Refining the physical and temporal record of metamorphism during the Delamerian Orogeny

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Melissa Danielle Stinear November 2017

REFINING THE PHYSICAL AND TEMPORAL RECORD OF METAMORPHISM DURING THE DELAMERIAN OROGENY

RUNNING TITLE

Refining the record of metamorphism during the Delamerian Orogeny.

ABSTRACT

The Delamerian Orogen formed via convergence against the southeastern margin of the Gawler Craton during the Late Cambrian and is characterised by low-P, high-T metamorphism. The evolution of the Delamerian Orogen has been extensively studied by several authors through U-Pb zircon and Sm/Nd geochronology, but lacks fundamental characterisation of its thermal history. Metamorphic studies, of where there are few, suggest an 'anticlockwise' P-T evolution for the Delamerian Orogen. Garnet-staurolite-andalusite-bearing and sillimanite-bearing metapelites in this study were investigated using U-Pb LA-ICP-MS and have metamorphic monazite ages between 514-480Ma. Calculated phase equilibria modelling constrains metamorphism in the andalusite-staurolite-bearing schists to ~4.6kbar and 570°C, to 3.7kbar and 635°C in the sillimanite-bearing schists, and 1.0-4.4kbar and 790-860°C in the highest-grade parts of the orogen. The coupled ²⁰⁶Pb/²³⁸U monazite ages and phase equilibria modelling suggest that the crust deformed in temporal association with the repeated intrusions of granitic material that weakened the comparatively rigid mid-upper crust, leading to the formation of temporally discrete 'anticlockwise' P-T paths. Older metamorphic ages on Kangaroo Island and younger ages on mainland South Australia indicate that the thermal locus moved northwards over time, resulting in a metamorphic terrain that gives the appearance of a patchwork orogen of discrete metamorphic subdomains, with the highest-grades surrounding granitic intrusions which occur late in the evolution of the Delamerian Orogen.

KEYWORDS

Delamerian Orogeny, metamorphism, monazite, U-Pb geochronology, P-T pseudosection

TABLE OF CONTENTS

Refining the physical and temporal record of metamorphism during the Dorogeny	Delamerian
Running title	i
Abstract	i
Keywords	i
List of Figures and Tables	3
Introduction	4
Geological Setting	6
Basement	8
Adelaidean Supersequence	8
Cambrian rocks	8
Delamerian granitoids	9
Metamorphism	11
Sample petrography	
MAC-2	
KS1G	
K2003-1	
17KM04	
17KM05	14
RDC-02	14
KI-25	14
Methods	16
U-Pb geochronology	16
Electron Microprobe Analyses	17
Phase equilibria forward modelling	17
Results	
Monazite U-Pb LA-ICP-MS geochronology	
Sample K2003-1	
Sample KS1G	
Sample MAC-2	
Sample 17-KM-04	19
Sample 17-KM-05	19
Sample RDC-02	19
Sample RDC-04	20

Monazite yttrium content	
Sm/Nd geochronology	23
Phase equilibria forward modelling	
Sample Mac-2	
Sample KS1G	
Sample K2003-1	27
Sample 17-KM-04	27
Sample KI-25	
Discussion	
U-Pb monazite geochronology	
Significance of U-Pb geochronology	
Geochronology	
Sm/Nd geochronology	41
Pressure-temperature conditions	41
Limitations of phase equilibria modelling	41
Purpose of phase equilibria modelling	
P-T evolution	
Conclusions	
Acknowledgments	
References	
Appendix A: Extended geochronology methods	
U-Pb isotopic dating of monazite	
U-Pb data acquisition	
Data reduction and processing	
Appendix B: Whole-rock geochemistry (WT %)	
Appendix C: U-Pb geochronology monazite standard analyses	
Appendix D: U-Pb geochronology monazite results	
Appendix E: Extended EMPA methods	
Appendix F: Range of chemistry of minerals	
Appendix G: T-Mo pseudosection and TCI results	64
Sample MAC-2	
Sample K2003-1	
Sample 17KM04	

LIST OF FIGURES AND TABLES

Figure 1: Sample location map adapted from Jago et al (2003)	7
Figure 2: Time-space plot compiled for the current literature	10
Figure 3: Geological map of the Adelaide Fold Belt showing the regional metamorp	hic
zonation adapted from Dymocke & Sandiford (1992)	10
Figure 4: Photomicrographs of samples used in this study	16
Figure 5: Terra-Wasserburg concordia plots for monazite age data for all samples	
studied in this thesis.	20
Figure 6: Probability density plots of concordant monazite U-Pb LA-ICP-MS analys	ses.
	21
Figure 7: Terra-Wasserburg concordia and probability density plot for sample RDC	-04
	22
Figure 8: Age vs yttrium content for garnet-bearing samples	23
Figure 9: Sm/Nd isochrons for samples KI-8, KI-14, KI-25, KI-27b, Petrel Cove and	d
KS1E	24
Figure 10: Calculated P-T pseudosection for sample MAC-2	29
Figure 11: Calculated P-T pseudosection for sample MAC-2 contoured for the	
abundance ('mode') of some minerals	30
Figure 12: Calculated P-T pseudosection for sample KS1G	31
Figure 13: Calculated P-T pseudosection for sample KS1G contoured for the abundation	ance
('mode') of some minerals	32
Figure 14: Calculated P-T pseudosection for sample K2003-1	33
Figure 15: Calculated P-T pseudosection for sample K2003-1 contoured for the	
abundance ('mode') of some phases.	34
Figure 16: Calculated P-T pseudosection for sample 17KM04	35
Figure 17: Calculated P-T pseudosection for sample 17KM04 contoured for the	
abundance ('mode') of some minerals	36
Figure 18: Calculated P-T pseudosection for sample KI-25	37
Figure 19: Calculated P-T pseudosection for sample KI-25 contoured for the	
abundances ('mode') of some minerals	38
Figure 20: All P-T pseudosections for sample discussed in this thesis	45
Figure 21: Model for generating 'anticlockwise' P-T paths in a convergent setting	
(Collins & Vernon, 1991)	45
Figure 22: Spatial age map of the Delamerian Orogen	48

Table 1: Summary of mineral modal proportions for each sample	15
Table 2: Sm/Nd data from Hand, unpublished, pers comms	25

INTRODUCTION

The southern Adelaide Fold Belt forms part of the Delamerian Orogen (Fig. 1), which formed via convergence along the southeastern margin of the Gawler Craton during the Late Cambrian (Foden *et al*, 1999). The orogen encompasses the Adelaide Hills, the Fleurieu Peninsula and into Kangaroo Island, and forms part of an extensive orogenic system that extends down into Tasmania and further south to the Transantarctic Mountains in Antarctica, where it is known as the Ross Orogen (Foden *et al*, 2006; Boger & Miller, 2004). Deformation was immediately preceded by deposition of the Cambrian Normanville and Kanmantoo groups, which was accompanied by mafic volcanism, suggesting an extensional tectonic regime (Foden *et al*, 1999). The onset of Delamerian-aged convergence at terminated Kanmantoo Group sedimentation and initiated inversion and deformation of the basin (Alias et al, 2002; Flottman *et al*, 1995; Weinberg *et al*, 2013).

A large number of studies have focused on the deformational, metamorphic and igneous evolution of the Delamerian Orogen. However, few studies have provided quantitative thermobarometry coupled with age data. The Delamerian Orogen is characterized by low pressure, high temperature metamorphism (Foden *et al*, 2002; Sandiford et al, 1992). Foden *et al* (2006) argued that convergent deformation ceased by 493 ± 1 Ma. That age constraint on the end of deformation primarily comes from igneous relationships. However, there have been essentially no studies that directly date the minerals that grew during peak metamorphism in different areas of the orogen. Recent U-Pb monazite data from an orthopyroxene-cordierite bearing granulite in the eastern Mt Lofty Ranges gives an age of 483 ± 4 Ma (Bockmann unpublished, 2016), an

4

age that it significantly younger than the inferred end of convergence. Further south on Kangaroo Island, Weinberg *et al* (2013) used monazite geochronology to date granitic rocks from within the diaxtexites on Kangaroo Island. They found that both samples have a similar extent of continuous ages from 495-465Ma, and suggest that this continuous age range is indicative of a large single partial melting event, lasting between 495-465Ma.

In the central Mount Lofty Ranges, closely spaced metamorphic isograds show increasing metamorphic grade southward toward region dominated by granitic magmatism (Cartwright, Vry & Sandiford, 1995; Dymocke & Sandiford, 1992; Sandiford *et al*, 1995). The age of the isograds is unknown and based on the broad age constraints of the orogen, can range in age between 515-485Ma. Furthermore, it is not known whether the isograd sequence represents a single metamorphic progression or is the result of two superimposed events with the second being of higher intensity to the south. Therefore, the quantitative characterization of the thermal (metamorphic) history of the Delamerian Orogen is unknown. This results in an overall lack of understanding of the thermal character of the orogen.

In this study, metasedimentary rocks are used to constrain the thermal structure of the Delamerian Orogen. Calculated P-T pseudosections for metapelites throughout the orogen are coupled with U-Pb LA-ICP-MS geochronology of in-situ monazite to constrain the P-T history. Collectively, these results offer insight into the metamorphism and geodynamics of the Delamerian Orogen.

5

GEOLOGICAL SETTING

The Ross-Delamerian Orogen formed along Gondwana's Pacific margin, and marks a change from a passive to active margin when convergence and subduction were initiated at ~560-540Ma (Boger & Miller, 2004; Foden *et al*, 2006). U-Pb zircon dating of volcaniclastic rocks from the Ross Orogen indicates that convergent tectonism began at this time. Initiation of subduction is proposed to have been due to a continent-arc collision; however, subduction was not pervasive along Gondwana's Pacific margin (Boger & Miller, 2004). Instead, extension continued along the continental margin of what is now South Australia until ~515Ma (Boger & Miller, 2004). The early compressional phase of the Delamerian Orogeny involved west-vergent thrusts (Flottman *et al*, 1995; Foden *et al*, 2002) (D₁), and the development of a low-angle S₁ fabric, which was then overprinted by tight to open upright folds (D₂ and D₃) (Offler *et al*, 1968; Oliver & Zakowski, 1995).

Figure 1: Sample location map adapted from Jago et al (2003). Yellow stars: sample locations from this study. Red stars – sample locations from previous work. (A) Rathjen Gneiss dated at 514 ±4Ma (Foden et al, 2006). (B) Orthopyroxene-cordierite bearing granulite from Reedy Creek dated at 483±4Ma (Bockmann, unpublished, 2016). (C) Petrel Cove – anticlockwise P-T path interpreted (Alias et al, 2002).

The southern Adelaide fold-thrust belt consists of four principal lithotectonic units; Mesoproterozoic crystalline basement (granitoid, gneiss and schist units), the Adelaidean supersequence (Neoproterozoic), Cambrian metasediments and volcanics and the Delamerian-aged granitoids (Marshak & Flottmann, 1996).

Basement

The Mesoproterozoic basement of the Adelaide Fold-Thrust Belt consists of 1.75-1.6Ga granitoids, gneiss and schist units (Marshak & Flottmann, 1996; Morrisey *et al*, 2013).

Adelaidean Supersequence

The late Proterozoic (~850-600Ma) Adelaidean-aged sediments were deposited in a series of relatively shallow water basins within, or on the margin of the basement of the Gawler Craton (Sandiford *et* al, 1992; Turner *et al*, 1994). The rocks are unmetamorphosed to very low grade sandstones, mudstones and diamictons with some carbonates and volcanic tuffs, and thickens from the south to the north (Marshak & Flottmann, 1996; Boger & Miller, 2004).

Cambrian rocks

A second or renewed phase of sedimentation occurred during the early Cambrian, where the basal Normanville Group and overlying Kanmantoo Group were deposited in the Stansbury Basin (Alessio *et al*, 2017; Foden *et al*, 2006). The Normanville Group consists of deformed limestones, shales, sandstones and the Truro Volcanics. Zircon dating of a volcanic tuff layer places the beginning of this phase of sedimentation at 526 \pm 4Ma (Cooper *et al*, 1992). Overlying this unit is the highly deformed Kanmantoo Group, which consists of thick (up to 8km) clastic strata, including deep-water turbiditic sequences of greywacke and shale (Marshak & Flottmann, 1996; Haines & Flottman, 1998; Turner *et al*, 1994). Deposition of the Kanmantoo Group has been dated to ~522Ma, and is proposed to have been deposited rapidly, as the earliest intruded granitic pluton is dated to 514 ±4Ma (Foden *et al*, 2006). Deposition of the Normanville and Kanmantoo groups immediately preceded the onset of the Delamerian Orogeny, and have been variably deformed and metamorphosed during convergence. The Kangaroo Island Group is a fine-grained shallow water sequence that overlies the southern margin of the Gawler Craton, and is confined to northern Kangaroo Island (Haines & Flottman, 1998; Flottmann *et al*, 1995). The external foreland of the orogen (W/NW margin) is characterized by low-grade metasedimentary rocks (subgreenschist to greenschist facies) whereas the internal parts of the belt (E/SE margin) are characterized by higher metamorphic grades (greenschist to amphibolite facies) with abundant felsic magmatic rocks (Alias *et al*, 2002).

Delamerian granitoids

The onset of the Delamerian Orogeny is marked by the inversion of late Proterozoic and early-Cambrian extensional basins. The earliest granitic intrusions marks the onset of Delamerian-aged convergence is the Rathjen Gneiss at $514\pm4Ma$ (Foden *et al*, 2006), which intrudes the Kanmantoo Group (Turner *et al*, 2009). Two distinct granitic phases are recognized in the southern Adelaide fold-belt. The first is an older, dominantly Itype (transitioning through to S-type) granitic suite. These syntectonic granites have ages spanning 514Ma-490Ma, and thus appear to have been generated through the convergent deformation history (Sandiford *et al*, 1992). Sandiford *et al* (1995) suggest that these deformed syntectonic intrusives, including the Rathjen Gneiss and Reedy Creek Granodiorite, may have provided some of the heat for metamorphism due to concentric zoning of isograds surrounding the intrusive bodies. The cessation of convergence is marked by a change in granitic composition, from the I- to S-type syntectonic granites to an undeformed, post-tectonic suite of bimodal A-type granites, dated to 490-480Ma (Foden *et al*, 2006).

Figure 2: Time-space plot compiled for the current literature. Rathjen Gneiss age: Foden *et al*, 2006. Heatherdale Shale Tuff age: Cooper *et al*, 1992. Sm/Nd data provided by Hand, unpublished, pers comms.

Metamorphism

Within the Kanmantoo Group, metamorphism in the Delamerian Orogen is low-pressure, high temperature, with migmatite zones developed around syn-tectonic intrusive plutons (Dymocke & Sandiford, 1992; Jenkins & Sandiford, 1991). Metamorphic grade increases to the east, from chlorite facies to andalusite- to sillimanite-bearing assemblages, and migmatite zones (Direen *et al*, 2005). Dymocke & Sandiford (1992) suggest that the peak temperature was attained later in lower

Figure 3: Geological map of the Adelaide Fold Belt showing the regional metamorphic zonation adapted from Dymocke & Sandiford (1992).

grade regions than higher-grade regions due to lateral heat transfer away from granitic intrusions based on the regional arrangement of isograds (Fig. 3). They also suggest that the isograd arrangements reflect an essentially isobaric metamorphic field gradient with maximum temperature gradients of around 10°C/km. The only quantitative thermobarometric work done on the Delamerian Orogen is from Alias *et al* (2002) for aluminosilicate-cordierite-staurolite-bearing schists from Petrel Cove, within the thermal aureole Victor Harbour Granite, concluding that the rocks at Petrel Cove followed an anticlockwise P-T path.

SAMPLE PETROGRAPHY

In the following descriptions, the logic that peak minerals are coarser grained and/or defines a fabric and that retrograde minerals define either no fabric and are finer-grained is applied. The modal abundance ('mode') of porphyroblasts in each sample are provided in Table 1 because this data is used to constrain P-T conditions.

MAC-2

Matrix minerals consist of biotite (*tabular*), muscovite (*tabular*) and quartz. The dominant fabric of the sample is defined by biotite and muscovite, with S_1 and S_2 fabrics observed throughout (Fig. 4a). Porphyroblasts of garnet and staurolite are typically separated. Garnet contains inclusions of quartz. Staurolite contains inclusions of quartz, biotite and some muscovite. Accessory minerals include monazite and zircon, and less commonly xenotime, which mainly occur within the dominant fabric and less commonly, as inclusions in garnet. The interpreted peak assemblage is biotite + muscovite + garnet + staurolite + ilmenite. Two generations of chlorite occur, the first being obliquely oriented to the dominant fabric, and is interpreted to be retrograde in origin. The second is observed parallel to S_2 , and is interpreted to have grown as S_2 continued to develop. Staurolite and garnet both occur within the retrograde foliation, thus some staurolite and garnet is interpreted to have been stable during the retrograde history.

KS1G

Matrix minerals consist of biotite (*tabular*), muscovite (*tabular*) and quartz. Biotite and muscovite weakly define the primary fabric throughout the sample. Andalusite poikiloblasts contain inclusions of quartz, biotite and garnet (Fig. 4b). Staurolite

12

porphyroblasts contain inclusions of quartz and biotite. Accessory minerals, monazite, zircon, occur throughout the sample within the dominant fabric and as inclusions in andalusite. The interpreted peak assemblage is garnet + biotite + staurolite + quartz + muscovite + ilmenite. Chlorite grains occur perpendicular to the dominant fabric, and are interpreted to be retrograde in origin. Some muscovite is also interpreted to be retrograde, for the same argument presented above for chlorite.

K2003-1

The matrix consists of tabular biotite and muscovite, quartz and ilmenite (Fig. 4c). The dominant fabric in the sample is defined by biotite and muscovite. Porphyroblasts of garnet, staurolite and andalusite are separated and the foliation wraps around them. Garnet porphyroblasts contain inclusions of quartz. Staurolite is poikiloblastic and has typically euhedral, equant grains, with numerous inclusions of quartz, muscovite and biotite. Andalusite grains are poikiloblastic, subhedral and contain inclusions of quartz, biotite and ilmenite. Garnet grains are commonly fractured with fine-grained biotite and chlorite. Accessory minerals include monazite, zircon and xenotime, which mainly occur in the dominant fabric and as inclusions in andalusite, staurolite and garnet. The interpreted peak assemblage is garnet + staurolite + andalusite + muscovite + quartz + biotite + ilmenite. Retrograde chlorite occurs within the cracks in garnet, and porphyroblasts obliquely and perpendicularly oriented to the dominant fabric.

17KM04

Matrix minerals consist of quartz, biotite, muscovite, potassium feldspar and plagioclase. Biotite, quartz and muscovite define the pervasive foliation. Sillimanite occurs as both prismatic grains and fibrolite (Fig. 4d). Fibrolite replaces relic

13

andalusite. Accessory minerals include monazite and zircon. The interpreted peak assemblage is quartz + sillimanite + biotite + muscovite + plagioclase + ilmenite. A second morphology of muscovite occurs, growing across the pervasive foliation, and is interpreted to be retrograde in origin.

