succi and
Tannenbaum model.

A summary of this position might be that "meaning is
something that happens in a listener". One might suppose that eventually
it will be possible to measure the neural changes involved, and thus
reconcile behaviourists with this point of view; at present, any attempt
to measure this directly (as opposed to the indirect methods of 0sgood
et.al) would result in irreparable damage to the listener, so that the

processes must for the present remain as theoretical constructs.

3.4 A WORKING DEFINITION.

Any definition of meaning should be

regarded as no more than a working

hypothesis. Its value will depend on

how it works: On the help it can

give in the description, interpretation,

and classification of semantic phenomena.
(Ul1mann, [371, 1962, p66)

The discussion in the previous subsections probably implies
considerably more order than actually exists in a wide and contentious
field; the conclusion however does lead us in a useful direction - if
we wish to know what meaning is, we must look inside the listener.

We thus define that the meaning of any utterance to a

particular 1istener is measured by the effect that the utterance has on

49.

the 1istener.

While the use of the word "effect" would be for too vague
to use with a human listener, unless it were interpreted in behaviourist
terms, we shall be constructing "listeners" which are ddta structures,
and the problem then becomes the much simpler one of how two structures
should be compared.

Before simply accepting this working definition, there are
a few points that are worth further consideration. The first is that
an utterance,whether vocal or written, has no intrinsic property of
meaning; thus this sentence is only a sequence of meaningless marks on
paper until interpreted by someone or something, at which stage we
can measure its meaning (to that person or thing) in terms of its effect
on the interpreter. A second point is that the meaning may differJfrom
person to person; this is a well known phenomenon although,if the
individuals concerned are all competent in the language used, the

variation should be slight.
3.5 SUMMARY

In this section we have examined some of the different approac
to the problem of language and meaning. Of the appraoches discussed,
only one, that of the "traditional linguist" is relevant to the problem
at hand and since it has been shown that an adequate description of
Tinguistic competence must take cognisance of hypothesised changes with-
in the Tistener, it is natural to difine meaning in terms of these changes

Before pursuing the implications of this we shall develop

some notation for the language elements under discussion and define
some of the terms,including "language" itself, which have up to this

point been used rather Toosely.

50.

51.

PRELIMINARY NOTATION AND RESULTS.

4.0 INTRODUCTION.

In this section, we develop a notation for describing
language elements and define some of the associated terms, such as
"language" and "syntax".

The definition of language is a standard one; it is used,
for example by Bar-Hillel and Shamir ([3], 1964 ch 7) in their discussion
of finite state languages, and also by Berztiss ([4], 1971, ch 4)
The notation to be used differs in detail from that used by these authors,

but follows substantially the same lines.

4.1 BASIC ELEMENTS.

Definition 4.1.1

An Alphabet is a finite set of symbols.

W= (Hys Moy ool W)

fefinition 4.1,2

A string of length M is an ordered M-tuple.
S = (wl, wZ, Wm)

of elements of W.

Definition 4.1,3

Let

S = (Sl’ 52, PN Sk)

be a string of length k, and

st = (si, si,. . .s1)
. 1 2 1

52.

be a string of length 1.
The Catenation of S and S' is the (k+1) tuple.
S.st =(s., S

Sp» Si, 83, ...S1))

53 een !

19 k’

The set of all strings of a given fixed length m is denoted
Sm. Of particular interest are the sets Sb which contains just one
string, the null string A,and S; whose elements are the strings of unit
length. These we identify with the single elements of W which comprise
them. The set of all strings, S, is simply the union of all of these sets

$= 98
S is seen to be countably infinite, and to form a semigroup, with
identity A under the operation of catenation.

if a string S has length m we write

m= 1(s)
and note that 1{s.sy) = 1(s)+1(s;)
; We make no assumptions about the alphabet other
ihan that it is finite, and that there is no need to break its elements
down into subelements.

While the symbols of the alphabet will sometimes be referred
to as "words" this is not intended to imply that they are necessarily
what we ordinarily call words; a suitable basis for describing written
English, for example, is the set of alphabetic characters, together with
a few punctuation characters; it might however, be more convenient to

use larger units such as the set of morphemes which also have the

useful property of meaning. The definitions and notation can deal with

either.

53.

Although it is perhaps not immediately obvious that the set
of all words, in the usua]}sense of that term, in the English language
is in fact finite, since natural languages are dynamiec, it is certainly
clear that a finite set of words is adequate to describe all written
English up to the present time. It is not even certain that the number

is increasing, aswords
of words,pass out of use (how many people for example know the meaning
of the word "mundungus"?) while it is more common to find a new meaning
attached to an old word than to find a completely new word introduced

(consider, as an exampie, the new meaning physicists have given the

word “plasma")
4.2 |LANGUAGE.

Definition 4.2,1

A Language L is any non-finite subset of S.
Definition 4.2,2

A Sublanguage L,,‘-of a language L is any non-empty subset of L
Definition 4.2,3

Let L; be a sublanguage of L.
The (Binary) Expansion L% of Ly in L is the set constructed by
the following procedure:

(1) Every string in L; is in L%

(2) If S, and S, are both in L? , and S;.S, is in L,

then $;.5; is in L2

We restrict languages to the non-finite case since any finite

language can in principle be completely described, and the answer

54.

recognition problem solved by means of a table. Sublanguages, however
are allowed to be finite.
The expansion of a sublanguage is defined recursively;
The notation Li is based on the fact that the second rule of 4.2,3
allows for strings to be concatenated in pairs, and provides for the
definition of, for example, Lf,in which strings can be taken singly,
in twos, or in threes, and also higher order '‘expansions. We would
have Lg being the empty set, L% being simply L, itself, and the obvious re-

sult

0 1 2 3
L, € Ll cLcLl]cLlclL
However we will use only binary expansions, and the unqualified term ex-

pansion can be taken to mean the binary expansion.

Theorem 4.2.4

For an arbitrary string S, it is possible to decide whether S is in
2
L1 by making a finite number of decisions of the form

Sie L1

or

Proof: _
‘ 2
(1) Clearly, if S€ L, then S€ L%.and if S& L then S € L.
(2) If S EL1 and length (S)< 1, then, since a string of length

less than one could only be in Lf by virtue of the first rule

55.

of 4.2,3, & L}

(3) Suppose now that S ELl, and it is of length two
or more. Clearly, if S is in Li, it must be
because of the second rule. We note that taking
either S, or S, as the null string in this rule
does not get anywhere and so we can assume
neither is null. Thus if S is a member of Lf
it must be the catenation of two strings, both

of which must be in Li and both shorter than S.
ITIS) = m, then there are (m-1) ways in
which it can be split into two substrings, each
of Tength at most (m- 1). Thus the decision for
S is reduced to 2{m-1) decisions for strings of
length at most (m-1).

This reduction process can be repeated until
either S is accepted as a member of L? or, after
a number of operations seen to be considerably
less than

2" (m-1)1
only strings of length one remain, in which
case it follows that S is not in L}

Definition 4.2.,5

Let S L? , and suppose the process described

in the above proof results in

S=5,.5,
S %S, .5,55,®5, «S,
S11 - 5111° S112

etc.

where each of the strings is in L%, and the breakdown process
results finally in strings in L1' The steps in this break-

down constitute a Binary Parse of S with respect to L;

Let us consider an example:
Suppose the alphabet is

{a,b,c,d,}

and the relevant portion of L is
{a,b,ab,ac,bd,abc,cac,bbd,acbbd,abcac,cacbbd,abcacbbd}
while L, is
{b,ab,ac,bd,abc,cac,}

Consider the string abcacbbd which is in L but
not in Lln There are seven ways in which this string can
be split in two; of these, only three result in pairs of

strings in L. The three are

ab cacbbd
abc acbbd
abcac bbd

Taking the first one, the first part is in i,
and the second part may be split in five ways, but only one,

cac bbd

57.

results in two strings in L. The first part again in Ll,
and the second part may be split into

b bd
both of which are in L . Hence abcacbbd is 1in Lf

This parse may be represented by a binary tree

abcacbbd
ab cacbbd
cac }%QSE
N\

The other possibilities result also in parses
these are
From the second: (abc), (ac,(b,bd))
From the third: (ab, cac), (b.bd)
and also: (abc, ac), (b,bd)
We now introduce some simple results about
expansions.

Theorem 4.2,6

Let L; be a sublanguage of L, and L2 a subset
of LI% Then Lzzis also a subset of le.
Proof:

Let S, and S, be in L2. Then if S;.S, is in

L, it is also in L22. However, since S1 and 52 are also

in L2, if S..S, is in L it is also in L, 2.
1 192 1

58.

Corollaries
2 a2 _ 2
(1) (L,°) =1,

.] 2 2
(2) if L,C L,, then L,° C L,
2
(3) if L, cL,c L2, thenl = L?
2 1 2

Definition 4.2,7

A Core Element of L1 is a string
Se L 2
1
which cannot be written as the catenation of twe
.] _ 5
non-null strings both in L; .

The set of all core elements is denoted C.
\

Theorem 4.2.8

(1) CLa is a subset of L;
(2) (CLl)2 = le , and every string S in {1%has a
binary parse into elements of C

L4

"Proof:

(1) Any string Se CL1 is also in L12. However, since it is
2
not the catenation of two non-nuil strings in L; ,
2
it is only be in L; because it is alsoc in L,

2)
(2) By Theorem 4.2,6, CL1 is a subset of L,

Lét S be any string in L,2 . Then if S is a core
element of L , it is in Cle If S is not a core
element, it is the catenation of two shorter strings,

which are themselves either core elements in which

case Se Cle , or can be further subdivided.

59.

Since the string is of finite length, this process
cannot continue indefinitely, and so S can be parsed
into core elements, and is in CL12

Theorem 4.2.9

If L; and L, are sublanguages of L such that

then

2 2
(Lin L) " =1L

Proof:
From the definition, it follows that

TRLY

and €, C L

(. b

Thus

Cip = (Lo © (L0 L)

and so

2 2
CL1 L12 < (Ll n Lz)
However, since

(Ll n Lz) = L1

Ly nLy)2c L2

“and the result fp]]ows.

Theorem 4.2. 10

Let L be a sublanguage of L. Then

¢, = "k

60.

where the intersection is taken over all sublanguages !,

which satisfy

Proof:
The result is obvious, since CLl is a subset of any

of the L2, and is also a possible choice for L,

4.3 SYNTAX AND SEMANTICS

Definition 4.3.1

A Syntax or Grammgrof a language L is a finite set of rules

which specify exactly which strings of S are in L.

