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Simple Summary: Holistic animal welfare assessment requires measures for emotional (affective) state,
in particular positive states. Pharmacological agents such as antidepressants that create a predictable
positive affective state can be valuable tools to assess novel welfare biomarkers. However, efficacy of
pharmacological action in the brain needs to be demonstrated before such an approach is applicable.
Counterintuitively, in humans and sheep, effective delivery of antidepressant agent, i.e., selective
serotonin reuptake inhibitors, has been demonstrated by an increase in downstream cortisol levels.
Here, we tested the efficacy of measuring circulating cortisol as an indicator for effective delivery
of a single intravenous dose of the selective serotonin reuptake inhibitor fluoxetine hydrochloride
to the pig brain. Antidepressant treatment resulted in increased plasma cortisol levels 15–165 min
after treatment as compared with saline controls, suggesting that, similar to the other species, plasma
cortisol is an indicator of fluoxetine hydrochloride efficacy. However, individual cortisol profiles of
pigs treated with the antidepressant were highly variable with either the expected—an unorthodox,
or no response. We conclude that significant inter-individual variation in cortisol response currently
precludes the use of cortisol as a reporter for fluoxetine hydrochloride efficacy in the pig. These data
need to be verified in a larger study.

Abstract: Animal welfare assessment requires measures for positive affective state. Pharmacological
agents that manipulate affective state can be used to evaluate novel biomarkers for affective state
assessment. However, to validate that an agent has modified brain function, a reliable indicator is
required. Circulating cortisol has been used as a reporter for effective delivery of the antidepressant
selective serotonin reuptake inhibitor (SSRI) fluoxetine hydrochloride to the brain in humans and
sheep. Here, we tested cortisol as a reporter for effective delivery of fluoxetine hydrochloride to the
pig brain. We hypothesized that following administration of SSRI, innervation of the serotonergic
reward pathway would result in activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading
to increased circulating cortisol levels. Large White-Landrace gilts received either a single intravenous
dose of 100 mg fluoxetine hydrochloride suspended in 10 mL saline (n = 4), or 10 mL saline alone
(n = 4). Blood samples were collected every 15 min for one hour prior to, and six hours post-treatment.
The interaction of treatment x time on mean plasma cortisol levels between 15–165 min post-treatment
was significant (p = 0.048) with highest cortisol concentrations of SSRI treated pigs versus controls
(+98%) at 135 min post-treatment. However, individual cortisol profiles after SSRI treatment revealed
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high inter-individual variation in response. We conclude that, while combined data imply that plasma
cortisol may be a readout for SSRI efficacy, inter-individual variation in SSRI response may preclude
application of this approach in the pig. Given the current limited sample size, further research to
confirm these findings is needed.
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1. Introduction

The assessment of animal affective state can be challenging, in particular the evaluation of positive
states. At present, behavioral measures and affective bias tests are the predominant assessment
methods for positive states [1]. However, these methods are less suited to a production environment,
because they are time-consuming and arguably subjective [2,3]. There is, therefore, an urgent need to
identify and validate novel physiological and molecular markers of positive affect, such as miRNA [4,5],
to complement or even replace behavioral [6] measures.

Validation of novel biomarkers for affective state requires robust means to manipulate affective
state in a consistent manner. Pharmacological agents, including antidepressant selective serotonin
reuptake inhibitors (SSRI) are candidates for this approach [7,8]. However, in order to use SSRI in
validation experiments of novel biomarkers, a measure that demonstrates the effective delivery of
the SSRI to the brain is required. In humans and sheep, effective SSRI delivery to the brain has been
associated with an increase in adrenocorticotropic hormone (ACTH), leading to a downstream increase
in cortisol level [9–12]. Rodent studies have reported similar findings using serotonergic inhibitors
and/or 5HT1a receptor antagonists [13–15]. To our knowledge, no such data are available for the pig.

Here we tested whether plasma cortisol is a reliable indicator of effective delivery of SSRI to
the pig brain. We hypothesized that pharmacological stimulation of the serotonergic system with
an intravenous dose of the SSRI fluoxetine hydrochloride, would activate the HPA axis resulting in
increased plasma cortisol levels. This peripheral cortisol response would thus provide evidence for
successful activation of the serotonergic system in the brain of the pig.

2. Materials and Methods

2.1. Animals and Housing

Animal procedures were approved by the University of Adelaide Animal Ethics Committee
(S-2018-053) and conducted in accordance with the Australian Code for the Care and Use of Animals for
Scientific Purposes (NHMRC, 2013), and the Animal Welfare Act, 1985 (SA). Eight Large White-Landrace
females at 18 weeks of age (mean weight 85 kg, range of 72–92 kg) were sourced and housed at the
Roseworthy Piggery, South Australia. Animals were kept in individual stalls (240 cm × 60 cm) and
thus restricted in their movement, and within sight of other individuals, throughout the experiment.
Water was available ad libitum and 4 kg standardized grower feed (Barastoc MP Pig 1300, Ridley’s,
Adelaide, South Australia) was provided every morning. The study was conducted in December, the
southern hemisphere summer.