17KM05

Matrix minerals consist of quartz, biotite, potassium feldspar, muscovite and some plagioclase. Biotite, muscovite and quartz define a pervasive foliation throughout (Fig. 4e). Sillimanite occurs as prismatic grains as well as fibrolite. Accessory minerals include monazite and zircon. The interpreted peak assemblage is quartz + sillimanite + biotite + muscovite + plagioclase + ilmenite. Late muscovite is observed growing across the pervasive foliation.

RDC-02

Sample RDC-02 contains biotite, cordierite, plagioclase and ilmenite. Cordierite and plagioclase are the two primary matrix minerals. There are two morphologies of biotite. Some biotite grains are aligned to define a weak foliation, whereas other biotite grains are randomly oriented (Fig. 4f). Biotite grains contain inclusions of accessory minerals monazite and zircon, as well as ilmenite. The peak assemblage is interpreted to be plagioclase + biotite + cordierite + ilmenite.

KI-25

Sample KI-25 contains biotite, andalusite, staurolite, muscovite, garnet, chlorite, plagioclase, quartz and ilmenite. Matrix minerals include quartz, plagioclase, ilmenite and biotite. Biotite, muscovite and quartz define the strong pervasive foliation, which wraps around andalusite porphyroblasts. There are two morphologies of muscovite, the first within the foliation and one which cross cuts the foliation and is hence interpreted to be retrograde. Retrograde chlorite cross cuts the foliation and grows aligned to the rim of some andalusite porphyroblasts. Staurolite is localised to two locations, the first on the rim of an andalusite porphyroblast and the second within a portion of the foliation (Fig. 4g). Garnet contains inclusions of quartz and ilmenite. Andalusite contains inclusions of biotite and quartz. The interpreted peak assemblage is therefore andalusite + biotite + muscovite + plagioclase + ilmenite + quartz.

Table 1: Summary of mineral modal proportions for each sample. Mineral abbreviations used throughout this study include; g (garnet), st (staurolite), and (andalusite), mu (muscovite), bi (biotite), k-spar (potassium feldspar), pl (plagioclase), chl (chlorite), sill (sillimanite), q (quartz).

SAMPLE	MINERAL PROPORTION							TOTAL	
	g	st	and	sill	bi	mu	q	chl	
K2003-1	<1%	2.6%	4.2%	-	~34%	~21%	~33%	2.6%	98.4%
MAC-2	<1%	4.8%	-	-	~29%	~25%	~36%	3.3%	99.1%
KS1G	1.1%	2.4%	5.9%	-	~32%	~22%	~32%	3.2%	98.6%
17-KM-04	-	-	-	5.3%	~36%	~19%	~38%	-	98.3%
17-KM-05	-	-	<1%	3.5%	~35%	~20%	~39%	-	98.5%
KI-25	<1%	<1%	6.6%	-	~34%	~19%	~36%	1.2%	98.8%

Figure 4: Photomicrographs of samples used in this study: (A) S_1/S_2 fabric defined by biotite, muscovite and quartz. S_1 domains are quartz-rich. S_2 fabrics are defined primarily by biotite and muscovite. Chlorite occurs parallel to S_2 as S_2 developed; (B) Andalusite porphyroblasts coexisting with garnet; (C) Fine-grained plagioclase within biotite + muscovite fabric; (D) Sillimanite porphyroblasts occurring as fibrolite; (E) Pervasive biotite + muscovite foliation; (F) Randomly oriented biotite + magnetite in a cordierite + plagioclase matrix (G) Localised staurolite growing within biotite + muscovite + quartz foliation.

METHODS

U-Pb geochronology

U-Pb monazite ages were acquired from samples MAC-2, KS1G, K2003-1, 17-KM-04,

17-KM-05 and RDC-02 and RDC-04 (data collected by Kiara Aleisso, unpublished,

2016) by LA-ICP-MS at Adelaide Microscopy for the purpose of dating metamorphism.

Sample preparation and operational procedures for this technique is detailed in

Appendix A.

Electron Microprobe Analyses

Mineral composition element analyses were undertaken at Adelaide Microscopy, using a CAMECA SXFive electron microprobe. Operational procedures are presented in Appendix E.

Phase equilibria forward modelling

Phase equilibria calculations were performed using the software program THERMOCALC in the model chemical system MnO-Na₂O-CaO-K₂O-FeO-Mg-O-Al₂O₃-SiO₂-H₂O-TiO₂-O (MnNCKFMASHTO), where 'O' is a proxy for Fe₂O₃, using the latest internally-consistent thermodynamic dataset 'ds6' for Macintosh (filename tcdxmn.txt; Holland & Powell, 2011) and activity-composition models (Powell et al. 2014; White et al, 2014a; White el al, 2014b). THERMOCALC calculations are using a user-specified initial stable assemblage and calculating field boundaries and points. The diagram is built up from that initial stable assemblage, involving many trial and error calculations in order to determine the phases that disappear or appear as a function of pressure, temperature or composition. The most uncertain compositional variables and Fe₂O₃ and H₂O (Kelsey & Hand, 2015), requiring that these be constrained with T-M diagrams (where M refers to the amount of an oxide component) prior to the calculation of the P-T pseudosection. T-M_o diagrams were calculated to assess the oxidation state of the samples and are provided in Appendix F. The pressure at which the $T-M_0$ diagram calculations were based on was determined by estimating the pressure at which the observed peak metamorphic assemblage is stable; in this case, 3.5kbar. Compositions chosen along the x-axis from the peak fields of the T-Mo diagrams for P-T modelling were selected based on modal proportions of minerals that best estimated the estimated modes. Contouring of the phase equilibria models for the normalised

abundances (mode) of phases was calculated using automated software TCInvestigator v2.0 (Pearce *et al*, 2015). The bulk compositions are presented as insets in the diagrams in 1 atom normalized to 100%.

RESULTS

Monazite U-Pb LA-ICP-MS geochronology

SAMPLE K2003-1

Thirty-eight analyses were collected from 38 individual in-situ monazite grains. Of the thirtyeight analyses, sixteen analyses were excluded from age calculations due to discordance. Of the twenty-two concordant analyses, three analyses were rejected based on their significant deviation from the dominant spread (monazite grains 8, 26 and 32). The remaining nineteen analyses define a weighted average 206 Pb/ 238 U age of 492.4±5.3Ma (MSWD = 4.2, 95% conf.).

SAMPLE KS1G

Thirty-five analyses were collected from 35 individual in-situ monazite grains. Of the thirty-five analyses, twenty-four analyses were excluded from age calculations. The remaining data defines a concordia age of ${}^{206}Pb/{}^{238}U$ 497.1 ± 3.3 Ma (n = 11, MSWD = 8.2). A linear probability plot for the analyses used to define the concordia age shows the spread of ${}^{206}Pb/{}^{238}U$ ages (i.e. between 488.1-507.6 Ma).

SAMPLE MAC-2

Thirty-four analyses were collected from 34 individual in-situ monazite grains. Of the thirty-four analyses, nine analyses were excluded from age calculations due to discordance. Of the twenty-five concordant analyses, the two oldest were rejected due to their significant deviation from the dominant spread (monazite grains 9 and 34). The

remaining twenty-three analyses define a weighted average age of 206 Pb/ 238 U 493.8±5.3Ma (MSWD = 4.4, 95% conf.).

SAMPLE 17-KM-04

Fifty-nine analyses were collected from 34 individual in-situ monazite grains. Of those fifty-nine analyses, forty-two analyses were excluded from age calculations due to discordance. The remaining seventeen analyses define a weighted average age of 206 Pb/ 238 U 491.7±5.1Ma (MSWD = 5.2, 95% conf.).

SAMPLE 17-KM-05

Forty-three analyses were collected from 25 individual in-situ monazite grains. Of those forty-three analyses, twenty-eight analyses were excluded from age calculations due to discordance. Of the remaining fourteen analyses, two analyses were rejected due to their significant deviation from the dominant spread (analyses 13 and 21). The remaining twelve analyses define a weighted average age of 206 Pb/ 238 U 497.6±7.5Ma (MSWD = 8.2, 95% conf.).

SAMPLE RDC-02

Eleven analyses were taken from 8 individual in-situ monazite grains. A linear probability plot for the analyses shows the spread of 206 Pb/ 238 U ages. The spread of this data defines two groups occurring between 523.6-507.0 Ma and 466.3-423 Ma. Three data points define a concordia age of 206 Pb/ 238 U 515.1 ± 16Ma (n = 3, MSWD = 11.8).

SAMPLE RDC-04

Data collected by Kiara Bockmann from the University of Adelaide in 2016. Thirtyfive data points define a concordia age of 206 Pb/ 238 U 483.5 ± 4.3Ma (n = 35, MSWD = 2.6, 95% conf). There is a continuous spread of data from 440-560Ma.

Figure 5: Terra-Wasserburg concordia plots for monazite age data for all samples studied in this thesis.

Melissa Danielle Stinear Refining the record of metamorphism during the Delamerian Orogeny

Figure 6: Probability density plots of concordant monazite U-Pb LA-ICP-MS analyses.

Figure 7: (Top): Terra-Wasserburg concordia plot for sample RDC-04 compiled by Kiara Bockmann, unpublished, pers comms, defining a concordia age of 483.5 ± 4.3Ma (n = 35, MSWD = 2.6). (Bottom): Probability density plot of concordant monazite.

Monazite yttrium content

Concentrations for yttrium in monazite were collected for garnet-bearing samples

KS1G, K2003-1 and MAC-2 because yttrium (Y) is known to be a sensitive recorder of

the respective timing of garnet and monazite in metamorphic rocks (Foster et al, 2000;

Spear & Pyle, 2002; Williams *et al*, 2007). Monazites in sample K2003-1 have the highest yttrium content (up to 11200 ppm) whereas monazites in sample MAC-2 have the lowest yttrium content.

Figure 8: Age vs yttrium content for garnet-bearing samples.

Sm/Nd geochronology

Sm/Nd dating was done on six samples from the Delamerian Orogen; KI-8, KI-14, KI-25, KI-27b, Petrel Cove and KS1E (rock types summarized in Table 2, data from Hand, unpublished pers com). Whole rock and garnet Sm-Nd results are shown in Table 2.

The Sm-Nd whole rock isochron for Petrel Cove yielded a younger age of 497.8 ± 2.6 Ma (Fig. 9e) compared to all other samples. Kangaroo Island samples yield the oldest ages, ranging from 508.7 ± 7.3 Ma to 513 ± 4 Ma.

Figure 9: Sm/Nd isochrons for samples KI-8, KI-14, KI-25, KI-27b, Petrel Cove and KS1E.

Sample	Rock type		¹⁴⁷ Sm/ ¹⁴⁴ N d	±	¹⁴³ Nd/ ¹⁴⁴ Nd	±	Initial ¹⁴³ Nd/ ¹⁴⁴ Nd	Age
KI 8	Metased	WR	0.2753	0.00092	0.5127602	0.0000120	$0.511843 \pm$	508.8 ± 3.2
		gt	2.6586	0.00886	0.5207032	0.0000403	0.000015	Ma
KI 14	Deformed	WR	0.211	0.00070	0.5124609	0.0000100	$0.511753 \pm$	511 ± 22 Ma
	pegmatitie vein	gt	0.408	0.00136	0.5131201	0.0000260	0.000035	
KI 25	Metased	WR	0.122	0.00041	0.5120624	0.0000199	$0.511651 \pm$	513 ± 4 Ma
			1.278	0.00426	0.5159435	0.0000164	0.000022	
		gt l	1.249	0.00416	0.5160064	0.0000473		
		gt2 gt3	1.162	0.00387	0.5155871	0.0001532		
		WR	0.122	0.00041	0.5120624	0.0000199		
		gt1	1.278	0.00426	0.5159435	0.0000194		
		gt3	1.162	0.00387	0.5155871	0.0001532		
KI 27B	Undeformed	WR	0.221	0.00074	0.5122846	0.0000240	$0.511547 \pm$	508.7 ± 7.3
	pegmatitie	gt	1.099	0.00366	0.5152076	0.0000330	0.000031	Ma
Petrel	Metased	WR	0.127	0.00042	0.5117500	0.0000209	$0.511333 \pm$	497.8 ± 2.6
Cove		gtl	0.908	0.00303	0.5142550	0.0000570	0.000021	Ma
		gt2	2.758	0.00919	0.5203305	0.0000278		
KS1E	Garnet-	WR	0.1218	0.000405857	0.51185445	0.000009	$0.511452 \pm$	507 ± 11 Ma
	Staurolite	WR	0.1217	0.000405682	0.51186442	0.000016	0.000014	
	schist	2 at	0.2932	0.000977274	0.51242573	0.00001		
		gt2	0.1218	0.00040586	0.51185445	0.000018		

Table 2: Sm/Nd data obtained from Hand pers comms. WR = whole rock

Phase equilibria forward modelling

Temperature-Molar oxidation (T-M_o) (see Appendix G) and pressure-temperature (P-T) pseudosections were calculated for samples MAC-2, K2003-1, KS1G, 17KM04 and KI-25. The objective of phase equilibria modelling was to constrain the P-T conditions for the five samples, hence developing the thermal framework for their metamorphic evolution. The principle uncertainty in pseudosection modelling is in the determination of effective composition, particularly Fe₂O₃ (Kelsey & Hand, 2015) in this study. The appropriate oxidation state, as Fe₂O₃ vs FeO amount for the P-T pseudosection was constrained for each of the five samples by calculating T-M_o pseudosections first. A fixed pressure is required for this calculation, which in this study was 3.5kbar based on

the observed mineral assemblages and is in within the range of pressures inferred from previous studies (eg. Alias *et al*, 2002).

SAMPLE MAC-2

The calculated P-T pseudosection is shown in Fig. 10. The interpreted peak assemblage is quartz + biotite + muscovite + plagioclase + garnet + staurolite + ilmenite. Obliquely and perpendicularly oriented chlorite and muscovite are interpreted to be retrograde in origin. The chosen oxidation state corresponds to the composition at Mo = 0.080 (Appendix G) on the basis that modal proportions of porphyroblasts estimated in Table 1 coincide with calculated modes of phases. The peak field in the calculated P-T pseudosection (Fig. 10) is constrained to conditions of ~4.7 kbar and 570 degrees (Fig. 10f). This field is bound by the occurrence of sillimanite up-temperature and chlorite down-temperature. The retrograde path is defined by the appearance of chlorite (Fig. 10c) and increasing mode of muscovite (Fig. 11e), defining a decreasing P-T evolution.

SAMPLE KS1G

The calculated P-T pseudosection is shown in Fig. 12. The interpreted peak assemblage is quartz + biotite + muscovite + plagioclase + garnet + staurolite + ilmenite. The chosen oxidation state corresponds to the composition at $M_0 = 1.000$ on the basis that modal proportions estimated in Table 1 coincides with calculated modes of phases of porphyroblasts (Appendix G). The peak field in the calculated P-T pseudosection (Fig. 12) is constrained to conditions of ~4.6 kbar and 560 degrees (Fig. 13e). This field is bound by the occurrence of sillimanite up-temperature and chlorite down-temperature. The retrograde path is defined by the appearance of chlorite (Fig. 13c) and increasing mode of muscovite (Fig. 13e).

SAMPLE K2003-1

The calculated P-T pseudosection is shown in Fig. 14. The interpreted peak assemblage is quartz + biotite + muscovite + plagioclase + garnet + staurolite + ilmenite. The chosen oxidation state corresponds to the composition at $M_0 = 1.000$ on the basis that modal proportions of porphyroblasts estimated in Table 1 coincides with calculated modes of phases (Appendix G). The peak field in the calculated P-T pseudosection (Fig. 14) is constrained to conditions of ~4.8 kbar and 575 degrees (Fig. 15e). This field is bound by the occurrence of sillimanite up-temperature and chlorite downtemperature. The retrograde path is defined by the appearance of chlorite (Fig. 15c) and increasing abundance in muscovite (Fig. 15e).

SAMPLE 17-KM-04

The calculated P-T pseudosection is shown in Fig. 16. The interpreted peak assemblage is biotite + muscovite + plagioclase + sillimanite + ilmenite + quartz. The chosen oxidation state corresponds to the composition at $M_o = 0.070$ on the basis that modal proportions estimated in Table 1 coincides with calculated modes of phases. The peak field in the calculated P-T pseudosection (Fig. 16) is constrained to conditions of ~3.7 kbar and 635 degrees (Fig. 17e). This field is bound by the occurrence of staurolite down-temperature and andalusite down-temperature. The retrograde path is defined by the increasing mode of muscovite (Fig. 17a).

SAMPLE KI-25

The calculated P-T pseudosection is shown in Fig. 18. KI-25 has lower silica content than all other samples. The interpreted peak assemblage is garnet + staurolite + biotite + muscovite + + chlorite + ilmenite + quartz. The retrograde path is defined by the increasing mode of muscovite and chlorite (Fig. 19d).

Figure 10: Calculated P-T pseudosection for sample MAC-2. All fields in the diagram additionally contain water, H_2O , as part of the equilibrium assemblage. Fields too small to be directly labelled are identified by numbered circles corresponding to the assemblage occurring within the field. Progressively darker tones are representative of increasing variance, V, where V = components – phases + 2 (components = 10). The composition in mole % used to calculate the diagram, corresponding to that at M = 0.080 in Appendix G is provided above the diagram. The dashed line represents the interpreted P-T path. FeO* = FeO + 2 x 'O'.

Figure 11: Calculated P-T pseudosection for sample MAC-2 contoured for the abundance ('mode') of some minerals. The calculated abundances of phases in the peak assemblage (bold outline) were used in conjunction with the estimated abundances of minerals in the sample (Table 1) to constrain the peak P-T conditions experienced by the rock. Diagram F shows the detail of the peak assemblage field with calculated abundances of phase (combination of A and B), to further constrain the metamorphic conditions within the peak assemblage field.

Figure 12: Calculated P-T pseudosection for sample KS1G. All fields in the diagram additionally contain water, H_2O , as part of the equilibrium assemblage. Fields too small to be directly labelled are identified by numbered circles corresponding to the assemblage occurring within the field. Progressively darker tones are representative of increasing variance, V, where V = components – phases + 2 (components = 10). The composition in mole % used to calculate the diagram is provided above the diagram. The dashed line represents the interpreted P-T path. FeO* = FeO + 2 x 'O'.

Figure 13: Calculated P-T pseudosection for sample KS1G contoured for the abundance ('mode') of some minerals. The calculated abundances of phases in the peak assemblage (bold outline) were used in conjunction with the estimated abundances of minerals in the sample (Table 1) to constrain the peak P-T conditions experienced by the rock. Diagram F shows the detail of the peak assemblage field with calculated abundances of phase (combination of A and B), to further constrain the metamorphic conditions within the peak assemblage field.

Figure 14: Calculated P-T pseudosection for sample K2003-1. All fields in the diagram additionally contain water, H_2O , as part of the equilibrium assemblage. Fields too small to be directly labelled are identified by numbered circles corresponding to the assemblage occurring within the field. Progressively darker tones are representative of increasing variance, V, where V = components – phases + 2 (components = 10). The composition in mole % used to calculate the diagram is provided above the diagram. The dashed line represents the interpreted P-T path. FeO* = FeO + 2 x 'O'.

