UNIVERSITY OF ADELAIDE

DOCTORAL THESIS

Differential Evolution for Dynamic
Constrained Continuous

Optimisation

Author: Supervisor:

MARYAM HASANI Prof. FRANK NEUMANN
SHOREH

Co-Supervisors:

Dr. MARIA-YANELI

AMECA-ALDUCIN

Dr. WANRU GAO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Optimization and Logistics

School of Computer Science

December 7, 2020

http://www.university.com
http://researchgroup.university.com
http://department.university.com

iii

Declaration of Authorship

I, MARYAM HASANI SHOREH, declare that this thesis titled, “Differential

Evolution for Dynamic Constrained Continuous Optimisation” and the work

presented in it are my own. I confirm that:

I certify that this work contains no material which has been accepted for
the award of any other degree or diploma in my name, in any university
or other tertiary institution and, to the best of my knowledge and belief,
contains no material previously published or written by another person,
except where due reference has been made in the text. In addition, I
certify that no part of this work will, in the future, be used in a submis-
sion in my name, for any other degree or diploma in any university or
other tertiary institution without the prior approval of the University of
Adelaide and where applicable, any partner institution responsible for
the joint-award of this degree.

I acknowledge that copyright of published works contained within this
thesis resides with the copyright holder(s) of those works.

I give permission for the digital version of my thesis to be made available
on the web, via the University’s digital research repository, the Library
Search and also through web search engines, unless permission has been

granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through
the provision of an Australian Government Research Training Program

Scholarship.

Signed:

Date:

07/12/2020

Marya Hasani
07/12/2020

Maryam Hasani Shoreh

vii

UNIVERSITY OF ADELAIDE

Abstract

Faculty of Engineering, Computer and Mathematical Sciences

School of Computer Science
Doctor of Philosophy

Differential Evolution for Dynamic Constrained Continuous
Optimisation

by MARYAM HASANI SHOREH

In this thesis, we choose the evolutionary dynamic optimisation methodology
to tackle dynamic constrained problems. Dynamic constrained problems
represent a common class of optimisation that occur in many real-world
scenarios. Evolutionary algorithms are often considered very general search
heuristics. Their main advantages (in comparison to problem-specific search
methods) are their robustness, flexibility and extensibility, as well as the fact
that almost no domain knowledge is required for their implementation and

application.

Our research is focused on the following areas. In the first part of the thesis,
we modify common constraint handling techniques from static domains to
suit dynamic environments. We investigate the deficiencies of such techniques
and the potential of each method based on the change characteristics of the en-
vironment. In the second part, we propose a framework to create benchmarks,
since we have observed a lack of benchmarks to evaluate algorithms in dy-
namic continuous optimisation. Third, we carry out an exhaustive empirical
study of diversity mechanisms applied to solve dynamic constrained optimi-
sation problems. Finally, we investigate the integration of a neural network
into the evolution process and analyse it’s effectiveness compared to that of
popular diversity mechanisms. We address the possibility of integrating such

mechanisms with a neural network approach in order to improve the results.

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

ix

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Frank
Neumann for the consistent support of my Ph.D. study and related research,
for his patience, motivation, and immense knowledge. His guidance helped
me in all the time of research and writing of this thesis. Sincerely, I could not
have imagined having a better advisor and mentor for my Ph.D. study.

Besides my advisor, I would like to express my gratitude and appreciation for
my co-supervisors: Dr. Maria-Yaneli Ameca-Alducin, and Dr. Wanru Gao, for
their insightful comments and encouragement. Especial thanks to Yaneli that
not only was my co-supervisor but also was my close friend that listened to

my concerns from time to time.

I would like also to thank all the group members in the optimisation and
logistics group, particularly, Markus Wagner and Bradly Alexander. It has
been a great experience to work in this research group sharing ideas in both
research and daily life.

My sincere thanks also goes to Renato Hermoza Aragones, my best friend
and the co-author of the last part of my research to his greatest knowledge
and insights.