DEFINITION 4.3.2

A Semantic Model (or the semantics) of a language L

is a relation from L to M where M is a set of "meanings"

M is the Semantic Range of L

One of the fundamental problems of computational linguistics
is that of defining the syntax of the language being dealt with.
It is quite simple to define an artificial language which, while
1ntuit1ve1y well defined, is not computable, in the sense that it
is not always possible to decide whether an arbitrary string is
or is not in the 1an§uage within a finite time. An example is the
language A defined by:

String s is in A- if and only if

(1) s is a valid ALGOL program (block)
(2) in execution program s always stops in a finite

time, irrespective of the data supplied to it.

61.

(Davis, [7 L 1958, p78: Nelson[22 1968, p130)

Progress so far on the syntax of natural languages does not
indicate that they are any better behaved, and indeed there is no
reason to expect that they should be. Thus it may not be natural
language in a form which is computer programmable, even if agree-
ment could be reached on whether such forms as "colourless green
ideas sleep furiously" are sentences or not.

It is this consideration which Ted to the inclusion of
Theorem 4.2.4, which may be stated as:

If L, is recursive in L then so is le

Strings in the language L are termed grammatical (with
respect to L) and are called sentences or utterances. They are
generally assumed to have the property of meaning, irrespective
of whether the individual elements (words) have this property,.\We
have already argued thal this meaning is nor an intrinsic properhy bub
is an arbitrarily assigned value which can only be measured by
reference to a "listener" - some person or machine competent in
the language.

An example of the way in which meaning is associated with
strings can be found in computer languages: the meaning of a
given computer program may be defined as the function which the
program evaluates (cf. the semantics of a programming language
as defined by Sanderson (B2], 1967)). Two programs are thus
equivalent if they cause the computer to evaluate the same
function - i.e. to always produce the same output from the same
input. It is well known that the same program run on two

different computers may produce two

63.

different results (for example, not all FORTRAN compilers

compile the DO statement in the same way); this is an illustration
of our working definition of meaning. Since the definition of
Tanguage does not say anything about meaning, such a program has
more than one meaning.

However, syntax and semantics are not quite independent:
consider, for example, the four B.N.F. grammers for simple
arithmetic statements given in Figure 4.3.3. Although each defines
exactly the same language (i.e. set of strings) they will gener-
ally give a string a different structure; for instance, the string

axb+cxd
is given the structure
((a « b) +c) = d
by the first. This corresponds to the meaning given by some assemble
which do not use an operator hierarchy. The second gives the
structure
(@ 4 b) + (c » d)
as is used in simple algebra. The third implies a reversal of the
operator hierarchy, giving
ax(b+c)xd
while the fourth evaluates from right to left in the same manner
as the APL 1anguagé
ax({ b+ (c«*d))

While each as a syntax for the language is equally valid in each

64.

<expression> :: = <item> | < expression> <op> <item>
<op> =+ | %
<item> :: = alblc|d
<expression> :: = <term> | <expression> + <term>
<term> ;0= <item> | <term> * <item>
<item> :t = ajblcid
<expression>:: = <term> | <expression> x <term>
<term> 1= <item> | <term> + <item>
<item> o= falblcld

<expression>:: =<item> | <item> <op> <expression>

<op> 1= +| *

<item> . alblc|d

Figure 4.3.3 Four grammers for a simple language.

65.

case, it is obvious that the second one is "more natural” than

the other three when dealing with algebra. This concept of a
“natural” syntax which corresponds to a certain semantic inter-
pretation of a language is useful in practise, but rather difficult
to define explicitly.

Just as the structure (syntax) may be defined independently
of the meaning (semantics), the converse is also true. The meaning
of a string is some value or values arbitrarily associated with it
in terms of our working definition of meaning, this association is

done by the listener.
4.4 SUMMARY

In this section, we have defined certain terms and notation,
for use in subsequent sections, and also discussed some of the
background for them. While most of this is aimed at formalising
certain intuitive notions, and providing a framework for immediate
use, the work on expansions in section 4.2 will not be used until
section 7.3; it is however, more convenient to include it in this

section with the other notation for character strings.

6.

A GENERAL MODEL FOR LANGUAGE BEHAVIOUR.

5.0_INTRODUCTION

Reasons for basing a model of language on human behaviour
have already been discussed; language is not only a very central
part of human activity, but also probably the most complex form of
behaviour that we exhibit. Thus a model which could satisfactorily
explain and reproduce language behaviour could almost certainly
reproduce behaviour in other areas such as learning and logical
reasoning; conversely, no model of human behaviout would be complete
if it did net include language behaviour.

In this section, an abstract model for describing human
behaviour is proposed which,while limited in scope, is adequate for
the purpose of developing a model of language suitable for solving
the answer comparison problem. A:model of language is then derived -
from this.

Such models clearly rely on many assumptions, and have many
philosophical implications. These will be dealt with in more detail
in the next section.

5.1 A BASIC MODEL FOR HUMAN BEHAVIOUR.

In forming a model for human behaviour, the first step is
clearly to form a description of the particular person (or a represent-
ative or "average" person) being modelled. There are many forms
which such a description might take, but while the choice of the

manner of describing persons wouid be

67.

an early and crucial step in synthesising such a model, we do
not need to be prescriptive; we simply postulate that such a
description is possible.

The description of any particular person will vary with
time, and we shall denote the description of a particular
person at time t by Pt' Such a description is one of a set
of possible descriptions of persons, and we denote this set A.
There will in most cases be no confusion if the words "descrip-
tion of" are omitted, and we say that Pt is a person.

At time instant t, person Pt exists in some environment;
we postulate that it is possible to describe this environment,

and denote the description E The set of possible (descrip-

£
tions of) environments is denoted £.

As a result of the mutual interaction of Pt and Et’ both
are modified, so that at some Tater time t + 1, Pt has been

changed to P ; for our purposes, we do not need to consider

t+i
the corresponding change in the environment. It is necessary
for digital simulation to assume that if this change is not on
a discrete time scale, then it can at least be closely approx-
imated by one. The interaction can thus be symbolised by

E -~ P

t’ t) t+)
and is, in its most general form, a relation from the set

(P

Px E to F.

It is clear, however, that if this is to be of practical

use, the outcome must be assumed to be uniquely determined, in

which case the relation is a function, and we may write
Pea 1= F (Pes By

5.2 A BASIC LANGUAGE MODEL

We now consider the case of an environment which essentially
contains only linguistic elements. If the environment of a person
Pt consists of the single utterance s, we may write

Pt ; i = F (Pt’ s)

and the "difference" between P and Pt is, by definition,

t+1
the meaning of s to Pt' In this context, the subscripted t
becomes superfluous, and will be omitted.

We assume that the null-statement is meaningless, so that

F (P,A) =P

While such a model does provide a framework for the
discussion of language models, it does not appear to help in
solving the answer comparison problem: the question

"is string s closer to s; than to s,?"

has simply been transformed into a similar question about
descriptions of people, namely
"is person F (P,s) closer to F(P,s;) than to F (P, s,)?"

It is therefore necessary to include in the model some
means of comparing persons. The minimum requirement would be

simply an oracle which could provide answers to this type of

question on demand; however, a slightly more powerful device,

9.

which will not only provide the answer but also give a
numerical estimate of by how much, will be more useful. We
thus postulate as part of the model a function M which maps
pairs of persons into non-negative real numbers, with the
following properties:
(1) If P, and P, are persons, M (Pl, P2) is
a non-negative real number
(2) For all P1 and P2
M (Pl, P2) =M (Pz,Pl)
(3) M (Pl, P2) = 0 if and only of P, = P,.
It would be convenient if this mapping also obeyed the
triangle inequality, in which case it would be a metric over
P, and even more so if the metric were Euclidean, as this is
the form usually sought for the representation of psychologi-
cal data; thes, however, are not essential requirements.
We can now define two basic functions for the comparison
of strings;

Definition 5.2.1

The potency of a string s to a person P is
o (s) = M (F(P;s) P)
Definition 5.2.2
The separatioﬁ of two strings s; and s, to a person P
is

§p (51, 52) = M (F(P}_sl)s F(Plsz))

70.

It is readily shown that
(1) 6p (sy, s5) >0
(2) p (515 55) =6p (55, 5,)
(3) sp (sy, s,) =0 if and only if s ;and s,
are synonymous (ie, have the same meaning so
that F (P,s;) = F(P,s,)
(4) wp (s) = 6p (s40)
With regard to our earlier definition of meaning, potency
is a measure of the meaningfulness of the string, and separation
a measure of the difference in meaning between two strings, as

perceived by the particular person P.

5.3 THE RELATIONSHIP BETWEEN M AND F.

We have set up a general 1énguage model consisting of
three separate parts; an "effect procedure", denoted by F,
which calculates the effect of a string on a person, a
comparison mapping, denoted by M, which enables persons to be
compared, and the "person", P, who is the basis for the
comparison.

It is clear, however, that the point at whigh F completes
its task and M takes over is a matter of convenience; two
simple examples will illustrate this.

Example 1:

Suppose that the description of P is a character string

of some form, and that the function F simply appends the

input string s to this description. In this case the

actual comparison of the strincgs is made by M, which

would obviously be the most complex part of the model.

Example 2:
Suppose that a person is represented by a set of
numerical values representing scores on a set of
independent factor scales, and that F calculates
changes in these values and adjusts them accordingly,
due to the effect of the input string s. The
obvious choice for M is simply the square root of the
sum of the squares of the differences between
corresponding factors (this is "obvious" because of
the geometrical interpretation of the factor scores
as coordinates of a point in space when M is simply
the Euclidean distance between points) Clearly, in
such a model, F would be very complex, and M
relatively simple.

We note that the actual results, in terms of the comparison
functions uand &, couid be exactly the same for the two models.
This illustrates the arbitrary nature of the point of division
pbetween F and M.

The concept of two models which give the same results will

be explored more fuily in section 7.1

5.4 Summary

In this section, we have proposed a structure for a general

72.

language model; a model of this form is capable of resolving the
first part of the answer comparison problem, which is to select
from a given reference set the string closest in meaning to a
given string. We shall see later that many ' processes which have
been used for answer comparison can be expressed as a model of
this type.

