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Abstract 

Maintaining future agricultural productivity and ensuring soil security is of global 

concern and requires evidence-based management practices. Moreover, understanding 

where and when land is at risk of erosion is a fundamental step to combatting future soil 

loss and reach Land Degradation Neutrality (LDN). However, this is a difficult task 

because of the high spatial and temporal variability of the controlling factors involved. 

Therefore, tools investigating the impact and frequency of extreme erosive events are 

crucial for land managers and policymakers to apply corrective measures for better 

erosion management in the future. 

While the utility of using wind and water erosion models for management is well 

established, there is a paucity of work on the impact of climate change and extreme 

environmental conditions (e.g. wildfires) on soil erosion by wind and water 

simultaneously. Both erosion types are controlled by different environmental variable 

that vary highly in space and time. Therefore, the overarching aim of this study was to 

develop a joint wind-water erosion modelling method and demonstrate the utility of this 

approach to identify (1) the spatio-temporal variability of extreme erosion events in the 

South Australian agricultural zone (Australia) and (2) assess the likely increase of this 

variability in the face of climate change and the recurrence of wildfires.  

To fulfil the aim of the research project, we adapted two state-of-the-art wind and water 

(hillslope) erosion models to integrate modern high-resolution datasets for spatial and 

temporal analysis of erosion. The adaptation of these models to local conditions and the 

use of high-resolution datasets was essential to ensure reliable erosion assessment.  

First, we applied these models separately in the Eyre Peninsula and Mid-North 

agricultural regions. We evaluated the spatio-temporal variability of extreme erosion 

events between 2001 and 2017 and described the complex interactions between each 

erosional process and their influencing factors (e.g. soil types, climate conditions, and 
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vegetation cover). Hillslope erosion was very low for most of the Eyre Peninsula; 

however, a large proportion of the central Mid-North region frequently recorded severe 

erosion (> 0.022 t ha-1) two to three months per year, for most of the years in the time-

series. The most severe erosion events were primarily driven by topography, low ground 

cover (< 50%) and extreme rainfall erosivity (> 500 MJ mm ha-1 h-1). Average annual 

wind erosion was very low and comparable in the two regions. Nonetheless, most of the 

west coast of the Eyre Peninsula frequently registered severe erosion (> 0.000945 t ha-1 

or 0.945 kg ha-1) two to three months per year, for most of the years. The most severe 

erosion events were largely driven by the soil type (sandy soils), recurring low ground 

cover (< 50 %) and extreme wind gusts (> 68 km h-1). We identified that erosion severity 

was low for the vast majority of the study area, while 4% and 9% of the total area suffered 

severe erosion by water and wind respectively, demonstrating an extreme spatial and 

temporal skewness of soil erosion processes.  

Then we combined the modelling outputs from the wind and water erosion models and 

tested the models’ response to major wildfire events. This research demonstrated how 

erosion modelling could be used to predict the impact of severe wildfire events on soil 

erosion. The two models satisfactorily captured the spatial and temporal variability of 

post-fire erosion. However, a very small fraction of the region (0.7%) was severely 

impacted by both wind and water erosion. We observed that soil erosion increased 

immediately after the wildfires or within the first six months for the ten fire-affected 

regions. For three of the wildfire events, the models showed an increase in wind and 

water erosion in consecutive months or at the same time. These results highlighted the 

importance to consider wind and water erosion simultaneously for post-fire erosion 

assessment in dryland agricultural regions. 

Finally, we had the rare opportunity to assess the impact of a catastrophic wildfire event 

on wind erosion in an agricultural landscape by examining the influence of unburnt 

stubble patches on adjacent burnt or bare plots using a spatio-temporal sampling design. 

The field study allowed a quantitative assessment of spatial and temporal patterns of 
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wind erosion and sediment transport after a catastrophic wildfire event. It showed very 

high levels of spatial variability of erosion processes between burnt and bare patches and 

demonstrated how measuring field-scale sediment transport could complement fine-

scale experimental studies to assess environmental processes at the field scale.  

This research highlights the utility of erosion models to inform corrective measures for 

future land management. We have implemented tools that allow a realistic assessment 

of the influence of climate change and extreme environmental conditions scenarios on 

soil erosion for a wide range of land cover over large regions. Here, the models enabled 

the identification of the relative post-fire wind or water erosion risk in dryland 

agricultural landscapes, making them particularly useful for land management under 

future uncertainty. Spatial patterns compared well with previous modelling approaches 

and underpinned the benefit of erosion models to assess spatial differences in erosion 

risk and evaluate corrective measures at the regional scale. However, modelled soil 

erosion magnitudes strongly depend on how the influence of soils is implemented in the 

models, making it difficult to set absolute quantitative soil loss targets for land 

management.  

The thesis has provided a proof of concept of the approach for South Australia. However, 

all input data can be freely sourced Australia-wide and similar dataset are 

available globally. 
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1.1 Introduction: 

Soil erosion is a natural process part of the soil and landscape formation; however, 

human activities have dramatically accelerated this phenomenon with the increasing 

removal of vegetation cover, expansion of farming onto marginal lands and overgrazing 

(Borrelli et al., 2017). According to FAO, soil erosion is the greatest challenge for 

sustainable soil management today (FAO, 2019). Soil erosion is of global concern because 

of its direct negative impact on ecosystem services, agricultural productivity and soil 

security. Local soil removal, generated by wind or water, induces the loss of fertile 

topsoil, containing vital nutrients and soil organic carbon, which further decreases soil 

fertility and ecosystem functions. On a larger scale, particles displaced by erosion can 

lead to pollution of water bodies through nutrient leaching, sedimentation of reservoirs 

and air pollution where airborne dust can lead to respiratory diseases 

(Flanagan et al., 2013). 

Vegetation and ground cover are one of the most important controlling factors against 

erosion. However, changes in climate conditions and land uses have a direct impact on 

land cover and thus on soil erosion risk. A limited soil cover reduces protection against 

erosive forces such as rainfall and wind, and exposed soils become more susceptible to 

erosion. With the growing influence of climate change, soil erosion is expected to 

increase in frequency and severity in dryland regions of the world (Edwards et al., 2019; 

Nearing et al., 2004), and compound events are already major drivers of soil losses in 

Australia (Earl et al., 2019). With drier weather conditions, we are currently experiencing 

a reduction in soil cover and an increase in the number of extreme erosional events 

(Leys et al., 2018; Speer, 2013). 2019 was a record-breaking year for extreme 

environmental conditions around the globe (ECMWF, 2020; World Meteorological 

Organisation, 2019). As a result in Australia, low ground cover, dry conditions and strong 

wind gusts led to record-breaking frequencies of dust storms across the country 

(ABC News; DustWatch Australia). Scientists also predict a recurrence in such events 

with decreasing rainfall amounts (Edwards et al., 2019; Leys et al., 2018).  
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Current climate forecasts for Australia are predicting a reduction in annual rainfall, but 

more extreme precipitation events for dryland agricultural regions (CSIRO and Bureau 

of Meteorology, 2015). A recurrence in extreme precipitation events combined with low 

ground cover will potentially increase the risk of soil detachment and runoff. Drier 

overall conditions will also increase the risk of fire weather in the future 

(Bento-Gonçalves et al., 2012; Clarke et al., 2011; Williams et al., 2009). Fires have an 

adverse impact on soil erosion as they remove soil cover (vegetation and litter) and can 

modify the structure of the top-soil (e.g. water repellence). Therefore, an increase in fire 

risk will likely increase the risk of soil erosion as well. Future climate trends in low 

rainfall regions may also cause aeolian processes to be more prevalent than fluvial ones 

leading to more dust production (Field et al., 2011b). While dust storms are common in 

the Australian rangelands and grazing zone (Cattle, 2016; Shao et al., 2007) land-use 

intensification in the Australian cropping belt can also lead to increased dust emissions 

(Young and Herrmann, 2015). 

Soil erosion processes have been well described through extensive fieldwork with wind 

tunnels, runoff plots, and sediment trough. A wide range of models have been developed 

to characterise and predict the extent and severity of erosion using the understanding of 

empirical processes from experimental data. The current erosion models differ in their 

applications based on the spatial or temporal scale of interest, region of the world and 

data availability. These models are extensively used by governments and decision-

makers for policy development. 

 

1.2 The processes 

Soil erosion is a natural phenomenon contributing to the evolution of landscapes, 

characterised by the displacement of particles from the upper layer of soil, and can be 

induced by rainfall or wind (Lu et al., 2003). Erosion is influenced by soil properties, 

topography, vegetation cover, weather conditions, and land use/land management 

(Montgomery, 2007). 



5 

 

Soil weathering, whether it is wind- or water-induced, impacts the uppermost topsoil 

layer (upper 20 to 40 cm of the topsoil, called A-horizon). This layer stores the water 

available to plants and accumulates and cycles most of the vital nutrients for plant 

growth. If the A-horizon layer is reduced, even by a small fraction (few centimetres), this 

will lead to significant declines in agricultural productivity (Bui et al., 2011); therefore, 

the cost of production will be rising (Boardman, 2006). This assumption is particularly 

accurate for low rainfall regions where scarce water resources, often poor soil fertility 

and a thin A-horizon layer make agriculture more challenging. Hence the study of soil 

erosion in such areas represents a great interest for governmental agencies as well as the 

farming community. 

 

1.2.1 Water erosion 

Soil loss due to water erosion (from rainfall and surface runoff) is a one-dimensional 

process. Particles detached by raindrops are transported downhill by overland flow 

(sheet - interril erosion) which form small and ephemeral concentrated flow paths (rill or 

channel erosion) and are deposited when the velocity of the flow decreases (Figure 1.1). 

These eroded channels, can later grow and develop into gullies from repeated runoff 

cycles and weathering of the drainage side walls (Vrieling, 2006). Water erosion and 

runoff remove fertile topsoil leading to a decline in nutrients, organic matter and soil 

carbon. These nutrients can either be deposited in nearby fields, thus enrich them, or be 

carried away until they reach rivers or reservoirs where nutrient leaching can lead to 

eutrophication. Sedimentation of reservoirs can also be a significant off-site consequence 

of water erosion, leading to a reduction of storage capacity and an increase in clean-up 

costs (Nearing et al., 2017). Water erosion is not considered as a reversible process 

because once the sediments are removed and transported downslope, they cannot be 

returned to their original location. 
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Figure 1.1 Schematic diagram of the position of sheet, rill, and gully erosion on a simple hillslope system. 

Source: FAO (2019). 

 

1.2.2 Wind erosion 

Wind erosion, on the other hand, is a two-dimensional process and does not necessarily 

lead to observable erosion features. Soil particles are conveyed in both vertical and 

horizontal directions, and sediment transport is omnidirectional as airborne material 

can be transported in all wind directions. As the wind sweeps the earth, coarser particles 

roll on the surface (saltation, creep) while finer particles like sands and clays are removed 

and transported vertically from one location and deposited away to another (horizontal 

displacement) (Figure 1.2). Even finer particles, such as clays and silts, are transported 

further and farther and generally remain in suspension in the air. When aggregated, 

these particles form dust clouds which can travel over very large scales and even across 

the globe (Field et al., 2009). As a result of erosion, coarse sand particles can damage 

crops and infrastructure through sandblasting and burial (Bennell et al., 2007; 

Panebianco et al., 2016), while fine particles suspended in the air (clays and silts), highly 

concentrated in vital nutrients, are depleting soils and reducing agricultural productivity 

(Tozer and Leys, 2013). Wind erosion, and more particularly dust storms, can also lead 
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to visibility reduction and damages to human health (respiratory conditions) 

(Baddock et al., 2014; Li et al., 2018; Seinfeld and Pandis, 2012). In some instances, wind 

erosion can be considered reversible as sediments and particles transported in one 

direction, can be re-deposited another time if the wind blows in the opposite direction. 

However, this does not resolve the problem of erosion of vital nutrients in the first place. 

 

Figure 1.2 Schematic showing the physical processes influencing wind erosion and dust emissions. Source: 

Webb et al. (2017) 

 

1.2.3 The interaction of wind and water erosion 

Wind and water erosion affect a large proportion of arable lands around the globe 

(FAO, 2019; Field et al., 2009), and their combined effect can substantially contribute to 

total erosion rates in most dryland ecosystems (Field et al., 2011b). Depending on the 

regional climate, sediment transport capacity can be dominated by one process or the 

other. However for low rainfall regions, both phenomena are thought to co-exist 

(Figure 1.3), and these interactions can often go beyond the limit of the dryland 

ecosystem; therefore, increasing the need to consider the two erosional processes 

simultaneously. For instance, sediments transported by water in lake beds or floodplains 
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could be redistributed by wind over long distances during drier months, which could 

subsequently be carried again further by wind or water (Field et al., 2011b). 

Although a growing body of research has compared the absolute and relative magnitude 

of wind and water erosion processes (Breshears et al., 2003; Du et al., 2016; 

Field et al., 2011a; Jiang et al., 2019; Wang et al., 2014), these two are generally studied 

individually (Belnap et al., 2011; Flanagan et al., 2013; Panagos et al., 2018). From these 

studies, significant uncertainty remains on the relative degree of wind and water erosion 

in dryland ecosystems and how the two processes interact in such environments. There 

is also ongoing uncertainty on how the interaction between the two processes changes 

with scale, and to what extent (Field et al., 2009; Field et al., 2011b). Moreover, integrated 

modelling approaches considering both processes simultaneously are still lacking 

(Flanagan et al., 2013). 

 
Figure 1.3 Hypothesized trends of potential sediment transport capacity as a function of mean annual 

precipitation to highlight the potential total sediment transport for undisturbed environments. Adapted 

from Field et al. (2009) 

 

1.2.4 The influence of fires on erosion 

Dryland ecosystems are highly sensitive to environmental disturbances (e.g. droughts, 

overgrazing, fires) which can dramatically increase soil erosion susceptibility. Out of 

these disturbing agents, wildfires are of particular concern because they are 

unpredictable, reduce or remove the protective ground cover, and can modify soil 

structure, thus increasing post-fire erosion risk.  
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With the reduction in aboveground biomass, raindrop kinetic energy is not captured by 

vegetation anymore which increases the splash impact, thus detaching more sediments 

and making them available for transportation (Lu et al., 2016). Under undisturbed 

conditions, above-ground biomass can trap sediments and soil particles, thus providing 

a protective barrier against weathering elements (e.g. wind and rainfall). However, the 

removal of vegetation by wildfires accelerates water runoff and reduces surface shear 

stress, therefore increasing soil erosion risk. 

Fires can significantly impact soil structure. The destruction of organic and chemical 

bonds between soil particles and aggregates by wildfires can increase soil surface 

erodibility (Prats et al., 2016; Varela et al., 2010). Water repellence is also a significant 

driver of post-fire erosion (Neary, 2011; Shakesby, 2011) as it decreases water infiltration 

in the soil (DeBano and Neary, 2005). Therefore, a reduced water infiltrability will lead 

to more runoff events while a reduced soil particle cohesion will favour aeolian 

sediment transport. 

Wildfires are likely to be more frequent and more intense for dryland agricultural regions 

(Clarke et al., 2011; Gonçalves et al., 2011) and drought conditions more recurrent in the 

future (CSIRO and Bureau of Meteorology, 2015). Therefore, soil erosion by wind or 

water is likely to increase too. With the recurrence in wildfires, soil surface will be more 

frequently exposed to commonly occurring storms, but it will also increase the 

probability that soils susceptible to erosion by wind or water will remain vulnerable when 

less frequent high-intensity events occur (Edwards et al., 2019). This information is of 

particular interest for dryland agricultural regions, where both aeolian and fluvial 

processes influence landscape formation, as wind and water erosion can be observed 

simultaneously or sequentially within months following major wildfire events 

(Shakesby et al., 2007; Shillito et al., 2012). The loss of fertile topsoil might also become 

more problematic if large fires are followed by drought conditions as vegetation and 

ground cover will take longer to recover leaving soils exposed for longer. 
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1.3 Erosion modelling 

Environmental models can be considered as quantitative representations of complex 

environmental phenomena. Models are aimed at improving our understanding of 

environmental processes and enable us to test different scenarios (e.g. identify driving 

forces of change for specific environments, under various conditions). Models can be 

used to test hypotheses and make predictions on future changes in environmental 

conditions. Models are also attractive tools to summarise the state of knowledge of 

particular phenomena.  

Technological advances in remote sensing, Geographic Information System (GIS) and 

spatial interpolation techniques, have contributed to the realism of erosion models 

applications. A growing number of models and model versions have been designed to 

integrate GIS, digital maps and satellite data. These advances have also been crucial to 

improving the policy relevance of erosion models. As a result, governments extensively 

use models predicting the extent of soil erosion for policy development and 

implementation of soil management and conservation strategies (Leys et al., 2017; 

Panagos et al., 2015). For example, in Europe, the European Commission derived a range 

of hillslope erosion maps from soil erosion modelling to set soil protection targets within 

the Common Agricultural Policy (CAP) (Panagos and Katsoyiannis, 2019). In Australia, 

the National Landcare Program used the Computational Environmental Management 

System model (CEMSYS) to assess the extent and severity of wind erosion and proposed 

guidelines to limit soil erosion risk in major Natural Resource Management eco-regions 

(Butler et al., 2007; Leys et al., 2017). 

 

1.3.1 Water erosion models 

Based on a comprehensive review of the literature, Borrelli et al., (2020) reported that 

water erosion was by far the most extensively studied process. Erosion is assessed using 
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a wide range of models which differ considerably in their objectives, spatio-temporal 

scales and their initial conceptualisation (Morgan, 2009).  

Two of the most popular detailed process-based models are the Water Erosion Prediction 

Project (WEPP) (A. Nearing et al., 1990; Foster and Lane, 1987) and the European Soil 

Erosion Model (EUROSEM) (Morgan et al., 1998). The WEPP was designed to improve 

the empirically-based Universal Soil Loss Equation (USLE) to provide a continuous 

simulation of soil erosion predictions (rill and interrill) from distributed parameters. 

This model can simulate soil detachment and deposition over small catchments 

(< 260ha) for individual storms or longer periods. This model has been tested and 

calibrated on a wide range of environmental conditions (Morgan, 2009). The EUROSEM 

is an event-based model designed to estimate sediment transport, erosion and deposition 

over the land surface during a single storm. This model can be applied to individual fields 

or small catchments. Compared to other process-oriented models, EUROSEM is 

considered the most realistic as it simulates interill erosion and deposition of sediments 

explicitly and contains a more thorough description of the protective effect of vegetation 

or crop cover in place. However, both models require high parameterisation effort and a 

large amount of input data, which might not always be readily available. They also 

require thorough knowledge of the local conditions and can only be applied over 

small areas. 

The most popular models used at broad spatial scales are derived from the Universal Soil 

Loss Equation (USLE) (Wischmeier and Smith, 1978). The USLE is an empirical model 

derived from a correlation between erosion measured on experimental plots and 

environmental parameters such as topography, climate, soil properties and land use. The 

USLE was later improved (Revised USLE) to account for more modern farming practices 

and make use of computer technologies (Renard et al., 1997). Even though the RUSLE 

was developed initially to assess soil losses from plot-scale experiments, its large-scale 

application is becoming more and more common (Panagos et al., 2018). This interest is 

driven by the fact that the RUSLE derives soil erosion from a set of quantitative 
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environmental attributes used as input data, which are easily accessible across 

large regions. The model can also be used as a coherent baseline product to study the 

direct impact of changes in climate, vegetation, soil characteristics, and land use and land 

management operations on soil erosion. Most importantly, the RUSLE is presented in a 

simple numerical equation which can be easily integrated into a GIS environment and 

mapping software, and can assimilate large datasets when combined with 

computer programs.  

More recently, Panagos et al. (2014) proposed a new perspective to the RUSLE modelling 

approach: the G2 model. G2 is a quantitative algorithm derived from the RUSLE  and 

Gavrilovic (1988) concepts and quantifies hillslope erosion and sediment yield rates at 

monthly time intervals. Although quite similar to the RUSLE, this model proposed a new 

method to account for vegetation cover and management factor in a wide range of 

landscapes (Chapter 2). The authors also introduced a new parameter accounting for 

the effect of landscape alteration on soil erosion in a more recent manuscript 

(Karydas and Panagos, 2018). The G2 model has been successfully applied in 

several European countries and yielded good results (Karydas et al., 2020; Karydas 

and Panagos, 2016; Karydas et al., 2015; Panagos et al., 2012; Zdruli et al., 2016). 

 

1.3.2 Wind erosion models 

Although on-ground wind erosion monitoring with wind tunnel experiments sparked 

interest since the early 60s, wind erosion modelling is not as popular as water erosion 

modelling (Borrelli et al., 2020). The most common wind erosion models are the 

(Revised) Wind Erosion Equation ((R)WEQ; Fryrear et al. (2000); Woodruff and 

Siddoway (1965)), the Wind Erosion Prediction System (WEPS; Hagen (1991)) and the 

Integrated Wind Erosion Modelling System (IWEMS, Lu and Shao (2001)). The WEQ 

and RWEQ are empirical models with a similar structure to the USLE and predict 

potential average annual soil loss based on soil erodibility, wind energy, surface 
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roughness, length of wind fetch and vegetation cover. The revised version of WEQ 

allowed for the inclusion of advanced farming practices in the model, the simulation of 

erosion prediction over shorter periods and more detailed parameter accounting for 

erodible soil fraction and soil crusting. 

Unlike WEQ and RWEQ, the WEPS and IWEMS are process-based models. The WEPS 

produces daily simulations of wind erosion at a field scale. It can also simulate the spatial 

and temporal variability of field conditions and soil loss/deposition within a field. This 

model has been developed for a wide range of scenarios in the USA, and has been applied 

with success in other parts of the world (Chen et al., 2017; Pi et al., 2019; 

Tatarko et al., 2016). One of the major limitations of the models mentioned above is that 

they require a large amount of detailed input data and can only be applied at the field 

scale. The IWEMS model is a combination of a sediment transport model and a dust 

emission model that can be used at a regional scale (Shao, 2001; Shao et al., 2002). 

However, this model requires an extensive range of input parameters that are not always 

readily available. 

Using fundamental principles of aeolian sediment transport, Chappell and Webb (2016) 

redefined the approximation of aerodynamic roughness in the “albedo” Wind Erosion 

Model. The authors implemented and improved the characterisation of the lateral cover 

parameter (L) and surface roughness, and suggested that the values of L were about an 

order of magnitude smaller than field measurements. In addition, the authors argued 

that the sheltering effect from vegetation was not fully integrated into other wind erosion 

modelling approaches. For this reason, Chappell and Webb (2016) developed a new 

approach to wind erosion modelling by replacing the lateral cover parameters with a 

relationship between the sheltered area in the wake of objects and the proportion of 

shadow produced by the same object (Chappell et al., 2010) (Figure 1.4). The authors 

demonstrated that this proportion of shadow could be easily derived from MODIS 

Albedo products (MCD43A1 and MCD43A3) and designed regression relationships 

between aeolian sediment transport and shadow area (or black sky albedo). This new 
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method has now made it possible to fully integrate satellite imagery and remote sensing 

in complex wind erosion models. Therefore, the “albedo” Wind Erosion Model provides 

a dynamic (multi-temporal) global metric for wind erosion assessment at a moderate 

resolution. The model was successfully calibrated and tested the regression relationships 

with field data collected in Australia and in the US through a National Wind Erosion 

Research Network (Webb et al., 2016). 

 

Figure 1.4 a) Concept representation of the sheltering effect of vegetation from Raupach et al. (1993), b) 

concept of the shadow effect of vegetation proposed by Chappell et al. (2010) to derive vegetation structure 

from remote sensing. Source: Chappell et al. (2010). 

 

1.3.3 Integrated/Combination models  

As wind- and water-borne erosion processes differ fundamentally, it is impossible to 

combine them into a single model. Fox et al. (2001) proposed coupling the WEPS and 

WEPP models to assess soil erosion in agricultural fields in the USA. The association of 

the two models was further discussed by Visser and Flanagan (2004), who defined the 

commonalities between the two approaches and illustrated how the two models could be 

combined. The authors suggested that a single erosion model would simplify reporting 

of erosional rates, offer consistent results, simplify computer programming and reduce 

the amount of database to maintain by government agencies. However, the creation of a 

common interface proved to be too complex leading to the development of the Object 

Modelling System (OMS) framework (OMSLab) and their Wind and Water Erosion 

Services (WWES) module (Ascough et al., 2011). The WWES module is composed of 

diverse sub-models that can estimate sheet/rill erosion (RUSLE2), tillage erosion 

(Soil Tillage, Intensity Rating, STIR), hillslope erosion (WEPP), and wind erosion 

(WEPS) for a given field in the US. The OMS framework can be accessed through a cloud-

a) b) 
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based version or as a downloadable Java Graphical User Interface (GUI). This framework 

is the result from an extensive collaboration between the U.S Department for Agriculture 

and agro-environmental modelling organisation in the USA since the early 2000s. As a 

result, the OMS framework can only be accessed by partner organisations. Another 

shortcoming of this project is the fact that the OMS framework and the WWES module 

are only optimised for US conditions. 

Outside of the US, a water erosion model is often coupled to a wind erosion model, and 

the outputs are summed to produce a total soil loss rate. The most popular water erosion 

model chosen for the task is the (R)USLE. This model is then combined with the (R)WEQ 

(Du et al., 2016; Hansen, 2007; Jiang et al., 2019; Jiang and Zhang, 2016; 

Miner et al., 2013; Zhang and McBean, 2016), a dust emission model 

(Al-Bakri et al., 2016; Santini et al., 2010), wind erosion susceptibility maps 

(Martínez-Graña et al., 2014) or radioelement measurements such as Cs137 

(Tuo et al., 2018). Other water erosion models such as the Rangeland Hydrology and 

Erosion Model (RHEM, Nearing et al., (2011)) or other hydrological models can be 

coupled with dust emission models to estimate the total contribution to wind and water 

erosion (Wang et al., 2014; Webb et al., 2014). The next most-preferred approach is the 

classification of images acquired by high-resolution satellite sensors or aerial 

photographs, combined with (Sankey et al., 2018; Sankey and Draut, 2014; 

Wang et al., 2019; Wang et al., 2016) or without field measurements (Al-Masrahy and 

Mountney, 2015; Liu and Coulthard, 2015). Other methods include Principal Component 

Analysis (PCA) or Multi-criteria Analysis on erosion controlling factors to predict soil 

erosion risk by wind and water over a region of interest (Bednář and Šarapatka, 2018; 

Šarapatka and Bednář, 2015). 

1.3.4 Post-fire erosion modelling 

Similar to erosion modelling under “undisturbed” conditions, water erosion models are 

by far the most popular approach to assess the impact of wildfires on soil erosion 
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(Borrelli et al., 2020). In general, water erosion models are used to predict post-fire 

erosion or estimate the effectiveness of rehabilitation treatments. For post-fire 

predictions, the RUSLE (Blake et al., 2020; Lanorte et al., 2019; Litschert et al., 2014; 

Zhu et al., 2019), MMF (Hosseini et al., 2018; Vieira et al., 2014; Vieira et al., 2018), 

WEPP (Fernández and Vega, 2018; Gould et al., 2016; Miller et al., 2011), PERSERA 

(Esteves et al., 2012; Fernández and Vega, 2016; Karamesouti et al., 2016) and SWAT 

(Basso et al., 2020; Carvalho-Santos et al., 2019; Havel et al., 2018; 

Rodrigues et al., 2019) models are the most common. However, these methods often 

yield very different results, and very limited studies validate their prediction outputs with 

field data (Vieira et al., 2018). Although there is a clear interest from the scientific 

community for post-fire erosion modelling, limited research has used erosion models to 

assess the efficacy of post-fire rehabilitation (Vieira et al., 2018). Nonetheless, the 

RUSLE (Fernández et al., 2010; Rulli et al., 2013; Vieira et al., 2018), MMF 

(Fernández et al., 2010; Vieira et al., 2014; Vieira et al., 2018; Zema et al., 2020) and 

WEPP (Robichaud et al., 2016; Robichaud et al., 2007) models have proven to be reliable 

operational tools. These approaches can then be used by land managers to prioritise 

treatment areas and optimise rehabilitation measures. 

Traditional wind erosion models are not commonly used to assess the impact of fires on 

soil erosion. A couple of approaches have used sediment transport models combined 

with field measurements to predict post-fire dust emission (Shaw et al., 2008; 

Wagenbrenner et al., 2017), while others combined vegetation distribution and sediment 

transport models (Breshears et al., 2012; Mayaud et al., 2017; Michelotti et al., 2013). 

Wagenbrenner et al. (2017) used the WindNinja wind distribution model 

(Forthofer et al., 2014) in combination with field measurements to model PM10 

emissions post-fire. This model was initially developed for fire management and 

“fire weather” modelling, but it also contains a dust emission module (Wagenbrenner et 

al., 2010). The authors demonstrated that the model was able to capture a large post-fire 

dust event and identified dust emission hotspots in the Great Basin (USA) following a 
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large wildfire. Shaw et al. (2008) also used a dust transport model (DUSTRAN: 

Allwine et al. (2006)) and field measurements to monitor site recovery and predict dust 

emission following a large fire in the US (Washington State). The authors observed 

discrepancies between the observed and predicted dust emissions under wetter 

conditions. The DUSTRAN model also tends to overestimate PM10 levels for low observed 

dust concentrations. Nonetheless, the model proved to be an effective tool for the 

prediction of post-fire dust events. 

The Vegetation and Sediment TrAnsport (ViSTA) model was created from 

the combination of a vegetation distribution and a sediment transport model 

(Mayaud et al., 2017). Although this model was not primarily designed to assess the 

impact of wildfires on erosion, the vegetation module offers the possibility to add a “fire” 

disturbance. The ViSTA model can then compute the sediment transport and horizontal 

sediment flux after a wildfire occurred; however, this functionality has not been 

compared to ground measurements yet. The ViSTA approach is very similar to the 

Vegetation Moderated Transport (VMTran) model of Breshears et al. (2012) which also 

combines a vegetation and a sediment transport module to estimate the transport of 

contaminated soils by wind. The authors tested the VMTran model to predict sediment 

transport rates following drought, ground fire and crown fire disturbances over a 

1000-year simulation. Overall, their method yielded good results when compared to 

ground-measurements. Still, sediment transport rates varied considerably in response to 

changes in the amount of woody plant cover due to underlying assumptions in the model. 

The VMTran model was used again to model the dispersal and deposition of windblown 

residual plutonium under environmental disturbances (drought, ground fire and 

crown fire) in a semi-arid region of the southwestern USA (Michelotti et al., 2013). The 

authors showed that accumulation rates of radionuclides after disturbances were about 

an order of magnitude faster than under undisturbed conditions. These results 

highlighted the need to apply more scrutiny to consider environmental disturbances in 

the assessment of long-term pollutant concentrations. 
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In conclusion, the vast majority of post-fire erosion modelling considers wind and water 

erosion processes separately even though evidence of wind redistribution of sediments 

have been reported in hydrological studies (Santín et al., 2015; Vega et al., 2020). 

Surprisingly, a very limited number of researchers have considered wind and water 

erosion simultaneously in post-fire studies (Shillito et al., 2012). There is, therefore, a 

need for more combined wind and water post-fire erosion assessment, especially in 

dryland ecosystems where the two processes can substantially contribute to total erosion 

rates under undisturbed conditions. 

 

1.4 Aims and objectives of the project 

The overarching aim of this study is to demonstrate the benefits of a joint wind-water-

erosion modelling approach to identify the spatio-temporal variability of extreme 

erosion events in the South Australian agricultural zone and the likely increase of 

variability in the face of climate change and the recurrence of wildfires. 

We give an example of how this approach can be used to inform corrective measures for 

future land management and test the influence of climate change and extreme 

environmental conditions scenarios on soil erosion for a wide range of land cover over 

large regions. 

The specific objectives of this research were: 

 To adapt two state-of-the-art wind and water erosion models to integrate modern 

high-resolution datasets for spatial and temporal analysis of erosion. The 

adaptation of these models to local conditions and the use of high-resolution 

datasets was crucial to ensure reliable erosion assessment. 

 To identify sub-regions where wind and water erosion processes co-exist in the 

study area. This objective is of utmost importance for regional land management 

as no previous work has looked at the combined impact of wind and water erosion 
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in the South Australian agricultural zone. This knowledge would drive future 

policy development for soil conservation and inspire further work in this domain. 

 To assess the impact of wildfires on wind and water erosion dynamics and test 

the capacity of the models to capture post-fire variability. 

 To assess the impact of a catastrophic wildfire event on wind erosion in the field 

by examining the influence of unburnt stubble patches on adjacent burnt or bare 

plots. 

 

1.5 Thesis structure 

This thesis consists of six chapters; Chapter 5 was published in a peer-reviewed journal. 

The current chapter (Chapter 1) presents a general introduction to soil erosion processes 

and the diverse modelling approaches applied to study this phenomenon as well as the 

motivations behind the research. This chapter also presents the research objectives and 

the outline of the thesis. The following two sections describe the water and wind erosion 

models, define the adaptations of each model to local conditions, evaluate the spatio-

temporal variability of extreme erosion events and describe the interaction between each 

erosional process and their influencing factors (Chapter 2 and 3). Chapter 4 identifies 

sub-regions where wind and water erosion processes co-exist and proposes to test the 

capacity of the wind and water erosion models to capture post-fire erosion variability. 