Figure 15: Calculated P-T pseudosection for sample K2003-1 contoured for the abundance ('mode') of some phases. The calculated abundances of phases in the peak assemblage (bold outline) were used in conjunction with the estimated abundances of minerals in the sample (Table 1) to constrain the peak P-T conditions experienced by the rock. Diagram F shows the detail of the peak assemblage field with calculated abundances of phase (combination of A and B), to further constrain the metamorphic conditions within the peak assemblage field.

Figure 16: Calculated P-T pseudosection for sample 17KM04. All fields in the diagram additionally contain water, H_2O , as part of the equilibrium assemblage. Fields too small to be directly labelled are identified by numbered circles corresponding to the assemblage occurring within the field. Progressively darker tones are representative of increasing variance, V, where V = components – phases + 2 (components = 10). The composition in mole % used to calculate the diagram is provided above the diagram. The dashed line represents the interpreted P-T path. FeO* = FeO + 2 x 'O'.

Figure 17: Calculated P-T pseudosection for sample 17KM04 contoured for the abundance ('mode') of some minerals. The calculated abundances of phases in the peak assemblage (bold outline) were used in conjunction with the estimated abundances of minerals in the sample (Table 1) to constrain the peak P-T conditions experienced by the rock. Diagram F shows the detail of the peak assemblage field with calculated abundances of phase (combination of C and D), to further constrain the metamorphic conditions within the peak assemblage field.

Sample KI-25 Calculated in the chemical system MnNCKFMASHTO Bulk composition (mole%) SIO2 Al2O3 CaO MgO FeO* K2O Na2O TIO2 MnO O 59.93 15.95 1.81 7.63 9.41 2.57 1.21 1.24 0.151 0.087 (H2O = excess) 6 6 g mu chi pi ilm q V=6 mu st pl bi ilm o g mu chi pi bi ilm g V = 6V=5 5 Pressure (kbar) g cd sill pl bi ilm q 4 V=S 4 ent will get be ide mu chi pi bi ilm q V=6 3 5 pil fai sim es V-M 2 V = 6 500 550 600 650 Temperature (°C) 7. g cd sill pl bi ilm q 1. mu and chl cd pl bi ilm q 8. st cd sill pl bi ilm q 2. mu and chl pl bi ilm q 9. g and st cd pl bi ilm q 3. mu st and chl pl bi ilm q 10, and chl cd st pl bi ilm q 4. mu st and pl bi ilm q 11. and st chl pl bi ilm q 5. mu st sill pl bi ilm q 12. and chl cd pl bi ilm q 6. g mu st pl bi ilm q

Figure 18: Calculated P-T pseudosection for sample KI-25. All fields in the diagram additionally contain water, H_2O , as part of the equilibrium assemblage. Fields too small to be directly labelled are identified by numbered circles corresponding to the assemblage occurring within the field. Progressively darker tones are representative of increasing variance, V, where V = components – phases + 2 (components = 10). The composition in mole % used to calculate the diagram is provided above the diagram. The dashed line represents the interpreted P-T path. FeO* = FeO + 2 x 'O'.

Figure 19: Calculated P-T pseudosection for sample KI-25 contoured for the abundances ('mode') of some minerals. The calculated abundances of phases in the peak assemblage (bold outline) were used in conjunction with the estimated abundances of minerals in the sample (Table 1) to constrain the peak P-T conditions experienced by the rock.

DISCUSSION

The aim of this study is to refine the timing of metamorphism and thermal character of metapelites within the Delamerian Orogen, for the purpose of providing constraints on its tectonic evolution.

U-Pb monazite geochronology

SIGNIFICANCE OF U-PB GEOCHRONOLOGY

The ${}^{206}\text{Pb}/{}^{238}\text{U}$ monazite ages presented in this study are in-situ monazite analyses. As samples in this study are low-grade, monazites are typically ~20µm in size, thus

mounted monazite analyses would be difficult to obtain. In-situ analysis also has the benefit of retaining accessory phase textural relationships. The ²⁰⁶Pb/²³⁸U monazite ages in this study are presented as concordia ages or as weighted mean averages. As the Delamerian-aged metamorphism is recognised as a continuous process approaching 30 million years, no single 'age' of metamorphism is likely to be obtained.

GEOCHRONOLOGY

Monazite is a widely used geochronometer for understanding high-temperature processes (Spear & Pyle, 2002; Taylor et al, 2016) as diffusion rates of elements in monazite is slow, and has a high resistance to lead loss (Foster et al, 2000). Thus, monazite can record previous geologic conditions Monazite commonly starts to grow in metasedimentary rocks during prograde metamorphism at temperatures of ~400-500°C (Smith & Barreiro, 1990), and is understood to have mostly reacted or recrystallized to form metamorphic monazite by ~350°C (Williams et al, 2007). . Monazite was chosen as the appropriate geochronometer in this study as the rock samples are subsolidus, where metamorphic zircon typically does not grow. All samples preserve midamphibolite facies mineral assemblages (garnet + staurolite etc.), indicating temperatures >550°C, thus monazite age data in this study are presumably the result of: (1) a single metamorphic event or (2) poly-metamorphism. The spread of data along a discord in KS1G is attributed to common Pb as the upper intercept approaches the age of the Earth. The monazite geochronology from KS1G, K2003-1, MAC-2, 17-KM-04 and 17-KM-05 are in agreement with the monazite age of 493.3 ± 3.2 Ma from the highgrade core of the orogen (Foden *et al*, 2006). The 206 Pb/ 238 U weighted average ages presented in this study coincide with the abrupt change from I- and S-type granites to Atype granites at 493.3 ± 3.2 Ma (Foden *et al*, 2006) within the Delamerian Orogen,

which has been interpreted to mark the cessation of deformation. The youngest monazite ages imply that the A-type granites likely provided the heat for metamorphism once deformation ceased.

The monazite geochronology of sample RDC-02 is complex. Arguably a population occurs at 523.6-507Ma, with a concordia age of 515.1 ± 16 Ma. Sample RDC-04 defines a concordia age of 483.5 ± 4.3 Ma. As Reedy Creek area (Fig. 1) records significantly younger monazite ages than all other samples in this study, and has evidence of granulite facies metamorphism (Aleisso *et al*, 2017) (Fig. 17a), it is conceivable that either (1) the Reedy Creek area experienced the hottest temperatures within the orogen, and hence took the longest time to cool or (2) the Delamerian Orogen constitutes a patchwork of metamorphic sub-domains.

Garnet is the major repository of yttrium in metamorphic rocks (Williams *et* al, 2007). The timing of garnet growth and/or breakdown strongly affects the yttrium distribution in metamorphic monazite (Foster *et* al, 2000; Spear *et al*, 2009). Typically, if monazite growth begins prior to garnet growth, it will be enriched in yttrium than if monazite growth post-dates garnet, as yttrium will partition into garnet as soon as it nucleates (Spear & Pyle, 2002; Williams *et al*, 2007; Zhu & O'Nions, 1999). The relationship between yttrium content in monazite and garnet can link metamorphism to U-Pb ages (Taylor *et al*, 2016; Zhu & O'Nions, 1999); however, this relationship does not always exist and thus varies from study to study. No measurable relationship is observed between the U-Pb age of monazite inclusions and yttrium content of monazite in samples MAC-2, K2003-1 and KS1G. The random distribution of monazite ages with

40

respect to garnet indicates that potentially monazite growth began prior to garnet growth. Monazites in Samples K2003-1 and MAC-2 have high yttrium contents around 480Ma, and then yttrium content generally drops as the age increases as shown in Fig. 7. Potentially in these samples, there was a small amount of garnet breakdown associated with monazite growth at ~480Ma, and then the garnet stopped breaking down.

Sm/Nd geochronology

Garnet-whole rock Sm/Nd data from Kangaroo Island indicates that peak metamorphism in the Kangaroo Island region began much earlier than metamorphism as recorded by monazite U-Pb on mainland South Australia. Sample KI-25 yields an age of 513 ± 4 Ma, an age that is in agreement with the zircon age obtained by Foden *et al* (2006) from the Rathjen Gneiss. This age implies that peak metamorphism on Kangaroo Island was reached early in the deformation history, potentially due to heat from surrounding granitic intrusions.

Pressure-temperature conditions

LIMITATIONS OF PHASE EQUILIBRIA MODELLING

The chemical system MnNCKFMASHTO was chosen as the appropriate system for phase equilibria modelling in this thesis. Manganese is important to stabilize garnet to low pressures to coexist with andalusite (Johnson *et al*, 2003), as evident in petrological observations of samples in this thesis. The model chemical system MnNCKFMASHTO has been used to represent a complex natural system, and it is acknowledged that there are a number of limitations. Some samples used in this study are low-temperature with large porphyroblasts of andalusite, resulting in bulk composition fractionation (Clarke & Hand, 2010), where the surrounding composition becomes depleted in alumina as andalusite grows; altering the overall bulk composition of the rock (Alias *et al*, 2002). To minimize the effect of this limitation, samples with the smallest porphyroblasts were chosen.

PURPOSE OF PHASE EQUILIBRIA MODELLING

Phase equilibria modelling has been used to determine the thermal character recorded by the samples for constraining their P-T history throughout the Delamerian Orogeny. 'Clockwise' P-T paths are typically associated with convergent settings where the crust is thickened, suggesting that metamorphism occurs as a conductive response to thickening (e.g Collins & Vernon, 1991; Jamieson *et al*, 1998). Alternatively, 'anticlockwise' P-T paths are generated when the thermal peak is reached in the early stages of deformation and are more typically associated with magmatic heating (e.g Alias *et al*, 2002; Collins & Vernon, 1991).

In sample MAC-2, the peak assemblage biotite + muscovite + staurolite + garnet +quartz + plagioclase + ilmenite is preserved, therefore the abundances of minerals in thin section (Table 1) may be used in conjunction with calculated abundances to constrain the peak P-T conditions. The region with the peak assemblage field that corresponds most closely with the observed and calculated mineral modes (Fig. 11f) is in the P-T range ~4.7 kbar and 570°C. Inferring a P-T path for sample MAC-2 is difficult. The prograde evolution could not be directly constrained on the pseudosection (Fig.10). To determine the prograde evolution of the rock; it would be necessary to model a more aluminous bulk composition corresponding to the composition of

42

andalusite; however progressively modelling each sample as the bulk composition changes is beyond the scope of this thesis. The lack of andalusite in this rock probably precludes the prograde P-T path from passing through andalusite stability fields, as andalusite is difficult to nucleate (Alias *et al*, 2002; Pattison & Tinkham, 2009). Thus, if the prograde path had passed through andalusite stability fields to the peak (andalusite-absent), one would expect to see relic andalusite surviving in the rock.

As relic andalusite occurs in samples KS1G and K2003-1, and is interpreted to pre-date staurolite, the prograde P-T path likely passed through andalusite stability fields prior to the metamorphic peak. The retrograde path is marked by the initial growth of chlorite. The sequence of mineral growth interpreted from petrological observations and the calculated pseudosection suggests that samples KS1G and K2003-1 followed an 'anticlockwise' P-T evolution (Figs. 11 & 13 respectively).

In sample 17KM04, the region within the peak assemblage field (Fig. 15; biotite + muscovite + plagioclase + sillimanite + quartz + ilmenite + water) that corresponds most closely with the observed and calculated modes is in the P-T range 3.7 kbar and 635 degrees. The retrograde path is poorly constrained, as the only evidence of retrogression is retrograde muscovite cross-cutting the foliation. Sillimanite occurring as fibrolite is interpreted to have pseudomorphed relic andalusite; hence the prograde path is interpreted to have passed through the andalusite stability field. The calculated pseudosection, coupled with petrological observations suggests that sample 17KM04 also followed an 'anticlockwise' P-T evolution.

43

Interpreting a P-T path for sample KI-25 is difficult. The interpreted P-T path (Fig.18) is based on the low abundances of garnet and staurolite (Fig. 19). There is very little evidence of retrogression, suggesting that KI-5 may have ran out of a reactant, possibly water.

Sample RDC-04 from Reedy Creek reached granulite facies metamorphism, and was modelled by Aleisso *et al* (2017) (Fig. 17a). The interpreted peak assemblage of RDC-04 of plagioclase + biotite + orthopyroxene + cordierite + spinel + magnetite + ilmenite occurs at 1.0-4.4kbar and 790-860°C, significantly higher temperatures than all samples modelled in this study. The granulite facies metamorphism reached at Reedy Creek may be explained by the close proximity of the Reedy Creek Granodiorite intruding the crust between ~490-480Ma (Foden *et al*, 2006), perturbing the thermal regime, inducing partial melting and providing the extreme heat for metamorphism to reach granulite facies.

Figure 20: All P-T pseudosections for sample discussed in this thesis. (A) RDC-04 P-T pseudosection (Aleisso *et al*, 2017); (B) Sample KS1G; (C) Sample K2003-1; (D) Sample MAC-2; (E) Sample 17KM04; (F) Sample KI-25; (G) Petrel Cove P-T pseudosection (Alias *et al*, 2002).

The calculated P-T pseudosection for porphyroblastic schists at Petrel Cove (Alias *et al*, 2002) shows evidence for an 'anticlockwise' P-T evolution within the thermal aureole of the Victor Harbour Granite. This interpretation, as well as the 'anticlockwise' P-T paths proposed for the modelled samples in this thesis, is consistent with the thermal effects of granitic intrusions, and appears to be regionally representative of the Delamerian Orogen.

P-T evolution

Considering the petrographic observations described in previous sections, it can be concluded that the sequence of mineral growth in the Delamerian Orogeny on mainland South Australia was garnet \rightarrow andalusite \rightarrow staurolite, and Kangaroo Island was andalusite \rightarrow staurolite \rightarrow garnet . Based on petrographic observations and textural relationships, an overall 'anticlockwise' P-T evolution is proposed for the Delamerian Orogen. 'Anticlockwise' P-T paths are not typical of convergent settings. Sandiford & Powell (1991) propose that 'anticlockwise' P-T paths in convergent settings are a natural consequence of strain localization due to A Granite genesis - localised crustal heating by mantle melts

B. Granite emplacement - high T, low P metamorphism

C. Deformation -'sytectonic' intrusions

Figure 21: A model for generating 'anticlockwise' P-T paths in a convergent setting (Collins & Vernon, 1991).

thermally weakened crust associated with magma ascent through the crust. Collins & Vernon (1991) suggest that low-P, high-T metamorphism, and 'anticlockwise' P-T paths can be induced by the repeated granitic intrusions that generate large metamorphic aureoles, thermally weakening the crust, and resulting in discrete low-P, high-T terranes that are localized around abundant granites (Fig. 19). The 'anticlockwise' P-T paths proposed in this study indicate that the granitic intrusions that span the Delamerian Orogen focused the generated heat in the crust, providing the high geothermal gradients for low-P, high-T metamorphism as metamorphic sub-domains as suggested by various authors including, but not limited to, Alias *et* al (2002), Jenkins & Sandiford (1992), Oliver & Zakowski (1995) and Sandiford *et al* (1995). However, granitic intrusions are not observed in close proximity to all samples (eg. MAC-2) therefore the intrusions cannot account for all 'anticlockwise' P-T paths generated in the orogen. For samples that do not lie close to granitic intrusions, the 'anticlockwise' path may be a result of magmatic advection of heat due in the crust as suggested by Sandiford & Powell (1991), due to the emplacement of melts after the cessation of thrusting (Wakabayashi, 2004). The older metamorphic ages on Kangaroo Island from Sm/Nd geochronology (this study), Rb-Sr geochronology (Foden *et al*, 2002) and ²⁰⁷Pb/²⁰⁶Pb monazite geochronology (Weinberg *et al*, 2013), and younger ages on mainland South Australia (this study) (Fig. 20) suggest that the thermal locus moved northwards over time. This resulted in a metamorphic terrain of regionally similar style but consisting of discrete metamorphic sub-domains with the highest grade occurring late in the evolution in the vicinity of I- to S-type granites.

Figure 22: Spatial age map of the Delamerian Orogen. Ages from this study, Burtt & Fanning (2001), Fanning (1990), Foden *et al* (1999), Foden *et al* (2002), Foden *et al* (2006), Turner & Foden (1996), and Weinberg *et al* (2013).

CONCLUSIONS

This study provides the first comprehensive monazite age data coupled to detailed P-T estimates to unravel the P-T history within the Southern Adelaide Fold-Thrust Belt portion of the Delamerian Orogen. In-situ monazite geochronology indicates that metamorphism was protracted until ~480Ma. Calculated phase equilibria modelling constrains the metamorphism of garnet-staurolite-andalusite bearing schists to ~4.6kbar and 570°C, and sillimanite-bearing schists to 3.7kbar and 635°C. Results from this study indicate that the Delamerian Orogen follows an 'anticlockwise' trajectory.

Granulites at Reedy Creek experienced much higher temperatures and younger ages, suggesting that the Reedy Creek may have been the hottest part of the orogen and therefore took the longest time to cool. The older metamorphic ages on Kangaroo Island and younger metamorphic ages on mainland South Australia indicate that the thermal locus moved northwards over time, resulting in a metamorphic terrain that gives the appearance of a patchwork orogen of discrete metamorphic sub-domains, with the highest grades in the vicinity of I- and S-type granitic intrusions occurring late in the evolution.

ACKNOWLEDGMENTS

Thank you to my supervisor, Martin Hand, for his guidance, passion and support, and for providing supplementary data to expand the scope of this thesis. The staff at Adelaide Microscopy, including David Kelsey, Sarah Gilbert and Benjamin Wade, are thanked for their training on instrumentation and technical support, patience and assistance throughout data acquisition. Thank you to Kiara Bockmann for providing supplementary data that greatly improved interpretations in this thesis and for her patience and never-ending support and guidance with THERMOCALC. Laura Morrissey and Naomi Tucker are thanked for the training and their support with THERMOCALC modelling.

REFERENCES

- ALESSIO, K., HAND, M., MORRISSEY, L., KELSEY, D., & PAYNE, J. (2017). Melt reintegration modelling: Testing against a subsolidus reference assemblage. *Geosciences*, 7(75), doi: 10.3390/geosciences7030075.
- ALIAS, G., SANDIFORD, M., HAND, M., & WORLEY, B. (2002). The P-T record of synchronous magmatism, metamorphism and deformation at Petrel Cove, southern Adelaide fold belt. *Journal of Metamorphic Geology*, 20, 351-363.
- BOGER, S., & MILLER, J. (2004). Terminal suturing of Gondwana and the onset of the Ross–Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. *Earth and Planetary Science Letters*, 219(1), 35-48.
- BURTT, A. C., ABBOT, P. J., & FANNING, C. M. (2001). Definition of Teal Flat and Marne River Volcanic and associated shear zone. *Minerals and Exploration in South Australia Journal*, 17, 37-43.
- CARTWRIGHT, I., VRY, J., & SANDIFORD, M. (1995). Changes in stable isotope ratios of metapelites and marbles during regional metamorphism, Mount Lofty Ranges, South Australia: implications for crustal scale fluid flow. *Contributions to Mineralogy and Petrology*, 120(3-4), 292-310.
- CLARK, C., & HAND, M. (2010). Decoding Mesoproterozoic and Cambrian metamorphic events in Willyama Complex metapelites through the application of Sm-Nd garnet geochronology and P-T pseudosection analysis. *Gondwana Research*, 17, 59-74.