Last but not least, I would like to thank my parents for their patience and
support and my brothers: Reza and Morteza. Besides my family, I am also
grateful to my friends for supporting me spiritually throughout my Ph.D. in
both life and research.

xi

Contents

Declaration of Authorship iii
Abstract vii
Acknowledgements ix
1 Introduction 1
2 Dynamic Constrained Continuous Optimisation 7
21 Introduction o 7
2.2 Specifications of the dynamic environments 8
23 Problemstatement 9
2.4 Evolutionary algorithms for dynamic problems: state of the art 10
241 Diversity introducing 0 0L 10

2.4.2 Maintaining diversity 0L, 11

243 Memory-based o 0L 13

244 Prediction-based, 15

245 Multi-population-based 17

2.5 Benchmarks in dynamic optimisation 19
2.6 Performancemeasures 22

3 Evolutionary Dynamic Optimisation 27
31 Introduction 27
3.2 Differential evolution 28
3.3 Change detection mechanisms 29
3.3.1 Re-evaluationofsolutions 29

3.3.2 Errorcalculation 29

3.4 Change reaction mechanisms 30
3.4.1 Diversity promoting techniques 30

3411 Chaoslocalsearch 30

3412 Crowding 30

3.4.13 Fitnessdiversity 31

3.414 No diversity mechanism 31

xii

3415 Opposition 31
3.41.6 Randomimmigrants 31
3.4.1.7 Restartpopulation 32
3.4.1.8 Hyper-mutation 32
342 Neuralnetworks 32
3.5 Constraint handling techniques 35
3.5.1 Penaltyfunctions 35
3.5.2 PFeasibilityrules0 000 36
353 e-constrained 36
3.5.4 Stochasticranking 38
355 Repairmethods 38
3.5.,5.1 Reference-based repair method 39
3.5.5.2 Offspring-repairmethod 40
3.5.5.3 Mutant-repairmethod 40
3.5.5.4 Gradient-based repair method 41
4 Constraint Handling Techniques 43
41 Introduction o L. 43
42 Standard constraint handling techniques 44
421 Experimentaldesign 45
422 Experimental analysis 46
4221 Analysis I: performance measure 47
4222 Analysis II: behaviour measures 48
423 Conclusion and discussions 49
43 Repairmethods 53
431 Experimentalsetup 55
43.2 Experimentalresults 56
43.2.1 Offline error analysis 56

43.2.2 Analysis of success rate and required number
of iterations for repairing solutions 58
43.3 Conclusions and discussions 60
5 Benchmarks in Dynamic Constrained Optimisation 63
51 Introduction 63
5.2 Dynamic changes framework 65
521 Constraintsetup 65
522 Frequencysetup 67
53 Experimentalsetup 68
531 Rankingmechanism 68

54 Experimentalresults 69

5.4.1 Ilustration of results for sphere
542 Singleconstraint,
54.3 Multiple constraints 0L
5.5 Conclusionand futurework

6 Diversity Mechanisms in Dynamic Constrained Optimisation
6.1 Introduction
6.2 Experimentalsetup,
6.3 Resultsand discussion
6.3.1 Diversityresults,
6.3.2 Statisticalresults
6.3.3 Discussions

6.4 Conclusions and futureworks

7 Neural Networks in Evolutionary Dynamic Optimisation
71 Introduction o ..
7.2 Experimentalsetup,
7.2.1 Designed experiments
7.2.2 Test problems and parameters settings
7.3 Experimentalresults,
7.3.1 Frequencychanges
7.3.2 Building traindataset
7.3.3 Number and mechanism to insert predictions
74 Conclusions and futureworks

8 Neural Networks and Diversifying Differential Evolution
8.1 Introduction
8.2 Experimental methodology
8.3 Cross comparison of approaches
8.4 Detailed examination of the use of neural networks
841 Crowding
8.4.2 Random immigrants and restart population
8.43 Hyper-mutation.

8.5 Conclusions and discussions.
9 Conclusions

Bibliography

xiii

69
71
74
74

77
77
78
79
79
80
84
86

87
87
88
89
90
91
91
95
96
97

929

99
101
103
109
109
111
113
114

115

119

3.1
3.2

51
52

6.1

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8
8.9

XV

List of Figures

Building samples for neural network 33

Structure of neural network 34

Sample settings for large, medium and small changes on b_values 67
Sphere objective function and sum of constraint violation . . . 70

