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Abstract

One of the major challenges in the field of Computer Vision has been the recon-

struction of a 3D object or scene from a single 2D image. While there are many

notable examples, traditional methods for single view reconstruction often fail to

generalise due to the presence of many brittle hand-crafted engineering solutions,

limiting their applicability to real world problems. Recently, deep learning has

taken over the field of Computer Vision and ”learning to reconstruct” has become

the dominant technique for addressing the limitations of traditional methods

when performing single view 3D reconstruction. Deep learning allows our recon-

struction methods to learn generalisable image features and monocular cues that

would otherwise be difficult to engineer through ad-hoc hand-crafted approaches.

However, it can often be difficult to efficiently integrate the various 3D shape

representations within the deep learning framework. In particular, 3D volumetric

representations can be adapted to work with Convolutional Neural Networks,

but they are computationally expensive and memory inefficient when using lo-

cal convolutional layers. Also, the successful learning of generalisable feature

representations for 3D reconstruction requires large amounts of diverse training

data. In practice, this is challenging for 3D training data, as it entails a costly

and time consuming manual data collection and annotation process. Researchers

have attempted to address these issues by utilising self-supervised learning and

generative modelling techniques, however these approaches often produce sub-

optimal results when compared with models trained on larger datasets. This

thesis addresses several key challenges incurred when using deep learning for

”learning to reconstruct” 3D shapes from single view images. We observe that

it is possible to learn a compressed representation for multiple categories of the

3D ShapeNet dataset, improving the computational and memory efficiency when
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working with 3D volumetric representations. To address the challenge of data

acquisition, we leverage deep generative models to ”hallucinate” hidden or latent

novel viewpoints for a given input image. Combining these images with depths

estimated by a self-supervised depth estimator and the known camera properties,

allowed us to reconstruct textured 3D point clouds without any ground truth

3D training data. Furthermore, we show that is is possible to improve upon the

previous self-supervised monocular depth estimator by adding a self-attention

and a discrete volumetric representation, significantly improving accuracy on the

KITTI 2015 dataset and enabling the estimation of uncertainty depth predictions.
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CHAPTER 1
Introduction

1.1 Motivations

Developing artificial systems that emulate or rival some of the capabilities of

the human visual system has long been a goal of Computer Vision researchers.

Computer Vision contains many sub-disciplines concerned with solving a variety

of visual problems. For instance, the task of recovering the three-dimensional (3D)

world using images or video is known as 3D reconstruction. As with many prob-

lems in Computer Vision, 3D reconstruction is considered an inverse problem [323],

where researchers attempt to recover some information about the world (e.g., 3D

shape of visual objects and their relative pose) given insufficient and ambiguous

visual data. As a result, we must often rely heavily on physical [135, 272, 358],

mathematical [121, 331] and probabilistic models [52, 277, 363] to create 3D recon-

structions.

3D reconstruction of scenes and objects is of general scientific interest and forms

part of core technologies used in a wide range of problems. More specifically,

it has applications in Computer Graphics, Computer Vision, Medical Imaging,

Virtual/Augmented Reality (VR/AR), Geology and many other scientific fields.

Many robotic applications require the mapping of the 3D environment to avoid

obstacles and to perform path planning. This technique is known as Simulta-

neous Localisation and Mapping or SLAM [314, 315] and is widely applied in

autonomous vehicles [352], drones [313], and consumer robotics [179]. While the

1
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maps created by SLAM systems need not necessarily be full 3D reconstructions, in

many applications, dense 3D reconstructions are preferred. For example, robotic

vacuum cleaners do not require a full 3D map to successfully navigate an environ-

ment, but autonomous drones require 3D reconstruction as they operate in all three

dimensions and must therefore plan their path in 3D to avoid obstacles. Moreover,

many self-driving car systems utilise pre-made 3D maps reconstructed from the

environment in which the car is expected to operate. Often these environments

are scanned using a combination of range-finding sensors like LiDAR and passive

cameras. These 3D reconstructions can then be utilised as part of a SLAM system

for localising the autonomous vehicle within its environment. 3D reconstruction

is not limited to robotic applications. For instance, the in-built camera and rich

sensor data captured from modern smart phones have enabled the development

of several commercially available games based on 3D reconstruction techniques, to

create immersive and engaging augmented reality game-play experiences [68,353].

Furthermore, several commercially available VR/AR headsets use 3D reconstruc-

tion for mapping and localisation. These 3D reconstructions can be integrated with

the VR experience to ensure that users do not collide with unseen obstacles, or in

augmented reality headsets for projecting user interfaces [257]. 3D Reconstruction

has also been used for preserving cultural sites in Archaeology [32], for urban

planning [6] and for various applications in medical imaging [377, 386].

In many applications, it may not be possible to deploy 3D reconstruction sys-

tems that utilise multiple cameras or active range-finding, due to cost, efficiency

or design constraints. For example, small drones often cannot leverage active

range finding or traditional stereo vision due to limited battery capacity or insuf-

ficient camera baselines. In these cases, it may be preferential to perform single

view 3D reconstruction, where we are given a single image at run time to try and

recover the underlying 3D object or scene. This is considered one of the most

challenging problems in Computer Vision [323]. Methods for Single-View 3D

reconstruction traditionally focused on exploiting monocular perception cues such

as shading [135, 136], image focus/defocus [272], and texture [358]. However,

using these monocular cues for single view reconstruction poses many challenges,

as each of these techniques make assumptions regarding lighting, material and



1.1. Motivations 3

surface properties. In practice this often limits these methods to work exclusively

within constrained environments.

Many classical 3D reconstruction methods use multiple views of a surface to

recover the underlying geometry. Typically, these algorithms rely on hand-crafted

local feature descriptors for matching image regions captured from different view-

points. The feature correspondences can then be triangulated to reconstruct a

depth map or 3D surface. However, these traditional feature extraction meth-

ods require image regions to have distinguishable (i.e., non-repeatable) texture,

which, depending on application, can result in sub-optimal 3D reconstruction.

As these feature extraction methods were initially developed to enable match-

ing of image regions, they are designed to be robust to small changes in scale

or orientation, while attempting to preserve their ability to distinguish between

non-corresponding patches. This leads to a complicated trade-off between robust-

ness and discriminative ability, which must be engineered for the task of interest.

Furthermore, as these descriptors are hand-crafted, they are often time consuming

to develop and fail to capture higher level semantic or contextual information,

leading to sub-optimal generalisation in both 3D reconstruction and other Com-

puter Vision tasks. To address the sub-optimality of local feature descriptors,

researchers apply a class of techniques known as deep learning, to many problems

in Computer Vision. Deep learning models are typically represented by Artificial

Neural Networks [124, 236, 295], which are trained in an end-to-end fashion using

gradient descent, to learn feature representations that can solve a task of interest.

In many areas of Machine Learning and Computer Vision, ”learning” feature

representations has shown significant improvement over hand-designed feature

descriptors [106]. Models trained in this manner are known as Deep Neural Net-

works (DNNs).

DNNs have shown outstanding progress in the reconstruction of 3D objects and

scenes from monocular images [52, 98, 364]. However, single view 3D reconstruc-

tion remains one of the most challenging tasks in Computer Vision, as any method

that aims to accurately recover the scene or object of interest must leverage a range

of monocular cues. Historically, exploiting these cues in a generalisable manner
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has proven difficult. Deep learning offers one possible solution by allowing the

reconstruction methods to indirectly ”learn” the monocular cues and representa-

tions necessary for recovering the 3D surface of interest.

Convolutional 
Encoder

Input Image

IDCT Decoder

Ground TruthVolumetric Reconstruction at 1283

Figure 1.1: Overview of the volumetric reconstruction using an Inverse Discrete

Cosine Transform layer to achieve highly efficient 3D reconstruction.

While its successes are numerous, applying deep learning to 3D reconstruction

presents several challenges. Firstly, deep learning models require large amounts of

computational resources to train effectively which can be further exacerbated by

the choice of shape representations. For example, 3D volumes are often an order

of magnitude larger than the equivalent 2D images, leading to significant ineffi-

ciencies when using these representations with deep learning models. This leads

to a trade off between reconstruction quality, and computation and memory usage.

Secondly, training accurate and generalisable Deep Neural Networks requires

immense amounts of diverse cleanly labelled data, which is often unavailable for

tasks such as 3D reconstruction. This issue of data scarcity limits the applicabil-

ity of 3D deep learning based reconstruction systems in real world applications.

Researchers have proposed a variety different model training regimes to address

this, such as transfer learning [106], self-supervised learning and semi-supervised

learning using generative models [106]. However, a third challenge is that these

methods do not currently reach the same levels of quantitative performance as

models trained with full supervision. Therefore, to enable the wider adoption

of deep learning in real world systems, it is becoming increasingly important to

develop models that need significantly less labelled training data, but are also as

accurate as fully supervised methods.
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Figure 1.2: Overview of single image 3D point cloud reconstruction.

This thesis aims to develop techniques to address the challenges of computational

efficiency and data scarcity when training deep neural networks for monocular

3D reconstruction and depth estimation. We describe several novel techniques

for addressing the challenges of applying deep learning to the problem of single

view 3D reconstruction. We present a method for single view 3D reconstruction

which simultaneously improves reconstruction resolution, computational usage

and memory consumption, by an order of magnitude when compared with the

baseline method [52] – see Figure 1.1. We also propose a framework for single view

point cloud reconstruction that utilises novel view prediction and self-supervised

depth estimation to recover textured 3D point clouds with no ground truth 3D

training data – see Figure 1.2. Finally, we show that by applying self-attention

and a discrete volumetric representation, it is possible to significantly improve

the accuracy of self-supervised depth estimation, compared with the current state

of the art [103], and to enable the estimation of uncertainty from these depth

predictions – see Figure 1.3.

1.2 Contributions

The main contributions of this thesis are as follows:

∙ We demonstrate how to efficiently perform single image 3D volumetric

reconstruction at high resolutions using an end to end deep learning model

with a novel Inverse Discrete Cosine Transforms (IDCT) Layer. We show how
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Self Supervised Depth 
Estimator Monocular Depth Estimate

Uncertainty Estimate
2D Self Attention

Input Image

Figure 1.3: Overview of Self-Supervised Depth estimation.

the performance is improved by an order of magnitude in terms of memory

consumption and computational efficiency, allowing for significantly higher

resolution reconstructions (Figure 1.1).

∙ We present a framework for single image 3D point cloud reconstruction

that does not require any 3D ground truth data for training, obviating the

need for costly manual data acquisition. We show that by leveraging deep

generative models and Self-Supervised Depth Estimators it is possible to

reconstruct high quality textured point clouds using only sets of images for

training (Figure 1.2).

∙ We also demonstrate how to improve the reconstruction accuracy and esti-

mate reconstruction uncertainty of self-supervised monocular depth estima-

tors by incorporating 2D self-attention and a discrete disparity volume. We

show how the large receptive field afforded by the self-attention operation

improves the modelling capabilities of the estimator. Furthermore, by con-

straining the model to use a discrete volumetric representation of disparity,

we are also able to estimate the depth estimate uncertainty (Figure 1.3).

1.3 Thesis Structure

The structure of the thesis is as follows. In Chapter 2 we review the prior art, its

history and how it relates to 3D reconstruction using deep learning. Chapter 3

contains an overview of the methods and components used in the body chapters

of this thesis. In Chapter 4 we show how using dimensionality reduction, in the

form of the Inverse Discrete Cosine Transform (IDCT), can be integrated into a



1.3. Thesis Structure 7

deep Convolutional Neural Network to drastically improve memory consumption

and computational efficiency when working with sparse data such as 3D volumes

(Figure 1.1). We show the improvements of our algorithm by performing Single

View 3D Reconstruction on multiple categories of the ShapeNet [39] dataset and

compare our method against the state of the art system of the time. In Chapter 5, we

leverage the advances in deep generative modelling and self-supervised learning

to perform single view 3D point cloud reconstruction. We first train a model to

”hallucinate” novel view points of a given object using a Generative Adversarial

Network [107], then we train a self-supervised depth estimator [94,101,103,339] to

estimate partial 3D point clouds for each of the novel view points. This allowed us

to reconstruct 3D textured point clouds without any 3D training data (Figure 1.2),

alleviating the need for costly manual data collection. In Chapter 6, we focus on

improving the Self-Supervised depth estimation techniques used in Chapter 5

by changing the internal representation of depth used by the model to a discrete

disparity volume and by incorporating a self-attention mechanism allowing the

network to model longer range relationships between pixels (Figure 1.3). Finally,

Chapter 7 discusses the overall conclusions and suggested directions for future

research.
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CHAPTER 2
Literature Review

This chapter discusses the related background and relevant papers to clarify the

context of this thesis. The first section covers a variety of techniques that have

traditionally been used for 3D reconstruction. Concretely, it contains background

information on methods for stereo matching in binocular imagery [323], monocu-

lar 3D reconstruction using Shape-from-X techniques [135, 272, 323, 358], the use

of Active Range-finding sensors [323], simultaneous 3D reconstruction and pose

estimation with Structure from Motion [331], and model-based reconstruction

using 3D shape priors [323].

Many of the traditional 3D reconstruction algorithms rely on the use of hand-

crafted feature descriptors [18,61,224] that were designed to allow the matching of

a sparse set of image regions captured from different viewpoints. Given that these

features are hand-designed, they cannot provide any optimality guarantee for the

3D reconstruction problem. This issue has always been the main motivation for

the development of pure machine learning methods that not only learn how to

reconstruct 3D scenes from 2D images, but also learn optimal image features for a

given problem. Therefore, recent years have seen a resurgence of representation

learning techniques based on Artificial Neural Networks (ANNs) [124, 236, 295]

in an field known as deep learning [197]. The second section of this chapter

covers representation learning with deep learning, discussing the fundamentals

of Convolutional Neural Networks (CNNs) [90, 198] and deep generative mod-

els [106, 107, 176].

9
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The final section discusses the applicability of incorporating traditional geometric

Computer Vision techniques with the representational learning power of deep

learning [106, 197]. Specifically, this section covers how shape priors can be learnt

using deep learning for model-based reconstruction [52, 98, 364], how depth can

be estimated from a single monocular image by casting it as a supervised learning

problem [73, 74], and how self-supervised learning can be used to reduce the bur-

den of capturing large amounts of depth and 3D training data [94,101,103,339,370].

2.1 3D Reconstruction

3D reconstruction is the process of recovering a 3D model of an object or a scene

given one or multiple images that were captured using either a passive or ac-

tive camera sensor (e.g LiDAR) [323]. Recovering 3D surfaces from images has

always been a challenging goal and is considered one of the fundamental prob-

lems in Computer Vision [323]. Classically, binocular vision was used to obtain

3D information by using the triangulation of points between two synchronized

cameras [119]. This triangulation often results in a depth measurement for each

pixel, which is used to build a depth map or depth image. Recovering 3D surfaces

from monocular images is considerably more difficult than from binocular images,

as monocular 3D reconstruction relies on using one or more unsynchronized im-

ages captured from the same passive camera sensor. In practice, many different

monocular cues can be used to extract three dimensional information from images

[323], including texture, silhouettes, shading, focus and motion. Moreover, in

cases where we know prior information about the surfaces to be reconstructed, we

can rely on model-based reconstruction methods to simplify solving this inverse

problem [323]. An alternative to the exclusive reliance on passive cameras is to use

active range-finding sensors to facilitate the process of 3D reconstruction [256,323].

This section discusses in detail the various traditional methods for 3D recon-

struction using sets of binocular and monocular image(s). Furthermore, it covers

the use of active range-finding sensors for capturing depth information, along

with how this can be leveraged to create accurate 3D surfaces. Finally, we discuss
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how a priori information can be leveraged, in the form of shape priors, to improve

reconstruction results.

2.1.1 Stereo Matching

In traditional stereo vision, two synchronized passive cameras are used to capture

two different viewpoints of a scene. These two images are then used for estimating

the depth image or 3D surfaces of a scene by finding and triangulating pixel

correspondences between viewpoints [121, 323]. This technique is closely related

to Stereopsis [138], which humans and many animals use to perceive the 3D world,

through binocular disparity (i.e., the difference in appearance between our left and

right eyes). In Computer Vision, the task of stereo matching has been one of the

most widely researched topics and is considered one of the fundamental problems

in the field [323]. While the basic physics and geometry of stereo vision is well un-

derstood [121], automatically measuring the disparity using pixel correspondences

is a difficult task. In the simplest case, finding stereo correspondences requires a

computationally expensive process which exhaustively searches for and matches

local feature descriptors between the image pairs. Moreover, traditional feature

descriptors require large areas of distinguishable textural detail to accurately find

correspondences, while areas with heavily repeated texture (e.g. painted walls,

or carpeted floors) are often difficult to match correctly, resulting in sparse or

inaccurate 3D reconstructions. Regardless, stereo vision has been heavily applied

in many commercial systems due to its simplicity and cost effectiveness.

2.1.2 Multi View Stereo and Structure from Motion

While it is possible to match stereo correspondences to obtain accurate depth infor-

mation, this is often insufficient for capturing full 3D shapes due to large occluded

regions and limited stereo baseline, resulting in only partial 3D reconstruction.

Multi-View Stereo (MVS) extends the idea of matching stereo correspondences, by

solving the problem of reconstructing a 3D shape given an arbitrary number of

images with known camera locations [121, 323]. Often, MVS setups are employed

to capture full 3D surfaces for use in the entertainment industry, to create accurate

3D assets for VideoFX (VFX) and video games [306]. MVS relies on capturing
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synchronized images from multiple cameras at known camera locations. However,

in practice, photographing multiple synchronized views needs careful calibration

of multiple cameras that often require expensive hardware.

Structure from Motion (SfM) improves upon Multi-View Stereo by relaxing the

constraint of requiring known synchronised view points [323]. Instead, SfM tech-

niques jointly estimate the 3D geometry of a scene and the 3D motion of a camera

given a sequence of images. To achieve this goal, features are first detected in each

of the images in the sequence, and then these features are matched in other images

and further refined using Random Sample Consensus (RANSAC) [85]. Then, non-

linear least squares is used to solve for the camera matrix for each image. Using

the estimated camera matrix and feature correspondences, the same triangulation

process that is employed in MVS can be applied to recover the 3D surface. SfM

has been used to perform city scale reconstructions using large heterogeneous sets

of images captured by the general public [7].

2.1.3 Shape-From-X

Binocular disparity is not the only visual cue used to perceive depth. It is thought

that humans and animals utilise a range of different monocular cues in the absence

of binocular vision to perceive the 3D world. While motion parallax [82], Depth

from motion [146] and the relative size of objects are all strong cues for binocular

vision, image shading [135,136], texture [358] and focus [272] have all been studied

to reconstruct 3D surfaces from monocular images. The study of how these cues

are used in Computer Vision is commonly referred to as Shape-from-X [323].

The task of recovering the 3D shape of a surface from variations in pixel intensities

due to the illumination of the surface, is known as shape from shading [135] and is

one of the earliest examples of single-view 3D reconstruction. By making assump-

tions about the material properties of the surface and the type of light source being

applied, it is possible to invert the rendering equation and recover the surface

normals and depth for each pixel in the image [323]. To recover the 3D model,

most shape from shading algorithms make assumptions regarding the uniformity

of the albedo and reflectance properties of the surface being reconstructed [323].
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Furthermore, the direction of the illumination is assumed to be known a priori

or can be calculated ahead of time [323]. In practice, these assumptions are ex-

tremely constraining and limit the use of shape from shading techniques in real

world applications. Photometric stereo is one way to improve the reliability of

shape from shading, where multiple light sources are selectively turned on and off

creating multiple reflectance maps, which can be used to reconstruct surfaces with

an unknown albedo [323]. However, this is still limited to environments, where

the illumination can be carefully controlled.

Shape from texture relies on the fore-shorting of regular textural patterns to es-

timate information about a 3D surface [323]. The main processes used in shape from

texture can be distilled into two main phases. First, the distortion of the texture is

measured and then these measurements are used to recover the 3D coordinates of

the surface [323]. While it is possible to extract some 3D information from textural

details, many regions of real world images are texture-less or have low frequency

detail, limiting the applicability of this technique.

An interesting observation that can be explored in Shape-from-X methods is that,

as a surface moves away from the focal plane of the camera sensor, the associated

pixels in the image will become more blurred (i.e., out of focus). Shape from focus

is the method of extracting depth or a 3D surface by exploiting the blurring that

occurs in images as the focal distance changes [80, 323]. One of the challenges

of shape from focus is that the blurring increases in both directions moving away

from the focal plane [80, 323]. Therefore, multiple images need to be captured at

different focal lengths to accurately recover the surface. Furthermore, it is assumed

that each image is capturing at extremely small exposure time to limit the amount

of motion blur between shots.

2.1.4 Shape Representations

Up until now this review has not covered the exact representations that are used

when working with 3D shapes. There are many ways to represent a 3D surface and

they can mainly be categorised into three major groups; explicit Surfaces represen-

tations such as polygonal meshes and splines [323], point based representations
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in the form of point clouds [323] and volumetric representations such as binary

voxel grids or signed distance fields [323]. Surface representations are one of the

most readily available sources of 3D data due to their applications in Computer

Graphics and Computer Aided Design. Polygonal meshes (Figure 2.1), which

are one of the most common forms of surface representation, store 3D surfaces

as a collection of vertices (3D points), faces and edges, where each face consists

of triangles, quadrilaterals or other convex polygons to create a 3D graph [323].

These representations enable the creation of highly detailed models, as well as

special operations, like interpolation, subdivision and non-rigid transformations

(animation) [323]. However, one of the downsides of meshes is that the topology

of the 3D graph must be fixed and known ahead of time and, therefore, this repre-

sentation can be challenging to work when performing 3D reconstruction.

Figure 2.1: Rendering of a 3D car mesh from the ShapeNet [39] dataset. Left:

Smooth shaded with ambient occlusion Right: Wireframe rendering showing the

polygonal mesh structure.

Point clouds are represented as an un-ordered set of 3D coordinates where each

point corresponds to a sample along a 3D surface [323] (Figure 2.2). Unlike surface

meshes, we are only storing the 3D points and therefore do not need to know the

topology of the graph [323]. Often, when working with large collections of 3D

point clouds, it is essential to down-sample the set to a fixed number of points and

then register correspondences between instances [323].
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Figure 2.2: Rendering of a 3D car point cloud, from the ShapeNet [39] dataset.

3D volumes are an alternative way of representing 3D surfaces as a fixed size and

uniform grid (Figure 2.3). These grids are either stored as a binary occupancy

grid, where cell values represent voxel occupancy or as a signed distance field,

where voxels represent distances to the zero level set that represents the surface

boundary [323].

Figure 2.3: Rendering of a 3D car from the ShapeNet [39] dataset voxelized at 323

(left), 643 (middle) and 1283 (right).
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2.1.5 Active Rangefinding Sensors

While passive cameras offer one means of recovering 3D surfaces, reconstruction

techniques often rely on the accurate detection and matching of feature descriptors

from images. However, hand-crafted feature descriptors do not work well in

areas of low frequency textural detail or of regions of repetitive texture, limiting

the accuracy of correspondence-based reconstruction systems. Another possible

approach to 3D reconstruction is to modify the camera hardware to actively sense

the 3D world. Unlike stereo cameras, which have limited precision depending on

the camera baseline, active sensors project light into the environment to measure

3D depth images. These active range-finding sensors are usually split into two

categories. The first category is represented by structured light scanners, which

recover 3D depth information by measuring the deformation of a known illumina-

tion pattern (uniform grid or horizontal bar) that is projected into the environment

by the sensor [323]. It is often desirable to jointly recover RGB textural detail along-

side 3D depth information. Therefore, the illumination pattern is often projected

using an invisible wavelength such as to not interfere with any accompanying pas-

sive camera sensors. Commercially available structured light sensors, such as the

Microsoft Kinect (Figure 2.4), have lead to an explosion in applications that utilise

active range finding for 3D reconstruction [256]. The second category of active

range-finding sensors are time-of-flight cameras, which, instead of measuring the

deformation of a known pattern, recover depth by measuring the round trip time

of photons projected from a laser or LED. Light Detection and Ranging (LiDAR) is

one of the most common examples of a time-of-flight camera [323]. Many robotic

systems, including autonomous vehicles, utilise LiDAR as a key component for

localisation and mapping, which is known as Simultaneous Localisation and Map-

ping (SLAM) [352].