- COLLINS, W. J., & VERNON, R. H. (1991). Orogeny associated with anticklockwise P-T-t paths: Evidence from low-P, high-T metamorphic terranes in the Arunta inlier, Central Australia. *Geology*, 19, 835-838.
- COOPER, J. A., JENKINS, R. J. F., COMPSTON, W., & WILLIAMS, I. S. (1992). Ion-probe zircon dating of a mid-Early Cambrian tuff in South Australia. *Journal of the Geological Society of London, 149,* 185-192.
- DIREEN, N. G., BROCK, D., & HAND, M. (2005). Geophysical testing of balanced cross-sections of foldthrust belts with potential field data: an example from the Fleurieu Arc of the Delamerian Orogen, South Australia. *Journal of Structual Geology*, *27*, 964-984.
- DYMOKE, P., & SANDIFORD, M. (1992). Phase relationships in Buchan facies series pelitic assemblages: calculations with application to andalusite-staurolite parageneses in the Mount Lofty Ranges, South Australia. *Contributions to Mineralogy and Petrology*, 110(1), 121-132.
- FANNING, C. M. (1990). Single grain dating of a granite sample from Cape Willoughby, Kangaroo Island. *Australian National University Progress Report, 89,* 29-32.
- FLÖTTMANN, T., JAMES, P., MENPES, R., CESARE, P., TWINING, M., FAIRCLOUGH, M., MARSHAL, S. (1995). The structure of Kangaroo Island, South Australia: strain and kinematic partitioning during Delamerian basin and platform reactivation. *Australian Journal of Earth Sciences*, 42(1), 35-49.
- FODEN, J., SANDIFORD, M., DOUGHERTY-PAGE, J., & WILLIAMS, I. (1999). Geochemistry and geochronology of the Rathjen Gneiss: implications for the early tectonic evolution of the Delamerian Orogen. *Australian Journal of Earth Sciences*, 46(3), 377-389.
- FODEN, J., ELBURG, M. A., TURNER, S., SANDIFORD, M., O'CALLAGHAN, J., & MITCHELL, S. (2002). Granite production in the Delamerian orogen, South Australia. *Journal of the Geological Society*, 159(5), 557-575
- FODEN, J., ELBURG, M. A., DOUGHERTY-PAGE, J., & BURTT, A. (2006). The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. *The Journal of Geology*, 114(2), 189-210.
- FOSTER, G., KINNY, P., VANCE, D., PRINCE, C., & HARRIS, N. (2000). The significance of monazite U-Th-Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. *Earth and Planetary Science Letters*, 181, 327-340.
- GOUDIE, D. J., FISHER, C. M., HANCHAR, J. M., CROWLEY, J. L., & AYERS, J. C. (2014). Simultaneous in situ determination of U-Pb and Sm-Nd isotopes in monazite by laser ablation ICP-MS. *Geochemistry, Geophysics, Geosystems*, 15, 2575-2600, doi: 10.1002/2014GC005431
- HAINES, P. W., & FLÖTTMANN, T. (1998). Delamerian Orogeny and potential foreland sedimentation: a review of age and stratigraphic constraints. *Australian Journal of Earth Sciences*, 45(4), 559-570.
- HOLLAND, T.J.B., & POWELL, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. *Journal of Metamorphic Geology*, 29, 333-383.
- JAGO, J. B., GUM, J. C., BURTT, A. C., & HAINES, P. W. (2003). Stratigraphy of the Kanmantoo Group: a citical element of the Adelaide Fold Belt and the Palaeo-Pacific plate margin, Eastern Gondwana. *Australia Journal of Earth Sciences*, 50, 343-363.
- JAMIESON, R. A., BEAUMONT, C., FULLSACK, P., & LEE, B. (1998). Barrovian regional metamorphism: where's the heat? *Geological Society of London Special publications*, 138, 23-51.
- JENKINS, R. J., & SANDIFORD, M. (1992). Observations on the tectonic evolution of the southern Adelaide Fold Belt. *Tectonophysics*, 214(1-4), 27-36.
- JOHNSON, T. E., BROWN, M., & SOLAR, G. S. (2003). Low-pressure subsolidus and suprasolidus phase equilibria in the MnNCKFMASH system: Constraints on conditions of regional metamorphism in western Maine, nothern Appalachians. *American Mineralogist*, *88*, 624-638.
- KELSEY, D. E., & HAND, M. (2015). On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. *Geoscience Frontiers*, 6, 311-356.
- MARSHAK, S., & FLÖTTMANN, T. (1996). Structure and origin of the Fleurieu and Nackara Arcs in the Adelaide fold-thrust belt, South Australia: salient and recess development in the Delamerian Orogen. *Journal of Structural Geology*, 18(7), 891-908.
- MORRISEY, L. J., HAND, M., WADE, B. P., & SZPUNAR, M. (2013). Early Mesoproterozoic metamorphism in the Barossa Comples, South Australia: links with the eastern margin of Proterozoic Australia. *Australian Journal of Earth Sciences*, 60, 769-795.

- OFFLER, R., FLEMING, P. (1968). A synthesis of folding and metamorphism in the Mt Lofty Ranges, South Australia. *Geological Socierty of Australia*, 15, 245-266.
- OLIVER, N., & ZAKOWSKI, S. (1995). Timing and geometry of deformation, low-pressure metamorphism and anatexis in the eastern Mt Lofty Ranges: the possible role of extension. *Australian Journal* of *Earth Sciences*, 42(5), 501-507.
- PATON, C., HELLSTROM, J., PAUL, B., WOODHEAD, J., & HERGT, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic* Spectrometry, 26(12), 2508-2518.
- PATTISON, D., & TINKHAM, D. (2009). Interplay between equilibrium and kinetics in prograde metamorphism of pelites: an example from the Nelson aureole, British Columbia. *Journal of Metamorphic Geology*, 27(4)m 249-279.
- PAYNE, J. L., HAND, M., BAROVICH, K. M., & WADE, B. P. (2008). Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. An International Geoscience Journal of the Geological Society of Australia, 55(5), 623-640. doi:10.1080/08120090801982595.
- PEARCE, M., WHITE, A., GAZLEY, M. (2015). TCInvestigator: Automated calculation of mineral mode and composition contours for thermocalc pseudosections. *Journal of Metamorphic Geology, 33*, 413-425.
- POWELL, R., WHITE, R., GREEN, E., HOLLAND, T. J. B., & DIENER, J. F. A. (2014). On parameterizing thermodynamic descriptions of minerals for petrological calculations. *Journal of Metamorphic Geology*, 32(3), 245-260.
- SANDIFORD, M., & POWELL, R. (1991). Some remarks on high-temerature-low-pressure metamorphism in convergent orogens. *Journal of Metamorphic Geology*, *9*, 333-340.
- SANDIFORD, M., FODEN, J., ZHOU, S., & TURNER, S. (1992b). Granite genesis and the mechanics of convergent orogenic belts with application to the southern Adelaide Fold Belt. *Geological Society of America Special Papers*, 272, 83-94.
- SANDIFORD, M., ERASER, G., ARNOLD, J., FODEN, J., & FARROW, T. (1995). Some causes and consequences of high-temperature, low-pressure metamorphism in the eastern Mt Lofty Ranges, South Australia. *Australian Journal of Earth Sciences*, 42(3), 233-240.
- SMITH, H. A., & BARREIRO, B. (1990). Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology, 105(5), 602-615.
- SPEAR, F. S., & PYLE, J. M. (2002). Apatite, monazite, and xenotime in metamorphic rocks. *Reviews in mineralogy and geochemistry*, 48(1), 293-335.
- SPEAR, F. S., PYLE, J. M., & CHERNIAK, D. (2009). Limitations of chemical dating monazite. Chemical Geology, 266(3), 218-230.
- TAYLOR, R. J., KIRKLAND, C. L., & CLARK, C. (2016). Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. *LITHOS*, 264, 239-257.
- TURNER, S., SANDIFORD, M., FLÖTTMANN, T., & FODEN, J. (1994). Rb/Sr dating of differentiated cleavage from the upper Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt. *Journal* of Structural Geology, 16(9), 1233-1241.
- TURNER, N. J., & FODEN, J. D. (1996). Petrogenesis of late-Delamerian A-type granites and granophyre, South Australia: magma mingling in the Mannum granite, South Australia. Contributions of Mineralogology and Petrology, 56, 147-169.
- TURNER, S., HAINES, P., FOSTER, D., POWELL, R., SANDIFORD, M., & OFFLER, R. (2009). Did the Delamerian Orogeny start in the Neoproterozoic? *The Journal of Geology*, 117(5), 575-583.
- WAKABAYASHI, J. (2004). Tectonic mechanisms associated with P-T paths of regional metamorphism: alternatives to single-cycle thrusting and heating. *Tectonophysics*, *392*, 193-218.
- WEINBERG, R. F., HASALOVÁ, P., WARD, L., & FANNING, C. M. (2013). Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia. *Geological Society of America Bulletin*, 125(7-8), 1282-1300.
- WHITE, R., POWELL, R., & JOHNSON, T. (2014a). The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. *Journal of Metamorphic Geology*, 32(3), 261-286.
- WHITE, R. W., POWELL, R., HOLLAND, T. J. B., JOHNSON, T. E., & GREEN, E. C. R. (2014b). New mineral activity-composition relations for thermodynamic calculatiosn in metapelitic systems. *Journal of Metamorphic Geology*, 32(3), 261-286.

- WILLIAMS, M. L., JERCINOVIC, M. J., & HETHERINGTON, C. J. (2007). Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. *Annu. Rev. Earth Planet. Sci.*, 35, 137-175.
- ZHU, X, K., & O'NIONS, R. K. (1999). Monazite chemical composition: some implications for monazite geochronology. *Contributions to Mineral Petrology*, 137, 351-363.

APPENDIX A: EXTENDED GEOCHRONOLOGY METHODS

U-Pb isotopic dating of monazite

In-situ monazite grains were imaged using a Quanta 600 Scanning Electron Microscope (SEM) at Adelaide Microscopy, University of Adelaide. Monazites were identified on the basis of brightness (monazite being the brightest observable grains), using a back-scattered electron (BSE) detector to determine their microstructural locations. Monazite grains are commonly \leq 20µm for samples KS1G, MAC-2 and K2003-1, and commonly 25-35 µm for samples 17-KM-04 and 17-KM-05. All errors are quoted at the 2 σ level of precision. All ages are quoted as 206 Pb/ 238 U.

U-Pb data acquisition

U-Pb isotopic data were collected using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) on in-situ (thin section) monazite grains. LA-ICP-MS monazite analyses were acquired on the Resonetics 193 - Agilent 7900 at Adelaide Microscopy within the University of Adelaide (spot size 13µm, ablation in a He atmosphere and a laser frequency of 5Hz). Monazite acquisition was undertaken with 30 seconds of background measurement and 30 seconds of sample ablation.

Data reduction and processing

Monazite isotopic analyses were reduced using Iolite software. Elemental fractionation and mass bias for monazite geochronology was corrected using the primary standard MADel ($^{207/206}$ Pb = 490.7 Ma, 206 Pb/ 238 U = 518.4 Ma and 207 Pb/ 235 U = 510.4 Ma, from Payne *et al* (2008)). Data accuracy was monitored by the use of secondary standards, including Ambat (~525Ma), 222 and NIST610.

Ages quoted in this study are in 206 Pb/ 238 U as all ages are <1000Ma. All errors are at the 2 σ level unless stated otherwise. Concordance was calculated using the ratio $(^{206}$ Pb/ 238 U)/ $(^{207}$ Pb/ 206 Pb). Weighted averages of standard analyses in this study for the primary (MADel) and in-house (222 and Ambat) monazite standards are provided in Appendix C.

Sample	KS1G	K2003-1	MAC-2	17KM04	17KM05	KI-25
SiO2	57.5	59.90	58.68	61.70	58.40	52.40
TiO ₂	0.845	0.68	0.97	0.78	0.97	1.44
Al ₂ O ₃	18.9	19.68	21.99	17.60	17.10	23.66
Fe2O3T	8.28	6.66	6.44	7.47	7.90	10.94

APPENDIX B: WHOLE-ROCK GEOCHEMISTRY (WT %)

MnO	0.14	0.10	0.17	0.10	0.16	0.16
MgO	3.48	3.18	2.89	3.14	2.81	4.48
CaO	0.99	2.70	1.52	1.04	0.50	1.48
Na ₂ O	1.81	3.02	2.67	1.33	1.36	1.10
K ₂ O	4.61	3.49	4.17	4.85	8.95	3.53
P ₂ O ₅	0.14	0.31	0.40	0.18	0.24	0.35
Total	88.415	99.72	99.90	98.19	98.39	99.54
FeO	-	4.56	4.42	-	-	6.98
Fe ₂ O ₃	-	1.59	1.53	7.47	7.90	3.18
LOI	1.9	2.14	2.22	1.45	1.10	2.04

APPENDIX C: U-PB GEOCHRONOLOGY MONAZITE STANDARD ANALYSES

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
Analysis date	: 13/06/2017											
Madel-1	0.0569	0.0017	0.652	0.021	0.08275	0.0013	487	63	512.5	7.6	511	13
Madel-2	0.0574	0.0016	0.653	0.021	0.08393	0.0013	515	61	519.5	7.9	511.3	13
Madel-3	0.0575	0.0017	0.663	0.022	0.0838	0.0014	512	63	518.6	8.3	515.8	13
Madel-4	0.0563	0.0017	0.654	0.021	0.08443	0.0013	463	68	522.5	7.5	510.3	13
Madel-5	0.0572	0.0018	0.653	0.023	0.08329	0.0012	482	70	515.7	7.4	510.6	14
Madel-6	0.0571	0.0017	0.65	0.021	0.08295	0.0013	494	63	513.6	7.5	509.1	13
Madel-7	0.056	0.0016	0.65	0.023	0.084	0.0014	456	65	520.8	8.2	507.6	14
Madel-8	0.0578	0.0016	0.671	0.021	0.0839	0.0013	518	61	519.2	8	521.1	13
Madel-9	0.0574	0.0018	0.656	0.023	0.08337	0.0013	499	68	516.2	7.8	513	14
Madel-10	0.0569	0.0017	0.663	0.024	0.0846	0.0014	480	67	523.6	8.2	519	15
Madel-11	0.0565	0.0017	0.652	0.022	0.08389	0.0012	463	68	519.3	7.1	510.2	13