Chapter 5 presents a simple field-based method to monitor wind erosion after a 

catastrophic wildfire and demonstrates that unburnt stubble patches can greatly 

influence sediment transport to adjacent burnt or bare plots. Chapter 6 summarises the 

key findings, limitations and broader implication of the research and the 

recommendations for further exploration in the field. 
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Abstract 

Soil erosion is a major cause of land degradation globally and requires consistent and 

continuous monitoring methods to ensure future agricultural productivity and soil 

security. Therefore, tools to investigate the impact and frequency of erosive events are 

crucial for land managers and policymakers in order to apply corrective measure for 

better erosion management in the future. Here we applied the G2 erosion model to two 

agricultural regions of South Australia, Australia (the Eyre Peninsula and Mid-North) to 

predict and monitor monthly hillslope erosion. We also explored the use of a high spatio-

temporal resolution rainfall product combined with other high-resolution datasets to 

develop a model that realistically represents the complex combination of critical drivers 

of erosion. The modelling outputs were used to identify the spatial and temporal 

variation of hillslope erosion in South Australia to support cost-effective soil and land-

management strategies. The average annual hillslope erosion was relatively low, but 

regional erosion estimates were about two times higher for the Eyre Peninsula (0.048 

t ha-1 y-1) compared to the Mid-North region (0.114 t ha-1 y-1).  The Flinders Ranges and 

Orroroo/Carrieton Local Government Areas (LGAs) were predicted to be the most 

impacted by erosion between 2001 and 2017 (0.19 and 0.21 t ha-1 y-1 respectively). On the 

other hand, hillslope erosion estimates were very low for most of the Eyre Peninsula and 

the Adelaide Plains LGA. The model presented in this paper could be applied elsewhere 

as the input data can be downloaded through open access platforms Australia-wide, and 

similar datasets are available globally. 

 

2.1 Introduction 

Soil erosion, more particularly sheet and rill (hillslope) erosion, is a major cause of land 

degradation globally and is listed as one of the top priority in the Land Degradation 

Neutrality (LDN) framework (FAO, 2011, 2019). Hillslope erosion removes topsoil 

containing vital nutrients, organic matter and soil carbon, therefore, leading to a 

decrease in soil productivity and biodiversity (Baumhardt et al., 2015; Montgomery, 



 

2007). This erosion process can also lead to off-site consequences like pollution through 

nutrient leaching to water bodies and sedimentation of reservoirs (Rickson, 2014). 

Measurements of soil erosion in the field with rainfall simulators and standardised plots 

provided the foundation for the development of models used in risk assessment and 

regional management of the soil resource. However, measurements are restricted to fine-

scales and extrapolation to regional- or continental-scale applications is challenging. 

Thus, empirical and physical models have been developed to describe erosional 

processes. Recent technological advances in remote sensing and Geographic Information 

System (GIS), have substantially contributed to the development and application of 

erosion models as a growing number of them were designed to integrate GIS, digital 

maps and satellite data (Flanagan et al., 2013; Panagos and Katsoyiannis, 2019). 

Advances in spatial technologies have also been crucial to improving the management 

relevance of erosion models. As a result, governments increasingly rely on models to 

assess soil erosion for policy development. For example, in Europe, the European 

Commission derived a range of hillslope erosion maps from soil erosion modelling to set 

soil protection targets within the Common Agricultural Policy (CAP) (Panagos and 

Katsoyiannis, 2019). 

Prediction models generally differ in their definition of the processes causing erosion, 

their underlying theory and the type of input data required. The most commonly used 

models include the (Revised) Universal Soil Loss Equation (R/USLE) (Renard et al., 

1997; Wischmeier and Smith, 1978), the Water Erosion Prediction Project (WEPP) 

(Foster and Lane, 1987; Nearing et al., 1989), and the European Soil Erosion Model 

(EUROSEM) (Morgan et al., 1998). The RUSLE-derived models are the most popular for 

soil erosion prediction at large scales over a diverse range of ecosystems (Panagos et al., 

2018) due to the simplicity of the models, the availability of data and their easy 

integration in GIS and mapping software. In Australia, the SOILOSS program was 

developed in 1992 to model hillslope erosion at the farm scale (Rosewell, 1993). SOILOSS 

follows similar USLE principles, but some of the parameters were adapted to local 

conditions through field measurements in NSW (e.g. R-, C-, K- factors). However, one of 



 

the major limitations of this program is that it relies on information from look-up tables, 

particularly for estimation of the C- and K-factors, and does not make use of the most 

recent remote sensing and digital soil mapping products for Australia (Grundy et 

al., 2015; Guerschman et al., 2015). 

The RUSLE approach has also been used in Australia to predict hillslope erosion at the 

continental scale (Lu et al., 2003; Teng et al., 2016). These two studies estimated the 

long-term annual sheet and rill erosion based on national soils and land use datasets. 

However, these approaches are not suitable for regional assessment of hillslope erosion. 

Although the model of Lu et al. (2003) made use of remote sensing technology to 

estimate the monthly vegetation cover (C-factor), the spatial resolution of some of the 

input parameters was too coarse to capture the spatial variability of erosion patterns 

(e.g. NDVI: 1km; DEM: 250m). Another limitation of this approach was the 

misclassification of dry or dead vegetation as bare soil, increasing overall erosion 

predictions. Teng et al. (2016), on the other hand, didn’t use a seasonal cover 

management factor. Instead, they assigned annual C-factor values to a range of land 

cover classes from the Dynamic Land Cover Dataset (DLCD) (Lymburner et al., 2011). 

This approach has been criticised by McKenzie et al. (2017) who suggested that using 

fractional vegetation cover would be more appropriate to describe seasonal vegetation 

dynamics than the DLCD. The authors also highlighted that fractional vegetation cover 

could prevent misclassification of dry vegetation as bare soil, as seen in the model of Lu 

et al. (2003). To make better use of the emerging fractional vegetation cover product for 

Australia (Guerschman et al., 2015) and alleviate the issues abovementioned, 

Yang (2014) developed a regression relationship between ground cover (photosynthetic 

(PV) + non-photosynthetic (NVP) vegetation), and the cover and management factor 

(C-factor). This new equation is well adapted for landscapes with zero disturbances, such 

as rangelands and natural vegetation landscapes. However, the author cautioned not to 

use the regression relationship for agricultural landscapes as it does not take into account 

the influence of different land management and treatments on land cover. An alternative 

approach proposed by the G2 model (Panagos et al., 2014a) could be applied to 



 

agricultural landscapes of Australia to combine the use of fractional vegetation products 

and land use and land cover classifications (ABARES, 2016; Willoughby et al., 2018). 

G2 is a quantitative algorithm derived from the RUSLE and Gavrilovic (1988) concepts, 

and quantifies hillslope erosion and sediment yield rates at monthly time intervals. The 

authors also introduced a new parameter accounting for the effect of landscape alteration 

on soil erosion in a more recent manuscript (Karydas and Panagos, 2018). The G2 model 

has been successfully applied in several European countries and yielded good results 

(Karydas et al., 2020; Panagos et al., 2014a; Zdruli et al., 2016). 

Erosion is a complex process, influenced by a combination of factors (e.g. soil properties, 

landscape, climate) which vary strongly in space and time. Thus, to better represent these 

complex interactions and the spatio-temporal variability in erosion, we need to use high- 

resolution input datasets. For example, rainfall erosivity is a key driver of erosion and is 

highly variable in space and time (Nearing et al., 2017). Climate change will also likely 

increase the spatio-temporal variability of rainfall patterns, making the estimation of 

trends even more difficult. Therefore, to deal with this uncertainty, we need access to 

localised rainfall data at a high temporal resolution to better predict relative erosion 

patterns. The Australian Bureau of Meteorology Atmospheric high-resolution Regional 

Reanalysis dataset for Australia (BARRA) can deal with some of this uncertainty (Su et 

al., 2019). It provides spatially explicit hourly precipitation accumulation data for each 

pixel in the study area, which enables a better characterisation of erosive rainfall events. 

The use of hourly rainfall intensity is also more in line with the original USLE approach 

and the latest recommendations from Nearing et al. (2017). With this approach, we can 

then identify where and when high erosive events occur, and also estimate the frequency 

distribution of these erosive rainfall events. Combining the BARRA hourly rainfall data 

with the most recent remote sensing and digital soil mapping products for Australia will 

improve the level of details and accuracy of hillslope erosion estimates for South 

Australia (SA) compared to the previous modelling approaches. 

Therefore, the aims of this study are i) to explore the use of BARRA combined with other 

high-resolution datasets to develop a model that realistically represents the complex 



 

combination of critical drivers of erosion, and ii) to identify the spatial and temporal 

variation of hillslope erosion in South Australia to support cost-effective soil and land-

management strategies. For this reason, we will use the Eyre Peninsula and Mid-North 

regions of South Australia as a case-study application. 

 

2.2 Methods 

2.2.1 The study area 

Our study focusses on two dryland agricultural regions of South Australia, Australia: 

Eyre Peninsula (EP – 33°568’S 135°755’E – 4.7x104 km2) and the Mid-North (MidN – 

33°376’S 138°723’E – 3,4x104 km2,Figure 2.1). These two regions are major contributors 

to agricultural production in South Australia (ABARES, 2018) and part of these regions 

are historically prone to hillslope erosion, therefore representing an essential interest for 

food and soil security. Agricultural land uses represent the majority of the regional land 

uses (Figure 2.2) with cereal cropping representing 50% and 33% of the land surface for 

the Eyre Peninsula and Mid-North respectively, followed by grazing (modified) pastures, 

representing 11% and 54% of the total regional land use for the regions, respectively 

(ABARES, 2016). 



 

 

Figure 2.1 Location map and presentation of the study area (Eyre Peninsula & Mid-North) within the South 

Australian agricultural zone. 

The two regions are characterised by a Mediterranean climate, with cool wet winters and 

hot dry summers with occasional summer storms and exhibit diverse soils and land uses, 

providing an excellent study site to demonstrate the utility of erosion modelling for land 

management. Mean annual rainfall ranges from 200mm in the north to 500mm in the 

south, with a mean of 350mm (BoM, 2016a). The average daily temperature varies 

between 12 and 19°C (BoM, 2016b). The agricultural region of Eyre Peninsula has a range 

of sandy to clay-loam soils (Figure 2.3). On the other hand, dominant soil types 

throughout the Mid-North region are more diverse and predominantly loam or clay-loam 

soils, with some sandy-loam patches (Figure 2.3). Elevation in the Eyre Peninsula region 

ranges between 0m and 480m, and from south-west to north-east. For the Mid-North 

region, altitude ranges between 0m and 950m above sea level with the highest elevations 

found in the centre of the region. The topography is complex in this area, and some parts 

have very steep slopes with gradients ranging from 0% to 60%. 



 

 

Figure 2.2 Land use classes for the Eyre Peninsula and Mid-North regions. Source: ABARES (2016). 

 

Figure 2.3 Dominant soil texture classes for the Eyre Peninsula and Mid-North regions. Source: DEW 

(2016) 

 

2.2.2 Description of the data sources 

All the datasets used in this study have been acquired from open-source databases. Data 

description (e.g. type, resolution, sources) can be found in Appendix A – Table A.1. 

Climate and weather data were obtained from the Australian Bureau of Meteorology 

Atmospheric high-resolution Regional Reanalysis dataset for Australia (BARRA) (Su et 

al., 2019). This reanalysis dataset compiles all available observations and uses weather 

models to fill in the fine details of atmospheric and land surface conditions. The BARRA 

dataset covers the Australian continent and the surrounding regions, including parts of 



 

south-east Asia, New Zealand and south to the ice of the Antarctic continent Appendix A 

– Figure A.1. This dataset also offers hourly spatial resolution for about 100 parameters 

including temperature, precipitation accumulation, wind speed and direction, humidity, 

evapotranspiration and soil moisture. The spatial resolutions are 12km at the continental 

scale and additional model run at 1.5km resolution for spatial subsets, including South 

Australia. Here we used the 1.5km resolution data. 

Land use and land cover were derived from the South Australian Land Cover dataset 

(Willoughby et al., 2018). This dataset modelled land cover throughout the State of South 

Australia based on a combination of satellite imagery (Landsat), aerial photography and 

land use classification from National inventory (ABARES, 2016). This dataset classified 

the landscape in 17 ‘most likely’ land cover classes (Appendix A – Table A.1) and is 

available for six epochs (1987-1990, 1990-95, 1995-2000, 2000-05, 2005-10, 2010-15) at 

a spatial resolution of 25m. In the G2 model, the effect of landscape alterations on 

erosion can be derived from high-resolution satellite imagery (Karydas and Panagos, 

2018). The authors have shown that a non-directional edge filter (i.e. Sobel filter) applied 

on the Near-Infrared (NIR) band of high-resolution imagery can capture landscape 

features intercepting slope and limiting hillslope erosion (e.g. roads, fences, hedges, 

terraces). For this reason, we used the NIR band of Landsat 7 imagery (accessed from 

the Google Earth Engine platform) for the period 2001 2017 at a resolution of 30m. 

Ground cover was derived from Moderate Resolution Imaging Spectroradiometer 

(MODIS) fractional cover dataset for Australia (Guerschman et al., 2015). Guerschman 

et al. (2015) extracted three fractions representing the proportion of photosynthetic 

vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) at monthly and 

8-day time intervals. This product has significantly improved the mapping of ground 

cover for diverse uses and particularly for soil erosion modelling (Yang, 2014). 

Topography was derived from the Advanced Land Observing Satellite (ALOS) Digital 

Surface Model (DSM) version 2.1 at a resolution of 30m (Tadono et al., 2014). The Soil 

and Landscape Grid of Australia (SLGA) digital soil property maps were used to extract 



 

soils information necessary for erosion modelling (e.g. clay, silt and sand fractions; soil 

organic carbon (SOC) and coarse fragment content). The SLGA dataset is available at a 

resolution of 90m for the whole continent and can be programmatically downloaded 

through the slga:: R package (O'Brien, 2019), more information about the range of soil 

properties and landscape attributes can also be found at www.csiro.au/soil-and-

landscape-grid. We also downloaded additional soil properties datasets from the 

Australian Soil Resource Information System (ASRIS) (ASRIS, 2011) such as hydraulic 

conductivity and surface stone cover for the refinement of the soil erodibility factor. 

 

2.2.3 The hillslope erosion model 

To estimate sheet and rill (hillslope) erosion, we adapted the G2 model of Panagos et al. 

(2014a) to Australian conditions. The structure of the G2 model is derived from the 

RUSLE with five input parameters combined in a multiplicative equation as 

 𝐸𝑚 =
𝑅𝑚

𝑉𝑚
× 𝑆 ×

𝑇

𝐿
 , (1) 

where 𝐸𝑚 is the soil loss for month 𝑚 (t ha-1), 𝑅𝑚 is the total rainfall erosivity for each 

month (MJ mm ha−1 h−1 month-1), 𝑉𝑚 is the vegetation retention for month 𝑚 

(dimensionless), 𝑆 represents the soil erodibility (t ha h ha-1 MJ−1 mm−1), 𝑇 is the terrain 

influence (dimensionless), and 𝐿 represents the landscape effect (dimensionless). 

 

Rainfall erosivity (R) 

The rainfall erosivity factor represents the kinetic energy of raindrops and their capacity 

to detach and transport soil particles. Therefore, it is a function of rainstorm intensity 

and duration. In this study, we estimated R using 17 years (2001-2017) of hourly 

precipitation accumulation data. The R-factor was calculated by combining the approach 

from Vrieling et al. (2010) and standard procedures of Renard et al. (1997). As we are 

dealing with a considerable amount of spatio-temporal data, it would be inconvenient to 

use event-based processing on a pixel basis. Temporal aggregation (i.e. to average over 

months and years) is very difficult using true events because events span temporal 

http://www.csiro.au/soil-and-landscape-grid
http://www.csiro.au/soil-and-landscape-grid


 

intervals that differ for every single pixel. We therefore suggest to use storm events 

defined as regular 3-hour time intervals but use the hourly intensity to most closely 

resemble the estimation of rainfall erosivity from original empirical relationships found 

from rainfall simulations (Wischmeier and Smith, 1978). See also Nearing et al. (2017) 

for a strong argument to acknowledge the vast empirical knowledge derived from these 

early studies. Furthermore, 3-hour time intervals are the highest temporal resolution of 

TRMM rainfall dataset, which is widely used to estimate the R-factor. Appendix B shows 

a critical appraisal for the comparability of different rainfall datasets interacting with a 

range of rainfall intensity-kinetic energy (R-ek) relationships.  

First, we estimated the rainfall kinetic energy for each hour (𝑒𝑘_ℎ) from the rainfall 

intensity (𝐼ℎ) following the empirical relationship proposed by van Dijk et al. (2002) and 

Nearing et al. (2017), based on extensive volume-specific rainfall energy-intensity 

relationship reviews across the globe 

 𝑒𝑘_ℎ  = 0.283 × [1 − 0.52 × 𝑒𝑥𝑝−0.042× 𝐼ℎ] (2) 

where 𝑒𝑘_ℎ is expressed in MJ ha-1 mm-1 and 𝐼ℎ is expected in units of mm h-1. Values for 

𝐼ℎ were derived from the hourly precipitation of the BARRA dataset. Then, we estimated 

the total kinetic energy for each 3-hour storm (𝐸3ℎ), 

 

𝐸3ℎ  =  ∑(𝑒𝑘_ℎ  ×  𝑝ℎ)

3

ℎ=1

 (3) 

where 𝐸3ℎ is in MJ ha-1 and 𝑝ℎ is the precipitation (mm) measured in an hour. The 

monthly and annual R-factor is then calculated as follow: 

 

𝑅 = ∑(𝐸3h)𝑘 × (𝐼30)𝑘

𝑁

𝑘=1

 (4) 

where 𝑅 is in MJ mm ha-1 h-1 y-1, 𝑁 is the total number of 3-hour storms in a year or a 

month, 𝐼30 is the maximum 30-min rainfall intensity scaled to mm h-1. As suggested by 

Vrieling et al. (2010), we assumed 𝐼30 to be equivalent to the maximum rainfall intensity 

in a 3-hour storm (but see Appendix B for biases introduced by this assumption). The 



 

R-factor was calculated for each month and year from 2001 to 2017 and resampled to 

90m to be combined with the other G2 factors. 

 

Vegetation retention (V) 

In the RUSLE model, the cover management factor (C-factor) assesses the combined 

effect of surface vegetation and canopy cover as well as surface roughness, crop 

management and soil organic matter content. It is characterised as the ratio of soil loss 

from land cultivated under particular conditions to the equivalent loss from continuous 

tilled fallow conditions. Depending on the level of information available, we can find 

many ways to estimate the C-factor, which offer various levels of accuracy (Panagos et 

al., 2015b; Yang, 2014). In Australia, Yang (2014) proposed an exponential regression 

relationship between ground cover (PV+NPV) and the C-factor instead of using long-

term annual values derived from look-up tables. This method significantly improved the 

estimation of the cover management factor and allowed a seasonal assessment of soil 

erosion. However, the authors cautioned to only apply this method for landscapes with 

zero disturbance, such as rangelands and natural vegetation because it does not take into 

account the influence of different land management and treatments on land cover. 

In the original USLE model, the C-factor is reduced non-linearly with increasing ground 

cover and differs to different degrees for a variety of tillage practices (Wischmeier and 

Smith, 1978). For this reason, Panagos et al. (2014a) introduced a new parameter: 

the retention effect of vegetation (V). Similarly to the C-factor, the values of V are 

different for comparable ground cover fractions to emphasise the influence of different 

land uses for the same vegetation coverage. The authors thus proposed an exponential 

curve to correlate the fraction of ground cover and the V-factor to satisfy the non-linear 

variability of the C-factor and introduced a land-use parameter (LU) to represents the 

influence of different land management and treatments on land cover. The authors also 

defined the V-factor as inversely analogous to the USLE C-factor to highlight the 

protective effect of ground cover and land use against erosion. The form of this function 



 

is very similar to previous Australian studies (Webb et al., 2009; Yang, 2014), but has the 

advantage of taking into account the effect of land use and land management in the 

calculations of V and is not restricted to non-disturbed landscapes (e.g. rangelands and 

natural vegetation). 

In the G2 model, V is a dynamic factor which combines time-series of ground cover 

(PV+NPV) and a constant empirical land-use parameter (LU). This factor is defined by 

the following expression 

 𝑉𝑚𝑗 = 𝑒(𝐿𝑈𝑗×𝐹𝐶𝑚) (5) 

where 𝑉𝑚𝑗 is the vegetation retention for month 𝑚 and land use 𝑗 (normalised [1 - +∞], 

dimensionless), with 𝑉 = 1 for bare or heavily managed agricultural land and 𝑉 > 1 for 

land with better land management practices; 𝐹𝐶𝑚 is the monthly fraction of the ground 

covered by photosynthetic and non-photosynthetic vegetation (normalised [0-1]); 𝐿𝑈𝑗 is 

an empirical land-use parameter for a particular land use 𝑗 ranging from 1 to 10, lower 

values represent intensive land management or unprotected land uses. In comparison, a 

higher LU represents better land-management conditions.  

Panagos et al. (2014a) developed a look-up table derived from the CORINE Land Cover 

classification database and interpretation of the Gavrilovic model dataset (or Erosion 

Potential Method, EPM) (Gavrilovic, 1988) to define the values of LU for a range of land 

uses. The Gavrilovic model contains information about the influence of land use and land 

management on erosion control: 𝑋𝑎 parameter (analogous to the C-factor). To satisfy the 

conditions of the V-factor in equation (5), the 𝑋𝑎 values (ranging from 0 to1) were 

converted to LU (ranging from 1 to 10) with a simple linear inversion (indicative 

examples in Table 2.1) 

 
𝐿𝑈 = {

−10 × 𝑋𝑎 + 11, 𝑋𝑎 ≥ 0.1
10, 𝑋𝑎 < 0.1

 (6) 

Table 2.1 Indicative examples of the conversion of EPM conservation coefficients into LU values. Source: 

Panagos et al. (2014a) 

Gavrilovic  

land-use categories 

Conservation 
coefficient (𝑿𝒂) 

Corresponding 

CORINE LC codes 
LU 

Forestation 0.600 3111/312/313/323 5.0 



 

Orchards and vineyards 0.315 221/222/223 7.9 

Contour farming strip cultivation with 

crop rotation 

0.450 211/212/213 6.5 

Meadows and similar perennial crops 0.400 - 7.0 

Grazing, meadows amelioration 0.300 231 8.0 

Mountain pastures 0.600 321 5.0 

Ploughed field up and down a slope 0.900 - 2.0 

Barren untilled soil 1.000  1.0 

 

Table 2.2 Correspondence table between the SA Land Cover dataset and the look-up table of Karydas and 

Panagos (2016, 2018) 

SA Land Cover Dataset Classes from Karydas and Panagos (2016, 2018) LU 

Woody Native Vegetation Sclerophyllous vegetation 9 

Mangrove Vegetation NA 9 

Non-Woody Native Vegetation Natural grasslands 7 

Saltmarsh Vegetation Salt marshes/salines 10 

Wetland Vegetation Inland marshes 10 

Natural Low Cover Natural grasslands 7 

Salt Lake/ Saltpan Salines 10 

Dryland Agriculture Non-irrigated arable land 5.5 

Exotic Vegetation Moors and heathland 7 

Irrigated Non-Woody Annual crops associated with permanent crops 5.5 

Orchards/ Vineyards Vineyards/Fruit trees/Olive groves 7.8 

Plantation (Softwood) Coniferous forest 10 

Plantation (Hardwood) Broad-leaved forest 10 

Urban Area Discontinuous urban fabric 10 

Built-up Area Industrial or commercial units 10 

Disturbed Ground / Outcrop Mineral extraction sites 1 

Water Unspecified Water bodies 10 

The look-up table for LU values was later updated to include a broader range of land uses 

(Karydas and Panagos, 2016, 2018). In our study, we used this reference set and expert 

knowledge from the Department for Environment and Water (DEW) to obtain LU values 

adapted to the South Australian Land Cover dataset classification (Table 2.2). 

We estimated the V-factor for each month and year from 2001 to 2017 by applying 

equation (5) with the MODIS fractional cover dataset and the LU parameter from 

Table 2.2. The V-factor was resampled to 90m resolution to match the resolution of the 

other G2 factors. 

 

Soil erodibility (S) 



 

The soil erodibility factor (S in t ha h ha-1 MJ−1 mm−1), represents the susceptibility of the 

soil to erosion as measured in standard unit plot conditions. Because direct 

measurements of S-factor are impossible at broad spatial scales, the soil erodibility 

nomograph (Wischmeier and Smith, 1978) is the most commonly used and cited tool for 

soil erodibility estimation. The nomograph is a representation of the soil aggregate size 

distribution and properties (clay sand, silt and organic carbon content, soil structure and 

profile permeability) adopting the following expression 

𝑆 = 2.766 × 𝑀1.14 × 10−7 × (12 − 𝑂𝑀) + 4.28 × 10−3 × (𝑠𝑠 − 2) + 3.28 × 10−3 × (pp − 3) (7) 

where 𝑀 is the textural factor defined as the percentage of silt + fine sand fraction times 

(100 – clay fraction); 𝑂𝑀 is the organic matter content defined as 1.72 times the organic 

carbon content (%), 𝑠𝑠 is the soil structure class (𝑠𝑠 = 1: very fine granular, 𝑠𝑠 = 2: fine 

granular, 𝑠𝑠 = 3, medium or coarse granular, 𝑠𝑠 = 4: blocky, platy or massive); 𝑝𝑝 is the 

soil permeability class (Table 2.3).  

As there was no sufficient information to reliably estimate the spatial distribution of soil 

structure in our study area, we used a uniform value of 𝑠𝑠 = 2 as recommended by 

Rosewell (1993) and Teng et al. (2016). We defined the soil permeability classes following 

the recommendations of Panagos et al. (2014b) associated with hydraulic conductivity 

information from the ASRIS database (ASRIS, 2011). 

Table 2.3 Soil permeability codes for corresponding soil hydraulic conductivity 

 Permeability class (pp) Hydraulic conductivity  

 1 (fast and very fast) > 130 mm/h  

 2 (moderate fast) 60 – 130 mm/h  

 3 (moderate) 20 – 60 mm/h  

 4 (moderate low) 5 – 20 mm/h  

 5 (slow) 1 – 5 mm/h  

 6 (very slow) < 1 mm/h  

The nomograph expression is only valid if the organic matter content is known and the 

silt fraction is lower than 70%, which is the case for soils of Southern South Australia. 

The estimation of the S-factor using this methodology required two adaptations, relating 

to the organic matter content and the very fine sand fraction. 



 

The nomograph equation presented above is only applicable for soils with organic matter 

content below 4%; therefore, we applied an upper limit of 4% to soils in our region of 

interest. This limit is designed to reduce an underestimation of soil erodibility for soils 

which are rich in organic matter. 

Sand content is generally classified into five categories of sand: very fine, fine, medium, 

coarse, very coarse in the literature. If no information about the very fine sand fraction 

was available, Panagos et al. (2014b) proposed to define the very fine sand fraction as 

20% of the total sand. According to Loch and Rosewell (1992), the particle size parameter 

M explains up to 85% of the variability in soil erodibility (S-factor). The higher the 

fraction of particles in the 0.002 - 0.10 mm range, the higher the soil erodibility. It is 

therefore important to ensure that the fraction of very fine sand and silt particles is well 

defined for a more reliable estimation of soil erodibility. Unfortunately, there currently 

is no continental-scale spatial dataset containing information about the very fine sand 

fraction in Australia. We tested the application of the assumption from Panagos et al. 

(2014b) and found that this assumption did not hold for Australian soils where the fine 

and very fine sand fractions can represent up to 40-50% of the total sand fraction. 

Appendix C shows a comprehensive comparison of different assumptions to estimate the 

very fine sand fraction and provides details on the regression analysis conducted to 

derive a new relationship for the definition of the very fine sand fraction in Australia. 

 

Topographic influence (T) 

In the G2 model, the influence of topography on soil erosion (𝑇) follows the approach of 

Desmet and Govers (1996) using the concept of unit contributing area 

 𝑇 = 𝑇𝐿 × 𝑇𝑆 (8) 

with 

 𝑇𝐿 =  
(𝐴𝑖,𝑗−𝑖𝑛 +  𝐷2)

𝑚+1
−  𝐴𝑖,𝑗−𝑖𝑛

𝑚+1

𝑥𝑖,𝑗
𝑚 × 𝐷𝑚+2 × 22.13𝑚

 (9) 



 

where 𝑇𝐿 represents a slope length parameter, 𝐴𝑖,𝑗−𝑖𝑛 is the contributing area at the inlet 

of a grid cell (𝑖, 𝑗), or flow accumulation (m2). 𝐷 is the grid cell size (m), 𝑥𝑖,𝑗 is a parameter 

influenced by the aspect direction of the grid cell (𝑖, 𝑗) (Table 2.4). 

Table 2.4 Constant values for xi,j parameter 

Values for 𝒙𝒊,𝒋 Aspect direction 

1 N, E, S, W 

1.4 NE, SE, SW, NW 

 

𝑚 is related to the ratio 𝛽 of rill to interill erosion. 

 𝑚 =
𝛽

(1 + 𝛽)
 (10) 

where,   

 β =
(sin 𝛼 0.0896⁄ )

(3(sin 𝛼)0.8 + 0.56)
 (11) 

𝛼 is the slope angle in degrees. The ratio 𝑚 ranges between 0 and 1 and approaches 0 

when the ratio of rill to interill erosion is close to 0. 

The estimation of slope influence (𝑇𝑆) is based on the slope gradient 𝑠 and is calculated 

using 

 𝑇𝑆 = {
10.8 sin 𝛼 + 0.03 ,   𝑠 < 9%
16.8 sin 𝛼 − 0.5 ,   𝑠 ≥ 9%

 (12) 

This methodology has shown the ability to capture the influence of complex topography 

on soil erosion (Desmet and Govers, 1996; Panagos et al., 2015a). However, to limit 

accuracy errors inherent to Digital Elevation Models (DEMs), Panagos et al. (2014a) 

suggested to only use DEMs with a spatial resolution of 30m or higher.  

The T-factor was then derived from the 30m ALOS DSM for the Eyre Peninsula and Mid-

North regions with LS-factor field-based topographic indices from the hydrology module 

contained in SAGA (System for Automated Geoscientific Analyses) software, which 

incorporates the multi-flow algorithm described above (Pilesjö and Hasan, 2014). The 

T-factor was then resampled to 90m to match the resolution of the other model 

parameters. 

 



 

Landscape alteration effect (L) 

The L-factor represents the effect of land use and land cover alterations on soil erosion. 

This parameter can capture landscape features intercepting rainfall runoff, thus limiting 

hillslope erosion. The landscape alteration factor can also be considered to have a 

compensating effect on the topography influence factor (T), in the sense that can reduce 

slope length (𝑇𝐿). 

The L-factor is calculated using a 3x3 Sobel filter (non-directional edge-detection filter) 

applied on the NIR band of satellite imagery with a similar or greater resolution to that 

of the DEM used for T. For this reason, we applied this filter on Landsat 7 imagery with 

the spatialEco:: R-package (Evans, 2018). The Sobel filter aims to highlight ‘edge’ 

features such as roads, terraces, contour ridges. The L-factor can then be estimated 

as follow 

 
𝐿 = 1 + √𝑆𝑓 𝐷𝑁𝑚𝑎𝑥⁄  (13) 

where 𝐿 is the landscape effect in range (ranging from 1 to 2), 𝑆𝑓 is the Sobel filter value 

(ranging from 0 to 𝐷𝑁𝑚𝑎𝑥), and 𝐷𝑁𝑚𝑎𝑥 is the theoretic maximum digital number of the 

image (e.g. 255 for 8-bit recording systems, 1 for 32-bit imagery). We estimated the 

L-factor on monthly sets of Landsat imagery than averaged the value for each pixel over 

a year and repeated the process for the period 2001-2017. The L-factor was then 

resampled to 90m and used along other G2 model factors to estimate soil loss over the 

study area. 

Monthly and annual hillslope erosion rates between 2001 and 2017 were estimated 

across the Eyre Peninsula and Mid-North region at a cell size of 90m. Spatial distribution 

maps and frequency distribution histograms for each of the parameters are reported in 

Appendix D. 

 



 

2.3 Results and Discussion 

2.3.1 Spatial variability of hillslope erosion 

Figure 2.4 presents the spatial variability in modelled annual hillslope erosion across the 

Eyre Peninsula and the Mid-North region between 2001 - 2017. The majority of the study 

area (c.a. 90%) was predicted to have a very low erosion susceptibility, below the 

“tolerable” hillslope erosion rate for Australia (c.a. 0.2 t ha-1 y-1) (Bui et al., 2011). At the 

same time, only 9.6% of the study area was estimated to be within the slight to moderate 

erosion severity category (0.2 to 2 t ha-1 y-1)  (Table 2.5). Most of the moderately impacted 

land was in the Mid-North region and is characterised by steeper slopes (higher T) and 

higher rainfall erosivity (higher R). 

 

Figure 2.4 Modelled mean annual erosion severity across the Local Government Areas (LGA) of the Eyre 

Peninsula and Mid-North estimated with the G2 model. The LGAs represent a combination of environmental 

conditions, topography, climate with slightly different rainfall patterns and different farming systems.  

Eyre Peninsula: PUA: Pastoral Unincorporated Area; CED: Ceduna; SB: Streaky Bay; WUD: Wudinna; KIM: 

Kimba; ELL: Elliston; CLV: Cleve; FH: Franklin Harbour; LEP: Lower Eyre Peninsula; TB: Tumby Bay.  