Active range-finding sensors usually only recover partial 3D shapes in the form

of depth images, but full 3D surfaces can also be estimated by employing either

multiple cameras or sequences of images captured using these devices. Kinect-

Fusion [256], is a technique for reconstructing 3D surfaces using an active sensor

such as the Microsoft Kinect. The system allows users to create detailed 3D recon-
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structions of indoor environments under varying lighting conditions, using only

the depth data acquired with the sensor. Furthermore, Newcombe et al. [256] show

that through using a GPU and Truncated Signed Distance Field representation, it

is possible to achieve real-time 3D reconstruction from an active sensor.

Figure 2.4: Example of RGB image (Left) and depth map (right) captured from

a Microsoft Kinect. Purple box highlights degenerate behaviour with reflective

surfaces. Images taken from the NYUv2 dataset [254]

While active range-finding cameras are capable of capturing detailed and ac-

curate 3D reconstructions, they have several limitations. Strong background light

sources such as the sun or reflective surfaces, may interfere with the light being

projected from the camera resulting in incorrect or missing estimates (Figure 2.4).

Further interference can also be accrued from other active sensors projecting into

the environment on the same wavelength. Weather effects, such as rain or fog, can

cause photons to scatter and reflect earlier than anticipated, creating unwanted

sensor noise. As a result, many robotic platforms may rely on fusing observations

from multiple sensors for localisation, 3D mapping (reconstruction) or detection

tasks [392].
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2.1.6 Model-based Reconstruction

When we have some prior knowledge about the kinds of objects or scenes that

we are trying to reconstruct, it is possible to use model-based reconstruction tech-

niques. Often, model-based reconstruction methods use low dimensional latent

representations of 3D shapes that can be used for downstream tasks. For example,

Dame et al. [62] introduce a method for in-painting occluded regions of a 3D

surface recovered using Structure from Motion/SLAM techniques. First, objects of

interest are detected and localised in 3D. Sparse 3D points, that are detected in the

initial reconstruction, are then replaced using generated 3D shapes sampled from

a learnt latent space. These low dimensional latent spaces are commonly referred

to as 3D shape priors. Many methods aim to encapsulate an entire shape category

(i.e Human, Car, Horse, Chair) for sampling novel examples [11, 363]. However,

generating new shapes with varied real world input is a challenging problem for

reconstruction. These approaches are typically limited by the shape representation

and non-rigid transformations between training samples [334]. For example, sur-

face mesh representations typically require exact point correspondences between

samples in the dataset for training the latent space model [334].

One of the main challenges when dealing with 3D shapes is the high-dimensionality

of the representation. Due to this, many methods rely on a reduced dimensionality

version of the desired shape representation. Commonly, a generative model is

then learnt on in this compressed space, to allow for sampling intra- or inter-class

variations. Allen et al. [11] propose a method for reconstructing partial 3D human

meshes from 3D laser scan data. Using a collection of 3D meshes previously

scanned and reconstructed, the authors [11] propose to use Principal Component

Analysis (PCA) to learn the variations in the visual object of interest. A Gaus-

sian distribution is then formed from the variance terms of the PCA and used

to sample and reconstruct new unseen meshes. Unfortunately, the PCA shape

space representation is only useful when there is a one to one correspondence

between the vertices in the mesh and performs poorly when there are non-rigid

transformations.
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Another challenge when dealing with 3D shapes is matching the observed surface

to the estimated shape. Commonly, re-projection losses are used in a optimisation

process to find consistent 3D shapes [112,277]. However, to accurately project a

3D shape and match it with the underlying observation, an accurate 3D pose is

required. Therefore, 3D shape estimation/sampling is often combined with the op-

timisation for the underlying 3D pose. Prisacariu et al. [277] present a method for

simultaneously performing segmentation, pose estimation and 3D reconstruction

using 3D shape priors. Unlike Allen et al. [11], they specifically limit their method

to single rigid shape categories (e.g., cars). Furthermore, rather than using PCA

on 3D surface meshes, they propose to use a truncated Discrete Cosine Transform

(DCT) [169] representation of 3D Signed Distance Fields. To create their shape

space they train a Gaussian Process-Latent Variable Model (GP-LVM) [194] on the

truncated DCT coefficients to allow for sampling intra-class variations. To recover

the underlying 3D shape and pose, a reprojection loss is minimised by comparing

the ground truth object segmentation and the projection of the estimated 3D shape.

The main benefit of the compressed DCT shape space is that it allows for efficiently

representing high resolution volumes with significantly less memory usage.

2.2 Learning Representations with Deep Learning

Traditional Computer Vision techniques rely on the utilisation of hand-crafted

feature descriptors [18,61,224], which can be applied to tasks such as classification,

detection, segmentation, 3D reconstruction, localisation and many others. These

methods encode an image or image patch into a fixed length vector representation,

which aims to capture ”low-level” information about the image (e.g., object bound-

aries and edges) that can then be used for downstream tasks. However, these

feature extractors fail to capture higher level semantic and contextual information.

Furthermore, the development of these feature extractors is time consuming and

often task specific, limiting the generalisability of the approach.

Unlike traditional feature descriptors, deep learning aims to learn complex and

hierarchical feature representations that can be used for a vast number of down-

stream tasks in a wide variety of fields [106]. Typically, deep learning models are



20 Chapter 2. Literature Review

constructed using different variants of Artificial Neural Networks [124, 236, 295],

which are optimised in an end-to-end fashion using gradient descent. In Com-

puter Vision, Convolutional Neural Networks (CNN) are used to exploit the

spatial structure of images to drastically improve computational efficiency and

learn translation invariant feature representations. However, deep learning poses

its own set of unique challenges. For example, deep learning models require

datasets orders of magnitude larger than previous Machine Learning and Com-

puter Vision approaches, as well as requiring immense amounts of computational

resources. A combination of the availability of large volumes of data, as well as

the computational performance of General Purpose Graphics Processing Units

(GPGPUs), has allowed researchers to address these limitations.

In 2012, Krizhevsky et al. [183] showed that it was possible to learn features

and classify images with deep Convolutional Neural Networks, outperforming

traditional feature extractors and classifiers on the ImageNet dataset [67]. More

recently, deep learning in Computer Vision has become ubiquitous, being applied

with great success in image/video classification, image segmentation, object detec-

tion and many other tasks. The key to the success of deep learning lies in the way

the models learn complex feature representations, by hierarchically combining

simple low level features, which are learnt directly from a large dataset of exemplar

image samples. Moreover, it has become a general framework for representation

learning, which has allowed researchers to combine modules and share techniques

between sub-fields, leading to a renaissance in all areas of Artificial Intelligence.

Of particular interest to this thesis, deep learning offers a more generalisable

and efficient means for single view 3D reconstruction, as it can automatically learn

to use multiple monocular cues simultaneously. However, issues with computa-

tional efficiency and data scarcity pose significant hurdles to the adoption of these

techniques in real world 3D reconstruction pipelines.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialised type of Artificial Neural

Network (ANN) [124, 236, 295] that is designed to process signals with a grid-like
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topology, such as 2D images or 3D volumes. When dealing with high-dimensional

input data it becomes impractical to use fully connected layers, as layer-wise

interactions are computed by a multiplication between a matrix of parameters

and a matrix of input values. This results in increasingly large memory and

computational requirements as the dimensionality of the input data increases. In

contrast, by exploiting the spatial structure of the input data, Convolutional Neu-

ral Networks can reduce the number of parameters needed for learning feature

representations, thereby reducing the memory and computational requirements.

This is achieved by replacing the general matrix multiplication, as used in standard

Artificial Neural Networks, with a convolution operation with a kernel size smaller

than the input data dimensions. This results in sparse connectivity between layers

in the network. As each kernel in the convolutional layer is shared for each posi-

tion in the signal, the number of parameters can be reduced further, drastically

improving performance when compared with the dense matrix multiplication

employed by fully connected layers of the ANNs.

The parameter sharing in convolutional layers gives rise to a property called

equivariance to translation [106]. Put simply, if a function is equivariant, the

output changes in equal proportion to the input of the function. This is a useful

property, as feature representations will translate proportionally to the amount

of translation of an object in an image. Convolutional layers themselves are not

invariant to translations, rotations and scales. When this property is desired for a

specific task (e.g., image classification), pooling layers [106] are often incorporated

into the network. Pooling layers produce summary statistics at intermediate layers

of a network, allowing the representation to become invariant to small translations

of the input. Due to their sparse connectivity, parameter sharing and equivariant

representation learning abilities, convolutional layers have become a key building

block in CNNs developed to solve Computer Vision problems.

2.2.2 Deep Unsupervised Learning

While many machine learning problems can be solved using the standard super-

vised learning paradigm, they require large amounts of labelled data to train,

which can be expensive and time consuming to obtain. In 3D reconstruction prob-
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lems, this is further exacerbated, as collecting ground truth data requires many

hours of 3D scanning and/or human artistry for each object or scene. One of the

major goals of researchers in Machine Learning has been to create models that

are capable of learning generic feature representations from data in a label-free

manner (i.e., unsupervised learning). This subsection will discuss the two main

approaches for achieving this goal: Generative models and self-supervised learn-

ing methods.

Unlike supervised methods, which aim to learn a mapping from an input data

point to an output label, generative models aim to model the data distribution

directly. There are many reasons for using a generative model, such as the need to

create models that can compress the data, to learn complex representations without

any labels, or to generate novel data points. Boltzmann Machines (1985) [5, 316]

were one of the first neural network based generative modelling approaches that

were able to learn probability distributions over binary input vectors. Following

on from Boltzmann Machines, came the development of Deep Belief Networks

(DBNs) [129] which were one of the first non-convolutional deep learning models

and helped to ignite the ”deep learning renaissance” [106].

More recently, Generative Adversarial Network (GAN) [107] and Variational

Autoencoder (VAE) [176] have proven to be successful in modelling various types

of data (e.g., images [187, 280], text [81], and video [54]). GANs are a category

of generative deep learning model, which utilises two competing networks, a

generator and a discriminator. The generator and discriminator form a game theo-

retic competition, where the generator network aims to synthesise ”counterfeit”

samples from the data distribution and the discriminator attempts to distinguish

between the real and counterfeit samples. The two models are then updated

iteratively until they reach convergence or some predefined stopping criteria.

GANs have been applied to a wide variety of problems, such as synthesising

photo-realistic images [28, 160, 280], in-painting of noisy images [375] and ], up-

scaling of low-resolution images [200]. Moreover, they have also been applied to

domains outside of images. For example, GANs have been used to generate 3D

volumes [361], synthesise realistic voices [23], and design new molecules for use
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in pharmaceuticals [41].

On the other hand, VAEs are a type of directed generative model that is trained to

maximise the variational lower bound associated with the training data. Unlike

GANs, which are designed to synthesise high fidelity samples, VAEs are explicitly

designed to create good latent representations for downstream tasks. This ability

for learning strong latent representations has lead to a range of different appli-

cations, including semi-supervised learning [175], reinforcement learning [250]

and many others. Of special relevance to this thesis, Kulkarni et al. [187] propose

to learn an interpretable disentangled representation of 3D scenes from images

using a VAE. By modifying this disentangled representation, the authors can re-

synthesise input images with altered scene attributes, such as rotating objects or

altering light positioning.

Alternatively, self-supervised learning has emerged as a way of training models

without labels, where some aspects of the data provide the supervisory signal.

Self-supervised learning is performed by defining a ”proxy loss function” that

forces the model to learn semantic representations for the given dataset in an

unsupervised manner. These representations can either be used verbatim or fine-

tuned on another, much smaller labelled dataset, thereby reducing the amount of

labelled data required. One form of self-supervised learning relies on withholding

part of the data and tasking the model to predict the missing component. De-

noising autoencoders [340] and split-brain auto-encoders [382] purposely corrupt

the input image and assign the model to reconstruct the original image. Noroozi

and Favaro [259] assign the network to solve a task similar to a Jig-Saw puzzle,

resulting in classification performance similar to a fully supervised model. Several

papers [193, 341, 381] have shown that useful representations arise when training

a model to ”colourise” images, resulting in features that can be used for object

tracking and video segmentation [341].

Unlike image based proxy loss functions that aim to complete missing chan-

nels or regions, video based self-supervised learning utilises the strong correlation

between temporally adjacent frames to provide a training signal. The temporal
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nature of videos allows for models to learn strong semantic representations by

exploiting several physical cues such as gravity, friction and biomechanics [354].

Misra et al. [245] define a loss function to train a model by predicting the correct

temporal order of a video sequence, comparing correct video sequences and shuf-

fled sequences. Alternatively, Wei et al. [354] propose to make use of the ”arrow of

time” and learn image features by predicting whether or not a video is playing

in reverse. Self-supervised methods that leverage the rich source of information

provided by video, show promise for allowing researchers to train generalisable

models with little or no labelled data.

Due to the multi-view nature of video, it has long been used in Computer Vi-

sion for tasks such as 3D reconstruction. Unlike, the proxy loss functions defined

to predict missing components in images of video, geometric self-supervised loss

functions exploit the geometric relationships found in these data sources. These

geometric loss functions are used to train models without ground truth labels to

address some of the fundamental problems in Computer Vision, such as estimating

depth [94, 101], performing 3D volumetric reconstruction [329, 370] and predicting

optical flow from video [217]. Details on how self-supervised learning can be

applied to learn geometric representations are discussed in Section 2.3.3

2.3 Deep Learning and Geometry

Geometry has been used throughout the field of Computer Vision and forms the

foundation of many traditional methods. However, many of these geometric

algorithms require first detecting local image features using hand-crafted feature

descriptors, leading to reduced generalisation of these methods. Alternatively,

deep learning provides a modular framework capable of learning robust features

that are applicable to many problems. Furthermore, many of the existing tradi-

tional techniques can be updated to use deep learning feature representations in

place of the hand-crafted feature descriptors. This section discusses the progress

that has been made on merging traditional geometric computer vision techniques

with the representational learning power of deep learning models.
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2.3.1 Shape Priors in the Deep Learning Era

One of the challenges of performing 3D reconstruction from single view images is

that only partial surfaces can be observed, creating gaps in the recovered surface

for occluded regions. To address this, traditional methods leverage 3D shape

priors to infill these missing regions [387]. This process involves first learning a

latent space of 3D shapes, known as a shape prior [277]. Often, a shape prior is

created for each individual category of object (e.g. cars, boats, chairs) to learn intra-

class variations and requires correctly classifying the object under observation.

A shape is then sampled from the corresponding shape prior to incorporate any

distinguishing instance level details. To accurately match the sampled 3D shape

with the observed image, an optimisation process is often employed. However,

these methods typically rely on traditional feature descriptors [277, 336] which

are difficult to develop and often fail to generalise to real world situations. By

replacing traditional models and feature descriptors with deep learning, we can

learn representations that are better suited for 3D reconstruction with the joint

modelling of images and shapes. This results in more accurate reconstructions

and a greatly simplified reconstruction process.

Wu et al. [363] were the first to present a method for 3D reconstruction using

deep learning, known as 3D-ShapeNets. Through training a type of generative

model called a convolutional deep belief network [129], they were able to recon-

struct partial 3D volumes unprojected from a depth map captured from a Microsoft

Kinect. Moreover, they use the DBN to show state of the art performance on 3D

classification, outperforming hand-crafted volumetric feature descriptors such as

the Spherical Harmonic shape descriptor [165] and the Light Field descriptor [40].

Although this work was a large step forward in applying deep learning to 3D

reconstruction, the DBN architecture requires a complex training process, leading

to sub-optimal results. Additionally, the binary volumetric grid representation

used by the authors is expensive in terms of computation and memory usage,

limiting the reconstruction to a low-resolution of 303 voxels. Finally, the method

requires capturing a partial 3D volume from an active range sensor, which is often

costly or unavailable.
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2D Encoder

3D Decoder

2D Encoder

3D Recurrent 
Connection

Input1 

InputN-1 
Reconstruction 
with N-1 Views

Reconstruction 
with Single View

3D GRU / LSTM

Figure 2.5: Choy et al. [52] present 3D-R2N2 which uses a 3D-recurrent module

to iteratively perform multi-view volumetric reconstruction using deep learning.

Input images take from the ShapeNet dataset [39])

To address the limitations of the 3D-ShapeNets architecture, Choy et al. [52]

presented 3D-R2N2, a method for volumetric reconstruction from single and

multi-view RGB images. Through leveraging newer network architectures and

training methodologies, they showed one of the earliest examples of 3D recon-

struction directly from images using convolutional neural networks. First, their

encoder sub-network converts the image(s) into a feature representation that

contains all of the necessary semantic information for reconstruction. Then, the

feature representation is transformed into a 3D volume using a series of 3D de-

convolution layers in the decoder sub-network. This allows the model to create

a mapping between input images and 3D volumes directly, without requiring

jointly training a classifier or a complicated sampling of 3D shapes from a separate

shape prior model. As the authors aimed to develop both a single and multi-view

reconstruction model, they introduced a novel 3D recurrent module, between the

encoder and decoder stages, to fuse the feature representations of multiple images

(Figure 2.5). More specifically, a 3D Gated Recurrent Unit (GRU) [48] or 3D Long

Short Term Memory (LSTM) [132] is trained to fuse multiple view points in the

latent representation rather than the traditional method of performing volumetric

fusion (e.g. KinectFusion [256]) as a post-processing step. They showed that this

allows the model to leverage semantic information from training time, improving
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the predictions even when there is only a single view available during inference.

While the results of this work are impressive, similarly to 3D-ShapeNets [363],

the simple binary volumetric representation results in large computational and

memory inefficiencies, limiting the method to coarse reconstructions of 323 voxels.

One of the aims of this thesis is to address these inefficiencies when working

with volumetric representations in the deep learning framework. Furthermore,

3D-ShapeNets and 3D-R2N2 both require large amounts of labelled training data

in the form of images to 3D volumes, which can be costly to acquire, often re-

quiring many hours of human artistry per object. Therefore, this thesis also aims

to develop self-supervised methods for training single view 3D reconstruction

systems using deep learning, with no ground truth 3D shapes.

2.3.2 Learning to Estimate Depth

With the commercial introduction of the Microsoft Kinect and other similar de-

vices, the focus on 3D reconstruction has shifted towards the use of depth sensing

technology to improve reconstruction results [255, 256]. While these active range

finding based techniques can result in excellent reconstructions, these depth sens-

ing technologies have limits. For example, devices such as Kinect do not perform

well in outdoor environments due to Infra-red interference or limited range. Ad-

ditionally, in many real world applications, a full 3D surface is not required for

scene understanding and many existing cameras do not include depth sensors.

To address this issue, there has been significant research into estimating depth

directly from monocular RGB images [73, 74, 94, 101, 304].

Coarse 
Prediction 
Network

Input Image

Fine Detail 
Refinement 

Network
Final Refined DepthsCoarse Depth 

Estimate

Figure 2.6: Eigen et al. [74] propose to use a coarse to fine refinement network

for estimating depth from monocular images. Image from NYUv2 Dataset test

set [254].
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Eigen et al. [74], proposed the first deep learning based method for estimating

depth from RGB images, showing state of the art results and excellent generalisa-

tion when compared with traditional methods [304] (Figure 2.6). The authors train

two CNN stacks, one for global coarse grained depth and a second for refining local

depth fine grained details, and supervise their model using ground truth RGB-D

images captured from a Microsoft Kinect. While these results were excellent at

the time of publication, the network architecture in [74] was initially designed to

be memory efficient by training the network stacks in two separate stages, and is

now considered sub-optimal. Newer papers have instead found that architectures

similar to those used in semantic segmentation give significantly improved results

with both supervised [88] and self-supervised loss functions [94, 101, 103].

2.3.3 Self-Supervised Learning Meets Geometry

While it is possible to train neural networks to estimate depth from monoc-

ular images using training data captured from active range-finding sensors, a

persistent challenge for deploying these solutions in the real world is a lack of

large and diverse datasets. In practice, capturing these datasets can prove costly.

To overcome this, recent works have instead employed self-supervision to learn

to estimate depth, reducing the burden of capturing ground truth image sets.

Unlike the self-supervised methods discussed earlier in the chapter, geometry

based self-supervised learning does not require any fine-tuning as the geometric

losses force the model to implicitly learn the task of interest.

By using a loss function based on the photometric image reprojection of syn-

chronized stereo pairs, Garg et al. [94] demonstrated that it is possible to train

a model to learn to predict disparity (and consequently depth) from monocular

images without any ground truth depth images. The photometric reprojection loss

is computed by warping the right image of the stereo pair (with a differentiable

bilinear sampler [147]) into the left image using the estimated depth. A pixel-wise

reconstruction loss can then be computed between the warped image and left im-

age. To improve upon this approach, Godard et al. [101] modified the photometric
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reprojection loss to penalise depth inconsistencies bidirectionally between both left

to right and right to left image pairs.

While these methods were capable of estimating depth for monocular images, they

still required synchronized stereo training data, limiting the practicality of cap-

turing large and diverse datasets. This motivated the development of techniques

that perform self-supervision between frames of a monocular video. However,

utilising monocular video introduced challenges that were not present when per-

forming stereo self-supervision. Unlike for the stereo case, a monocular video

based photometric reprojection loss also requires accurate relative poses between

the frames being warped. To address this issue, Zhou et al. [388] proposed to

jointly learn to estimate depth and relative pose via the photometric reprojection

loss. This approach assumes that the only motion present is camera motion and

the scene under observation is static (i.e rigid), however, in practice this is rarely

the case and degenerate results emerged due to image sequences that violated this

assumption. To deal with this, Godard et al. [103] proposed to include a masking

term that ignores regions violating the rigidity assumption. The authors [103] also

improved upon these results by including a multi-scale estimation and enhanced

photometric reprojection loss function (Figure 2.7). While many improvements

have been made, monocular self-supervision for depth estimation is still inferior

to binocular self-supervised and fully supervised methods.

Figure 2.7: Monodepth 2 – Godard et al. [103] propose to modify the photomet-

ric reprojection error to improve handing of non-rigid motion when perform-

ing monocular self-supervised training of depth estimators. Image is modified

(cropped) from [185] and is licensed under the creative commons 2.0 CC BY 2.0

license.
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Self-supervision has also been applied to learn model-based 3D reconstructions.

Yan et al. [370] demonstrated the ability to reconstruct low resolution 3D volumes

of objects solely from sequences of image silhouettes. This is performed in a similar

manner to the self-supervised depth estimators, where the network first predicts

a 3D volume for the given input image and is then projected into a series of 2D

occupancy masks. Finally, a reprojection loss is computed against the ground

truth silhouettes. However, while object silhouettes are useful as a monocular

cue, complex shapes can be difficult to reconstruct accurately as these methods

are at best only able to recover the texture-less visual hull of the observed shape.

While techniques like self-supervision offer great promise in allowing researchers

to train models without any ground truth labels, more research is still required

to improve these techniques as they are not as accurate as their supervised coun-

terparts. In this thesis we aim to address several existing challenges when using

self-supervision for depth estimation and 3D object reconstruction.



CHAPTER 3
Methodology

This chapter discusses the methodology and definitions used in this thesis. Sec-

tion 3.1 describes the techniques used in Chapter 4. More specifically, it discusses

the Discrete Cosine Transform and how its application can be used to perform 3D

volumetric deep learning via our novel IDCT layer. Sec. 3.2 discusses the method-

ology applied in Chapter 5, including the fundamentals of how self-supervised

learning for monocular depth estimation and novel view synthesis can be applied

to perform unsupervised 3D point cloud reconstruction. Section 3.2 also includes

an overview of the Generative Adversarial Networks framework for novel view

synthesis and metrics used to quantify novel view synthesis and point cloud

quality. Finally, Section 3.3 defines the components and losses used to achieve

state of the art results on KITTI 2015 [95] in Chapter 6. These definitions include

2D Self-Attention, the Discrete Disparity Volume and the improved losses that are

used to improve monocular self-supervised depth estimation.

3.1 Efficient Volumetric Reconstruction with

Deep Learning

While there has been much success applying deep learning to images and text,

developing representation learning algorithms for 3D volumetric data poses many

challenges. Chiefly, memory and computational requirements are both increased

by an order of magnitude over the standard 2D convolutional neural networks

used for images. In Chapter 4, we propose to replace the standard 3D deconvolu-

31
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tional decoder, used by previous works, with a decoding layer based on the Inverse

Discrete Cosine Transform (IDCT). We apply our model, which utilises the IDCT

layer to perform single view 3D volumetric reconstruction on the ShapeNet [39]

and PASCAL VOC 3D+ [365] datasets. We show that our IDCT decoder is sig-

nificantly more computationally and memory efficient when compared with de-

convolutional decoders, with no loss of accuracy. Furthermore, the improved

efficiency allows for training models with an order of magnitude larger volumetric

resolution. This section will discuss in more detail the methodology used to create

and train a neural network with the Inverse Discrete Cosine layer.