Madel-12	0.0567	0.0016	0.655	0.021	0.084	0.0014	479	64	520.1	8	511.2	13
Madel-13	0.0559	0.0017	0.659	0.022	0.0843	0.0012	460	68	521.7	7.4	513.3	14
Madel-14	0.0585	0.0019	0.685	0.024	0.0853	0.0015	541	72	527.7	8.6	531	15
Madel-15	0.0564	0.0018	0.652	0.022	0.08404	0.0013	471	66	520.2	77	509.2	14
Madel-16	0.0572	0.0017	0.657	0.022	0.08321	0.0013	497	65	515.2	7.8	513.6	14
Madel-17	0.0568	0.0017	0.664	0.022	0.0837	0.0013	491	65	519.1	7.0	516.8	13
Madel-18	0.0566	0.0017	0.65	0.022	0.0829	0.0013	481	67	514.3	0.5	508.7	14
Madel-19	0.0573	0.0013	0.649	0.023	0.083	0.0014	495	65	513.9	0.2	512	14
Madel-20	0.0568	0.0017	0.652	0.024	0.08337	0.0014	479	60	516.2	7.0	509.4	14
Madel-21	0.0569	0.0016	0.662	0.022	0.0838	0.0013	489	60	518.9	7.9	516	13
Madel-22	0.0572	0.0010	0.649	0.023	0.083	0.0014	501	62	514	0.5	508.9	14
Madel-23	0.0567	0.0017	0.667	0.022	0.0845	0.0014	476	67	522.7	0.4	518.5	14
Madel-24	0.0579	0.0017	0.675	0.023	0.0838	0.0014	520	64	518.5	0.5	523	14
Madel-25	0.056	0.0010	0.643	0.022	0.08336	0.0014	453	67	516.1	0.5	505	14
Madel-26	0.0571	0.0017	0.657	0.024	0.08353	0.0013	492	67	517.1	7.8	512.2	15
Madel-27	0.0572	0.0016	0.664	0.022	0.08338	0.0012	499	64	516.2	7	517.3	14
Madel-28	0.0564	0.0016	0.661	0.023	0.0841	0.0013	467	55	520.6	7.9	514	14
Madel-29	0.0571	0.0017	0.664	0.025	0.0836	0.0014	407	/2	5173	8.4	517.7	15
Madel-30	0.0569	0.0017	0.658	0.024	0.08405	0.0015	490	65	520.2	8.7	512.8	15
Madel-31	0.0566	0.0017	0.657	0.024	0.0845	0.0013	473	64	523	7.8	511.7	15
Madel-32	0.0500	0.0017	0.681	0.023	0.0839	0.0015	581	69	519 /	g	578	14
Madel-32 Madel-33	0.0555	0.0016	0.649	0.022	0.083	0.0014	475	59	514	8.1	507	13
Madel-34	0.0571	0.0018	0.645	0.022	0.0827	0.0013	496	68	512.2	7.5	506.3	13
Madel-35	0.0553	0.0017	0.637	0.023	0.08515	0.0014	418	64	526.7	8.5	501.1	14
Madel-36	0.0583	0.0017	0.673	0.023	0.08334	0.0013	540	66	516	7.6	522.9	14
Madel-37	0.0561	0.0017	0.641	0.022	0.0831	0.0013	437	65	514.8	1.1	502	13
Madel-38	0.05674	0.0018	0.66	0.024	0.0842	0.0013	484	/3	521.2	8	514.2	15
Madel-39	0.0559	0.0015	0.639	0.021	0.0833	0.0014	435	63	516	8.3	501	13
Madel-40	0.0576	0.0017	0.661	0.024	0.08416	0.0015	499	69	520.8	8.7	514.4	15
induct to	0.057.0	0.0018	0.001	0.023	0.00110	0.0013	155	67	52010	ð	5111	14
	²⁰⁷ Ph/ ²⁰⁶ P				aac aaa		²⁰⁷ Ph/ ²⁰⁶ Ph		²⁰⁶ Pb/ ²³⁸ L		²⁰⁷ Pb/ ²³⁵ U	
Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
Analysis Ambat-1	²⁰⁷ Pb/ ²⁰⁶ P b 0.05739	2σ 0.0014	²⁰⁷ Pb/ ²³⁵ U 0.674	2 σ 0.021	²⁰⁶ Pb/ ²³⁸ U 0.08546	2σ 0.0013	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma) 505	2σ 57	²⁰⁶ Pb/ ²³⁸ U Age(Ma) 528.6	2σ 7.5	²⁰⁷ Pb/ ²³⁵ U Age(Ma) 524.7	2σ 13
Analysis Ambat-1 Ambat-2	²⁰⁷ Pb/ ²⁰⁶ P b 0.05739 0.05748	2 σ 0.0014 0.0015	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669	2 σ 0.021 0.022	²⁰⁶ Pb/ ²³⁸ U 0.08546 0.0846	2 σ 0.0013 0.0013	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma) 505 503	2σ 57 57	²⁰⁶ Pb/ ²³⁸ U Age(Ma) 528.6 523.5	2σ 7.5 7.5	²⁰⁷ Pb/ ²³⁵ U Age(Ma) 524.7 519.4	2σ 13 13
Analysis Ambat-1 Ambat-2 Ambat-3	²⁰⁷ Pb/ ²⁰⁶ P b 0.05739 0.05748 0.0583	2σ 0.0014 0.0015 0.0016	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68	2σ 0.021 0.022 0.023	²⁰⁶ Pb/ ²³⁸ U 0.08546 0.0846 0.08403	2σ 0.0013 0.0013 0.0012	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma) 505 503 547	2σ 57 57 60	²⁰⁶ Pb/ ²³⁸ U Age(Ma) 528.6 523.5 520.1	2 σ 7.5 7.5 7.1	²⁰⁷ Pb/ ²³⁵ U Age(Ma) 524.7 519.4 527.1	2 σ 13 13 14
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4	207 Pb /206 P b 0.05739 0.05748 0.0583 0.0572	2σ 0.0014 0.0015 0.0016 0.0092	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68 0.683	2σ 0.021 0.022 0.023 0.14	²⁰⁶ Pb / ²³⁸ U 0.08546 0.0846 0.08403 0.0855	2σ 0.0013 0.0013 0.0012 0.0022	207 Pb /206 Pb Age(Ma) 505 503 547 489	2 σ 57 57 60 190	²⁰⁶ Pb/ ²³⁸ U Age(Ma) 528.6 523.5 520.1 529	2σ 7.5 7.5 7.1 13	²⁰⁷ Pb/ ²³⁵ U Age(Ma) 524.7 519.4 527.1 527	2σ 13 13 14 62
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5	207 Pb/206 P b 0.05739 0.05748 0.0583 0.0572 0.05792	2 σ 0.0014 0.0015 0.0016 0.0092 0.0015	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68 0.683 0.676	2σ 0.021 0.022 0.023 0.14 0.021	²⁰⁶ Pb / ²³⁸ U 0.08546 0.0846 0.08403 0.0855 0.08481	2 σ 0.0013 0.0013 0.0012 0.0022 0.0011	207Pb/206Pb Age(Ma) 505 503 547 489 523	2 σ 57 57 60 190 58	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8	2 σ 7.5 7.5 7.1 13 6.7	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8	2 σ 13 13 14 62 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6	207 Pb /206 P b 0.05739 0.05748 0.0583 0.0572 0.05792 0.05692	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662	2σ 0.021 0.022 0.023 0.14 0.021	206Pb/238U 0.08546 0.0846 0.08403 0.0855 0.08481 0.08436	2σ 0.0013 0.0013 0.0012 0.0022 0.0011 0.0012	207 Pb /206 Pb Age(Ma) 505 503 547 489 523 486	2σ 57 57 60 190 58 58	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1	2 σ 7.5 7.5 7.1 13 6.7 7.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4	2 σ 13 13 14 62 13 12
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7	207 Pb /206 P b 0.05739 0.05748 0.05748 0.0572 0.05792 0.05692 0.05788	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676	2σ 0.021 0.022 0.023 0.14 0.021 0.021	206Pb/ ²³⁸ U 0.08546 0.0846 0.08403 0.0855 0.08481 0.08436 0.0837	2σ 0.0013 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013	207 Pb /206 Pb Age(Ma) 505 503 547 489 523 486 527	2 σ 57 57 60 190 58 58 58 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2	2 σ 7.5 7.5 7.1 13 6.7 7.4 7.6	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8	2σ 13 13 14 62 13 12 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-8	207 Pb /206 P b 0.05739 0.05748 0.05748 0.0572 0.05792 0.05692 0.05788 0.05765	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012	207 Pb /206 Pb Age(Ma) 505 503 547 489 523 486 527 514	2 σ 57 57 60 190 58 58 59 58	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4	2 σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 523.8 517.9	2σ 13 13 14 62 13 12 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9	207 Pb /206 P b 0.05739 0.05748 0.05748 0.0572 0.05792 0.05592 0.05788 0.05765	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015	²⁰⁷ Pb/ ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.021 0.022	206Pb/238U 0.08546 0.08403 0.08403 0.0855 0.08403 0.08436 0.0837 0.08358 0.08495	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507	2σ 57 57 60 190 58 58 58 58 58 58 58 56	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6	2 σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 523.8 517.9 522.1	2σ 13 14 62 13 12 13 13 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10	207 Pb /206 P b 0.05739 0.05748 0.05748 0.0572 0.05792 0.05592 0.05765 0.05765 0.05727 0.05737	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014	207 Pb / ²³⁵ U 0.674 0.669 0.683 0.676 0.662 0.676 0.666 0.666 0.6673	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.021 0.022 0.02	206Pb/238U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831	2σ 0.0013 0.0012 0.0012 0.0012 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499	2σ 57 57 60 190 58 58 58 59 58 56 56	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 523.8 517.9 522.1 516	2σ 13 14 62 13 12 13 13 13 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10	207 Pb /206 P b 0.05739 0.05748 0.05748 0.0572 0.05792 0.05692 0.05788 0.05765 0.0572 0.05737 0.05664	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.663	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.083597	2σ 0.0013 0.0012 0.0012 0.0012 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479	2σ 57 57 60 190 58 58 58 58 59 58 56 56 56 57	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 523.8 517.9 522.1 516 522.3	2σ 13 14 62 13 12 13 13 13 13 14
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12	207 Pb /206 P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05692 0.05788 0.05765 0.05737 0.05664 0.0575	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022 0.022 0.021	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0013 0.0014 0.0013 0.0012	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 607	2σ 57 57 60 190 58 58 58 58 59 58 56 56 57 60	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6 7.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 516 522.3 518.1	2σ 13 14 62 13 12 13 13 13 13 14 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12 Ambat-14	207 Pb /206 P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05692 0.05788 0.05765 0.0572 0.05737 0.05664 0.0575 0.05686	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014 0.0015 0.0016 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.666 0.673 0.663 0.672 0.663 0.659	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021	206Pb/ ²³⁸ U 0.08546 0.0846 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 407	2σ 57 57 60 190 58 58 58 59 58 56 56 56 57 60 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 529.1	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 513.8	2σ 13 14 62 13 12 13 13 13 13 14 13 13 14 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12 Ambat-14 Ambat-15	207Pb/206P b 0.05739 0.05748 0.0574 0.0572 0.05792 0.05792 0.05788 0.05765 0.0572 0.05773 0.05664 0.0575 0.05686 0.05723 0.05686	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.675 0.663	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022 0.022 0.021 0.021 0.021 0.021 0.022	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.0843 0.08538	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014 0.0012	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 487 497	2σ 57 57 60 190 58 58 58 59 58 56 56 56 56 57 60 59 58	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 528.1	2σ 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 8 7.3	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 514.2	2σ 13 14 62 13 12 13 13 13 13 14 13 13 13 13 13 13 13 13 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12 Ambat-14 Ambat-15 Ambat-16	207Pb/206P b 0.05739 0.05748 0.0574 0.0572 0.05792 0.05792 0.05788 0.05765 0.05772 0.05765 0.05737 0.05664 0.05723 0.05666 0.05723	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.659 0.676 0.662 0.659	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021	206Pb/238U 0.08546 0.08403 0.0855 0.08481 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.08538 0.0843 0.08538	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014 0.0012 0.0014 0.0012 0.0013	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 497 487 497	2σ 57 57 60 190 58 58 58 58 56 56 56 56 57 60 59 58 65 58	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 528.1 524.2 519	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.5	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 516 522.3 518.1 513.8 524 516.3 513	2σ 13 14 62 13 12 13 13 13 13 14 13 13 13 13 13 13 13 13 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-16 Ambat-17	207 Pb /206 P b 0.05739 0.05748 0.0572 0.05792 0.05792 0.05788 0.05765 0.05765 0.0572 0.05737 0.05664 0.0575 0.05668 0.055648 0.056648 0.056682	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.675 0.663 0.659 0.676 0.662 0.6566 0.6566	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021	206Pb/238U 0.08546 0.08403 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.0843 0.08538 0.08472 0.08384 0.08414	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014 0.0012 0.0014 0.0012 0.0013 0.0013 0.0013	207 Pb /206 Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 497 475 474	2σ 57 57 60 190 58 58 58 58 58 58 56 56 57 60 59 58 65 51	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 522.1 524.2 519 520.8	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.5	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 513.8 524 516.3 513 515.6	2σ 13 14 62 13 12 13 13 13 13 14 13 13 13 13 13 13 13 13 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-6 Ambat-7 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-18	207Pb/206P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05792 0.05788 0.05765 0.05765 0.0572 0.05737 0.05664 0.05755 0.05686 0.05723 0.05666 0.055648 0.055642 0.055642 0.055632	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.673 0.663 0.672 0.663 0.659 0.676 0.662 0.655	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022 0.023 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.022	206Pb/238U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.08435 0.0843 0.08538 0.08472 0.08384 0.08414 0.0821	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0013 0.0012	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 497 475 474 486 504	2σ 57 57 60 190 58 58 58 58 58 58 58 56 56 57 60 59 58 65 51 551 56	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 522.1 521.8 528.1 522.2 519 520.8 515.2	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.5 7.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 513.8 524 516.3 513.5 515.6 510.9	2σ 13 14 62 13 12 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-19	207 Pb /206 P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05792 0.05788 0.05765 0.05765 0.05737 0.05664 0.05755 0.05686 0.05723 0.05664 0.05566 0.05564 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05567 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.05572 0.05566 0.055737 0.05566 0.05567 0.05566 0.05567 0.05566 0.05567 0.05566 0.05567 0.05577 0.05567 0.05577 0.05567 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.05577 0.055777 0.055777 0.055777 0.055777 0.055777 0.057777 0.057777 0.0577777 0.05777777777 0.0577777777777777777777777777777777777	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0.0015 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.659 0.676 0.662 0.655 0.655	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022 0.023 0.021 0.022 0.023 0.021 0.022 0.022 0.023 0.021 0.021 0.021 0.022	206Pb/238U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.08597 0.08385 0.0843 0.08432 0.08472 0.08384 0.08414 0.08221 0.08523	2σ 0.0013 0.0012 0.0012 0.0012 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0012	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 499 479 507 487 497 475 474 486 504	2σ 57 57 60 190 58 58 58 58 58 58 58 56 56 57 60 59 58 65 51 56 55 55 55	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 529.5 20.8 515.2 527.3	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.5 7.4 7.5	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 513.8 524 516.3 513.5 515.6 510.9 512.2	2σ 13 14 62 13 12 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-19 Ambat-20	207 Pb /206 P b 0.05739 0.05748 0.05748 0.0572 0.05792 0.05792 0.05765 0.05765 0.05765 0.05737 0.05664 0.0575 0.05686 0.05723 0.05668 0.05568 0.055682 0.055682 0.055672 0.05672 0.05577	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.659 0.676 0.662 0.6556 0.655 0.655 0.663	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.022 0.023 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.021 0.022 0.022 0.021 0.022 0.021 0.022	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.08597 0.08385 0.0843 0.08538 0.08472 0.08384 0.08414 0.08321 0.08523 0.08446	2σ 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 497 475 487 497 475 474 486 504 478	2σ 57 57 60 190 58 58 58 59 58 56 56 57 60 59 58 65 51 56 55 59 59 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 521.8 528.1 524.2 519 520.8 515.2 520.8	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 8 7.3 7.6 7.5 7.4 7.5 7.4 7.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 513.8 524 516.3 513 515.6 510.9 512.2 516.2	2σ 13 14 62 13 12 13 13 13 13 13 13 13 13 13 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-19 Ambat-20	207 Pb /206 P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05692 0.05788 0.05765 0.05765 0.05727 0.05664 0.0575 0.05664 0.05723 0.05668 0.05723 0.05668 0.05688 0.05688 0.05688 0.05688 0.05688 0.056737 0.05664 0.05672 0.056737 0.05672 0.05737 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05672 0.05728 0.05728 0.0572 0.05727 0.0568 0.05723 0.05664 0.05723 0.05672 0.05727 0.05672 0.05727 0.05672 0.05572 0.05572 0.05568 0.05723 0.0566 0.05723 0.05672 0.05577 0.05672 0.05777 0.05672 0.05777 0.05672 0.05777 0.05677 0.05677 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05677 0.05777 0.05	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0	207 Pb / ²³⁵ U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.659 0.676 0.662 0.6556 0.655 0.655 0.663	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.022	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.08435 0.0843 0.08538 0.08472 0.08384 0.08414 0.08321 0.08523 0.08446	2σ 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014 0.0012 0.0014 0.0012 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 499 479 507 487 497 475 474 486 504 478 486	2σ 57 57 60 190 58 58 58 58 58 58 56 56 57 60 59 58 65 51 56 55 55 59 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 521.8 528.1 524.2 519 520.8 515.2 527.3 522.6 206Pb/238U	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 8 7.3 7.6 7.5 7.4 7.4 7.2 7.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 516.3 513.8 524 516.3 513 515.6 510.9 512.2 516.2 207Pb/235U	2σ 13 13 14 62 13 12 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-11 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-19 Ambat-20 Analysis	207 P b/206 P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05692 0.05788 0.05765 0.05764 0.0575 0.05664 0.05723 0.05666 0.05648 0.05648 0.05648 0.05682 0.05648 0.05648 0.05648 0.05648 0.05648 0.056727 0.056727 0.05674 0.05672 0.05797 b	2σ 0.0014 0.0015 0.0016 0.0092 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0	 207Pb/235U 0.674 0.669 0.683 0.676 0.662 0.676 0.663 0.673 0.663 0.659 0.6566 0.661 0.655 0.663 207Pb/235U 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.0843 0.08433 0.08433 0.08433 0.08472 0.08384 0.08414 0.08321 0.08523 0.08446 206Pb/ ²³⁸ U	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 499 479 507 487 497 475 487 497 475 474 486 504 478 486 207Pb/206Pb Age(Ma)	2σ 57 57 60 190 58 58 59 58 56 56 56 57 60 59 58 65 51 56 55 59 59 59 2σ	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 520.8 515.2 527.3 522.6 206Pb/238U Age(Ma)	$\begin{array}{c} 2\sigma \\ \hline 7.5 \\ \hline 7.5 \\ \hline 7.5 \\ \hline 7.1 \\ 13 \\ \hline 6.7 \\ \hline 7.4 \\ \hline 7.6 \\ \hline 7.4 \\ \hline 7.5 \\ \hline 8.1 \\ \hline 7.6 \\ \hline 7.4 \\ \hline 8 \\ \hline 7.3 \\ \hline 7.6 \\ \hline 7.4 \\ \hline 8 \\ \hline 7.3 \\ \hline 7.4 \\ \hline 7.2 \\ \hline 7.4 \\ \hline 7.2 \\ \hline 7.4 \\ \hline 2\sigma \end{array}$	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 516.3 513.5 513.5 515.6 510.9 512.2 516.2 207Pb/235U Age(Ma)	$\begin{array}{c} 2\sigma \\ 13 \\ 14 \\ 62 \\ 13 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 1$
AnalysisAmbat-1Ambat-1Ambat-2Ambat-3Ambat-3Ambat-4Ambat-5Ambat-6Ambat-6Ambat-7Ambat-8Ambat-9Ambat-10Ambat-11Ambat-12Ambat-13Ambat-14Ambat-15Ambat-16Ambat-19Ambat-20Analysis222-1	207 P b/206 P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05692 0.05788 0.05765 0.0572 0.05764 0.0575 0.05686 0.05686 0.05648 0.05682 0.05648 0.05682 0.05737 0.05664 0.05672 0.05648 0.05682 0.05737 0.05668 0.05707 207 P b/206 P b 0.05638	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0	 207Pb/235U 0.674 0.669 0.683 0.676 0.662 0.676 0.666 0.673 0.663 0.672 0.663 0.659 0.656 0.655 0.663 207Pb/235U 0.565 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.021 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08385 0.08435 0.08433 0.08538 0.08472 0.08384 0.08414 0.08321 0.08523 0.08446 206Pb/ ²³⁸ U 0.07275	2σ 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013 0.0013 0.0014 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0012 0.0014 0.0012 0.0012 0.0014 0.0012 0.0012 0.0013 0.0012 0.0012 0.0014 0.0012 0.0013 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 499 479 507 487 479 507 487 475 474 486 504 478 486 207Pb/ ²⁰⁶ Pb Age(Ma) 458	2σ 57 57 60 190 58 58 58 56 56 56 57 60 59 59 58 65 51 56 55 59 59 2σ 69	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 528.1 524.2 519 520.8 515.2 527.3 522.6	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 8 7.3 7.6 7.5 7.4 7.5 7.4 7.2 7.4 2σ	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 516.3 513.8 513.8 513.6 513.5 513.5 513.5 513.5 515.6 510.9 512.2 516.2 207Pb/235U Age(Ma) 454.3	2σ 13 13 14 62 13 12 13
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-6 Ambat-7 Ambat-8 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-19 Ambat-20 Analysis 222-1 222-2	207Pb/206P b 0.05739 0.05748 0.0572 0.05792 0.05792 0.05792 0.05788 0.05765 0.05765 0.0572 0.0564 0.0575 0.05664 0.0575 0.05666 0.05648 0.055648 0.055648 0.05548 0.05672 0.056672 0.05672 0.05672 0.05672 0.056737	2σ 0.0014 0.0015 0.0018 0	 207Pb/²³⁵U 0.674 0.669 0.68 0.683 0.676 0.662 0.676 0.663 0.673 0.663 0.672 0.663 0.659 0.662 0.656 0.661 0.655 0.663 207Pb/²³⁵U 0.565 0.5606 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08403 0.0855 0.08481 0.0837 0.08358 0.08495 0.0831 0.08597 0.08381 0.08597 0.08385 0.0843 0.08432 0.08432 0.08414 0.08321 0.08523 0.08446 206Pb/ ²³⁸ U 0.07275 0.07361	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013 0.0012 0.0014 0.0012 0.0012 0.0014 0.0012 0.0012 0.0012 0.0014 0.0012 0.0012 0.0012 0.0014 0.0012 0.0012 0.0012 0.0014 0.0012 0.0012 0.0012 0.0014 0.0012 0.0012 0.0013 0.0012 0.0012 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 499 479 507 487 479 507 487 479 507 487 478 486 504 478 486 504 478 486 207Pb/206Pb Age(Ma) 458 435	2σ 57 57 60 190 58 58 58 58 58 58 56 56 57 60 59 58 65 51 56 55 59 59 59 2σ 69 68	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 527.3 522.6 206Pb/238U Age(Ma) 452.6 457.8	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 7.4 7.2 7.4 7.2 7.4 2σ	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 513.3 513.6 513.5 515.6 510.9 512.2 516.2 207Pb/235U Age(Ma) 454.3 451.6	2σ 13 14 62 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 13 13 13 13 13 13 14
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-19 Ambat-19 Ambat-20 Analysis 222-1 222-2 222-3	207Pb/206P b 0.05739 0.05748 0.0572 0.05792 0.05792 0.05792 0.05792 0.05792 0.05792 0.05792 0.05788 0.05765 0.05765 0.05765 0.05765 0.05664 0.05755 0.05666 0.05664 0.05642 0.05643 0.05644 0.05664 0.05672 0.05648 0.05672 0.05672 0.05672 0.05707 2005707 b 0.05638 0.05539 0.05725	2σ 0.0014 0.0015 0.0018 0.0015 0.0015 0.0018 0.0015 0.0015 0.0015 0.0018 0.0015 0.0015 0.0015 0.0018 0.0015 0.0015 0.0015 0.0018 0.0015 0.0015 0.0015 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.0015 0	 207Pb/²³⁵U 0.674 0.669 0.683 0.676 0.662 0.676 0.663 0.673 0.663 0.672 0.663 0.659 0.6662 0.656 0.665 0.665 0.663 207Pb/²³⁵U 0.565 0.5606 0.5698 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.021 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.021 0.022 0.018	206Pb/238U 0.08546 0.08403 0.0855 0.08403 0.0855 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08381 0.08597 0.08385 0.0843 0.08523 0.08414 0.08523 0.08414 0.08523 0.08414 0.08523 0.08446 206Pb/238U 0.07275 0.07361 0.07181	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 499 479 507 487 497 475 474 486 504 478 486 207Pb/206Pb Age(Ma) 458 435 502	2σ 57 57 60 190 58 58 58 58 58 58 58 56 56 57 60 59 58 65 51 56 55 55 59 59 59 2σ 69 68 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 527.3 522.6 206Pb/238U Age(Ma) 452.6 457.8 447	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 8 7.3 7.6 7.4 7.4 7.4 7.2 7.4 7.4 7.2 7.4 7.2 7.4 7.5	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 516.3 513.5 515.6 510.9 512.2 516.2 207Pb/ ²³⁵ U Age(Ma) 454.3 451.6 457.5	2σ 13 14 62 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 13 2σ 13 14 12
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-20 Ambat-20 Analysis 222-1 222-2 222-3 222-4	207Pb/206P b 0.05739 0.05748 0.0573 0.0572 0.05792 0.05792 0.05788 0.05765 0.05765 0.0572 0.05664 0.05737 0.05664 0.05564 0.05568 0.05539 0.05539 0.05539 0.05533	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0	 207Pb/²³⁵U 0.674 0.669 0.683 0.676 0.662 0.676 0.663 0.673 0.663 0.672 0.663 0.655 0.663 207Pb/²³⁵U 0.565 0.5698 0.556 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.022 0.02 0.022 0.02 0.021 0.021 0.021 0.021 0.021 0.02 0.021 0.02 0.03	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08318 0.08597 0.08385 0.0843 0.08523 0.08472 0.08384 0.08414 0.08523 0.08414 0.08523 0.08414 0.08523 0.08446 206Pb/ ²³⁸ U 0.07275 0.07361 0.07181 0.07233	2σ 0.0013 0.0012 0.0022 0.0011 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0012 0.0011 0.0012 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 499 479 507 487 497 475 474 486 504 478 486 504 478 486 207Pb/206Pb Age(Ma) 458 435 502 426	2σ 57 57 60 190 58 58 58 58 58 58 58 56 56 57 60 59 58 65 51 56 55 55 59 59 59 2σ 69 68 59 61	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 527.3 522.6 206Pb/238U Age(Ma) 452.6 457.8 447	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 7.3 7.6 7.4 7.5 7.4 7.2 7.4 7.2 7.4 2σ 11 10 6.5 6.4	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 522.3 516 522.1 516 522.3 518.1 513.8 524 516.3 513.5 513.5 513.5 510.9 512.2 516.2 207Pb/235U Age(Ma) 454.3 451.6 457.5 449.4	$\begin{array}{c} 2\sigma \\ 13 \\ 14 \\ 62 \\ 13 \\ 12 \\ 13 \\ 12 \\ 13 \\ 13 \\ 13 \\ 1$
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-20 Ambat-20 Ambat-20 Analysis 222-1 222-2 222-3 222-4 222-5	207pb/206p b 0.05739 0.05748 0.05739 0.05748 0.0572 0.05792 0.05692 0.05765 0.05765 0.05765 0.05737 0.05664 0.05737 0.05664 0.05568 0.05568 0.05539 0.05539 0.05539 0.05539 0.05539	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015 0.0016 0.0015 0	 207Pb/235U 0.674 0.669 0.683 0.676 0.662 0.676 0.663 0.673 0.663 0.679 0.663 0.655 0.665 0.655 0.663 207Pb/235U 0.565 0.566 0.5698 0.556 0.562 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.021 0.022 0.02 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.022 0.022 0.021 0.021 0.021 0.022 0.022 0.021 0.021 0.021 0.022 0.022 0.021 0.022 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.021 0.02 0.022 0.021 0.022 0.018 0.018 0.018 0.018	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.08358 0.08495 0.0831 0.08597 0.08381 0.08597 0.08385 0.0843 0.08538 0.08472 0.08384 0.08414 0.08523 0.08414 0.08523 0.08446 206Pb/ ²³⁸ U 0.07275 0.07361 0.07233 0.07233 0.07233	2σ 0.0013 0.0012 0.0012 0.0012 0.0011 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0012 0.0011 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 487 499 479 507 487 497 475 474 486 504 478 486 504 478 486 207Pb/206Pb Age(Ma) 458 435 502 426	2σ 57 57 60 190 58 58 59 58 56 56 57 60 59 59 59 59 59 59 59 59 59 59 59 59 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 527.3 522.6 206Pb/238U Age(Ma) 452.6 457.8 447 450.1	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 7.4 7.5 7.4 7.4 7.5 7.4 7.2 7.4 7.2 7.4 2σ 11 10 6.5 6.4 6.6	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 513.8 524 516.3 513.5 515.6 510.9 512.2 516.2 207Pb/235U Age(Ma) 454.3 451.6 457.5 449.4 452.4	2σ 13 14 62 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 13 14 12 13 14 12 13 14 12 12 13 14 12 12 12 12 12 12 12 12 12
Analysis Ambat-1 Ambat-2 Ambat-3 Ambat-3 Ambat-4 Ambat-5 Ambat-6 Ambat-7 Ambat-8 Ambat-9 Ambat-10 Ambat-10 Ambat-11 Ambat-12 Ambat-13 Ambat-14 Ambat-15 Ambat-16 Ambat-17 Ambat-18 Ambat-19 Ambat-20 Analysis 222-1 222-2 222-3 222-4 222-5 222-6	207pb/206p b 0.05739 0.05748 0.05739 0.05748 0.0572 0.05792 0.05792 0.05765 0.05765 0.05765 0.05737 0.05664 0.05753 0.05664 0.05548 0.05568 0.05577 0.05664 0.05577 0.05672 0.05577 0.05533 0.0553 0.0553 0.0554 0.05574	2σ 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0	 207Pb/235U 0.674 0.669 0.683 0.676 0.662 0.676 0.663 0.673 0.663 0.672 0.663 0.659 0.666 0.655 0.663 207Pb/235U 0.565 0.565 0.566 0.556 0.556 0.5574 	2σ 0.021 0.022 0.023 0.14 0.021 0.021 0.021 0.021 0.022 0.02 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.021 0.022 0.018 0.018 0.018 0.018 0.018	206Pb/ ²³⁸ U 0.08546 0.08403 0.0855 0.08481 0.08436 0.0837 0.0837 0.08358 0.08495 0.0831 0.08597 0.08381 0.08597 0.08385 0.0843 0.08432 0.08438 0.08472 0.08384 0.08414 0.08523 0.08414 0.08523 0.08446 206Pb/ ²³⁸ U 0.07275 0.07361 0.07233 0.07233 0.07123 0.07123	2σ 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0014 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0011 0.0012 0.0014 0.0012 0.0013 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0	207Pb/206Pb Age(Ma) 505 503 547 489 523 486 527 514 507 499 479 507 499 479 507 487 497 475 474 486 507 487 497 475 474 486 504 478 486 207Pb/206Pb Age(Ma) 458 435 502 426 460	2σ 57 57 60 190 58 58 59 58 56 56 57 60 59 59 59 59 59 59 59 59 59 59 59 59 59	206Pb/238U Age(Ma) 528.6 523.5 520.1 529 524.8 522.1 518.2 517.4 525.6 514.8 531.6 519 521.8 528.1 524.2 519 520.8 515.2 527.3 522.6 206Pb/238U Age(Ma) 452.6 457.8 447 450.1 450.2	2σ 7.5 7.5 7.1 13 6.7 7.4 7.6 7.4 7.6 7.4 7.5 8.1 7.6 7.4 8 7.3 7.6 7.4 7.4 7.4 7.5 7.4 7.4 7.2 7.4 7.2 7.4 2σ 11 10 6.5 6.4 6.6 6.5	207Pb/235U Age(Ma) 524.7 519.4 527.1 527 523.8 516.4 523.8 516.4 523.8 517.9 522.1 516 522.3 518.1 513.8 524 516.3 513.8 524 516.3 513.5 516.6 510.9 512.2 516.2 207Pb/235U Age(Ma) 454.3 451.6 457.5 449.4 452.4	2σ 13 14 62 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 13 14 12 13 14 12 13 14 12 12 13 14 12 12 12 12 12 12 12 12 12 12 12 12 12