2.2. Treatment Protocol

Pigs were habituated to individual stalls for seven days prior to study commencement. To aid
in adjustment to human presence, pigs had human contact daily. On day 1 of the study, topical local
anesthetic (Xylocaine, Provet, Adelaide, Australia) was applied to the ear vein and catheterization
performed under manual restraint with a rope snare. Catheter tubing was secured to the neck of the
animal using adhesive tape (Elastoplast, Zebravet, Adelaide, South Australia). Computer-generated
randomization (Microsoft Excel 2016, Microsoft Corporation) was used to assign pigs into two groups
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of 4 animals each. On day 2 all animals received either intravenous (i.v.) 100 mg SSRI fluoxetine
hydrochloride (Complimentary Compounds, Ballina, NSW, Australia) dissolved in 10 mL 0.9% saline
(Zebravet, Adelaide, South Australia) or i.v. 10 mL 0.9% saline at 8:00 am. The dose was chosen based
on previous studies, where an initial 10 mL bolus injection containing 70 mg of fluoxetine hydrochloride,
followed by a continuous infusion of 98.5 µg/kg/d for eight days was effective at increasing ACTH and
cortisol in pregnant sheep [10,11]. The higher dose was chosen because we aimed to test cortisol response
after a single intravenous injection. Considering previously published data and standardization applied
to mitigate factors known to affect cortisol response such as age and breed [16] sex [17], feed intake [18]
and level of exercise [19], the use of 4 animals per treatment group was deemed sufficient for this study
to minimize animal usage; a retrospective power calculation with the acquired data revealed a power
of 71%.

2.3. Sampling and Cortisol RIA

Blood sampling started at 7:00 am, one hour before treatment at 8:00 am, with sampling performed
every 15 min until six hours post-treatment. Each sample of 3 mL blood was collected into 5 mL
Lithium-Heparin coated tubes (Vacuette, Greiner Labortechnik, Kremsmünster, Austria). Samples
were immediately centrifuged at 1000× g for 10 min and plasma stored at −20 ◦C until further analysis.
Animals that had received SSRI treatment could not re-enter the commercial herd and were euthanized
with 1 mL/10 kg of pentobarbital sodium (Virbac Pty Limited, Milperra, NSW, Australia). Saline treated
animals reentered the commercial herd. Plasma samples were assayed for cortisol in duplicate by RIA
following the manufacturer’s instructions (ImmuChem CT cortisol kit, MP Biomedicals, Orangeburg,
NY, USA). Sensitivity of the kit was 0.17 pg/dL and intra and inter-assay coefficients of variation <15%
and <10%.

2.4. Statistical Analysis

Statistical analyses were conducted with SPSS, Version 25 (IBM, Armonk, NY, USA). A linear
mixed model analysis with time as the repeated measure was used to analyze the data. Normality
and homogeneity of the dataset were tested by examining the correlation between the residuals and
predicted values. As the data were not normally distributed, cortisol values were log10-transformed for
the final analysis. The effect of animal weight on cortisol levels was tested in the model and removed
due to lack of significance (p > 0.10). Statistical significance level was p < 0.05.

3. Results

A significant treatment by time interaction was observed between 15 and 165 min after treatment
(p = 0.048). The greatest increase in mean plasma cortisol concentration of SSRI treated pigs as compared
with saline controls (+ 98%) was measured 135 min post-treatment (Figure 1A). However, individual
cortisol response profiles of SSRI treated animals varied considerably (Figure 1B). While the elevated
cortisol profiles of SSRI treated Animals 5 and 7 were consistent with an SSRI induced cortisol response,
two other SSRI treated animals displayed unorthodox cortisol response profiles (Figure 1B). Animal
6 did not respond to SSRI treatment, and Animal 8 revealed an initial spike in cortisol at 120 min
post-treatment that quickly returned to baseline levels (Figure 1B). Saline treatment of control animals
had no effect on circulating cortisol levels (Figure 1B).
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Figure 1. Plasma cortisol concentrations of pigs treated with either a single intravenous dose of the
selective serotonin reuptake inhibitor (SSRI) fluoxetine hydrochloride (100 mg suspended in 10 mL
saline) or saline control (10 mL). (A) Mean Log10 plasma cortisol concentration (ng/mL) ± SEM of
animals with SSRI treatment in comparison to control animals that received saline. (B) Individual
cortisol response profiles of control (animals 1–4) and SSRI treated (animals 5–8) individuals.
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4. Discussion

Here we tested whether measurement of circulating cortisol levels could be used as a reliable
indicator of effective delivery of SSRI to the pig brain.

We observed a substantial increase in mean plasma cortisol levels after SSRI treatment 15–165 min
post-treatment as compared with saline controls. This is consistent with activation of brain regions
involved in reward processing and in agreement with observations in human and sheep [9,12]. However,
examination of individual cortisol response profiles after SSRI treatment revealed an unexpected
degree of inter-individual variation in cortisol response. While two SSRI treated pigs displayed the
expected cortisol response curve with an initial peak followed by a gradual decline over time, two
other pigs had a very different and unorthodox cortisol response. One of the cortisol profiles indicated
a lack of response while the other one indicated a short spike in cortisol followed by a sudden return to
baseline. Considering the standardization of factors known to affect cortisol response (i.e., sex, time of
day, time of feeding, level of exercise [16–20], and finding no significant effect for the co-variate body
weight, this degree of inter-individual variation was unexpected and has, to our knowledge, not been
described previously. It is noteworthy that, in humans, psychiatric research has revealed individual
variability in patient response to SSRI treatment, where genetic variation, environmental exposure and
gene-environment interactions likely influence treatment outcomes [21,22]. We therefore propose the
following explanations for the observed differences in individual cortisol response profiles after SSRI
treatment in the pig: (1) inherent differences in the pharmacological pathway of the drug, including
differences in receptor number, structure or function, or (2) differences in HPA axis responsiveness to
SSRI, or (3) a combination of these. Regardless of the causes for the observed variation in response, in
order to understand the dynamic relationship between the neurobiology of the serotonergic system
and its effect on HPA activity, and thus cortisol, it appears essential that inter-individual differences are
taken into account.

Furthermore, our data caution against over-reliance on statistically significant results obtained
from group means without due regard for the individual data that constitutes the finding. Further
research is needed regarding plasma cortisol as a biomarker of SSRI delivery in the pig.
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