3.1.1 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a linear transformation that expresses a

finite sequence of data points as the sum of cosine functions, at different frequen-

cies. DCT has found many applications in signal processing, Computer Vision

and data compression. In particular, DCT has enabled highly efficient encoding

algorithms for both lossless and lossy compression of audio, images and video.

The DCT-II algorithm is the most common variant of DCT, where the 1D fre-

quency domain discrete signal is defined for a 1D time domain discrete signal

fI(x), for x ∈ {0, ..., N − 1}, as:

CI(u) =

√
2
N

N−1

∑
x=0

Λ(u) fI(x) cos
[

π

N

(
x +

1
2

)
u
]

, (3.1)

where fI(x) is the input signal at a given index x, CI(u) is the output at coefficient

index u ∈ {0, · · · , N − 1}, and Λ(u) is used along with the scaling factor
√

2
N to

make the transformation and the resulting cosine basis functions orthogonal. In

(3.1), Λ(u) is defined as

Λ(u) =

{
1√
2
, if u = 0

1, otherwise
. (3.2)

A signal can be converted back to the time domain from the frequency domain

using the DCT-III algorithm. As DCT-III is the inverse of DCT-II, it is often called
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the Inverse DCT or simply IDCT. The IDCT converts the cosine basis functions

CI(u), back into the original signal fI(x) as:

fI(x) =

√
2
N

N−1

∑
u=0

Λ(x)CI(u) cos
[

π

N

(
u +

1
2

)
x
]

, (3.3)

where x ∈ {0, · · · , N − 1} and as defined in (3.2), Λ(k) is used along with the

scaling factor
√

2
N to make the transformation orthogonal.

3.1.2 Multi-Dimensional Discrete Cosine Transform

The DCT can be applied to a signal with an arbitrary number of dimensions.

The Multi-Dimensional DCT (MD-DCT) is achieved by applying the 1D DCT

independently across each dimension. Therefore, the DCT-II for a data source

x ∈ RN1×N2×N3 is given by:

CIII(u, v, w) =

√
2
N

N1−1

∑
x=0

N2−1

∑
y=0

N3−1

∑
z=0

fIII(x, y, z)× Λ(u)Λ(v)Λ(w)

{
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[
π

N1

(
x +

1
2

)
u
]

cos
[

π

N2

(
y +

1
2

)
v
]

cos
[

π

N3

(
z +

1
2

)
w
] }

,

(3.4)

where k1 ∈ {0, 1, 2, . . . , N1 − 1}, k2 ∈ {0, 1, 2, . . . , N2 − 1} and k3 ∈ {0, 1, 2, . . . , N3 −
1}. Similarly to the IDCT (DCT-III), the inverse MD-DCT is defined as:

fIII(x, y, z) =

√
2
N

N1−1

∑
u=0

N2−1

∑
v=0

N3−1

∑
w=0

CIII(u, v, w)× Λ(x)Λ(y)Λ(z){
cos
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π
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x
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[

π
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)
y
]

cos
[

π

N3

(
w +

1
2

)
z
] }

.

(3.5)

3.1.3 Matrix DCT

There exist many implementations of the DCT, which are often based on the Fast

Cosine Transform, a derivative of the Fast Fourier Transform [285]. However, to

integrate this into a neural network would require implementing efficient GPU

kernels for both the forward and backward passes of the model. Instead, we opt

to use the matrix formulation of the DCT and IDCT. Based on Eq. 3.3, the 1D-DCT
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coefficient column vector CI = (CI(0), CI(1), · · · , CI(N − 1))T can be computed

in matrix form as

CI = A1f, (3.6)

where f = ( f (0), f (1), · · · , f (N − 1))T is a column vector containing the discrete

signal to be encoded and A1 ∈ RN1×N1 is a cosine basis matrix with entries defined

by

a1(u, x) = Λ(u) cos
[

π

N

(
x +

1
2

)
u
]

, (3.7)

where u, x ∈ {0, ..., N1 − 1} – we also denote this matrix with A1 = (a1(u, x))N1×N1 ,

and use a similar representation for other matrices defined below. The IDCT is

defined in matrix form as

f = A1
−1CI. (3.8)

Similarly, the 2D coefficient matrix CII = (CII(u, v))N1×N2 for a 2D signal F =

( fII(x, y))N1×N2 , with A2 ∈ RN2×N2 is formulated as:

CII = A1FA2
T, (3.9)

where A2 = (a2(u, x)N2×N2) is the cosine basis matrix with entries defined by:

a2(v, y) = Λ(v) cos
[

π

N

(
y +

1
2

)
v
]

, (3.10)

where v, y ∈ {0, ..., N1 − 1} and F is the original 2D signal. The 2D IDCT can then

be written as:

F = A1
−1CII(AT

2 )
−1. (3.11)

However, as the DCT basis functions are orthonormal, this can be simplified as

F = A1
TCIIA2. (3.12)

Finally, the 3D-DCT can be composed of a succession of 2D-DCT and 1D-DCT

operations. Given a three-order tensor FIII = ( fIII(x, y, z))N1×N2×N3 containing

the 3D signal and the cosine basis matrices A1, A2 and A3 ∈ RN3×N3 , the 3D

coefficient matrix CIII = (CIII(u, v, w))N1×N2×N3 is mathematically represented

using an n-mode product [180] as

CIII = FIII ×1 A1 ×2 A2 ×3 A3 (3.13)
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where FIII ×1 A1 j×n2×n3 = ∑N1
n1=0 fIII(n1, n2, n3))a1(j, n1) for the first axis, and

similarly for the other terms in the n-mode product.

The entries for the third cosine basis matrix A3 = (a3(w, z)N3×N3) are defined

by

a3(w, z) = Λ(w) cos
[

π

N

(
z +

1
2

)
w
]

(3.14)

where w, z ∈ {0, ..., N1 − 1}. Similarly, the 3D-IDCT is computed as

FIII = CIII ×1 A1
−1 ×2 A2

−1 ×3 A3
−1 (3.15)

and since Ak(1 ≤ k ≤ 3) is orthonormal, this can be simplified as

FIII = CIII ×1 A1
T ×2 A2

T ×3 A3
T (3.16)

3.1.4 DCT Compression

The DCT coefficient matrix stores the low frequency/high energy information

towards the top left, while high frequency/low energy signals are stored towards

the bottom right. For sparse signals, such as 3D volumes or 2D images, much

of the the high frequency information does not impact the perceptual quality of

a reconstructed signal. Therefore, given a DCT coefficient matrix CII ∈ RN1×N2

for a 2D signal F = ( fII(x, y))N1×N2 , we can compress the signal by selecting a

sub-matrix corresponding to the top K coefficients, in each dimension, where K is

a hyper-parameter selected ahead of time. The compressed signal ĈII ∈ RK×K is

computed as:

ĈII = CII(1, 2, · · · , K; 1, 2, · · · , K), (3.17)

where K < N1 and K < N2. This can be trivially extended to the volumetric case

by selecting the sub-tensor that corresponds to the low-frequency coefficients to

be preserved.

To decompress the signal, the compressed signal can be zero-padded back to

the original dimension size, forming C̄II ∈ RN×N, before performing the IDCT
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function. For example,

C̄II =



ĈII(1, 1) · · · ĈII(1, K) 0 · · · 0
... . . . ... 0 . . . 0

ĈII(K, 1) · · · ĈII(K, K) 0 · · · 0

0 · · · 0 0 · · · 0
... . . . ... 0 . . . 0

0 · · · 0 0 · · · 0


. (3.18)

The operation in Eq. 3.18 can be represented as a function defined by:

C̄II = dN(ĈII), (3.19)

where dN : RK×K ↦→ RN×N.

3.1.5 Inverse DCT Layer

To integrate IDCT with a neural network, the deconvolutional module from the

encoder-decoder architecture defined by [53] is replaced with a standard fully

connected layer. Rather than predicting a 3D volume directly, the output size of

this layer is set to the number of coefficients H = K3 that will be used to reconstruct

the volume. The compressed volume is then decompressed using by zero-padding

the volume (Eq. 3.18) and performing the 3D-IDCT via a series of tensor-matrix

multiplications, as defined by Eq. 3.16. The IDCT(.) function is then formulated

as:

IDCT(h, N) = dN(vec−1(h)) * ×1A1
T ×2 A2

T ×3 A3
T, (3.20)

where vec−1(.) is the inverse of the vectorisation function, reshaping the estimated

vectorised coefficients h ∈ RH into a three-order tensor, and A1,2,3 are the cosine

basis matrices defined in Eq. 3.7, 3.10, 3.14.

Instead of using the DCT and regressing directly for the coefficients, we opt to

use the IDCT as this allows us to compute the loss function in the spatial domain,

rather than the frequency domain. In practice, we use a standard Cross Entropy

loss function [106] which we found to result in higher quality reconstructions.

Moreover, this formulation opens up the application of these layers to a wider
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variety of problems. The predicted volume Vpr ∈ RN×N×N is then computed as

as:

Vpr = σ(IDCT(WTh + b, N)), (3.21)

where W is matrix containing the weights of the layer, h ∈ RH is the intermediate

representation from the encoder network, b ∈ RH is the bias vector, σ is the

Sigmoid activation function [106], N is the original dimension of the target binary

volume V, and IDCT(.) is the composition of zero-padding and 3D-IDCT as

defined by Eq. 3.20.

3.1.6 Supervised learning for single view 3D volumetric recon-

struction

The single view 3D volumetric reconstruction task consists of learning a func-

tion V = fθ f (I) that maps an image to a 3D volume using a dataset 𝒟 =

{I(n), Vgt(n)}|𝒟|
n=1 of ground truth images I : Ω → R3 and 3D volumes V : Ψ →

[0, 1] where Ω denotes the image lattice and Ψ denotes the volume lattice.

We then minimise a reconstruction loss function ℒrecon to learn the parameters

θ f of the model by comparing the predicted volume Vpr = f (I; θ f ) against the

ground truth volume Vgt with

θ*f = arg min
θ f

1
|𝒟|

|𝒟|

∑
n=1

ℒrecon(Vgt(n), f (I(n); θ f )). (3.22)

In Chapter 4, we apply sum of voxel Cross-Entropy loss function as used by

our baseline method [53] as our reconstruction loss ℒrecon(.), formulated as:

ℒrecon(Vgt, Vpr) = ∑
i,j,k

{V(i,j,k)
gt log(V(i,j,k)

pr ) + (1 − V(i,j,k)
gt log(1 − V(i,j,k)

pr )}, (3.23)

where V(i,j,k)
pr ∈ [0, 1] represents the predicted object occupancy probabilities for a

given voxel (i, j, k) and V(i,j,k)
gt ∈ {0, 1} denotes the label for voxel (i, j, k).
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3.1.7 Quantitatively Measuring Volumetric Reconstructions

Similarity to [53], to quantitatively measure the quality of our reconstructions, we

employ the volumetric intersection-over-union (IOU), defined by:

IoU =
∑i,j,k[I(V

(i,j,k)
pr > τ)I(V(i,j,k)

gt )]

∑i,j,k[I(V
(i,j,k)
pr > τ) + I(V(i,j,k)

gt )]
, (3.24)

where τ is the voxelization threshold and I(.) is the indicator function.

3.2 Novel View Prediction for Self-Supervised Point

Cloud Reconstruction

In Chapter 5, we present a framework for 3D point cloud reconstruction from

monocular images, which requires no ground truth 3D training data, reducing the

need for expensive manual data acquisition. We achieve this by leveraging self-

supervised learning techniques for depth estimation [94, 100] and deep generative

models [107] for novel view prediction [267]. By combining these two methods,

we show how it is possible to reconstruct high quality 3D textured point clouds

using only images for training. This section covers the methodology used to train

both self-supervised depth estimators and novel view prediction models.

3.2.1 Novel View Synthesis

Novel view synthesis is the task of generating or synthesising new unseen view

points of an object or scene. Typically, this takes the form of training a model Ib =

g(Ia; θg) to learn a mapping between an input image Ia and a new view of the scene

or object Ib, using a dataset of ground truth view points 𝒟 = {(Ia(n), Ib(n))}
|𝒟|
n=0.

The simplest way of achieving this is to train the model to minimise a simple

reconstruction style loss, such as a Mean Squared Error (MSE) or Mean Absolute

Error (MAE), as follows:

θ*g = arg min
θg

1
|𝒟|

|𝒟|

∑
n=1

ℒrecon(Ib(n), g(Ia(n); θg)). (3.25)
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In Chapter 5 we opt to use the MAE as our reconstruction term, defined as:

ℒrecon(Ib, g(Ia; θg)) = ‖Ib − g(Ia; θg)‖1. (3.26)

While simple reconstruction loss functions encourage the model to synthesise

images that are consistent with the original object or scene, they often result

in blurry images. As the quality of our 3D reconstructions is dependent on

not only the depth estimation model, but also the quality of the synthesised

images, we opt to train our novel view model using a generative adversarial loss

function [107, 267], to further improve visual fidelity, which will be discussed in

the following section.

3.2.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [107] have emerged as an effective

method for deep generative modelling, due to the high fidelity samples they

can produce. As discussed in Chapter 2, GAN training is formulated as a game

theoretic competition between a generator network g(.) and an adversary dis-

criminator d(.). The goal of GANs is to learn how to generate new samples from

an underlying latent distribution, represented by pdata(x), of the training data

𝒟 = {x(n)}|𝒟|
n=1. To achieve this, it learns a mapping from input noise samples

z ∼ pz(z) = 𝒩 (z; µ, Σ), generated from a normal distribution of mean µ and co-

variance Σ, to the input data points x. While the discriminator d(x) outputs a scalar

representing the probability that x came from the data distribution pdata(x) rather

than from the generator distribution pg(x). Put simply, the generator and discrim-

inator engage in a minimax game where, the generator attempts to synthesise fake

samples, while the discriminator tries to identify the forgeries. Mathematically,

this is defined as:

min
g

max
d

ℒgan(d, g), (3.27)

where ℒgan(d, g) = Ex∼pdata(x)[log(d(x))] + Ez∼pz(z)[log(1 − d(g(z)))]. While use-

ful for generating random images or 3D volumes, the unconditional GAN cannot

sample specific object categories or instances. However, the GAN framework

can be altered to become a conditional generative model pg(x|y) by adding a

conditioning vector y as input to both g(.) and d(.) [107, 244, 261]. The standard
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conditional GAN [244] (cGAN) is defined as follows:

min
g

max
d

ℒcgan(d, g), (3.28)

where ℒcgan(d, g) = Ex∼pdata(x|y)[log(d(x|y))] + Ez∼pz(z|y)[log(1 − d(g(z|y)))].

3.2.3 Novel View Synthesis with Conditional Generative

Adversarial Networks

As cGANs were initially developed to perform category level sampling of images,

they need to be modified to perform the instance level novel view synthesis that

we require. To achieve this several changes need to be made to the traditional

generator and discriminator network architectures. Firstly, the generator needs

to be modified to include an encoder network, for example, by using a network

architecture such as the UNet [293]. Secondly, the discriminator architecture needs

to be modified to be conditioned on images rather than class labels. This is realized

by simply concatenating the ground truth images channel-wise to the existing

image batches.

Empirically, we found that that the standard conditional adversarial loss [107]

(Eq. 3.28) was unstable, often leading to degenerate images due to mode collapse.

Alternatively, we found that the the least squares generative adversarial loss (LS-

GAN) [230] formulation, showed significantly more stable results during training.

In practice, the generator and discriminator are optimised in an alternating fashion,

requiring independent weight updates for each network. Therefore, the LSGAN

loss functions for the discriminator network d(.) is defined by:

ℒdis(g, d) =
1
2

E[(d(Ib)− 1)2] +
1
2

E[(d(g(Ia))
2], (3.29)

where Ia is the input image and Ib is the ground truth image(s) for each of the

novel viewpoints we wish to synthesise for the scene depicted Ia. The loss function

for the generator network g(.) is defined as:

ℒgen(g, d) = E[(d(g(Ia))− 1)2]. (3.30)
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Until recently, one of the major challenges with Generative Adversarial Networks

was generating high resolution images greater than 128x128. One of the proposed

solutions to this problem, was to use multiple discriminator networks at varying

image scales. This was was shown [141, 345] to improve the both local and global

consistency, resulting in higher fidelity images. As we wish to generating high

quality point clouds from the novel view images, we apply three discriminators at

three different scales, represented by dk(.) where k ∈ {1, 2, 3}. The multiple dis-

criminator loss, is now modified to optimise the sum of each of the discriminator

losses (Eq. 3.29) for each scale k, as in

ℒmsdis = ∑
k=1,2,3

ℒdis(g, dk). (3.31)

The multi-scale generator loss, is also adapted to use the sum of the generator

losses (Eq. 3.30) for each discriminator scale k.

ℒmsgen = ∑
k=1,2,3

ℒgen(g, dk), (3.32)

To further improve training stability and results we also apply an adversarial

feature matching loss [267, 345]. To compute the feature matching loss, feature

representations are extracted from discriminator at multiple feature scales, for

both the synthesised images and ground truth image batches. The L1 error is then

computed between matching sets of ground truth and synthesised feature map.

As we have multiple discriminators, our feature matching loss extracts multiple

feature maps from the different scales discriminators dk(.), as follows:

ℒ f eat(g, dk) =
T

∑
t=0

1
Nt

‖d(t)k (Iy)− d(t)k (g(Ix))‖1, (3.33)

where T represents the number of intermediate layers to extract feature maps. The

error between the feature maps is then weighted by the size of each feature map

Nt at each intermediate feature t. The multi-scale feature matching loss, using the

discriminators dk(.) as

ℒms f eat = ∑
k=1,2,3

ℒ f eat(g, dk). (3.34)
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Finally, to encourage consistent reconstructions, we incorporate a reconstruc-

tion loss (Eq. 3.26) to the cGAN loss. The final generator loss is then defined as

a weighted sum of the multi-scale generator loss (Eq. 3.32), multi-scale feature

matching loss (Eq. 3.33) and reconstruction loss reconstruction loss (Eq. 3.26):

ℒgen(g, d) = ℒrecon + λ1ℒms f eat + λ2ℒmsgen, (3.35)

where λ1 and λ2 represent the weighting terms for each component.

Typically, when training GANs, d(.) tends to converge faster than g(.). This

leads to many strategies for when to switch between training d(.) and g(.). We

apply the two timescale update rule (TTUR) [127], when training d(.) and g(.).

Instead of switching the training every nth batch, the TTUR instead uses two

separate learning rates for the generator and the discriminator models. Typically,

the learning rate for the discriminator is set to be higher than that of the generator.

This simplifies the training algorithm and allows us to update d(.) and g(.) for

every batch when performing stochastic gradient decent. The TTUR improves the

training dynamics of the adversarial training, thereby improving the chances of

reaching Nash Equilibrium.

3.2.4 Self-Supervised Depth Estimation

To convert the synthesised novel view images into 3D point clouds, we use a depth

estimation model z : I → Z which maps an input image I : Ω → R3 to a depth

image Z : Ω → R which is trained using self-supervision. The main benefit of

training depth estimators using self-supervision is that it requires no ground truth

depth or 3D data – it instead relies on binocular images or monocular video to

provide the supervision. Self-supervised depth estimation networks are trained

by warping a source image Ib into a target image Ia, using the predicted depths

and known relative poses T ∈ R4×4, and applying a photometric re-projection

error (Sec. 3.2.5). The target image Ia is first processed by a Convolutional Neural

Network to produce a disparity/depth estimate Za : Ω ↦→ R for each pixel in

Ia. The relative 3D rigid transformation matrix between source and target frames
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Tb ↦→a ∈ R4×4 and the camera intrinsics matrix K are then used to re-project the

source frame into the target frame.

The rigid transformation matrix Tb ↦→a can be represented in homogeneous co-

ordinates in terms of a rotation matrix and translation vector:

Tb ↦→a =

[
Rb ↦→a tb ↦→a

0 1

]
. (3.36)

The camera intrinsics K, is parameterized using the focal lengths fx,y and the

optical centres cx,y as:

K =


fx 0 cx

0 fy cy

0 0 1

 . (3.37)

In Chapter 5 we train our models using synthetically rendered objects from the

ShapeNet [39] dataset. The focal lengths are converted from the standard OpenGL

perspective transformation matrix and we fix the optical centres at the image

centre such that cx = width/2 and cy = height/2.

To warp the source frame Ib into the view point of the target frame Ia, the source

frame is first unprojected using the camera intrinsics K and depth values Za to

form a point cloud Pa ∈ RN×4. The point cloud Pb is made up of a set of 3D

coordinates, where the x and y coordinates P(x)
b and P(y)

b , are uniformly sampled

from a 2D grid between [−1, 1] for each spatial location in Ia, the z coordinate

is created by vectorising and unprojecting the depth map P(z)
b = K−1vec(Za)T

and the 4th dimension represents the homogeneous coordinate P(w)
b = 1. The

unprojected points Pb are then transformed back into the pose of the target frame

using the relative camera pose Tb ↦→a, resulting in the 3D flow field Pb ↦→a ∈ RN×4

from source to target image. This process is defined as:

Pb ↦→a = KTb ↦→aPT
b . (3.38)

The pixels in the target image are warped into the source image Îa using the 3D

optical flow Pb ↦→a and a differentiable image sampler
〈
.
〉

[147]

Îa =
〈
(Ib, Pb ↦→a)

〉
. (3.39)
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Finally, to train the model, a photometric reprojection error can be computed and

used to optimise the network.

3.2.5 Photometric Reprojection Error

The photometric re-projection error [94,101] is then computed between the warped

source image Îa and the target image Ia forcing the network to implicitly learn

how to estimate depth for monocular images. Therefore, at test time only a single

image is required to predict depth. The photometric re-projection loss can be

any image reconstruction loss function computed in pixel space such as MSE or

MAE. In Chapter 5, we find that using the mean absolute error (i.e., L1 distance)

enables more accurate depth estimates than MSE. Mathematically, the photometric

reprojection loss function is defined as:

ℒpe = ‖Ia − Îa‖1. (3.40)

3.2.6 Background Masking and Un-projection

At test time, we chain the novel view synthesis and depth estimation to recover a

set of M novel view point images for the observed object. We can then create the

final 3D point cloud by un-projecting the RGB-D in a similar manner to the image

reprojection process described in Eq. 3.38. The point cloud Pm ∈ RN×4 for a given

view point image Im, is formed by vectorising, homogenising and unprojecting the

depth map Zm where m is the index of the image in the set of images M. Similarly

to Eq. 3.38, the x and y coordinates are formed by sampling from a uniform

2D grid, between [−1, 1] for each spatial location (i, j) in Zm and concatenating

with the depth map and homogeneous coordinate to form Z̄m : Ω → R4 where

Z̄m(i, j) = (x, y, z, 1). Then by using the camera intrinsics K and absolute pose Tm

rather than the relative pose, we can un-project the depths into an aligned and

canonicalised 3D point cloud P ∈ RN×4 using the un-projection function ψ(.) as

P = ψ(Z̄m, Km, Tm), (3.41)

where the un-projection function is defined as:

ψ(Z̄m, Km, Tm) = T−1
m (K−1

m vec(Z̄m)
T), (3.42)
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where m denotes the index of the novel view, and vec(Z̄m) returns an N × 4 matrix

of the 4D vectors in the mapping Z̄m. Each of the image RGB values are then also

vectorised and concatenated with the corresponding point locations to form a

textured 3D point cloud.

In Chapter 5, we train the models using synthetically rendered images from the

ShapeNet [39] with randomly coloured backgrounds. In practice, we found that

randomly changing the backgrounds stopped both the adversarial network used

in novel view model and depth estimation model over-fitting to the background.

However, this poses a problem, in that depth values are still predicted for the

background pixels. To address this, we add an additional step for synthetic images.

The novel view model is adapted to also predict a binary mask Mbg : Ω ↦→ [0, 1]

for foreground and background pixels, which are then used filter out pixels that

are predicted as background after un-projection.

3.2.7 Point Cloud Reconstruction with Novel View Synthesis and

Depth Estimation

At test time , the predicted point cloud Ppr ∈ RN×4 can be recovered by composing

the novel view prediction with the depth estimator. The single-view input image

Ia is passed through novel view the model g(.), which synthesises a set of V fixed

pose novel views {Iv}V
v=1 = g(Ia). Depths are then estimated for these novel

views images using the previously trained depth estimator z(.) which maps an

input image I : Ω → R3 to a depth image Z : Ω → R to produce RGB-D images.