Diversity score (coefficient of variation of population) vs Gen-

erations L L o 81
PCA plot of best_known positions 90
Fitness values of Rastriginfort=1 91
Distribution of MOF values color-coded witht 92
MOF-norm values considering all frequencies 93
Kruskal-Wallis test on MOF values 93
Distribution of absolute recovery rate (ARR) 94
Distribution of success rate (SR) for 30runs 95
k-best individual selection for building NN samples 96
Number of replaced individuals 96
PCA plot of best_known positions 101
Distribution of MOF values for20runs 102
Heatmap of methods’ rank over MOF values 104
MOF-norm values considering =10 105
Kruskal-Wallis statistical test on MOF values for t=10 106
Best error before change values over time, T =10. 108
Euclidean distance between the best of first generation and the

optimum position o oo oo oo 109
Error of NN plus PCAfort=10 110

Heatmap of methods’ rank over absolute recovery rate (ARR) 111

8.10 Heatmap of mean values (20 runs) for success rate (SR) 111

21
2.2

4.1
4.2
4.3

44

4.5
4.6
4.7

4.8

51
52
53

6.1
6.2

7.1

8.1
8.2

XVii

List of Tables

Main features of the test problems

Designed test problems for neural networks experiments . . .

20
22

Average and standard deviation of modified offline error values 46

Statistical tests on the offline error values
Average and standard deviation of average evaluations, con-
vergence score, progress ratio, feasibility ratio, successful ratio
Average and standard deviation of average evaluations, con-
vergence score, progress ratio, feasibility ratio, successful ratio
Average and standard deviation of offline error values

Statistical tests on the offline error values
Average and standard deviation of: i)Success rate, ii) required
number of iterations Lo Lo

Main features of each repairmethod

Testing benchmark for single constraintsetup
Statistical test results for single constraintsetup

Statistical test results for multiple constraint setup

Average and standard deviation of MOF values over 30 runs .
The 95%-confidence Kruskal-Wallis (KW) test and the Bonfer-

roni post-hoc test on the MOF values.
NN-time; time spent for NN vs overall optimisation time . . .

Pairwise comparison of methods on MOF values

NN-time; % time spent for NN vs overall optimisation time

47

51

52
53
54

58
59

71
72
73

83

86

95

103
112

EA
DE
DCOP
NN
GA
PSO
VLS
CLS
MOF
SR
ARR
NFE
BEBC
VTR
PBIL

Xix

List of Abbreviations

Evolutionary Algorithm
Differential Evolution
Dynamic Constrained Optimisation Problem
Neural Network

Genetic Algorithm

Particle Swarm Optimisation
Variable Local Search

Caos Local Search

Modified Offline Error
Success Rate

Absolute Recovery Rate
Number of Fitness Evaluation
Best Error Before Change
Value To Reach

Population Based Incremental Learning

xXxi

To my beloved parents...

Chapter 1

Introduction

To tackle complex computational problems, researchers have been looking
into nature for years, both as a model and for inspiration. Across millions
of years, every species has had to adapt its physical structure to its environ-
ments; consequently, optimisation occurs across many natural processes. An
observation of the relationship between optimisation and biological evolution
led to the development of an important paradigm of computational intelli-
gence: evolutionary computing techniques, which perform highly complex
searches and optimisation tasks [32]. Evolutionary algorithms (EAs) are most
often considered to be very general search heuristics. Their main advantages
compared to problem-specific search methods are their robustness, flexibility,
and extensibility, and the fact that almost no domain knowledge is required
for their implementation [61]. EAs are based on evolutionary operators that
model problem-specific processes in natural evolution, of which the most im-
portant are crossover, mutation and selection. The basis of most evolutionary
methods is a set of candidate solutions. Crossover combines the most promis-
ing characteristics of two or more solutions. Mutation adds random changes,
while carefully balancing exploration and exploitation. Selection chooses
the most promising candidate solutions in an iterative fashion, alternately
with recombination and mutation. EAs have become strong optimisation
algorithms for difficult continuous optimisation problems. This is despite
the fact that their original versions lacked a mechanism for dealing with the

constraints and dynamics of optimisation problems.

In recent studies, the presence of constraints and dynamic environments have
been pointed out alongside many other sources of difficulty that exist in
real-world optimisation problems [80]. These sources of difficulty include
huge search spaces, noise in the objective function and the complexity of the

modelling process.

2 Chapter 1. Introduction

Problems can be recognized as dynamic due to factors such as variation in
the demand market, unpredicted events, variable resources, or estimated pa-
rameters that may change over time [16]. Likewise, they can be characterised
as constrained due to restrictions in available resources, supply-demand bal-
ances, limited production capacity and maximum charging and discharging
of batteries. For instance, hydro-thermal power scheduling problems [34] are
dynamic since the available resources (or demand) vary over time. These
problems are also constrained due to the power supply-demand balance and
network constraints. Another example is parameter estimation [96] in which
the parameters must be tuned dynamically. In this example data compatibility
is necessary, as well as simultaneous estimation of quality and productivity
parameters in real time. In addition, this problem is constrained due to the
essential isothermal operation conditions, as well as mass and energy balances.
All these examples (in which the objective function or/and the constraints
are subject to changes) are called dynamic constrained optimisation problems
(DCOPs) [67].