Mid-North: FR: Flinders Ranges; MR: Mount Remarkable; OC: Orroroo/Carrieton; PET: Peterborough; PP: 

Port Pirie; NAR: Northern Areas; WAK: Wakefield; CGV: Claire Gilbert Valley; GOY: Goyder Regional 

Council; ADLP: Adelaide Plain; LIG: Light Regional Council 

 

Conservation farming and the adoption of no-tillage has considerably improved land 

conditions across South Australia over the past decade (Young and Herrmann, 2015). 



 

As a result, the number of observations of dust events and rill erosion has dramatically 

reduced (DEW, 2017; Hancock et al., 2015). These observations corroborate well with 

the spatial distribution patterns presented in Figure 2.4 and the low erosion rates 

predicted by the G2 model. 

Table 2.5 Modelled hillslope erosion severity classes and their area percentages for the study area. 

Erosion severity Class range (t ha-1 y-1) Area (km2) Percent Area 

Very slight < 0.2 73,471 90.41 

Slight 0.2 – 0.5 6,632 8.16 

Moderate 0.5 – 2.0 1,134 1.40 

High 2.0 – 5.0 27 0.034 

Very high > 5.0 5 0.006 

Regional soil erosion estimates also differed substantially between the two regions of 

interest (Figure 2.5). The annual hillslope erosion in the Mid-North region was predicted 

to be about two and a half times larger than on the Eyre Peninsula during the period 

2001-2017 (0.048 vs 0.114 t ha-1 y-1 respectively). This difference can be explained by the 

topography of the Mid-North region (higher T) as well as the dominant soil texture 

(higher S) and higher rainfall erosivity (higher R). 

Regional soil erosion estimates also differed substantially between the two regions of 

interest (Figure 2.5). The annual hillslope erosion in the Mid-North region was predicted 

to be about two and a half times larger than on the Eyre Peninsula during the period 

2001-2017 (0.048 vs 0.114 t ha-1 y-1 respectively). This difference can be explained by the 

topography of the Mid-North region (higher T) as well as the dominant soil texture 

(higher S) and higher rainfall erosivity (higher R).  

On average, the highest predicted erosion rates in the Mid-North region were in the 

Flinders Ranges and the Orroroo/Carrieton LGAs (0.19 to 0.21 t ha-1 y-1), while Kimba, in 

the northern fringes of the Eyre Peninsula, appeared to be the most impacted 

(0.08  t ha-1 y-1) for this region. On the other hand, hillslope erosion estimates were very 

low for most of the Eyre Peninsula and the Adelaide Plains LGA. 

The Local Government Areas in this study were characterised by different environmental 

conditions, topography, climate with slightly different rainfall patterns and different 



 

farming systems. This combination of factors affected the modelled regional and sub-

regional erosion susceptibility and resulted in observed inter- and intra-

regional  differences. 

 

Figure 2.5 Modelled average annual hillslope erosion per Local Government Area (LGA). The horizontal 

lines represent the regional average annual soil loss (Eyre Peninsula = 0.048 t ha-1 yr-1 – Mid-North = 0.114 

t ha-1 yr-1) 

Eyre Peninsula: PUA: Pastoral Unincorporated Area; CED: Ceduna; SB: Streaky Bay; WUD: Wudinna; KIM: 

Kimba; ELL: Elliston; CLV: Cleve; FH: Franklin Harbour; LEP: Lower Eyre Peninsula; TB: Tumby Bay 

Mid-North: FR: Flinders Ranges; MR: Mount Remarkable; OC: Orroroo/Carrieton; PET: Peterborough; PP: 

Port Pirie; NA: Northern Areas; WAK: Wakefield; CGV: Claire Gilbert Valley; GOY: Goyder Regional 

Council; ADLP: Adelaide Plain; LIG: Light Regional Council.  

 

 

 

2.3.2 Temporal variation in hillslope erosion 

Although annual erosion rates were predicted to be relatively low, Figure 2.6 shows high 

inter-annual variability in modelled hillslope erosion between 2001 and 2017 for both 

regions. Hillslope erosion was at its lowest between 2002 and 2006 for the Eyre 

Peninsula and Mid-North region, while the highest values were predicted for 2007 (EP: 

0.11 t ha-1 y-1; MidN: 0.57 t ha-1 y-1) and 2011 (EP: 0.08 t ha-1 y-1; MidN: 0.17 t ha-1 y-1). 

Between 2001 and 2010, Southern Australia experienced a wide-spread drought (known 



 

as the Australian ‘Millennium Drought’). During this period, ground cover and soil 

moisture were very low, leading to an increase in erosion susceptibility. This information 

could explain the increase in predicted hillslope erosion rates across the study area in 

2007. A combination of very low ground cover and extreme rainstorm events 

(in January-February) likely led to more severe annual erosion in the study area, 

exceeding the recommended “tolerable” hillslope erosion threshold for Australia 

(0.2 t ha-1 y-1) (Bui et al., 2011). 

 

Figure 2.6 Temporal distribution of regional modelled annual hillslope erosion for the Eyre Peninsula and 

Mid-North region. The dashed line represents the Australian tolerable soil loss threshold of 0.2 t ha-1 y-1 

(source: Bui et al. (2011)). 

The G2 model predicted a strong seasonal and inter-annual variability in hillslope 

erosion for the Eyre Peninsula and Mid-North region (Figure 2.7). Summer (December 

to February) appeared to have the highest erosion rates. Modelled hillslope erosion in 

January was about 15 times higher than in August for the Mid-North region, whereas on 

the Eyre Peninsula, March erosion rates were about six times higher than the lowest 

predicted erosion risk in August. These patterns are likely driven by a combination of low 

ground cover (grazed stubble), drier soils (increased erodibility: S), and stronger rainfall 

events (increased R) (Figure 2.8). Summer rainstorms in southern Australia are 

generally more intense and isolated than winter rainfall leading to a higher erosion risk 

(Yang and Yu, 2015). 



 

Overall, regional variations in predicted monthly hillslope erosion correlated well with 

variations in rainfall erosivity and seemed to coincide with low average monthly ground 

cover (c.a. 50-60%) (Figure 2.8). Figure 2.8 also highlights that summer hillslope erosion 

accounts for 40 to 50% of the total annual erosion for both regions. For instance, 

predicted erosion in January 2007, 2009 and 2012 represented about 70 to 80% of the 

total annual erosion for the Mid-North region. 

 

Figure 2.7 Temporal distribution of predicted regional monthly hillslope erosion grouped by months 

between 2001 and 2017 for the Eyre Peninsula and Mid-North region. 

 



 

 

Figure 2.8 Monthly percent distributions (ratio to total annual value) of modelled hillslope erosion 

(Erosion) and rainfall erosivity (Erosivity), compared with average monthly ground cover (Ground Cover), 

from 2001 to 2017 for the Eyre Peninsula and Mid-North region. 

 

2.3.3 Predicted  hillslope erosion and “tolerable” soil loss 

Soil weathering, whether it is wind- or water-induced, impacts the uppermost topsoil 

layer (upper 20 to 40 cm of the topsoil, called A-horizon), where water available to plants 

is stored and where most nutrients are accumulated and cycled. If the A-horizon layer is 

reduced, even by a small fraction (few centimetres), this will lead to significant declines 

in agricultural productivity (Bui et al., 2010) therefore the cost of production will be 

rising (Boardman, 2006). This is particularly true for low rainfall regions where scarce 

water resources, often poor soil fertility and a thin A-horizon layer make agriculture more 

challenging. For this reason, Bui et al. (2011) proposed a “tolerable” soil loss threshold 

for hillslope erosion in Australia. The proposed value of 0.2 t ha-1 y-1 represents the 

equilibrium between soil production rate and soil erosion rate, based on long-term 

studies on soil production and denudation rates in Australia (Leaman et al., 2003; 

Loughran et al., 2004). The authors also suggest that a more conservative value of 

0.1 t ha-1 y-1 could be proposed for areas more susceptible to hillslope erosion. 



 

 

Figure 2.9 Frequency distribution of predicted annual hillslope erosion above 0.2 t ha-1 y-1 

Between 2001 and 2017, the Australian “tolerable” soil loss was predicted to be exceeded 

less than 25% of the time for most of the Eyre Peninsula (Figure 2.9). On the other hand, 

the Flinders Ranges, Orroroo/Carrieton and Northern Areas LGAs, in the Mid-North 

region, were predicted to exceed the Australian “tolerable” soil loss more than 50% of the 

time period (Figure 2.9). Even if the predicted hillslope erosion was around 0.2 t ha-1 y-1 

in the districts frequently exceeding this threshold, this could potentially have high 

implications for agricultural productivity and land management in the region. Our 

results could then serve as a guide to inform land managers about potential erosion 

severity under a range of environmental conditions. Other stakeholders involved with 

policies and programs relating to sustainable agricultural land management and land use 

planning (e.g. the agricultural industry, local and State governments, and research 

organisations) could also use these results to inform strategic changes and future 

decisions in regards to erosion management. 

Today, land managers control the risk of erosion by managing the ground cover with the 

use of minimum tillage and cover crops. Still, even with the best management practices, 

land managers might have little control to prevent erosion with a recurrence in extreme 

events such as extended droughts, wildfires or extreme precipitation events. 

Nonetheless, farming systems and land management options such as greater use of 



 

perennial plants (including pasture species, fodder shrubs and trees) could help to 

mitigate erosion risk with increasing dry seasonal conditions in lower rainfall areas. 

 

2.3.4 Comparison with previous soil erosion studies 

Our modelling exercise was not destined to model localised hillslope erosion, but rather 

to identify the spatial and temporal variation of hillslope erosion in South Australia to 

support cost-effective soil and land-management strategies. This study demonstrated 

that the G2 model was well suited for the task. Although we didn’t validate the model 

outputs against on-ground measurements, we compared the predicted hillslope erosion 

with previous studies conducted in South Australia. The most comprehensive 

comparison dataset was reported in the study of Loughran and Elliott (1996) and 

Loughran et al. (2004) who estimated net soil loss from Caesium-137 (137Cs) 

measurements. In this study, eight of the ten South Australian samples were located 

within the study area, and the comparison between their results and our modelling 

outputs are presented in . Overall the G2 model predictions correlated well the 

measurements from Loughran and Elliott (1996) and were within the same order of 

magnitude. Another study conducted within the Mount Lofty Ranges and Fleurieu 

Peninsula (Wilkinson et al., 2005) reported hillslope erosion rates within the same order 

of magnitude than the ones presented in this study (0 – 0.1 t ha-1 y-1 on floodplains and 

flatter land; 0.5 – 5 t ha-1 y-1 on steeper slopes). 

To increase our confidence in spatial distribution patterns of predicted hillslope erosion, 

we also corroborated the map presented in Figure 2.4 inherent soil erosion susceptibility 

datasets created by the South Australian Government (Figure D.6). This susceptibility 

map represents the potential for hillslope erosion in the event that vegetation and other 

ground cover has been removed. The assessment was based on the mapping of slope and 

the spatial prediction of inherent soil erodibility characteristics. 
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More details about the corroboration methods are presented in Appendix D. Even if this 

comparison did not allow us to validate the actual amount of erosion predicted by the G2 

model, the long-term spatial and temporal distribution of predicted hillslope erosion 

corroborated well with this previous approach (Figure 2.10). It also demonstrates that 

the erosion severity predicted by the G2 model in the study area was not only driven by 

inherent soil erosion susceptibility (i.e. soil properties and terrain), but also climatic 

conditions (i.e. intense storms) and environmental factors (i.e. ground cover, land 

management). For example, districts or local government areas with a high inherent 

erosion susceptibility might not be at risk of erosion if a reasonable amount of ground 

cover is maintained and no extreme climatic event occurs. On the other hand, districts 

with low inherent soil erosion susceptibility might be at higher risk of erosion if ground 

cover is very low (e.g. during a drought period) and coincide with extreme weather 

events, such as the year 2007 for both region (Figure 2.7 and Figure 2.8). 

 

Figure 2.10 New predicted hillslope erosion severity map corroborated with the DEW inherent soil erosion 

susceptibility map. Note that the areas in grey represent zones where the classification of the DEW map did 

not overlap with the G2 model. 

 

2.4 Conclusions and further studies 

This study demonstrated that erosion models could be used to inform corrective 

measures for future land management and provide a valuable tool for assessing the 



 

spatio-temporal variability of hillslope erosion. Here we applied the G2 erosion model to 

two agricultural regions of South Australia, Australia (the Eyre Peninsula and Mid-

North). We also explored the use of high spatio-temporal resolution BARRA rainfall 

product combined with other high-resolution datasets to develop a model that 

realistically represented the complex combination of critical drivers of erosion.  

Although the erosion rates predicted by G2 were not validated with direct measurements, 

the spatial patterns of modelled erosion corroborated well with previous studies. The 

consistency and continuity of the time series produced in this study could also allow us 

to understand the spatial distribution of erosion risk and monitor hillslope erosion 

within the agricultural districts of South Australia. The time series of rainfall erosivity 

(R) and vegetation retention (V) could also be used to evaluate the influence of changes 

in land management or climate on soil erosion predictions. 

The application of the G2 model to the study area demonstrated that this model was well 

suited for the assessment of hillslope erosion over a large area. The model consists of 

automated scripts which can process a large amount of high spatio-temporal resolution 

dataset very efficiently. Although the focus of this study was on the Eyre Peninsula and 

Mid-North agricultural regions, the model could be extended to the rest of the State or 

across all the Australian agricultural zone, given sufficient computing power. The input 

data can be downloaded through open access platforms Australia-wide (Table A.1), and 

similar datasets are available globally. 

Even if we proposed some changes to the original G2 model to better suit Australian 

conditions and the datasets available (e.g soil erodibility and V-factor), further 

improvements could be introduced. As presented in section 2.2.3, the fraction of the 

finest soil particles (0.002 – 0.10 mm) can explain up to 85% of the variability in soil 

erodibility (S). It is therefore critical to ensure that the soil erodibility parameter is 

calibrated for a specific region rather than using crude assumptions. Digital soil mapping 

techniques could be applied to derive a new very fine sand dataset for South Australia 

based on the analysis of soil samples and local geomorphological information (Gray et 



 

al., 2016). New data fusion techniques could also help to improve the spatial resolution 

of the fractional vegetation cover dataset. Such techniques could be used to blend 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery to 

obtain monthly fractional vegetation cover composites at a finer resolution (30m vs 

500m). The use of higher resolution datasets will, therefore, improve the model accuracy 

and provide modelling outputs at a scale more meaningful for soil and land management. 

A new generation of climate projections (NSW and Australian Capital Territory (ACT) 

Regional Climate Modelling: NARCliM-2 project) will be available in about two years 

(Yang, 2020). This new set of climate projections will provide maps of daily rainfall 

projections at a resolution of 1km (vs 10km presently) for a continuous period of 100 

years (2020 – 2100) (Evans et al., 2014). This new dataset could be incorporated in the 

G2 model to test the influence of a range of possible climate scenarios on future soil losses 

and provide detailed information for soil and land management options in the future. 

 

2.5 References 

ABARES, 2016. The Australian Land Use and Management Classification Version 8. 

Australian Bureau of Agricultural and Resource Economics and Sciences 

(ABARES), 

http://data.daff.gov.au/anrdl/metadata_files/pe_alumc9aal20161017.xml?conve

rtlinks=0 

ABARES, 2018. Catchment scale land use of Australia - Commodities - Version 2. 

Australian Bureau of Agricultural and Resource Economics and Sciences 

(ABARES), https://www.agriculture.gov.au/abares/aclump/land-use/catchment-

scale-land-use-of-australia-commodities-update-december-2018 

ASRIS, 2011. ASRIS - Australian Soil Resource Information System, 

http://www.asris.csiro.au 

Baumhardt, R.L., Stewart, B.A., Sainju, U.M., 2015. North American Soil Degradation: 

Processes, Practices, and Mitigating Strategies. Sustainability 7, 2936-2960, doi: 

https://doi.org/10.3390/su7032936. 

Boardman, J., 2006. Soil erosion science: Reflections on the limitations of current 

approaches. Catena 68, 73-86,  



 

BoM, 2016a. Average annual, seasonal and monthly rainfall. Bureau of Meteorology, 

http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp?period=an

&area=sa#maps 

BoM, 2016b. Decadal and multi-decadal temperature. Bureau of Meteorology, 

http://www.bom.gov.au/jsp/ncc/climate_averages/decadal-

temperature/index.jsp?maptype=6&period=7605&product=max#maps 

Bui, E.N., Hancock, G.J., Chappell, A., Gregory, L.J., 2010. Evaluation of tolerable 

erosion rates and time to critical topsoil loss in Australia. Caring for our Country 

publication, Commonwealth of Australia, Canberra [nrmonline. nrm. gov. 

au/catalog/mql: 2237] 3,  

Bui, E.N., Hancock, G.J., Wilkinson, S.N., 2011. ‘Tolerable’ hillslope soil erosion rates in 

Australia: Linking science and policy. Agriculture, Ecosystems & Environment 144, 

136-149, doi: https://doi.org/10.1016/j.agee.2011.07.022. 

Desmet, P.J.J., Govers, G., 1996. A GIS procedure for automatically calculating the USLE 

LS factor on topographically complex landscape units. Journal of Soil and Water 

Conservation 51, 427-433, <Go to ISI>://WOS:A1996WC48400014 

DEW, 2016. Surface Soil Texture. Government of South Australia, Department for 

Environment and Water, https://data.sa.gov.au/data/dataset/3ee7c63d-cae6-

4076-a394-4db4a158e740 

DEW, 2017. Soil protection from erosion. Government of South Australia, Department 

for Environment and Water, 

https://www.environment.sa.gov.au/Knowledge_Bank/Science_research/land-

condition-sustainable-management/soil-protection-from-erosion 

Evans, J.P., Ji, F., Lee, C., Smith, P., Argüeso, D., Fita, L., 2014. Design of a regional 

climate modelling projection ensemble experiment &ndash; NARCliM. Geosci. 

Model Dev. 7, 621-629, doi: https://doi.org/10.5194/gmd-7-621-2014. 

Evans, J.S., 2018. spatialEco-package, R package version 0.1.1-1 ed, 

https://github.com/jeffreyevans/spatialEco 

FAO, 2011. The state of the world's land and water resources for food and agriculture 

(SOLAW) - Managing systems at risk. Food and Agriculture Organization of the 

United Nations, Rome and Earthscan, London,  

FAO, 2019. Soil erosion: the greatest challenge to sustainable soil management, Rome, 

p. 100 pp,  

Flanagan, D.C., Ascough, J.C., Nieber, J.L., Misra, D., Douglas-Mankin, K.R., 2013. 

Advances in Soil Erosion Research: Processes, Measurement, and Modeling. 

Transactions of the ASABE 56, 455-463, doi: 

https://doi.org/10.13031/2013.42666. 

Foster, G.R., Lane, L.J., 1987. User requirements: USDA, water erosion prediction 

project (WEPP) Draft 6.3. NSERL report (USA),  



 

Gavrilovic, Z., 1988. Use of an Empirical Method(Erosion Potential Method) for 

Calculating Sediment Production and Transportation in Unstudied or Torrential 

Streams, International Conference on River Regime. Hydraulics Research Limited, 

Wallingford, Oxon UK. 1988. p 411-422, 5 fig, 4 tab, 8 ref.,  

Gray, J.M., Bishop, T.F.A., Wilford, J.R., 2016. Lithology and soil relationships for soil 

modelling and mapping. CATENA 147, 429-440, doi: 

https://doi.org/10.1016/j.catena.2016.07.045. 

Grundy, M.J., Rossel, R.A.V., Searle, R.D., Wilson, P.L., Chen, C., Gregory, L.J., 2015. 

Soil and Landscape Grid of Australia. Soil Research 53, 835-844, doi: 

10.1071/sr15191. 

Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, 

J.B., Rickards, J.E., Trevithick, R., 2015. Assessing the effects of site heterogeneity 

and soil properties when unmixing photosynthetic vegetation, non-photosynthetic 

vegetation and bare soil fractions from Landsat and MODIS data. Remote Sensing 

of Environment 161, 12-26, doi: https://doi.org/10.1016/j.rse.2015.01.021. 

Hancock, G.R., Wells, T., Martinez, C., Dever, C., 2015. Soil erosion and tolerable soil 

loss: Insights into erosion rates for a well-managed grassland catchment. 

Geoderma 237-238, 256-265, doi: 

https://doi.org/10.1016/j.geoderma.2014.08.017. 

Karydas, C., Bouarour, O., Zdruli, P., 2020. Mapping Spatio-Temporal Soil Erosion 

Patterns in the Candelaro River Basin, Italy, Using the G2 Model with Sentinel2 

Imagery. Geosciences 10, 89, doi: https://doi.org/10.3390/geosciences10030089. 

Karydas, C.G., Panagos, P., 2016. Modelling monthly soil losses and sediment yields in 

Cyprus. International Journal of Digital Earth, 1-22, doi: 

http://dx.doi.org/10.1080/17538947.2016.1156776. 

Karydas, C.G., Panagos, P., 2018. The G2 erosion model: An algorithm for month-time 

step assessments. Environ Res 161, 256-267, doi: 

https://doi.org/10.1016/j.envres.2017.11.010. 

Leaman, D.E., Kohn, B.P., O'Sullivan, P.B., Gleadow, A.J.W., Brown, R.W., Gallagher, 

K., Foster, D.A., 2003. Discussion and Reply: Shaping the Australian crust over the 

last 300 million years: Insights from fission track thermotectonic imaging and 

denudation studies of key terranes. Australian Journal of Earth Sciences 50, 645-

650, doi: 10.1046/j.1440-0952.2003.01006.x. 

Loch, R., Rosewell, C., 1992. Laboratory methods for measurement of soil erodibilities 

(K-factors) for the universal soil loss equation. Soil Research 30, 233-248,  

Loughran, R., Elliott, G., McFarlane, D., Campbell, B., 2004. A survey of soil erosion in 

Australia using caesium‐137. Australian Geographical Studies 42, 221-233,  

Loughran, R.J., Elliott, G.L., 1996. Rates of soil erosion in Australia determined by the 

caesium-137 technique: a national reconnaissance survey. IAHS Publications-



 

Series of Proceedings and Reports-Intern Assoc Hydrological Sciences 236, 275-

282,  

Lu, H., Prosser, I.P., Moran, C.J., Gallant, J.C., Priestley, G., Stevenson, J.G., 2003. 

Predicting sheetwash and rill erosion over the Australian continent. Soil Research 

41, 1037-1062, doi: http://dx.doi.org/10.1071/SR02157. 

Lymburner, L., Tan, P., Mueller, N., Thackway, R., Thankappan, M., Islam, A., Lewis, A., 

Randall, L., Senarath, U., 2011. The national dynamic land cover dataset–technical 

report, National Earth Observation Group. Geoscience Australia, Symonston, ACT, 

http://pid.geoscience.gov.au/dataset/ga/71069 

McKenzie, N., Hairsine, P., Gregory, L.J., Austin, J., Baldock, J., Webb, M., Mewett, J., 

Cresswell, H., Welti, N., Thomas, M., 2017. Priorities for improving soil condition 

across Australia's agricultural landscapes, Report prepared for the Australian 

Government Department of Agriculture and Water Resources. CSIRO, Australia,  

Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. Proceedings of the 

National Academy of Sciences 104, 13268-13272, doi: 

https://doi.org/10.1073/pnas.0611508104  

Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., 

Chisci, G., Torri, D., Styczen, M.E., 1998. The European Soil Erosion Model 

(EUROSEM): a dynamic approach for predicting sediment transport from fields 

and small catchments. Earth Surface Processes and Landforms 23, 527-544, doi: 

https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-

ESP868>3.0.CO;2-5. 

Nearing, M., Foster, G., Lane, L., Finkner, S., 1989. A process-based soil erosion model 

for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE 

32, 1587-1593,  

Nearing, M.A., Yin, S.-q., Borrelli, P., Polyakov, V.O., 2017. Rainfall erosivity: An 

historical review. Catena 157, 357-362, doi: 

https://doi.org/10.1016/j.catena.2017.06.004. 

O'Brien, L., 2019. slga: Data Access Tools for the Soil and Landscape Grid of Australia, R 

package version 1.0.1 ed, https://github.com/obrl-soil/slga 

Panagos, P., Borrelli, P., Meusburger, K., 2015a. A New European Slope Length and 

Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences 5, 

117, http://www.mdpi.com/2076-3263/5/2/117 

Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L., 2015b. 

Estimating the soil erosion cover-management factor at the European scale. Land 

Use Policy 48, 38-50, doi: https://doi.org/10.1016/j.landusepol.2015.05.021. 

Panagos, P., Borrelli, P., Meusburger, K., Lugato, E., Ballabio, C., Poesen, J., Alewell, C., 

Montanarella, L., 2018. Soil erosion in Europe: current status, future climate and 

land use scenarios, in: Zlatic, M., Kostadinov, S. (Eds.), Soil and Water Resources 



 

Protection in the Changing Environment, pp. 1-13, <Go to 

ISI>://WOS:000464898800001 

Panagos, P., Christos, K., Cristiano, B., Ioannis, G., 2014a. Seasonal monitoring of soil 

erosion at regional scale: An application of the G2 model in Crete focusing on 

agricultural land uses. International Journal of Applied Earth Observation and 

Geoinformation 27, 147-155, doi: https://doi.org/10.1016/j.jag.2013.09.012. 

Panagos, P., Katsoyiannis, A., 2019. Soil erosion modelling: The new challenges as the 

result of policy developments in Europe. Environmental Research 172, 470-474, 

doi: https://doi.org/10.1016/j.envres.2019.02.043. 

Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., Alewell, C., 2014b. Soil erodibility 

in Europe: A high-resolution dataset based on LUCAS. Science of The Total 

Environment 479-480, 189-200, doi: 

https://doi.org/10.1016/j.scitotenv.2014.02.010. 

Pilesjö, P., Hasan, A., 2014. A Triangular Form-based Multiple Flow Algorithm to 

Estimate Overland Flow Distribution and Accumulation on a Digital Elevation 

Model. Transactions in GIS 18, 108-124, doi: https://doi.org/10.1111/tgis.12015. 

Renard, K.G., Foster, G.R., Weesies, G., McCool, D., Yoder, D., 1997. Predicting soil 

erosion by water: a guide to conservation planning with the Revised Universal Soil 

Loss Equation (RUSLE). US Government Printing Office Washington, DC,  

Rickson, R.J., 2014. Can control of soil erosion mitigate water pollution by sediments? 

Science of The Total Environment 468-469, 1187-1197, doi: 

https://doi.org/10.1016/j.scitotenv.2013.05.057. 

Rosewell, C., 1993. SOILOSS: a program to assist in the selection of management 

practices to reduce erosion. Soil Conservation Service of NSW, Sydney, NSW,  

Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox‐Hughes, P., White, C., Rennie, S., 

Franklin, C., Dharssi, I., Zhu, H., 2019. BARRA v1.0: The Bureau of Meteorology 

Atmospheric high-resolution Regional Reanalysis for Australia. Geoscientific 

Model Development 12, 2049-2068, doi: https://doi.org/10.5194/gmd-12-2049-

2019. 

Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H., 2014. Precise 

Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. 

Spatial Inf. Sci. II-4, 71-76, doi: https://doi.org/10.5194/isprsannals-II-4-71-2014. 

Teng, H., Viscarra Rossel, R.A., Shi, Z., Behrens, T., Chappell, A., Bui, E., 2016. 

Assimilating satellite imagery and visible–near infrared spectroscopy to model and 

map soil loss by water erosion in Australia. Environmental Modelling & Software 

77, 156-167, doi: https://doi.org/10.1016/j.envsoft.2015.11.024. 

van Dijk, A.I.J.M., Bruijnzeel, L.A., Rosewell, C.J., 2002. Rainfall intensity–kinetic 

energy relationships: a critical literature appraisal. Journal of Hydrology 261, 1-23, 

doi: https://doi.org/10.1016/S0022-1694(02)00020-3. 



 

Vrieling, A., Sterk, G., de Jong, S.M., 2010. Satellite-based estimation of rainfall erosivity 

for Africa. Journal of hydrology 395, 235-241, doi: 

https://doi.org/10.1016/j.jhydrol.2010.10.035. 

Webb, N.P., McGowan, H.A., Phinn, S.R., Leys, J.F., McTainsh, G.H., 2009. A model to 

predict land susceptibility to wind erosion in western Queensland, Australia. 

Environmental Modelling & Software 24, 214-227, doi: 

https://doi.org/10.1016/j.envsoft.2008.06.006. 

Wilkinson, S.N., Jansen, A., Watts, R., Read, A.M., Davey, B., 2005. Techniques for 

targeting erosion control and riparian rehabilitation in the Mount Lofty Ranges, 

Canberra, p. 48p, doi: https://doi.org/10.4225/08/58694496485e7. 

Willoughby, N., Thompson, D., Royaland, M., Miles, M., 2018. South Australian Land 

Cover Layers: an Introduction and Summary Statistics. Government of South 

Australia, Department for Environment and Water (DEW), Adelaide, Australia, 

https://data.environment.sa.gov.au/Content/Publications/SA-Land-Cover-

Layers-1987-2015-Technical-Summary.pdf 

Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses-A guide to 

conservation planning. Predicting rainfall erosion losses-A guide to conservation 

planning,  

Yang, X., 2014. Deriving RUSLE cover factor from time-series fractional vegetation cover 

for hillslope erosion modelling in New South Wales. Soil Research 52, 253-261, doi: 

http://dx.doi.org/10.1071/SR13297. 

Yang, X., 2020. State and trends of hillslope erosion across New South Wales, Australia. 

Catena 186, 104361, doi: https://doi.org/10.1016/j.catena.2019.104361. 

Yang, X., Yu, B., 2015. Modelling and mapping rainfall erosivity in New South Wales, 

Australia. Soil Research 53, 178-189, doi: http://dx.doi.org/10.1071/SR14188. 

Young, M.-A., Herrmann, T., 2015. Celebrating 75 years of Soil-Care, 2015 State 

Community Landcare Conference. Government of South Australia, Department of 

Environment, Water and Natural Resources, Waikerie,  

Zdruli, P., Karydas, C.G., Dedaj, K., Salillari, I., Cela, F., Lushaj, S., Panagos, P., 2016. 

High resolution spatiotemporal analysis of erosion risk per land cover category in 

Korçe region, Albania. Earth Science Informatics 9, 481-495, doi: 

https://doi.org/10.1007/s12145-016-0269-z. 

  



 

 

 

Appendix A 

Chapter 2 to 4 – Supplementary material 

This supplementary material includes a table describing the input datasets accessed to 

run the G2 and “albedo”  erosion models in this study as well as links to download the 

raw data. 

Table A.1 Description of the datasets used for the modelling with sources and resolution. 

Data type Dataset name and specific information source 

Weather data 

Hourly precipitation accumulation 

Hourly maximum wind speed 

Hourly soil moisture (0 - 10cm layer) 

(1.5x1.5km) 

BARRA-AD 

Land use 
Australian Land Use and Management Classification 
Version 8 

ABARES 

Land cover 

South Australian Land Cover dataset 

Three epochs (2000-05, 2005-10, 2010-15) 

(25mx25m) 

Enviro Data SA 

Ground cover 

MODIS 8-day Fractional Cover (v6) 2001-2017 

(500mx500m) 
TERN-Auscover 

MODIS BRDF/Albedo model parameters daily 
(MCD43A1) (v6) 2001-2017 

(500mx500m) rOpenSci 

MODIStsp R-package 
MODIS Albedo daily (MCD43A3) (v6) 2001-2017 

(500mx500m) 

Landscape alteration 
Landsat 7 NIR-band; 14-days 

(30x30m) 
Goolge Eearth Engine 

Topography 
ALSO DSM 

(30x30m) 
JAXA - EORC 

Soil data 

Clay, sand, silt fractions, SOC, coarse fragments, bulk 
density 

(90x90m) 

Soil Landscape Grid Australia 

slga:: R-package 

Hydraulic conductivity, surface stone cover 

(90mx90m) 
ASRIS webportal 

 

http://www.bom.gov.au/research/projects/reanalysis/
http://data.daff.gov.au/anrdl/metadata_files/pe_alumc9aal20161017.xml?convertlinks=0
https://data.environment.sa.gov.au/Land/Data-Systems/SA-Land-Cover/Pages/default.aspx
http://data.auscover.org.au/xwiki/bin/view/Product+pages/Fractional+Cover+MODIS+CLW
https://github.com/ropensci/MODIStsp
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_TOA
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
https://www.clw.csiro.au/aclep/soilandlandscapegrid/GetData.html
https://obrl-soil.github.io/slga/
https://www.asris.csiro.au/


 

 

Figure A.1 The BARRA domain map. The outer dashed outline represents the BARRA-R regional domain 

at 12km resolution. The inner solid lined domain represents the downscaled regional subdomains available 

at a spatial resolution of 1.5km. The regional subdomains are centred over some major cities of Australia, 

such as Perth, Adelaide, Hobart and Sydney. 

  



 

Appendix B 

Chapter 2 – Supplementary material 

Assumptions in using BARRA rainfall data for 

estimates of rainfall erosivity 

 

B.1 Introduction 

Rainfall erosivity is a key variable in erosion models. It is ultimately based on models 

relating the energy from rain events to erosion magnitude. Comprehensive field studies 

conducted in the 1950s (Wischmeier and Smith, 1978) are still the foundation of modern 

erosion models (Nearing et al., 2017). These early studies showed that rainfall intensity 

sustained over 30-minute time intervals best predicted soil loss. However, at broad 

spatial scales, relevant to land management, this data is unavailable. Rainfall data used 

in erosion modelling is spatially interpolated with crude implicit assumptions. Gauge 

data is generally accepted as truth, although for spatial modelling one needs to 

acknowledge that the meteorological world standard opening of rain gauges (203mm) 

only represents a minute spatial sample of 0.0000023% of a square kilometre.   