222-8	0.05589	0.0015	0.557	0.019	0.07262	0.0011	439	60	452.6	6.8	450.1	13
222-9	0.0571	0.0016	0.57	0.019	0.07265	0.0011	492	61	452.1	6.8	457.4	13
222-10	0.05716	0.0014	0.569	0.017	0.07227	0.0011	492	51	449.8	6.0	457.8	11
222-11	0.05693	0.0014	0 5682	0.017	0.07308	0.0011	492	55	454 7	0.5	457.4	11
222-12	0.05622	0.0015	0 5594	0.018	0.07169	0.0012	458	61	446.3	7.3	450.9	12
222 12	0.05022	0.0015	0.5554	0.017	0.07270	0.0011	430	58	452.0	6.3	450.5	11
222-13	0.0555	0.0016	0.502	0.019	0.07279	0.0012	420	66	452.9	7.2	455.5	13
222-14	0.0372	0.0016	0.509	0.019	0.07240	0.0011	494	61	431.1	6.6	437.0	12
222-15	0.0565	0.0017	0.567	0.019	0.07299	0.0011	459	65	454.1	6.5	455.5	12
222-16	0.05711	0.0015	0.575	0.019	0.07304	0.0011	487	60	454.4	6.8	461.8	12
222-17	0.0569	0.0016	0.57	0.019	0.07298	0.0011	487	65	454	6.9	457.3	12
222-18	0.0556	0.0016	0.556	0.018	0.07258	0.0012	430	63	451.6	7.2	449.5	12
222-19	0.05607	0.0015	0.567	0.019	0.07354	0.0011	446	61	457.4	6.8	456.5	12
222-20	0.0563	0.0016	0.568	0.018	0.07328	0.0012	463	62	455.9	7.1	456.5	12
Analysis	²⁰⁷ Pb/200P	2σ	²⁰⁷ Pb/ ²³³ U	2σ	²⁰⁰ Pb/ ^{23®} U	2σ	²⁰⁷ Pb/ ²⁰⁰ Pb	2σ	²⁰⁰ Pb/ ²³ °U	2σ	²⁰⁷ Pb/ ²³³ U	2σ
Analysis	U						Age(Ma)		Age(Ma)		Age(Ma)	
date:												
26/06/17 Madal 1	0.05712	0.0012	0.657	0.012	0.09214	0.0012	405	47	F14.9	47	F12 7	7.0
Madel 2	0.05713	0.0012	0.657	0.013	0.08314	0.0012	495	47	514.8	4.7	512.7	7.9
Madel-3	0.05681	0.0012	0.659	0.013	0.08461	0.0013	401	50	523.6	5.2	513.6	8.1
Madel-4	0.0573	0.0013	0.657	0.015	0.0826	0.0015	512	52	511.4	6.8	511.9	9.3
Madel-5	0.05689	0.0013	0.657	0.014	0.0834	0.0013	483	52	516.3	5.2	513.1	8.8
Madel-7	0.0578	0.0014	0.662	0.015	0.08363	0.0012	510	55	517.7	4.3	517.3	8.5
Madel-8	0.0566	0.0015	0.654	0.015	0.08419	0.0013	474	57	521	5.4	511.3	9.2
Madel-9	0.0572	0.0014	0.658	0.015	0.08426	0.0013	490	53	521.5	5.5	513.9	8.8
Madel-10	0.0577	0.0013	0.657	0.013	0.08368	0.0013	513	51	518	5.4	513.1	7.9
Madel-11	0.0578	0.0013	0.659	0.014	0.08332	0.0012	518	50	515.9	4.7	513.5	8.4
Madel-12	0.0577	0.0014	0.657	0.014	0.08378	0.0013	519	53	518.6	5.1	512.6	8.6
Madel-13	0.05619	0.0012	0.654	0.014	0.08422	0.0012	471	47	521.2	4.6	510.8	8.5
Madel-14 Madel 15	0.0573	0.0015	0.659	0.015	0.08356	0.0013	503	57	517.3	5.2	514.9	9.6
Madel-16	0.05785	0.0012	0.004	0.013	0.08395	0.0013	/87	47	519.0	5.7 4.5	511.0	9.0
Madel-17	0.05549	0.0013	0.654	0.013	0.08405	0.0012	428	50	520.2	5.3	510.7	8.1
Madel-18	0.05682	0.0013	0.66	0.014	0.08354	0.0012	487	53	517.2	4.3	514	8.3
Madel-19	0.0583	0.0024	0.667	0.031	0.0841	0.0015	493	57	520.3	6.9	517	17
Madel-21	0.0577	0.0013	0.658	0.014	0.08407	0.0013	521	48	520.3	5.1	515.2	8.3
Madel-22	0.05772	0.0013	0.661	0.015	0.08361	0.0012	521	49	517.6	4.6	514.8	9
Madel-23	0.05628	0.0013	0.651	0.013	0.08329	0.0013	460	51	515.7	5.2	508.9	8.2
Madel-24	0.05612	0.0012	0.6595	0.012	0.0839	0.0012	454	50	519.3	5	514	7.4
Madel-25	0.05674	0.0012	0.658	0.014	0.08331	0.0013	484	45	515.8	5.3	513.7	8.1
Madel-26	0.0566	0.0013	0.6574	0.012	0.08411	0.0013	479	49	520.6	5.2	512.8	7.4
Madel-27	0.0569	0.0013	0.659	0.014	0.0836	0.0013	482	54	517.6	5.1	513.3	8.5
Madel-28	0.0507	0.0012	0.659	0.013	0.08380	0.0013	515	48	519.1	5.7	512.2	8.2
Madel-30	0.05677	0.0013	0.655	0.014	0.08381	0.0013	485	40	519.4	4.1	511	7.9
Madel-31	0.0571	0.0014	0.663	0.014	0.0844	0.0012	491	54	522.3	4.4	515.8	8.8
Madel-32	0.0568	0.0013	0.655	0.013	0.08258	0.0012	496	47	511.4	5	511.2	8.3
Madel-33	0.05718	0.0013	0.658	0.015	0.08351	0.0013	501	54	517	5.7	514.1	9.4
Madel-34	0.0575	0.0013	0.657	0.015	0.08398	0.0013	513	51	519.8	5.7	512.2	9.3
Analysis	²⁰⁷ Pb/ ²⁰⁶ P	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ
Ambat-1	b 0.0569	0.0013	0.662	0.014	0.0847	0.0014	Age(Ma)	53	Age(Ma)	8.4	Age(Ma)	85
Ambat-2	0.0578	0.0013	0.662	0.014	0.08402	0.0013	524	50	520	7.9	516.2	7.8
Ambat-3	0.0569	0.0014	0.674	0.016	0.0847	0.0014	488	54	523.9	8.5	522.5	10
Ambat-4	0.0572	0.0014	0.674	0.017	0.08405	0.0013	512	55	520.2	7.8	524.9	11
Ambat-5	0.0573	0.0014	0.658	0.014	0.08452	0.0013	493	53	523	8	513.8	8.6
Ambat-6	0.0581	0.0014	0.67	0.015	0.08504	0.0013	535	54	526.1	7.5	519.9	9.1
Ambat-7	0.057	0.0015	0.678	0.016	0.086	0.0014	493	56	531.7	8.2	524.8	9.9
Ambat-8	0.0569	0.0014	0.676	0.017	0.0847	0.0014	496	58	524.3	8.2	523.4	10
Ambat-9	0.0579	0.0015	0.628	0.015	0.08225	0.0013	512	57	509.5	7.6	495.7	9.6
Ambat-10 Ambat-11	0.0567	0.0014	0.684	0.015	0.08503	0.0013	481 512	57	514.1	1.1	48/.2	9.2
Ambat-17	0.03758	0.0013	0.084	0.013	0.085/2	0.0014	51Z 497	47 58	520.9	0.3 7 5	528.5 528.7	0.1
		0.0010	0.002	0.010	0.00040	0.0010	-57	50	520.7	7.5	520.7	
Ambat-13	0.0574	0.0016	0.665	0.016	0.08369	0.0013	507	61	518	7.9	516.7	9.8
Ambat-13 Ambat-14	0.0574	0.0016	0.665 0.664	0.016 0.017	0.08369 0.08457	0.0013	507 475	61 59	518 523.3	7.9 7.3	516.7 516.6	9.8 10
Ambat-13 Ambat-14 Ambat-15	0.0574 0.0569 0.0564	0.0016 0.0015 0.0014	0.665 0.664 0.659	0.016 0.017 0.016	0.08369 0.08457 0.08439	0.0013 0.0012 0.0013	507 475 458	61 59 54	518 523.3 522.3	7.9 7.3 7.6	516.7 516.6 513.6	9.8 10 9.7

Ambat-16	0.05709	0.0013	0.669	0.015	0.08415	0.0013	487	50	520.8	8	519.8	9.2
Ambat-17	0.0573	0.0015	0.663	0.016	0.0847	0.0013	495	56	524.1	7.7	516.9	9.6
Ambat-18	0.0563	0.0014	0.647	0.015	0.08554	0.0013	457	57	529.1	7.9	506.1	9.2
Analysis	²⁰⁷ Pb/ ²⁰⁶ P	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ
	b						Age(Ma)		Age(Ma)		Age(Ma)	
222-1	0.05662	0.0012	0.558	0.012	0.07178	0.0012	484	48	446.8	7.1	450	8
222-2	0.0556	0.0016	0.549	0.016	0.07229	0.0012	435	66	449.9	7.1	444	10
222-3	0.0561	0.0014	0.565	0.013	0.07182	0.001	453	55	447.1	6.1	454.5	8.7
222-5	0.0558	0.0013	0.5441	0.011	0.07217	0.0011	453	54	449.2	6.8	440.8	7.4
222-6	0.05597	0.0013	0.55	0.012	0.07233	0.0011	442	52	450.1	6.8	444.6	7.9
222-7	0.05635	0.0011	0.5731	0.011	0.07226	0.0011	465	46	449.7	6.8	459.8	6.9
222-8	0.05742	0.0012	0.5766	0.012	0.07121	0.001	502	45	443.4	6.1	461.9	7.5
222-9	0.0561	0.0015	0.524	0.012	0.07093	0.0011	470	59	441.7	6.6	429.2	8.1
222-10	0.0565	0.0018	0.516	0.015	0.07085	0.0012	466	70	441.2	7.2	421.5	10
222-11	0.0574	0.0017	0.587	0.015	0.07202	0.0012	503	63	448.2	7.5	468	9.8
222-12	0.0573	0.0018	0.581	0.017	0.07197	0.0012	490	71	448	7	465.7	10
222-13	0.0549	0.0019	0.552	0.02	0.0722	0.0014	403	83	449.6	8.7	445	13
222-14	0.0563	0.0015	0.554	0.016	0.07162	0.0012	470	63	445.9	7.4	446.7	10
222-15	0.05541	0.0013	0.559	0.012	0.07257	0.0012	425	52	451.6	7.3	451.4	7.8
222-16	0.0554	0.0014	0.562	0.013	0.07277	0.0011	418	55	452.8	6.8	454.4	8.6
222-17	0.0566	0.0016	0.559	0.015	0.07374	0.0011	476	65	458.6	6.9	452.9	9.2
222-18	0.0549	0.0014	0.546	0.014	0.07272	0.001	410	54	452.5	6.1	441.5	8.8