Although all of these problems are intrinsically dynamic, the way in which
they are solved defines whether they can be considered as dynamic optimiza-
tion cases. In dynamic optimisation cases, the problem can be solved using
static optimisation techniques (and so is no longer of our interest) under any
of the following conditions: (a) if future changes can be completely integrated
into a static objective function, (b) if a single robust-to-changes solution can
be provided, or (c) if only the current static instance of the time-dependent
problem is taken into account. In other words, the approach in this research
is not to apply an independent optimisation method to solve each problem
instance separately, but to solve problems in a dynamic manner, with the

algorithm detecting and responding to the changes on-the-fly.

Among the many EAs, we have selected differential evolution (DE) for our
empirical studies. This is because previous competitions organized by the
IEEE congress on evolutionary computation have shown DE to be one of the
best choices for optimisation in continuous spaces [63, 66, 115]. It has also
demonstrated competency in dynamic and constrained problems [2, 95]. Last
but not least, its simple procedure helps us to understand the basic analysis of
different kinds, whether this analysis involves dynamic or constraint handling

techniques, or whether it entails evaluating our benchmark generator.

Throughout this research, we mainly investigate four major issues relating
to these dynamic and constrained problems. In the first section, we modify
common constraint handling techniques from the static domain to suit dy-

namic environments. We will investigate strengths and weaknesses of each

Chapter 1. Introduction 3

method based on the environmental change characteristics. The proper selec-
tion of constraint handling techniques is more challenging in the context of
dynamic problems, since there is a mutual reinforcement relationship between
constraint handling techniques and applied dynamic handling techniques.
This is because, in the context of dynamic problems, the tendency of the ap-
plied method is to diversify the population through the whole search space
looking for the upcoming changes. However, constraint handling techniques
tend to avoid infeasible areas of the search space, directing the search to-
ward feasible areas. A thorough study will clarify the effect of each opposing
forces: constraint and dynamic handling techniques. In the second section,
we propose a framework to create benchmarks. We do this because, in the
first section, we identified a shortage of test cases to evaluate algorithms in
dynamic constrained class of optimisation for continuous spaces. Our pro-
posed framework can produce multiple benchmarks that can be applied to
the testing of any function, and with any number of changes and dimensions
of optimisation problems. In addition, we propose a ranking procedure to
quantify the algorithms comparison (identifies which algorithm has better
performance) without needing to know the optimal solution relating to each
change. In the third section, we conduct an exhaustive empirical study of
diversity mechanisms applied to solve DCOPs. This study clarifies the de-
ficiencies and potential of each method based on the characteristics of the
used test cases: disconnected feasible areas, moving optimum, etc. In the
final section of the thesis, we investigate the integration of a neural network
into the evolution process of DE algorithm and analyze its effectiveness in
comparison to the popular diversity mechanisms like hypermutation or ran-
dom immigrants. We also discuss the possibility of integrating a version of
DE algorithm that incorporates neural network with diversity mechanisms
to improve the results. The applied neural network is responsible for the
dynamic handling portion of the algorithm, in which it predicts the future
optimum position, helping DE to react to the changes properly.

Overall, this thesis is structured into the following chapters. Chapter 1 is
an introduction to the thesis. It provides a background on evolutionary dy-
namic optimisation, dynamic constrained optimisation problems, as well
as the motivation behind the research and its main concerns. In Chapter 2
presents background knowledge on dynamic optimisation, setting the basis
for later discussion. Characteristics and features of dynamic problems are
briefly discussed. In addition, the theory behind the problem statement is
presented, as well as its formulation. Next, state-of-the art algorithms applied
to solve DCOPs are reviewed, followed by benchmarks and performance