Because of the high spatio-temporal variability of rainfall, it is important to understand 

how differences in rainfall data carry through to estimates of rainfall erosivity. BARRA 

provides a unique opportunity to source spatio-temporal rainfall information. The 

BARRA dataset was generated by using the best available data and models to represent 

the magnitude and distribution of gauged rainfall. However, the use of BARRA data for 

soil erosion is new and needs to be scrutinised. Below we, therefore, show a comparison 

of BARRA based rainfall and rainfall erosivity at rain gauge locations within 

South Australia.  

There are 61 automatic rain gauges (pluviographs) within South Australia (Figure B.1) 

maintained by the Bureau of Meteorology (BOM) and conform to standards of the World 

Meteorological Organisation. While daily data for these stations is available from the 



 

BOM at high quality, raw pluviography data (tipping bucket events) is considered 

experimental and does not contain a full quality check. This data was purchased from 

the BOM.  

 

Figure B.1 Location of rain gauges within South Australia. Size of dots represents rainfall amount 

Potential errors in tipping-bucket rain gauges are numerous and quality-checked sub-

daily rainfall is extremely difficult to come by. False negatives (missing rainfall, i.e. power 

failure or equipment failures) are generally only detected during rain events, hence 

potentially biasing any analysis. False positives are possible (i.e. strong winds) but are 

not of high concern in our analysis. The quality checks done for this study were kept as 

simple and conservative as possible. We initially aggregated minute-data to daily periods 

from 9 am to 9 am of the following day and compared daily sums with higher quality 

daily rainfall. A discrepancy of 5mm per day was used as an exclusion criterion. The 

differences in data recording posed a significant problem. In some years for most 

stations, pluviograph time series were aggregated to hourly records, prohibiting 

estimates of 30-minute rainfall intensities. These periods were identified by evaluating 



 

if rainfall rates above 0.2mm were recorded for time differences longer than 30 minutes. 

If such periods represented more than 90% of the available time-periods of any year 

(24x365 for hourly data and 48x365 for 30-minute data), the entire year was excluded.   

This quality check reduced the number of stations available to 47 with a median number 

of 8 years per station and a total of 426 station-years. Having less than ten years for most 

stations implied a small sample, but the sampled years represented well long-term 

rainfall statistics (Figure B.2). The high correspondence between long-term gauge data 

and daily aggregates of 30-minute data was expected as it showed the same data, albeit 

for different time epochs. BARRA estimates exhibit a slight overestimation of rainfall in 

the BARRA data, hence producing comparable rainfall time series.  

 

Figure B.2 Mean annual rainfall of automatic rain gauges (full-quality-controlled daily data) compared 

with high-temporal pluviography data and BARRA rainfall extracts for time-periods after quality filtering 

In this analysis, we used the average rainfall intensity-kinetic energy (R-ek) relationships 

from van Dijk et al. (2002) (also used by Teng et al. (2016), Chapter 2 equation 2) to test 

the applicability of gridded products such as BARRA for rainfall erosivity calculations. 



 

B.2 The effect of different rainfall time series on 
rainfall erosivity across South Australia 

Following the argument of Nearing et al. (2017), we need to link our models as closely as 

possible to the original erosivity-rainfall energy relationships. These equations 

summarise the comprehensive erosion experiments conducted in the 1950s and to date 

still represent the best empirical links available between rainfall and soil erosion. These 

empirical relationships are based on detailed rainfall records and estimates of peak 

rainfall intensities sustained over 30 minutes in events. Events are defined as rain 

periods separated by at least 6 hours below a small rainfall threshold.  

However, such detailed rainfall information is not always readily available for long time-

series that allow long-term averages and when there are large distances between 

pluviographs. Therefore, it is imperative to use broad-scale products. Nonetheless, 

gridded spatio-temporal data is only available at hourly (BARRA) or 3-hourly (TRMM) 

time intervals. Furthermore, gridded products are very different in spatial scales from 

rainfall used in the original (R-ek) models. We thus need to scrutinise the effect of 

assumptions inherent to the different types of rainfall data for erosion studies.  

 

B.2.1 Temporal aggregation types of rainfall time series and 

definition of rainfall events 

Here we define four temporal rainfall aggregation types and we will test below how these 

differences influence estimates of rainfall erosivity. ‘Type 1’ denotes the original raw 

rainfall records, grouped into events; ‘Type 2’ is high temporal rainfall at regular 

30-minute intensities for events; ‘Type 3’  is using hourly rainfall aggregates for events, 

and ‘Type 4’ groups rainfall into simple, regular 3-hour rainstorms, using peak hourly 

rates of this period to estimate total storm energy. Types 1-3 follow the original definition 

of events as being divided by 6-hour periods of low rainfall sums (< 1.3mm or 0.05in). 

This processing is computationally difficult as events are of different length and span 

across irregular time intervals. High rain intensities usually occur during small time-



 

periods and most events are of low intensity. Defining regular periods (i.e. 3 hours for 

‘Type 4’) substantially simplifies computation.  

Table B.1 shows example calculations of total storm EI30 (EI: storm event Energy x 

Intensity using 30-minute peak rainfall intensities). Using the original example from 

Renard et al. (1997) (page 334) Table B2-B4 explain the equivalent calculations for ‘Type 

2’ to ‘Type 4’ aggregations and show substantial differences. The storm event in Table B.1 

has a maximum 30-minute rainfall of 27.4 mm (54.9 mm h-1). Total energy amounts to 

8.47 MJ ha-1 (1271 ft tonf acre-1) with a total storm EI of 465 = 8.47 MJ ha-1 x 54.9 mm h-

1 (or 27.5 ft tonf inch acre-1 h-1).  Similar results are obtained after converting rainfall to 

30-minute intervals with a peak intensity of 52.0 mm h-1 and total storm EI of 417 MJ 

mm ha-1 h-1 (Table B.2). Using regular 60-minute intervals reduces the ability to estimate 

sub-hour intensities. Peak intensity is reduced to 27mm h-1 and the estimate of total 

storm EI is reduced to 191 MJ mm ha-1 h-1.  

The data was processed at the different levels represented in Table B.2 (Type 2-4). 

Automatic gauge rainfall was used to estimate rainfall erosivity for Types 2-4 and BARRA 

for Types 3 and 4,respectively. A total of 23,000 rainfall events were found in the rainfall 

time series with very similar results for both pluviography and BARRA data. The number 

of rainfall events per year for each station ranges from 24 in the desert regions to 105 in 

the higher rainfall regions and corresponds well (Table B.3) for all rainfall data sources.  

Table B.1 Sample calculations of storm EI (translated to metric from Renard et al. (1997), page 334. Total 

storm EI:  465 MJ mm ha-1 h-1 (‘Type 1’) 

Chart readings For each increment Energy (MJ ha-1) 

Time 

(min) 

Amount 

(mm) 

Duration  

(min) 

Depth 

(mm) 

Intensity 

(mm h-1) 
Per mm Total 

20 1.3 20 1.3 3.8 0.158 0.200 

27 3.0 7 1.8 15.2 0.205 0.365 

36 8.9 9 5.8 38.9 0.254 1.486 

50 26.7 14 17.8 76.2 0.277 4.925 

57 30.5 7 3.8 32.7 0.246 0.936 

65 31.8 8 1.3 9.5 0.184 0.234 

75 31.8 10 0.0 0.0 0.136 0.000 

90 33.0 15 1.3 5.1 0.164 0.208 

Totals:   90 33.0     8.35 

 



 

Table B.2 Sample calculation for storm EI using regular 30-minute intervals. The example rainfall mimics 

the original example from Renard et al. (1997) (‘Type 2’). Total storm EI: 417 MJ mm ha-1 h-1. 

For each increment Energy (MJ ha-1) 

Duration (min) Depth(mm) Intensity (mm h-1) Per mm Total 

30 0.2 0.4 0.138 0.028 

30 0.4 0.8 0.141 0.056 

30 1.0 2.0 0.148 0.148 

30 4.0 8.0 0.178 0.711 

30 26.0 52.0 0.266 6.927 

30 1.0 2.0 0.148 0.148 

30 0.0 0.0 0.136 0.000 

30 0.4 0.8 0.141 0.056 

Totals: 33.0     8.07 

 

 

Table B.3 Sample calculation for storm EI using regular 60-minute intervals, aggregated from table B2. 

This type of rainfall data is defined as ‘Type 3’. Total storm EI:  191 MJ mm ha-1 h-1. 

For each increment Energy (MJ ha-1) 

Duration (min) Depth(mm) Intensity (mm h-1) Per mm Total 

60 0.6 0.6 0.140 0.084 

60 5.0 5.0 0.164 0.819 

60 27.0 27.0 0.236 6.363 

60 0.4 0.4 0.138 0.055 

Totals: 33.0     7.32 

 

 

Table B.4 Sample calculations illustrating the approach taken here for BARRA hourly data defining each 

3-hour period as an event (‘Type 4’). Total storm EI:  191 MJ mm ha-1 h-1. 

For each increment Energy (MJ ha-1) 3-hour events 

Duration 
(min) 

Depth 

(mm) 

Intensity 
(mm h-1) 

Per mm Total 
peak int. 
(mm h-1) 

3h-storm EI 
(MJ ha-1) 

60 0.6 0.6 0.14 0.084   

60 5.0 5.0 0.16 0.819   

60 27.0 27.0 0.24 6.363 27.0 196.15 

60 0.4 0.4 0.14 0.055   

60 0 0 0 0   

60 0 0 0 0 0.4 0.02 

Totals: 33.0         196.2 

 



 

 

Figure B.3 Average number of rainfall periods per year, defined by Renard et al. (1997) as continuous 

periods of low rainfall < 0.13mm (0.05 in) during a period of 6 hours. Event numbers extracted from 

pluviographs and BARRA (‘Type 3’) are shown over reference pluviograph data at 30 minutes (‘Type 2’) 

 

B.2.2 The effect of temporal aggregation types of rainfall time 

series on rainfall erosivity estimation 

We can now iteratively test how rainfall erosivity is affected by (i) changing the temporal 

aggregation type of rainfall events, (ii) changing from point-based gauge data to gridded 

BARRA data, and (iii) by combining temporal aggregation and gridding.  

As expected, there is a substantial difference in rainfall erosivity between different 

temporal aggregation types (Figure B.4). Aggregation from 30-minute to 1 hour time 

steps (‘Type 2’ compared with ‘Type 3’) substantially reduces R estimates. This is due to 

higher intensities in the 30-minute data that are not sustained over an hour period 

(compare Table B.2 and B3). The slope between ‘Type 2’ and ‘Type 3’ is 0.63 and 0.52 

when comparing ‘Type 4’ with ‘Type 2’ (R2 = 0.99 for both regressions, linear models).  

Changing from ‘Type 3’ to ‘Type 4’ does not substantially change rainfall erosivity 

estimates (slope =  0.83 for gauge data and slope = 0.84 for BARRA data). This 

relationship is consistent for gauge and BARRA data (Figure B.5). Furthermore, spatial 



 

patterns are consistent when changing from ‘Type 3’ to ‘Type 4’ (Figure B.6). This 

observation supports the approach of using simplified 3-hour events.  

 

Figure B.4 Evaluating the effect of rainfall aggregation on rainfall erosivity (MJ mm ha-1 h-1 yr-1) for 47 rain 

gauges across South Australia. 

 

 

Figure B.5 Evaluating the effect of rainfall aggregation on rainfall Erosivity (MJ mm ha-1 h-1 yr-1). The x-

axis represents mean annual rainfall erosivity of 41 stations in South Australia estimate from hourly gauge 

data and BARRA, respectively.  



 

 

Figure B.6 Comparison of patterns of erosivity when using ‘Type 3’ (Renard et al. (1997) definition of a 

storm event) and ‘Type 4’ (3-hour storm events) temporal rainfall aggregations.  

Further comparing gauge and BARRA data, we find more pronounced differences 

(Figure B.7). This is expected as gauge data is point data with a very small spatial 

footprint and BARRA data indicates sustained hourly rates over 1.5km x 1.5km. Using 

BARRA data produces higher erosivity compared to 30-minute gauge-based rainfall. 

Overall, these effects compensate and the ‘Type 4’ BARRA erosivity compares well with 

30-minute gauge data.  

The most critical observation for our analysis is that spatial patterns of erosivity and 

pluviograph data using the original event analysis algorithm (Renard et al., 1997) 

compared well with ‘Type 3’ and ‘Type 4’ BARRA erosivity estimates (R2=0.47, with 

p < 10-6 for both models; using generalised linear modelling ‘gam’ from the mgcv:: 

package (Wood, 2019)).   



 

 
Figure B.7 Evaluating the difference between rainfall Erosivity (MJ mm ha-1 h-1 yr-1) using different rainfall 

data sources and temporal aggregation types. The x-axis represents the mean annual rainfall erosivity using 

30-minute intensities from pluviograph data. BARRA ‘Type 4’ data has been used in this publication.  
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Appendix C 

Chapter 2 – Supplementary material 

Assumptions to define the very fine sand fraction 

from total sand content 

 

C.1 Introduction 

Being able to predict where and when agricultural regions are at risk of hillslope erosion 

will become paramount to ensure future agricultural productivity and soil security. Soil 

erosion is highly variable through space and time and is driven by key influencing factors 

such as rainfall erosivity, cover management, topography and inherent soil erodibility. 

Soil erodibility has a critical influence on total soil erosion estimates and contains a lot 

of uncertainty. According to Loch and Rosewell (1992), the particle size parameter M 

(%silt + %very-fine-sand) explains up to 85% of the total variability in soil erodibility 

(K-factor). The higher the fraction of particles in the 0.002 - 0.10 mm range, the higher 

the soil erodibility. It is therefore important to ensure that the fraction of very fine sand 

and silt particles is well defined for a more reliable estimation of soil erodibility. 

However, there is a lack of readily available information about the fine and very fine sand 

fractions and a lack of soil information directly relevant for the estimation of soil 

erodibility. If no information about the very fine sand fraction was available, Panagos et 

al. (2014) proposed to define the very fine sand fraction as 20% of the total sand. But, 

this general assumption might not be applicable to regional conditions with specific soils 

properties (e.g. sandy soils of South Australia). Therefore, we need to evaluate the 

correctness of such assumption for Australian soils. For this reason, we tested the 

assumption from Panagos et al. (2014) to estimate the very fine sand fraction and 

compared the results with previous soil erodibility studies conducted in Australia. This 

case-study will give us a better definition of inherent soil erodibility for South Australia 

and will have implications for global models as well. 



 

 

C.2 Testing of the Panagos et al. (2014) assumption to 
estimate the very fine sand fraction 

C.2.1 The comparison datasets and testing methods 

We conducted a review of the literature to compile information about Particle Size 

Analysis (PSA) from a range of soil samples collected in Australia. We collated 65 records 

from distinct soil samples from four published studies (Loch and Rosewell, 1992; Loch 

et al., 1998; Rosewell, 1993; Yang et al., 2017). The records are presented in Table C.2. 

We then ran three regression analysis to define a new correlation between the total sand 

fraction (i.e. fine + coarse sand) and the very fine sand fraction for the sample dataset. 

The first two were simple linear regression models with (equation C.1) and without 

intercept (equation C.2), the third one was a second order polynomial regression 

(equation C.3). The regression analysis was run in R (R Development Core Team, 2010) 

and the accuracy of the models was tested with the Nash-Sutcliffe model efficiency 

coefficient (NSE) (hydroGOF:: package, (Zambrano-Bigiarini, 2020)). The NSE 

coefficient is an indicator of how close the values in a scatter plot are from the 1:1 line, 

and can be considered as a measure of model efficiency. The values of this coefficient 

vary between −∞ and 1. The closer the NSE values are to 1, the better the model. 

 %𝑉𝑒𝑟𝑦𝐹𝑖𝑛𝑒𝑆𝑎𝑛𝑑 = %𝑆𝑎𝑛𝑑 × 𝛼 + 𝛽 (C.1) 

 

 %𝑉𝑒𝑟𝑦𝐹𝑖𝑛𝑒𝑆𝑎𝑛𝑑 = %𝑆𝑎𝑛𝑑 × 𝛼 (C.2) 

 

 %𝑉𝑒𝑟𝑦𝐹𝑖𝑛𝑒𝑆𝑎𝑛𝑑 = %𝑆𝑎𝑛𝑑 × 𝛼 + %𝑆𝑎𝑛𝑑2 × 𝛽 + 𝛾 (C.3) 

  

  

  



 

Table C1 Particle size analysis for a range of soil samples collected from the literature. *Note that the very 

fine sand content (%) is generally part of the fine sand fraction when estimating the total sand fraction. 

 
 

 

C.2.2 Results from the regression analysis 

The three regression models fitted the observations reasonably well when the observed 

very fine sand fraction was between 0 and 30% (Figure C.1). However, all three models 

did not seem to perform very well beyond 30%. The three methods display a similar 

distribution of values along the 1:1 line between the observed and predicted very fine 

sand fractions and their NSE coefficient are very similar. The predicted values fall within 

similar ranges to that of observed values and present strong positive correlations 



 

(Table C.2). Overall, the polynomial regression seemed to better fit the observed values, 

but to be more comparable to the assumption of  Panagos et al. (2014), we will select the 

results from the linear regression with no intercept for the second part of this analysis. 

 

Figure C.1 Very fine sand fractions estimated with three regression analysis methods plotted against 

observed very fine sand fractions. The three methods are simple linear regression (Linear), simple linear 

regression with no intercept (Linear – no intercept), and second order polynomial regression (Polynomial). 

 

Table C.2 Results from the regression analysis 

Model NSE coefficient New equation 

Linear regression with intercept 0.43 %𝑉𝑒𝑟𝑦𝐹𝑖𝑛𝑒𝑆𝑎𝑛𝑑 = %𝑆𝑎𝑛𝑑 × 0.36 + 5.32 

Linear regression, no intercept 0.39 %𝑉𝑒𝑟𝑦𝐹𝑖𝑛𝑒𝑆𝑎𝑛𝑑 = %𝑆𝑎𝑛𝑑 × 0.44 

Second order polynomial 0.46 %𝑉𝑒𝑟𝑦𝐹𝑖𝑛𝑒𝑆𝑎𝑛𝑑 = %𝑆𝑎𝑛𝑑 × 68 − %𝑆𝑎𝑛𝑑2 × 14.5 + 24.1 

 

C.2.3 Comparison of the assumptions from Panagos et al. 

(2014) and the regression analysis results 

With a simple regression analysis based on 65 soil samples collected in Australia (NSW 

and QLD), we demonstrated that general assumptions might not be applicable to 

regional conditions with specific soils properties. Here, the very fine sand fraction could 

be estimated as about 44% of the total sand fraction as opposed to 20% recommended 

by Panagos et al. (2014). We then estimated the soil erodibility factor (S) with the two 

assumptions and compared their respective frequency distributions. 



 

Figure C.2 demonstrates that the assumption from Panagos et al. (2014) highly 

underestimatd the soil erodibility in the region. The value range was about half of the 

new soil erodibility distribution. The value ranges of the new soil erodibility maps for the 

study area is more in line with soil erodibility measured in Australia (Rosewell, 1993). 

 

Figure C.2 Soil erodibility factor (S) with the assumption of Panagos et al. (2014): %Very fine sand = 0.2 x 

%Total sand; and new Australian assumption: %Very fine sand = 0.44 x %Total sand. 
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Appendix D 

Chapter 2 – Supplementary material 

Corroboration of the mdoelled outputs with other 

examples and individual maps for the G2 model 

parameters and frequency distributions 

D.1 The modelling parameters 

 

Figure D.1.a Average annual rainfall erosivity distribution. 

 

Figure D.1.b Average annual rainfall erosivity spatial distribution. 



 

 

 

 

Figure D.2.a Soil erodibility distribution. 

 

Figure D.2.b Soil erodibility spatial distribution. 

 



 

 

Figure D.3.a Average monthly vegetation cover retention distribution. 

 

Figure D.3.b Average monthly vegetation cover retention spatial distribution. 



 

 

 

Figure D.3.c Average monthly vegetation cover retention spatial distribution. 

 

Figure D.4 Land Use parameter spatial distribution 



 

 

 

 

Figure D.5.a Topography factor distribution. 

 

Figure D.5.b Topography factor spatial distribution. 

  



 

D.2 Comparison of the modelled outputs with other 
modelling examples 

We corroborated the results from our modelling approach with the Department for 

Environment and Water inherent water erosion potential maps (Figure D.6). We 

estimated the long-term average annual hillslope erosion and ranked the resulting map 

into five classes using a Jenks natural breaks classification method (Jenks and Caspall, 

1971). We then ran an overlay analysis between the average annual soil loss predicted by 

the G2 model and inherent soil erodibility map to create an error matrix and we 

evaluated our results based on overall accuracy. 

 

Figure D.6 Water erosion potential (source: DEW (2017)) 

Each element in Table D.1 represents the number of observations (pixels) within each 

class intersection divided by the total number of pixels and expressed as a percentage. 

The overall accuracy was then estimated by the sum of the diagonal elements. 

If we assume that the classification of the hillslope severity and the inherent erosion 

susceptibility maps were comparable, then the overall accuracy of the model was 58.2%, 

which is reasonable. However, if we assume that a one-class difference is acceptable 

because the classes were not defined on a nominal scale but an ordinal-scale (Vrieling et 

al., 2006), then the accuracy of the wind erosion model increases to 90.1% which is 

reasonably satisfactory (Figure D.7). 



 

Table D.1 Error matrix comparing the agreement (overlapping area in %, values in bold denote agreement) 

between wind erosion severity classes from the G2 model and the inherent water erosion potential. 

Water erosion model 
Soil Water erosion Potential 

Very slight Slight Moderate High Very high 

Very slight 44.9 6.2 1.7 0.6 0.2 

Slight 14.4 8.9 4.0 1.4 0.5 

Moderate 3.5 3.6 2.8 1.7 0.7 

High 0.4 0.7 0.9 1.0 0.7 

Very high 0.1 0.1 0.2 0.4 0.6 

Overall accuracy 58.2%     

 

 

Figure D.7 New predicted hillslope erosion severity map corroborated with the DEW inherent soil 

erosion susceptibility map. Note that the areas in grey represent zones where the classification of the DEW 

map did not overlap with the G2 model. 
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Abstract 

Soil erosion is highly variable through space and time. Therefore being able to identify 

when and under which conditions erosive events occur will produce critical information 

for land managers and policymakers to apply corrective measures for better erosion 

management in the future. 

Here, we adapted a state-of-the-art wind erosion model (“albedo” Wind Erosion Model) 

to integrate modern high-resolution datasets for spatial and temporal analysis of erosion. 

We assessed the spatio-temporal variability of erosion events in two dryland agricultural 

regions of South Australia, Australia, between 2001 and 2017. We described the complex 

interactions between wind erosion and influencing factors (e.g. climate conditions and 

vegetation cover), and defined the relative contribution of a range of land uses to erosion 

for the Eyre Peninsula (EP) and Mid-North (MidN) agricultural regions of 

South Australia.  

This study demonstrated the utility of soil erosion modelling for land management and 

agricultural development. The model identified the very high spatial as well as seasonal 

and inter-annual variability in wind erosion in the study area. Average annual erosion 

was very low and comparable in both regions (EP: 0.00258 t ha-1 y-1; MidN: 0.00243 t ha-

1 y-1). However, most of the west coast of the Eyre Peninsula frequently recorded severe 

erosion (> 0.000945 t ha-1 month-1 or 0.945 kg ha-1 month-1). The most severe erosion 

events in both regions were primarily driven by the soil type (sandy soils), recurring low 

ground cover (< 50 %) and extreme wind gusts (> 68 km h-1). Agricultural land uses were 

significant contributors to total regional erosion (EP: 0.007 t ha-1 y-1; MidN: 0.008 

t ha-1 y-1), with dryland cropping, modified pastures and livestock grazing representing 

the greatest proportion. 

This study provides a proof of concept of how erosion models could be used to inform 

corrective measures for future land management through improved understanding of 

how different land uses and management affect regional wind erosion severity. 



 

3.1 Introduction 

Soil erosion is a significant cause of land degradation globally. The United Nations 

Convention to Combat Desertification (UNCCD) and their Land Degradation Neutrality 

(LDN) framework listed soil erosion as one of their top priority (FAO, 2011, 2017), and 

target 15.3 of the UN Sustainable Development Goals (SDG) emphasises the need to 

combat desertification and land degradation. Wind erosion is particularly of global 

concern as it strongly impacts agricultural productivity and public health. Wind erosion 

processes generate on-site disturbances such as the loss of topsoil leading to a decline in 

nutrients, organic matter and soil carbon, but can also damage crops and infrastructure 

through sand-blasting and burial (Baumhardt et al., 2015; Bennell et al., 2007; 

Panebianco et al., 2016). The cost of nutrient replacement, purchase of new grain seeds 

and loss of productivity can be a substantial burden for agriculture (Montgomery, 2007). 

Wind erosion also generates off-site damages such as visibility limitation leading to road 

safety and transport issues, health impacts including asthma and other respiratory 

problems (Baddock et al., 2014; Seinfeld and Pandis, 2012) as well as cleaning costs due 

to dust deposition and road maintenance. 

Measurements of wind erosion in the field with wind tunnel experiments and 

standardised plots have contributed significantly to the development of prediction 

models. However, such measurements are not sustainable when considering regional- or 

continental-scale applications. Thus, empirical and physical models have been developed 

to describe erosional processes. Recent technological advances in remote sensing and 

Geographic Information System (GIS), have also contributed to the popularity of erosion 

models as a growing number of models were designed to integrate GIS, digital maps and 

satellite data.  

Models commonly used for broad-scale wind erosion assessment often use the 

Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) vegetation 

indices to represent plant phoenological effects. However, these indices often 

misrepresent land surface aerodynamic roughness as they fail to characterise the 



 

sheltering effect of vegetation and do not capture changes in land use and land cover very 

well (Chappell and Webb, 2016; Webb et al., 2020). For this reason, Chappell and Webb 

(2016) redefined the approximation of aerodynamic roughness using fundamental 

principles of aeolian sediment transport and developed a new approach to wind erosion 

modelling: the “albedo” Wind Erosion Model. They replaced the lateral cover parameters 

(𝐿) with a relationship between the sheltered area in the wake of objects and the 

proportion of shadow produced by the same object (Chappell et al., 2010). The authors 

demonstrated that this proportion of shadow could be easily derived from MODIS 

Albedo products (MCD43A1 and MCD43A3) and designed regression relationships 

between aeolian sediment transport and the shadow area (or black sky albedo). This new 

method has now made it possible to fully integrate satellite imagery and remote sensing 

in complex wind erosion models. Therefore, the “albedo” Wind Erosion Model provides 

a dynamic (multi-temporal) global metric for wind erosion assessment at a moderate 

resolution. Chappell and Webb (2016) successfully calibrated and tested the regression 

relationships with field data collected in Australia and the US through a National Wind 

Erosion Research Network (Webb et al., 2016). 

Vegetation cover plays a significant role in erosion control, especially in dryland 

agricultural landscapes (Chappell et al., 2019; Jeanneau et al., 2019; McKenzie and 

Dixon, 2006; Shao, 2008; Vacek et al., 2018). These regions are already vulnerable to 

changes in land conditions (e.g. droughts, wildfires) and are expected to sustain a 

recurrence in extreme environmental conditions and compound events (McKenzie et al., 

2017). These compound events are also likely to increase future soil erosion risk 

(Bardsley et al., 2008; Earl et al., 2019; Li and Fang, 2016). Hence, investigating the 

impact and frequency of extreme erosive events will produce vital information for land 

managers and policymakers to apply corrective measure for better erosion management 

in the future. 

Even though wind erosion processes have been well described, the high spatial and 

temporal variability in erosion makes the prediction of erosion trends very difficult. To 



 

overcome these limitations, we need detailed data and access to high spatio-temporal 

datasets to be able to give the best assessment of soil losses and identify regions at risk 

of erosion in the future.  

Therefore, this paper aims to demonstrate the utility of soil erosion modelling for the 

management of natural and agricultural environments by identifying the spatio-

temporal variability of erosion events. The specific objectives of this research are twofold. 

First, to adapt a state-of-the-art wind erosion model to integrate modern high-resolution 

datasets for spatial-and temporal analysis. And second, to use the model to describe the 

complex interactions between wind erosion and influencing factors (e.g. land use, 

climate conditions, and vegetation cover) for two agricultural regions of South Australia. 

 

3.2 Methods 

3.2.1 The study area 

Our study focusses on two dryland agricultural regions of South Australia, Australia: 

Eyre Peninsula (EP – 33° 568’S 135° 755’E – 4.7x104 km2) and the Mid-North (MidN – 

33° 376’S 138° 723’E – 3,4x104 km2, Figure 3.1). These two regions are significant 

contributors to agricultural production in South Australia (ABARES, 2018) and part of 

these regions are historically prone to wind erosion, therefore representing a vital 

interest for food and soil security. Agricultural land-uses represent the majority of the 

regional land-uses (Figure 3.2) with cereal cropping representing 50% and 33% of the 

land surface for the Eyre Peninsula and Mid-North respectively, followed by grazing 

(modified) pastures, representing 11% and 54% of the total regional land-use for each 

region (ABARES, 2016).  



 

 

Figure 3.1 Location map and presentation of the study area (Eyre Peninsula & Mid-North) within the South 

Australian cropping region. 

The study area is characterised by a Mediterranean climate, with cool wet winters and 

hot dry summers with occasional summer storms and exhibit diverse soils and land uses, 

providing an excellent study site to demonstrate the utility of erosion modelling for land 

management. Mean annual rainfall ranges from 200mm in the north to 500mm in the 

south, with a mean of 350mm (BoM, 2016a). The average daily temperature varies 

between 12 and 19°C (BoM, 2016b). The agricultural region of Eyre Peninsula has a range 

of sandy to clay-loam soils (Figure 3.3). On the other hand, dominant soil types 

throughout the Mid-North region are more diverse and predominantly loam or clay-loam 

soils, with some sandy-loam patches (Figure 3.3). Elevation in the Eyre Peninsula region 

ranges between 0m and 480m, and from south-west to north-east. For the Mid-North 

region, altitude ranges between 0m and 950m above sea level with the highest elevations 

found in the centre of the region. The topography is complex in this area, and some parts 

have very steep slopes with gradients ranging from 0% to 60%. 



 

 

Figure 3.2 Land-use classes for the Eyre Peninsula and Mid-North regions. Source: ABARES (2016). 

 

Figure 3.3 Dominant soil texture classes for the Eyre Peninsula and Mid-North regions. Source: 

DEW (2016). 

3.2.2 Description of the data sources 

All the datasets used in this study have been acquired from open-source databases. Data 

description (e.g. type, resolution, sources) can be found in Appendix A - Table A.1. . 

Climate and weather data were obtained from the Australian Bureau of Meteorology 

Atmospheric high-resolution Regional Reanalysis dataset for Australia (BARRA) (Su et 

al., 2019). The spatial resolution of the dataset is 12km at the continental scale and 

additional model run at 1.5km resolution for spatial subsets, including South Australia. 

Here we used the 1.5km resolution data. 



 

Ground cover was derived from Moderate Resolution Imaging Spectroradiometer 

(MODIS) fractional cover dataset for Australia (Guerschman et al., 2015), accessed from 

the Terrestrial Ecosystem Research Network (TERN) archive (CSIRO, 2019). The 

MODIS BRDF/albedo products (MCD43A1 and MCD43A3, band 1) were 

programmatically downloaded with the MODIStsp:: R package (Busetto and Ranghetti, 

2016) to extract the isotropic (𝑓𝑖𝑠𝑜) and directional hemispherical reflectance (or black-sky 

albedo 𝜔) parameters required to derive the normalised albedo factor for the wind 

erosion model. More details about the datasets can be found in Chappell and Webb 

(2016) and Chappell et al. (2018). Both MODIS datasets (Fractional Cover and MODIS 

BRDF/albedo) provide daily data available at 500m resolution from the year 2000. 

We extracted soil properties information from the Soil and Landscape Grid of Australia 

(SLGA) digital soil maps to estimate the ideal threshold friction velocity. This dataset 

contains information about soil texture composition as a mass fraction at a depth of 0-

5cm (clay < 2μm, silt < 50μm, sand < 2000μm, coarse fragments > 2000μm) and bulk 

density of the soil. The SLGA dataset is available at a resolution of 90m for the whole 

continent and can be automatically downloaded through the slga:: R package (O'Brien, 

2019), more information about the range of soil properties and landscape attributes can 

also be found at www.csiro.au/soil-and-landscape-grid. 

 

3.2.3 Modelling methods 

Ground cover plays a critical role in erosion control. However, considering the ground 

cover alone is not enough to describe all the protective effect of vegetation against wind 

erosion. Many authors have highlighted that surface roughness and particularly lateral 

vegetation cover (𝐿) or frontal area index (𝐿𝐴𝐼) is the most influential erosion control 

parameter (Leys et al., 2017b; Okin, 2008). Therefore, it is essential to fully describe 

vegetation structure, density and distribution as vegetation extracts wind momentum 

and applies a sheltering effect to adjacent and downstream areas (Jeanneau et al., 2019; 

Vacek et al., 2018). 

http://www.csiro.au/soil-and-landscape-grid


 

Chappell and Webb (2016) proposed a new approach for wind erosion modelling 

simplifying the drag partition scheme of Raupach et al. (1993) while combining the use 

of remote sensing satellite imagery. The authors established a relationship between the 

sheltered area and the proportion of shadow over a given area (Figure 3.4). 