Finally, the generated images can be un-projected using a modified version of the

un-projection function ψ(.) defined in Eq. 3.42, as follows:

Ppr = ψ({z(Iv)}V
v=1, K, {Tv}V

v=1), (3.43)

where K ∈ R4×4 is the camera intrinsics matrices and this version of ψ(.) takes

as input a set of corresponding depth maps and transformations instead of a

single corresponding depth map and transformation from Eq. 3.42. The textured

point cloud Prgb ∈ RN×6, containing the 3D location and RGB values is formed by

vectorising and concatenating the novel view images {Iv}V
v=1 with the predicted

point cloud Ppr. Finally, background points are filtered out using the predicted
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background masks Mbg, leaving only points that correspond to the 3D surface of

interest.

3.2.8 Quantitatively measuring point cloud reconstructions

In Chapter 5 we utilise the Chamfer Distance (CD) [78] to quantitatively measure

the quality of our point cloud reconstructions. Given a ground truth point cloud

Pgt and a predicted point cloud Ppr, the Chamfer Distance finds the nearest neigh-

bour in the other point set and sums the squared distances. Mathematically, this is

defined as:

dCham f
(
Pgt, Ppr

)
= ∑

x∈Pgt

min
y∈Ppr

‖x − y‖2
2 + ∑

y∈Ppr

min
x∈Pgt

‖x − y‖2
2 . (3.44)

3.2.9 Quantitatively measuring image quality

In many tasks where the output of a model or algorithm is an image, it is desirable

to be able to quantify the quality of the synthesised or reconstructed images. The

Structured Similarity image metric (SSIM) [350] is often used as a perceptual

measure of quality for comparing two images, a ground truth image I and a

processed or degraded image Î. Unlike the Mean Squared Error (MSE) or Peak-

Signal to Noise Ratio (PSNR), which measure absolute error, SSIM was designed

to model the perceptual change in structural information in the image. Due to

this, SSIM and its derivatives have found significant utilisation in measuring lossy

image compression algorithms. The SSIM metric is computed between the two

sets of corresponding image patches X and X̂ of size W × W pixels, extracted from

the ground truth image I and the degraded image Î, respectively, where typically

W = 11 [350]. SSIM is comprised of three comparison functions which evaluate

luminance l(X̂, X), contrast c(X̂, X) and structure s(X̂, X):

l(X̂, X) =
2µxµx̂ + c1

µ2
x + µ2

x̂ + c1
, (3.45)

c(X̂, X) =
2σxσx̂ + c2

σ2
x + σ2

x̂ + c2
, (3.46)

s(X̂, X) =
σxx̂ + c3

σxσx̂ + c3
, (3.47)
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where µx and µx̂ are the means for each window, σx and σx̂ are the variance for each

window and σx̂x is the covariance between the windows X̂ and X. The constants c1

and c2 are typically set to the accepted values of c1 = 0.012 and c2 = 0.032, while

the constant c3 is defined as c2
2 . The SSIM is then the weighted combination of the

three components:

SSIM(X̂, X) =
[
l(X̂, X)α · c(X̂, X)β · s(X̂, X)γ

]
, (3.48)

where α, β and γ are the weighting terms for each component. In the standard

SSIM, α, β, γ = 1 and is therefore reduced to:

SSIM(X̂, X) =
(2µx̂2µx + c1)(2σx̂x + c2)

(µ2
x̂ + µ2

x + c1)(σ
2
x̂ + σ2

x + c2)
. (3.49)

The SSIM measure returns a value in the range [−1.0, 1.0] with 1.0 being a perfect

match to the original image and −1.0 indicating no structural similarity. In Chapter

5 we use the SSIM metric to measure the quality of various methods for novel

view prediction. When used as a whole image metric, the SSIM index is averaged

over all of the M extracted image patches and is known as the Mean Structured

Similarity Index (MSSIM). The MSSIM is defined as:

MSSIM(Î, I) =
1
M

M

∑
j=1

SSIM(X̂(j), X(j))), (3.50)

where j indexes one of the M patches from images Î and I.

SSIM can also be converted to measure dissimilarity and be used as a loss function

for training. The Structured Dissimilarity Loss (DSSIM) is defined as:

DSSIM(X̂, X) =
1 − SSIM(X̂, X)

2
. (3.51)

We apply the Structured Dissimilarity loss in Chapter 6, as part of a photometric

reprojection error, for training self-supervised depth estimators.

3.3 Improving Self-Supervised Depth Estimation

Monocular depth estimation has increasingly becoming one of the most researched

areas in Computer Vision. While excellent progress has been made using su-

pervised learning techniques, capturing large and diverse datasets hinders the
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development of generalisable models. Therefore, self-supervised depth estimators

(Sec. 3.2.4) have emerged as a viable alternative to supervised training approaches

by leveraging either synchronised stereo pairs or monocular video rather than

ground truth depth images. However, self-supervised depth estimation models

still lag behind the accuracy of purely supervised methods. Moreover, having

estimates of prediction uncertainty is a valuable addition to depth estimators [166]

and has been left unaddressed for the monocular self-supervised case. We inves-

tigate these issues in Chapter 6, improving self-supervised depth estimators by

applying 2D self-attention and a discrete volumetric representation. Incorporating

self-attention into the depth estimator increases the receptive field, adding addi-

tional contextual information to the predictions by allowing the network to reason

over non-local areas of the image. Not only the discrete disparity volume (DDV)

produces robust and sharper depth estimates, they also allow for the computa-

tion of per pixel depth uncertainties. In Chapter 6, we show that both of these

contributions lead to state of the art results for monocular self-supervised depth

estimation on the KITTI 2015 [95] and Make3D [304] datasets. This section will

cover the methodology used in that chapter.

3.3.1 Self-Supervised Learning on Monocular Video Sequences

While the initial development of self-supervised depth estimators focused on

using synchronised binocular images, large datasets of binocular images are still

widely unavailable. Instead, many researchers have turned their attention to

monocular video as a source of self-supervision. We represent an RGB image at

time t in the sequence, as It. However, unlike stereo image pairs, monocular video

has an unconstrained pose between frames. To leverage monocular video for self-

supervision, we must jointly estimate depth and relative pose between images in

the sequence. Similar to other papers [103, 388], we opt to train a second network,

the pose estimator, which takes two temporally adjacent images extracted from

the video sequence, It and It′ , and returns the relative transformation between

them, as in

Tt′→t = p(It, It′ ; φ), (3.52)
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where Tt′→t denotes the transformation matrix between images recorded at time

steps t and t′, and p(.; φ) is the pose estimator, consisting of a deep learning model

parameterised by φ. The estimated relative pose Tt′→t, is then used to warp the

source image It′ into the target image It, producing the transformed image It′→t.

The depth map Dt is predicted by minimizing the photometric re-projection error

(Section 3.2.5) between the source and target images, defined as:

ℒpe = ∑
t

∑
t′

pe(It, It′→t), (3.53)

where

It′→t = It′
〈

proj(σ(Dt), Tt′→t, K)
〉
, (3.54)

pe(.) denotes the photometric reconstruction error defined in Eq. 3.61, proj(.)

represents the 2D coordinates of the projected depths Dt in It′ , and
〈
.
〉

is the

sampling operator.

3.3.2 Self-Attention for Depth Estimation

Self-Attention has been shown to drastically improve performance of natural lan-

guage processing (NLP) tasks by improving the way in which the networks handle

dependencies between words [335]. RNNs [299], LSTMs [132] and CNNs [90, 196]

only process information in the local neighbourhoods limiting their ability to

reason about long range dependencies between tokens in the sequence. Similarly

in Computer Vision, Wang et al. [347] were inspired by non-local means [34], to

develop a 2D self-attention layer that computes feature responses at a specified po-

sition as the weighted sum of all features at all positions in the input feature map.

In contrast to standard convolutional layers, the self-attention layers capture long-

range dependencies by directly computing interactions between spatial positions

in a feature map regardless of the positional distance [347]. As standard convo-

lutions may struggle to model contextual relationships between non-contiguous

regions, we hypothesise that it is possible to improve monocular depth estimation

by incorporating non-local aggregation strategies, such as 2D Self-Attention.
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Figure 3.1: Overview of the 2D Self-Attention module.

The input to the self-attention model is the feature representations X = resnetθ(It)

encoded from the input image It using a ResNet [123] encoder resnetθ, with

X : Ω1/8 → RC, C representing the number of output channels used in the

encoder, and Ω1/8 denoting the low-resolution lattice at (1/8)th of its original

resolution in Ω. The encoded features X are then used to compute the query f (X),

they key g(X) and value h(X) components represented by:

f (X(i, j)) =W f X(i, j),

g(X(i, j)) =WgX(i, j),

h(X(i, j) =WhX(i, j),

(3.55)

with the weights for each layer W f , Wg, Wh ∈ RN×M. In practice, three separate

1 × 1 convolutions are applied to efficiently compute each component. The atten-

tion matrices Sij : Ω1/8 → [0, 1] are then computed by applying a so f tmax(.) over

the query and key:

Si,j = so f tmax( f (X(i, j))Tg(X)), (3.56)

The final self-attention values are formed by multiplying Sij in (3.56) with the

value of the feature representation h(X) as defined by:

A(i, j) = ∑
ĩ, j̃∈Ω1/8

h(X(ĩ, j̃))× Si,j(ĩ, j̃), (3.57)

where A : Ω1/8 → RN.
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3.3.3 Discrete Disparity Volume

Traditional stereo or depth estimation algorithms often utilise a discrete cost/probability

volume to regularise and regress depth or disparity. However, representations like

discrete volumes pose three challenges. Firstly, 3D convolution is expensive as

compute and memory usage grows cubically with the size of the volume. Secondly,

they are not differential and able to be trained via back-propagation when used

implicitly as part of a self-supervised depth estimator. Finally, they are unable to

produce sub-voxel estimates, limiting reconstruction accuracy.

As occluded objects or regions are not visible when performing monocular depth

estimation, each ray along the depth dimension is independent from one an-

other. Therefore, as occluded regions cannot contribute to the final outcome, it

is unnecessary to convolve along the disparity/depth dimension as well as the

spatial dimensions. To address the issue of computational complexity, we propose

to apply a 2D Convolution with K output channels, rather than the traditional

3D convolution. This drastically improves computational and memory efficiency,

while retaining the regularisation effect benefited by the volumetric representation.

While in the supervised case it is possible to use discrete depth values [88], using

discrete depths for self-supervised learning results in quantization artefacts which

will adversely affect the performance of the photometric reprojection loss. More-

over, using discrete depths requires projecting the discrete volume probabilities to

into a depth image by taking an argmax over the depth ray prior to applying the

photometric reprojection error. As the argmax operation is not differentiable, we

propose to use a softargmax function, also sometimes called soft-attention. The

output probability volume D is normalised by a softmax operation and multiplied

by the positional encoding disparity(k) that contains K evenly spaced samples

calculated over the interval [depthmin, depthmax], where each element is defined by:

disparity(k) =
[

depthmin + k
(

depthmax − depthmin

K − 1

)]
, (3.58)

where k ∈ {0, · · · , K − 1}. By encoding the depth in this manner, it is possible to

both regress sub-voxel disparity estimates, while also allowing us to constrain
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and regularise the disparity values. The probabilities are then summed along

each ray to project the volume into a disparity image σ(D)(i, j) for pixel location

(i, j) ∈ NH×W . Mathematically, this is defined as:

σ(D(i, j)) =
K

∑
k=0

so f tmax(D(i, j)[k])× disparity(k) (3.59)

where so f tmax(D(i, j)[k]) represents the softmax result of the kth element along

the depth axis of the 3D volume D at the image position (i, j). As noted by [168],

when comparing with the argmax operator, the final disparity can be influenced

by all values and therefore be susceptible to multi-modal distributions. To ad-

dress this, in the Convolution prior to the so f targmax operation, we omit Batch-

Normalisation [144] so that the network can learn to control the temperature of the

softmax and scale the disparity probabilities directly.

3.3.4 Multi-scale Discrete Disparity Volumes

In many areas of Computer Vision, researchers have found that progressive refine-

ment is a a crucial component for models that require predicting high resolution

images [103, 159, 293, 385]. This is often achieved by using skip connections [293]

and/or multiple losses at different scales [103, 385]. These methods allow the

model to delineate ambiguous results from earlier modules of the network. Fol-

lowing [103], we apply a multi-scale photometric loss (Sec. 3.3.5), and design our

network to use progressive refinement. We construct our decoder network to use

a DDV layer at a set of different scales 𝒮 = { 1
8 , 1

4 , 1
2 , 1

1} where the scales considered

are at (1/8), (1/4), (1/2), and (1/1) of the original image resolution. The disparity

maps are then projected using Eq. 3.59 at each scale, as in

σ(D(s)(ω)) =
K

∑
k=1

so f tmax(D(s)((i, j))[k])× disparity(k), (3.60)

where D(s) is the disparity volume at a scale s ∈ 𝒮 .

Each of the multi-scale decoding layers consists of upconv layers (i.e., nearest up-

sample + convolution) followed by the DDV layer. To further refine the estimates,

the upconv layers also receive skip connections from the ResNet encoder for each

of the respective resolution scales. This can be seen in Chapter 6 in Figure 6.2.
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3.3.5 Improved Photometric Reprojection Errors

The simplest of photometric reprojection errors is the Mean Absolute Error, as

used in Section 3.2.5. However, many papers [101,103] have shown that modifying

the photometric reprojection loss to incorporate a structural dissimilarity term

(See Section 3.2.9) can improve the estimation results. The dissimilarity term

measures the perceptual dissimilarity between patches in the warped image Î and

the original image I. In our model, the photometric error pe(.) is computed for

each depth scale s by up-sampling the warped image to the original image size.

Mathematically, the improved photometric error is defined as

pe(It, I(s)t′ ) =
α

2
(1 − SSIM(It, I(s)t′ )) + (1 − α)‖It − I(s)t′ ‖1, (3.61)

where α is the weighting term between the mean absolute error and dissimilarity

terms.

To encourage disparity estimates to be locally smooth, we follow [101] and apply

an L1 penalty on the disparity gradients along both image axes ∂xd*t and ∂yd*t
where d*t = dt/dt is the mean-normalized inverse depth from [342] which is used

to discourage shrinking of depths estimated by the model. Large depth disconti-

nuities can often be found in regions with strong image gradients, such as object

boundaries. To account for this and encourage sharp reconstructions around object

boundaries, the smoothness term is weighted with an edge aware term using the

image gradients ∂I. Mathematically, this is formulated as

ℒs = |∂xd*t | e−|∂xI| +
∣∣∂yd*t

∣∣ e−|∂yI|. (3.62)

Per-Pixel Minimum Reprojection Loss

In self-supervised depth estimation it is common to compute the photometric

reprojection loss over multiple source images and average their contributions. This,

however, can cause high photometric error when pixels in the target image It are

not visible in source image It′ i.e occluded pixels or out of view pixels at the image

borders [103]. Godard et al. [103] propose to use a Minimum Reprojection Loss where

the minimum loss is taken over the set of source images, rather than averaging the

contributions. Following [103], we also apply the Minimum Reprojection Loss and
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train our models with sequences of 3 temporally adjacent images, including the

target frame It and the source frames It′ ∈ {It−1, It+1}. Each source frame in It′ is

warped into the target frame using Eq. 3.54 to forming It′→t. Finally the minimum

error is taken between the set of warped source frames, as follows:

ℒp = min
t′

pe(It, It′→t). (3.63)

Automasking of Stationary Pixels

Self-supervised monocular training assumes that the scene under observation

is static and that the camera is moving through the scene. However, in real

world video, these assumptions do not always hold. For example, when there are

moving objects in the scene (i.e other cars) or when the camera is stationary (i.e

at the traffic lights). This results in cases where the depth estimator will exhibit

degenerate behaviour, such as estimating moving objects as ’holes’ of infinite

depth. Following [103] we apply ’auto-masking’ to filter out pixels that remain

consistent between frames in the sequence. Mathematically, this is computed as

µ(s) =
[

min
t′

pe(It, I(s)t′→t) < min
t′

pe(It, It′)
]
, (3.64)

where [.] represents the Iverson bracket. This results in a binary mask µ which

masks pixels to include values where the re-projection error of I(s)t′→t is lower than

the error of the un-warped image It′ , or

ℒp =
1
|𝒮| ∑

s∈𝒮

(
µ(s) × pe(It, I(s)t′→t)

)
, (3.65)

The masking in (3.65) is calculated and applied for each scale s in the set of possible

resolution scales 𝒮 . The intuition here is that if the pixel values are similar between

frames in the sequence, this indicates that these pixels correspond to regions that

are static, or regions that are moving with similar relative translation or have low

textural detail.

Final Re-projection Loss

The final loss is computed as the weighted sum of the per-pixel minimum re-

projection loss in (3.61) and smoothness term in (3.62),

ℒ = ℒp + λℒs, (3.66)
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where λ weights the smoothness regularisation term. Both the pose model and

depth model are trained jointly using this photometric reprojection error. Inference

is achieved by taking a test image at the input of the model and producing the

high-resolution disparity map σ(D1/1), defined in (3.60).

The photometric reprojection loss is a powerful technique for allowing us to

train self-supervised depth estimators, using only monocular video sequences

as training data. In Chapter 6 we combine the improved photometric reprojec-

tion loss (3.61) with the the per-pixel minimum (3.63), auto-masking of stationary

pixels (3.64) and edge aware depth smoothness term (3.62) to train a state of the

art depth estimation model using self-supervision. To achieve this, our network

architecture improves the contextual reasoning of the model by applying the 2D

self-attention module (3.57) and produces sharp estimates using the multi-scale

discrete disparity volumes (3.60). We show that this architecture significantly

outperforms our baseline [103] in the monocular training regime on the KITTI

2015 dataset [95].
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CHAPTER 4
Scaling CNNs for High Resolution
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Image

The work contained in this chapter has been published as the following paper of

which I am the primary author:

Johnston, A., Garg, R., Carneiro, G., Reid, I. and van den Hengel, A., Scaling

cnns for high resolution volumetric reconstruction from a single image. In Pro-

ceedings of the IEEE International Conference on Computer Vision Workshops, pages

939-948, 2017 [155].
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Abstract
One of the long-standing tasks in computer vision is to use a single 2-D view

of an object in order to produce its 3-D shape. Recovering the lost dimension

in this process has been the goal of classic shape-from-X methods, but often the

assumptions made in those works are quite limiting to be useful for general 3-D

objects. This problem has been recently addressed with deep learning methods

containing a 2-D (convolution) encoder followed by a 3-D (deconvolution) decoder.

These methods have been reasonably successful, but memory and run time con-

straints impose a strong limitation in terms of the resolution of the reconstructed

3-D shapes. In particular, state-of-the-art methods are able to reconstruct 3-D

shapes represented by volumes of at most 323 voxels using state-of-the-art desktop

computers. In this work, we present a scalable 2-D single view to 3-D volume

reconstruction deep learning method, where the 3-D (deconvolution) decoder is re-

placed by a simple inverse discrete cosine transform (IDCT) decoder. Our simpler

architecture has an order of magnitude faster inference when reconstructing 3-D

volumes compared to the convolution-deconvolutional model, an exponentially

smaller memory complexity while training and testing, and a sub-linear runtime

training complexity with respect to the output volume size. We show on bench-

mark datasets that our method can produce high-resolution reconstructions with

state of the art accuracy.

4.1 Introduction

Volumetric reconstruction of objects from images has been one of the most stud-

ied problems in computer vision [136]. Multi-view reconstruction approaches

based on shape by space carving [188] and level-set reconstruction [356] have led

to reasonable quality 3-D reconstructions. Systems like KinectFusion [256] and

DynamicFusion [255] have opened the possibilities for various applications in the

field of augmented and virtual reality by providing high quality reconstruction

with the help of cheap sensors like Kinect. These multi-view and Kinect based

systems work in constrained environments and disregard scene semantics. It has

been long believed that a successful estimation of the semantic class, 3-D structure



4.1. Introduction 61

Figure 4.1: We propose a new convolution-deconvolution deep learning model,

where the traditional 3-D deconvolutional decoder (bottom) is replaced by an

efficient IDCT decoder (top) for high resolution volumetric reconstructions.

and pose of the objects in the scene can be immensely helpful for holistic visual

understanding of images [231]. In fact, this estimation would allow intelligent

systems to be more effective at interacting with the scene, but one important

requirement, particularly regarding the 3-D structure of objects, is to obtain the

highest possible 3-D representation resolution at the smallest computational cost –

this is precisely the aim of this paper.

Recent success of convolutional neural networks (CNNs) [183, 196] has led to

many approaches tackling the challenging problem of volumetric reconstruction

from a single image to move towards full 3-D scene understanding [53,291,360,361,

364,370] However, most of these methods reconstructs object at very low resolution

ranging from 203 to 323 voxels – thereby limiting the practical applicability. Almost

all these deep networks, designed for single view volumetric reconstructions, rely

on a convolution-deconvolution architecture, as shown in Fig. 4.1. In this setup,

a traditional 2-D convolution network (often used in classifiers) encodes a large

patch of the image into an abstract feature (i.e., an embedded low-dimensional

representation), which is then converted into a volume by successive deconvo-

lution operations. These convolution-deconvolution architectures are based on
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the success of deconvolution networks for semantic segmentation [220, 258] that

shows that the loss of resolution due to strided convolutions/pooling operations

can be recovered by learning deconvolution filters. These convolution - decon-

volution architectures give reasonably accurate reconstructions at low resolution

(typically 323 voxels or less) from a single image, but do not scale well to high

resolution volumetric reconstructions. The main reason behind this issue lies in

the successive deconvolution to upscale a coarse reconstruction, which requires

intermediate volumetric representations to be learned in succession in a coarse to

fine manner, where each deconvolution layer upscales the predictions by a factor

of two. Although deconvolution layers have very few parameters, the memory

and the time required to process volumes (both for training and inference) in this

coarse-to-fine fashion via deconvolution grows rapidly and is intractable. Table 4.1

(see baseline-32 and baseline-128 results) reports how the 3-D resolution affects

traditional convolution-deconvolution architectures in terms of memory required

for training as well as training and inference running time.

In this work, we explore a simple option in the design of a novel deep learning

model that can reconstruct high-resolution 3-D volumes from a single 2-D single

view. In particular, our main goal is to have a model that scales well with an

increase in resolution of the 3-D volume reconstruction with respect to memory,

training time and inference time. One straightforward approach is to learn a

linear model (e.g., principal component analysis [156]) or a non-linear model (e.g.,

Gaussian Process latent variable model [195]) to represent the shapes of the objects

and use it in place of the deconvolution network. However, this will make (i) the

reconstruction methods sensitive to the 3-D volumetric data used for training,

which is not available in abundance and (ii) would not be easily adaptable to

semi-supervised methods [265], which does not require 2-D image-volumetric

model pairs for training. An alternative solution is the use of the low frequency

coefficients computed from the discrete cosine transform (DCT) or Fourier basis,

which are in general good linear bases to represent smooth signals. In fact, the

DCT basis has already been shown to be a robust volume representation [277],

as evidenced in Fig. 4.2, which shows that for a representative set of volumetric

object shapes taken from ShapeNet [39], the low-frequency DCT basis is much

more information preserving then that of the commonly used local interpolation
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Figure 4.2: Comparison of low frequency 3-D DCT compression accuracy to simple

interpolation at various compression rates on a subset of ShapeNet volumes [39].

1283 volumes are compressed using (i) nearest neighbour interpolation (blue curve)

or (ii) by truncating the high frequency of DCT basis (red curve) and upscaled

with respective inverse operations to compute mean IOU.

methods in CNNs for up-sampling low resolution predictions. It is important to

note that while being generic, the DCT basis is almost as information preserving

as a linear PCA basis when the variability in the dataset increases.

Therefore, we propose a model that extends the convolution-deconvolution net-

work by replacing the computationally expensive deconvolution network by a

simple inverse DCT (IDCT) linear transform, as shown in Fig. 4.1, where this

IDCT transform reconstructs the low-frequency signal at the desired resolution.
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Our proposed extension has profound impact in terms of the computational cost

involved in training and inference. In particular, we show through extensive

experiments on benchmark datasets that our proposed framework:

∙ presents an inference time that is one order of magnitude faster than equiva-

lent convolution-deconvolution networks,

∙ shows a slightly more accurate 3-D object shape prediction than equivalent

convolution-deconvolution networks;

∙ scales gracefully with increase in resolution of the output 3-D volume in

terms of training memory requirements, training time, and inference time,

∙ allows a 3-D volume recovery at a much larger resolution compared to

previously proposed approaches in the field.