4 Chapter 1. Introduction

measures. In Chapter 3, we introduce our baseline algorithm and explain
constraint and dynamic handling mechanisms that are used in the empiri-
cal studies of the subsequent chapters. In Chapter 4, two empirical studies
are presented. First, we conduct a survey in which we compare common
constraint handling mechanisms like penalty, feasibility rules, etc. We then
specifically elaborate in repair methods as a promising solution to handle
DCOPs. Commonly proposed repair methods will be applied and compared
on the basis of a common benchmark that captures different types of environ-
mental changes. In Chapter 5, we introduce a framework to create dynamic
environments. We use this framework to design an empirical study in which
we assess the ability of different algorithms to solve DCOPs. In Chapter 6,
we present an exhaustive comparison over diversity mechanisms. We show
that diversity mechanism are common, simple and yet effective methods of
handling dynamic environments and discuss their differences in terms of solv-
ing the applied benchmark problem. In Chapter 7, we introduce the neural
network as a dynamic handling mechanism to be used together with DE to
tackle DCOPs. In this chapter, the neural network parameters are calibrated
using some experiments. In Chapter 8, the algorithm using neural network is
compared with the algorithms using common diversity mechanisms through

an empirical study.
Publications outcome of this thesis

* Maryam Hasani-Shoreh, Renato Hermoza Aragonés, and Frank Neu-
mann. "Neural Networks in Evolutionary Dynamic Constrained Opti-
misation: Computational Cost and Benefits." European Conference on
Artificial Intelligence (ECAI-2020).

* Maryam Hasani-Shoreh, Renato Hermoza Aragonés, and Frank Neu-
mann. "Using Neural Networks and Diversifying Differential Evolution
for Dynamic Constrained Optimisation." IEEE Symposium Series on
Computational Intelligence (SSCI-2020).

* Maryam Hasani-Shoreh, and Frank Neumann. "On the Use of Diversity
Mechanisms in Dynamic Constrained Continuous Optimisation." Inter-

national Conference on Neural Information Processing (ICONIP-2019).

¢ Maryam Hasani-Shoreh, Maria-Yaneli Ameca-Alducin, Wilson Blaikie,
Frank Neumann and Marc Schoenauer. "On the Behaviour of Differential
Evolution for Problems with Dynamic Linear Constraints." In 2019 IEEE
Congress on Evolutionary Computation (CEC) (pp. 3045-3052). IEEE.

Chapter 1. Introduction 5

* Maria-Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, and Frank Neu-
mann. "On the Use of Repair Methods in Differential Evolution for
Dynamic Constrained Optimisation." International Conference on the
Applications of Evolutionary Computation. Springer, Cham, 2018.2

* Maria-Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, Wilson Blaikie,
Frank Neumann, Efrén Mezura-Montes. "A Comparison of Constraint
Handling Techniques for Dynamic Constrained Optimisation Problems."
In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8).
IEEE.

Chapter 2

Dynamic Constrained Continuous
Optimisation Problems

2.1 Introduction

Dynamic behaviour occurs in many real-world problems, and originates from
factors such as variation in the demand market, unpredicted events, variable
resources, and estimated parameters that may change over time [16, 67]. These
problems, in which the objective function and/ or the constraints change over
time, are called dynamic constrained optimisation problems (DCOPs) [67].
The goal in these problems is to find the optimum in each instance of the
dynamic problem, given a limited computational budget. Indeed, in real-
world applications, it might be the case that problems change very fast or
only allow limited time for the algorithm to react. For example, in high-
frequency trading, the system needs to make continual, efficient decisions
in order to deal with rapid changes in financial asset pricing [42]. Also, an
automatic driving system needs to rapidly adjust its operation to deal with
the changing road conditions. In another scenario, a dynamic load-balancing
algorithm must complete task assignments within very short time limits [139].
To solve these dynamic problems, one approach is to apply an independent
optimisation method to solve each problem instance separately. However, a
more efficient approach solves them through an ongoing search, in which the
algorithm detects and responds to changes dynamically [86]. Our focus is the
second approach in which we equip standard EAs with extra mechanisms,
such as change detection and change reaction mechanisms to handle the
dynamic problems. In this chapter, we introduce the main characteristics,
the mathematical definition, the literature review, the benchmarks and the

performance measures pertaining to these problems.

8 Chapter 2. Dynamic Constrained Continuous Optimisation

2.2 Specifications of the dynamic environments

Not any time-dependent problem is of our interest in this thesis. Our assump-
tion is similar to the one stated by Ghosh et al. in [44]. Ghosh et al. [44] states
that the fitness landscapes before and after a change should illustrate some
exploitable similarities. If the whole problem changes, without any reference
to the history;, it is suggested to be considered as a sequence of independent
problems to be solved from scratch [44]. Ghosh et al. categorise dynamic
environments based on the following criteria [44], for each we may need
different approaches and optimisation algorithms to tackle the problem.