 

Figure 3.4 a) Concept representation of the sheltering effect of vegetation from Raupach et al. (1993), 

b) concept of the shadow effect of vegetation proposed by Chappell et al. (2010) to derive vegetation structure 

from remote sensing. Source: Chappell and Webb (2016).  

This proportion of shadow can be derived from the inverse of the direct beam directional 

hemispherical reflectance (or black sky albedo, 𝜔) viewed at nadir. This approach 

preserves the principles of previous wind erosion models, and the horizontal sediment 

flux can then be expressed as follow 

 𝑄h = 𝑐𝑠h𝑎𝑜 ×
𝜌𝑎 × 𝑢𝑆∗

3

𝑔
× (1 −

𝑢∗𝑡𝑠
2 × 𝐻(𝑤)2

𝑢𝑆∗
2

) (14) 

where 𝑐𝑠h𝑎𝑜 (0.006) represents a tuning factor adjusted to the magnitude of the model 

output, 𝜌𝑎 is the density of the air (1.23 kg m-3), 𝑔 is the acceleration due to gravity 

(9.81 m s-1), 𝑢∗𝑡𝑠 is the soil threshold shear stress of bare soil below which sediment 

transport does not occur (Shao et al., 1996), and 𝐻(𝑤) is a soil moisture correction 

function which reduces sediment transport through the increase of cohesive forces in the 

soil (Fecan et al., 1999). The model is also adjusted by the influence of the total wind 

energy (shear stress) that is applied at the soil surface (𝑢𝑆∗). 

The bare soil threshold friction velocity (𝑢∗𝑡𝑠) for a particle size 𝐷 can be defined as follow 

 𝑢∗𝑡𝑠(𝐷) = √𝐴𝑁 × (
𝜌𝑝

𝜌𝑎

× 𝑔 × 𝐷 +
𝛾

𝜌𝑎 × 𝐷
) (15) 

with 𝐴𝑁 is as a scaling coefficient (0.0123), 𝜌𝑏 is the density of particles (2650 kg m-3), 𝜌𝑎 

is the density of the air (1.23 kg m-3), 𝑔 is the acceleration due to gravity (9.81 m s-1), 

a) b) 



 

and 𝛾 represents a parameter accounting for cohesive forces of the particles 

((1.65/5)x10-4 kg s-2) (Darmenova et al., 2009).  

The soil moisture correction function used in this approach followed the principles of 

Fecan et al. (1999) 

 𝐻(𝑤) = {
1,  𝑤 < w′

(1 + 1.21 × (𝑤 − 𝑤′)0.68)0.5,  𝑤 ≥ w′
 (16) 

where 𝑤 is the gravimetric soil moisture (%), and 𝑤′ is the limit value of soil moisture in 

a soil layer (%). The latter depends on the clay content in percent (%𝑐𝑙𝑎𝑦) in the soil and 

can be defined by 

 𝑤′ = 0.0014 × (%𝑐𝑙𝑎𝑦)2 + 0.17 × %𝑐𝑙𝑎𝑦 (17) 

The gravimetric soil moisture can be derived from volumetric soil moisture (𝑤𝑣, in %) 

with the following expression 

 𝑤 =
𝜌𝑤

𝜌𝑏

× 𝑤𝑣  (18) 

where 𝜌𝑤 is the density of water (1000 kg m-3) and 𝜌𝑏 is the soil bulk density derived from 

the Soil Landscape Grid of Australia dataset. This soil moisture correction function was 

developed from wind tunnel experiments where soil moisture was only changed in the 

top 1-2cm layer of the soil. Soil moisture in the “surface layer” can sometimes 

significantly differ from the “topmost layer” relevant to dust generation. To reduce the 

overestimation of soil moisture in the “surface layer”, Darmenova et al. (2009) proposed 

to apply a corrective factor of 0.1 when using a soil moisture dataset with a “surface layer” 

of 10cm. In this study, we applied this correction factor to the BARRA hourly (0-10cm) 

soil moisture dataset to calculate equation (18). 

Although the equations (14) to (18) are drawn from classical wind erosion modelling 

approaches, the definition of shear stress at the soil surface (𝑢𝑆∗) is where the 

improvements of Chappell and Webb (2016) occur. The authors demonstrated a strong 

correlation between the rescaled normalised albedo (𝜔𝑛𝑠) and 𝑢𝑆∗ scaled by freestream 

wind speed at 10 meters (𝑈𝑓). This relationship can be described as follow 



 

 
𝑢𝑆∗

𝑈𝑓

= 0.0306 × (
𝑒𝑥𝑝−𝜔𝑛𝑠

1.1202

0.0125
) + 0.0072 (19) 

Chappell and Webb (2016) defined the normalised albedo parameter (𝜔𝑛) as the ratio 

between the shadow effect of the black sky albedo (1 −  ω) and the weighted sum of an 

isotropic weighting parameter (𝑓𝑖𝑠𝑜), which represents the spectral contribution. 

Dividing (1 −  ω) by 𝑓𝑖𝑠𝑜 removed the influence of surface reflectance. Both spectral 

parameters can be derived from MODIS Albedo products (𝑓𝑖𝑠𝑜: MCD43A1, value range 

[0 - 1]; 𝜔: MCD43A4, value range [0 - 1]). The normalised albedo can be obtained with 

the following expression 

 𝜔𝑛 =
(1 −  ω)

𝑓𝑖𝑠𝑜

 (20) 

The parameter 𝜔𝑛 is then rescaled from the normalised range (𝜔𝑛 𝑚𝑖𝑛;  𝜔𝑛 𝑚𝑎𝑥) of a given 

waveband (𝑣) to that of the calibration data (𝑎 = 0.0001 to 𝑏 = 0.1). 

 𝜔𝑛𝑠 =
(𝑎 − 𝑏) × (𝜔𝑛(𝜈) − 𝜔𝑛(𝜈)𝑚𝑎𝑥)

(𝜔𝑛(𝜈)𝑚𝑖𝑛 − 𝜔𝑛(𝜈)𝑚𝑎𝑥)
+ 𝑏 (21) 

Following recommendations from Chappell and Webb (2016), we used the band 1 for 

each MODIS products as this band introduced the least bias when compared to wind 

tunnel experiments. We set the values of the normalised range to 𝜔𝑛 𝑚𝑖𝑛 = 0 and 

𝜔𝑛 𝑚𝑎𝑥 = 35 to avoid the results being dominated by extremes based on the 

recommendation from Adrian Chappell (pers.com). Chappell and Webb (2016) defined 

these values from an assessment of global 𝜔𝑛 estimates of the MODIS archive and 

𝜔𝑛 𝑚𝑎𝑥 = 35 represented the value of the 95th percentile. 

To estimate wind erosion for the two regions of interest, we converted the horizontal 

sediment flux (𝑄h, g m-1 s-1), representing transport in one dimension, to an areal quantity 

(𝐸, t ha-1 y-1). First, we estimated the horizontal sediment flux on an hourly basis (finest 

temporal resolution) for each pixel in the archive (2001-2017). Then, we calculated the 

median value of daily horizontal sediment flux for each day in the time-series. Finally, 

we converted the median daily horizontal flux to an areal quantity to obtain the daily 

erosion rate (𝐸𝑑𝑎𝑦, t ha-1 day-1). To apply the conversion, we drew inspiration from 



 

Chappell et al. (2019) and used similar assumptions. We assumed that (i) the area of 

transport was defined by the size of a pixel (500m) and (ii) heterogeneity of transport 

within a pixel was captured by the albedo response of each pixel. Based on these 

assumptions, the median daily sediment transport in one dimension (𝑄h_day, g m-1 s-1) 

was converted to a surface quantity by dividing 𝑄h_day with the MODIS pixel size of 500m 

(g m−2 s−1). We further assumed wind erosion to be non-selective over a day and 

multiplied this quantity by the number of seconds in one day (g m−2 day−1) and then 

divided by 100 to convert the units to t ha−1 day−1. The daily erosion rate (𝐸𝑑𝑎𝑦) was then 

summed by months and years for the analysis. 

 

3.2.4 Comparison of the wind erosion severity with the frequency of 

dust storms 

A lack of measured wind erosion data precluded the direct validation of the wind erosion 

model outputs. A growing number of satellite sensors can now retrieve Aerosol Optical 

Depth (AOD) with better accuracy than ever before, and researchers have used them to 

locate natural dust sources over arid and semi-arid regions (Chudnovsky et al., 2014; 

Fenta et al., 2020; Moridnejad et al., 2015). These AOD measurements can then be used 

as a proxy to estimate the frequency of dust storms. Fenta et al. (2020) demonstrated 

that the prevalence of dust storms estimated from AOD measurements could be used to 

validate wind erosion susceptibility maps in eastern Africa with an accuracy of about 

70%.  Here, we estimated the frequency of dust storms from the MODIS Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) algorithm dataset (Lyapustin et al., 

2011a; Lyapustin et al., 2011b; Lyapustin et al., 2012). The annual frequency of dust 

storms was then calculated as the number of days in a year for which AOD > 0.30. This 

threshold value is characteristic of freshly emitted dust particles and is representative of 

dust storm days in dryland environments (Ginoux et al., 2010; Moridnejad et al., 2015). 

We calculated the long-term average annual frequency of dust storms for the Eyre 

Peninsula and Mid-North regions and ranked the resulting map into five classes using a 

Jenks natural breaks classification method (Jenks and Caspall, 1971) to be comparable 



 

with the approach of Fenta et al. (2020). We then ran an overlay analysis between the 

average annual soil loss predicted by the “albedo” Wind Erosion Model and the annual 

frequency of dust storms map to create an error matrix and we evaluated our results 

based on overall accuracy. 

We also compared relative patterns of erosion severity with local historical observations 

and previous erosion susceptibility maps developed by the South Australian 

Government. 

 

3.2.5 Analysis of the model results 

The main focus of this study is to assess the spatial and temporal variability of erosion 

events in our two regions of interest. For this reason, we extracted the pixel values of the 

monthly and annual raster time-series. Here, we defined extreme erosion events as 

falling within the 99th percentile based on 17 years of monthly and annual erosion rates 

(204 months, 17 years). We then estimated the frequency of these highly erosive events 

in space and time. 

To analyse the influence of ground cover and weather conditions on soil erosion, we 

estimated the joint distribution of extreme erosion events for daily ground cover and 

wind velocity percentiles. 

In order to exemplify application and flow of evidence derived from the “albedo” Wind 

Erosion Model for decision support of soil management, we estimated the median annual 

wind erosion for each land use (Figure 3.2) and Local Government Areas (LGAs) 

(Figure 3.5) within the two regions of interest. 



 

 

Figure 3.5 Local Government Areas (LGA) represent a combination of environmental conditions, 

topography, climate with slightly different rainfall patterns and diverse farming systems. 

Eyre Peninsula: PUA: Pastoral Unincorporated Area; CED: Ceduna; SB: Streaky Bay; WUD: Wudinna; 

KIM: Kimba; ELL: Elliston; CLV: Cleve; FH: Franklin Harbour; LEP: Lower Eyre Peninsula; TB: Tumby Bay.  

Mid-North: FR: Flinders Ranges; MR: Mount Remarkable; OC: Orroroo/Carrieton; PET: Peterborough; 

PP: Port Pirie; NAR: Northern Areas; WAK: Wakefield; CGV: Claire Gilbert Valley; GOY: Goyder Regional 

Council; ADLP: Adelaide Plain; LIG: Light Regional Council 

 

3.3 Results 

3.3.1 Spatial variability of wind erosion 

Modelled regional wind erosion was extremely low across most of the study area (<< 1 t 

ha-1 y-1). Long term median annual erosion estimates were very similar in the Eyre 

Peninsula and Mid-North regions between 2001 and 2017 (0.00258 vs 0.00243 t ha-1 y-1 

respectively). However, we identified strong inter- and intra-regional patterns (Figure 

3.6). LGAs in the Eyre Peninsula region presented considerable differences in erosion 

susceptibility. Western LGAs (Pastoral Unincorporated Area, Ceduna, and Streaky Bay) 

had estimated average erosion rates between 1.2 and 1.5 times higher than the regional 

average (up to 0.00382 t ha-1 y-1), while the central LGAs experiences very low erosion 

(Elliston, Lower Eyre peninsula, Wudinna). These differences can be explained by the 

nature of the soils in these districts (sandy soils) and the influence of strong coastal winds 

on the west coast of the Eyre Peninsula. In contrast, modelled average annual soil loss 



 

between LGAs in the Mid-North region remained relatively consistent. The Port Pirie 

LGA represented the most significant contribution to regional erosion with 0.00288 t ha-

1 y-1. 

 

Figure 3.6 Average annual soil loss per Local Government Area. The horizontal lines represent the regional 

average annual soil loss (Eyre Peninsula = 0.00258 t ha-1 y-1 – Mid-North = 0.00243 t ha-1 y-1).  

One of the main aims of this modelling exercise was to characterise the patterns of 

extreme erosion rates in space and time. Understanding the high spatio-temporal 

variability of factors influencing erosion is challenging for policy development and 

evaluation. It is also essential to evaluate if erosion trends are due to climatic (i.e. 

rainfall) or human changes (i.e. land-use) or their interactions (i.e. cover). As erosion 

rates in the region are very low, we defined the most severe monthly erosion as falling 

within the top percentile (99th) based on 17 years of monthly erosion records (204 layers). 

This threshold (0.000945 t ha-1 month-1 or 0.945 kg ha-1 month-1) was then used to count 

the number of months with the most severe monthly soil loss (Figure 3.7).  

The results indicate that the west coast of the Eyre Peninsula region potentially recorded 

severe monthly erosion between 8 and 20 months out 204 during the study period. Parts 

of the Pastoral Unincorporated Area, Ceduna, and Streaky Bay LGAs were predicted to 

be the most severely affected 40 months out of 204. Large parts of the Cleve, Kimba and 

Tumby Bay LGAs also possibly experienced severe erosion with a frequency between 8 



 

and 20 months out of 204. The most impacted areas were characterised by sandier hills 

and were regularly exposed to strong coastal wind gusts. On the other hand, most of the 

Mid-North region did not appear to be frequently impacted by intense erosion except the 

Port Pirie area and the Barunga Range (north-western part of the Wakefield LGA) where 

monthly soil loss estimates exceeded the 99th percentile threshold over 40 months out of 

204. Some parts of the central ranges of the Mid-North region also experienced a higher 

frequency of severe erosion (8-20 months out of 204). 

 

Figure 3.7 Frequency of monthly erosion rate above 0.000945 t ha-1. 

Spatial patterns of modelled soil erosion varied strongly in time (Figure 3.8). The results 

demonstrate that extreme monthly erosion possibly took place in the same areas over 

multiple years for two to three month each year and highlights the high temporal 

variability of extreme erosion events across the years. 

Between 2001 and 2010, Southern Australia experienced a wide-spread drought (known 

as the ‘Millennium Drought’). During this period, ground cover and soil moisture were 

very low, which led to an increase in soil erosion susceptibility in these regions. Here we 

identified that both regions possibly experienced a recurrence in extreme monthly 

erosion (> 0.000945 t ha-1) during this period, especially in 2003, 2004 and 2006. 

Outside of the Australian ‘Millennium Drought’, 2013 appeared to record the most 

significant proportion of severe monthly erosion, with a large part of the Eyre Peninsula 



 

impacted by extreme erosion between 3 and 4 months out of 12. The higher recurrence 

in monthly erosion for these years is likely linked to a combination of sparse ground cover 

and extreme wind gusts (see also Figure 3.13 below). 

This information is critical evidence for management actions because this high variability 

makes it extremely difficult to compare erosion between periods, i.e. before and after 

policy changes. The high temporal variability in erosion was mainly driven by extreme 

erosion events in some of the years within the study period; therefore, preventing the 

assessment of long-term erosion trend. Even though we can’t assert that erosion severity 

increased over the modelling period, we could argue that a recurrence in compound 

events (e.g. extended drought and intense storms with strong wind gusts) would likely 

increase the risk of extreme erosion events in the future. 

Although average annual erosion estimates can seem to be very low (Figure 3.9), the 

erosion patterns and LGAs predicted to be the most frequently impacted by extreme 

erosion (Figure 3.7 and 3.8) corroborated well with previous predictions of erosion 

severity at the continental scale (Leys et al., 2017; Leys et al., 2010; Leys et al., 2009).  

The last continental-scale wind erosion assessment for the National Landcare program 

classified the west coast and northern parts of the Eyre Peninsula as well as the Port Pirie 

LGA and the Barunga Range in the Mid-North region as high and moderately high wind 

erosion severities (Leys et al., 2017b). This report also introduced a new indicator to 

assess wind erosion susceptibility with the fraction of bare ground exposed to wind 

(FEW). For our study area, this assessment identified that on average, between 2000 and 

2010, the fraction of bare soil for the Pastoral Unincorporated Area and Ceduna LGAs 

was high enough (thus low surface roughness) to expose the soil to wind erosion. This 

information corroborates well with results from Figure 3.8, where parts of these LGAs 

exceeded the monthly 99th percentile threshold between 3 and 6 months out of 12. Even 

though the zones predicted to be the most severely impacted by erosion in the study area 

concur with previous reports, the “albedo” Wind Erosion Model was able to identify when 

and how often these areas exceeded the erosion severity threshold. This observation, 



 

therefore, supports the utility of erosion modelling to assess the spatio-temporal 

variability of erosion extremes. 

 

Figure 3.8 Frequency of severe monthly erosion (> 0.000945 t ha-1) for each year in the study period. 



 

 

Figure 3.9 Long-term mean annual erosion rates in the Eyre Peninsula and Mid-North regions estimated 

from the “albedo” Wind Erosion Model. 

 

3.3.2 Temporal variability of wind erosion 

To examine the temporal variability of erosion, we extracted the monthly erosion 

estimates for each pixel in the time-series, then grouped them by month to generate 

box-plots. Each box-plot represents the distribution of monthly erosion for the two 

regions separately and each month of a calendar year (Figure 3.10). 

We demonstrated in Section 3.3.1 that records of extreme monthly soil loss were highly 

variable in space throughout the study area. But the box-plots presented in Figure 3.10 

indicate that monthly erosion was also highly variable through time, as shown by the 

variable box sizes and very long tails. 

Regional averages were very comparable for the Eyre Peninsula and Mid-North regions 

across the seasons. Average monthly wind erosion was higher in summer (December - 

February), spring (October - November) and early autumn (March) for both regions with 

median values up to 0.0004 t ha-1 and recorded a lot of extreme erosion (long whiskers 

and presence of outliers). However, monthly erosion was more variable on the Eyre 

Peninsula than in the Mid-North as shown by larger boxes.  



 

 

Figure 3.10  Temporal distribution of monthly erosion records. Each data point represents the monthly soil 

loss for a single-pixel location grouped by month. The box-plots demonstrate high inter- and intra-seasonal 

variability. 

Although average erosion was very low in late autumn (May - June) and during winter 

(July - September), the variability in extreme monthly soil loss on the Eyre Peninsula 

was very high (as shown by the number of outliers). These skewed patterns could be 

explained by the fact that ground cover can become very low at the end of summer on the 

west coast of the Eyre Peninsula. For instance, crop stubble is often grazed by stock and 

used as fodder before sowing the next crop. New crops also establish later in the season 

in this region due to the limited or late availability of opening season rainfall. 

In contrast, in the Mid-North region, the distribution of extreme monthly erosion was 

smaller and more uniform throughout the year, which correlated well with spatial 

patterns from Figure 3.8 and the fact that this region is less susceptible to wind erosion 

(DEW, 2017b). Nonetheless, the highest erosion rates occurred in summer (December - 

February) and late autumn (May - June). These patterns could be explained by a 

combination of very sparse ground cover (just after harvest) and higher regional wind 

gusts during these months. Post-harvest ground cover is in general comparable to that 

of the Eyre Peninsula, except that more land is sown with pulse and legume crops 

(e.g. peas, lentils, chickpeas). These crop types have minimal stubble quantity compared 



 

to cereals. The ground cover would then be further reduced where land managers graze 

the legume stubbles, leaving susceptible soils more exposed to wind erosion. 

To analyse the temporal variability of erosion between different years, we extracted the 

annual erosion estimates for each pixel in the time-series, then grouped them by years to 

generate box-plots. Each box-plot represents the distribution of annual erosion 

estimates for the two regions separately and each year of the study period. 

 

Figure 3.11 Temporal distribution of annual soil loss. Each data point represents the annual soil erosion 

for a single-pixel location grouped by year. The box-plots demonstrate high inter- and intra-

annual variability. 

The distribution of annual soil loss displayed high inter- and intra-variability across our 

study period (Figure 3.11). Average regional erosion was comparable between the two 

regions throughout the study period and was the highest during the Australian 

‘Millennium Drought’ (2002-2009) (c.a. 0.003 t ha-1 y-1). In contrast, lower regional soil 

loss was recorded in 2010 and 2011 for the two regions, which coincided with the end of 

the “drought”.  

Even though regional erosion was comparable between the two regions, the distribution 

of annual soil loss was more variable on the Eyre Peninsula represented by the wider 

boxes. Parts of this region also experienced a greater recurrence in extreme annual soil 

loss (i.e. large number of outliers). This observation supports the argument that the two 



 

regions responded differently to extreme environmental conditions, and highlights the 

inter- and intra-regional differences between the two areas. 

 

3.3.3 Wind erosion influencing factors 

Horizontal sediment flux and wind erosion are driven by soil type, surface roughness and 

wind velocity. Understanding the influence of ground cover in the regional context is 

critical for soil conservation as this is partly within the control management through 

land-use policy such as incentives for land use or the support of conservation tillage. 

However, while policy or incentives play a key role, the adoption of improved 

management practices by land managers is more important (i.e. practices such as no-till 

seeding, stubble retention, grazing management, maintaining windbreaks, 

revegetation/vegetation management). This also extends to adapting management 

techniques to suit changing seasonal variation and other conditions from year to year. In 

light of this, it is thus essential to know how combinations of ground cover and wind 

velocities influence extreme erosion events so that land managers can make informed 

decisions in the future.  

The spatio-temporal model allowed us to produce a regional fingerprint of 

environmental conditions and the resulting soil erosion. Here we visually compared the 

joint frequency distribution of raster stack pixels falling into daily wind speed and ground 

cover percentiles. In order to compare regions with different sizes, we presented the 

proportion of the total number of records, or in other words the number of pixels falling 

into each of the 100x100 percentile combinations as a fraction of the total number of 

raster stack pixels; 1,162,542,027 and 841,425,051 records for the Eyre Peninsula and 

Mid-North, respectively (Figure 3.12). To describe the environmental conditions leading 

to extreme daily events, we repeated the process but only selected records falling within 

the 99th percentile of daily erosion (6.19e-5 t ha-1 day-1 or 61.9 g ha-1 day-1) (Figure 3.13). 

Environmental conditions leading to erosion were very different between the two regions 

and throughout the study period (Figure 3.12a and b). On the Eyre Peninsula, daily 



 

erosion events occurred with a combination of medium to high ground cover with a wide 

range of wind speed classes as represented by the higher density of daily erosion records 

in these categories (Figure 3.12a). These conditions concur with regional observations 

and conclusions from the latest National Landcare Program report (Leys et al., 2017). 

This report mentioned that wind erosion was wide-spread in the region and was 

threatening the long-term viability of agricultural businesses and reducing the ecosystem 

services of clean air. Results from Figure 3.12a also highlight that daily erosion on the 

Eyre Peninsula can occur under any combination of ground cover and wind velocity, 

which makes it even more relevant to land managers. This observation could also be 

related to the nature of the soils in this region. Indeed, a large proportion of the soils on 

the Eyre Peninsula are sandier soil types (Figure 3.3), which are more susceptible to 

wind erosion. 

 

Figure 3.12 Effect of wind speed and ground cover on daily soil erosion for the Eyre Peninsula and the Mid-

North regions. The figure displays the proportion of daily erosion records (pixels) within each combination 

of wind speed and ground cover percentile classes for the entire space-time array (17 years of daily erosion 

records).These diagrams demonstrate that environmental conditions leading to erosion were very different 

for the two regions. 

In contrast, daily erosion events in the Mid-North region mainly occurred with a 

combination of low to medium ground cover and a broad range of wind velocity classes 

(Figure 3.12b). However, local observations and the National Landcare Program report 

specified that erosion events were very localised and of very low intensity throughout the 



 

region. They also report that the fraction of bare ground exposed to wind was low to 

moderate across most of the area, therefore limiting the risk of wind erosion. 

Although regional environmental conditions leading to erosion were very different, both 

regions displayed a similar distribution of extreme daily erosion (> 61.9 g ha-1 day-1). 

These severe daily erosive events consistently occurred with a combination of strong 

wind speed (100th percentile: 19 to 41 m s-1 or 68 to 148 km h-1) and low to moderate 

ground cover (0-10th percentile: 0 to 51.5% ground cover) (Figure 3.13a and b). These 

observations concur with published literature and highlight the influence of ground 

cover and wind velocity on extreme soil losses within our two regions of interest. 

 

Figure 3.13 Effect of wind speed and ground cover on daily soil erosion for the Eyre Peninsula and the Mid-

North regions. The figure displays the proportion of daily erosion records (pixels) within each combination 

of wind speed and ground cover percentile classes when selecting the most severe of daily erosion rates 

(> 61.9 g ha-1 day-1). These diagrams demonstrate that that high erosion events consistently occurred at high 

wind speed with a large range of ground cover levels. 

Our results can be significant for land managers as we described the environmental 

conditions leading to extreme erosive events in the Mid-north and Eyre Peninsula 

regions. As supported by previous studies, maintaining adequate ground cover is 

paramount to limit wind erosion and reduce wind velocity (Leys et al., 2017). Even sparse 

vegetation or crop stubble can act as a windbreak and mitigate the impact of wind erosion 

on adjacent bare or overgrazed paddocks (Jeanneau et al., 2019). Here we proposed new 

targets for ground cover management to improve preventive erosion control in dryland 



 

agricultural regions. Land managers should then aim to maintain a ground cover over 

50% to limit the risk of erosion with extreme weather events. It might not be practical to 

meet this target every year when environmental conditions are not optimal for crops 

growth or if a wildfire rages through the region, but it can often be recovered the 

following year. However, land managers would have little control over ground cover 

management when experiencing two or more successive seasons with well below average 

rainfall, as we have seen during the Australian ‘Millennium Drought’. With the impact of 

a changing climate, farmers are likely to be exposed to a higher recurrence in low-

yielding years, which would lead to a higher frequency of erosion risk.  

 

3.3.4 Wind erosion and land use 

Agriculture was the dominant land-use type in both regions representing 60% and 88% 

of the surface of the Eyre Peninsula and the Mid-North respectively (Figure 3.2). On the 

Eyre Peninsula, agricultural land-uses (i.e. cropping, modified pastures and livestock 

grazing) represented 73% of the total regional annual contribution (0.007 t ha-1 y-1) 

(Figure 3.14). Dryland cropping had the highest contribution to total regional erosion 

(0.0034 t ha-1 y-1), followed by modified pastures (0.0026 t ha-1 y-1). The other agricultural 

land uses and natural environments did not significantly contribute to regional 

wind erosion.  

Agricultural land uses also contributed significantly to total annual erosion with 92% in 

the Mid-North region (0.008 t ha-1 y-1) (Figure 3.14). Livestock grazing and dryland 

cropping represented the principal contribution to the annual regional erosion with 

0.003 and 0.0028 t ha-1 y-1 respectively, followed by modified pastures (0.0023 t ha-1 y-1). 

Natural land uses in the Mid-North region had a small contribution to total regional 

erosion (< 0.0008 t ha-1 y-1). 



 

 

Figure 3.14 Long-term average annual wind erosion for the major agricultural land uses compared with 

natural environments. 

 

3.4 Discussion 

3.4.1 Comparison of the wind erosion model with the frequency of 

dust storms 

We were not able to directly compare our wind erosion estimates with quantitative 

measurements as there were no recent ground-based observations for wind erosion in 

the Eyre Peninsula and Mid-North regions. Therefore, we produced a map of mean 

annual frequency of dust storms (Figure 3.15) from MODIS MAIAC daily gridded data to 

evaluate the credibility of our wind erosion severity maps (Figure 3.9) and locate 

potential dust sources in the two regions of interest. We produced an error matrix 

(Table 3.1), based on an overlay analysis between Figure 3.9 and Figure 3.15, to compare 

the agreement between the “albedo” Wind Erosion Model and the frequency of dust 

storms. Each element in Table 3.1 represents the number of observations (pixels) within 

each class intersection divided by the total number of pixels and expressed as a 

percentage. The overall accuracy was then estimated by the sum of the 

diagonal elements.  



 

 

Figure 3.15 Mean annual frequency of dust storms for the Eyre Peninsula and Mid-North regions derived 

from the MODIS MAIAC daily Aerosol Optical Depth (AOD) product (AOD > 0.3). 

 

Table 3.1 Error matrix comparing the agreement (overlapping area in %, values in bold denote agreement) 

between wind erosion severity classes from the “albedo” Wind Erosion Model and the mean annual 

frequency of dust storms derived from the MODIS MAIAC daily Aerosol Optical Depth (AOD) product 

(AOD > 0.3). 

Wind erosion model 
Frequency of dust storms 

Very slight Slight Moderate High Very high 

Very slight 10.1 8.8 2.6 0.3 0.0 

Slight 9.7 13.4 12.1 2.9 0.0 

Moderate 7.3 11.2 10.7 2.6 0.0 

High 1.7 2.7 2.7 1.2 0.0 

Very high 0.0 0.1 0.1 0.1 0 

Overall accuracy 35.4%     

If we assume that the classification of the wind erosion severity and the frequency of dust 

storm maps were comparable, then the overall accuracy of the model was 35.4%, which 

is very low. However, if we assume that a one-class difference is acceptable because the 

classes were not defined on a nominal scale but an ordinal-scale (Vrieling et al., 2006), 

then the accuracy of the wind erosion model increases to 82.6% which is reasonably 

satisfactory (Figure 3.16). The results from Figure 3.16 correlated well with historical 

data and local observations as well as wind erosion susceptibility maps produced by the 

South Australian Government (DEW, 2017b). This validation attempt is quite unique and 



 

proved that we could be confident in the erosion severity patterns predicted by the 

“albedo” Wind Erosion Model. 

 

Figure 3.16 New erosion severity map corrected with MODIS MAIAC daily Aerosol Optical Depth (AOD) 

dataset. Note that the areas in grey represent zones where the classification of the AOD did not overlap with 

the “albedo” Wind Erosion Model. 

 

3.4.2 The model’s response 

Our modelling exercise aimed to identify the relative spatio-temporal variability of 

extreme erosion events for land management and demonstrated that the “albedo” Wind 

Erosion Model was well suited for the task. However, the wind erosion severity was 

probably misclassified in some parts of the study area, especially in the central ranges 

and eastern parts of the Mid-North, and the central part of the Eyre Peninsula as shown 

by the empty pixels in Figure 3.16. This misclassification could be correlated with the 

way we estimated the bare soil threshold friction velocity (𝑢∗𝑡𝑠). To estimate this 

parameter, we relied on information about the soil particle diameter (𝐷), which was not 

available at a regional scale in our study area due to the lack of field measurements. We 

drew on the experience from previous modelling approaches (Chappell and Webb, 2016; 

Chappell et al., 2019) to derive this information and used the Soil and Landscape Grid of 

Australia (SLGA) digital soil dataset. We estimated the ideal threshold friction velocity 

from the fraction of sand, silt and clay in the topmost soil layer and their relative particle 



 

size diameter (clay < 2μm, silt < 50μm, sand < 2000μm). We also applied a correction to 

the soil texture fractions with the coarse fragment content (> 2000μm) to prevent the 

misclassification of non-erodible soil fractions (denser soils and rocky outcrops). This 

correction significantly improved our predictions; however, some foothills in the Mid-

North region were still considered as potentially erodible when local observations did not 

concur with these results. Even though our approach could lead to potential 

misclassification or overestimation of erosion in some parts of the study area, Chappell 

and Webb (2016) demonstrated that modifying the soil particle size 𝐷 (between 50 and 

500μm) did not result in significant changes in predicted erosion patterns.  

The moderate resolution of the model (500m) might not reflect the diversity of land-uses 

and vegetation cover classes present within a single MODIS pixel and the albedo 

parameters might not be able to assimilate this complex landscape. South Australian 

authorities currently recommend that standing crop residue is probably more important 

than ground cover for controlling wind erosion in this region. Jeanneau et al. (2019) 

demonstrated that even shallow vegetation (crop stubble) could protect adjacent burnt 

or bare paddocks against wind erosion. Although the “albedo” Wind Erosion Model takes 

into account vegetation height, it might not entirely capture the structure of crop residues 

anchored in the soil. This information is critical and might have led to misclassification 

of local erosion severity as well, especially in the Mid-North region where the agricultural 

landscape is more fragmented (Figure 3.2). However, this study intended to characterise 

erosion patterns at a regional scale and was not designed to identify wind erosion severity 

at the field scale. 

The “albedo” Wind Erosion Model managed to capture regional variability and enabled 

the identification of regions the most frequently impacted by erosion in the study area. 

Overall, spatial patterns of erosion severity compared well with previous modelling 

approaches (DEW, 2017b; Leys et al., 2017a) and underpin the value of erosion models 

to assess spatial differences and evaluate corrective measures. However, our results were 



 

untested against erosion measurements, making it difficult to set absolute quantitative 

soil loss targets for land management. 