4.2 Related Work

The problem of reconstructing the 3-D shape of an object from a single image

has recently received renewed attention from the field with the use of traditional

computer vision methods [336] (e.g., structure-from-motion, optimisation of the

visual hull representation, etc.). However, with the advent of deep learning

techniques [183] and new datasets containing 3-D model annotations of images

containing particular visual objects, the field has moved towards the application of

these deep learning models to the task of 3-D reconstruction from images [39, 364].

In particular, the seminal paper by Wu et al. [364] is the first to propose a deep

learning methodology that reconstructs 3-D volumes from depth maps, which has

led to several extensions [53, 233].

The more recently proposed methods replaced depth maps by the RGB image,

with the same goal of recovering the 3-D shape of the object from a single or multi-

ple views of it. For instance, Girdhar et al. [98] used a 3-stage training process to

perform 3-D reconstruction from single images: 1) train a 2-D classifier with mixed

synthetic and real images; 2) train a 3-D auto-encoder for learning a representation

of their 3-D volumes; and 3) merge the two by minimizing the Euclidean distance
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between the 2-D and 3-D codes. In parallel, Choy et al. [53] developed a recurrent

neural network model which aims to use multiple views of a single object to

perform 2-D to 3-D reconstruction (the reasoning behind the use of multiple views

was to enable the encoding of more information about the object). The use of a

projective transformer network that can align the visual object and its projected

image allows the unsupervised modelling of 3-D shape reconstruction approaches

from single images, as shown by Yan et al. [370]. Adversarial training methods for

deep learning models [107] have also influenced the development of 3-D shape

reconstruction approaches from single images. Wu et al. [361] applied a varia-

tional encoder and an adversarial decoder for the task of 3-D shape reconstruction

from single images. Rezende et al. [291] introduced an unsupervised learning

framework for recovering 3-D shapes from 2-D projections, with results on the the

recovery of only simple 3-D primitives using reinforcement learning. These meth-

ods above are based on a relatively similar underlying convolution-deconvolution

network, so they have the same limitations discussed in Sec. 4.1.

State-of-the-art deep learning semantic segmentation models are also based on

a similar convolution-deconvolution architectures [97, 220, 258], so it is useful to

understand the functionality of such approaches and assess their applicability

for the problem of recovering the 3-D shape of the object from a single view. In

particular, these approaches show that fully trainable convolution-deconvolution

architectures [258], the exploration of a Laplacian reconstruction pyramid to merge

predictions from multiple scales [97], and the use of skip connections [220] can

produce state-of-the-art semantic segmentation results. However, it is unclear

how to extend these ideas in a computationally efficient manner for the the case

of volumetric predictions from images, given the explosion of the number of

parameters required to generate volumes at high resolutions.

The high memory, training and inference complexities in processing volumes

by an encoder (i.e., the convolutional part of the architecture) has also been ad-

dressed in the field [209, 292]. Li et al. [209] proposed to replace convolutional

layers by field probing layers, which is a type of filter that can efficiently extract

features from 3-D volumes. However, this method is focused on discriminative
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features and is not invertible, so it would not be suitable for 3-D reconstruction.

Similarly, a memory and run-time efficient processing of 3-D input data has been

proposed by Riegler et al. [292] with a method focused on the classification and seg-

mentation of volumes and point clouds. That work relies on the use of specialized

convolution, pooling and unpooling layers based on the Octree data structure, and

shows excellent results on scaling up 3-D classification and point cloud segmenta-

tion. Nevertheless, in order to be applicable for the problem of 3-D reconstruction

from 2-D views, this approach would need to be extended to be able to receive

2-D data as input (instead of 3-D) and output a 3-D representation.

There have been many examples of methods that explore 3-D shape representa-

tions, consisting of a relatively small set of principal component analysis (PCA) [12]

or DCT [64] components that can be further reduced with Gaussian Process Latent

Variable Models (GPLVM) [195]. These methods are successful at several tasks,

ranging from object shape reconstruction [12, 64], image segmentation and track-

ing [277], etc. Finally, Zheng et al. [387] show that the use of such low-dimensional

pre-learned representations are useful for the task of object detection from a single

depth image.

4.3 Methods

Figure 4.3: Network Architectures: Top: Baseline Network mimicking 3-D R2N2

[53] without RNN/3-D GRU. Bottom: Our Network utilizing the IDCT Layer.
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4.3.1 Network Architecture

Our main contribution is in exchanging the decoder with a simple IDCT layer

which is compatible with any 2-D encoder architecture. To show the impact of

the proposed frequency based representation, we extensively analyze the per-

formance of our IDCT decoder against a deconvolution baseline. We adapt the

state-of-the-art convolutional - deconvolution network for volumetric reconstruc-

tion called 3-D-R2N2, proposed by Choy et al. [53]. The 3-D-R2N2 model [53]

iteratively refines reconstructed volumes by using a recurrent module to fuse

the 2-D information coming from multiple views, which is then passed to the

deconvolution decoder to generate volumetric reconstructions. To restrict the

experiments for single-view training and testing, we remove the recurrent module

from 3-D-R2N2 and replace it with a single fully connected layer. The result is a

simpler convolutional-deconvolutional baseline network, shown in Figure 4.3, as a

direct replacement of 3-D-R2N2, for single view reconstruction. In the encoder, we

use standard max pooling layers for down sampling, while leaky rectified units

are used for the activations with residual connections [123].

Our proposed IDCT decoder uses the same baseline encoder defined above to

predict the low frequency DCT coefficients, which our decoder converts to solid

volumes. The DCT/IDCT function can be efficiently implemented by utilizing

the symmetry and separability properties of the nD-DCT function [285]. That is

to say that we can pre-compute the 1D-DCT matrix and apply it independently

across each axis of the volume. The Discrete Cosine Function has several variants

(e.g DCT-I through DCT-VIII) [285]. In this work we will refer to DCT-II as the

DCT function and DCT-III as the IDCT function. The DCT-III function is the

inverse of the DCT-II function, furthermore, when the DCT matrix is orthogonal

the DCT-III/IDCT is the transpose of the DCT-II matrix [285]. The orthogonal 1D

DCT-II is given by:

Xk =

(
2
N

) 1
2 N−1

∑
i=0

Λ(i)cos
[

π

N

(
n +

1
2

)]
xi (4.1)

where xi is the input signal at a given index i, Xk is the output coefficient at index k

and Λ is the scaling constant applied to x0 used to make the transform orthogonal,
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as defined by

Λ(i)

{
1√
2

if i = 0

1 otherwise
. (4.2)

In this work, we use the transpose of the DCT-II matrix as our IDCT matrix,

however it could also be implemented directly using the DCT-III equation [285].

As our baseline is modeled after 3-D-R2N2, we keep the same loss function defined

by the sum of voxel Cross-Entropy [53]:

L = ∑
i,j,k

{y(i,j,k) log(p(i,j,k)) + (1 − y(i,j,k) log(1 − p(i,j,k))} (4.3)

where p(i,j,k) represents the predicted object occupancy probabilities, y(i,j,k) ∈
{0, 1} denotes the given label for voxel (i, j, k)

We use the voxel intersection over union metric [53] to evaluate the quality of

our 3-D reconstructions, defined by:

IoU =
∑i,j,k[I(p(i,j,k) > t)I(y(i,j,k))]

∑i,j,k[I(p(i,j,k) > t) + I(y(i,j,k))]
, (4.4)

where t is the voxelization threshold and I(.) is the indicator function.

4.4 Experiments

Method Resolution Batch Size Forward Time (Hz) Train time (Hz) Memory (GB)

DCT-32 - 203 coeff 323 24 294(4x) 80.75(6.3x) 1.7

Baseline-32 323 24 66.83(1x) 12.63(1x) 4.5

DCT-128 - 203 coeff 1283 24 30.48(0.45x) 22.99 (1.8x) 2.2

Baseline-128 1283 2 2.82 (0.04x) 0.19 (0.015x) 10.4

Table 4.1: Performance indicators using deconvolution and IDCT networks at

different resolutions.

To clearly demonstrate the usefulness of our IDCT decoder based volumetric

reconstruction method, in this section we first compare the runtime and memory

requirement of both deconvolutional and IDCT architectures at two different

resolutions of 323 and 1283. To estimate 1283 volumetric reconstructions with

deconvolutional network we simply add two extra deconvolution blocks to the
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deconvolution baseline of Fig. 4.3.1. An appropriate IDCT basis function is

replaced to generate 1283 volumes from 203 coefficients for the proposed method.

Table 4.1 shows the training time1, inference time and the peak GPU memory

required to train the baseline and the proposed IDCT based network to reconstruct

volumes at both resolutions from 127 × 127 images2.

Due to the large reduction in the depth of the our IDCT decoder, our proposed

network is approximately four times faster for inference and over six times faster

during training, when compared with our baseline model at a smaller resolution of

323 with batch size of 24. Furthermore the memory requirements during training

are drastically reduced as the intermediate coarser volumes are not predicted by

our decoder. When the resolution is increased by a factor of four (in each of the

three dimensions), to be 1283, it becomes evident that the traditional 3-D deconvo-

lution networks become intractable. Already approximately seven times slower

and three times more memory hungry deconvolution networks now can only be

trained with a batch size of 2 on a 12 GB GPU card. Per-image training goes up

by a factor of over 50 compared to 323 resolution deconvolution baseline and the

test time performance degrades equally drastically making this baseline unusable.

Conversely, a single layer IDCT decoder is only three times slower to train when

the resolution is increased by a factor of four (in each of the three dimensions) –

however it still remains faster to train when compared to the deconvolutional net-

work reconstructing volumes at 323 resolution. The memory required for training

this IDCT decoder only grows by the size needed to store the high resolution pre-

dictions. Training the network for high resolution volumes becomes feasible with a

much higher batch size while the number of parameters required remains constant.

To validate the 3-D reconstruction accuracy with the proposed IDCT decoder,

we compare the single view reconstruction accuracies on both synthetic (ShapeNet

[39]) and real (PascalVOC 3-D+ [366]) datasets. We show that using our single

IDCT layer as decoder does not degrade the quality of low-resolution predictions

but enables substantially faster training and gives better high resolution recon-

structions.

1Both training and test times are estimated after the data is loaded to the GPUs
2Nvidia Titan X (Maxwell), with Intel i7 4970k was used for these experiments.
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4.4.1 Experiments on Synthetic Dataset

Following Choy et. al. [53], we use synthetically rendered images of resolution

127 × 127 provided by the authors containing a 13 class subset of the original

ShapeNet [39]. This subset (ShapeNet13) consists of approximately 50,000 2-D-3-D

pairs, with a split of 4/5 for training and 1/5 for testing, exactly as defined in [53].

For all experiments on ShapeNet dataset, we use Theano [325] and Lasagne [69]

libraries for our implementations. In addition, the training procedure uses mini-

batches of size 24 and learning rate of 10−5 with Adam [172] optimizer.

We compare the mean IoU error (Table 4.2) of the baseline deconvolution ar-

chitecture against the proposed IDCT decoder architecture in Table 4.2. As our

baseline can be seen as a simpler version of [53] with one view training, for com-

pleteness, we report results for the entire test-set for our baseline deconvolutional

network alongside that of [53]. As expected, our baseline using only single-view

to predict volumes against five views used in [53] gives marginally lower recon-

struction accuracies than that of [53]. However it is important to note that our

IDCT decoder could also be integrated with the RNN as proposed in [53]. For

simplicity, we limit our experiments to the one-view training and testing paradigm.

When compared at 323 resolution, our approach with IDCT decoder gives

Method Resolution Mean IoU

R2N2 (5V train, 5V test) [53] 323 0.634

R2N2 (5V train, 1V test) [53] 323 0.6096

Baseline (1V train, 1V test) 323 0.5701

DCT - 203 coeff 323 0.5791

Baseline Upscaled 1283 0.3988

DCT - 203 coeff 1283 0.4174

Table 4.2: Volumetric shape prediction IoU errors on ShapeNet 3-D.

marginally better volumetric reconstructions (with 203 DCT coefficients) com-
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pared to the baseline. However, it is trained in a day and half whereas the baseline

takes more than a week to train. A significant boost in accuracy can be seen at

1283 reconstructions when we fine-tune our network with high resolution ground

truth. As shown in Figure 4.4, the reconstructions produced by the baseline ap-

proach after upscaling with linear interpolation overestimates the foreground

objects, leading to less accurate and blocky reconstructions. On the other hand,

our proposed method is able to preserve a significant amount of shape details.

Figure 4.4: Examples of 3-D reconstructions from single view images using the

Synthetic ShapeNet13 dataset [39, 53]. First Row: Input Image, Second Row:

Ground truth shape, Third Row:323 Volumetric prediction using deconvolutional

decoder upscaled to 1283, Bottom Row: Volumetric predictions at 1283 using the

proposed IDCT decoder.
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Figure 4.5: Examples of volumetric reconstructions on instances of PASCAL VOC

3-D+ dataset. From left to right: Input image, ground truth volume at 323, ground

truth volume at 1283 resolutions, IDCT decoder based reconstruction at 323, IDCT

decoder based reconstruction at 1283 and the baseline 323 reconstruction with

deconvolutional decoder upscaled to 1283 respectively.
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4.4.2 Experiment with Real Images

Most of the CNNs based volumetric reconstruction approach [53, 98, 361] use

an intermediate step of training the network with a semi-synthetic dataset by

augmenting the synthetically rendered object instances with real backgrounds.

We choose to directly fine-tune both the deconvolutional and IDCT decoder based

networks on real images from PASCAL VOC 3-D+ dataset (specifically we use

v1.1 with ImageNet [67] augmentation) [366]. We prune the object instances that

are classified as either difficult or truncated, leaving approximately 11400 image

instances, which we will use as our training samples. The same pruning strategy

is applied to the testing set. Object instances were cropped from the real images to

the regions corresponding to 20% dilated bounding boxes for training. Padding

with white background was used along the shortest image axis to maintain the

aspect ratio when resizing the cropped objects to the input resolution for our net-

work (127x127). Only horizontal flips of images were used for data augmentation

while fine tuning.

Our setup of directly fine-tuning the synthetic shapenet model onto PASCAL

VOC 3-D+ can be considered to be more challenging compared to other methods

due to lack of training data and amount of background clutter and occlusion.

These issues make the training more difficult. Following [220], the pre-trained

models evaluated in Section 4.4.1 were fine-tuned with a batch size of 1, using

stochastic gradient descent (SGD) with higher Nesterov momentum of 0.99 and

learning rate of 10−5. Furthermore, in order to reduce over-fitting, we also added

dropout to all models as well as weight decay of 10−4.

Resolution aero bike boat bus car chair mbike sofa train tv mean

DCT - 203 Coeff 323 0.5552 0.4893 0.5231 0.7756 0.6221 0.2497 0.6561 0.4624 0.5739 0.5492 0.5474

Deconvolution Baseline 323 0.5492 0.4516 0.5011 0.7593 0.6345 0.244 0.6437 0.546 0.5675 0.5161 0.5419

DCT - 203 Coeff 1283 0.4502 0.2606 0.4067 0.6942 0.561 0.1836 0.5509 0.4311 0.4273 0.5105 0.4496

Baseline upscaled 1283 0.2824 0.1263 0.336 0.6167 0.5126 0.181 0.4377 0.4654 0.3287 0.4095 0.3671

Table 4.3: Per category and mean volumetric shape prediction IoU errors on

PASCAL VOC 3-D+ at 323 and 1283 resolutions.

The IoU errors are compared in Table 4.3 at both 323 and 1283 resolutions. As

observed in the synthetic dataset, results for 323 resolution with both deconvolu-
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tion and IDCT decoder methods are similar. Despite the truncation of predictions

to 203 coefficients, we observe that with the exception of car and sofa, IDCT de-

coder based reconstruction outperforms the deconvolutional network by narrow

margin. More drastic performance gains are observed when high resolution vol-

umes are used for training our IDCT decoder with mean IoU increasing by ∼ 22%.

Figure 4.5 shows the visual comparison of the results for our proposed IDCT

Figure 4.6: Failure Cases: Truncated and cluttered background throwing off

the volumetric reconstructions. From left to right: Input image, ground truth

volume at 323, ground truth volume at 1283 resolutions, IDCT decoder based

reconstruction at 323, IDCT decoder based reconstruction at 1283 and the baseline

323 reconstruction with deconvolutional decoder upscaled to 1283 respectively.

decoder based network and the deconvolution baseline. We observe that due to

the challenging background clutter, occlusion and significant truncation of the

training and test instances, both the IDCT and deconvolutional decoder networks

are thrown off (see Figure 4.6 for failures). However, for most of the successful

reconstruction scenarios, the IDCT decoder based reconstruction were more ac-

curate while preserving details in the object structures evident from images. For

example, 3D deconvolutional reconstruction fails to pick up the back of the car

and depth of the computer monitor evident in the image to reconstruct the pick-up

car or flat-screen whereas proposed method correctly reconstruct the objects. Also

note in Figure 4.5 that the 1283-voxel reconstructions from real images with IDCT

often contains much richer details, even though our network was still restricted

to estimate 203 low frequency DCT coefficients like reconstruction of aeroplane,

train, motorbike.

As discussed in Tulsiani et al. [329], it is important to note that the PASCAL
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VOC 3D+ dataset was not originally intended for the purposed of evaluating

supervised volumetric reconstruction. The dataset contains a limited number of

ground truth CAD models/volumes that are shared in both the training and the

test sets. This means that instead of learning to interpolate in the manifold of

possible 3D shapes from ShapeNet, neural network with reconstruction loss might

over-fit to retrieve the nearest volumetric shape in the training set for every image.

An evidence of this can be seen in 1283 reconstruction of the chair in Figure 4.5

where the style of chair-back is hallucinated or in the reconstruction of sofa which

is reconstructed to be a two-seater without evidence in the image. However, in

the absence of a better alternative to test on real data and for fair comparison

with existing volumetric reconstruction methods, we still use PASCAL VOC 3D+

dataset for evaluation. The aforementioned over-fitting problem can be avoided

to some extent by fine tuning on real data in a weakly supervised manner instead

of using direct volume supervision with limited CAD models. A perspective pro-

jection layer with segmentation loss of projected volumes is used for this purpose

in [117, 329, 370, 394]. These weakly supervised modules can be easily deployed

with our IDCT decoder to facilitate faster training for high resolution volumetric

reconstructions. Finally, thin structures like bike wheels, chair legs are found miss-

ing at times in our 1283-voxel reconstructions, which potentially can be recovered

using fully connected CRFs [181] or object connectivity priors [338].

4.5 Conclusions and Future Work

In this paper we have presented a method for reconstructing high resolution 3-

D volumes from single view 2-D images, using a decoder based on the inverse

Discrete Cosine Transform. Our proposed method is shown to be an order of mag-

nitude faster and require less memory than standard deconvolutional decoders

and to be scalable in terms of memory and runtime complexities as a function of

the output volume resolution. We also show that it is possible to compress the

dimensionality of the prediction with generic DCT basis without losing important

details. We observe that a simple dimensionality reduction with a generic basis

not only allows for faster inference, but it makes training more stable. For future

work, we will study the feasibility of processing both the input images and output
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volumes in the frequency domain. As most of the training and inference times as

well as the memory required for high resolution reconstruction contributes to our

loss layer, it will be fruitful to explore robust reconstruction loss in the frequency

domain for further speedup.
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Abstract
Capturing large amounts of accurate and diverse 3D data for training is of-

ten time consuming and expensive, either requiring many hours of artist time

to model each object, or to scan from real world objects using depth sensors or

structure from motion techniques. To address this problem, we present a method

for reconstructing 3D textured point clouds from single input images without

any 3D ground truth training data. We recast the problem of 3D point cloud

estimation as that of performing two separate processes, a novel view synthesis

and a depth/shape estimation from the novel view images. To train our models

we leverage the recent advances in deep generative modelling and self-supervised

learning. We show that our method outperforms recent supervised methods, and

achieves state of the art results when compared with another recently proposed

unsupervised method. Furthermore, we show that our method is capable of recov-

ering textural information which is often missing from many previous approaches

that rely on supervision.

5.1 Introduction

Reconstruction of the 3D world from images has been one of the most studied

problems in computer vision [323]. Early works which focused on part-based

reconstruction using simple geometric shapes [136], multi-view reconstruction

using space carving [188], or 3D shape recovery from shading [323], have led to

reasonable quality 3-D reconstructions. In more recent years, with the develop-

ment and standardisation of deep learning [106] in computer vision, researchers

and practitioners have focused on applying these techniques to perform single-

view [143, 155, 211, 364, 370] and multi-view [52, 329, 370] reconstruction. These

methods often employ 3D volumetric representations as they are easily adapted

from existing 2D convolutional neural networks (CNN), due to the inherent sim-

ilarities between 2D images and 3D volumes. Many of the architectures and

methods used on 2D images can be ”lifted” into 3D by replacing the 2D convo-

lutions with 3D convolutions. However, using volumetric representations in the

deep learning framework tend to be limited in terms of quality due to computa-



80
Chapter 5. Single View 3D Point Cloud Reconstruction using Novel View Synthesis and

Self-Supervised Depth Estimation

tional inefficiencies. The volumetric representation is information sparse, where

3D shapes are represented by a binary occupancy grid or a signed distance field.

This representation contains a substantial amount of redundancy, with most of

the information concentrated at the surface voxels. Many follow-up papers have

focused on improving 3D CNNs by exploiting the fact that most of the informa-

tion is concentrated at the surface voxels – this idea has lead to improvements in

training time and volumetric resolution [155,292]. Newer papers [78,211] focus on

using a point cloud representation, which allow more precise reconstruction with

less memory usage. Furthermore, many of the existing systems only try to recover

the geometry of the 3D shape, while completely ignoring the textural information.

Figure 5.1: To recover a 3D point cloud from a single image, the Novel View

prediction model predicts a set of novel view images at a fixed view points. These

novel views are then passed through a Depth Estimation model, where depths are

estimated for each of the images in the set. The predicted RGB-D images are then

unprojected using the inverse camera intrinsics matrix K−1
n and the inverse object

pose Θ−1
n , for each novel view point n

With the large increase in access to data and improved computational resources,

”learning to reconstruct” has become the standard method for single-view 3D

reconstruction [52, 78, 211, 364]. However, 3D object data sets are still limited

and have varying quality due to being hand modelled by artists. Unlike 2D

image data, capturing real world accurate and varied ground truth 3D data is

difficult, time consuming and error prone. Our goal is to simultaneously recover

both the 3D shape and texture information for a specific object without any 3D

supervision. We aim to use only a data set of 2D images to perform our single-

view 3D reconstruction. This is achieved by using advances in self-supervised

depth estimation [94, 101] and deep generative modelling [107, 280, 345]. Our
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contributions are as follows:

1. We develop a novel framework for single view self-supervised 3D point

cloud reconstruction using an image based shape representation;

2. Our method is capable of generating both shape and textural information

from a single-view by leveraging advances in deep generative modelling

and self-supervised learning; and

3. Our combined novel view synthesis and self-supervised depth estimators are

capable of outperforming previous state of the art fully supervised methods

on the ShapeNet [39] car dataset.

5.2 Related Work

Deep learning based shape priors [78, 364] take one of the following three shape

representations: volumetric, point cloud or polygonal mesh. We will discuss in

detail the most relevant methods to our own, which are based on volumetric and

point cloud representations. Volumetric shape representation represents a 3D

shape as either a binary occupancy grid or as a signed distance field, where grid

cell values represent volume occupancy indicators [364] or the distances to the zero

level set [323] respectively. Point clouds are made up of a set of 3D coordinates that

represent point samples along either the surface of the shape or within the convex

hull of the shape. Polygonal meshes, which are typically used in computer graph-

ics, represent a shape with a collection of vertices, edges and faces, where each

face consists of triangles or quadrilaterals. When learning shape priors, each of

these representations have pros and cons. Volumetric shapes are easy to represent

in the deep learning framework as they are analogous in many ways to 2D images,

but they are costly in terms of memory usage [155, 292] and training/inference

time [155]. Many recent works have focused on trying to improve the efficiency of

volumetric representations, through Octrees [292], frequency domain compression

via the Discrete Cosine Transform [155] and sparse convolutions [50]. Point cloud

representations are easy to work with in the geometric deep learning framework as

projections/unprojections and transformations can be implemented with simple

matrix multiplications. However, they usually only have a small fixed number of
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points to represent the shape, meaning that the 3D shapes have limited quality.