Before considering the models in more detail, we shall look
more closely at some of the underlying assumptions, several of
which have been deliberately glossed over in this section for -

clarity in the exposition.

73.

ASSUMPTIONS UNDERLYING THE MODEL.

6.0 Introduction

We now have constructed a frame work within which the first
part of the answer comparison can be resolved. However, this is
based on several assumptions, many of which were not discussed
during the development of the model; some of these assumptions
will be discussed in more detail in this section.

The assumptions may be divided into two broad categories;
some of them are general, in that they apply to any attempt to
automate the language process, while others are more specific

to our particular model.

6.1 General Assumptions.

The much debated problems of syntax versus semantics, which
we discussed earlier (see section 3.1) and the computability of a
language grammer (see section 4.3) both fall in this category,
but will not be further discussed.

Perhaps less fundamental, but more sweeping in its implica-
tions, is the claim that natural:language processing of the order
that we require is impossible. One exponent of this view is
Bar-Hillel ([31, 1964, chapter 12) who claims that high-
quality machine translation is not possible because the computer
is not capable of resolving some types of semantic ambiguities.
Among the examples he gives are

The box was in the pen.

74.

where the meaning of "pen" is "obviously" an enclosure,

but could in some peculiar contexts be a writing instrument, and
The pen was in the inkstand.
The inkstand was in the pen.

where the same problem arises twice over, with probably
two separate resolutions, unless the work being translated is a
fantasy. Bar-Hillel points out that the information on which a
correct selection can be based is non-linguistic, and that it
is very difficult to explain exactly what additional information
would enable a computer to correctly interpret the word "pen" in
all cases.

We can distinguish perhaps four distinct cases. The first
case is that of a deliberate play on words; in such a case, the
result is almost certainly untranslatable,.as it relies on a
specific ambiguity of the source language which would probably
not be present in any target language; in our context, the computer
presumably should think

"meaning ambiguous - deliberate- play on word$
and respond

"very punny"
Natural language data processing has a long way to go before it
reaches that level.

A second case is when the obvious interpretation is correct;
in the second example above, this would be

"The (writing instrument) was in the inkstand.

75.

The inkstand was in the (enclosure)
and despite Bar-Hillel's misgivings, this poses no insuperable
problems; a program of the level of sophistication of Winograd's
([407, 1972) could handle this. We note in passing that
anégréd's program includes a quite definite picture of the
"universe", which Bar-Hillel would claim was non-1inguistic, but
is, as we shall see the very basis of a language model.

The third case is when the "obvious" interpretation is
incorrect, but previous information is adequate to allow a
correct interpretation; this is a classical case of coptext, and
is in fact not significantly different from the previous case
if "context" is interpreted in a wide sense.

The final case is when the obvious interpretation is wrong,
and there is no previous information to indicate this; in such
a case, even a human translator would translate incorrectly,
and we might even conclude that high-quality (human) translation
is not possible. Naturally we must assume that the human will
later realise his error (if it can be legitimately called such)
and go back to correct it; since computers also can backspace
and alter their output files, we can presume that when the
problems associated with the first four cases have been solved
this one will present no major difficulties.

The problem is thus essentially one of context; Simmons

33 1962) states

76.

Words may have many meanings...

How is a computer to select the

appropriate meaning or action?

The answer tends to define context.
Unfortunately, many exponents of machine translation seem to
define context as "that other information needed to resolve
ambiguity", and then claim that ambiguity can always be over-
come by reference to the context.

An interesting view of the topic may be obtained by replacing
the word "listener" by "context" in our working definition of
meaning, thus obtaining:

The meaning of an utterance in a particular
context is the effect that the utterance has
on the context.

Language is a very complex system of behaviour, and it is
quite reasonable to try to simplify its description by the
mathematical appraoch bf abstaction; however, abstact descrip-
tions of language omit the one essential ingredient, namely, the
human being who is the language user. While this process of
abstaction has unquestionably led to great advances in Tinguistics
the time has come when it must be realised that one of the
factors that makes humans the only satisfactory language
handling devices so far created is that they bring to the task
not only their knowledge of vocabulary and grammer, but aiso the

wealth of background information which Bar-Hillel labels "non-
Hnguisﬁcnj Wk s non-

77.

linguistic in the same sense that the wheel is not an electronic
device - but who can imagine a civilisation with complex electronic
technology but no wheel?

Language is not an end in itself, but a toolswe use it to
describe and interact with a real world and it is only by using
our built up knowledge of that world that we can understand and
use language. It is this built in knowledge of the world which
constitutes the context in which any particular statement is
interpreted, and of coursethe statement Teaves its mark on the
person who interprets it, and thus becomes part of the context
in which future statements are dealt with.

Context, then, is a state of mind; it is the sum total of
past experience that the listener brings to his understanding
of a particular linguistic utterance. Any computer program which
is to deal with language at a level of competence comparable to
that of a human must have built into it (either by program, or
more likely by having the ability to accumulate its experiences)
its own picture of the universe in which it exists.

The question that we are now faced by is whether this is.
feasible - can an adequate model of the world of experience be
stored and accessed by a computer quickly enough to give it a
reasonable language facility? At this stage, no definite answer
can be given, but allowing for the current rate of development
of technology, and supposing that much of human mental capacity

is not essential to linguistic ability, it seems reasonable to be

78.

more hopeful than Bar-Hillel.

6.2 Specific Assumptions

In developing our model, we assumed a discrete time scale,
and pointed out that in a digital computer it is not possible to deal
with a truly continuous scale. The fact that humans are not able to
distinguish stimuli above quite low frequencies as distinct - for
example pictures flashed at over about sixteen frames a second are
seen as continuous motion, rather than discrete images - indicates
that the discrete model can be expected to be at worst a very good
approximation.

The other major set of assumptions relates to the description
of a person and environment at some time instant, and the possibility
of predicting the outcome of their interaction one time step later.
This is essentially a philosophical problem, and is not unrelated to
the discussion of the previous subsection. If it is possible to
measure every aspect of a person.and his environment at an instant,
and to compute their interaction, then it must follow that the person
had no "free will" during the time span for which the computation
was carried out; on the other hand, if people do have free will, then
it is not possible to describe completely the state.of a person and
his environment and the mapping which determines their interaction.
There is a parallel hefe with the uncertainty principle of quantum
mechanics; one explanation of this principle is that any attempt to
measure the state of a system interferes with the system, and this

would certainly”apply‘tq ﬁn attempt to measure the state of mind, of

79.

a person. It thus seems unlikely that an exact description of this
for a particular person is or will ever be possible; on the other
hand, the description of a "typical" person, and a "typical"

interaction with the environment may well be within the bounds of

possibility.
6.3 Summary

The fact that Tinguistic ability is so central and basic a
part of human behaviour means that the possibility of stimulating it
on a computer raises considerations which are of a quite deep
philosophical nature. It is not within our scope to attempt to
answer all of these problems; we note that they exist, and point out

that, if our task is to have any possibility of success, the assump-

tions must be at least approximately satisfied.

80.

TYPES OF LANGUAGE MODEL.

7.0 Introduction

The result of comparing two strings by a language model of
the type described will depend, in general on all three parts - the
effect procedure F, the comparison mapping M, and the person or
context P. However, if such a model has any general properties, these
would normally be associated with the combination of F and M, which
define the interaction of a string S and the person P. Thus in this
section, we will be concentrating on the F and M combination and
investigating some of the properties that they might produce in a
language model.

We note at-this stage that defining F and M will specify the
form of P - for example, whether it consists of an array of numbers,
or a character string, or some other form - but not the actual value.
We might compare this to a human, who appear to be born with some
language facility (the F and M part of the model) and learn an actual
language by interaction with other people. In an analogous manner,
it might be possible to start out with quite general values for P,
and then condition it by applying to it a suitable body or text.

This could be particularly appropriate for answer comparison, where
often words change their meaning as the context changes through a
course; an example might be the word "deviation", which could be used
at one point in its statistical sense - standard deviation - and

another in its pyschological sense - deviation from the norm -

81.

within the same course.
With these ideas in mind, we consider some of the properties

which might be found.

7.1 Equivalence of Language Models.

We noted in section 5.3 that it is quite possible for two
distinctly different Tanguage models to give exactly the same result.
Such models will be called strictly equivalent.

Definition 7.1.1

Two language models (F;,M;,P;) and (F,, M,,P,)

are strictly equivalent over a language L if, for any strings

s; and s, in L
My (Fp (Prssy)s Fr(Prssy)) = My (Fy (Py 51)5Fo (Pyssy)
(i.e. sPi(sys S) = 6Py(sy, s5))

Strict equivalence between language models is easily seen
to be an equivalence relation, and is also easily seen to guarantee
that the two models will produce exactly the same string to match a
given string in an answer comparison. However, if these are to be
the criteria the requirements may be considerably relaxed.

Definition 7.1.2

Two language models are equivalent over a language L if there
exists a non-negative monotone increasing real valued function of
a non-negative real variable, such that for any two strings s, and
s, in L,

My (Fy(Pyssy)sFi(Pyusy)) = £ (M (Fa(Pyssy)Fy(Pyssy)))

_(1'.e. 6P1(51,52) = f(6P2(51:52)))

82.

A further relaxation is possible if one model is permitted
to give an ambiguous answer when the other does not.

Definition 7.1.3

Two language models are weakly equivalent over a language

L if, for any strings S;s S, ands3 in L,

p2 (s1,53)

if 8p)(s),s,) >’5p1(51’53) then § (51’52) > 8

P2
and
if dpl(sl,sz) <:5p1(sl,53) then sz(sl,sz) 5_6p2(51,53)

(where 6p and sz refer to the separation functions of the two
~P1

models respectively).
Weak equivalence is not an equivalence relation, being reflexive

and symmetric, but not transitive; in fact we note that

Theorem 7.1.4

Every language model is weakly equivalent to
(1) The trivial model for which
8p (s;5s,) =0
For all s, and s,
(ii) The strict equality model, for which
6p (s158,) =0 if sy = s,
=11if s; #s,
Proof:
(i) This is obvious, since, taking the trivial model as the
first one in the definition, the restrictions do not
apply as

p (s58) =6 (s ,s))

5P p1

83.