1. Frequency of change: it defines how often the environment changes.
The fitness evaluations in EAs often are the major time-determining fac-
tor. Due to this, the average number of evaluations between changes is
often considered as an appropriate measure for algorithm comparisons.
However, if there are other factors for computation time than evalua-
tion, then the clock time between changes can be used for comparisons
among approaches, such as in the experiments where we apply neural
networks (Chapter 7 and 8).

2. Severity of change: it defines the strength of the changes, whether it is
a slight change or a totally new condition emerges. Measures can be the
genotypic distance of the optimum in two consecutive environments.
Other implicit measures can be whether the new optimum may be found
from the old one by a simple hill climbing approach, or the probability
that the new optimum can be retrieved from the old one using a single
mutation. However, more complex measures can be defined such as the

correlation of old to new fitness values of all points in the search space.

3. Predictability of change: it defines whether there is a pattern or trend
in the changes that can be predicted. This pattern can be in any aspect

such as direction, time, or severity of the next change.

4. Cycle length/ cycle accuracy: it defines whether the optimum return
to its exact or close previous locations. A cycle can be measured as
the average number of environmental states between two consecutive
encounters of the same (or a very similar) state. If the new state is not
precisely the same but a slight variant, then the distance of the new to

the previously encountered solution is important.

5. Visibility of change: it defines whether the changes are explicitly known
to the system or they need to be detected by the algorithm through sepa-

rate mechanisms.

2.3. Problem statement 9

6. Necessity to change representation: it determines whether the genetic
representation is impacted with a change, in case for instance when the

problem dimension has changed.

7. Aspect of change: it defines whether the change happened in the objec-

tive function, the problem instance, or the constraints.

2.3 Problem statement

A dynamic constrained optimisation problem is mathematically defined as
follows: Find ¥, at each time ¢, which:

i X, t 2.1
on f(%,t) (2.1)

where t € N7 is the current time,

[L/ u] - {f: (‘x]_/ X2, eeey xD) | Li S X; S ui/

2.2
i=1...D} @2
is the search space, subject to:
FE={¥|xe[LU],giXt)<0,i=1,...,m, 2.3)
hi(%,t)=0,j=1,...,p}

is called a “feasible region” at time ¢.

VX € F if there exists a solution ¥* € F; such that f(¥*,t) < f(X,t), then
X* is called a 'feasible optimum solution” and f(X*,t) is called the ‘feasible
optimum value’ at time .

Variable t (time), refers to the number of change steps that have occurred up
until a set point in time in the problem. In this thesis, two different methods
are used to impose the changes. First, we use one that is more common in the
DCOPs literature, that is, a method in which a change occurs after a specific
number of fithess evaluations. In this case, time is a discrete variable. In
the second approach, we use wall clock timing; a change happens after the
actual running time of the algorithm. We adopt the second approach for the

experiments with neural networks.

10 Chapter 2. Dynamic Constrained Continuous Optimisation

2.4 Evolutionary algorithms for dynamic problems:
state of the art

As mentioned in the introduction, in a dynamic problem, solving each prob-
lem instance separately from scratch without reusing information from the
past is inefficient, particularly in cases when the solution to the new problem
might not differ too much from the solution in the old problem. Thus, it would
be more practically efficient to employ an optimisation algorithm that can con-
tinuously adapt the solution to a changing environment, reusing the previous
information. Since EAs have much in common with natural evolution, and
since, in nature, adaptation is a continuous and continuing process, EAs seem
to be a suitable candidate for dealing with dynamic problems [86]. The main
drawback in using standard EAs for dynamic optimisation problems appears
to be that EAs eventually converge to an optimum. As a result, they lose
their diversity which is required to explore the search space. Consequently,
they also lose their ability to adapt to a change in the environment when such
a change occurs. In recent years, researchers have addressed this issue in
various ways. This section provides a survey of the state of the art in the field,
to allow a closer look at recent approaches, and to serve as a basis for future

research.

2.4.1 Diversity introducing

In dynamic optimisation, premature convergence is not ideal, as change in
one area of the dynamic landscape (if no member of the algorithm exists in
this area) will prevent the algorithm from reacting to the change. As such,
the algorithm may not be able to track the optimum. One simple, intuitive
approach to prevent premature convergence would be to increase the diversity

of an EA after a change has been detected.