 

3.4.3 Assessing the temporal variability in erosion 

The selection of reference periods for baseline studies is critical to evaluate long-term 

trends in soil erosion and should be selected carefully. It is very easy to skew analysis if 

a one-in-50-years dust storm rages through a region of interest during the study period 

and drives extreme erosion rates. Therefore, any trends observed in this case would not 

be representative of the long-term distribution of erosion in this region. Here we 

conducted our study with the best spatio-temporal datasets currently available, but we 

could only access 17 years of reliable data. For this reason, our work focussed on 

assessing the frequency and recurrence of severe monthly erosion records to identify the 

spatio-temporal variability of erosion extremes in agricultural zones of South Australia 

for the reference period 2001-2017. The “albedo” Wind Erosion Model efficiently 

captured this variability, thus proving the value of erosion modelling for the assessment 

of regional erosion severity through time. Some of the years in our archive could then be 

used as a surrogate to test different climate change scenario for future land management. 

Even though our modelling period included the Australian ‘Millennium Drought’ 

(2001-2010) and very wet years (2016, 2015), we couldn’t reliably assess long-term trends 

in erosion severity for the Eyre Peninsula and Mid-North regions. Further work should 

be implemented in the future when the archives will contain 30 to 50 years of spatio-

temporal data to estimate relative trends in erosion for the agricultural zone of 

South Australia. 

3.4.4 Regional land management 

The large spatial and temporal variability observed between the Local Government Areas 

(LGAs) of the Eyre Peninsula and Mid-North regions demonstrated the difficulty to set 

absolute Federal or State-based land management targets. As each State is characterised 



 

by a wide range of landscapes, environmental conditions and erosion susceptibility, land 

management targets need to be tailored to each Local Government Area or district 

individually and be adapted to the capacity of each locality. 

We also identified that ground cover and wind velocity had a strong influence on erosion 

regardless of the region. Intense wind gusts (> 19 m s-1, c.a. 68 km h-1) dramatically 

increased erosion severity with a ground cover below 50%, but management practices 

could potentially influence ground cover protection. For this reason, land managers need 

to be conscious of the zones the most susceptible to erosion in their region to leave room 

for improvement and support conservation practices. Therefore, our results and the wind 

erosion severity map (Figure 3.9) could serve as a guide to inform land managers about 

potential erosion severity under a range of environmental conditions. Other stakeholders 

involved with policies and programs relating to sustainable agricultural land 

management and land use planning (e.g. the agricultural industry, local and state 

governments, and research organisations) could also use these results to inform strategic 

changes and future decisions in regards to erosion management. 

Since the early 2000s, the Eyre Peninsula and Mid-North regions have recorded an 

overall reduction of erosion risk (from 85 days to 25 days at risk per year) with the 

adoption of conservation tillage (Young and Herrmann, 2015). This effort has 

dramatically reduced the number of observed dust events and rill erosion (DEW, 2017a; 

Hancock et al., 2015; Young and Herrmann, 2015). However, even with the best 

management practices, land managers might have little ability to prevent erosion with a 

recurrence in extreme events such as extended droughts, wildfires or extreme 

precipitation events. Nonetheless, farming systems and land management options such 

as greater use of perennial plants (including pasture species, fodder shrubs and trees) 

could help to mitigate erosion risk with increasing dry seasonal conditions in lower 

rainfall areas. 

Low rainfall regions are highly sensitive to future climate change. Current climate models 

for Australia predict less reliable rainfall but more intense rainfall events; hotter and 



 

extended periods of heatwaves; more frequent droughts; and increased risks of fire 

events (Bardsley, 2006; CSIRO & BoM, 2015). All these climatic variables are directly 

influencing soil erosion. Compound events such as extended drought periods and 

extreme wind gusts are likely to increase soil losses (Leys et al., 2018). During a 

prolonged drought period, soil moisture which is the primary water source available for 

plants and contributes to soil aggregate stability will be very limited. As a result, biomass 

production will become more variable and is likely to decline. Lower production will lead 

to less protective cover and reduced soil stability; therefore, soils will be more exposed 

to erosion with the next intense storm event. 

Our results showed that a combination of extended droughts, thus very low ground cover, 

and extreme wind gusts (> 68 km h-1) led to a sharp increase in daily, monthly and annual 

soil loss during the Australian ‘Millennium Drought’ across a large proportion of the Eyre 

Peninsula and in coastal areas in the Mid-North region. Therefore, maintaining a 

reasonable ground cover in the future will become paramount to prevent extreme 

erosional events. 

 

3.5 Conclusion 

This study demonstrated that erosion models could be used to inform corrective 

measures for future land management and provides a valuable tool for assessing the 

spatio-temporal variability of wind erosion. Here, we adapted a state-of-the-art wind 

erosion model (“albedo” Wind Erosion Model) to integrate modern high-resolution 

datasets for spatial and temporal analysis of erosion. This study characterised spatial 

patterns of erosion severity at a regional scale by identifying when and how often extreme 

erosion events occurred between 2001 and 2017 in the Eyre Peninsula and Mid-North 

agricultural zones of South Australia. We also described the influence of wind velocity 

and ground cover on extreme daily erosion events and differentiated erosion figures for 

a range of land-uses in the study area. 



 

Average regional erosion was comparable between the Eyre Peninsula and Mid-North 

regions (0.00258 and 0.00243 t ha-1 y-1 respectively). However, most of the west coast of 

the Eyre Peninsula frequently experienced severe erosion (above 0.000945 t ha-1 month-

1 or 0.945 kg ha-1 month-1). The high erosion severity was primarily driven by the soil type 

(sandy soils), recurring low ground cover and extreme wind gusts. 

We identified that average monthly wind erosion was the highest in summer (December 

- February), spring (October - November) and early autumn (March) for both regions 

with median values up to 0.0004 t ha-1 month-1. Although average erosion was very low 

in late autumn (May - June) and during winter (July - September), the variability in 

extreme monthly soil loss on the Eyre Peninsula was very high. Average regional annual 

erosion was also comparable between the two regions throughout the study period and 

was the highest during the Australian ‘Millennium Drought’ (2002-2009) (c.a. 0.003 

t ha-1 y-1). 

Overall, agricultural land-uses produced higher erosion rates than natural environments 

and contributed to c.a. 40% of the total annual regional contributions for both regions 

(EP: 0.007 t ha-1 y-1; MidN: 0.008 t ha-1 y-1). We identified that ground cover was a critical 

controlling factor to limit the impact of wind velocity on erosion. Severe daily erosive 

events consistently occurred with a combination of strong wind gusts (100th percentile: 

19 to 41 m s-1 or 68 to 148 km h-1) and low to moderate ground cover (0-10th percentile: 0 

to 52% ground cover). As a result, land management actions could be taken to maintain 

a reasonable ground cover all year round (e.g. conservation agriculture and no-tillage), 

most particularly for the dryland cropping or grazing pasture sector. 

To the best of our knowledge, this study is the first one to examine the relative 

assessment of wind erosion frequency for the agricultural zone of Southern Australia. It 

provides valuable insight regarding erosion severity for the management of natural and 

dryland agricultural environments. Our results can now be used to set land management 

targets tailored to specific Local Government Areas of South Australia.  



 

Although the focus of this study was on the Eyre Peninsula and Mid-North agricultural 

regions, the model could be extended to the rest of the State or across all the Australian 

agricultural zone, given sufficient computing power. The input data can be downloaded 

through open access platforms Australia-wide (Table A.1), and similar datasets are 

available globally.  
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Abstract 

The combined effect of wind and water erosion can substantially contribute to total 

erosion rates in most dryland ecosystems. However, the impact of these two processes is 

still widely assessed separately. Dryland ecosystems are highly sensitive to 

environmental disturbances (e.g. droughts, overgrazing, fires) which can dramatically 

increase soil erosion susceptibility. Unfortunately, these threats, particularly wildfires, 

are likely to be more frequent in the future due to climate change, land management 

practices and planning.  While fires are recognised as a major driver of erosion, there is 

a strong demand for model-based tools for predicting post-fire erosion response. 

In this study, we applied two state-of-the-art water and wind erosion model (G2 and 

“albedo” Wind Erosion Model) to identify regions that were the most severely affected 

by wind, water or both erosion types in the Eyre Peninsula and Mid-North agricultural 

zones of South Australia. We also tested the applicability of a joint wind-water erosion 

approach to assessing post-fire erosion after ten catastrophic wildfires. Finally, we 

investigated whether Aerosol Optical Depth (AOD) products could provide 

complementary information to post-fire wind erosion assessment. 

Erosion severity was low for the vast majority of the study area, while 4% and 9% of the 

total area suffered severe erosion by water and wind respectively. However, a very small 

fraction of the region (0.7%) was severely impacted by both wind and water erosion. 

The two erosion models satisfactorily captured the spatial and temporal variability of 

post-fire erosion. All fire-affected regions suffered an increase in erosion either 

immediately after the wildfires or within the first six months. For some of the wildfire 

events, an increase in both wind and water erosion was predicted in consecutive months 

or at the same time. Therefore, this information highlights the importance to consider 

wind and water erosion simultaneously for post-fire erosion assessment in dryland 

agricultural regions. Although this work was preliminary, the MODIS AOD dataset 

complemented well wind erosion predictions for post-fire erosion assessment. 



 

However, more validation and correlation work is needed to apply this technique with 

more confidence. 

Overall, this research demonstrated the importance of using an integrated modelling 

approach to estimate the impact of wind and water erosion in dryland agricultural 

regions under undisturbed conditions as well as post-fire erosion assessment. This 

method could then be used to target remedial (on-ground) activities to reduce soil loss 

and protect watercourses, dams, and livelihood of the community. 

 

4.1 Introduction 

Soil erosion is a natural process part of the soil and landscape formation; however, 

human activities have dramatically accelerated this phenomenon with the increasing 

removal of vegetation cover, expansion of farming onto marginal lands and overgrazing 

(Borrelli et al., 2017). According to FAO, soil erosion is the greatest challenge for 

sustainable soil management today (FAO, 2019). Soil erosion is of global concern because 

of its direct negative impact on ecosystem services, agricultural productivity and soil 

security. Local soil removal, generated by wind or water, induces the loss of fertile 

topsoil, containing vital nutrients and soil organic carbon, which further decreases soil 

fertility and ecosystem functions. On a larger scale, particles displaced by erosion 

can lead to pollution of water bodies through nutrient leaching, sedimentation of 

reservoirs and air pollution where airborne dust can lead to respiratory diseases 

(Flanagan et al., 2013). 

Soil erosion can be generated by two main forces: wind and water and can be 

characterised as aeolian and fluvial processes. Transport characteristics of the two 

processes are very distinct and operate in different direction and dimensions, which 

makes direct comparison difficult. Aeolian transport is two dimensional as sediments are 

conveyed in both vertical and horizontal directions, and omnidirectional as airborne 

material can be transported in all wind directions. On the contrary, fluvial transport is 

mainly unidimensional, as sediments are transported downslope in a single direction.  



 

Wind and water erosion affect a large proportion of arable lands around the globe 

(FAO, 2019), and their combined effect can substantially contribute to total erosion rates 

in most dryland ecosystems (Field et al., 2011b). It has been observed that these 

interactions can often go beyond the limit of the dryland ecosystem. For instance, 

sediments transported by water in lake beds or floodplains could be redistributed by 

wind over long distances during drier months, which could subsequently be carried again 

further by wind or water (Field et al., 2011b). 

Dryland ecosystems are highly sensitive to environmental disturbances (e.g. droughts, 

overgrazing, fires) which can dramatically increase soil erosion susceptibility. Out of 

these disturbing agents, wildfires are of particular concern because they are 

unpredictable, reduce or eliminate protective ground cover, and can modify soil 

structure, thus increasing post-fire erosion risk. With the likely increase in the frequency 

and intensity of wildfires in dryland agricultural regions (Clarke et al., 2011; Gonçalves 

et al., 2011) and more recurring drought conditions (CSIRO and Bureau of 

Meteorology, 2015), soil erosion by wind or water is likely to increase too. With the 

recurrence in wildfires, soil surface will be more frequently exposed to commonly 

occurring storms, but it will also increase the probability that soils susceptible to erosion 

by wind or water will remain vulnerable when less frequent high-intensity events occur 

(Edwards et al., 2019). This information is of particular interest for dryland agricultural 

regions, where both aeolian and fluvial processes influence landscape formation, as wind 

and water erosion can be observed simultaneously or sequentially within months 

following major wildfire events (Shakesby et al., 2007; Shillito et al., 2012). The loss of 

fertile topsoil might also become more problematic if large fires are followed by drought 

conditions as vegetation and ground cover will take longer to recover leaving soils 

exposed for longer.  

A growing body of research has compared the absolute and relative magnitude of wind 

and water erosion processes (Breshears et al., 2003; Du et al., 2016; Field et al., 2011a; 

Jiang et al., 2019; Wang et al., 2014). Nonetheless, these two are generally studied 

individually and integrated modelling approaches considering both processes 



 

simultaneously are lacking (Belnap et al., 2011; Flanagan et al., 2013; Panagos et 

al., 2018). From existing modelling researches, significant uncertainty remains on the 

relative degree of wind and water erosion in dryland ecosystems and how the two 

processes interact in such environments (Flanagan et al., 2013). There is also ongoing 

uncertainty on how the interaction between the two processes changes with scale, and to 

what extent (Field et al., 2009; Field et al., 2011b), and how changes in fire regimes and 

frequency will impact the balance between wind and water erosion susceptibility in 

dryland ecosystems (Edwards et al., 2019). Post-fire erosion assessment has prompted 

significant interest in the past decades (Blake et al., 2020; Dukes et al., 2018; Fernández 

and Vega, 2018; Wagenbrenner et al., 2013), and evidence of wind redistribution of 

sediments has been reported in hydrological studies (Santín et al., 2015; Vega et 

al., 2020). However, a very limited number of researchers have considered wind and 

water erosion simultaneously in post-fire studies (Shillito et al., 2012). 

Measurements of wind and water erosion in the field with wind tunnel experiments and 

standardised runoff plots have contributed significantly to the development of prediction 

models. However, such measurements are not sustainable when considering regional or 

continental scales applications. Thus, empirical and physical models have been 

developed to describe erosional processes. Recent technological advances in remote 

sensing and Geographic Information System (GIS), have also contributed to the 

popularity of erosion models as a growing number of models were designed to integrate 

GIS, digital maps and satellite data. These advances have also been crucial to improving 

the policy relevance of erosion models. As a result, authorities extensively use models 

predicting the extent of soil erosion for policy development. For instance, in Australia, 

the New South Wales government is using the CEMSYS wind erosion model 

(Leys et al., 2010) in combination with on-ground dust monitoring stations (DustWatch 

project, Leys et al. (2008)) to predict wind erosion and dust concentration over large 

areas (catchments and continent) and long time-periods (years). In Europe, the 

European Commission created a range of hillslope erosion maps from soil erosion 



 

modelling to set soil protection targets within the Common Agricultural Policy (CAP) 

(Panagos and Katsoyiannis, 2019). 

However, prediction models generally differ in the complexity of the processes examined 

and the type of input data required. For water erosion modelling (sheet and rill), RUSLE-

derived models are the most popular (Borrelli et al., 2020; Panagos et al., 2018). This 

interest could be explained by the simplicity of the models, the availability of data and 

their simple integration in GIS and mapping software. For wind erosion modelling, the 

most commonly employed models are the (Revised) Wind Erosion Equation ((R)WEQ; 

Fryrear et al. (2000); Woodruff and Siddoway (1965)), the Wind Erosion Prediction 

System (WEPS; Hagen (1991)) and the Integrated Wind Erosion Modelling System 

(IWEMS, Lu and Shao (2001)) (Borrelli et al., 2020). The WEQ and RWEQ are empirical 

models with a similar structure to the USLE and predict potential average annual soil 

loss at the field scale, while WEPS and IWEMS models are process-based models. One 

of the major limitations of these models is that they require a large amount of detailed 

input data that might not always be readily available at larger scales and the WEQ, 

RWEQ and WEPS can only be applied at the field scale. 

Besides the models mentioned above, two novel methods for water and wind erosion 

have increasingly drawn attention. The first one is the G2 model proposed by Panagos et 

al. (2014). G2 is a quantitative algorithm derived from the RUSLE approach, which 

quantifies hillslope erosion and sediment yield rates at monthly time intervals. Although 

quite similar to the RUSLE, this model proposed a new method to account for vegetation 

cover and management factor in a wide range of landscapes (see section 4.2.3). The 

second model is Chappell and Webb (2016) “albedo” Wind Erosion Model. The authors 

redefined the approximation of aerodynamic roughness using fundamental principles of 

aeolian sediment transport and made it possible to fully integrate satellite imagery and 

remote sensing in complex wind erosion models (see section 4.2.4). 

Even though erosion processes have been well described, the high spatial and temporal 

variability in erosion makes the prediction of erosion trends very difficult. To overcome 



 

these limitations, we need detailed data and access to high spatio-temporal datasets to 

be able to give the best assessment of soil losses and identify regions at risk of erosion in 

the future. 

This study aims to identify regions that were the most severely affected by wind, water 

or both erosion types in the Eyre Peninsula and Mid-North agricultural zones of South 

Australia between 2001 and 2017. We also tested the applicability of a joint wind-water 

erosion approach to assessing post-fire erosion in the region and investigated whether 

AOD products could provide complementary information to post-fire wind 

erosion assessment. 

 

4.2 Methods 

4.2.1 The study area 

Our study focusses on two dryland agricultural regions of South Australia, Australia: 

Eyre Peninsula (EP – 33°568’S 135°755’E – 4.7x104 km2) and the Mid-North (MidN – 

33°376’S 138°723’E – 3,4 x104 km2) (Figure 4.1). These two regions are significant 

contributors to agricultural production in South Australia (ABARES, 2018) and parts of 

these regions are historically prone to wind and water erosion, therefore representing a 

vital interest for food and soil security. Agricultural land-uses represent the majority of 

the regional land-uses (Figure 4.2) with cereal cropping representing 50% and 33% of 

the land surface for the Eyre Peninsula and Mid-North respectively, followed by grazing 

(modified) pastures, representing 11% and 54% of the total regional land-use for each 

district (ABARES, 2016). 



 

 

Figure 4.1 Location map and presentation of the study area (Eyre Peninsula & Mid-North) within the South 

Australian cropping region. 

 

 

Figure 4.2 Land-use classes for the Eyre Peninsula and Mid-North regions. Source: (ABARES, 2016) 

  



 

The two regions are characterised by a Mediterranean climate, with cool wet winters and 

hot dry summers with occasional summer storms and exhibit diverse soils and land uses, 

providing an excellent study site to demonstrate the utility of erosion modelling for land 

management. Mean annual rainfall ranges from 200mm in the north to 500mm in the 

south, with a mean of 350mm (BoM, 2016a). The average daily temperature varies 

between 12 and 19°C (BoM, 2016b). The dominant soil types in the Eyre Peninsula region 

range from sandy to clay-loam soils (Figure 4.3). On the other hand, soil types 

throughout the Mid-North region are more diverse and predominantly loam or clay-loam 

soils, with some sandy-loam patches (Figure 4.3). Elevation in the Eyre Peninsula region 

ranges between 0m and 480m, and from south-west to north-east. For the Mid-North 

region, altitude ranges between 0m and 950m above sea level with the highest elevations 

found in the centre of the region. The topography is complex in this area, and some parts 

have very steep slopes with gradients ranging from 0% to 60%. 

 

Figure 4.3 Dominant soil texture classes for the Eyre Peninsula and Mid-North regions. Source: DEW 

(2016). 

 

4.2.2 Description of the data sources 

All the datasets used in this study have been acquired from open-source databases. Data 

description (e.g. type, resolution, sources) can be found in Table A.1. Climate and 

weather data were obtained from the Australian Bureau of Meteorology Atmospheric 



 

high-resolution Regional Reanalysis dataset for Australia (BARRA) (Su et al., 2019). 

More details about the dataset, product description and resolution can be found in (Su et 

al., 2019). For our modelling exercise, we used the hourly maximum gust wind speed at 

10m and the soil moisture content in the top-most layer (0-10cm) datasets for the wind 

erosion model and the precipitation accumulation dataset for the water erosion model. 

These three datasets are available at a spatial resolution of 1.5km and an hourly temporal 

resolution for the State of South Australia. 

Land-use and land cover classes were derived from the South Australian Land Cover 

dataset (Willoughby et al., 2018). This dataset modelled land cover throughout the state 

of South Australia based on a combination of satellite imagery (Landsat), aerial 

photography and land-use classification from National inventory (ABARES, 2016), and 

is available for six epochs (1987-90, 1990-95, 1995-2000, 2000-05, 2005-10, 2010-15) at 

a spatial resolution of 25m. 

Ground cover was derived from Moderate Resolution Imaging Spectroradiometer 

(MODIS) fractional cover dataset for Australia (Guerschman et al., 2015). Guerschman 

et al. (2015) have developed an algorithm to isolate MODIS signal in three fractions 

representing the proportion of photosynthetic vegetation (PV), non-photosynthetic 

vegetation (NPV) and bare soil (BS). The spatiotemporal distribution of land surface 

properties can be evaluated with bidirectional reflectance distribution function (BRDF) 

of the surface and albedo. Chappell and Webb (2016) have demonstrated that MODIS 

BRDF/albedo products can be used reliably to derive land surface functions involved in 

wind erosion modelling. Here we programmatically downloaded the MODIS MCD43A1 

and MCD43A3 products (band 1) with the MODIStsp:: R package (Busetto and 

Ranghetti, 2016) to extract the isotropic (𝑓𝑖𝑠𝑜) and directional hemispherical reflectance 

(or black-sky albedo 𝜔) parameters required to derive the normalised albedo factor for 

the wind erosion model. More details about the datasets can be found in Chappell and 

Webb (2016) and Chappell et al. (2018). Both MODIS datasets (Fractional Cover and 



 

MODIS BRDF/albedo) provide daily data available at 500m resolution from the 

year 2000. 

We extracted soil properties information from the Soil and Landscape Grid of Australia 

(SLGA) digital soil maps to estimate the ideal threshold friction velocity and soil 

erodibility. This dataset contains information about soil texture composition as a mass 

fraction at a depth of 0-5cm (clay < 2μm, silt < 50μm, sand < 2000μm, coarse fragments 

> 2000μm), soil organic carbon (SOC) and bulk density of the soil. The SLGA dataset is 

available at a resolution of 90m for the whole continent and can be automatically 

downloaded through the slga:: R package (O'Brien, 2019), more information about the 

range of soil properties and landscape attributes can also be found at www.csiro.au/soil-

and-landscape-grid. We also downloaded additional soil properties datasets from the 

Australian Soil Resource Information System (ASRIS) (ASRIS, 2011) such as hydraulic 

conductivity and surface stone cover for the refinement of the soil erodibility factor. 

Topography for the regions of interest was derived from the Advanced Land Observing 

Satellite (ALOS) Digital Surface Model (DSM) version 2.1 at a resolution of 30m 

(Tadono et al., 2014). 

 

4.2.3 The water erosion model 

To estimate hillslope erosion, we adapted the G2 model from Panagos et al. (2014) to 

Australian conditions. This model produces monthly maps predicting sheet and interill 

erosion caused by rainfall and water runoff at a resolution of 500m. The structure of the 

G2 model is derived from the RUSLE, where five input parameters are combined in a 

multiplicative equation. 

 𝐸𝑗 =
𝑅𝑗

𝑉𝑗
× 𝑆 ×

𝑇

𝐿
 (22) 

where 𝐸𝑗 is the soil loss for the month 𝑗 (t ha-1), 𝑅𝑗 is the rainfall erosivity for the month 𝑗 

(MJ mm ha−1 h−1), 𝑉𝑗 represents the vegetation retention for the month j (dimensionless, 

analogous to the USLE’s C-factor), 𝑆 represents the soil erodibility 

http://www.csiro.au/soil-and-landscape-grid
http://www.csiro.au/soil-and-landscape-grid


 

(t ha h MJ−1 ha−1 mm−1), 𝑇 is the terrain influence and represents the influence of slope 

length and slope steepness (dimensionless, analogous to the USLE’s LS factor), and 𝐿 is 

the slope-intercept factor representing the effect of landscape alteration (dimensionless, 

corrective effect on 𝑇). More details about each erosion factor and the adaptation to local 

conditions can be found in Chapter 2. 

 

4.2.4 The wind erosion model 

Chappell and Webb (2016) proposed a new approach for wind erosion modelling 

simplifying the drag partition scheme of Raupach et al. (1993) while combining the use 

of remote sensing satellite imagery. The authors established a relationship between the 

sheltered area in the wake of plants and the proportion of shadow over a given area 

(Figure 4.4). This proportion of shadow can be derived from the inverse of the direct 

beam directional hemispherical reflectance (or black sky albedo 𝜔) viewed at nadir, 

normalised by the surface reflectance and rescaled (or rescaled normalised albedo 𝜔𝑛𝑠). 

𝜔𝑛𝑠 is equivalent to  the proportion of shadow described in Figure 4.4 and the empirical 

relationships required to estimate this parameter were calibrated against wind tunnel 

and field measurements of key aerodynamic properties which influence wind erosion. 

Chappell and Webb (2016) demonstrated that there was a strong relationship between 

the rescaled normalised albedo and the wind shear stress at the soil surface (𝑢𝑆∗, m s-1) 

scaled by the freestream wind velocity (𝑈𝑓, m s-1, Figure 4.4a).  

 

Figure 4.4 a) Concept representation of the sheltering effect of vegetation from Raupach et al. (1993), b) 

concept of the shadow effect of vegetation proposed by Chappell et al. (2010) to derive vegetation structure 

from remote sensing. Source: Chappell and Webb (2016) 

This approach preserves the principles of previous wind erosion models, and the 

horizontal sediment flux can then be expressed as follow 

a) b) 



 

 𝑄h = 𝑐𝑠h𝑎𝑜

𝜌𝑎 × 𝑢𝑆∗
3

𝑔
× (1 −

𝑢∗𝑡𝑠
2 × 𝐻(𝑤)2

𝑢𝑆∗
2 ) (23) 

Where 𝑐𝑠h𝑎𝑜 (0.006) represents a tuning factor adjusted to the magnitude of the model 

output, 𝜌𝑎 is the density of the air (1.23 kg m-3), 𝑔 is the acceleration due to gravity (9.81 

m s-1), 𝑢∗𝑡𝑠 is the soil threshold shear stress of bare soil below which sediment transport 

does not occur (Shao et al., 1996), and 𝐻(𝑤) is a soil moisture correction function which 

reduces sediment transport through the increase of cohesive forces in the soil 

(Fecan et al., 1999). The model is also adjusted by the influence of the total wind energy 

(shear stress) that is applied at the soil surface (𝑢𝑆∗). 

To estimate wind erosion for the two regions of interest, we converted the horizontal 

sediment flux (𝑄h, g m-1 s-1), representing transport in one dimension, to an areal quantity 

(𝐸, t ha-1 y-1). First, we estimated the horizontal sediment flux on an hourly basis (finest 

temporal resolution) for each pixel in the archive (2001-2017). Then, we calculated the 

median value of daily horizontal sediment flux for each day in the time-series. Finally, 

we converted the median daily horizontal flux to an areal quantity to obtain the daily 

erosion rate (𝐸𝑑𝑎𝑦, t ha-1 day-1). To apply the conversion, we drew inspiration from 

Chappell et al. (2019) and used similar assumptions. We assumed that (i) the area of 

transport was defined by the size of a pixel (500m) and (ii) heterogeneity of transport 

within a pixel was captured by the albedo response of each pixel. Based on these 

assumptions, the median daily sediment transport in one dimension (𝑄h_day, g m-1 s-1) 

was converted to a surface quantity by dividing 𝑄h_day with the MODIS pixel size of 500m 

(g m−2 s−1). We further assumed wind erosion to be non-selective over a day and 

multiplied this quantity by the number of seconds in one day (g m−2 day−1) and then 

divided by 100 to convert the units to t ha−1 day−1. The daily erosion rate (𝐸𝑑𝑎𝑦) was then 

summed by months and years for the analysis. More details about the model and its 

application to the Eyre Peninsula and Mid-North regions can be found in Chapter 3. 



 

4.2.5 Description of the fire events 

To investigate whether the wind and water erosion models could capture the impact of 

fires on soil erosion, we compared the erosion estimates for ten major fires in the study 

area. To narrow down the number of wildfire events for the analysis, we applied the 

following selection criteria: natural fire (bushfire), surface affected > 6,000 ha, the event 

occurred between 2001 and 2017. A complete list of the fire events and their 

characteristics can be found in Table 4.1. 

Table 4.1 Description of the wildfire events used in the analysis. 

Fire name 
Type of 

event 
Vegetation type Fire date 

Fire 

year 
Season 

Area 

affected 

(ha) 

Pinery Bushfire Crops and pasture 2015-11-25 2015 Spring 78,434 

Burra Bushfire Scrubs and pasture 2005-12-23 2005 Summer 6,147 

Pinkawillinie 

Conservation 

Reserve 

Bushfire Mallee woodland 2005-12-27 2005 Summer 28,146 

Wangary Bushfire Crops and pasture 2005-01-10 2005 Summer 77,964 

Woolundunga Bushfire Scrubs and pasture 2012-01-04 2012 Summer 8,203 

Kiana Bushfire Scrubs and pasture 2014-01-14 2014 Summer 6,711 

Yumbarra 

Complex 
Bushfire Scrubs and pasture 2014-01-15 2014 Summer 7,744 

Bangor Bushfire 
Eucalypts forest, pine 

plantation and pasture 
2014-01-15 2014 Summer 33,373 

Tulka Bushfire 
Scrubs and coastal 

vegetation 
2001-02-01 2001 Summer 11,000 

Pureba 

Conservation 

Park 

Bushfire Scrubs and pasture 2007-02-19 2014 Summer 11,801 

These wildfire events affected very diverse landscapes and occurred at different stages of 

the fire season (November – March in Southern Australia). Most of these events affected 

scrubs and pasture landscapes (six out of ten), while two others burnt forests and 

woodlands (Pinkawillinie CR and Bangor). The Pinery and Wangary fires were the only 

two events to predominantly affect annual crops and pastures. This information is 

especially critical as annual vegetation responds differently to fires compared to 

perennials (Panico et al., 2020). Indeed, Australian native vegetation and forests evolved 

to adapt to wildfires and developed mechanisms to quickly recover after wildfires 

(Hill et al., 2016). However, annual plant communities (sown crops and annual pastures) 



 

will not recover once they have burnt entirely and the soil will remain exposed to 

weathering elements until seasonal rain promotes pasture germination or enables a new 

crop to be sown. Therefore, more scrutiny needs to be applied to assess the impact of 

wildfires in a cropped environment. 

 

Figure 4.5 Fire location map for the Eyre Peninsula and the Mid-North region. All the fire scar inserts are 

displayed at the same scale and the reference scale bar is located in the Wangary insert (bottom-left corner). 

Apart from the type of landscapes affected, it is essential to consider when a wildfire 

occurs as this can significantly influence soil erosion risk. For instance, the Pinery fire 

occurred very early in the fire danger season (Spring) and predominantly burnt crops 

and pastures. This event left the affected area more exposed to soil erosion for longer as 

new crops weren’t sown before the end of summer (March) and pastures did not 

immediately recover from the fire. Although a number of mitigation measures were put 

in place shortly after the event, these were only temporary and could not prevent erosion 

entirely (Hall, 2017). The other wildfire events occurred between late December and 

February. 



 

4.2.6 Analysis of the model results 

The main focus of this study was to identify where wind or water erosion was the 

dominant process and where the two co-existed on the Eyre Peninsula and Mid-North 

regions, for the study period (2001-2017). For this reason, we performed an overlay 

analysis of the long-term wind and water erosion severity maps produced in Chapter 2 

And 3 First, we classified the two maps in ten categories representing erosion severity 

deciles. Then we only selected the records representing the highest erosion severity 

(as falling within the 10th decile) for the overlay analysis. Finally, we estimated the 

proportion of the land where wind or water erosion was the dominant process and where 

the two co-existed. 

The second objective of this study was to investigate whether the wind and water erosion 

models could capture the impact of fires on soil erosion. The fire disturbance was 

included in the model through the fractional vegetation cover (Guerschman et al., 2015) 

and MODIS albedo input datasets. For simplification of the method, no other model 

parameters were changed. We then estimated the mean monthly wind and water erosion 

for each fire events (𝐸𝑟𝑗) and for the first six months immediately after the event (𝐸𝑟𝑗+1 to 

𝐸𝑟𝑗+6). To evaluate the relative change in monthly erosion due to the fires, we compared 

these results with their respective average monthly erosion values (𝐸𝑟̅̅̅̅
𝑗 to 𝐸𝑟̅̅̅̅

𝑗+6). The 

percentage of change in monthly erosion (∆𝐸𝑟𝑗) is then estimated as follow, 

 ∆𝐸𝑟𝑗 =
𝐸𝑟𝑗 − 𝐸𝑟̅̅̅̅

𝑗

𝐸𝑟̅̅̅̅
𝑗

× 100 (24) 

Therefore, a positive ∆𝐸𝑟𝑗 represents an increase in monthly erosion compared to 

monthly averages for the month 𝑗, while a negative  ∆𝐸𝑟𝑗 represents a decrease in monthly 

erosion compared to monthly standards for the month 𝑗. 