This is due to the fact that a set of points has to be represented by a fully connected

layer [279] or a recurrent neural network [78], where each point is predicted based

on previously predicted points in an auto-regressive manner.

5.2.1 Single View 3D Reconstruction

Recovering a 3D shape from a 2D image has been a long-standing goal in the field

of computer vision [323]. While many traditional methods, such as structure from

motion [323] and multi-view stereo [323] rely on many different views to recover

a 3D shape or scene, deep learning based methods aim to ”learn to reconstruct”

by using large collections of corresponding 2D images and 3D shapes [39]. This is

typically done by learning an encoder-decoder model [52], where the encoder is a

2D CNN and the decoder is a 3D deconvolutional neural network. The encoder

first produces a representation of the 3D shape, which the decoder then uses

to conditionally generate a 3D volume. Using 3D convolutions to recover the

shape has many drawbacks. For instance, the volumetric representation limits the

reconstructions in terms of shape resolution because of the computational cost of

scaling up the representation. Therefore, it is difficult to train models with a high

resolution volumetric representation. Furthermore, volumetric representations are

inherently sparse – several works have focused on exploiting this fact to improve

the performance of volumetric reconstruction methods. Riegler et al. [292] redefine

the typical 3D convolution and deconvolution operations by a sparse convolution,

which uses an Octree to reduce the dimensionality and thereby improve perfor-

mance. Johnston et al. [155] replace the the 3D deconvolution layers by an inverse

discrete cosine transform layer that allows the network to learn the coefficients

of the underlying compressed 3D volume, resulting in an order of magnitude

improvement in training time, resolution and memory efficiency. To deal with the

limited resolution and computation cost of the volumetric representation, Fan et

al. [78] proposed to instead use a point cloud representation. A deep 2D encoder

similar to [52], is used to encode the image and a combination of 2D deconvolution

and fully connected layers are merged to predict a fixed number of 3D points.

Another drawback of the naive 3D volumetric representation is the inability to

reason about the underlying geometry of the object. Recently, Xinchen et al. [370]
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presented a method that uses a perspective transformation to project the under-

lying volume back into a silhouette. They then use a loss function to penalize

the projected voxels that are inconsistent with the silhouettes of adjacent views.

However, this formulation has difficulty representing concave surfaces as only the

visual hull of the object will be projected when computing the loss. To improve

upon this method, Tulsiani et al. [329] show a method for adding geometric rea-

soning, by incorporating a differentiable ray consistency operation, which relaxes

the problem and treats the voxel occupancy and projection as a probabilistic grid.

This allows the model to handle more complex shapes.

Insafutdinov et al. [143] further refine this idea by proposing a CNN that

predicts a fixed size point cloud, which is then converted to a probabilistic voxel

occupancy grid [329]. Instead of regressing directly for the 3D points, the authors

propose to use an unsupervised/self-supervised loss function, where the points

are projected back to an image, via a differentiable projection function at random

views. This allows the model to use a point cloud re-projection loss to train the

network in a self-supervised manner. Furthermore, Insafutdinov et al. [143] extend

their method by jointly learning an ensemble of pose estimators, such that their

method can be trained on images from any pose. However, their model performs

significantly worse when relying on such estimated poses for the re-projection

loss.

As point clouds are represented as an un-ordered set of 3D points, fully con-

nected layers or recurrent neural networks can be used as the output layer for

predicting the points [78, 279]. However, in practice, this limits the density of

the point cloud as the number of parameters in the output layer increases lin-

early with the number of points. Rather than predicting an un-ordered set of

points or a 3D volume, Lin et al. [211] propose to supervise for depth at a set

of given fixed views. Rather than directly regressing for depth, they propose to

apply a ”pseudo-rendering” function, where the predicted depth maps are first

un-projected into a point cloud, then the point cloud is re-projected back into

another set of depth maps at random different viewpoints. The supervised loss is

then computed against these new depth maps, which forces the model to learn

to create a consistent 3D shape. While generating excellent dense point clouds,

this method requires the capturing of large amounts of multi-view depth images,
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which in practice for real data would be prohibitive. Furthermore, this method

is unable to recover the underlying 3D texture of the object. Unlike [143], we do

not represent our point cloud as a fixed number of points. Instead, we represent

our 3D shape using a fixed number of views of an object. We train two separate

networks, the first of which predicts N fixed novel views of an object given a

single input image. The second network is trained to predict the depth for a given

input image. Similarly to [211], we use a depth representation for our 3D shapes.

However, we do not supervise for the depth maps, rather we use a photometric

image warping loss to train our depth network in a self-supervised manner.

5.2.2 Self-Supervised Depth Estimation

Figure 5.2: The self-supervised depth network is trained using a set of images

at different view points with known poses. The input image, Imagea is passed

through a CNN which predicts a dense depth map for the image. The predicted

depth is then passed into a warping function, along with Imageb, the relative

pose for the image pair θb→a and the camera intrinsics matrix K. The warping

function uses a differentiable image sampler [147] to re-project the Imageb in the

pose of Imagea. Finally, the network is trained using a photometric consistency

loss function (eq. 5.1), which allows the network to implicitly learn to predict

depth, without any ground truth depth images.

In the standard supervised setting, a convolutional neural network is used to

estimate depth by supervising against ground truth depth maps captured from

any form of depth sensor e.g. Microsoft Kinect, Stereo Depth Maps, LIDAR etc.
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However, each of these sensors have limitations with regards to range and operat-

ing compatibility (e.g. weather or lighting conditions). Furthermore, ground truth

RGB-D data is still limited in variety and size when compared with RGB image

data sets. Recent works have shown that it is possible to self-supervise neural

networks such that they can implicitly solve the task of interest. This is achieved

by using a proxy loss function that solves a closely related problem. This allows

networks to be trained from scratch on large collections of unlabelled data. In the

case of self-supervised depth models, a photometric error based on differentiable

image warping [147] and re-projection is used to implicitly train the network to

predict depth. Garg et al. [94] show the earliest example of self-supervised depth

estimation, performed by using synchronized stereo pairs. These results were

further improved by Godard et al. [101] with the addition of a left-right consistency

term. The photometric loss is extended to compute the loss bidirectionally from left

to right and right to left for both images in the pair, ensuring consistency between

the depths. Further work in this area has relaxed the requirement of needing stereo

pairs, by using monocular video. More specifically, instead of using the stereo

information for self-supervision, a second neural network simultaneously predicts

the camera pose between frames in the input video [102, 339] and image warping

is performed between successive frames. As these methods rely on predicted pose

values, they are typically worse than the stereo based methods [94, 102, 339].

5.2.3 Novel View Synthesis

Novel view synthesis is an image based rendering technique, where instead of

using a traditional graphics engine, like those found in many 3D applications

(e.g. video games, architectural visualization), a model is used to approximate

the rendering function. In recent works, an encoder-decoder CNN is used to

approximate the rendering function [267, 390]. Alternatively, Zhou et al. [390]

formulate the problem as that of regressing the 2D optical flow field that transforms

the input image into the selected target image. In Transformation Grounded Image

Generation Network for Novel 3D View Synthesis (TVSN) [267], this idea is extended

to also include a term to predict the visibility of each pixel. Using this visibility

map they mask the occluded pixels and then fill in the missing information using

a refinement network. This is combined with an adversarial loss [107] and a
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perceptual feature matching loss [152], which is used to improve training stability

[267, 345]. However, TVSN requires that the visibility maps be computed ahead

of time when rendering the objects. This limits the technique to only work on

synthetic data sets where it is possible to compute accurate 3D visibility maps

ahead of time.

5.3 Methods

Our goal is to generate the 3D textured point cloud of a single object given a

single input view. Our training set consists of a set of multi-view observations for

several instances of objects from the same category, together with their respective

pose. We propose to replace the supervised point cloud estimation, by using a

set of depth maps automatically predicted from novel views generated by a deep

generative model. Rather than supervising for depth prediction [211], we leverage

the advances in self-supervised/unsupervised depth estimation [94, 101]. These

depths can then be un-projected to recover a partial point cloud for each generated

novel view image. As the model predicts the novel fixed views, we can estimate

the depth, un-project using the known camera intrinsics and then combine the N

partial point clouds into a single 3D point cloud using the inverse of the object

pose. In our experiments, we set the number of camera poses to N = 5 at fixed

60 degree intervals, such that they have overlapping fields of view. We exclude

the final image (i.e 360∘) as it is identical to the first image in the sequence. These

output viewpoints are independent from the object pose in the input image.

5.3.1 Self-Supervised Depth Estimation

To estimate the 3D point cloud for a set of images, we train a self-supervised

monocular depth estimator. First, a convolutional neural network is used predict

the depth for a given input image Ia : Ω → R3, where Ω denotes image lattice.

Then, using the vectorized homogeneous depth points1 Za ∈ RN×4 (4th dimension

represents the homogeneous coordinate), known camera intrinsics K ∈ R4×4 and

1The x and y coordinates are uniformly sampled from a 2D grid between [−1, 1] for each spatial

location in Ia.
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relative camera pose Tb→a ∈ R4×4, the next image in the set Ib is un-projected and

transformed into a matrix of homogeneous points Pb ∈ RN×4. The un-projected

points are transformed back into the source target frame and then re-projected.

This process is defined as follows:

Pb = KT−1(K−1ZT
a ). (5.1)

The point set Pb in (5.1) is then sampled using a differentiable image sampler [147],

such that the pixels in the source image are warped into the original image

Îa = φ(Ib, Pb), (5.2)

where φ(.) denotes the differential sampler defined by [147].

The photometric re-projection error [94, 101] is then computed between the

warped image and the original input image. This forces the model to implicitly

learn to predict depth for the input image. At test time, only a single image is

needed to predict the depth output. The photometric re-projection loss function is

computed for each pixel coordinate (x, y) as follows:

ℒpe = ∑
x,y
‖Ia(x, y)− Îa(x, y)‖1. (5.3)

The photometric re-projection loss can be any image reconstruction loss function

computed in pixel space. In our case, we find that using a mean absolute error (i.e.,

L1 distance) is sufficient and provides sharper depth estimates than L2 distance.

An overview of this process can be found in Fig. 5.2

5.3.2 Novel View Synthesis

While it is possible to only use a novel view synthesis model with a simple

regression loss, this often leads to blurry and inaccurate images (see Table 5.2

for a comparison). As our method requires chaining together image synthesis

and a depth estimation, we aim to generate accurate novel views such that the

point cloud can be as accurate as possible. Therefore, to improve the image

quality we train our novel view model as a generative adversarial network [107]

(GAN). The object of the GAN framework is to train two networks, the generator

network G(.) which attempts to generate samples that are real enough to fool the
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discriminator network D(.). These networks are then trained in an alternating

fashion2. Empirically, we find that the standard adversarial loss [107] is unstable

and fails to give satisfactory results. Therefore, we opt to use the least squares

generative adversarial loss (LSGAN) [230] formulation, which shows more stable

results during training. The LSGAN loss functions for the discriminator network

D(.) is defined by:

ℒdis(G, D) =
1
2

E[(D(Iy)− 1)2] +
1
2

E[(D(G(Ix))
2], (5.4)

where Ix is the input image and Iy is the ground truth images for each of the novel

viewpoints associated with Ix. The loss function for the generator network G(.) is

defined as:

ℒgan(G, D) = E[(D(G(Ix))− 1)2]. (5.5)

We wish to generate the highest possible resolution point cloud, we therefore

need to synthesize high resolution novel views. As GANs often struggle with

generating images with a resolution greater than 128x128, Iizuka et al. [141] and

Wang et al. [345] suggest that using multiple discriminators at different image

scales improves with both the local and global consistency of synthesized images

at high resolution. Each discriminator is trained at a different scale improving

training stability. Similarly to Wang et al. [345], we use three scales, represented by

k ∈ {1, 2, 3}, and optimizing the generator adversarial loss (5.5) as the sum of the

multiple scale discriminator outputs:

min
G

max
D1,D2,D3

∑
k=1,2,3

ℒgan(G, Dk), (5.6)

where Dk represents the Discriminator network for each scale k. We also use

an adversarial feature matching loss [267, 345] to improve training stability. The

feature matching loss extracts multiple feature maps from the different scale

intermediate layers of the Discriminator network. The L1 error is then computed

between the feature representations for both the real images samples and the

synthesized images. This feature matching loss is computed for each of the

2This process can be thought of as a zero-sum game where the objective is to find a Nash

Equilibrium between the two networks.
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multiple scale discriminators Dk, as follows:

ℒ f eat(G, Dk) =
T

∑
i=0

1
Ni

‖D(i)
k (Iy)− D(i)

k (G(Ix))‖1, (5.7)

where T represents the number of intermediate layers. The error between the fea-

ture maps is then weighted by the size of each feature map Ni at each intermediate

feature scale i. As we are training a conditional GAN we also use a reconstruction

term to encourage the network to create exact reconstructions:

ℒrecon(G) = ‖Iy − G(Ix)‖1. (5.8)

where the reconstruction loss (5.8) is computed between the synthesised images

G(Ix) and the corresponding ground truth images Iy. The final loss function for

training the refinement/novel-view network is then computed as the weighted

sum of the previous equations:

min
G

ℒ(G, D) = ℒrecon * λ1 + ℒ f eat * λ2 + ℒgan * λ3. (5.9)

As the G(.) and D(.) networks are trained in an alternating fashion, the final

objective for training the multi-scale discriminator networks is to minimize the

sum of the discriminative loss in (5.4) for each of the different scales k:

min
D1,D2,D3

∑
k=1,2,3

ℒdis(G, Dk). (5.10)

5.3.3 Unprojection and Masking

Finally, it is possible to estimate the 3D point cloud for a set of novel images

generated by the novel view network, by passing the novel views through the

trained depth estimator. These depths can then be un-projected to form the final

point cloud P ∈ RN×4 by performing (5.11) but stopping before re-projection.

Given the vectorized depth points Zn ∈ RN×4 for each of the novel view points n,

known camera intrinsics K ∈ R4×4 and relative camera poses Tn ∈ R4×4 we can

un-project the point cloud for each viewpoint by:

P = T−1
n (K−1ZT

n ) ∀n, (5.11)
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where n denotes the index of the novel view. As the self-supervised depth estima-

tion model is trained implicitly via the image warping function, the model will

still attempt to estimate depth for undefined regions. If we were using real images

it would be possible to remove background and outlying points based solely on

the depth value. However, as the rendered images from ShapeNet data set have

no background, we decide to predict the object mask along side the RGB channels

in the novel view synthesis. When performing the un-projection, we can mask the

background depth image values using this predicted mask.

5.4 Experiments

We evaluate the efficacy of our system for single view 3D point cloud reconstruc-

tion using the car category of the ShapeNet data set [39]. The images in this data

set are taken at uniformly sampled poses and have 256 × 256 pixels. We select the

car class due to its large number of varied instances with high textural detail. We

use an instance-wise split of 80%/20% for training and testing, exactly as defined

in [52,78,143,155,211]. A UNet network [293] is used for both the depth prediction

network and the novel view network. Both networks use convolutional encoder

blocks consisting of a strided convolution, batch normalization [106] and leaky

ReLU [106]. The convolutional decoder differs between the two architectures. The

depth prediction network uses UpConv blocks (bilinear upsample + convolution),

as we found that using a transposed convolution results in unacceptable artifacts.

In the novel view network, we found that the transposed convolution layers were

necessary to stabilize the GAN training [280]. All up-sampling blocks make use

of batch normalization and leaky ReLU. We train our novel view network and

discriminator using the Adam optimizer with learning rate 0.0002 and 0.0004 re-

spectively. Furthermore, we set the hyper-parameters that control the momentum

in the Adam optimizer to β1 = 0.0 and β2 = 0.999 for both G(.) and D(.). We set

the loss function weights (Eq. 5.9) as λ1 = 100, λ2 = 1 and λ3 = 1. To train the

depth estimator, we use the Adam optimizer with learning rate 0.001 with default

momentum. For each batch, the input/target Ia view and source view point Ib are

randomly selected from the data set to be corresponding views that are rotated

20∘ from one another. Training hyperparameters were selected via manual search.
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5.4.1 Evaluation Metrics

Shape Metric

To quantitatively evaluate our 3D point clouds, we opt to use the Chamfer distance

metric [78,211] as it has been shown to be highly correlated with human judgment

of 3D shape similarity. Given a ground truth point cloud Pgt and a predicted point

cloud Ppr, the distance is defined as follows:

dCham f
(
Pgt, Ppr

)
= min

∥∥Ppr − Pgt
∥∥

2 + min
∥∥Pgt − Ppr

∥∥
2 (5.12)

The Chamfer distance is defined by a sum of two components. The left-hand

component measures the precision, or how similar the predicted point cloud is to

the ground truth. While the right-hand side is the coverage of the predicted point

cloud, which measures how well the points cover the surface of the object.

Image Metric

To measure the image generation quality we use the structured similarity image

metric (SSIM) [350] The SSIM metric is often used as a perceptual measure of the

quality of an image and has been show to have a strong correlation with human

perception of image quality [350]. The SSIM measure is computed between the

two sets of image patches of size W ×W extracted from the predicted image x̂ and

ground truth image x:

SSIM(x̂, x) =
(2µx̂2µx + c1)(2σx̂x + c2)

(µ2
x̂ + µ2

x + c1)(σ
2
x̂ + σ2

x + c2)
, (5.13)

where µx̂ and µx are the means for each window, and σx̂ and σx are the variance

for each window. While σx̂x is the covariance between the windows x̂ and x, the

constants are set to the default values of c1 = 0.012 and c2 = 0.032, and the window

size is set to the default value of W = 11. The measure returns a value in the range

[0.0, 1.0] with 1.0 being perfect recreation of the original image.

5.4.2 Single-view Reconstruction

The quantitative results for the single view object reconstruction task are reported

in Table 5.1. When comparing the Chamfer distance (5.12) of our system with
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several supervised methods [52, 78, 211], we observe that we outperform all other

reported methods. We likely outperform the simpler point cloud and volumetric

methods [52, 78] due to the denser representation afforded by using a depth map

representation. Note that as 3D-R2N2 [52] uses a 3D volumetric representation, the

shapes are converted to a point cloud via uniform sampling along the boundary of

the volume, severely limiting the final resolution of the point cloud representation.

Furthermore, we outperform the method in [211], which also uses a depth map

based representation, however, unlike us their method is supervised for depth

and is unable to recover textural information. We argue that the improvement

over the supervised depth estimator [211] is due to the use of the geometric loss

function to train the depth network. While our model under-performs in terms

of coverage metric in (5.12), when compared with Lin et al. [211], we believe

this is due to the simplifying setup that we rely on, consisting of novel views

images with zero-degree elevation. As the images have zero elevation, points that

are partially self-occluded (e.g. on the bonnet or roof of the car) will be sparser

than points in direct view. In future, this could be addressed by using multiple

elevations in the novel view network. We also compare with the current state of

the art method [143], which also uses self-supervised learning to estimate the 3D

point cloud. Our method slightly outperforms with respect to Chamfer distance,

but the exact numbers for the method in [143] regarding precision and coverage

are unavailable for a more detailed analysis. It is clear from the qualitative results

shown in Fig. 5.3, that our method fails to preserve high frequency information

like racing stripes or decals, even when utilizing a GAN. However, the general

shape and colour are consistent, with some fine details being recovered.

5.4.3 Ablation Study

As our novel view network has a complex training process, we also performed

an ablation study to show the efficacy of the GAN method and the proposed

architecture. The results presented in Table 5.2 use the same training setup as

used in Section 5.4.2. We evaluate the use of a simple Encoder-Decoder model,

which contains no skip connections, but otherwise is architecturally the same as

the UNet. We also show results without the GAN loss function, trained only with

L1 loss for the Encoder-Decoder model. Furthermore, we also evaluate the use
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Figure 5.3: Qualitative results for the cars category on the ShapeNet test set. Our

method is capable of synthesizing coherent and accurate 3D point clouds, with

textural (colour) information, using only a single image as input. Left: Input image,

Middle-Top: predicted novel views, Middle-Bottom: ground truth test images, Right:

3D point clouds, un-projected using the depth and novel view networks.

of the Multi-Scale and Discriminator Feature Matching losses in (5.8) for both the

Encoder-Decoder model and the UNet model. Finally, we also tested our novel

view model using a Variational Autoencoder (VAE) [106], another type of deep

generative model. We also present the results for the UNet without the multi-scale

and feature matching discriminators [267, 345]. The comparison is based on the

SSIM result over the test set for each of the different methods – see Table 5.2. It

is clear from the results that each of the architectural and extra losses, such as
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Method Car

3D-R2N2 (1 view) [52] 1.808 / 3.238 / 5.046

3D-R2N2 (3 view) [52] 1.685 / 3.151 / 4.836

3D-R2N2 (5 view) [52] 1.664 / 3.146 / 4.810

Fan et al. [78] 1.800 / 2.053 / 3.853

Lin et al. [211] 1.446 / 1.061 / 2.507

Insafutdinov and Dosovitskiy [143] - / - / 2.42

Proposed (1 view) 1.208 / 1.208 / 2.416

Table 5.1: Quantitative results of our method in single view 3D reconstruction

compared against several supervised (above line) and self-supervised (below

line) systems. Numbers reported are point cloud precision/coverage/Chamfer

distance (5.12). The best numbers for each category are in bold font (lower is

better).

Method SSIM Chamfer

Deep Convolutional VAE 0.8410 2.623

Encoder-Decoder (No GAN) 0.8475 2.692

Encoder-Decoder (GAN) 0.8493 2.476

Encoder-Decoder (GAN + MS + FM) 0.8550 2.43

UNet (GAN + MS + FM) 0.8756 2.416

Table 5.2: Ablation study results of the ShapeNet Car category. Image quality

results are evaluated using the structured similarity metric in (5.13) (higher is

better) and the Point Cloud Chamfer distance (5.12) (lower is better). MS: Multi-

scale Discriminator. FM: Discriminator Feature Matching Loss. The best numbers

for each category are in bold font.

multi-scale and feature matching discriminators, are required to achieve a state

of the art result with our method. Counter-intuitively, we found that the skip

connections provide a significant improvement in SSIM, Chamfer distance and

overall 3D reconstruction quality. Normally, skip connections are used to pass

high level structural details for observable details in the input image e.g. object

edges and boundaries. Therefore, there should be limited improvement by adding

in skip connections, as there will be limited overlap between observable features
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and predicted novel views. We believe there are two reasons for the improvement

when using skip connections. The first is that the encoder-decoder cannot easily

recover the finer details of the texture as there is limited capacity in the hidden

layer for representing the 256× 256-pixel images. Furthermore, it is challenging for

the encoder-decoder to correctly estimate the overall colour of an object resulting

in blurry and patchy texturing, as can be seen in Fig. 5.4. Secondly, we empirically

found that the UNet model is more stable when training the GAN. We believe this

is because when one of the target views and the input view are very similar, the

network has an easier task of predicting that novel view as it can simply ”copy”

many of the pixels to the output. The result of this is that the discriminator cannot

overpower the generator network as easily. Furthermore, as objects like cars have

many textural symmetries, the skip connections can provide important cues to the

model about the shape and symmetries of the objects we are trying to reconstruct.

Figure 5.4: Comparison of our method without using UNet skip connections (left)

and when using skip connections (right).

5.5 Conclusions and Future Work

In this work, we have presented a method for reconstructing textured 3D point

clouds from single images. We achieved this result by leveraging the advances in

both deep generative modelling and self-supervised depth estimation. We have

shown state of the art results for 3D point cloud reconstruction for the car category

in the ShapeNet data set [39]. Future work will focus on extending this method
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to work for multiple categories, by making use of new improvements in deep

generative modelling [161]. To allow for training on images with limited textural

detail (Chairs and Airplanes), our method could be further improved by unifying

the depth and novel view networks with the incorporation of a differentiable

projection function, similar to that presented in [143]. The depth network could

be further improved by using both multi-scale [339] and structural dissimilarity

loss functions [102] and the Novel View model could be extended to include both

geometric reasoning and refinement [267]. Additionally, our method assumes

known ground truth poses for performing the reconstruction. By incorporating a

3D pose estimator [102, 339], it would be possible to remove this limitation and

train a fully unsupervised 3D reconstruction model.
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Abstract

Monocular depth estimation has become one of the most studied applications

in computer vision, where the most accurate approaches are based on fully su-

pervised learning models. However, the acquisition of accurate and large ground

truth data sets to model these fully supervised methods is a major challenge

for the further development of the area. Self-supervised methods trained with

monocular videos constitute one the most promising approaches to mitigate the

challenge mentioned above due to the wide-spread availability of training data.