For all S1»§ s Sy

(ii) Again taking the given model as the first one in the
definition, if

(51,52) >

(.s1 »S)

6p1 3

' then this can only occur-if

81

%, (51’52) =1

and

|
[am)

% (51’53) =

i.e if
S, 7 S, and s;= s4
then clearly we have

while, by definition,

%, (s5s,) >0
giving

%, (spss,) > 82
The other contingancy leads to a similar situation, with

(s »s.,)

s,=5S, and s;7# s,
resulting in a similar conclusion, and the theorem is proved.
It is quite clear that the trivial model would be simple to
construct: if we take the description P to be a single number
initially zero, and define
F (P,s) = P
for any s, then with the obvious definition

M (PP, = [Py - B

84.

all of the requirements are fulfilled.

The strict equality model is perhaps not so obviously
possible within the constraints of the models, but it turns out to
be again quite simple to construct : because strings are of finite
length and over a finite alphabet each string has a Gedel number
which is unique; if we now modify the above (trivial) model by
defining

F (P,s) =P + gn (s)
where gn (s) denotes the Godel number of string s, and define

M (P,,P,) =1 if P, #P,

0 if P, =P,
then it is easy to see that the requirements are all satisfied.

We thus see that weak equivalence is not a very stringent
requirement. Equivalence, however, is quite a strong requirement
and in fact two models are equivalent if and only if they always
produce the same result for the first part of an answer comparison.
The hierarchical nature of the three categories is illustrated by

the foliowing thecrem

Theorem/7.1.5

If two language models are strictly equivalent then they
are equivalent; if two language models are equivalent, then they are
weakly equivalent.
Proof:

(1) We simply take f(x) = x in the difinition of equivalence.

(i1) If the models are equivalent

85.

6p1(5v§)=f(8, (515,))

apl(sl,s3) = f % (s25.))
Now if

5p1(sl,s2) > 8p, (553

because f is monotone increasing,

(sps,) >& (s ,s)

4§ §
P2 Po 1
and a similar result follows for the case when

(s)5s,) < (s)55 5)

8 S
P1 P1
Thus the requirement for weak equivalence is met.

7.2 The Context Independent Model.

We have associated the word context with the person P who
is the basis. of comparison, and there are several senses in which we
might consider a language to be independent of P, the most straight-
forward being the case in which the result of comparing two strings
does not depend on P.

Definition 7.2.1

Two descriptions P, and B are strictly equivalent over
a language L under (F,M} if, for every pair of strings s, and s, in
Ls 6P1 (51552) . 6132 (519 52)

Definition 7.2.2

A language model is strictly context independent over a language

L if all descriptions P in the set P are strictly equivalent over L.
Another way of wording these definitioms is to say that
{i) P1 and P, are strictly equivalent if (F,M,P,) and

(F,M,P.) are strictly equivalent.

86.

(ii) The model is strictly context independent if,
for any P, and P,, in P, (F,M,P;) and (F,M, P,)
are sfrict]y equivalent.
By analogy with the discussion of the previous subsection, we
can define context 1ndependent'ahd‘wéak1y context independent
models:

Definition 7.2.3

A language model is context independent over the language L
if, for all P, and P, in P, (F,M,P,) and (F,M,P,) are equivalent.
Definition 7.2.4

A language model is weakly context independent over L if for
all P, and P, in P, (F,M,P) and (F.M,P,) are weakly equivalent.
e g e St B e e e el
all descriptions which,will always give the same closest string
in an answer comparison, regardless of the initial P chosen, while
a weakly context independent model will give the same answer except
that some choices of P may give more "closest" strings than others.

The trivial and strict equality models described in the
previous subsection are both examples of strictly context independent
language models.

It is quite clear, however, that the meaning of natural
language statements may vary considerably with context, and so we

would not expect context independent models to be adequate for

comparing strings in natural languages.

87

7.3 The Recursive Model

We would expect that in many cases, the result of placing

a person in an environment consisting of a string
S$=95;,.5,
would be the same as placing the person in an environment
consisting of S;, and then in an environment consisting of S,;i.e.
F(P,S,.S,) = F(F(P,Sl), 52)

The requirement for this to be true might be that S, and S, are
both complete statements which are in some way independent. If
such a formula were to hold, the value of F could be found by a
recursive process, and so we term such a model a recursive language
model.

Definition 7.3.1

Let L1 be a sublanguage of L. A language model (F,M,P) is

2

semi-recursive over L1 if for any two strings S1 and 52 in L1

such

that 31.52 is in L,
F(P, 51.32) = F(F(P,Sl), 52)
We call such a model semi-recursive because the recursive
formula does not apply in all cases. From the results of section
4.2 we can show that

Theorem 7.3.2

L, then ik is semi-recursive over
If a language model is semi-recursive over,any non-empty

subset of L12
Proof:

This follows immediately from Theorem 4.2.6

88.

Theorem 7.3.3

If a language model is semi-recursive over L,, then for
any string S in L12, it is possible to evaluate F(P,S) by evaluating
F only over strings 1in CLi
Proof:
The string S has a binary parse into elements of CLl
(Theorem 4.2.8)
Suppose that the first step of this is
S =35,.5,
Then applying the recursive formula,
F(P,S) = F (F (P,S;), S,)
If S; and S, are not in CL1 then they may be further decom-

posed into

and, once again applying the formula,
F(P,S) = F(F(F(F(P,Sll),512)521)522)
This process can be repeated until, after a finite number
of steps, only ;trings in CL1 remain in the expression.
It can be seen that the final evaluation starts with P, and
consecutively applies the terminal strings from the parse, proceeding

from left to right.
Definition 7.3.4

A language model is recursive over L if there exists a

sublanguage L1 of L such that

89.

and the model is semi-recursive over L1'

It follows from the definition that a recursive model is
semi-recursive over any subset of L, and that it is necessary to
define F only for strings in CL, as the definition is then extended
automatically to cover all other strings in L.

We note the following property of a (semi-) recursive
strictly context independent model:

Theorem 7.3.5

If a language model is both semi-recursive over L1 and
strictly context independent over L12, then for any strings S,

. 2 . . 2
and 52 in L1 , such that Sl.S2 is also in L1 .

ap(Sl.Sz,Sl) = Hp (S,)
Proof:
5y (515558
=M (F (P, Sy» S,) » F (P, S;)) (definition)
=M (F (F (P, S;)s Sp) s F (P, S;)) (recursive)

M (F (P'.S,) , P1)

where P! = F (P, 5,)

M (F (P, Sz)’ P) (context independent)
= Up (Sz)
which is the required result.

7.4 The Metric Model.

" We noted earlier that M is almost a metric over P; if the
final requirement, the triangle inequality, is met, then a variety

of interesting results follow. Before developing these, we define

90.

the term "synonym" and prove a result that is true for any language
model of the class we are considering.

Definition 7.4.1

The strings S; and S, are synonymous in a language model if

8, (51555) = 0

Theorem 7.4.2

The relation of synonymy is an equivalence relation.

Proof:
(i) Clearly Gp (S,S) = 0 for any S; the relation is
reflexive
\(ii) Clearly 6p (Sl,Sz) = §p (S5 S;) so that if
dp(Sl,Sz) = 0 then dp(52,§1) = 0; the relation is
symmetric. -
(iii) Suppose
8, (51,52) = 0 and 85(82,83) = 0
Then by the definition of the mapping M, we must have
F (P, S1) = F(P, S,)
and
F(P,S,) =F (P,5,)
thus giving
F(P,Sy)=F(P, S3)
so that
%y (S1.83) = 0

and the relation is transitive.

91.

An important fact about equivalence relations is that they
divide a set up into equivalence classes. We will denote the set
of equivalence classes of language L under the relation of synonymy
by the symbol L.

Definition 7.4.3

A language model is metric over the language L if, for any
strings 51’ Sz’ and S3 in L,
6p (S1,S3) j_ép(Sl,Sz) + Gp(52,53)
This is a slightly weaker requirement than the requirement
that M satisfy the triangle inequality, but it is adequate for the

proof of all of the results we require.

Theorem 7.4.4

In a metric language mode],-the separation function 6p is
a metric over the set L of classes of synonymous strings.

This requires no proof, as the triangle inequality was the
only missing property. It is necessary to introduce L to satisfy
the requirement that a metric be non-zero fa} distinct elements

Theorem 7.4.5

In a metric language model,

Gp (8:, S5) j_up'(sl) + p (S2)

Proof:

8. 151, So) 5_5p(sl,A)+ ap (A, Sy)
wo (Sp) + u, (S1)

Theorem 7.4.6

In a metric language model, if S; and S, are synonymous,

92.

Hp (S;) = Hp (52)

and _

5p (S,8;) = sp (S, S,)
for any S.
Proof:

(1) wy (81) = 6 (S10n)
i,gb (519 Sz) + §p (529 A)
2 0+u, (Sy)

Similarly. -

bp (S2) <uy (05y)
and so equality must hoild
(11) s, (8:5;) 16p($255;) +. 85 (5,5)
L $,5,) + 0
Similarly
and equlaity must hold.
Since the inequality
Gp (519 52) pr ('Si) + Up(sz)
holds in-.a metric language model, it is possible to give a sensible
definif*bn of antonymy: the two strings must have equal meaningful-
ness and be separated by the maximum possible amount.

Definition 7.4.7

Two strings Sliand's2 are antonyms in a metric language model
if

5p(sl’$2)" Zup(sl) = Zup(sz)

93.

An interesting point is that the null string is both a synonym
and antonym for itself.

The following theorem relates to a model which falls in all
three of the categories we have considered.

Theorem 7.4.8

If a language model is semi-recursive over L1 and strictly
context independent and metric over L12, then for any strings S1 and
S, in L12 such that S,.S,is also in L,?,

Hp (S1.S2) < up(51) + up(Sz)
and

ap(sl.sz,s)

| A

S (S]_’S) +u

3 o(52)

Proof:

We prove only the second part, since the first is obtained
by putting S = A
8 {51.S5, S;) + 8 (S1,S)

p P

uy(S2) + 8,(51.5)

(using theorem 7.3.5) which is the required result.

(S;.5,,5)

| A

%

IN

7.5 THE ADDITIVE MODEL.

Definition 7.5.1

A language model is additive if the person P is represented
by an array of numbers only, and the mapping M gepends only on the
difference between cofresponding elements of the two P-arrays.

It will in fact be true that all of the specific models that

we consider will be both metric and additive.

94.