Finally, we wanted to test whether Aerosol Optical Depth (AOD) measurements could be 

used as a proxy for post-fire wind erosion monitoring. For this reason, we estimated the 

frequency of dust days from MODIS Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm (Lyapustin et al., 2011a; Lyapustin et al., 2011b; 



 

Lyapustin et al., 2012b). The MAIAC algorithm retrieves aerosol parameters over land 

daily at 1km resolution (MCD19A2v006) simultaneously with parameters of a surface 

bidirectional reflectance distribution function (BRDF). Compared to other MODIS 

Dark/Blue Target aerosol datasets (MOD04_3K and MYD04_3K), the MCD19A2 dataset 

provides the best estimate of AOD measurements over dark and vegetated surfaces, but 

also brighter surfaces including most urban areas. The cloud masking algorithm is also 

more performant than the other approaches and contains information about smoke 

injection height in the atmospheric column (Lyapustin et al., 2012a; Lyapustin et al., 

2008). The monthly frequency of dust days was then calculated as the number of days in 

a month for which AOD > 0.1 and wind speed at 10m > 6 m s-1 following the method of 

von Holdt et al. (2017). The threshold friction velocity of 6 m s-1 represents the minimum 

wind speed for which dust can be detected with MODIS (von Holdt et al., 2017). We then 

compared the frequency of dust days for each fire events (𝐹𝑑𝑢𝑠𝑡𝑗) and for the first six 

months immediately after the event (𝐹𝑑𝑢𝑠𝑡𝑗+1 to 𝐹𝑑𝑢𝑠𝑡𝑗+6) with their respective average 

monthly frequency values (𝐹𝑑𝑢𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅
𝑗 to 𝐹𝑑𝑢𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅

𝑗+6) to estimate the percentage of change 

(see equation (24)). 

 

4.3 Results 

4.3.1 Spatial distribution of water and wind erosion 

The spatial patterns of hillslope erosion are presented in Figure 4.6. The areas where 

hillslope erosion was the most severe are located in the central part of the Mid-North 

region, and parts of the western and southern-most border of the Mid-North region. On 

the other hand, erosion severity was very low for most of the Eyre Peninsula, except for 

the south-eastern coast and parts of the north-east coast of the Eyre Peninsula. All these 

zones are characterised by steeper slopes and are more susceptible to extreme rainfall 

events. The mean annual soil loss rate was of 0.007 vs 0.017 t ha-1 y-1 for the Eyre 

Peninsula and Mid-North respectively. Approximately 68% of the study area was 

classified as having moderate (up to 0.021 t ha-1 y-1) to very low erosion susceptibility, 



 

whereas 28% of the territory was classified with moderate to high (0.021–0.069 t ha-1 y-1) 

erosion severity (Table 4.2). The remaining 3.9% of the region presented very high 

(0.069–1.36 t ha-1 y-1) erosion susceptibility. Overall, soil erosion by water was very low 

in the study area compared to other parts of Australia (Teng et al., 2016; Yang, 2020). 

 

Figure 4.6 Modelled average annual water erosion severity (2001-2017). 

Figure 4.7 presents the spatial patterns of wind erosion severity derived from the 

“albedo” Wind Erosion Model. Areas classified as moderate to very slight 

(0.0-0.0025 t ha-1 y-1) erosion covered ~50% of the total area (Table 4.3). Moderate to 

high erosion severity (0.0025–0.0041 t ha-1 y-1) covered about 41% of the study area. The 

remaining 9.3% of the land was classified as very high erosion severity (0.0041–0.025 

t ha-1 y-1). These regions highly susceptible to wind erosion were predominantly located 

on the coastal areas of the Eyre Peninsula and Mid-North regions (Figure 4.8). A large 

proportion of the north-western half of the Eyre Peninsula, and some lowland plains in 

the central ranges and eastern plains of the Mid-North also experienced high to very 

erosion. This higher erosion susceptibility is mainly driven by high climatic erosivity 

(strong coastal winds), high soil erodibility (sandier soils) and low vegetation cover. 



 

 

Figure 4.7 Modelled average annual wind erosion severity (2001-2017). 

Table 4.2 Modelled hillslope erosion severity classes by total land area. 

Soil erosion severity Area 

decile t ha-1 y-1 Thousands ha % 

1 0 - 0.000001 0.0025 0.0003 

2 0.000001 - 0.005 2485.7 30.6 

3 0.005 - 0.011 1174.0 14.4 

4 0.011 - 0.016 1066.3 13.1 

5 0.016 - 0.021 833.6 10.3 

6 0.021 - 0.027 606.0 7.5 

7 0.026 - 0.037 769.5 9.5 

8 0.037 - 0.048 441.6 5.4 

9 0.048 - 0.069 429.1 5.3 

10 0.069 - 1.36 320.9 3.9 

Total 8127  

Table 4.3 Modelled wind erosion severity classes by total land area. 

Soil erosion severity Area 

decile t ha-1 y-1 Thousands ha % 

1 0 - 0.00059 727.4 8.9 

2 0.00059 - 0.0013 787.9 9.7 

3 0.0013 - 0.0017 817.4 10.1 

4 0.0017 - 0.0022 905.5 11.1 

5 0.0022 - 0.0025 798.7 9.8 

6 0.0025 - 0.0028 801.0 9.9 

7 0.0028 - 0.0031 975.4 12.0 

8 0.0031 - 0.0035 789.3 9.7 

9 0.0035 - 0.0041 766.1 9.4 

10 0.0041 - 0.0251 758.3 9.3 

Total 8127  



 

The overlay analysis of the wind and water erosion severity maps revealed that a very 

small portion of the study area (56 thousand ha, 0.7% of the total area) experienced very 

high erosion by wind and water simultaneously (Figure 4.8). These hotspots were mainly 

detected in the central ranges of the Mid-North region (west-facing foothills) and the 

north-west of the Eyre Peninsula. Figure 4.6 to 4.8 highlight that spatial patterns of 

erosion by wind and water were highly variable throughout the study area. This spatial 

variability could be explained by the diversity of landscapes, topography and climatic 

conditions of the two regions. 

 

Figure 4.8 Spatial distribution of the predicted most severe soil erosion classes (top decile) in the Eyre 

Peninsula and Mid-North regions and dominant erosion process. 

 

4.3.2 The impact of fires on erosion 

The second objective of this study was to investigate whether the wind and water erosion 

models could capture the impact of wildfires on soil erosion immediately after the fire 

event and up to six months later. For this reason, we estimated the percentage of change 

in monthly erosion for each month after the fire event (up to 6-months) from their 

respective long-term mean with equation (24). The percentage of change in monthly 

water and wind erosion are presented in Figure 4.9 and 4.10. An increase in erosion of 

100% for a month 𝑗 is equivalent to a two-fold increase compared to an “unburnt” 



 

month 𝑗, while a decrease of 50% is equivalent to half the average erosion rate of an 

“unburnt” month 𝑗. 

The results from Figure 4.9 indicate that water erosion significantly increased in the 

months immediately after the Pinery, Bangor and Tulka wildfires and that the fires 

influenced erosion severity for at least 6 months. After these events, soil erosion was 

between two to 12 times higher than their respective monthly averages. Although the 

landscapes of the Pinery and Bangor regions were very different, the increase in water 

erosion following the wildfires was correlated to a reduction in ground cover combined 

with erosive rainfall events (Table E.1). However, it is worth noting that even though the 

model recorded a 600% increase in erosion in the Tulka region after the fire, the actual 

amount of erosion remained very low (0.1 kg ha-1) (Table E.1). 

Water erosion dramatically increased in the month following the Kiana fire event 

(February 2014) with a 12-fold increase compared to monthly averages (7.8 kg ha-1 vs 

0.5 kg ha-1 for “unburnt” years). However, this increase was reduced in the following 

three months to a two-fold increase. This surge in monthly erosion for February 2014 

could be explained by a combination of intense rainstorms and very low ground cover for 

the Kiana region (Table E.1). On the other hand, water erosion did not increase 

immediately after the Burra, Pinkawillinie CR, and Yumbarra Complex fires, but a spike 

in erosion was recorded for at least one of the following months. This increase was about 

an order of magnitude higher compared to monthly averages and concurred with a spike 

in monthly rainfall erosivity (Table E.1). However, there was no sustained increase nor 

decrease in water erosion following the Wangary, Woolundunga, Pureba Conservation 

Park fires. 



 

 

Figure 4.9 Modelled monthly water erosion change for months 𝑚0 (start of the fire) to 𝑚+6 for each fire 

event. The y-axis represents the percent change in erosion for the month 𝑚𝑗  compared to monthly averages. 

Bar graphs over the dotted line = increase in erosion compared to monthly averages, bar graphs below the 

dotted line = decrease in erosion compared to monthly averages. 

Wind erosion significantly increased shortly after the Pinkawillinie, Wangary, and Tulka 

fires and this increase was sustained for at least six months. Monthly erosion was 

between two to five times higher than their respective monthly averages, except for the 

Tulka fire, where erosion rates were consistently higher, reaching up to 10 times the 

monthly averages. Nonetheless, even if this increase seems spectacular for the Tulka 

region, the actual erosion rates remained very low (c.a. 0.08 kg ha-1 vs 0.008 kg ha-1 for 

“unburnt” years) (Table E.1). The spikes in erosion for these three regions were all 

correlated to a low ground cover (< 55%) and strong average wind velocities (> 8.5 m s-1). 

Wind erosion did not immediately increase after the Pinery, Yumbarra Complex and 

Pureba CP fires, but was recorded six or seven months after the fire events. Monthly 

erosion for these periods was 3- to 4-times higher than seasonal averages, and can be 

correlated with consistently stronger winds and limited ground cover as well. 

The Yumbarra and Pureba regions are located in zones where wind erosion is generally 

moderate (Figure 4.8); however, with the removal of vegetation by wildfires these semi-

arid regions can become more vulnerable to wind erosion with stronger wind gusts. 



 

On the contrary, we did not observe any significant increase in wind erosion for the 

Woolundunga, Kiana, Bangor wildfires. This could be explained by the nature of the 

landscape affected (shrubs or forests), weather conditions (wetter conditions than 

average), and the fact that ground cover remained moderate (> 65%). 

 

Figure 4.10 Modelled monthly wind erosion change for months 𝑚0 (start of the fire) to 𝑚+6 for each fire 

event (bar graphs) and change in dust days from MODIS MAIAC (red dots). The y-axis represents the percent 

change in erosion for the month 𝑚𝑗  compared to monthly averages. Bar graphs over the dotted line = increase 

in erosion compared to monthly averages, bar graphs below the dotted line = decrease in erosion compared 

to monthly averages. 

Out of the ten wildfire events, only parts of the Pinery and Burra regions were located in 

zones highly susceptible to both wind and water erosion processes (Figure 4.8). However, 

the increase in wind and water erosion was not recorded simultaneously for these two 

events. For instance, in the Pinery region, a significant increase in water erosion was 

recorded by the models from the month following the fire, while there was only a slight 

increase in wind erosion six months after the event. This observation correlates well with 

regional weather records (Table E.1) and local observations (Hall, 2017; Lim, 2016). 

Although the wind and water erosion severities were very low in the Wangary and 

Yumbarra Complex regions, both experienced an increase in severe wind erosion a 

couple of months after the fires (from February to March) and up to six months. 

However, the rise in water erosion was only predicted from April, May which coincides 



 

with the first major rainfall events in the two regions (Table E.1). So, for April to June 

following these events, the two regions experienced a joint increase in wind and water 

erosion about 2.5 to 5 times their respective monthly averages. 

 

4.3.3 Using AOD measurements for post-fire wind erosion 

monitoring 

Although this work was preliminary, we attempted to test whether the MODIS MAIAC 

AOD dataset could be used in complement to the “albedo” Wind Erosion Model to 

monitor post-fire erosion. The change in the frequency of dust days seemed to agree with 

the wind erosion model for the Pinery, Burra, Kiana, and Yumbarra fires. However, the 

agreement was only partial for the Pinkawillinie, Wangary, and Pureba events. The 

Pinkawillinie Conservation Reserve is situated in a dry landscape where dust haze might 

be more common than predicted by the “albedo” erosion model, which could explain 

some of the discrepancies. For both, the Wangary and Pureba areas, the divergence 

between the number of dust days and monthly wind erosion occurred on two to three 

months out of seven. Dust haze might have been more common in the Wangary region 

shortly after the fire, which was not perceived by the erosion model. In contrast, there is 

no explicit agreement between the “albedo” Wind Erosion Model and the MODIS AOD 

for the Woolundunga, Bangor, Tulka wildfires. The discrepancies between the satellite-

derived dust days and the wind erosion model for the Tulka fire could be correlated to 

the very small amount of actual soil erosion (Table E.1). The lack of fine dust observed 

by the MODIS AOD, could also be linked to the fact that the Tulka region consists of 

sandhills and coastal dunes. Indeed, the generation of finer particles would be limited in 

such environments even if a large portion of the protective ground cover was gone. 

The Bangor and Woolundunga events occurred in forested landscapes and ground cover 

remained moderate after the fires (> 65%), hence the limited change in wind erosion. 

Although the frequency of dust days derived from MODIS AOD correlates well with the 

spatial distribution of long-term modelled wind erosion severity (Chapter 3), this 

product might not be adequate for the detection of post-fire erosion. Therefore, the 



 

frequency of dust days derived from MODIS AOD might not be correlated to localised 

erosion from the fire-affected region, but dust sources could originate from outside the 

burnt area. 

 

4.4 Discussion 

4.4.1 The performance of the models 

This study demonstrated how soil erosion modelling could help in predicting the impact 

of wildfires on erosion by wind and water at the regional scale. Overall, the patterns 

identified here by the models correlated well with local observations (Hall, 2017; 

Lim, 2016), which highlights the benefit of an automated method to complement local 

observations. Even though post-fire erosion studies generally consider wind or water 

erosion processes separately, this joint investigation proved to be valuable for the study 

area. Indeed, for some of the events (Pinery, Wangary and Yumbarra Complex) the fire-

affected regions experienced an increase in both wind and water erosion either 

sequentially or simultaneously. Therefore, considering only one of the two processes 

would only provide half of the post-fire erosion picture. This information is even more 

critical for dryland agricultural regions where severe wind and water erosion events can 

occur under undisturbed conditions (Field et al., 2011b). 

Nonetheless, soil erosion vulnerability was probably higher after the fires than predicted 

by the models. Wildfires increase soil surface erodibility (Prats et al., 2016; Varela et al., 

2010) and water repellence (Neary, 2011; Shakesby, 2011) due to the destruction of 

organic and chemical bonds between soil particles and aggregates. Unfortunately, this 

element was not taken into account in the models and might have led to a 

misclassification of post-fire erosion change.  

Even if the removal of protective vegetation cover by wildfires increases erosion, the 

amount of post-fire erosion is also dependent on the presence of an erosive event. 

Therefore, even if the ground remains bare for an extended period, little to no erosion 

would be recorded if no intense rainstorm or wind event occurred. This could explain 



 

why water erosion was so low after the Pureba Conservation Park event, and for the first 

few months after the Wangary fire, and why wind erosion remained low after the Kiana 

event (Table E.1). 

As post-fire wind erosion modelling is not so common, further work could be 

implemented to compare on-ground measurements and modelling outputs to improve 

predictions. Simple dust sampling methods (Webb et al., 2016) could be easily put in 

place following wildfire events to monitor post-fire erosion (Jeanneau et al., 2019). 

4.4.2 The opportunity of using AOD datasets for wind erosion 

monitoring 

Although the use of the MODIS AOD dataset for post-fire wind erosion monitoring was 

preliminary work, the frequency of dust days approach presented potential. 

However, further validation and correlation analysis is needed to apply this technique 

with more confidence.  

The change in monthly dust days correlated well with some of the “albedo” Wind Erosion 

Model records, but the results were not consistent. This could be because the MODIS 

MAIAC algorithm captures the presence of suspended dust particles (clays and silts) 

while the wind model predicts the movement of coarser fragments on the ground 

(saltation). Another limitation of the MODIS MAIAC dataset could be the lack of contrast 

between the colour of wind-blown sediments and soil background. Although this 

algorithm performs well over dark and vegetated surfaces, and bright surfaces 

(Lyapustin et al., 2011b), it might not be optimised for Australian red soils yet. 

Nonetheless, using the “albedo” Wind Erosion Model in conjunction with MODIS AOD 

could give a better understanding of post-fire wind erosion for organisations with 

limited resources. 

This exploratory work showed promising results and supported the argument for more 

research to be developed in assessing the potential of satellite and remote-sensing data 

for post-fire erosion assessment. 



 

4.4.3 The implication of predicted soil erosion severity for land 

management 

It is essential to understand how wildfires can influence the increase in erosion 

susceptibility, to be more prepared in the future. Modelling has proven to be a valuable 

tool to prioritise remediation measures on areas the most at risk of post-fire erosion 

(Basso et al., 2020; Hosseini et al., 2018; Lanorte et al., 2019; Wagenbrenner et al., 2017), 

but a lot of research is still focussing on wind or water erosion separately. Here, we 

demonstrated that considering wind and water erosion together provided a better picture 

of post-fire erosion severity in the Eyre Peninsula and Mid-North regions. Even though 

the fire-affected sub-regions presented in this paper were not highly susceptible to 

erosion under undisturbed conditions (Figure 4.8), fires significantly increased erosion 

rates for the majority of the events within the first six months (Figure 4.9 and 4.10).  

Although remediation measures are generally put in place in conservation parks and 

forests to reduce soil erosion risk (Fernández et al., 2011; Vieira et al., 2018), not much 

can be done on a large scale by land managers on farmlands. Some short-term measures 

can be applied for remediation, such as clay spreading on sandy soils if clay is available 

(Egan, 2006; GRDC, 2015; May, 2006), and deep cultivation of loam or heavier soils to 

roughen the soil surface (Lawson, 2015; Young et al., 2017). Still, in the long term, land 

managers will have to wait for rainfall to allow pasture regeneration, crops to be sown or 

native vegetation to recover. Nonetheless, an integrated erosion modelling approach 

combined with satellite ground cover, soil properties and various scenarios for levels of 

wind and rainfall events could then be used to predict where the worst erosion is likely 

to occur following a fire. This information could then be used to target remedial 

(on-ground) activities to reduce soil loss and protect water courses, dams, and livelihood 

of the community. 

Even if this information would be of interest for land managers, we did not investigate 

the influence of post-fire erosion factors in this study. Nevertheless, statistical 

correlation analysis between erosion rates, time of the burn, type of vegetation burnt, 



 

and scale effect could also be investigated to understand the implication of the modelling 

results better. 

 

4.5 Conclusion 

This research applied the G2 and “albedo” erosion models to identify regions that were 

the most severely affected by wind, water or both erosion types in the Eyre Peninsula and 

Mid-North agricultural zones of South Australia. We also tested the applicability of a 

joint wind-water erosion approach to assessing post-fire erosion in the region and 

investigated whether AOD products could provide complementary information to post-

fire wind erosion assessment. 

Districts with the most severe erosion susceptibility covered 4% and 9% of the total area 

for water and wind respectively. However, a very small fraction of the region (0.7%) was 

severely impacted by both wind and water erosion. 

The G2 and “albedo” erosion models satisfactorily captured the spatial and temporal 

variability of post-fire erosion. All fire-affected regions suffered an increase in erosion 

either immediately after the wildfires or within the first six months. These results 

correlated well with anecdotal observations. Although post-fire erosion studies generally 

consider wind or water erosion processes separately, this joint investigation proved to be 

valuable for the study area. In fact, an increase in both wind and water erosion was 

predicted in consecutive months or at the same time for some of the wildfire events 

(Pinery, Wangary and Yumbarra Complex). Therefore, considering only one of the two 

processes would only provide half of the post-fire erosion picture. This information is 

even more critical for dryland agricultural regions where severe wind and water erosion 

events can occur under undisturbed conditions.  

Even though this work was preliminary, the MODIS AOD dataset complemented well 

wind erosion predictions for post-fire erosion assessment. AOD measurements provide 

information on suspended dust particles (clays and silts) while the wind model predicts 



 

the movement of coarser fragments on the ground (saltation). Therefore, these results 

support that further research could use satellite and remote-sensing data more broadly 

for post-fire erosion assessment, providing more validation and correlation work is 

undertaken before applying this technique with more confidence. 

Therefore, this research demonstrated the importance of using an integrated modelling 

approach to estimate the impact of wind and water erosion in dryland agricultural 

regions. This information is critical for land managers and policy-makers as wind and 

water erosion is likely to increase in the face of climate change (Edwards et al., 2019). 

The G2 and “albedo” erosion models could be combined with satellite ground cover, soil 

properties and various scenarios for levels of wind and rainfall events to predict where 

the worst erosion is likely to occur following a fire. This knowledge could then be used to 

target remedial (on-ground) activities to reduce soil loss and protect watercourses, dams, 

and livelihood of the community. 
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Abstract 

Fires can considerably increase wind erosion risk in dryland agricultural regions. While 

wind erosion post-fire has been extensively studied in rangeland and grazing landscapes, 

limited work has considered post-fire erosion on annual plant communities and annual 

crops. Here we evaluated the relative spatial differences in patterns of sediment 

transport between burnt and unburnt crop stubble sites. Following a severe wildfire, we 

studied the spatio-temporal patterns of aeolian sediment transport with an array of 

Modified Wilson and Cooke (MWAC) dust samplers on adjacent burnt and unburnt 

wheat stubble. Sediment collection was conducted during nine weeks over an area of 

3 hectares. Collection rates were converted to horizontal sediment flux to derive spatial 

distribution maps and perform statistical analysis. Compared to the unburnt plot, we 

observed that sediment transport was up to 1000 times higher within the burnt area. This 

could lead to damages to emerging annual crops sown after the fire if no management 

strategy was applied. There was only negligible sediment flux in areas with shallow and 

low-density stubble, which gradually increased with distance from the unburnt area. 

These results suggest that strips of remaining unburnt stubble could provide a potential 

benefit to adjacent burnt or bare plots. Patterns of sediment transport were consistent in 

all sampling periods and were observed at a spatial scale undetectable in wind tunnel 

studies, indicating that field observations could complement fine-scale experimental 

studies to assess environmental processes in real-life conditions. 

 

5.1 Introduction 

Wind erosion strongly impacts agricultural productivity and public health. It generates 

on-site disturbances such as loss of topsoil leading to a decline in nutrients, organic 

matter and soil carbon, or damages to crops and infrastructure through sandblasting and 

burial (Bennell et al., 2007; Kontos et al., 2018; Panebianco et al., 2016). Consequences 

include the cost of nutrient replacement, purchase of new grain seeds and lost 



 

productivity. Wind erosion also generates off-site damages such as visibility limitation 

leading to road safety and transport issues, health impacts including asthma and other 

respiratory problems (Baddock et al., 2014; Li et al., 2018; Seinfeld and Pandis, 2012) as 

well as cleaning costs due to dust deposition and road maintenance. A substantial body 

of research have identified factors and parameters controlling wind erosion 

(Mayaud et al., 2017; Tatarko et al., 2013; Webb et al., 2016; Zobeck et al., 2003), but 

there is a paucity of studies relating soil erosion to consequences of extreme 

environmental disturbances like wildfires (Mayaud et al., 2017; Vermeire et al., 2005; 

Whicker et al., 2006). 

Low rainfall agricultural regions in Mediterranean winter-rain climates are at high risk 

of soil loss due to a combination of low vegetation cover with potentially high wind 

events. Consequently, many studies have demonstrated that vegetation cover is the most 

effective way to control aeolian sediment transport (Chappell et al., 2019; McKenzie and 

Dixon, 2006; Shao, 2008; Vacek et al., 2018). Conservation agriculture is an increasingly 

common farming system in dryland agricultural regions as it aims to maintain vegetation 

cover for most of the year. In such areas, the erosion risk window generally occurs during 

autumn through to crop establishment or early winter. However, even with the best 

practices, catastrophic events and major types of disturbances such as wildfires can 

destroy the protective non-photosynthetic vegetation cover and increase erosion risk 

(Mayaud et al., 2017; Nordstrom and Hotta, 2004).  

Fires are a dominant type of environmental disturbance, and they are unpredictable. 

They also remove protective vegetation cover of annual non-woody plants, increasing 

erosion risk in regions prone to wind erosion. Based on future climate forecast, in 

dryland agricultural regions, fires are expected to be more intense and more frequent, 

due to climate change, leading to an increase in erosion risk (Clarke et al., 2011; 

Gonçalves et al., 2011). In hot climates, even sparse vegetation can carry fires 

(Turner et al., 2011). Fires often occur during drier months, and if they occur early in the 

fire-danger season, they will leave soils bare for longer as summer rainfalls become more 

sporadic (CSIRO and Bureau of Meteorology, 2015; Williams et al., 2009). 



 

Extensive research has studied wind erosion on agricultural croplands (Hagen, 1988; 

Retta et al., 1996; Tatarko et al., 2013; Zobeck et al., 2003), but there is limited evidence 

of the impact of fires in dryland agriculture on wind erosion (Breshears et al., 2003; 

Ravi et al., 2012). Only a few studies directly compared wind erosion from burnt and 

unburnt plots simultaneously (Dukes et al., 2018; Merino-Martín et al., 2014; Miller et 

al., 2012; Wagenbrenner et al., 2013) and most of them only considered desert or grazing 

landscapes. Vegetation reduces wind velocity by applying a sheltering effect on exposed 

soil as clearly demonstrated in wind tunnel experiments and some field studies (Bilbro 

and Stout, 1999; Cornelis and Gabriels, 2005). However, there is a lack of information 

on the effect of unburnt vegetation patches on aeolian transport in cropped regions. 

Enhancing our predictive understanding of the link between erosion processes and 

catastrophic events such as wildfires is increasingly important in light of global 

climate change.  

This study aims to assess the relative spatial differences in patterns of sediment transport 

between burnt and unburnt stubble patches after catastrophic wildfire events. Such 

information is challenging to obtain quantitatively because of their sizeable spatial extent 

and associated logistic difficulties to design controlled experiments, the rarity of wildfires 

in agricultural landscapes, and the emotional status of affected landholders after the fire. 

Here we report measurements taken after a severe wildfire that burnt 12,000 hectares of 

crops and pastures but left a small area of stubble unburnt which allowed for a paired 

sampling design. 

 

5.2 Material and Method 

5.2.1 Site description 

The study site is located near Keith in southern South Australia, Australia (Lat. 36°01’S, 

Long. 140°34’E, 73m elevation) (Figure 5.1). Mean annual precipitation for this district 

generally ranges between 350-450mm with predominant autumn-winter rainfall from 

May through to September. At the town of Keith, located 20km west of the site, mean 



 

annual maximum temperatures are of 22.3°C and mean annual minimum temperature 

of 9.1°C (Australian Bureau of Meteorology, http://www.bom.gov.au/ climate/data/). 

Historically, most erosive and prevailing near-surface winds are from W to SW. Soils on 

the site are recorded as deep sands over clays, prone to wind erosion if unprotected. 

 

Figure 5.1 Location map and extent of the Sherwood fire, Sherwood, South Australia. The imagery was 

sourced from the European Space Agency (ESA) Copernicus – Sentinel 2 imagery, 03 February 2018. Within 

the fire boundary, darker colours represent charred vegetation; lighter cream colour represents exposed bare 

sands. Sand drifts can be observed predominantly in the south-eastern corner of fire extent. 

The site was established on adjacent burnt and un-burnt wheat stubble following a severe 

fire that swept through the area between 6th and 7th January 2018. The study site was 

planted with a wheat crop with rows orientated North to South under no-till farm 

management. The field was harvested three weeks before the fire. To enhance water-

holding capacity and improve the soil, this paddock was spread with clay five years ago. 

The land around the study site was also affected by the fire and spread with clay between 

the 9th and 23rd of March by the landholder as a recovery measure to increase surface 

roughness in an attempt to limit wind erosion. 

http://www.bom.gov.au/%20climate/data/


 

   

Figure 5.2 Dust samplers in the field, a) sediment sampler on unburnt wheat stubble, b) sediment sampler 

on the burnt bare ground, c) lower collecting cups filled with deposited sediment. 

 

5.2.2 Monitoring design 

Our monitoring design was adapted from the USDA (United States Department of 

Agriculture) wind erosion monitoring standardised methods (Webb et al., 2015). 

To monitor spatial variability in sediment transport influenced by fires, we established 

two 100m x 100m study plots within the same partly burned paddock. We set one site on 

unburnt wheat stubble (Figure 5.2a) and another on the adjacent bare ground 

(Figure 5.2b) with an exposed open fetch of about 300m by 150m extending to the south-

west of the site. We will then refer to the treatments as unburnt and burnt. To improve 

the assessment of spatial patterns of sediment transport, we also installed sediment 

sampler every 40 m along a transect between the burnt and unburnt plots (Figure 5.3). 

Horizontal sediment flux represents a measure of the wind-driven mass of sediments 

moving horizontally along the Earth surface at a particular height measured by a single 

sampler. Sediment transport was monitored with Modified Wilson and Cooke (MWAC) 

dust samplers (Wilson and Cooke, 1980). Preference was given to this type of equipment 

as they are efficient sediment traps, cost-effective and relatively easy to use and maintain. 

MWACs have a simple design: collection chambers are mounted on a rotating pole at 

four different sampling heights (0.1, 0.25, 0.5, 0.85m) with a wind vane that orients 



 

sampler inlets to face the wind. Due to manufacturing and time constraints, we decided 

to position the collector inlets to face the most dominant winds’ direction (south-westerly 

winds). We acknowledge that this design has affected the efficiency of the MWAC 

collectors as they were not calibrated to collect airborne sediments in a single direction, 

however, this approach has been successfully applied by others to estimate the order of 

magnitude and spatial variability in local sediment transport (Farrell et al., 2012; 

Sherman et al., 2014; Van Jaarsveld, 2008). 

In the standardised methods of Webb et al. (2015), the monitoring sites are divided into 

a 3x3 grid with three randomly located sediment samplers in each of the nine cells 

(total of 27 masts per site). The standard design was adopted in the burnt area, but due 

to the limited size of the unburnt patch, we could only establish a 2x3 grid with 18 masts 

in the unburnt section (Figure 5.3). 

Due to emergency work required to limit soil erosion and land management constraints, 

monitoring commenced six weeks after the fire (26/Feb/2018), and samples were 

collected at three-week intervals over the next nine weeks (20/March, 12/April, 4/May). 

Half-hourly wind data was obtained from a local weather station in Keith (20km west of 

the site). Vegetation height and soil surface cover were estimated at site establishment 

on each plot along three 100m transects intersecting at 50m in the centre of the plot 

spaced by a 60° angle (Figure 5.3). Soil samples were taken following standard methods 

of Webb et al. (2015), and soil texture was defined by a hand texturing method (National 

Committee on Soil Terrain Committee, 2009). 



 

 

Figure 5.3 Experimental layout showing the spatial distribution of sampling masts and the position of the 

vegetation transects. 

 

5.2.3 Sediment analysis 

5.2.3.1 Horizontal sediment flux 

After collection, sediments were dried in the lab and weighed on a high precision scale 

(0.0001 g). We then converted the measurements to horizontal sediment mass flux by 

normalising the weight with tube inlet area (0.7854 cm2) and the time of collection to 

obtain a time-averaged horizontal mass flux 𝑞(𝑧) as 

 𝑞(𝑧) =  𝑚𝑎𝑠𝑠 × 𝑎𝑟𝑒𝑎−1 × 𝑡𝑖𝑚𝑒−1 (25) 

where 𝑚𝑎𝑠𝑠 is in g of sediments collected, 𝑎𝑟𝑒𝑎 is the size of the tube inlet area in m2 and 

𝑡𝑖𝑚𝑒 is the sampling interval in days. The units 𝑞(𝑧) are expressed in grams per square 

metre opening per day. 



 

The total observed horizontal sediment flux (𝑄𝑖) for a sampling mast 𝑖 was estimated as 

the mean of time-averaged horizontal mass flux 𝑞(𝑧)𝑖 over all collection heights using the 

following expression: 

 𝑄𝑖 = ∑(𝑞(10𝑐𝑚)𝑖 + 𝑞(25𝑐𝑚)𝑖 + 𝑞(50𝑐𝑚)𝑖 + 𝑞(85𝑐𝑚)𝑖)/4 (26) 

where 𝑄𝑖 is expressed in grams per square metre opening per day. 

This simple averaging approach has been used in similar settings (Belnap et al., 2009; 

Breshears et al., 2009; Duniway et al., 2015; Miller et al., 2012) but differs from standard 

methods using exponential decay functions to vertically integrate horizontal sediment 

flux estimates (Bergametti and Gillette, 2010; Gillette and Ono, 2008). However, 

sediment flux on the unburnt plot in our study area could not be described with an 

exponential decay function because the highest fluxes occurred at 50 cm and 85 cm 

height. Such pattern is likely due to the dust samplers being located in stable settings 

(wheat stubble) and primarily collected sediments generated far upwind or from the 

adjacent burnt area. Therefore, we chose to apply equation (26) to estimate the vertically 

averaged total horizontal sediment flux. 

5.2.3.2 Spatial interpolation 

In order to visualise how spatial patterns of sediment transport changed in time and with 

height, we generated maps of horizontal sediment mass flux (𝑄) for each collection 

period (Figure 5.5) and maps of time-averaged mass flux (𝑞(𝑧)) for each sampling height 

over the total nine weeks (Figure 5.6). These maps were derived from sediment flux point 

data using Kriging (ArcGIS 10.5 Interpolation Toolbox with default parameters: 

spherical semi-variogram, variable search radius with 12 points, and output cell size of 

0.9m).  Kriging is a standard method of interpolation and was shown to be one of the 

most reliable two-dimensional spatial estimator (Chappell et al., 2003). We applied a 

mask to dim areas of high kriging uncertainty in the maps to aid visual interpretation of 

patterns. This mask was subjectively based on visual identification of areas with high 

kriging variance at the different sampling periods. 



 

5.2.3.3 Statistical analysis 

We used regression modelling to examine the relative influence and interactions of 

experimental parameters (horizontal and vertical dimensions, burnt/unburnt treatment, 

time) on horizontal sediment transport. Data preparation for the statistical analysis 

included the estimation of the shortest distance from each sampling mast to the 

burnt/unburnt boundary measured with the Proximity Toolbox (Near tool, ArcGIS 10.5). 