First methods following this approach are hyper-mutation [24] and variable
local search (VLS) [120]. In an adaptive mutation, an operator called hyper-
mutation is introduced. The mutation rate of this operator is a multiplication
of the normal mutation rate and a hyper-mutation factor [24]. The hyper-
mutation is activated only if a change is detected. In the VLS algorithm, the
mutation size is controlled by a variable local search range. This range is
determined by a formula that is adjustable during the search [121], or can
be adapted using a learning strategy stemming from the feature partitioning
algorithm [120]. In [91], hyper-mutation is used in an EA in which detectors

are placed near the boundary of feasible regions. When the feasibility of these

2.4. Evolutionary algorithms for dynamic problems: state of the art 11

detectors changes, the EA increases its mutation rate. This raises the diversity
level of the population to track the moving feasible regions and decreases
again once the change has been tracked successfully. In [103] an adaptive
genetic programming is proposed. As well as increasing the mutation rate,

this method reduces elitism and increases crossover probability after a change.

For particle swarm optimisation (PSO), this approach is introduced using
a simple mechanism in which a part of the swarm or the whole swarm is
re-diversified using randomisation after a change is detected [52]. In [56],
in addition to employing partial re-diversification, this strategy divides the
swarm into several sub-swarms after each change. This process is performed
for a certain number of generations, which serves to prevent the swarm from
converging on the old position of the global optimum too quickly. In [30]
a cultural-based PSO is proposed, where after a change, the swarms are re-
diversified using a framework of knowledge inspired by the belief space in
cultural algorithms. In [124], a new adaptive method is proposed in which,
after a change, individuals are relocated to a position within a specific radius
using mutation. This position is estimated based on the individual’s perfor-
mance history. The more sensitive the individual is to changes, the larger the

radius.

Methods following this approach have the advantage of focusing fully on
the search process and only reacting to changes once they are detected, since
they do not need to constantly maintain diversity [86]. In addition, methods
such as hyper-mutation have good results when solving problems with highly
frequent changes (where these changes are small or medium). This is because
distributing individuals around an optimum resembles a type of "local search",
which is a useful way to observe the nearby places of this optimum. One of the
shortcomings of these methods is that they are dependent on whether changes
are known or easily detectable. If the changes are not properly distinguished,
these methods fail to provoke. In addition, they exhibit difficulty in identifying
the correct mutation size or the number of sub-swarms [86].

2.4.2 Maintaining diversity

The aim of this approach is to keep population diversity throughout the search
process. This helps to avoid the possibility that the whole population will con-
verge on one place, making it unable to track the changing optimum. Methods
following this approach usually do not detect changes explicitly; instead, they
rely on their diversity to cope adaptively with changes. Examples of this

12 Chapter 2. Dynamic Constrained Continuous Optimisation

approach are the random immigrants method [46], fitness sharing [8], thermo-
dynamical GA [82], sentinel placement [83], population-based incremental
learning [132], several PSO variants [10, 11, 55], and dynamic evolutionary
multi-objective optimisation [1, 21, 117]. In the random immigrants method,
a number of randomly generated individuals are added to the population
at every generation in order to maintain diversity. In [83], a sentinel place-
ment method is proposed that is slightly different compared to the random
immigrants method. Within the sentinel placement method, a number of
sentinels are initialised and specifically distributed throughout the search
space. Experiments show that this method might achieve better results than
the random immigrants method and hyper-mutation in problems with large
and chaotic changes [83]. On the basis of the population-based incremental
learning (PBIL) algorithm, which is a simple combination of population-based
EA and incremental learning, two approaches (namely parallel PBIL and dual
PBIL) were proposed in [132]. PBIL has an adjustable probability vector which
is used to generate individuals. After each generation, the probability vector
is updated based on the best found solutions. In this method, it is ensured
that the vector will gradually learn the appropriate value in order to create
high quality individuals. In parallel PBIL, the results are improved by main-
taining two parallel probability vectors: a vector similar to the original one in
PBIL, and a random initialised probability dedicated to maintaining diversity
during the search. The two vectors are sampled and updated independently
so that their sample sizes can be adjusted based on their relative performance.
To increase the ability of parallel PBIL to deal with large changes, dual PBIL is
proposed where two probability vectors are dual to each other [132]. During
the search, only one of the vectors needs to learn from the best generated
solution, because the other one will change automatically with the first one.