Definition 7.5.2

In an additive language model, the effect of a string S is
Ep (S) = F (P,S) - P
(where the subtraction sign implies finding the difference between
corresponding elements in the two arrays F(P,S) and P)
Then we can see that
F (P,S) =P + Ep (S)

which is the reason for the term "additive". In an additive language

model ,
8 (5,55,) = M (E, (5)), €, ()
=M (Ep (51) = Ep (32),0)
up (S) =M (E, (5), 0)

and the mappjng M can be replaced by an appropriate mapping which
measures one person only; this would usually be a norm of some form,
so that we may write
w, (S) =] E, (s) ||
8p (51.82) =[] £, (5,) - £ (5,)]]

When an additive language model is context independent, we
have ||Ep (S) ||is independent of P; this will often be because
Ep (S) is independent of P, and if this is the case, we will call
the model functually context independent.

Definition 7.5.3

An additive language model is functionally context independent
over the language L, if for any P, and P, in P, for all S in L

Epy (8) = B, (8)

95.

Theorem 7.5.4

An additive, functionally context independent language model
which is semi-recursive over L1 is order free over L,, where, by
order free, we mean that, for any S, and S, in L12 such that S..S,

i 2
and Sz.Slare also in L1

E (31.52)’= E (52.5)

p p 1
Proof:
Ep (51'52) = F (P, Sl.SZ) - P
= F (F (P, 51)’ Sz) - P
= F (F (Ps 51)9 SZ) - F(Pa Sl)
+ F (P,sl) - P
" Er(p,s)(52) * BplS))
= £ (S,) + £ (5))
Similarly
Ep (52-51) = Ep (51) +E_(S,)
=, (S,) *+ £ (S))
= Ep (51.52)
Corrolaries:
(1) ap (S1.5,,8,.5;) = 0
(ii) For an appropriate string
S =5§,.5.5;... Sn
any string s! obtained by permuting the substrings
of S is synonymous to S
7.6 Summary

We have discussed several types of language model which fall

into the general class that was defined in section 5.2; of these
by far the most important are the additive metric models, and we
now look at some of these as they relate to previous work in

related areas.

96.

97.

EXAMPLES AND DISCUSSION

8.0 Introduction

We have developed a structure for a language model, and
discussed various types of model that can arise within this structure;
the structure that we used was based on the cbservation that humans
are so far the only competent handlers of natural languages.

In this section, we shall first of all show that the structure
can handle languages other than natural languages, by considering
work that has been done on the comparison of mathematical expressions.
We shall then discuss the work of Osgood, Succi and Tannenbaum on

the empitical measurement of meaning.

8.1 Comparison of Mathematical Expressions.

The case where the language under consideration consists of
well formed algebraic expressions is a particularly interesting and
useful one, both on account of its applications in C.A.I., and
because, unlike the corresponding natural language problem, precise
definition is possible.

Let us considéer initially expressions which involve only
one variable and which are defined, continuous and integrable over
an interval [a,b] ; such expressions can be considered as functions
of one argument. ‘

Twe such functicns are equivalent over the interval [a,b]

if their values are the same for all possible assignments of the

variable within that interval. Because of the restrictions that

98.

have been placed on the functions, an equivalent definition is
that the functions f and g are equivalent if
/ : (f (x) - g(x))2 dx = 0

(it can be shown that this integral exists for the functions
considered)
Furthermore, this integral is a measure of the least squares
goodness of fit of f as an approximation to g (or vice-versa) and
hence 1is a good distance measure for the language under consideration.

The numerical approach to testing for expression equivalence
has been found to be quite fruitful; Lee ([16] , 1971, p65ff)
has shown that it is possible to test for equivalence of trigno-
metric formulae, and also to determine the set of identities required
to transform one formula into another eguivalent one, and cites the
work of Oldehoeft, who showed that, for a wide class of functions,
comparing the values at one random point is enough to show
equivalence with zero probability of error ([24] , 1970)

[t thus seems reasonable to approximate the above integral
numerically, and we shall show that it is possible to do this with
a language model of the type we have been considering, and that this
leads to the methods used in the works discussed in the previous
paragraph.

We take for the description P a vector of n elements.

all initially set to zero (or in fact any other arbitrary value,

as the model we shall construct is context independent)

99.

The effect procedure consists of evaluating the input expression
at n arbitrarily chosen points, xl,xz,...xn, and adding each
result to the corresponding element of P. The mapping m is based
on the standard Euclidean distance; we sum the squares of the
differences of corresponding elements, multiply this total by
(b-a), and divide by n.

The result of comparing f with g is c]ear]y‘

ba [(f(x,) - g (x,))°

. i
i=1
which is an approximation to

[2 (F (0 -g0)? o

although it is probably not the numerically best approximation.
Thus the language model that we have set up provides for the
expressions of the restricted class under consideration, a compar-
ison function which satisfies

(i) &(f.9) =0

(ii) &(f,g) = 0 if f is equivalent ot g.

(iii) The value of &(f,g) is a least squares measure

of the difference between f and g.

The case when only one point of evaluation is used gives the
methods of Oldehoeft and Lee which were cited above, and we see that
the probability of &(f,g) = 0 when f and g are not equivalent is,
even for this case, zero (it must be appreciated that, given any
set Xy3sXps... X of points of evaluation, there are infinitely

n
many non-equivalent functions which coincide at all of these points

100.

and thus give a 5 of zero; however, if these points are fixed at
random, the probability of two randomly chosen functions coinciding
on them and yet being non-equivalent is zero).

The generalisation to expressions involving more than one
variable and with possible points within the interval at which they
are undefined, is now obvious. Care must, however, be taken, as
the method cannot be generalised to functions which have finite

discontinuities; as a particular example, take

f(x) =0 ifx=0
=1 ifx#0
g(x) =0 ifx=1
=1 ifx#1

where we see that f and g are not equivalent on the interval
[-2,2], although
[2 (f(x) -g(x))" dx = 0

and the probabi;?ty that a randomly chosen set of points in the
interval will show the difference between f and g is zero

The method use by Lee ta find the set of identities (the
consistency set) needed to transform one expression into another,
by treating the trigonometric functions as further variables,
also falls easily within the scope of this generalisation, and his
concept of step size could be readily related to the second part
of our statement of the comparison problem.

We thus see that a simple language model of the type we are

considering can be used to compare mathematical expressions, and

A
AR LF

o

5101

el
-
-

that this comparison is closely related to methods used by others

working in this field.

8.2 The Work of 0Osgood, Succi and Tannenbaum.

The work of Osgood et. al ([26], 1957) marked the first steps
in a new direction for the psycholinguists. These workers showed that
the emotive meaning of words could be specified by three scores on
three independent scales; an evaluative (good - bad) scale, a
potency (strong - weak) scale, and an activity (active - passive) scale.
This was dqqe by collecting a large amount of data from people, and
using the techniques of factor analysis to process their results.

From their results, they devised a test for evaluating common words
on these scales; the results can then be illustrated by making a
three-dimensional model, using the three scales as axes, and, among
other things they suggested that such models could have applications
in the diagnosis of mental illness. They also showed that, (as we
might expect) this model does not vary a great deal from person to
person for normal people, and that repetition of phrases (an example
they used was "shy secretary") causes changes in the position of the
words which can be at least approximately predicted from their
initial positions.

The relevance of this work to our language model ‘is dpparent.
the person P is represented by a set of points, representing the
words in the three dimensional space, termed the semantic space,

by Osgood et. al; the mapping M is simply the root mean square

102.

distance between corresponding points, a measure very similar to
that used in the previous subsection; the major problem is as we
might expect the definition of F, for which Osgood et.al. give
only a very rough formula applicable to strings of two words.

One of the major problems in experimenting with the Osgood
model in order to find more information on the F function is the
difficulty of accurately evaluating small changes in P and also
the fact that because the measurement is carried cut by a Tinguistic
tool, the measurement tends to drown out the effect being sought;
thus they had to repeat any phrase many times in order to achieve
a measurable effect. However, their results are still encouraging
evidence in support of the structure of the present models.

It must be remembered when we are considering the work of
dsgood et.al. that the type-bf ﬁeaning being measured is emotive
meaning and not the semantic meaning with which we are primarily
concerned, although at no stage do they make this clear. Thus their

results are probably not directly applicable ic the problem in hand.

8.3 Summary

In this section, we have discussed previous work in two quite
distinct areas and we have seen that in both cases the concept of a
Tanguage model, as we have constructed it, fits in quite naturaily
with the work that has been done, and cffers a convenient basis for

its discussion.

103.

LANGUAGE INTERPRETERS.

9.0 Introduction

The developement of the Tanguage models up to this point
has beeﬁ completely abstract: we have not given any iﬁdication of the
form that the description of a person might take or of the way in which
such descriptions might be cbtained. We now consider in more detail
the two portions, P and F, of such a model, and derive from the
general class of lan guage models a more restricted class which, for
want of a better name, we shall call the class of language interpreters.
Language interpreters are additive and metric, giving in

fact a representation of strings in a Euclidean space.

9.1 The Context Network.

As was stated in the introduction to section 7 humans appear
to have an inbuilt language facility which is readily adapt to
handle languages from Japanese to German. This facility we might
identify with the F portion of a language model; this implies that
F should be at ieast to a large extent, a general purpose procedure,
which further impiies that the meanings of specific words should be
stored, not as part of the F section of the model, but in the
description P; in practice, function words such as prepositions and
conjunctions, which are principally concerned with indicating the
reiationship between the other words which carry the bulk of the
semantic content, might well be exceptions to this general rule.

We are thus faced with the problem of selecting a form for

104.

P which will implicitly contain all of the semantic data for the
wordé of the language. In order to see how this might be done,
consider the problem faced by a human who encounters an unknown
word for the first time; the meaning of the word may be clear from
the context in which it is used, or the person may refer to a
dictionary, where its meaning will be related to that of other
words. The person does not, of course, update his whole language
processing facilities, but simply fits the new word into its proper
place in relation to all other words in his memory.

Thus we shall assume that the meaning of a word is implicit
in its relationships with all other words; the non-absolute nature
of this is comparable to the non-absolute nature of dictionary
definitions, and may indeed reflect a similar feature in human
language behaviour. We shall restrict ourselves to the case where
the relationship between two words can be expressed as a single real
number; such a relation need not, of course, be symmetric.

The structure of P will thus be represented as a weighted
network, the context network,with the nodes being associated with
elements of the alphabet, and each arc, which may be directed or
undirected, having a weighting which represents the relationship
between the two nodes which it joins. Since we would expect that
in general nearly all possible arcs would be significant, we may
take this network to be complete, and this means that in practice
it would be stored as an array, either square for the non-symmetric

case, or triangular for the symmetric case.