We employed linear mixed-effect models (nlme package, Pinheiro et al. (2018),  R 

Development Core Team (2010)) for the regression analysis. In addition, we visualised 

the effect of distance to the burnt/unburnt boundary on sediment flux using 

LOESS regression.  

Initial testing of regression modelling of horizontal sediment transport showed that 

residuals did not meet model assumptions of normality and constant variance. Normality 

of residuals was obtained through log-transformation of horizontal sediment flux. 

Variance changed within the study area, leading to a wide-tailed distribution of residuals 

that needed to be considered in the model structure. 

Such a high variance was not surprising in an environment of high natural spatio-

temporal variability of environmental factors (i.e. wind, soils, topography, canopy 

surface). The nlme mixed-effects models allow non-constant variance among sampling 

units. We initially used two models to explore if variance differed amongst grids, or 

whether those differences occurred among sampling locations at the within–grid scale. 

Examination of residuals and quantile-quantile plots indicated that the two linear mixed-

effect models satisfied normality assumptions and hence the final model choice was 

based on the Akaike Information Criterion (AIC) (Akaike, 1973). This exercise revealed 

that finer scale sampling (point observations) better explained the variance in total 

horizontal sediment flux than grid level sampling (𝐴𝐼𝐶𝑚𝑜𝑑1 = 596.5, 𝐴𝐼𝐶𝑚𝑜𝑑2 = 681.7). 

Similar method considerations were employed by Chappell et al. (2003) who observed 

that nested point sampling of airborne sediments outperformed grid and random 

sampling layouts.  



 

Therefore, the final model structure used log-transformed horizontal sediment transport 

with the fixed effects treatment type (unburnt, burnt), direct distance to the 

burnt/unburnt boundary, collection period and height (with interactions between 

parameters) including all possible two-, three-, and four-way interactions. As random 

effects, we used the sampling grid location within the plots and the specific dust 

sampler’s position within each grid of each plot. 

 

5.3 Results 

5.3.1 Meteorological conditions and surface cover 

Wind direction was not constant in the region throughout the experiment. 

It predominately originated from the South and South-West in the first collection period 

with speeds up to 12.8  m s-1 (46 km h-1), from the West-South-West and South-West in 

the second collection period with velocities up to 15 m s-1 (54 km h-1) and from West to 

North with speeds up to 18.6 m s-1 (67 km h-1) (Figure 5.4). Winds were the strongest in 

the final collection period. However, the weather remained mostly dry with less than 

41mm of rain between 24/Feb/2018 and 04/May/2018, almost half of the precipitation 

has been recorded during a single event on 04/May/2018 (19 mm). The average 

maximum daily temperature was recorded at 26.4°C for the length of our 

monitoring study. 

   

Figure 5.4 Wind roses representing wind speed and direction for the study area. a) collection weeks 1-3, 

b) collection weeks 4-6, c) collection weeks 7-9. Note the different frequency scale for collection week 7-9. 



 

Wheat stubble on the unburnt patch had an average height of 20cm (±2cm) with a 20cm 

row spacing, and an average bare surface of 4.7% (± 0.9%). Soil texture across the 

unburnt plot was sandy loam, and no soil crusting was observed at site establishment 

(Table 5.1). On the burnt plot, the fire consumed all of the vegetation (wheat stubble), 

only charred roots remained (1.3cm height ± 0.7cm), and no regrowth was detected 

between February and May 2018. We recorded an average bare surface of 54% (± 9.5%). 

Soil texture within the burnt plot was sandy loam, and soil crusting was observed on 

47.6% (± 2.9%) of the plot (Table 5.1).  

 

5.3.2 Spatial distribution of sediment flux 

When comparing the spatial distribution of total horizontal sediment flux (𝑄) between 

the three sampling dates, we can observe a recurring pattern common to all collection 

periods (Figure 5.5). Sediment transport was higher in the south-eastern corner of the 

burnt plot, which was the furthest away from the unburnt stubble boundary. There was 

also more spatial variability in horizontal sediment flux within the burnt plot compared 

to the unburnt patch. Total horizontal sediment flux in the last collection period 

(weeks 7-9) has almost decreased by half. Even if winds were the strongest during this 

collection period, the low sediment transport recorded could be explained by the fact that 

dust samplers were facing South-West and North-East directions while winds mostly 

originated from West to Northerly angles. Additionally, the last collection period 

recorded wetter conditions than the other two (37mm as opposed to 1.5mm) which could 

have also impacted the quantity of sediment collected. 

 

  



 

Table 5.1 Summary of the soil surface conditions and vegetation states for the burnt and unburnt study 

plots, based on measurements collected 

 Unburnt 

 Transect 0° Transect 60° Transect 120° 

Soil texture SL SL SL 

Vegetation state Crop Stubble Crop Stubble Crop Stubble 

Average vegetation height (cm) 20.2 19.7 20.2 

Soil surface type S, L, FG, GR S, L, FG, GR S, L, FG, GR 

Proportion of BS (%) 4 6 4 

Proportion with PC surface type (%) 0 0 0 

Proportion with FG surface type (%) 33 40 33 

Proportion with GR surface type (%) 30 33 31 

(SL: sandy loam, BS: bare soil, S: soil, PC: physical crust, L: litter, FG: fragments size 2-5mm, GR: 5mm < fragments size < 76mm) 

 Burnt 

 Transect 0° Transect 60° Transect 120° 

Soil texture SL SL SL 

Vegetation state Charred Roots, BS Charred Roots, BS Charred Roots, BS 

Average vegetation height (cm) 1.4 1.4 1.2 

Soil surface type PC, S, L, FG, GR PC, S, L, FG, GR PC, S, L, FG, GR 

Proportion of BS (%) 49 54 59 

Proportion with PC surface type (%) 51 48 44 

Proportion with FG surface type (%) 38 33 31 

Proportion with GR surface type (%) 33 32 33 

(SL: sandy loam, BS: bare soil, S: soil, PC: physical crust, L: litter, FG: fragments size 2-5mm, GR: 5mm < fragments size < 76mm) 

 

 

Figure 5.5 Vertically averaged horizontal sediment flux spatial distribution maps. a) collection weeks 1-3,  

b) collection weeks 4-6, c) collection weeks 7-9. The dots represent the MWAC dust sampler, and the two 

virtual sampling grids are outlined in grey. 

 



 

Height-resolved time-averaged horizontal sediment flux: 𝑞(𝑧) (mean of all collection 

periods) indicates similar spatial distribution patterns for each sampling height 

(Figure 5.6). These maps illustrate that total horizontal sediment flux increased with the 

direct distance from the unburnt stubble into the exposed part and reached its highest 

value in the south-eastern corner of the burnt plot. 

 

Figure 5.6 Mean horizontal sediment flux for the study at a) 10cm, b) 25cm, c) 50cm and d) 85cm sampling 

height. The purple dots represent the position of each MWAC dust samplers. Note large differences in 

sediment flux with height as indicated by different colour scales, ranging from 0 to maximum value. 

Sediment movement was low in the unburnt plot and within the first 25-50m from the 

unburnt stubble, but steadily intensified with direct distance from the burnt-unburnt 

boundary (Figure 5.6 and 5.7). 

As previously reported in other wind erosion studies, we observed that sediment 

transport rapidly decreased with height. Additionally, we can notice from the legend 

scale of Figure 5.6 and 5.7 that there is a very large difference in horizontal sediment flux 

between the collection height of 10cm and the other sampling heights. 

 

5.3.3 Factors influencing horizontal sediment flux 

The mixed-effects model allowed detailed examination of main effects and interactions 

between all the experimental factors (Treatment: unburnt/burnt; direct Distance to the 

burnt-unburnt boundary; sampling Height; Time: collection period, Table 5.2). Our 

results indicate that all four variables had a significant impact on total horizontal 

sediment flux (p < 0.001). More specifically, the interaction between treatment type and 

other individual factors had a significant effect on sediment transport (p ≤ 0.0001). This 



 

information reflects that the magnitude of sediment transport on the burnt plot 

compared to the unburnt part of the site varies independently from the collection period 

or collection height (Figure 5.5 and 5.6). The strongest interaction is that of Treatment x 

Height. In the burnt area, sediment flux follows an exponential decline, whereas, in the 

stubble, sediment is lowest in the bottom collection containers. The strong significance 

underpins this observation. We also observed that the interaction between sampling 

height and collection period had a significant impact of on total horizontal sediment flux 

(p < 0.001). This finding supports visual patterns in Figure 5.7 where horizontal 

sediment flux is lower during the third collection period (week 7-9) for all sampling 

heights, particularly for the 10cm sampling height. This can be expected due to changes 

in wind speed and direction throughout the experiment. The only significant three-way 

interaction identified in our model was between treatment type, collection height and 

time (p < 0.001). This indicates that the strongest two-way interaction (Treatment x 

Height) also differs in time. This observation also reflects the stochastic nature of wind 

causing a significant spatial variability in sediment flux with height. 

 

Figure 5.7 Observed horizontal sediment flux distribution with sampling distance from the burnt-unburnt 

boundary. 95% confidence interval of the LOESS regressions are shown as shaded grey bands. 



 

Table 5.2 Estimated effect of experimental variables on sediment transport, obtained from linear mixed-

modelling and Anova Wald Chi-square test, type II. 

Source χ2 d.f p-value Significance 

Treatment (unburnt/burnt) 248.0444 1 < 0.0001 *** 

Dist (distance to burnt-unburnt boundary) 43.7216 1 < 0.0001 *** 

Height (dust sampling height) 16966.8615 3 < 0.0001 *** 

Time (collection period) 342.7610 2 < 0.0001 *** 

     

Treatment*Dist 14.7704 1 0.0001 *** 

Treatment*Height 895.4564 3 < 0.0001 *** 

Treatment*Time 17.7556 2 0.0001 *** 

Dist*Height 8.2086 3 0.0419 ns 

Dist*Time 9.3862 2 0.0092 ** 

Height*Time 83.3022 6 < 0.0001 *** 

     

Treatment*Dist*Height 2.5118 3 0.4731 ns 

Treatment*Dist*Time 4.7756 2 0.0918 ns 

Treatment*Height*Time 24.8422 6 0.0004 *** 

(d.f = degree of freedom, ns = not significant, ** = p<0.01, *** = p<0.001) 

This significance was investigated further by a comparison of the estimated marginal 

means of sediment flux grouped by treatment, height, and time (Figure 5.8). Mean 

horizontal sediment flux was low for all collection periods and all heights on the unburnt 

plot (~16 g m-2 d-1) (Figure 5.8). Conversely, sediment transport was consistently higher 

on the burnt part of the site (100 - 8,000 g m-2 d-1). Flux on the burnt plot was about 

300 times larger than on the unburnt part of the site and within a similar order of 

magnitude of results published by Miller et al. (2012). Within the first four months of 

their post-fire study, the authors reported mean horizontal sediment fluxes of 

~24 g m-2 d-1 on unburnt sites and ~2,400 g m-2 d-1 on burnt monitoring sites. 

Mean collection rates from our experiment ranged from 0.001 g d-1 on the unburnt plot 

to 0.39 g d-1 on the burnt part of the site. These values are comparable to findings from 

Whicker et al. (2002) where they recorded median collection rates ranging from 0.1 g d-1 

on unburnt sites to 0.3 g d-1 on burnt sites. 



 

 

Figure 5.8 Mean horizontal sediment flux derived from modelled estimated marginal means for the three 

collection periods on burnt and unburnt plots. Estimates are based on log-scale predictions from the model. 

The mean horizontal sediment flux on the burnt plot rapidly decreased with sampling 

height for all three collection periods (Figure 5.8), which is consistent in space and time 

(Figure 5.6 and 5.7). This observation also supports results reported in other wind 

erosion studies (Bergametti and Gillette, 2010; Gillette and Ono, 2008). Additionally, the 

difference in sediment transport between the burnt and unburnt plots was highly 

significant, even at the upper sampling point. We detected a 10-fold difference at 85cm, 

a 100-fold difference at 50cm and a 1,000-fold difference at 10cm for all 

collection periods 

 

5.4 Discussion 

This work has detected a significant difference in spatial distribution patterns between 

burnt and unburnt stubble plots after a severe wildfire event. Under the experimental 

conditions and throughout the three collection periods, we consistently observed a large 

aeolian sediment transport on the burnt part of the site and minimal sediment flux 

within the unburnt plot.  



 

Our experimental design was limited by the nature and the pattern of the wildfire, as well 

as the land management actions required for remediation and erosion mitigation. 

Finding collaboration partners proved to be challenging given the emotional status of 

affected landholders. Furthermore, to increase the number of sampling locations, we 

decided to compromise on sampling directionality. In order to assess spatial patterns of 

sediment transport in burnt and unburnt areas, we used a simple unidirectional design 

and focussed on the prevailing wind direction in the region during that time of the year. 

The performance of our MWAC sediment samplers was thus limited by the fact that they 

could not face the wind during each wind event causing a potential underestimation of 

our sediment flux estimates. Based on the literature, the efficiency of our samplers might 

only be about 20 to 50% (Zobeck, 2002). While our approach reduced comparability with 

other studies, this proved to be successful for our study objectives, as we repeatedly 

collected a large amount of sediments on the burnt plot (Figure 5.2c and 5.5), and 

consistently observed significant spatial distribution patterns of sediment transport 

regardless of wind speed and wind direction (Figure 5.5 and 5.6) 

There were substantial differences in sediment transport in the height profile between 

the burnt and unburnt plots (Figure 5.8). In the burnt area, our data show a 10-fold 

difference at 85cm, a 100-fold difference at 50cm and a 1,000-fold difference at 10cm for 

all collection period, over all wind directions compared to the unburnt patch. These large 

amounts of sediment observed on the burnt side consistently exhibited exponential 

decline with height, whereas, over the stubble, height response was flat or increased with 

height. This is underpinned by the significant three-way interaction of treatment, height, 

and time. In fact, during the second collection period (weeks 4-6), most sediments were 

collected in the highest samplers. This indicates a potential influence of stubble on 

sediment flux as sediments captured on the unburnt part of the site may have originated 

from the burnt site. The observed inversion of exponential decline detected on the 

unburnt plot hence supports the supposition that stubble prevented aeolian sediments 

from forming. Differences of wind speed and direction and sediment load from the burnt 



 

site moving into the unburnt patch may also explain heteroscedasticity between 

observation points and the need to use mixed models. 

The consistent increase of sediment flux with distance from the burnt/unburnt boundary 

further supports that sediment transport was generated in the burnt patch, while 

saltation was prevented in the stubble area. Given that the field length was about 300m 

long by 150m wide, we may not have reached maximum transport carrying capacity. 

According to Zobeck et al. (2003), a field length of approximately 300m is needed in open 

agricultural fields with fine sandy loam soils to approach saltation transport capacity and 

assess total soil loss. However, in their study, horizontal sediment flux continued to 

increase at distances greater than 350m. This implies that our experimental design may 

not have sampled the total soil loss from the burnt site, but mainly captured local 

sediment redistribution instead. 

Sediments generated in the burned area may have implications for land management.  

Sandblasting after a wildfire event may damage emerging seedlings from subsequent 

annual crops.  There is anecdotal evidence from farmers who observed growing tillers to 

be sheared off in similar settings. Therefore, remediation and crop growth efficiency 

could be significantly reduced if wind erosion events occur before crop establishment. 

We observed patterns of sediments transport within our burnt plot at a scale that is 

unachievable in controlled experiments. This indicates that field observations, albeit 

under less controlled conditions, can complement fine-scale experimental studies using 

wind tunnels to assess environmental processes. Although aeolian transport was very 

high on the burnt part of the site, it might have approached even higher values outside 

of our sampling range when maximum transport carrying capacity was reached. 

 

5.5 Conclusion 

Wind erosion is a key factor causing land degradation in dryland agricultural regions 

around the world. In such regions, soil cover is a critical erosion control factor and 



 

conservation agriculture is contributing to erosion mitigation. However, unpredictable 

extreme environmental disturbances such as wildfires can remove protective vegetation 

cover and consequently increase soil erosion risk. 

In this study, an array of aeolian sediment samplers was established on adjacent burnt 

and unburnt sections of a paddock to assess relative spatial differences in patterns of 

sediment transport. This spatial array could be rapidly installed after a severe wildfire 

and proved to capture the spatial variability of aeolian sediment transport within the 

sites, regardless of wind velocity and direction. 

Our findings indicate that sediment transport was very high and variable within the 

burnt and bare plots. These results could imply that annual crops sown after the fire may 

be at risk of sandblasting if one or several erosion events occurred before crop 

establishment, leading to serious implications for land management and productivity. 

However, we estimated that sediment transport was greatly reduced within the unburnt 

stubble plot and its vicinity into the burnt area. Based on our results, we can suggest that 

strips of remaining unburnt stubble could provide a beneficial effect on adjacent burnt 

or bare plots. Therefore, any management strategy that adds or maintains roughness 

elements, such as conservation farming and no-tillage, could reduce the risk of soil loss 

in degraded environments. Some of these may include strip cropping or soil treatments 

(e.g. clay spreading, soil mixing), particularly on light sandy soils. Nonetheless, such 

options may not always be practical or economically viable in agricultural production 

systems. There will thus be a need to find a balance between soil conservation, 

agricultural productivity and practicality when it comes to wind erosion management.  

Our study also supports the argument that field observations can complement fine-scale 

experimental studies to assess environmental processes in real-life conditions. Indeed, 

we measured a large sediment transport on the burnt part of the site, but the scale at 

which we observed these distribution patterns would not have been detected in wind 

tunnel experiments. 



 

While our study focused on fire as a cause of soil exposure, extended drought and 

overgrazing may also produce large patches of bare soils. Here, small areas of remnant 

vegetation may substantially reduce soil losses. 
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Soil erosion modelling is a valuable tool for decision-makers as it can be tested under a 

wide range of conditions. Prediction models for wind and water erosion assessment 

differ in the complexity of the processes examined and the type of input data required. 

The high spatial and temporal variability of factors causing erosion and the difficulty to 

source model drivers that realistically represent these factors in its spatial and temporal 

complexity make the prediction of erosion trends very difficult. To overcome these 

limitations, we need detailed data and access to high spatio-temporal datasets to be able 

to give the best assessment of soil losses and identify regions at risk of erosion in the 

future. Especially in low rainfall zones, where erosion rates may be affected by the 

combined impact of wind and water erosion (Field et al., 2011). However, the impact of 

these two environmental processes is still widely assessed separately (Borrelli et 

al., 2020). Dryland ecosystems are highly sensitive to environmental disturbances 

(e.g. droughts, overgrazing, fires) which can dramatically increase soil erosion 

susceptibility. Unfortunately, these threats, particularly wildfires, are likely to be more 

frequent in the future due to climate change, land management practices and planning. 

Fire is recognised as a significant driver of erosion, requiring model-based tools for 

assessing post-fire erosion and for decision support management. 

This thesis aims to demonstrate the benefits of a joint wind-water-erosion modelling 

approach to identify the spatio-temporal variability of extreme erosion events in the 

South Australian agricultural zone and the likely increase of variability in the face of 

climate change and the recurrence of wildfires. 

The Eyre Peninsula and Mid-North agricultural regions of South Australia are an ideal 

study area for such an investigation due to their historical susceptibility to wind and  

water erosion and because the climatic conditions make this region a fire-prone 

landscape. This allowed us to demonstrate that erosion models capture the relative 

spatio-temporal variability of extreme wind and water erosion events for a wide range of 

land cover over large regions (Chapter 2 and 3). This research also demonstrates the 

importance of using an integrated modelling approach to estimate the impact of wind 



 

and water erosion for post-fire assessment as an increase in both erosion types was 

predicted either sequentially or simultaneously after catastrophic wildfires (Chapter 4). 

 

6.1 Key findings 

Empirical erosion models can capture spatial and temporal variability of 

extreme erosion events 

With the best spatio-temporal climate, ground cover, soils and elevation datasets for 

Australia, Chapter 2 and 3 (i) explored the spatio-temporal variability of extreme wind 

and water erosion events for a wide range of land cover and (ii) described the complex 

interactions between erosion processes and influencing factors (e.g. climate conditions, 

and vegetation cover). To the best of our knowledge, this study is the first one to examine 

the relative assessment of wind and water erosion frequency for agricultural regions of 

Australia. It provides valuable insight on erosion severity for the management of natural 

and dryland agricultural environments. Our results can now be used to set land 

management targets tailored to specific Local Government Areas of South Australia. The 

most relevant findings of our study were as follows. 

 The G2 and “albedo” erosion models satisfactorily captured the spatial and 

temporal variability of extreme erosion events for the Eyre Peninsula and Mid-

North regions. Severe monthly water erosion generally occurred during the 

summer months (December - February) and late autumn (May and June) for 

both regions (Figure 2.7). On the other hand, extreme monthly soil loss from 

wind occurred during the autumn (May-June) and winter months (July-

September) for the Eyre Peninsula, and during the summer (Dec-Feb) and late 

autumn (May-June) for the Mid-North (Figure 3.10). For both processes, annual 

severe soil loss was extremely variable between the years and did not occur in the 

same years for the two regions (Figure 2.8 and 3.11). Nonetheless, more extreme 

erosion events were recorded at the beginning and the very end of the Australian 

‘Millennium Drought’. 



 

 We identified that these extreme events consistently occurred with a combination 

of low ground cover (< 50%) and extreme weather events (erosive rainfall or 

strong wind gusts) (Figure 2.8 and 3.13). 

 The variability in erosion severity was consistent with locally recorded events and 

land at risk of erosion (DEW, 2017a, b). However, absolute erosion rates still 

require validation. 

 

An integrated wind-water erosion modelling approach is critical for dryland 

ecosystems 

Parts of the Eyre Peninsula and Mid-North regions are historically prone to wind and 

water erosion, so it is essential to consider both processes simultaneously to inform land 

management decisions. Based on results from Chapters 2 and 3, Chapter 4 identified 

regions that were the most severely affected by wind, water or both erosion types. 

Although the South Australian government already produced soil erosion susceptibility 

maps (based on inherent soil susceptibility, terrain and topography) (DEW, 2017a, b), 

this new version included seasonal changes in vegetation and climate variables. Chapter 

4 also characterised changes in relative wind and water erosion severity post-fire in 

dryland agricultural landscapes. The key findings for this study were the following. 

 Considering wind and water erosion simultaneously provided the opportunity to 

realistically assess the regional erosion susceptibility and enabled the 

identification of regions where the two processes overlapped. Erosion 

susceptibility was low for the vast majority of the study area, while 4% and 9% of 

the total area suffered severe erosion by water and wind respectively. However, a 

very small fraction of the region (0.7%) was severely impacted by both erosion 

types (Figure 4.8). 

 Soil erosion severity generally increased within the first six months following a 

fire event. We also identified that regions with low wind or water erosion severity 

could experience an increase in both erosion types in consecutive months or at 



 

the same time (Figure 4.9 and 4.10). Therefore, considering the two processes 

simultaneously was essential to get a complete picture of the total erosion severity 

in fire-affected regions. 

 

Unburnt stubble patches can limit sediment transport in fire-affected 

landscapes 

Dead, shallow vegetation cover distinctly influences aeolian sediment transport 

(McKenzie et al., 2017; Vacek et al., 2018). However, even with the best management 

practices, catastrophic events and major types of disturbances such as wildfires are 

uncontrollable and can destroy the protective non-photosynthetic vegetation cover and 

increase erosion risk (Edwards et al., 2019; Mayaud et al., 2017). Using a simple sediment 

sampling set-up (Webb et al., 2016) Chapter 5 examined the influence of unburnt stubble 

patches on adjacent burnt or bare plots. This field study allowed a quantitative 

assessment of spatial and temporal patterns of wind erosion and sediment transport 

after a catastrophic wildfire event. The most relevant findings of our study were 

as follows. 

 The results showed very high levels of spatial variability of erosion processes 

between burnt and bare patches (Figure 5.5 and 5.6) regardless of wind speed 

and direction (Figure 5.4). 

 Sediment transport was very high and variable in the burnt and bare plot. At the 

same time, it was significantly reduced within the unburnt stubble and its vicinity 

into the burnt area (Figure 5.7). Although we focussed on fire as a cause of soil 

exposure, extended drought and overgrazing may also produce large patches of 

bare soils. Here, small areas of remnant vegetation may substantially reduce soil 

losses on adjacent burnt or bare plots. 

 This study also supports the argument that field observations can complement 

fine-scale experimental studies to assess environmental processes in real-life 

conditions. We measured large sediment transport on the burnt part of the site, 



 

but the scale at which we observed these distribution patterns would not have 

been detected in wind tunnel experiments. 

 

6.2 Significance and broader implications 

Findings from this thesis highlight that soil erosion models are valuable tools to test the 

influence of climate change and extreme environmental conditions scenarios on soil 

erosion for a wide range of land cover over large regions. Results from these models can 

then inform corrective measures for future land management. 

The identification of the inter- and intra-regional variability in erosion severity (Chapter 

2 and 3) can help management authorities to focus on problem areas and set specific 

erosion control targets for each Local Government Areas tailored to their unique 

landscape and sub-regional conditions. This knowledge is particularly useful for land 

management under future uncertainty. 

Given the current predictions on the frequency and severity of future fire weather, there 

is a strong demand for model-based tools for predicting post-fire erosion response. 

The models tested here provided encouraging results and proved to capture well changes 

in post-fire erosion by wind and water. However, further testing and validation are 

required to ensure the models integrate post-fire change correctly (e.g. changes in soil 

erodibility for fire-affected sites). This method could then be used to target remedial (on-

ground) activities to reduce soil loss and protect watercourses, dams, and livelihood of 

the community. 

The integrated modelling approach presented in this thesis is automated and could be 

easily modified to test a variety of future scenarios (e.g. changes in land management, 

drier climate, extended droughts, more recurrent rain-storm events, advances in 

precision agriculture or other innovative technology). This flexibility also allows for the 

adjustment of major contributing factors such as inherent soil and landscape properties, 

land management practices, and climatic and weather events, to test their contribution 



 

towards regional wind and water erosion rates. This knowledge could then be used by 

management authorities to inform corrective measures for future land management. 

Although we focussed on the Eyre Peninsula and Mid-North regions, the modelling 

approach could be expanded to the rest of the Australian agricultural zone and the 

Australian Rangelands. All the input data can be freely sourced Australia-wide, and 

similar datasets are available globally. 

 

6.3 Key assumptions and limitations 

As the statistician George Box quoted: “All models are wrong, but some are useful. The 

practical question is how wrong do they have to be to not be useful” (Box, 1976). Being 

able to describe relative spatial differences, trends over times and systems reactions to 

processes and management is critical for erosion modelling (Alewell et al., 2019). The 

role of modelling at the regional scale cannot be to accurately predict point (or field) 

measurements of erosion but rather to test hypotheses about process understanding to 

develop scenarios to assist in policy and strategy development.  

The models’ results from this study, corresponded well with previous observations 

(Figure 2.10). This corroborates the benefit of soil erosion modelling for land 

management and scenario testing, and supports that the models provide a realistic 

estimate of the spatial and temporal variability. However, error in absolute rates of 

erosion magnitude could not be quantitatively assessed. 

The “albedo” Wind Erosion Model was previously tested under Australian conditions 

(Chappell and Webb, 2016; Chappell et al., 2018) and validated with field data from 

standard plots in the US (Chappell and Webb, 2016; Webb et al., 2016). We were also 

able to demonstrate correspondence of predicted pattern with independent observations 

of MODIS satellite Aerosol Optical Depth (AOD) (Figure 3.16). On the other hand, the 

G2 water erosion was not tested under Australian conditions, but we applied corrections 



 

to model parameters based on recommendations from published literature (Yang, 2015; 

Yang et al., 2017), where these parameters were correlated against field measurements.  

 

6.4 Future research and general recommendations 

Modelled soil erosion magnitudes strongly depend on how the influence of erosion 

controlling parameters is implemented in the models, making it difficult to set absolute 

quantitative soil loss targets for land management. However, the need for spatial 

validation of modelled outputs remains. 

For instance, Bayesian validation methods could be employed to correlate qualitative 

field observations (presence/absence of erosion) with modelled erosion estimates. 

Fantappie et al. (2019) used local records of the presence or absence of erosion from 

6,150 sites in Sicily (Italy) to validate their USLE model outputs. The authors reclassified 

their erosion maps to create maps of predicted presence/absence of erosion and 

correlated them with the local observations. Using the Bayes theorem (Lesaffre and 

Lawson, 2012), they estimated the model’s positive predictivity, meaning the probability 

for erosion to occur where the model predicted it, and the model’s negative predictivity, 

meaning the probability for erosion absence where the model predicted the absence of 

erosion. Their analysis showed that the model performed well, with a capacity to predict 

the presence of erosion 80% of the time. In comparison, the absence of erosion was 

correctly estimated 60% of the time. A similar method could be applied in South 

Australia with the Soil Erosion Protection Field Surveys conducted four times a year by 

the Department for Environment and Water (Forward, 2011). These road-side surveys 

document the extent of erosion features and spatial patterns of inherent risk. Using this 

data to validate erosion models will be further investigated. 

Another way to validate quantitative predictions of soil erosion at a smaller scale would 

be to use simple set-ups such as those presented in Chapter 5. Similar standardised 

sampling methods are already broadly adopted in the US (Webb et al., 2016; Webb et 

al., 2017), parts of Australia (Leys et al., 2008) and Germany (Nerger et al., 2017). 



 

Monitoring results have then been compared with prediction modelling for calibration 

and validation of erosion models (Chappell and Webb, 2016; Edwards et al., 2018; 

Leys et al., 2010; Nerger et al., 2017). In Australia, the DustWatch community project 

(Leys et al., 2008) has been used for development and validation of the CEMSYS model 

(Leys et al., 2010) to predict annual wind erosion and dust concentration over large areas 

(spatial resolution: 50km). This project was initiated in 2002 by the NSW Office of 

Environment and Heritage. It consists of instrumented sites: Dust Watch Nodes (DWN) 

scattered across New South Wales (40 locations, including 2 in South Australia and 3 in 

Victoria), operated and maintained by community volunteers (DustWatchers). 

Observers report the date and time of the observation, type of dust event (i.e. local or 

regional), visibility, the colour of the dust, wind direction and speed, and make other 

comments and take photographs. Each DWN also records PM10 levels with DustTrak® 

sensors and sample total suspended sediments with high-volume air samplers. All these 

observations are then compiled into monthly reports which can be accessed through the 

NSW Department of Planning, Industry and Environment website (NSW DPI, 2020). 

Although the current network is limited to the state of NSW, other initiatives could see 

the light of day if there was a proven need for aeolian sediment transport monitoring in 

other parts of Australia. As the DWN instrumentation is quite costly, simpler sampling 

devices such as those presented in Chapter 5 could prove to be a good compromise. 

However, such an undertaking would still be relying on community volunteers and on a 

project coordinator to ensure that all measurements follow standardised procedures 

(Webb et al., 2016). 

Remote sensing technologies (i.e. satellite sensors and Unmanned Aerial Vehicles 

(UAVs)) are developing rapidly, and so are their spatial and temporal resolutions. 

In a world where precision agriculture and smart-technologies are fast-expanding, these 

could potentially be used as proxies to validate erosion patterns at local and regional 

scales. For instance, Aerosol Optical Depth (AOD) has been used extensively to locate 

dust sources (Ginoux et al., 2010; Li and Sokolik, 2018) and estimate PM10 and PM2.5 

concentrations (Chudnovsky et al., 2014; Shin et al., 2020). However, limited research 



 

has considered AOD as a proxy for wind erosion assessment (Najafpour et al., 2018; Pu 

et al., 2020; Rayegani et al., 2020) or wind erosion model validation (Fenta et al., 2020). 

In this thesis, we tested the applicability of a MODIS AOD product to validate spatial 

patterns of wind erosion (Chapter 3), and investigated whether AOD measurements 

could provide complementary information to post-fire wind erosion assessment 

(Chapter 4). We demonstrated that the frequency of dust storms derived from MODIS 

AOD can provide a satisfactory level of model validation (Figure 3.16) and compared well 

with previous erosion susceptibility maps (DEW, 2017b). Although the use of the MODIS 

AOD dataset for post-fire wind erosion monitoring was preliminary work, the frequency 

of dust days method correlated well with locally observed dust events following major 

wildfires (Figure 4.10). However, more validation and correlation analysis are needed to 

apply this technique with more confidence. Based on these promising results, further 

work could be implemented to investigate the applicability of AOD measurements for 

models validation and post-fire erosion monitoring.  

UAVs mounted with high-resolution cameras can produce very high-resolution (< 1cm) 

Digital Surface Models (DSMs). Researchers have already investigated the use of such 

technology to monitor soil erosion at the field scale (d'Oleire-Oltmanns et al., 2012; 

Peternel et al., 2017; Pineux et al., 2017). However, these very high-resolution DSM could 

also be beneficial to estimate changes in surface conditions after catastrophic events 

(e.g. wildfires, landslides) when sites are not easily accessible. These estimates could also 

be correlated to post-fire erosion predictions and contribute to the validation of erosion 

models in such conditions. 

In conclusion, this thesis has provided a proof of concept for an integrated wind-water 

erosion modelling approach for agricultural landscapes of South Australia and 

demonstrated that models are valuable tools to test the influence of climate change and 

extreme environmental conditions scenarios on soil erosion. With further development 

and validation, this integrated approach can be expanded to other parts of Australia or 

other regions of the globe as all input data can be freely sourced Australia-wide, and 

similar datasets are available globally. 
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