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
Analysis date	: 18/08/17											
Madel-1	0.0561	0.0022	0.636	0.034	0.0836	0.0024	447	88	517.3	14	499.2	21
Madel-2	0.0595	0.0024	0.691	0.04	0.084	0.0024	579	87	520	14	533	24
Madel-3	0.05651	0.002	0.66	0.034	0.0837	0.0023	467	80	518	14	514.3	21
Madel-4	0.0569	0.0022	0.655	0.035	0.0837	0.0024	476	87	517.9	14	511.3	21
Madel-5	0.0573	0.0021	0.689	0.038	0.0839	0.0025	507	83	519.1	15	531	23
Madel-6	0.0579	0.0023	0.671	0.036	0.08366	0.0023	524	81	517.9	14	520.3	22
Madel-7	0.0558	0.0022	0.638	0.035	0.08367	0.0022	436	94	518	13	500	22
Madel-8	0.0571	0.0023	0.647	0.035	0.0838	0.0023	477	88	518.7	14	506.1	21
Madel-9	0.0572	0.0023	0.659	0.036	0.0837	0.0024	486	90	517.9	14	513.5	22
Madel-10	0.05732	0.0021	0.663	0.035	0.0839	0.0023	496	78	519.2	14	516.1	21
Madel-11	0.05678	0.002	0.653	0.034	0.08363	0.0023	476	80	517.7	13	510.2	21
Madel-12	0.05674	0.002	0.654	0.034	0.08376	0.0023	480	75	518.5	14	510.3	21
Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
Ambat-1	0.05619	0.0021	0.661	0.035	0.08535	0.0023	457	84	527.9	14	514.8	21
Ambat-2	0.0572	0.0021	0.672	0.036	0.08407	0.0023	487	83	520.3	14	521.2	22
Ambat-3	0.0564	0.0021	0.656	0.035	0.08664	0.0024	466	81	535.6	14	511.8	22
Ambat-4	0.05596	0.002	0.654	0.035	0.08716	0.0024	448	79	538.7	14	510.2	21
Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
222-1	0.0564	0.0021	0.558	0.029	0.07372	0.0021	459	83	458.5	12	449.8	19
222-2	0.05595	0.0021	0.555	0.029	0.07349	0.002	441	83	457.1	12	448.1	19
222-3	0.0556	0.0021	0.555	0.03	0.07409	0.002	424	86	460.7	12	447.6	19
222-4	0.05615	0.002	0.567	0.03	0.07504	0.002	452	80	466.4	12	455.7	19

APPENDIX D: U-PB GEOCHRONOLOGY MONAZITE RESULTS

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ P b Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ	
----------	--	----	-------------------------------------	----	--	----	---	----	--	----	--	----	--

KS1G-2	0.0798	0.0035	0.881	0.05	0.0796	0.0027	1185	89	494	16	644	27
KS1G-3	0.0676	0.0034	0.745	0.03	0.0788	0.002	872	99	489	12	565	18
KS1G-4	0.0568	0.0018	0.625	0.038	0.0793	0.0039	495	73	492.1	23	492.7	24
KS1G-7	0.0618	0.0044	0.668	0.026	0.0774	0.0029	673	160	480.7	18	522	16
KS1G-8	0.0579	0.0018	0.636	0.023	0.0802	0.0014	522	67	499	9.3	499.8	14
KS1G-10	0.0706	0.0028	0.802	0.048	0.0823	0.0031	940	82	510	19	597	27
KS1G-11	0.0577	0.0017	0.649	0.027	0.0808	0.0023	511	67	500.9	14	507.6	16
KS1G-12	0.0954	0.0035	1.103	0.046	0.0853	0.0025	1548	79	528	15	754	23
KS1G-13	0.0588	0.0026	0.647	0.025	0.0795	0.0015	562	94	493.2	9.1	506	15
KS1G-14	0.0607	0.0021	0.66	0.025	0.0791	0.0019	621	77	490.4	11	514.5	15
KS1G-15	0.0589	0.002	0.666	0.026	0.0819	0.0019	557	74	507.6	11	518	16
KS1G-16	0.1017	0.0049	1.183	0.061	0.088	0.0044	1648	91	551	23	792	28
KS1G-17	0.0579	0.002	0.633	0.028	0.0787	0.0024	521	72	488.1	14	497.9	18
KS1G-18	0.0609	0.0028	0.664	0.028	0.0802	0.0021	627	97	497.2	13	516.8	17
KS1G-19	0.0645	0.0029	0.714	0.032	0.0802	0.0014	748	97	497.4	8.5	546.7	19
KS1G-20	0.1122	0.0064	1.265	0.062	0.0819	0.0023	1827	100	507.5	14	829	28
KS1G-21	0.0631	0.0035	0.689	0.04	0.0793	0.0026	699	120	491.6	16	531	24
KS1G-22	0.064	0.0043	0.695	0.054	0.078	0.0028	722	110	484.2	17	535	29
KS1G-23	0.0571	0.01	0.626	0.14	0.0793	0.0033	490	280	491.7	20	493.3	75
KS1G-26	0.076	0.0024	0.851	0.033	0.0807	0.0019	1089	61	500.3	12	625	18
KS1G-27	0.0621	0.0027	0.677	0.035	0.07921	0.002	677	84	491.4	12	526.2	21
KS1G-28	0.0621	0.0023	0.682	0.029	0.0796	0.0027	683	78	493.7	16	528	17
KS1G-29	0.075	0.0062	0.857	0.068	0.0822	0.0034	1090	150	509	20	627	37
KS1G-30	0.0555	0.002	0.617	0.03	0.0806	0.0023	420	81	499.8	14	487.3	19
KS1G-31	0.0588	0.0027	0.638	0.026	0.0794	0.0014	554	110	492.5	8.3	500.7	17
KS1G-32	0.0622	0.0023	0.676	0.025	0.0793	0.0015	675	75	491.7	9.2	525.8	15
KS1G-33	0.0896	0.0045	1.064	0.056	0.0844	0.0022	1440	110	523	13	735	28
KS1G-34	0.0575	0.0021	0.627	0.022	0.0793	0.0016	510	77	491.8	9.8	493.8	14
KS1G-35	0.0636	0.0025	0.673	0.029	0.0777	0.0019	737	73	482.3	11	522.3	18
KS1G-36	0.068	0.0024	0.735	0.027	0.0788	0.0019	871	70	489	12	559.3	16
KS1G-38	0.0804	0.0038	0.942	0.045	0.0846	0.0039	1195	94	523	23	673	23
KS1G-39	0.0794	0.0027	0.913	0.034	0.0828	0.0022	1177	66	513	13	658	18
KS1G-40	0.0652	0.0054	0.724	0.069	0.0802	0.0027	805	160	497.4	16	552.5	40
KS1G-41	0.0651	0.0028	0.71	0.039	0.0795	0.0023	780	89	493.2	14	547	23
KS1G-42	0.0702	0.0035	0.744	0.034	0.0762	0.0024	945	98	473.5	15	564	20
KS1G-46	0.0759	0.0045	0.854	0.06	0.0821	0.003	1080	120	509	18	625	32

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
K2003-1	0.0626	0.003	0.727	0.04	0.085	0.0024	684	99	525.7	14	554	24
K2003-2	0.05745	0.0019	0.609	0.022	0.07653	0.0013	506	71	475.3	7.8	482.6	15
K2003-3	0.0909	0.0047	0.912	0.056	0.0727	0.0027	1434	96	452	16	657	30
K2003-4	0.0589	0.0021	0.623	0.023	0.07746	0.0017	560	83	480.9	10	491.2	15
K2003-5	0.0572	0.0018	0.634	0.024	0.07947	0.0014	492	70	492.9	8.5	497.9	15
K2003-6	0.0623	0.0025	0.662	0.026	0.0774	0.0018	674	87	480.6	11	515	17
K2003-7	0.0625	0.0017	0.625	0.022	0.07287	0.0016	691	59	453.4	9.9	492.6	14

-							-		-		-	
K2003-8	0.0573	0.0023	0.682	0.026	0.0862	0.0021	498	90	532.7	12	528.9	16
K2003-9	0.0603	0.0027	0.668	0.026	0.0802	0.002	613	100	497.2	12	519	16
K2003-11	0.0883	0.0053	1.179	0.076	0.0943	0.0037	1380	130	581	20	794	34
K2003-12	0.065	0.0025	0.717	0.034	0.0787	0.0017	779	82	488.5	10	550	20
K2003-13	0.0672	0.0058	0.816	0.062	0.089	0.0032	826	170	549	19	606	35
K2003-15	0.05948	0.0017	0.647	0.022	0.07851	0.0012	587	59	487.2	7.2	506.2	15
K2003-16	0.0612	0.004	0.67	0.043	0.0799	0.0019	649	150	495.3	11	520	26
K2003-17	0.0571	0.0021	0.648	0.021	0.0824	0.0017	197	87	510	10	506	12
K2003-19	0.0567	0.0021	0.63	0.021	0.0808	0.0017	487	79	500.6	10	495	13
K2003-20	0.0587	0.0021	0.05	0.023	0.0775	0.0010	553	75	491.4	11	403.8	15
K2003-21	0.0587	0.002	0.625	0.023	0.0775	0.0019	223	70	481.4	11	492.8	15
K2003-22	0.0569	0.0022	0.601	0.028	0.07655	0.0022	487	82	475.4	13	477.1	18
K2003-23	0.0568	0.002	0.625	0.024	0.0796	0.0018	493	87	493.9	11	492.5	15
K2003-24	0.0575	0.0023	0.639	0.035	0.08	0.0018	509	98	497.2	11	501.1	21
K2002 2(0.0575	0.0024	0.648	0.025	0.08089	0.0018	518	110	501.4	11	506.8	16
K2003-20	0.0565	0.003	0.577	0.034	0.0739	0.002	494	100	460	12	462	22
K2003-27	0.0686	0.004	0.789	0.051	0.085	0.0033	869	120	526	20	590	29
K2003-28	0.0564	0.0027	0.619	0.032	0.0784	0.0018	464	100	486.2	11	489	21
K2003-29	0.0592	0.002	0.695	0.024	0.0837	0.0015	565	71	518.2	9.2	535.5	15
K2003-30	0.0629	0.0019	0.671	0.033	0.0773	0.002	698	66	480	12	521	20
K2003-31	0.05712	0.0017	0.617	0.027	0.07895	0.0017	496	63	489.8	9.9	487.8	16
K2003-32	0.05966	0.002	0.71	0.028	0.086	0.0023	585	74	531.8	13	544.1	17
K2003-33	0.0579	0.002	0.662	0.024	0.0818	0.0019	531	76	506.6	11	515.2	15
K2003-34	0.07	0.0025	0.797	0.041	0.0823	0.0023	936	71	510	14	595	22
K2003-36	0.0584	0.0022	0.65	0.025	0.0812	0.0017	534	84	503.5	10	508	15
K2003-37	0.0582	0.0016	0.597	0.022	0.0734	0.0022	542	61	456.5	13	475.1	14
K2003-38	0.0614	0.0037	0.668	0.052	0.0791	0.0023	647	120	490.4	14	519	31
K2003-39	0.0592	0.0015	0.636	0.022	0.07744	0.0016	582	56	480.8	9.6	499.7	14
K2003-40	0.05920	0.0016	0.64	0.022	0.0905	0.0012	5/1	50	100 1	7.0	502.1	14
K2003-41	0.05859	0.0010	0.04	0.025	0.0803	0.0013	877	90	526.7	1.5	502.1	17
K2003-42	0.05728	0.0018	0.615	0.024	0.07759	0.0027	499	69	481.7	14	486.7	15
K2003-43	0.0676	0.0029	0.755	0.035	0.0807	0.0023	855	94	500.3	14	570.5	20

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
MAC1-1	0.0608	0.0037	0.671	0.035	0.0804	0.0022	632	130	498.5	13	522.5	22
MAC1-2	0.0617	0.0022	0.682	0.029	0.08012	0.0017	662	78	496.8	9.9	527.2	17
MAC1-3	0.0622	0.0029	0.668	0.038	0.0781	0.0021	660	100	485	13	518	22
MAC1-4	0.0545	0.0033	0.598	0.033	0.0784	0.0016	397	130	486.5	9.5	475	21
MAC1-7	0.0618	0.0026	0.677	0.031	0.0791	0.0025	668	93	491	15	528	19
MAC1-8	0.0565	0.0019	0.624	0.028	0.0809	0.0018	474	75	501.5	11	492	17
MAC1-9	0.0597	0.0029	0.715	0.037	0.0864	0.0023	593	99	534	14	547	22
MAC1-10	0.057	0.0024	0.615	0.029	0.0786	0.0027	494	93	487.5	16	486	18

MAC1-11	0.0597	0.0037	0.616	0.043	0.0763	0.0029	570	140	474	17	486	27
MAC1-12	0.0641	0.0026	0.681	0.03	0.0772	0.002	747	88	479.2	12	527	18
MAC1-14	0.0573	0.002	0.629	0.026	0.07876	0.0015	506	74	489.5	8.8	495.3	16
MAC1-15	0.0608	0.0022	0.657	0.033	0.0781	0.0021	633	79	484.6	13	512	20
MAC1-17	0.0575	0.0019	0.661	0.03	0.0833	0.0019	501	76	515.5	11	515	17
MAC1-19	0.0658	0.0037	0.702	0.036	0.0775	0.0027	805	120	481	18	539	21
MAC1-20	0.06	0.0042	0.646	0.041	0.0779	0.0025	590	140	483.4	15	506	25
MAC1-22	0.0645	0.0031	0.7	0.034	0.0777	0.0026	755	100	482	16	541	21
MAC1-23	0.0577	0.002	0.6391	0.022	0.0808	0.0019	512	77	500.9	11	501.6	14
MAC1-24	0.0584	0.0018	0.652	0.026	0.0804	0.0015	531	68	498.2	9	508.9	16
MAC1-25	0.0576	0.0027	0.62	0.036	0.07736	0.0023	516	100	480.3	14	490	22
MAC1-26	0.0575	0.0026	0.634	0.034	0.07918	0.002	506	110	491.2	12	498.3	21
MAC1-27	0.0586	0.0017	0.655	0.023	0.0816	0.0019	548	62	505.4	11	511.3	14
MAC1-28	0.0582	0.0022	0.616	0.023	0.077	0.0026	533	84	478.4	15	486.9	14
MAC1-29	0.0584	0.0028	0.644	0.03	0.0796	0.0023	534	110	493.7	14	506.6	18
MAC1-30	0.0599	0.0034	0.628	0.04	0.0755	0.0021	584	120	468.9	13	494	25
MAC1-34	0.0597	0.0051	0.724	0.036	0.0891	0.0049	579	200	550.2	29	553	22
MAC1-35	0.0577	0.0028	0.639	0.029	0.08021	0.0022	518	110	497.3	13	502.3	18
MAC1-37	0.0587	0.004	0.663	0.042	0.079	0.003	563	140	490	18	516	25
MAC1-38	0.0576	0.0018	0.665	0.025	0.0831	0.0019	518	73	514.4	11	517.4	15
MAC1-39	0.0639	0.0026	0.691	0.031	0.0783	0.0017	727	85	486.1	10	535	18
MAC1-40	0.0575	0.0021	0.627	0.028	0.0781	0.0024	511	81	485	15	494	18
MAC1-41	0.05869	0.0022	0.651	0.027	0.0799	0.0023	556	84	495.7	14	508.6	16
MAC1-43	0.0562	0.0018	0.643	0.022	0.0822	0.0016	461	72	509.2	9.7	503.6	16
MAC1-45	0.0621	0.0027	0.681	0.035	0.0793	0.0018	685	87	491.8	11	527	21
MAC1-46	0.05715	0.0015	0.613	0.02	0.07751	0.0013	515	57	481.2	7.6	485.1	13

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ² ³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ P b Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
17-KM-04-1	0.05676	0.0012	0.5986	0.011	0.0783	0.0012	475	48	485.9	6.9	476.1	7.1
17-KM-04-2	0.057	0.0013	0.602	0.013	0.07802	0.0013	493	48	484.3	7.8	478.4	7.9
17-KM-04-3	0.0591	0.0014	0.661	0.021	0.083	0.0022	574	47	516	13	514	13
17-KM-04-4	0.059	0.0021	0.645	0.027	0.0815	0.002	558	79	505	12	505	17
17-KM-04-5	0.05752	0.0013	0.611	0.013	0.0784	0.0015	519	51	486.7	8.8	484.2	8
17-KM-04-6	0.06	0.0014	0.653	0.014	0.08105	0.0012	593	51	502.3	7.3	510.5	8.8
17-KM-04-7	0.05609	0.0012	0.6049	0.012	0.08017	0.0012	453	46	497.1	7	480	7.3
17-KM-04-8	0.0597	0.0017	0.651	0.016	0.0811	0.0016	597	57	502.4	9.6	508.7	9.6
17-KM-04-9	0.0678	0.0025	0.72	0.026	0.07814	0.0012	834	77	485	7.1	549	15
17-KM-04-10	0.0584	0.0016	0.606	0.016	0.0777	0.0019	538	62	482	11	480.5	10
17-KM-04-12	0.0663	0.0023	0.696	0.023	0.0784	0.0014	804	73	486.5	8.6	538	13
17-KM-04-13	0.05637	0.0012	0.5889	0.011	0.07728	0.0012	465	46	479.8	7.2	469.9	6.8
17-KM-04-14	0.0652	0.0023	0.728	0.027	0.0824	0.0019	780	76	510.5	11	554	16
17-KM-04-15	0.0636	0.0019	0.662	0.024	0.0763	0.0013	718	62	474.1	7.9	514	14
17-KM-04-16	0.0634	0.0017	0.689	0.017	0.0775	0.0014	711	56	481.3	8.3	531.9	10
17-KM-04-17	0.0776	0.002	0.881	0.022	0.08038	0.0012	1137	50	498.4	7.4	641	12
17-KM-04-18	0.0621	0.0024	0.685	0.031	0.0781	0.0016	660	83	484.6	9.3	529	18
17-KM-04-19	0.0955	0.0044	1.119	0.052	0.083	0.0014	1516	85	513.7	8.1	758	25
17-KM-04-20	0.05682	0.0011	0.629	0.012	0.07802	0.0013	487	43	484.2	7.6	495.2	7.5
17-KM-04-21	0.05716	0.0013	0.634	0.013	0.07831	0.0011	508	51	486	6.8	499	8
17-KM-04-24	0.05846	0.0012	0.622	0.014	0.07592	0.0011	550	49	471.7	6.9	490.9	8.5
17-KM-04-25	0.06106	0.0013	0.652	0.014	0.0767	0.0013	640	48	476.4	7.5	510.4	9.1
17-KM-04-26	0.0611	0.0017	0.697	0.019	0.0819	0.0017	645	60	507.7	10	538	11
17-KM-04-27	0.0626	0.0017	0.668	0.017	0.07607	0.0012	693	54	472.6	7.4	519.2	10
17-KM-04-29	0.0573	0.0012	0.6067	0.012	0.07672	0.0011	497	46	476.5	6.7	482	7.4
17-KM-04-30	0.06077	0.0013	0.666	0.014	0.07856	0.0012	640	48	487.5	7.2	517.8	8.4
17-KM-04-31	0.058	0.0014	0.634	0.015	0.0811	0.0013	522	55	502.9	8	498.1	9