9.2 The Comparison Mapping

The root mean square difference between two networks provides
a convenient means of comparing them. This is calculated by summing
the squares of the differences between corresponding weightings,
dividing by the total number of weightings, which is n(n-1) for
the non-symmetric case, and n(n-1)/2 for the symmetric case, where
n is the number of symbols in the alphabet, and then taking the square
root. This procedure has the advantage of producing a representation
which is Euclidean, as we prove in the following theorem.

Theorem 9.2.1

A']anguage interpreter is equivalent to a mapping of strings
into a subspace of Rk where k is the number of arcs in the context
network, with the separation of two strings being the usual Euclidean
distance between them.

Proof:

Let Ep(S) be the effect of strings; then by taking the k
elements of Ep(S) in some well defined order, a k-vector is obtained.
Each element of this k-vector is divided by the square root of k,
and the result is taken as the coordinates of the image of the string
S in a k-space. Thenull string of course is mapped onto the origin.

It is clear from the definition of M that it corresponds to
the Euclidean distance_between the image points of two strings.

Since there are only a countable number of strings in any

language, it is clear that for any given language interpreter,

10€;

not every point in the k-space is the image of a string, and in fact
the result may be representable in a space of lower dimension.
The converse of this theorem is also true:

Theorem 9.2.2

Any language model which represents strings as points in a
Euclidean space of finite dimension is equivalent to a language
interpreter.

Proof:

We simply reverse the above procedure, and use the coordinates
of the points as a means of defining the effect of any string.

The requirement is clearly that if k is the dimension of the

space, we must have

n>(1+ vk + 1)/2
for the non-symmetric model or
n> (1+ /8k + 1)/2
for the symmetric case, where n is the size of the alphabet.

We note, for example, that the semantic space of Osgood et.al.
can be modelled by a language interpreter; the requirement is that
the network have at least three nodes. However, this theorem, although
useful from a theoretical point of view, does not provide much
practical assistance as unless the original model provides a practical
means of calculating the coordinates of any given string, it would
be almost impossible to actually define an effect procedure F which

would result in the required model.

107.

9.3 The Effect Procedure

The chief purpose of the effect procedure is to enable
calculation of the effect Ep(S) of any string S. Naturally, we
would expect that, for a language interpreter intended to deal with
the semantic meaning of strings in a natural language - and we must
remember that, as the example in section 8.1 illustrates, our
definitions do not necessarily imply any restriction to such
languages - it would be extremely difficult to derive such a
procedure, and we shall not attempt to do so here.

We have already seen that language interpreters are a subclass
of the additive metric 1an§uage models. Particular examples may
be further classified according to whether they are or are not semi-
recursive, and are or are not context independent, and all of the

work of section 7 carries over to them.

9.4 Summary

The subclass of language models that we have called language
interpreters have several desirable properties: their form is
convenient to implement, and permits a simple comparison mapping

which is inherently Euclidean and the class in principle includes
all language models which give such representations.

In the next section, we show how language interpreters can

offer a practical means of comparing character strings.

108.

EXAMPLES OF LANGUAGE INTERPRETERS.

10.0 Introduction

So far we have been mainly concerned with the theoretical
aspects of answer comparison; it is now necessary to show that the
language models can produce acceptable results.

Rather than attempt to set up a full-scale model for the entire
English language, we shall concentrate on a single example. The reference
set is given in Figure 10.0.1 and consists of the same six statements
used in the second example of section 2.3. The three additional strings
together with those in the reference set, will be compared in turn with
each member of the reference set; the exact match that must occur when
a string is compared with itself will be ignored.

It is necessary to have a standard of comparison. One possibility
would be to ask a sample of people to rank each string in the reference
set with respect to each other string; however, the selection of
appropriate distances from the resulting data poses some problems.
Instead, we shall use a comparison fechnique proposed by Morrison [21]
and described by Algebra in his paper on “"String Similarity and Miss-
pellings" ([1], 1967). This is a quite sophisticated method of compar-
ison, although it does not rely on any specific properties of the English
language (such as the re]gtive]y small information content of vowels).

It also is convenient as it leads directly to a measure of similarity
which can be readily converted to a distance measure comparable with the

separation measure produced by a language interpreter.

9*

An enzyme is a catalyst in a biological system

An enzyme is a catalyst in a biochemical reaction
An enzyme acts as a catalyst

An enzyme speeds up a biochemical reaction

Enzymes are formed in biochemical reactions

Many reactions would not take place without enzymes

Reference Set

A catalyst acts as an enzyme
Enzymes catalyse biochemical reactions
An enzime is a catallist in a biological sttem

Other Strings

Figure 10.0.1 STRINGS USED TO COMPARE LANGUAGE MODELS

109.

The results of this method will be compared with three language
interpreters; the first two will be based on simple character by character

compakiéon, and the third one will use words as the basic unit.

10.1 The Standard Method.

The method proposed by Morrison is perhaps best illustrated
by an example:

let S, = "An-enzyme-acts-as-a-catalyst"

S, = "An-enzyme-speeds-up-a-biochemical reaction"

where we have

1 (Sl) = 28 ; 1(52) = 42

and S, and S, have a common selection

Sy, = "An-enzyme-s--a-alat"”

1 (512) =19

By a common selection we mean that the elements of S,, may
be found in the same order in both S, and S, . It may be verified that,
although S; and S, have several common selections of length 19, there

are none of length more than 19; thus S;, is a longest common selection.

Morrison defined the degree of match between two strings as
the ratio of the length of the longest common selection to the length
of the longer of the two strings; in the example given,

degree of match = 19/42 = 0.452
Clearly the degree of match is a rational number between 0 and 1, being
1 only for identical strings. It is more convenient for our #rposes
to convert this to a distance measure by subtracting it from 1. Thus

we would have in the above case

String

(o2 TN &) IR ~ N GV I \S A

~

oy O B W N =

oo

.5511
.2654
. 3062
.6275

.6327
.2654

.2654

.5477
.6512
.6863

.4643
.5527

.5218

.2559
.6667

.7143
.2858

.4783

Distances Between Strings

A 1

1 0

1 .2245
1 .4783
! .4566
1 .5000
1 .6275
1 .6087
1 .4566
1 .0870
1243564
2145364
3142564
4521364
5421634
6(1 2 5)4 3 A
3126454
52413641
124(35)64

all same dist.

.6275

.7442
.2559

.5218

Reference Strings in Order of Closeness

.6471
.6667

.5883

Figure 10.1.1 RESULTS FOR LONGEST SELECTION METHOD.

110.

- 19 _23 |
d (S,,S,) =1-75=75 = 0.548

Thi§ distance does have quite convenient properties, as we shall now pro

Theorem 10.1.1

The distance between two strings, as defined above, is a
metric over the set of all strings.
Proof:

(i) Clearly d(S;,S,) >0 being zero only for identical strings
wé note that d(A.A) is undefined, but it is consistent to
define this to be zero.

(2) The distance is clearly symmetric,as the longest common
selection does not depend on the order in which the two
strings are given.
d(Sl,Sz) = d(Sz,Sl)

(3) The proof of the triangle inequality,

d (51,53) < d(Sy,S,) +d (S;5,53)
is more difficult and is given in full in Appendix A.

Thus the distance does satisfy the requirements of a metric

over the set of strings.

The general procedure for evaluating this distance is quite
slow; it is in essence necessary to try to match all possible common
selections, and this is a highly recursive process. Because of its
nature, the process was coded in assembly language, and, running on
a small mini-computer, averaged approximately twenty minutes per
comparison. The process is fastest when the two strings are identical

and rapidly deteriorates as the strings become more and more dissimilar.

111.

Details of the program are given in Appendix B.

Because of its slow speed, this method would not as it stands
be suitable for C.A.I. work, and Morrison suggests several alternative
methods for approximating the results with less calculation. It is
possible that the method could be used as it stands if a “threshold
Took ahead" were incorporated in the algorithm; since the match would
in any case be rejected if the degree of match fell below some fixed
value (e.g. 0.6), it would be possible at each step to look ahead to
see if this value could possibly be achieved and thus avoid following
up any fruitlessbranches; this would in fact improve thé speed remark-
ably as it is precisely the unfruitful avenues which require so much
calculation time.

The table of figure 10.1.1 gives the results of the compari-
sons for the test data using the longest common selection method. This
shows both the distances between the pairs of strings, and the resulting
ranking of the reference strings in order of closeness to each one.

Note that as could easily have been predicted the distance of any string
from the null string is unit&; and that

d ($,,S,) < d (Sy,A)
in all cases.

An interesting method of representing this data graphically
is to mark the strings on.a plane with the distance between the points
in proportion to the distance between the strings; such a representation
can oégy be an approximation, as exact representation in two dimensions

is not in general possible, and further, as the plotting procedure -

\.\"‘"

x 3

circle a

X2

Figure 10.1.2 REPRESENTATION OF THE REFERENCE SET IN

TWO DIMENSIONS - Comparison Method.

112.

involves a minimisation (of a function of twelve variables), there is
no general method of ensuring a best representation as opposed to a
lTocal minimum. This relationship is shown for the reference strings
in Figure 10.1.2; the error in the representation is approximately

three percent.

10.2 A Fully Recursive, Context Independent Language Interpreter.

This is the simplest possible form of language interpreter.
Suppose that the input string is
S=W;, W, ... wn
(where the elements are chosen from a set consisting of the alphabet
and the space character.) then the effect procedure takes the following

(START)

form

(<]
- tdn | END
j€l i
JEIH %
noke ;
Q_ N“’i.]‘- NU.;.J*‘ ns Sl’f\‘ns \ens!"h
m=.nekrwork size.

(number oF nodes)

113.

From this it is clear that the result will depend only on the
elements present in the string, and not on their order; this is well
illustrated by the comparison of the results for the third and seventh
strings, which are anagrams of each other. In fact this model would
treat the string

"aaaaaa cceel mnn sss ttt yyz" -
as a synonym for either of them, whereas the reference method treats them
as being quite distinct.

The simplicity of this interpreter makes it considerably faster
than the common selection method; the program was written in the BASIC
language and run interpretively on a mini-computer, taking less than one
minute per comparison. Unlike the common selection method the time for
a comparison is proportional to the string length, and independent of the
actual maount of similarity between the strings. The time is, however,
proportional to the square of the network size.