Consequently, they have been intensively studied, where the main ideas explored

consist of different types of model architectures, loss functions, and occlusion

masks to address non-rigid motion. In this paper, we propose two new ideas to

improve self-supervised monocular trained depth estimation: 1) self-attention,

and 2) discrete disparity prediction. Compared with the usual localised convolu-

tion operation, self-attention can explore a more general contextual information

that allows the inference of similar disparity values at non-contiguous regions

of the image. Discrete disparity prediction has been shown by fully supervised

methods to provide a more robust and sharper depth estimation than the more

common continuous disparity prediction, besides enabling the estimation of depth

uncertainty. We show that the extension of the state-of-the-art self-supervised

monocular trained depth estimator Monodepth2 with these two ideas allows us

to design a model that produces the best results in the field in KITTI 2015 and

Make3D, closing the gap with respect self-supervised stereo training and fully

supervised approaches.

6.1 Introduction

Perception of the 3D world is one of the main tasks in computer/robotic vision.

Accurate perception, localisation, mapping and planning capabilities are predi-

cated on having access to correct depth information. Range finding sensors such

as LiDAR or stereo/multi-camera rigs are often deployed to estimate depth for

use in robotics and autonomous systems, due to their accuracy and robustness.

However, in many cases it might be unfeasible to have, or rely solely on such
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expensive or complex sensors. This has led to the development of learning-based

methods [162, 303, 304], where the most successful approaches rely on fully super-

vised convolutional neural networks (CNNs) [73,74,88,113,234]. While supervised

learning methods have produced outstanding monocular depth estimation results,

ground truth RGB-D data is still limited in variety and abundance when compared

with the RGB image and video data sets available in the field. Furthermore, col-

lecting accurate and large ground truth data sets is a difficult task due to sensor

noise and limited operating capabilities (due to weather conditions, lighting, etc.).

Recent studies have shown that it is instead possible to train a depth estimator

in a self-supervised manner using synchronised stereo image pairs [94, 101] or

monocular video [388]. While monocular video offers an attractive alternative

to stereo based learning due to wide-spread availability of training sequences, it

poses many challenges. Unlike stereo based methods, which have a known camera

pose that can be computed offline, self-supervised monocular trained depth esti-

mators need to jointly estimate depth and ego-motion to minimise the photometric

reprojection loss function [94, 101]. Any noise introduced by the pose estimator

model can degrade the performance of a model trained on monocular sequences,

resulting in large depth estimation errors. Furthermore, self-supervised monocular

training makes the assumption of a moving camera in a static (i.e., rigid) scene,

which causes monocular models to estimate ’holes’ for pixels associated with

moving visual objects, such as cars and people (i.e., non-rigid motion). To deal

with these issues, many works focus on the development of new specialised archi-

tectures [388], masking strategies [103, 225, 339, 388], and loss functions [101, 103].

Even with all of these developments, self-supervised monocular trained depth

estimators are less accurate than their stereo trained counterparts and significantly

less accurate than fully supervised methods.

In this paper, we propose two new ideas to improve self-supervised monocu-

lar trained depth estimation: 1) self-attention [335, 347], and 2) discrete disparity

volume [168]. Our proposed self-attention module explores non-contiguous (i.e.,

global) image regions as a context for estimating similar depth at those regions.

Such approach contrasts with the currently used local 2D and 3D convolutions that
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Figure 6.1: Self-supervised Monocular Trained Depth Estimation using Self-

attention and Discrete Disparity Volume. Our self-supervised monocular trained

model uses self-attention to improve contextual reasoning and discrete disparity

estimation to produce accurate and sharp depth predictions and depth uncertain-

ties. Top: input image; Middle Top: estimated disparity; Middle Bottom: samples of the

attention maps produced by our system (blue indicates common attention regions); Bottom:

pixel-wise depth uncertainty (blue: low uncertainty; green/red: high/highest uncertainty).
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Figure 6.2: Overall Architecture The image encoding processes is highlighted in

part a). The input monocular image is encoded using a ResNet encoder and then

passed through the Self-Attention Context Module. The computed attention maps

are then convolved with a 2D convolution with the number of output channels

equal to the number dimensions for the Discrete Disparity Volume (DDV). The

DDV is then projected into a 2D depth map by performing a softargmax across the

disparity dimension resulting in the lowest resolution disparity estimation (Eq. 6.4).

In part b) the pose estimator is shown, and part c) shows more details of the Multi-

Scale decoder. The low resolution disparity map is passed through successive

blocks of UpConv (nearest upsample + convolution). The DDV projection is

performed at each scale, in the same way as in the initial encoding stage. Finally,

each of the outputs are upsampled to input resolution to compute the photometric

reprojection loss.

are unable to explore such global context. The proposed discrete disparity volume

enables the estimation of more robust and sharper depth estimates, as previously

demonstrated by fully supervised depth estimation approaches [168,213]. Sharper

depth estimates are important to improving accuracy, and increased robustness is

desirable to allow self-supervised monocular trained depth estimation to address

common mistakes made by the method, such as incorrect pose estimation and

matching failures because of uniform textural details. We also show that our

method can estimate pixel-wise depth uncertainties with the proposed discrete

disparity volume [168]. Depth uncertainty estimation is important for refining

depth estimation [88], and in safety critical systems [166], allowing an agent to
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identify unknowns in an environment in order to reach optimal decisions. As a

secondary contribution of this paper, we leverage recent advances in semantic

segmentation network architectures that allow us to train larger models on a sin-

gle GPU machine. Experimental results show that our novel approach produces

the best self-supervised monocular depth estimation results for KITTI 2015 and

Make3D. We also show in the experiments that our method is able to close the gap

with self-supervised stereo trained and fully supervised depth estimators.

6.2 Related Work

Many computer vision and robotic systems that are used in navigation, localization

and mapping rely on accurately understanding the 3D world around them [4, 71,

116, 238]. Active sensors such as LiDAR, Time of Flight cameras, or Stereo/Multi

camera rigs are often deployed in robotic and autonomous systems to estimate the

depth of an image for understanding the agent’s environment [4,71]. Despite their

wipe-spread adoption [296], these systems have several drawbacks [71], including

limited range, sensor noise, power consumption and cost. Instead of relying on

these active sensor systems, recent advances leveraging fully supervised deep

learning methods [73, 74, 88, 113, 234] have made it possible to learn to predict

depth from monocular RGB cameras [73, 74]. However, ground truth RGB-D data

for supervised learning can be difficult to obtain, especially for every possible

environment we wish our robotic agents to operate. To alleviate this requirement,

many recent works have focused on developing self-supervised techniques to train

monocular depth estimators using synchronised stereo image pairs [94, 101, 273],

monocular video [103, 388] or binocular video [103, 225, 379].

6.2.1 Monocular Depth Estimation

Depth estimation from a monocular image is an inherently ill-posed problem as

pixels in the image can have multiple plausible depths. Nevertheless, methods

based on supervised learning have been shown to mitigate this challenge and

correctly estimate depth from colour input images [304]. Eigen et al. [74] proposed

the first method based on Deep Learning, which applies a multi-scale convolution
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neural network and a scale-invariant loss function to model local and global fea-

tures within an image. Since then, fully supervised deep learning based methods

have been continuously improved [88, 113, 234]. However these methods are

limited by the availability of training data, which can be costly to obtain. While

such issues can be mitigated with the use of synthetic training data [234], simu-

lated environments need to be modelled by human artists, limiting the amount of

variation in the data set.

To overcome fully supervised training set constraint, Garg et al. [94] propose

a self-supervised framework, where instead of supervising using ground truth

depth, a stereo photometric reprojection warping loss is used to implicitly learn

depth. This loss function is a pixel-based reconstruction loss that uses stereo pairs,

where the right image of the pair is warped into the left using a differentiable im-

age sampler [148]. This loss function allows the deep learning model to implicitly

recover the underlying depth for the input image. Expanding on this method,

Godard et al. [101] add a left-right consistency loss term which helps to ensure

consistency between the predicted depths from the left and right images of the

stereo pair. While capable of training monocular depth estimators, these meth-

ods still rely on stereo-based training data which can still be difficult to acquire.

This has motivated the development of self-supervised monocular trained depth

estimators [388] which relax the requirement of synchronized stereo image pairs

by jointly learning to predict depth and ego-motion with two separate networks,

enabling the training of a monocular depth estimator using monocular video. To

achieve this, the scene is assumed to be static (i.e., rigid), while the only motion

is that of the camera. However, this causes degenerate behaviour in the depth

estimator when this assumption is broken. To deal with this issue, the paper [388]

includes a predictive masking which learns to ignore regions that violates the

rigidity assumptions. Vijayanarasimhan et al. [339] propose a more complex mo-

tion model based on multiple motion masks, and GeoNet model [374] decomposes

depth and optical flow to account for object motion within the image sequence.

Self-supervised monocular trained methods have been further improved by con-

straining predicted depths to be consistent with surface normals [373], using

pre-computed instance-level segmentation masks [38] and increasing the resolu-
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tion of the input images [273]. Godard et al. [103] further close the performance

gap between monocular and stereo-trained self-supervision with Monodepth2

which uses multi-scale estimation and a per-pixel minimum re-projection loss

that better handles occlusions. We extend Monodepth2 with our proposed ideas,

namely self-attention and discrete disparity volume.

6.2.2 Self-attention

Self-attention has improved the performance of natural language processing

(NLP) systems by allowing a better handling of long-range dependencies be-

tween words [335], when compared with recurrent neural networks (RNN) [299],

long short term memory (LSTM) [132], and convolutional neural nets (CNN) [199].

This better performance can be explained by the fact that RNNs, LSTMs and CNNs

can only process information in the local word neighbourhood, making these ap-

proaches insufficient for capturing long range dependencies in a sentence [335],

which is essential in some tasks, like machine translation. Self-attention has been

proposed in computer vision for improving Image Classification and Object Drec-

tion [20,269]. Self-attention has also improved the performance of computer vision

tasks such as semantic segmentation [376] by addressing more effectively the

problem of segmenting visual classes in non-contiguous regions of the image,

when compared with convolutional layers [42, 44, 385], which can only process

information in the local pixel neighbourhood. In fact, many of the recent improve-

ments in semantic segmentation performance stem from improved contextual

aggregation strategies (i.e., strategies that can process spatially non-contiguous

image regions) such as the Pyramid Pooling Module (PPM) in PSPNet [385], and

the Atrous Spatial Pyramid Pooling [42]. In both of these methods, multiple scales

of information are aggregated to improve the contextual representation by the

network. Yuan et al. [376] further improve on this area with OCNet, which adds to

a ResNet-101 [123] backbone a self-attention module that learns to contextually

represent groups of features with similar semantic similarity. Therefore, we hy-

pothesise that such self-attention mechanisms can also improve depth prediction

using monocular video because the correct context for the prediction of a pixel

depth may be at a non-contiguous location that the standard convolutions cannot

reach.
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6.2.3 Discrete Disparity Volume

Kendall et al. [168] propose to learn stereo matching in a supervised manner,

by using a shared CNN encoder with a cost volume that is refined using 3D

convolutions. Liu et al. [213] investigate this idea further by training a model

using monocular video with ground truth depth and poses. This paper [213]

relies on a depth probability volume (DPV) and a Bayesian filtering framework

that refines outliers based on the uncertainty computed from the DPV. Fu et

al. [88] represent their ground-truth depth data as discrete bins, effectively forming

a disparity volume for training. All methods above work in fully-supervised

scenarios, showing advantages for depth estimation robustness and sharpness,

allied with the possibility of estimating depth uncertainty. Such uncertainty

estimation can be used by autonomous systems to improve decision making [166]

or to refine depth estimation [88]. In this paper, we hypothesis that the extension

of self-supervised monocular trained methods with a discrete disparity volume

will provide the same advantages observed in fully-supervised models.

6.3 Methods

In the presentation of our proposed model for self-supervised monocular trained

depth estimation, we focus on showing the importance of the main contributions

of this paper, namely self-attention and discrete disparity volume. We use as

baseline, the Monodepth2 model [103] based on a UNet architecture [294].

6.3.1 Model

We represent the RGB image with I : Ω → R3, where Ω denotes the image lattice

of height H and width W. The first stage of the model, depicted in Fig. 4.1, is the

ResNet-101 encoder, which forms X = resnetθ(It), with X : Ω1/8 → RM, M denot-

ing the number of channels at the output of the ResNet, and Ω1/8 representing the

low-resolution lattice at (1/8)th of its initial size in Ω. The ResNet output is then

used by the self-attention module [347], which first forms the query, key and value
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results, represented by:

f (X(ω)) =W f X(ω),

g(X(ω)) =WgX(ω),

h(X(ω)) =WhX(ω),

(6.1)

respectively, with W f , Wg, Wh ∈ RN×M. The query and key values are then

combined with

Sω = so f tmax( f (X(ω))Tg(X)), (6.2)

where Sω : Ω1/8 → [0, 1], and we abuse the notation by representing g(X) as

a tensor of size N × H/8 × W/8. The self-attention map is then built by the

multiplication of value and Sω in (6.2), with:

A(ω) = ∑
ω̃∈Ω1/8

h(X(ω̃))× Sω(ω̃), (6.3)

with A : Ω1/8 → RN.

The low-resolution discrete disparity volume (DDV) is denoted by D1/8(ω) =

conv3×3(A(ω)), with D1/8 : Ω1/8 → RK (K denotes the number of discretized

disparity values), and conv3×3(.) denoting a convolutional layer with filters of size

3 × 3. The low resolution disparity map is then computed with

σ(D1/8(ω)) =
K

∑
k=1

so f tmax(D1/8(ω)[k])× disparity(k), (6.4)

where so f tmax(D1/8(ω)[k]) is the softmax result of the kth output from D1/8, and

disparity(k) holds the disparity value for k. Given the ambiguous results pro-

duced by these low-resolution disparity maps, we follow the multi-scale strategy

proposed by Godard et al. [103]. The low resolution map from (6.4) is the first

step of the multi-scale decoder that consists of three additional stages of upconv

operators (i.e., nearest upsample + convolution) that receive skip connections from

the ResNet encoder for the respective resolutions, as shown in Fig. 4.1. These skip

connections between encoding layers and associated decoding layers are known

to retain high-level information in the final depth output. At each resolution, we

form a new DDV, which is used to compute the disparity map at that particular
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resolution. The resolutions considered are (1/8), (1/4), (1/2), and (1/1) of the

original resolution, respectively represented by σ(D1/8), σ(D1/4), σ(D1/2), and

σ(D1/1).

Another essential part of our model is the pose estimator [388], which takes two im-

ages recorded at two different time steps, and returns the relative transformation,

as in

Tt→t′ = pφ(It, It′), (6.5)

where Tt→t′ denotes the transformation matrix between images recorded at time

steps t and t′, and pφ(.) is the pose estimator, consisting of a deep learning model

parameterised by φ.

6.3.2 Training and Inference

The training is based on the minimum per-pixel photometric re-projection er-

ror [103] between the source image It′ and the target image It, using the relative

pose Tt→t′ defined in (6.5). The pixel-wise error is defined by

`p =
1
|𝒮| ∑

s∈𝒮

(
min

t′
µ(s) × pe(It, I(s)t→t′)

)
, (6.6)

where pe(.) denotes the photometric reconstruction error, 𝒮 = {1
8 , 1

4 , 1
2 , 1

1} is the set

of the resolutions available for the disparity map, defined in (6.4), t′ ∈ {t− 1, t+ 1},

indicating that we use two frames that are temporally adjacent to It as its source

frames [103], and µ(s) is a binary mask that filters out stationary points (see more

details below in Eq.6.10) [103]. The re-projected image in (6.6) is defined by

I(s)t→t′ = It′
〈

proj(σ(D(s)
t ), Tt→t′ , K)

〉
, (6.7)

where proj(.) represents the 2D coordinates of the projected depths Dt in It′ ,
〈
.
〉

is

the sampling operator, and σ(D(s)
t ) is defined in (6.4). Similarly to [103], the pre-

computed intrinsics K of all images are identical, and we use bi-linear sampling to

sample the source images and

pe(It, I(s)t′ ) =
α

2
(1 − SSIM(It, I(s)t′ )) + (1 − α)‖It − I(s)t′ ‖1, (6.8)
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where α = 0.85. Following [101] we use an edge-aware smoothness regularisation

term to improve the predictions around object boundaries:

`s = |∂xd*t | e−|∂xIt| +
∣∣∂yd*t

∣∣ e−|∂yIt|, (6.9)

where d*t = dt/dt is the mean-normalized inverse depth from [342] to discourage

shrinking of the estimated depth. The auto-masking of stationary points [103]

in (6.6) is necessary because the assumptions of a moving camera and a static scene

are not always met in self-supervised monocular trained depth estimation meth-

ods [103]. This masking filters out pixels that remain with the same appearance

between two frames in a sequence, and is achieved with a binary mask defined as

µ(s) =
[

min
t′

pe(It, I(s)t′→t) < min
t′

pe(It, It′)
]
, (6.10)

where [.] represents the Iverson bracket. The binary mask µ in (6.10) masks the

loss in (6.6) to only include the pixels where the re-projection error of I(s)t′→t is

lower than the error of the un-warped image It′ , indicating that the visual object is

moving relative to the camera. The final loss is computed as the weighted sum of

the per-pixel minimum reprojection loss in (6.6) and smoothness term in (6.9),

` = `p + λ`s (6.11)

where λ is the weighting for the smoothness regularisation term. Both the pose

model and depth model are trained jointly using this photometric reprojection

error. Inference is achieved by taking a test image at the input of the model and

producing the high-resolution disparity map σ(D1/1).

6.4 Experiments

We train and evaluate our method using the KITTI 2015 stereo data set [95]. We

also evaluate our method on the Make3D data set [304] using our model trained

on KITTI 2015. We use the split and evaluation of Eigen et al. [73], and following

previous works [103, 388], we remove static frames before training and only evalu-

ate depths up to a fixed range of 80m [73, 94, 101, 103]. As with [103], this results

in 39,810 monocular training sequences, consisting of sequences of three frames,

with 4,424 validation sequences. As our baseline model, we use Monodepth2 [103],
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Figure 6.3: Qualitative results on the KITTI Eigen split [73] test set. Our models

perform better on thinner objects such as trees, signs and bollards, as well as being

better at delineating difficult object boundaries.



6.4. Experiments 111

but we replace the original ResNet-18 by a ResNet-101 that has higher capacity,

but requires more memory. To address this memory issue, we use the inplace

activated batch normalisation [297], which fuses the batch normalization layer

and the activation functions to reach up to 50% memory savings.

As self-supervised monocular trained depth estimators do not contain scale infor-

mation, we use the per-image median ground truth scaling [103, 388].Following

architecture best practices from the Semantic Segmentation community, we adopt

the atrous convolution [43], also known as the dilated convolution, in the last two

convolutional blocks of the ResNet-101 encoder [43,44,376,385] with dilation rates

of 2 and 4, respectively. This has been shown to significantly improve multi-scale

encoding by increasing the models field-of-view [43]. The results for the quantita-

tive analysis are shown in Sec. 6.4.2. We also present an ablation study comparing

the effects of the our different contributions in Sec. 6.4.4. Final models are selected

using the lowest absolute relative error metric on the validation set.

6.4.1 Implementation Details

Our system is trained using the PyTorch library [270], with models trained on a

single Nvidia 2080Ti for 20 epochs. We jointly optimize both our pose and depth

networks with the Adam Optimizer [173] with β1 = 0.9, β2 = 0.999 and a learning

rate of 1e−4. We use a single learning rate decay to lr = 1e−5 after 15 epochs. As

with previous papers [103], our ResNet encoders use pre-trained ImageNet [300]

weights as this has been show to reduce training time and improve overall ac-

curacy of the predicted depths. All models are trained using the following data

augmentations with 50% probability; Horizontal flips, random contrast (±0.2),

saturation (±0.2), hue jitter (±0.1) and brightness (±0.2). Crucially, augmentations

are only performed on the images input into the depth and pose network and

the loss in (6.11) is computed using the original ground truth images, with the

smoothness term set to λ = 1e−3. Image resolution is set to 640 × 192 pixels.
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Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [74] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890

Liu [215] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Klodt [178] D*M 0.166 1.490 5.998 - 0.778 0.919 0.966

AdaDepth [253] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971

Kuznietsov [189] DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986

DVSO [371] D*S 0.097 0.734 4.442 0.187 0.888 0.958 0.980

SVSM FT [227] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984

Guo [113] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986

DORN [88] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Zhou [388]† M 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Yang [373] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian [229] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

GeoNet [374]† M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

DDVO [342] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974

DF-Net [397] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973

LEGO [372] M 0.162 1.352 6.276 0.252 - - -

Ranjan [284] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [225] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth ‘(M)’ [38] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Monodepth2 [103] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2 (1024 × 320) [103] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ours M 0.106 0.861 4.699 0.185 0.889 0.962 0.982

Garg [94]† S 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Monodepth R50 [101]† S 0.133 1.142 5.533 0.230 0.830 0.936 0.970

StrAT [237] S 0.128 1.019 5.403 0.227 0.827 0.935 0.971

3Net (R50) [276] S 0.129 0.996 5.281 0.223 0.831 0.939 0.974

3Net (VGG) [276] S 0.119 1.201 5.888 0.208 0.844 0.941 0.978

SuperDepth + pp [273] (1024 × 382) S 0.112 0.875 4.958 0.207 0.852 0.947 0.977

Monodepth2 [103] S 0.109 0.873 4.960 0.209 0.864 0.948 0.975

Monodepth2 (1024 × 320) [103] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977

UnDeepVO [206] MS 0.183 1.730 6.57 0.268 - - -

Zhan FullNYU [379] D*MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971

EPC++ [225] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979

Monodepth2 [103] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979

Monodepth2(1024 × 320) [103] MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980

Table 6.1: Quantitative results. Comparison of existing methods to our own on

the KITTI 2015 [95] using the Eigen split [73]. The Best results are presented in

bold for each category, with second best results underlined. The supervision level

for each method is presented in the Train column with; D – Depth Supervision,

D* – Auxiliary depth supervision, S – Self-supervised stereo supervision, M – Self-

supervised mono supervision. Results are presented without any post-processing

[101], unless marked with – + pp. If newer results are available on github, these

are marked with – †. Non-Standard resolutions are documented along with the

method name. Metrics indicated by red: lower is better, Metrics indicated by blue:

higher is better

6.4.2 KITTI Results

The results for the experiment are presented in Table 6.1. When comparing our

method (grayed row in Table 6.1) on the KITTI 2015 data set [95] (using Eigen [73]
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split), we observe that we outperform all existing self-supervised monocular

trained methods by a significant margin. Compared to other methods that rely

on stronger supervision signals (e.g., stereo supervision and mono+stereo su-

pervision), our approach is competitive, producing comparable results to the

current state of the art method Monodepth2. As can be seen in Figure 5.3 our

method shows sharper results on thinner structures such as poles than the baseline

Monodepth2. In general, Monodepth2 (Mono and Mono+Stereo) struggles with

thin structures that overlap with foliage, while our method is able to accurately

estimate the depth of these smaller details. We attribute this to the combination of

the dilated convolutions and the contextual information from the self-attention

module. As can be seen in car windows, Monodepth2 and our method struggle

to predict the depth on glassy reflective surfaces. However, this is a common

issue observed in self-supervised methods because they cannot accurately predict

depth for transparent surfaces since the photometric reprojection/warping error

is ill-defined for such materials/surfaces. For instance, in the example of car

windows, the correct depth that would minimise the photometric reprojection loss

is actually the depth from the car interior, instead of the glass depth, as would be

recorded by the ground truth LiDAR. When comparing our method against some

specific error cases for Monodepth2 [103] (Figure 6.4), we can see that our method

succeeds in estimating depth of the highly reflective car roof (left) and successfully

disentangles the street sign from the background (right). This can be explained by

the extra context and receptive field afforded by the self-attention context module

as well as the regularisation provided by the discrete disparity volume.

6.4.3 Make3D Results

Table 6.2 presents the quantitative results for the Make3D data set [304] using

our model trained on KITTI2015. We follow the same testing protocol as Mon-

odepth2 [103] and methods are compared using the evaluation criteria outline

in [101]. It can be seen in Table 6.2 that our method produces superior results

compared with previous methods that also rely on self-supervision.
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Figure 6.4: Monodepth2 Failure cases. Although trained on the same loss func-

tion as the monocular trained (M) Monodepth2 [103], our method succeeds in

estimating depth for the reflective car roof (Left) and the difficult to delineate street

sign (Right).