17-KM-04-32	0.0635	0.0018	0.695	0.02	0.0804	0.0016	737	60	498.6	9.3	535	12
17-KM-04-33	0.0611	0.0024	0.656	0.032	0.0805	0.002	628	83	499	12	511	20
17-KM-04-34	0.05675	0.0011	0.613	0.013	0.07933	0.0013	476	44	492.1	7.8	487	7.7
17-KM-04-35	0.0562	0.0011	0.607	0.012	0.07839	0.0013	457	42	486.4	7.8	481.3	7.6
17-KM-04-36	0.05615	0.0012	0.626	0.013	0.08137	0.0012	452	47	504.3	7.1	494.4	7.9
17-KM-04-37	0.0801	0.0025	0.901	0.031	0.0815	0.0016	1216	59	505.1	9.4	651	16
17-KM-04-38	0.062	0.0012	0.658	0.013	0.07801	0.0011	677	44	484.2	6.9	513.1	8.2
17-KM-04-39	0.0656	0.0025	0.72	0.028	0.0789	0.0014	797	85	489.6	8.2	553	15
17-KM-04-40	0.0693	0.002	0.777	0.023	0.0808	0.0017	898	59	500.8	9.9	583	13
17-KM-04-41	0.069	0.0023	0.764	0.028	0.0797	0.0015	886	70	494	9.1	574	17
17-KM-04-42	0.05711	0.0012	0.6286	0.012	0.07947	0.0011	494	44	492.9	6.7	494.9	7.3
17-KM-04-43	0.06437	0.0013	0.701	0.014	0.0786	0.0012	753	44	487.7	7.1	541.2	8.5
17-KM-04-44	0.0625	0.0016	0.669	0.017	0.07736	0.0013	682	54	480.3	7.7	519.4	10
17-KM-04-45	0.0639	0.0024	0.698	0.019	0.0788	0.0021	722	81	489	13	539	12
17-KM-04-46	0.0562	0.0014	0.626	0.014	0.07871	0.0012	451	54	489.2	7.3	494.3	8.4
17-KM-04-47	0.0642	0.0019	0.7	0.022	0.0761	0.0017	771	62	473	10	538	13
17-KM-04-48	0.0605	0.0019	0.659	0.026	0.0761	0.0018	612	68	473	11	513	16
17-KM-04-51	0.0596	0.0012	0.6583	0.012	0.07502	0.0011	596	40	466.3	6.7	513.3	7.2
17-KM-04-52	0.05698	0.0012	0.602	0.014	0.0711	0.0012	484	47	442.7	7.3	478.2	8.6
17-KM-04-53	0.0629	0.0028	0.749	0.038	0.0804	0.0026	688	94	499	16	566	22
17-KM-04-54	0.0576	0.0014	0.644	0.018	0.0761	0.0016	510	52	472.6	9.9	506.9	10
17-KM-04-55	0.0582	0.0015	0.632	0.018	0.07322	0.0012	541	56	455.5	7.5	497	11
17-KM-04-56	0.0598	0.0014	0.694	0.016	0.07734	0.0013	591	53	480.2	7.7	535.8	9.4
17-KM-04-57	0.05773	0.0012	0.621	0.013	0.07284	0.0013	522	45	453.2	7.6	490	8.2
17-KM-04-58	0.0603	0.0017	0.693	0.02	0.0782	0.0015	605	61	485.2	8.8	534	12
17-KM-04-59	0.0702	0.0073	0.784	0.079	0.0781	0.0019	870	190	485	11	580	41
17-KM-04-60	0.0616	0.002	0.689	0.035	0.0769	0.0026	651	67	478	16	531	20
17-KM-04-61	0.0587	0.0013	0.5491	0.011	0.07352	0.0011	549	50	457.3	6.9	444.2	7.2
17-KM-04-62	0.062	0.0018	0.636	0.024	0.081	0.0022	668	63	502	13	499	15
17-KM-04-63	0.0583	0.0015	0.591	0.013	0.0788	0.0013	543	56	488.7	8	470.9	8.6
17-KM-04-64	0.057	0.0013	0.57	0.014	0.07843	0.0013	489	47	486.7	7.6	457.8	8.8
17-KM-04-65	0.0627	0.0035	0.593	0.034	0.0746	0.0019	690	110	464	12	476	20

Analysis	²⁰⁷ Pb/ ²⁰⁶ P	2σ	²⁰⁷ Pb/ ²³⁵	2σ	²⁰⁶ Pb/ ²³⁸	2σ	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ
	b		U		U		Age(Ma)		Age(Ma)		Age(Ma)	
17-KM-05-1	0.05741	0.0012	0.5642	0.011	0.0776	0.0012	501	45	481.8	6.9	454	7.1
17-KM-05-2	0.0583	0.0021	0.619	0.023	0.0827	0.0021	518	79	512	13	488	14
17-KM-05-3	0.0584	0.0014	0.575	0.014	0.0777	0.0013	547	52	482.2	8	461	8.7
17-KM-05-4	0.0629	0.003	0.61	0.029	0.0777	0.0022	701	100	482	13	482	18
17-KM-05-5	0.05675	0.0012	0.569	0.013	0.0785	0.0015	474	48	486.9	8.7	456.8	8.6
17-KM-05-6	0.05755	0.0013	0.5803	0.011	0.07918	0.0012	521	49	491.2	7.2	464.3	7.3
17-KM-05-7	0.05803	0.0013	0.597	0.015	0.07973	0.0012	527	52	494.5	7.3	474.9	9.4
17-KM-05-8	0.05775	0.0012	0.579	0.012	0.07646	0.0012	518	47	475.6	7	463.3	7.8
17-KM-05-9	0.05802	0.0013	0.628	0.014	0.08224	0.0012	534	45	509.5	7.4	494.4	8.7
17-KM-05-13	0.0573	0.0016	0.724	0.02	0.0875	0.0018	513	63	540.6	11	552	12
17-KM-05-14	0.0586	0.0017	0.672	0.02	0.0796	0.0014	560	62	493.4	8.3	522	12
17-KM-05-15	0.0583	0.0018	0.715	0.025	0.086	0.002	551	67	532	12	551	15
17-KM-05-16	0.05729	0.0012	0.616	0.013	0.0754	0.0013	496	47	468.8	7.9	487.2	8.4
17-KM-05-17	0.0557	0.0013	0.647	0.015	0.0806	0.0014	448	56	499.4	8.4	507.4	9
17-KM-05-18	0.05614	0.0011	0.6065	0.012	0.07617	0.0012	457	47	473.2	7.3	481.1	7.4
17-KM-05-19	0.0577	0.0014	0.64	0.016	0.0785	0.0014	509	55	487.4	8.6	502.8	10
17-KM-05-20	0.058	0.0015	0.603	0.015	0.07327	0.0012	524	56	455.8	7.5	479.7	9.6
17-KM-05-21	0.05673	0.0013	0.598	0.016	0.0751	0.0015	475	51	466.6	9.2	475.7	10
17-KM-05-22	0.0562	0.0014	0.658	0.015	0.0831	0.0014	459	52	514.8	8.5	513	9.1
17-KM-05-23	0.0588	0.0014	0.63	0.017	0.076	0.0014	566	54	471.9	8.2	495.5	11
17-KM-05-25	0.0614	0.0014	0.739	0.017	0.0858	0.0015	645	48	530.7	9	562.7	9.9
17-KM-05-28	0.0749	0.004	0.876	0.077	0.087	0.0046	1050	110	538	27	635	42
17-KM-05-31	0.0623	0.0016	0.652	0.016	0.0776	0.0013	672	56	481.6	7.9	509.1	9.6
17-KM-05-32	0.0692	0.0022	0.765	0.03	0.0806	0.0014	895	61	499.7	8.6	575	17
17-KM-05-33	0.0722	0.0026	0.779	0.031	0.0815	0.0016	1004	71	505.3	9.4	585	17
17-KM-05-34	0.0708	0.0018	0.738	0.016	0.07851	0.0013	945	55	487.2	7.6	560.7	9.5
17-KM-05-37	0.0606	0.0015	0.647	0.016	0.0801	0.0014	633	59	496.5	8.6	507.6	10
17-KM-05-39	0.0659	0.0039	0.726	0.039	0.0842	0.0022	790	110	521	13	554	21

17-KM-05-40	0.0557	0.0013	0.591	0.013	0.07882	0.0012	437	53	489	7.4	471.9	8.7
17-KM-05-42	0.0585	0.0014	0.668	0.014	0.08191	0.0013	543	54	507.5	7.7	519	8.6
17-KM-05-43	0.0578	0.0014	0.63	0.015	0.07714	0.0012	521	56	479	6.9	495.4	9.2
17-KM-05-44	0.0587	0.0014	0.636	0.015	0.077	0.0013	549	50	478.1	7.8	499.6	9.2
17-KM-05-45	0.0609	0.0022	0.649	0.02	0.0755	0.0014	647	73	469.2	8.6	507	12
17-KM-05-46	0.0596	0.0014	0.669	0.013	0.07916	0.0013	582	50	491	7.6	520.6	7.8
17-KM-05-47	0.057	0.0016	0.643	0.017	0.08071	0.0012	474	63	500.3	7.4	504.5	11
17-KM-05-48	0.0577	0.0016	0.647	0.015	0.0803	0.0014	514	59	497.7	8.3	506.4	9
17-KM-05-49	0.0606	0.0018	0.648	0.018	0.0771	0.0013	607	63	479	8.1	507.8	11
17-KM-05-50	0.058	0.0016	0.653	0.016	0.081	0.0013	530	61	502.1	7.6	509.9	9.9
17-KM-05-51	0.063	0.002	0.709	0.021	0.0814	0.0016	717	68	504.3	9.7	543	13
17-KM-05-52	0.05742	0.0012	0.626	0.014	0.0782	0.0014	523	46	485	8.1	493	8.7
17-KM-05-53	0.0569	0.0015	0.64	0.015	0.0815	0.0015	481	57	505	8.7	501.7	9.3
17-KM-05-54	0.05679	0.0013	0.628	0.014	0.0813	0.0014	485	49	503.9	8.2	495.7	8.9
17-KM-05-55	0.0559	0.0015	0.639	0.016	0.0832	0.0014	434	60	515.3	8.4	501.3	9,9

Analysis	²⁰⁷ Pb/ ²⁰⁶ P b	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	²⁰⁶ Pb/ ²³⁸ U	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Age(Ma)	2σ	²⁰⁶ Pb/ ²³⁸ U Age(Ma)	2σ	²⁰⁷ Pb/ ²³⁵ U Age(Ma)	2σ
RDC mnz-1	0.05658	0.0021	0.605	0.031	0.07277	0.002	466	79	452.8	12	480	20
RDC mnz-2	0.0561	0.0021	0.592	0.031	0.06783	0.0019	448	83	423	12	471.8	20
RDC mnz-3	0.0559	0.0022	0.597	0.032	0.06857	0.002	434	88	427.5	12	474.7	20
RDC mnz-4	0.0573	0.0022	0.626	0.034	0.06979	0.002	490	83	434.9	12	492.9	21
RDC mnz-5	0.0564	0.0021	0.625	0.033	0.07102	0.002	455	83	442.2	12	492.7	21
RDC mnz-6	0.0566	0.0023	0.598	0.033	0.0689	0.0022	465	88	429.5	14	475.3	21
RDC mnz-7	0.0558	0.0024	0.635	0.036	0.075	0.0022	430	94	466.3	13	498	22
RDC mnz-8	0.0564	0.0022	0.641	0.036	0.0846	0.0024	459	87	523.6	14	502	22
RDC mnz-9	0.0571	0.0023	0.643	0.035	0.0844	0.0024	481	88	522.4	14	503.6	22
RDC mnz- 12	0.0559	0.0022	0.621	0.034	0.08262	0.0022	433	87	511.7	13	489.6	21
RDC mnz- 13	0.05584	0.002	0.616	0.034	0.0818	0.0027	439	80	507	16	486.6	21

APPENDIX E: EXTENDED EMPA METHODS

Chemical compositions of garnet, andalusite, staurolite, chlorite, biotite, muscovite, sillimanite, ilmenite and potassium feldspar were acquired using a Cameca SXFive electron microprobe at the Adelaide Microscopy, University of Adelaide. Calibration was undertaken on natural and synthetic mineral standards, following the standard protocols at Adelaide Microscopy. For each spot analysis, a beam current of 20nA and accelerating voltage of 15kV was set, and a PAP correction was applied to all data. Each analysis resulted in measurements of SiO2, TiO2, Cr2O3, Al2O3, FeO, MnO, MgO, CaO, Na2O, K2O, ZnO, Cl and F using Wavelength Dispersive Spectrometers (WDS).

KS1G K2003-1 MAC-2 17KM04 17KM05 **Garnet core** 0.643-0.644 0.629-0.631 0.644 X_{alm} 0.077-0.100 0.075-0.101 0.060-0.065 _ _ X_{py} 0.041-0.042 0.045-0.046 0.034 -Xgrs 0.189-0.191 0.213-0.214 0.215-0.216 \mathbf{X}_{sps} Garnet rim 0.633-0.636 0.641-0.640 0 685-0 688 X_{alm} 0.067-0.089 0.054-0.085 0.029-0.045

APPENDIX F: RANGE OF CHEMISTRY OF MINERALS

X _{pv}	0.033	0.047-0.048	0.033-0.035	-	-
Xors	0.173-0.176	0.210-0.224	0.211-0.217	-	-
X _{sps}					
Biotite					
F (wt%)	0.192	0.083	0.221	0.264	0.222
Cl (wt%)	0.089	0.024	0.083	0.096	0.080
TiO ₂ (wt%)	1.485	1.523	1.822	2.173	2.787
Xbi	0.520	0.511	0.511	0.478	0.436
Muscovite					
n(mu)	0.179	-	0.210	0.044	-
c(mu)	0.001	-	0.000	0.003	-
p(mu)	0.726	-	0.586	0.848	-
n(cel)	0.047	-	0.107	0.046	-
p(fcel)	0.047	-	0.097	0.059	-
Ilmenite					
g(ilm)	-	-	0.018	-	-
m(ilm)	-	-	0.044	-	-
n(ilm)	-	-	0.655	-	-
p(iiii) p(hem)	-	-	0.282	-	-
p(nem) MnO ($rrt0/$)	-	-	1.566	-	-
$\frac{1}{100} (wt%)$	-	-	28.526	-	-
$110_2 (Wl\%)$					
Potassium					
relaspar	-	-	_	0.103	0.66-0.78
na(ksp)	-	-	-	0.103	0.66-0.78
p(abh)	-	-	-	0.001	0.001
p(an)	-	-	-	0.897	0.921-0.933
p(san)					
Staurolite	0.024	0.007	0.021		
XFe ²⁺	0.824	0.807	0.821	-	-
Xmg	0.170	0.195	0.179	-	-
XFe(tot.)	0.824	0.807	0.821	-	-
$X_{alm} = Fe^{2+}/(Fe^{2+}+Mg+Ca)$	a+Mn), X _{py} =Mg/(Fe ²	²⁺ +Mg+Ca+Mn), X _{grs} =	=Ca/(Fe ²⁺ +Mg+Ca+Mn)	, $X_{sps} = Mn/(Fe^{2+}+N)$	/Ig+Ca+Mn),
$X_{bi} = Fe/(Fe^{2+} + Mg)$					

Garnet

Garnet in KS1G, K2003-1 and MAC-2 is predominantly almandine-spessartine mixtures.

Biotite

Biotite in all samples is relatively titanium-low, with TiO_2 values of 1.485-2.787 wt%. Sample 17KM05 is the most titanium-rich, 2.787 wt%. Sample K2003-1 has the lowest Cl content (0.024) and F content (0.083) compared to all other samples.

Muscovite

Muscovite is observed in all samples but only analysed in samples KS1G, MAC-2 and 17KM04.

Ilmenite

Ilmenite is observed in all samples but was only analysed in MAC-2, with 28.526 wt% titanium.

Potassium Feldspar

Potassium Feldspar is only observed in samples 17KM04 and 17KM05. Potassium Feldspar in sample 17KM04 is significantly more Na-rich (0.103) compared to sample 17KM05 (0.66-0.78).

APPENDIX G: T-M₀ PSEUDOSECTION AND TCI RESULTS

Calculated TMo pseudosection for all samples. All fields in the diagram contain water, H_2O , as part of the equilibrium assemblage. Numbered circles corresponding to the assemblage occurring within the field identify fields too small to be directly labelled. Progressively darker tones are representative of increasing variance, V, where V = components – phases +2 (components = 10). The composition in mole % used to calculate the diagram, corresponding to that at M = 0 and M = 1, are provided above the diagram. FeO* = Fe + 2 x 'O'.

Sample MAC-2

Calculated T-Mo pseudosection for sample MAC-2 contoured for the abundance ('mode') of some phases. The calculated abundance of phases in the peak assemblage field were used in conjunction with estimated abundances of minerals in the sample (Table 1) to choose an appropriate composition along the Mo axis for calculation of the P-T pseudosection. The composition used for the calculation of the P-T pseudosection, is that at Mo = 0.080, depicted as a dashed vertical line. This composition passes through the interpreted peak assemblage field.

- 5. g mu and chl pl bi ilm q
- 6. g mu chỉ pỉ bi ilm q

10. mu ksp sill pl bi ilm q 11. ksp sill pl bi ilm q

Sample K2003-1

Calculated T-Mo pseudosection for sample K2003-1 contoured for the abundance ('mode') of some phases. The calculated abundance of phases in the peak assemblage field were used in conjunction with estimated abundances of minerals in the sample (Table 1) to choose an appropriate composition along the Mo axis for calculation of the P-T pseudosection. The composition used for the calculation of the P-T pseudosection, is that at Mo = 0.050, depicted as a dashed vertical line. This composition passes through the interpreted peak assemblage field.

Sample 17KM04

Calculated T-Mo pseudosection for sample 17KM04 contoured for the abundance ('mode') of some phases. The calculated abundance of phases in the peak assemblage field were used in conjunction with estimated abundances of minerals in the sample (Table 1) to choose an appropriate composition along the Mo axis for calculation of the P-T pseudosection. The composition used for the calculation of the P-T pseudosection, is that at Mo = 0.050, depicted as a dashed vertical line. This composition passes through the interpreted peak assemblage field.

1. mu ksp sill pl bi ilm q

- 2. mu ksp sill mt pl bi ilm q
- 3. mu ksp sill pl bi ilm q
- 4. ksp sill pl bi ilm q

Melissa Danielle Stinear Refining the record of metamorphism during the Delamerian Orogeny