A comparison of the thirtyfive distinct distances given by the
separations of the eight strings from the six reference strings and the
null string, disregarding repetitions or the distance of a string from
itself, yields a correlation coefficient of 0.845. This is infact the
highest correlation of the three interpreters being considered.

The actual separations obtained are given in Figure 10.2.1,
and a graph of the relationship, scaled to be approximatley the same
size as the corresponding plot for the reference method, is given in

Figure 10.2.2

String

S OB W N

o~

A O AW N e

= O 0o

A 1 2 3 4 5 6
4.439 O
4.737 1.112 0
3.035 1.942 2.306 O
3.873 1.783 1.622 2.064 O
3.931 2.056 1.838 2.446 1.035 O
4.537 1.770 1.773 2.419 1.650 1.898 0O
3.035 1.942 2.306 O 2.064 2.446 2.419

3.477 1.860 1.884 1.770 1.270 1.252 2.028
4.581 1.068 1.233 2.401 2.009 2.190 1.997

Distances Between Strings

P 2 =N
= NN RO
N O O NDOY B
gr NN = O W
W w W o w o
= o o> =

g w O Ok~ WwWw N -
=

._.

W N B

- N

N oy

w o o
=

534
162
Reference Strings in Order of Closeness

P~ O w H
[S2 B =Y

Figure 10.2.1 RESULTS FOR LANGUAGE INTERPRETER #1.

X 2

X 4 X 5

, S

<

Figure 10.2.2 REPRESENTATION OF THE REFERENCE SET IN
TWO DIMENSIONS - Model #1

114,

10.3 A More Complex Interpreter.

The second language intérpreter has been specifically designed

to have the property

GN (S,p) =1

S # A

in common with the comparison method.

- The effect procedure is based on a “normalising" ‘process so that

the sum of squares of all the elements should be unity; the network is

initially set up with all zero elements. The procedure is:

(START)

L& 2

@_ Ceid]

i< n

Norma.lise
nehwork

No

Te|

Jet-

g -

N, €N, 3T
vy Nk dat]
 Te T/2

115.

ATthough the comparison time for this method clearly increases
as the‘§quare of the string length, the actual time taken for the
comparisons made was not very different from that of the previous method;
this is essentially because dependence on the size of the network has
been eliminated.

The correlation with the reference method is not very high,
being only 0.692; this is partly attributable to the fact that in this
model, some separations are greater than the separation from the null
string, and in fact the correlation does rise i?:Lon-null strings are

considered.

The results are given in Figures 10.3.1 and 10.3.2.

10.4 A Language Interpreter Based on Words.

Whereas the previous two language interpeters used the letters
of the alphabet and the space character, we shall now consider one based
on words.

The words in the dictionary are given in Figure 10.4.1. The
weightings in the context network were chosen as estimated differences
in meaning between the pairs; this is, as in both earlier examples, a
symmetric relationship. The chief features of the weightings chosen
are that "catalyse" and "catalyst" are considered to be synonyms (in a
more extensive version they would be recognised as instances of the same
root word and only one dictionary entry made), “biglogica]” and "bio-

chemical" are close to being synonyms, and the words “in","up", and

as" are almost meaningless. It will have been noted that the words

a ,‘"aa", "are’, "is" and "would" do not appear in the dictionary;

Strings A 1

1

] .522
1 711
1 .884
1 .949
! 1.068

O O BAW N =

~J
—

122
8 1 .834

9 1 .431

0

711
.668
.693
.966

741
.597

.607

0

977 0
1.063 .668 O
1.049 .95 .96 O

.245 1.019 1.112 1.048
.897 .703 .639 1.007

.836 .933 .977 1.099

Distances Between Strings

12345
21453
3(1 2)4 A
4(2 5)6 3
54216
6 4(5 2)A

SO 0N AW N
W = kL O O =
= W > g1 = O

~

312414
8 25413

- o

9 12345n

A all :same dist.

o

6

‘Reference Strings in Order of Closeness

Figure 10.3.1 RESULTS FOR LANGUAGE INTERPRETER #2.

x3

%2

Figure 10.3.2 REPRESENTATION OF THE

x 6

TWO DIMENSIONS

Model #2

REFERENCE SET IN

X5

116.

these words have very high frequency and very low meaning content, and
were eliminated from the input strings.

Naturally, the ninth string in the sample, because it involves
only misspellings, does not fit into the framework of this model; in a
practical situation, the spelling errors would have to be re;o]ved at the
time of looking up the words in the dictionary, and would not enter into
the main part of the model. For this reason, the last string has not

been used in calculation of the correlations for either of the two previous

models.
The effect procedure takes the following form:
START
nole: pn- S}r;’ng .’é’ng!’h
; m= no of nodes
Ke | _ No tn pefwork,
K<n | END
K< K+
Yes
Jéﬂ ' No . 2
i m Te 2 wh
jc—-"\ﬂ i
A
Zk)’é&
g -
q_.\;)t,é Py . Morm alic
37 1=Njvg Le | . No/ network
Lgm

k 1 Yes

AN

(a)

Sequence | Word Frequencies

Number Ref set | Other

1 ACTS 1 1

2 AS 1 1

3 BIOCHEMICAL 3 1

4 BIOLOGICAL 1

5 CATALYSE 1

6 CATALYST 3 1

7 ENZYME(S) 6 2

8 FORMED 1

9 IN 3

10 MANY 1

11 NOT 1

12 PLACE I

13 REACTION(S) 4 1

14 SPEEDS 1

15 SYSTEM 1

16 TAKE i

17 up 1

18 WITHOUT 1
A 6 i1
AN 4 11
ARE 1
IS 2 i
WOULD 1

Figure 10.4.1

DICTIONARY FOR INTERPRETER #3.

(a) Words in dictionary

(b) Words deleted from input text

117.

Je '
J<m 22 1
jein :

Yes

Nij« Ny +

N gwt\;—wt!')z

This is in form a fully recursive model; for each input word,
a weighting is distributed to each node, so that the weightings are the
same for two words that are exact synonyms, and decrease with difference
from the input word; these weightings are then used to modify the
network values, and the network is then renormalised so that the sum
of squares of all its values is unity.

The results of this process have a correlation of 0.790 with
the reference method. The results of the run are shown in figures
10.4.2 and 10.4.3.

It is quite clear that the time taken will be proportional
to string length and the_square of the number of network nodes; with the
given data, total time per comparison was approximately one minute.
10.5 SUMMARY.

The three language interpreters demonstrated show quite

String

00 ~N O O AW NN

O U oW N -

o

A 1 2 3 4 5 6

.0875 0

.0906 .0059 O

.0532 .0413 .0435 O

.0927 .0142 .0134 .0488 O

.0613 .0344 .0372 .0236 .03% O

.0724 .0475 .0486 .0405 .0563 .0409 O

.0530 .0414 .0436 .0003 .0489 .0237 .0405
.0913 .0142 .0127 .0478 .0185 .0426 .0484

Distances Between Strings

S OB W N
w W N o= N
[4 1 B = S e R o) SR S w3
= N Ol = 01O
N Pw NN w W
= = o= > = >

[5)]

i
(S B~ S« 2}
(8]

w

o
o
N - e = T - -

=

[@)]
—
N
Y

Reference Strings in Order of Closeness

Figure 10.4.2 RESULTS FOR LANGUAGE INTERPRETER #3

x 3

x b
rE

x3

Figure 10.4.3 REPRESENTATION OF THE REFERENCE SET IN

TWO DIMENSIONS - HModel #3

118.

reasonable agreement with the method chosen as a basis for comparison,
and are considerably faster than it.

| One advantage that the Tanguage interpreters have is that the
effect of the input string need only be calculated once, whereas the
reference method has to start from scratch for each individual compar-
ison.

On the basis of the results given here, the language interpret-

ers are seen to be an acceptable model for resolving the first part of

the answer comparison problem.

119.

CONCLUSION

In this work, we have considered two separate aspects of
Computer Assisted Instruction: first, the design of a practical C.A.I.
system, and second, the problem of answer comparison.

The Adelaide University system is still the largest scale
C.A.I. system which has been designed and implemented in Australia,
and offers many powerful facilities. Its implementation, even if only
to an experimental stage, shows that Australia does have the capacity
to make significant contributions to research in this area. It does
appear likely, however, that practical application of C.A.I. techniques
in this country will be centred more on the development of smaller
scale systems involving less initial cost; even in this area, the
design of the Adelaide system could well be taken as a guide for the
kind of facilities that could be offered by such systems.

Answer comparison has been discussed, and some of the associated
problems pointed out. The history of natural language data processing
is a brief one, and it is possible that the renewed emphasis on the
treatment of meaning, seen for example in the work of Wilks ([39], 1972)
and Winograd ([40], 1972), will be more fruitful than the earlier work
in this area. We have investigated some of the philosophical and
practical problems involved in dealing with meaning. A class of
language models adequate for the solution of the answer comparison
probiem Has been proposed, and its relationship with some existing
models for both natural and artificial Tanguages investigated; the

results of this indicate that the class of medeis is a useful frame-

120.

work for the discussion of language models in general. It has also been
shown that the language models proposed can produce results acceptable
in a practical situation.

There are of course many other aspects of Computer Assisted
Instruction; the design of & practical system, and the problem of
answer comparison are certainly two of the most central, but other areas,
such as the preparation of éourse material and the design of author
languages, to name just two, are also important, and need further invest-
igation. It appears inevitable that C.A.I. will eventually be a part of
the normal educational process, but there is a need for considerable

work in the area before this becomes possible.

A.l

APPENDIX A

PROOF OF THE TRIANGULAR PROPERTIES OF THE COMMON SELECTION PROCESS.

Notation : Let 15 So» and S3 be strings, and denote the maximum

common selections by S5 S13° and So3-

Lemma 1

Proof :

1{513)_1 1(512) + 1(523) - 1(32)

Both S1p and S,y are substrings of So-
Let k =](52) , and
Sp = WiWoWg ... Wy
Then $12 is form ed by choosing 1(512) elements from this sequ-

ence, leaving 1(52) - 1(512) elements unused. Now 5,3 May be

chosen from these elements, but if its length 1(523) exceeds
1(52) - 1(512) then every element by which it exceeds this must
also be an element of Sy9-
Thus S1p and So3 have at least

1(s,5) = (1(s,) = 1(s,)) = Uspp) + 1(sp3) - 1(sy)
common elements which must be in the same order.
However, these are selections of $q and S3 respectively, and
hence Sq and S3 must have at least this many common elements.
i.e.