Type Abs Rel Sq Rel RMSE log10

Karsch [162] D 0.428 5.079 8.389 0.149

Liu [216] D 0.475 6.562 10.05 0.165

Laina [192] D 0.204 1.840 5.683 0.084

Monodepth [101] S 0.544 10.94 11.760 0.193

Zhou [388] M 0.383 5.321 10.470 0.478

DDVO [342] M 0.387 4.720 8.090 0.204

Monodepth2 [103] M 0.322 3.589 7.417 0.163

Ours M 0.297 2.902 7.013 0.158

Table 6.2: Make3D results. All self-supervised mono (M) models use median

scaling.

6.4.4 Ablation Study

Table 6.3 shows an ablation study of our method, where we start from the baseline

Monodepth2 [103] (row 1). Then, by first adding DDV (row 2) and both self

attention and DDV (row 3), we observe a steady improvement in almost all
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Backbone Self-Attn DDV Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline (MD2 ResNet18) 7 7 0.115 0.903 4.863 0.193 0.877 0.959 0.981

ResNet18 7 X 0.112 0.838 4.795 0.191 0.877 0.960 0.981

ResNet18 X 7 0.112 0.845 4.769 0.19 0.877 0.96 0.982

ResNet18 X X 0.111 0.941 4.817 0.189 0.885 0.961 0.981

ResNet101 w/ Dilated Conv 7 7 0.110 0.876 4.853 0.189 0.879 0.961 0.982

ResNet101 w/ Dilated Conv 7 X 0.110 0.840 4.765 0.189 0.882 0.961 0.982

ResNet101 w/ Dilated Conv X 7 0.108 0.808 4.754 0.185 0.885 0.962 0.982

ResNet101 w/ Dilated Conv X X 0.106 0.861 4.699 0.185 0.889 0.962 0.982

Table 6.3: Ablation Study. Results for different versions of our model with com-

parison to our baseline model Monodepth2 [103](MD2 ResNet18). We evaluate the

impact of the Discrete Disparity Volume (DDV), Self-Attention Context module

and the larger network architecture. All models were trained with Monocular

self-supervision. Metrics indicated by red: lower is better, Metrics indicated by

blue: higher is better

evaluation measures. We then switch the underlying encoding model ResNet-

18 to ResNet-101 with dilated convolutions in row 4. Rows 5 and 6 show the

addition of DDV and then both self-attention and DDV, respectively, again with

a steady improvement of evaluation results in almost all evaluation measures.

The DDV on the smaller ResNet-18 model provides a large improvement over the

baseline in the absolute relative and squared relative measures. However, ResNet-101

shows only a small improvement over the baseline when using the DDV. The

Self-Attention mechanism drastically improves the close range accuracy (δ < 1.25)

for both backbone models. The significantly larger improvement of the self-

attention module in the ResNet-101 model (row 6), is likely because of the large

receptive field produced by the dilated convolutions, which increases the amount

of contextual information that can be computed by the self-attention operation.

6.4.5 Self-attention and Depth Uncertainty

While the self-attention module and DDV together provide significant quantitative

and qualitative improvements, they also provide secondary functions. The atten-

tion maps (Eq. 6.3) from the self-attention module can be visualized to interrogate

the relationships between objects and disparity learnt by the model. The atten-

tion maps highlight non-contiguous image regions (Fig. 6.5), focusing on either

foreground, midground or background regions. The maps also tend to highlight
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either distant objects or stationary visual objects, like cars. Moreover, as the DDV

encodes a probability over a disparity ray, using discretized bins, it is possible to

compute the uncertainty for each ray by measuring the variance of the probability

distribution. Figure 6.6 shows a trend where uncertainty increases with distance,

up until the background image regions, which are estimated as near-infinite to in-

finite depth with very low uncertainty. This has also been observed in supervised

models that are capable of estimating uncertainty [213]. Areas of high foliage

and high shadow (row 2) show very high uncertainty, likely attributed to the low

contrast and lack of textural detail in these regions.

Figure 6.5: Attention maps from our network. Subset of the attention maps

produced by our method. Blue indicates region of attention.
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Figure 6.6: Uncertainty from our network. The Discrete Disparity Volume allows

us to compute pixel-wise depth uncertainty. Blue indicates areas of low uncertainty,

green/red regions indicate areas of high/highest uncertainty.

6.5 Conclusions and Future Work

In this paper we have presented a method to address the challenge of learning to

predict accurate disparities solely from monocular video. By incorporating a self-

attention mechanism to improve the contextual information available to the model,

we have achieved state of the art results for monocular trained self-supervised

depth estimation on the KITTI 2015 [95] dataset and Make3D datasets [303]. Ad-

ditionally, we regularised the training of the model by using a discrete disparity

volume, which allows us to produce more robust and sharper depth estimates and

to compute pixel-wise depth uncertainties. In the future, we plan to investigate
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the benefits of incorporating self-attention in the pose model as well as using the

estimated uncertainties for outlier filtering and volumetric fusion.

Supplementary

6.6 KITTI Improved Ground Truth

The evaluation method that was introduced by Eigen et al. [73] uses reprojected

LiDAR points to create the ground truth depth images. However, the reprojections

do not handle occlusions, non-rigid motion or motion from the camera. Uhrig

et al. [330] introduced an improved set of high quality ground truth depth maps

for the KITTI dataset. These high quality images are instead reprojected using

5 consecutive LiDAR frames and uses the stereo images for better handling of

occlusions. To obviate the need of retraining, as with other work [103], we use a

modified Eigen [73] test split on the images that overlap between these datasets.

This results in 652 (93%) of the 697 original test frames being retained. We use the

same evaluation strategy and metrics as discussed in the Experiments section of

the main paper. The results of this analysis can be found in Table 6.4.

6.7 Network Architecture

For all experiments, except where noted, we use a ResNet-101 encoder model with

pretrained ImageNet weights. This model has been modified to use atrous/dilation

convolutions [43] in the final two residual blocks. We use rectified linear activa-

tion (ReLU) in the encoding model and the Exponential Linear Unit (ELU) in the

decoder. Skip connections are applied to the two intermediate outputs between

the encoder and decoder. As the internal resolution is much larger than that of

the ResNet-18 used by Monodepth2 [103] (1
8 scale compared with 1

32 scale), a skip

connection is not required for the smallest output resolution. For the pose model,

we use the same ResNet-18 and pose decoder defined by Monodepth2 [103]. The

full depth network architecture can be found in Table 6.5.
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Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou [388]† M 0.176 1.532 6.129 0.244 0.758 0.921 0.971

Mahjourian [229] M 0.134 0.983 5.501 0.203 0.827 0.944 0.981

GeoNet [374] M 0.132 0.994 5.240 0.193 0.833 0.953 0.985

DDVO [342] M 0.126 0.866 4.932 0.185 0.851 0.958 0.986

Ranjan [284] M 0.123 0.881 4.834 0.181 0.860 0.959 0.985

EPC++ [225] M 0.120 0.789 4.755 0.177 0.856 0.961 0.987

Monodepth2 [103] w/o pretraining M 0.112 0.715 4.502 0.167 0.876 0.967 0.990

Monodepth2 [103] M 0.090 0.545 3.942 0.137 0.914 0.983 0.995

Ours M 0.081 0.484 3.716 0.126 0.927 0.985 0.996

Monodepth [101] S 0.109 0.811 4.568 0.166 0.877 0.967 0.988

3net [276] (VGG) S 0.119 0.920 4.824 0.182 0.856 0.957 0.985

3net [276] (ResNet 50) S 0.102 0.675 4.293 0.159 0.881 0.969 0.991

SuperDepth [273] + pp S 0.090 0.542 3.967 0.144 0.901 0.976 0.993

Monodepth2 [103] w/o pretraining S 0.110 0.849 4.580 0.173 0.875 0.962 0.986

Monodepth2 [103] S 0.085 0.537 3.868 0.139 0.912 0.979 0.993

Zhan FullNYU [379] D*MS 0.130 1.520 5.184 0.205 0.859 0.955 0.981

EPC++ [225] MS 0.123 0.754 4.453 0.172 0.863 0.964 0.989

Monodepth2 [103] w/o pretraining MS 0.107 0.720 4.345 0.161 0.890 0.971 0.989

Monodepth2 [103] MS 0.080 0.466 3.681 0.127 0.926 0.985 0.995

Table 6.4: Quantitative results on KITTI improved ground truth. Comparison

of existing methods to our own on the KITTI 2015 [95] using the improved ground

truth [330] of the Eigen test split [73]. The Best results are presented in bold for

each category, with second best results underlined. The supervision level for

each method is presented in the Train column with; D – Depth Supervision, D*

– Auxiliary depth supervision, S – Self-supervised stereo supervision, M – Self-

supervised mono supervision. Results are presented without any post-processing

[101], unless marked with – + pp. If newer results are available on github, these

are marked with – †. Non-Standard resolutions are documented along with the

method name. Metrics indicated by red: lower is better, Metrics indicated by blue:

higher is better
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Depth Network

layer k s ch dilation res input activation

conv1 3 1 64 2 1 image ReLU

conv2 3 1 64 1 2 conv1 ReLU

conv3 3 1 128 1 2 conv2 ReLU

maxpool 3 2 128 1 2 conv2 ReLU

res1 3 1 256 1 4 conv3 ReLU

res2 3 2 512 1 8 res1 ReLU

res3 3 1 1024 2 8 res2 ReLU

res4 3 1 2048 4 8 res4 ReLU

context 3 1 512 1 8 res4 Self-Attn

ddv4 3 1 128 1 8 context Linear

disp4 3 1 1 1 8 ddv1 softmax

upconv3 3 1 64 1 8 ddv4 ELU

deconv3 3 1 64 1 4 upconv3↑, res1 ELU

ddv3 3 1 128 1 4 deconv3 Linear

disp3 3 1 1 1 4 ddv3 softmax

upconv2 3 1 64 1 4 deconv3 ELU

deconv2 3 1 64 1 2 upconv2↑, conv3 ELU

ddv2 3 1 128 1 2 deconv2 Linear

disp2 3 1 1 1 2 ddv2 softmax

upconv1 3 1 32 1 2 deconv2 ELU

deconv1 3 1 32 1 1 upconv1↑ ELU

ddv1 3 1 128 1 1 deconv1 Linear

disp1 3 1 1 1 1 ddv1 softmax

Table 6.5: Network architecture. This table details the kernel size (k), stride

(s), output channels (ch) dilation factor (dilation), resolution scale (res), input

features for each layer (input) and activation function (activation) used in our

model. Layers marked with ↑ represent a 2× nearest-neighbour upsampling before

passing to the convolutional layer. Residual blocks are denoted by res* naming

convention. Each convolution and residual block also uses batch normalisation

in the form of a inplace activated batch normalisation [297]. The self-attention

module (context) is denoted as having an activation of Self-Attn.



6.7. Network Architecture 121

6.7.1 Additional Qualitative Results

In Figure 6.7, we present additional qualitative comparisons to multiple previous

works. Our method produces sharper predictions for thin structures and complex

shapes such as people. In Figure 6.8, we show the uncertainty estimates for

multiple images. As can been seen in the figure, areas of low contrast (row 2)

correspond with areas of high uncertainty. Moreover, high uncertainty can also

be observed in areas of unknown texture (row 7, right hand side). This area of

the input image also demonstrates issues with texture copy artefacts [103] in the

predicted depth. Additional attention maps are displayed in Figure 6.9. The

attention maps were selected at random from the 512 output channels in the

context module.
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Figure 6.7: Additional Qualitative Comparison. A comparison of our method

(last row) with several other methods for monocular and stereo trained self super-

vised depth estimation.
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Figure 6.8: Additional uncertainty results The Discrete Disparity Volume (DDV)

allows us to compute pixel-wise depth uncertainty by measuring the variance

across the disparity ray. Left: Input Image, Middle: Depth prediction, Right:

Uncertainty (Blue indicates areas of low uncertainty, green/red regions indicate

areas of high/highest uncertainty).
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Figure 6.9: Additional attention maps selected at random from the output of

context module (Blue indicates areas of high attention).



CHAPTER 7
Further Discussion and Conclusions

3D reconstruction has long been one of the key tasks in the field of Computer

Vision, with many scientific and industry applications. In recent years, deep learn-

ing has been applied to this fundamental problem in an attempt to resolve many

issues that exist with traditional reconstruction methods. However, using deep

learning techniques for 3D reconstruction poses many of its own challenges. In

this thesis, we have investigated multiple techniques to address the challenges of

computation inefficiency and data scarcity when training deep neural networks for

single view monocular 3D reconstruction. Initial methods for 3D reconstruction

using deep learning relied heavily on the use of 3D volumes for representing object

surfaces. These representations were selected due to the simplicity of integration

with convolutional neural networks. However, when compared with standard

image based Convolutional Neural Networks, volumetric representations require

significantly more memory and computational resources.

In Chapter 4, we introduced a method for efficiently reconstructing high resolu-

tion 3D volumes by forcing the neural network to learn a compressed frequency

domain representation using a novel Inverse Discrete Cosine Transform layer.

By replacing the convolutional decoder of the network with our IDCT layer, we

showed that it is possible to simultaneously increase volumetric resolution, reduce

computation cost, and reduce the use of GPU memory, all by an order of magni-

tude without any loss of reconstruction quality.

125
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While our IDCT layer results in efficient and accurate reconstructions, there are

some limitations to this method. Firstly, as the network uses a fully connected

layer to output the DCT coefficients, the number of parameters in the model can

increase exponentially with the number of DCT coefficients. Secondly, the number

of coefficients, and therefore the compression ratio, has to be selected ahead of

time resulting in a model that can only reconstruct at fixed rates. Finally, as the

IDCT decompression is a lossy process, there can be distinctive artefacts in the

final reconstructed volumes, resulting in sub-optimal reconstruction quality. This

work could be further improved by changing the reconstruction to use ”local”

patches or blocks, rather than a globally compressed volume. Similarly to image

compression techniques that utilise DCT (e.g., JPEG), smaller fixed size regions

of the volume could be represented independently. This would allow the model

to further exploit the sparsity of the 3D binary volumes, thereby reducing the

number of parameters required and improving the compression of the volumes.

Contemporary work by Riegler et al. [292] proposed to improve the computational

efficiency of volumetric CNNs by using multiple specialised network layers based

on an Octree data structure. However, this work was limited in applicability to 3D

binary volumes and point clouds. Alternatively, more recent methods [51,108,212]

have generalised this approach to work for N-dimensional data by using Sparse

Convolutional and Pooling layers. While 3D volumes represent a convenient

representation, due to the inefficiencies mentioned above, many researchers have

instead moved to using other representations such as Point Clouds [78,143,211] or

Meshes [111].

Another key concern of using Deep Learning for 3D reconstruction is the lim-

ited amount of data available for training. While image, text and audio datasets

have grown in scale and availability, datasets of 3D models for both objects and

scenes, are limited in quality and size. This is attributed to the difficulties in captur-

ing or modelling 3D surfaces, often requiring many man hours to acquire a single

instance. In Chapter 5, we address the issue of data availability by leveraging the

advances in generative modelling and self-supervision. We achieve this by first

training a model that predicts a set of fixed novel viewpoints for an object, given
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a single input image. Reconstructing novel view points naively, typically results

in blurry images as non-visible regions of the object could have many plausible

reconstructions. To remedy this, we also applied adversarial and feature matching

losses to improve reconstruction quality. Simultaneously, we trained a depth

estimator that utilises self-supervision, in the form of a photometric re-projection

loss, on pairs of images of the same objects. The two models can be combined at

inference time to reconstruct 3D point clouds, by first predicting a set of novel

points for a test image, then predicting depth using the depth estimator for each

of the novel view images. Finally, the synthesised RGB and depth images can be

un-projected into a textured point cloud, using the known intrinsic and extrinsic

camera matrices for the original dataset. We showed that by combining a Deep

Generative Adversarial Network trained to perform novel view prediction and a

monocular self-supervised depth estimator, it was possible to perform 3D point

cloud reconstruction without any ground truth 3D data.

In practice, we found that training the Generative Adversarial Network for Novel

View prediction was challenging because the model would mode collapse and

produce novel views that could not be used for point cloud synthesis. We hy-

pothesise that this is caused by the synthetically rendered images that were used

for the training dataset as these images are not particularly realistic and have no

background details. We believe that the adversarial training would have been

more effective on a more realistic dataset. Another downside of this method is that

it relies on having a dataset of fixed known points for every instance. In practice

this would require using a camera rig with a set of fixed cameras to capture a real

dataset. Our method could be further improved by having the model learn to

predict novel viewpoints for any given camera pose.

Transformation-Grounded Image Generation Network for Novel 3D View Syn-

thesis (TVSN) [267] was, at the time of its publication, the state of the art method

for novel view prediction. While we did not reach state of the art results for novel

view prediction, our method is not strictly comparable with TVSN. The TVSN

method relies on direct supervision of an occlusion mask, optical flow and camera

pose, for combining predicted pixels with observed pixels. Comparatively, our



128 Chapter 7. Further Discussion and Conclusions

method does not require any supervision, and our novel view prediction results

could be improved by including these extra supervisory signals to the network.

Moreover, TVSN requires two networks to achieve the presented results, the first

pass coarsely estimates the novel view point, while the second pass refines the

prediction to improve textural details. In the future, we plan to extend our method

to also use a second refinement network to further improve our results. Never-

theless, comparing with the unsupervised baseline results of TVSN, our method

performs on par with the implementation presented by the authors [267], both

qualitatively and quantitatively.

More recently, methods, such as SynSin [357], utilise differentiable rendering

techniques to achieve impressive results on scene level novel view synthesis tasks.

Differentiable rendering is a framework for incorporating 3D rendering methods,

such as rasterization, into the deep learning framework. While most rendering

techniques are differentiable and easily adapted, some are not and must be modi-

fied to be back-propagated through [46, 164, 218]. By incorporating differentiable

rendering techniques into our method it would be possible to train the depth

and novel view networks end-to-end, allowing us to further improve the results

presented in Chapter 5.

Learning to reconstruct scenes, rather than objects, is a challenging task. Fur-

thermore, capturing accurate 3D surfaces for scene level geometry is significantly

more complicated than acquiring object level surfaces, mainly due to the many

occlusions created by the complexity of the scene. Scene reconstruction focuses

only on recovering the 3D surface information for visible pixels and traditionally

this was achieved via stereo vision. Recently, there has been renewed interest in

learning to predict depth from single view monocular images [73, 74, 94], due to

the wide range of applications. Typically, these models are trained using ground

truth depth information as supervision. In practice however, access to large and

diverse RGB-D datasets is limited. Therefore, self-supervision has emerged as one

possible method to train models without ground truth labels.

In Chapter 6, we improve upon the state of the art for self-supervised monocular
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depth estimation, evaluating our method on the KITTI 2015 [95] and Make3d [304]

datasets. In that work, we hypothesise that by improving the receptive field of

the estimator network, we could significantly improve the depth predictions. To

achieve this, we incorporate a 2D self-attention module [347, 380], which allows

the model to process information in a non-local neighbourhood, when compared

with a standard 2D convolution. Furthermore, we change the model architecture

of the baseline Monodepth2 [102] to use a larger architecture (ResNet-101) which

includes dilated convolutions [43]. We further improve our method by utilising

a probabilistic depth representation, which we call a Discrete Disparity Volume

(DDV). The DDV is created by discretising the possible disparities between a

minimum and maximum depth into a fixed number of ”bins”. We can then take a

softmax across each disparity ”ray”, resulting in a probability for bin being the

correct depth. Finally, the volume is projected into a disparity value by applying a

softargmax operation. One major benefit of utilising the DDV, is that it allows us to

compute the uncertainty of our depth predictions by measuring the variance of

the distribution across the disparity bins.

The larger architecture and the self-attention module result in the model hav-

ing significantly more parameters than the baseline method based on a ResNet-18

encoder and standard deconvolutional decoder. While on large powerful machines

this does not necessarily pose much of a problem, one major use case of monocular

depth estimators is in low-power embedded systems such as small drones, which

may lack the computational performance and power budget for a binocular or

active range-finding solution. One potential solution to this problem, would be to

apply knowledge distillation [128] between the DDV’s output by our method and

a smaller more compact version with a smaller backbone model. Knowledge distil-

lation is a technique for using a larger ”teacher” model to supervise the training of

a smaller ”student” model. In many applications knowledge distillation has been

shown to train student models that are more accurate than if that same model

was trained without distillation [128]. By distilling a smaller network architecture

with the knowledge of the significantly larger network architecture we used, it

may be possible to reduce the compute and memory requirements without any

significant drop in quantitative performance. This would allow our method to be



130 Chapter 7. Further Discussion and Conclusions

run in environments with compute or memory constraints.

In Computer Vision tasks, it is common to apply the 2D self-attention globally

over the representation produced by the backbone/encoder. Put simply, there

is a single attention module which aggregates the non-local contextual informa-

tion into a final feature representation which can be used for the downstream

task, such as detection, segmentation, depth estimation, etc. This is the method

of self-attention that we presented in Chapter 6. Recently, Bello et al. [20] and

Ramachandran et al. [269] showed that by modifying all of the existing standard

convolutional blocks used in the ResNet architecture to include 2D self-attention,

it is possible to boost performance in image classification and object detection.

Moreover, these authors [20, 269] show that adding positional encoding informa-

tion to the convolutions used in the self-attention, leads to a significant increase in

classification accuracy. By incorporating an architecture that utilises self-attention

throughout the entire network, as well as positional encoding, we believe that the

quality of the predictions from monocular depth estimators can be improved.

When performing self-supervised monocular depth estimation, it is required that

a second network is used to estimate relative pose between consecutive frames. In

our work, we did not modify the baseline pose model and left this as a ResNet-

18 network. We believe that the joint pose estimation task could also benefit

from the extra contextual information provided by the self-attention module and

future work investigate network architectures for pose estimation that include

self-attention.

While the work presented in this thesis focuses on volumetric and point cloud

surface representations, newer implicit shape representations are being explored

using Deep Learning. Deep Signed Distance Fields (DeepSDF) [268] and Neu-

ral Radiance Fields (NeRF) [243] represent objects and scenes respectively, by

encoding 3D surfaces as continuous volumetric fields within the weights of a

deep neural network. This allows for reconstructing higher quality 3D surfaces

compared with standard volumetric representations, at the cost of an expensive

sampling process during inference. Although the authors do not evaluate their
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method on single view reconstruction, implicitly encoding 3D shapes may result

in higher quality reconstructions than those presented in this thesis (Chapter 4

and Chapter 5).

In this thesis, we have discussed several of the issues with using deep learn-

ing for single view 3D reconstruction. Our work utilises a novel Inverse Discrete

Cosine Transform layer to address the computational inefficiencies with volu-

metric reconstruction. Using the IDCT layer we showed an order of magnitude

improvement in volumetric resolution, memory consumption, training time and

inference speed. By combining the recent advances in novel view prediction

and depth estimation we have also addressed the issues surrounding the limited

availability of training data for 3D reconstruction. We leveraged deep generative

modelling and self-supervision to train a single-view 3D reconstruction system

that requires only a small set of input images and no ground truth 3D training data.

We also improve self-supervised monocular depth estimation using 2D self-

attention and a discrete disparity volume. This work resulted in a significant

improvement to the monocular trained models, with state of the art quantitative

results on the KITTI 2015 [95] and Make3d [304] datasets. Additionally, the 2D

self-attention mechanism allow us to visualise saliency for each of the feature

maps before they are transformed into disparities, potentially opening up avenues

for understanding and interpreting the depth predictions from monocular depth

estimators. Furthermore, for autonomous systems to make intelligent decisions, it

is important for the system to understand which predictions are useful and trust-

worthy. To this end, the DDV can be used to measure uncertainty for each depth

estimation. This is critically important, as certain features, such as texture-less

regions or reflective surfaces, can result in noisy estimates and therefore potentially

erroneous decisions.

The novel methods presented in this thesis will enable real-time procedural genera-

tion of 3D content for applications in Video Games, Virtual Reality and Augmented

Reality, and improve 3D perception in many autonomous and robotic systems.

In future, differentiable rendering and learnt 3D shape representations such as



132 Chapter 7. Further Discussion and Conclusions

NeRF [243], will lead to significant improvements in 3D reconstruction, enabling

many exciting new applications in a variety of scientific and entertainment indus-

tries.
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