1(513) 3_1(512) + 1(523) - 1(52)

as was to be shown.

A.2

Theorem 1
If Sys Sp» and S5 are of the same length,
d(sl, 53) j_d(sl, 52) + d(sz, s3)
Proof :
This is straight from the lemma. Let 1(51) = 1(52) = 1(53) =
Then
syg) Mspp) Tlsp3)

> -1
1 1 1

syg) L Msgp) | TS5

1 1 1

1 -

d(sl, 53) j_d(sl, 52) + d(sz, s3)
as required.
The general case is more difficult to handle, and we break it up into
several cases. We note that because of symmetry between S and S3
in the required formula, we may assume 1(51) 3_1(53), and consider
only three cases.
Lemma 2
If 1(52) 3_1(51) then the triangle inequality holds.
Proof :

Fromm Temma 1,

sqg) 2 1(siz) *+ T(sz3) - 1(s2)
1(s,) - 1(sq3) < 1sy) = 1sqp) + 1sy) - T(sy3)
o Meig) 1y RASEY
1(s,) 1(s,) 1(s,)

A.3

But d(sl,s3) =1 - TTEIT_

and, since 1(51) < 1(52)

we have d(sl, 53) <1 - TTEET_
and the result follows.

Lemma 3
If 1(51) > 1(52) 3_1(53) then the triangle inequality
holds.
Proof :
As before,
1(s13) 2 T(sy5) + 1syg) - 1(s,)
1(sq) = 1(sy3) < 1(s) - Hsqp) + 1(sy) - 1(sy3)

and dividing through by 1(51) >0 (5.)
1(s
2
d(Sl, 53) j_d(Sl, 52) + d(SZ, 53) TTEIY

1(52)
Since TT§"7'< 1 the result follows.
1

Lemma 4

If 1{s) > 1(52) then the triangle inequality holds.

Proof :

](513) 3_](512) +](523) -](52)
1(sq) = Usqyq) < U(sq) - Tsyp) + 1(sy) - 1(sy3)
i](sl) -](512) +](53) -](523)

and, dividing through by 1(§1) >0 ;

we obtain
| 1(s3)
d(sls 53) = d(sls 52) + T(_Sl_) d(sz: 53)

and since](53) <1

1(515-—
d(sys s3) < d(sy, s,) + d(s,, s3)
as required.
Theorem 2
For any three strings S1» Sp» and S3»
d(sl, 53) f_d(Sl, 52) + d(sz, 53)
Proof :
The above lemmas have showed the result to hold in each

possible case. The result is therefore generally true.

A.4

B.1

APPENDIX B
THE LONGEST COMMON SELECTION PROCEDURE.

The process of finding a longest common selection from two given
strings sl and s2 is a recursive one. The simplest (although rather

inefficient) method can be readily described by the ALGOL like formula:

Jinteger procedure MATCH (pl, p2);

MATCH := if pl > 11 v p2 > 12 then 0
else if s1[pl] = s2[p2] then 1+MATCH(pl+1l, p2+1)
else MAX(MATCH(pl+1l, p2), MATCH(pl, p2+1));
where the characters are assumed to be coded in the arrays
s1[1:117, s2[1:12]
and the match length is found by calling
MATCH(1, 1);

This process, however, checks many of the possibilities twice,
and so the method actually used is a modification of this which over-
comes the inefficiencies in the calculation of

MAX(MATCH(p1+1, p2), MATCH(pl, p2+1))

by evaluating only the first part of this and then scanning along the
second string for a character equal to the character broken out of the
first string. The methcd was coded in assembly lanéuagé, in order to
increase the speed, and a stack with four entries in each level was
used; these entries were the current values of the pointers pl and p2,
the current match length, and a flag set to -1 while evaluating the
first part, and to the result of this while breaking characters out

from the second strinq.

B.2

Point to start
of both skrings.
ek makch length
to zevo, stack emply

v

Sek length fo
Zero . Advance
Lirst shring

ceinter,

Stack bolh
A string pointers |
makch lenghh,

and (-1) 'gk"-ﬂ '

Ynerem ent

meireh tenSH'\.
Advance voth
shring poivbers,

Reset sh;\'ng pointers
Crom stack, Replace
Slag (-9 vn stack

wirh motch lenghh

Resel lengrh bo zero.

r\~

P

Advance
second
$!’t‘i\’\3
poinker

/J\
E

iy ~
- End Yes
"ok second

Rerurn
\\m oy lenghh)

i)

B.3

et makihh levngHh
o stacked leng!’h-}—
max Ccurrenb value,

5‘”1": no i /
o

nexk ehues)
of gtr, ngs

Stacked Flag value)

pop Fhe top stack
level .

|

 ;
1

B.4

. The resulting procedure is quite rapid for short strings, or
for strings with a high degree of matching (and hence relatively Tittle
genuine recursion}, but deteriorates rapidly with increasing string

length and difference.

10

11

12

BIBLIOGRAPHY

Alberga,C.N. 1967 "String Similarity and Misspellings"
Communications of the A.C.M. Vol 10, no 5; May 1967.

Allen,J.P.B. & VanBuren,P. (Eds) 1971
Chomsky: Selected Readings Oxford U.P., London

Bar-Hillel,Y. 1964

Language and Information Addison-Wesley, Reading(Mass)

Berztiss,A.T. 1971
Data Structures Academic Press, New York

Borko (Ed) 1962
Computer Applications in the Behavioural Sciences

Prentice-Hall, New York

Control Data Corp 1966
6400/6600 Computer Systems Reference Manual Pub 60100000

Davis,M. 1958
Computability and Unsolvability McGraw-Hill, New York

DeCecco,J.P. 1968
The Psychology of Learning and Instruction

Prentice-Hall, Englewood Cliffs (N.J.)

Feigenbaum & Feldman (Eds) 1963
Computers and Thought McGraw-Hiil, New York

Frye,C.H. 1968 “C.A.I. Languages: Capabilities and Applications"

Datamation Sept 1968, pp34-37.

Green,B.F., Woif,A.K., Chomsky,C., & Laughery,K. 1963
“Baseball: An Automated Question Answerer"
in Feigenbaum & Feldman [9]

Hays,D.G. 1962 "Automatic Language Data Processing”
in Borko [5]

13

14

15

16

17

18

19

20

21

22

23

BIBLIOGRAPHY (cont)

Holloway,d. 1951
Language and Intelligence MacMillan, London

Joos,M 1958 "Description of Language Design"
in Joos (Ed) Readings in Linguistics

American Council of Learned Societies, New York

Koch,S (Ed) 1963
Psychology: A Study of a Science,Vol VI McGraw-Hill, New York

Lee,K.C. 1971
Supervision of Trigonometric Proofs for C.A.I.

Doctoral Thesis, University of Adelaide, Adelaide, South Australia

Lewis,P.A.W., Baxendale,P.B., & Bennett,J.L. 1967

"Statistical Determination of the Synonymy/Antonymy Relationship
Between Words"

Journal of the A.C.M. Vol 14, no 1; Jan 1967; pp 20-44

Miller,G.A. 1968
The Psychology of Communication Allan lane-Penguin Press, London

Minsky,M.L. (Ed) 1968
Semantic Information Processing M.1.T Press, Cambridge (Mass)

Morris,C.W. 1946
Signs, ianguage, and Behaviour Prentice-Hall, New York

Morrison,H.W.
Computer Processing of Responses in Verbal Training

I1.B.M Research Report RC1133

Nelson,R.d. 1968
Introduction to Automata Wiley, New York

Ogden,C.K. & Richards,I.A. 1923
The Meaning of Meaning Kegan~-Paul, London

24

25

26

27

28

29

30

31

32

33

34

BIBLIOGRAPHY (cont)

Oldehoeft,A.E. 1970

Computer Assisted Instruction in Teaching Numerical Methods

Doctoral Thesis, Purdue University, Lafayette, Indiana

Osgood,C.E. 1963 "Psychol
in Koch [15]

inguistics”

0sgood,C.E., Succi,G.J., & Tannenbaum,P.H.

1957

The Measurement of Meaning University of I1linois Press, Urbana

Ovenstone,J.A. 1966 "C.A.I. in Undergraduate and Postgraduate

Medicine” The Medical Journal of Australia

Vol 2, no 10; Sept 1966; pp 487-492

Perry,P.G. 1969 "The Adelaide University C.A.IL. Project"

in Smith [35]

Perry,P.G. & Lee,K.C. 1969 "A Computer Assisted Instruction
System" Proceedingsof the Fourth Australian Computer Conference

Vol 1, pp 401-406 Griffin Press, Adelaide

Potter,R.J. 1967
Computer Assisted Instruction

Unpublishe

d report, Dept of

Computing Science, University of Adelaide, South Australia

Rubenstein,H. & Goodenough,J.B. 15965

"Contextual Correlates of Synonymy"

Communications of the A.C.M. Vol 8, no 10; Oct 1965; p627
Sanderson,dJ.G. 1967 "A Basis For a Theory of Programming
Languages" Australian Computer Journal Vol 1, Nov 1967, pp 21-27
Simmons,R.F. 1962 "Synthex: Computer Synthesis of Human
Language Behaviour" in Borke [5]

Smallwood.R.D. 1962
A Decision Structure for Teachi

ng Machines

M.I.T. Press, Cambridge (Mass)

35

36

37

38

39

40

BIBLIOGRAPHY (cont)

Smith (Ed) 1969
The Role of the Computer in the Secondary School

Proceeding of a weekend seminar in Adelaide.
Australian Computer Society, Canberra

Turner,C.W. 1962 "The Passive Construction in English Scientific
Writing" Aumla No 18; Nov 1962; pp 181-197

Ul1mann,S. 1962

Semantics: An Introduction to the Science of Meaning

Basil Blackwell, Oxford

Weizenbaum,J. 1966 "Eljza - A Computer Program for the Study
of Natural Language Communication Between Man and Machine"
Communications of the A.C.M. Vol 9, no 1; Jan 1966; pp 36-45

Wilks,Y.A. 1972
Grammar, Meaning, and the Machine Analysis of Language

Routledge & Kegan Paul, London

Winograd,T.J. 1972 "Understanding Natural Language"
Cognitive Psychology Vol 3, no 1; Jdan 1972