The other way to maintain diversity is by rewarding individuals that are
genetically different to their parents [122]. In this approach, besides to a
standard GA population, the algorithm maintains two other populations:
in the first one individuals are chosen based on their Hamming distance to
their parents and in the second one the individuals are selected based on
their fitness improvement compared to their parents. In evolutionary strategy;,
diversity can also be maintained by preventing the strategy parameters from
converging to 0 [60]. For PSO [10, 11], a repulsion mechanism (inspired by the
atom field) is applied to prohibit particles from becoming too close to each
other. In this mechanism, each swarm is comprised of a nucleus and a cloud of
charged particles which are responsible for maintaining diversity. In [30], both
the particle selection and replacement mechanisms are modified so that the

2.4. Evolutionary algorithms for dynamic problems: state of the art 13

most diversified particles (based on the Hamming distance) are selected and
particles that have similar positions are replaced. In the compound PSO [68],
the degree to which particles deviate from their original directions becomes
larger when the velocities become smaller, and distance information is used

to decide for selecting a particle.

In [21], it is proposed that multiple objectives be used to maintain diversity.
The dynamic problem is represented as a two-objective problem. The first
objective is the original objective, and the second is a special objective created
to maintain diversity. Other examples of using multiple objectives to maintain
diversity can be found in [1, 117]. In the latter, six different types of objective
are proposed, including retaining more old solutions; retaining more random
solutions; reversing the first objective; keeping a distance from the closest
neighbour; keeping a distance from all individuals; and keeping a distance
from the best individual.

Methods following this approach are suitable for solving problems with severe
changes, and, in certain situations, solving problems with large changes [86].
For example, in [85, 91], it has been shown that the random-immigrant method
helps significantly improve performance in dynamic constrained problems
where changes are severe due to the presence of disconnected feasible regions.
In addition, these approaches show competitive results for solving problems
with rare changes [132], an algorithm with high diversity may have enough
time to converge in the case of such problems. They are also effective in
solving problems with competing peaks [22]. However, methods that maintain
diversity throughout the search also have some disadvantages. For instance,
they are slow, as continuously focusing on diversity may slow the algorithm
down, or even distract the optimisation process. They are often deficient
when the changes are small, since most methods following this approach
maintain their diversity by adding some stochastic element throughout the
search. Obviously, situations in which the optimum just take a slight move
away from their previous positions will make the algorithm less effective in

dealing with small changes [86].

2.4.3 Memory-based

In cases, when there are repeated occurrences of situations (periodically chang-
ing environments), supplying the EA with some sort of memory might allow
it to store high quality solutions and reuse them later. Memory may be pro-
vided in two general ways: implicitly, by using redundant representations,

14 Chapter 2. Dynamic Constrained Continuous Optimisation

or explicitly, by introducing an extra memory and then using strategies to

deposit and retrieve solutions from it.

Redundant coding using diploid genomes is the most common implicit mem-
ory used in EAs for solving dynamic problems [86, 130]. A diploid EA is
usually an algorithm whose chromosomes contain two alleles at each locus.
In multiploid approaches for dynamic environments, the following three
components need to be incorporated: representation of the redundant code;
readjustment of the dominance of alleles; and checking for changes. One
typical way to represent the dominance of alleles is to use a table [84] or a
mask [27] to map between genotypes and phenotypes. The dominance rela-
tionships among alleles can then be changed adaptively depending on the

detection of changes in the landscape.

Conversely, methods following an explicit approach need to decide on the con-
tent of the explicit memory, which can be either direct or associative. In most
cases, direct memories are the previous good solutions/local optimum [14, 30,
125,127,129, 134]. In [134], for certain circumstances the most diversified solu-
tions are also selected for the memory. In [30], a set of previous positions and
the corresponding fitness values of each individual may also be stored in the
memory. Various types of information can be included in the associative mem-
ory, including information about the environment at the considered time [39];
the list of environmental states and state transition probabilities [110]; the
probability vector that created the best solutions [125]; distribution statistics
information for the population at the considered time [127]; the probability of
the occurrence of good solutions in each area of the landscape [101, 102]; or

the probability of likely feasible regions [100].

In methods using explicit memory, it is important to know how to update
the memory. Generally, the best found elements (direct or associative) of
the current generation will be used to update the memory. These newly
found elements will replace some existing elements in the memory, which
can include the oldest element in the memory [39, 111, 123], the element
with the least contribution to the diversity of the population [14, 39, 111,
125, 138], or the element with the least contribution to fitness [39]. The other
important criterion in memory approaches is the understanding of when to
update the memory. Ideally if we know when a change happens, then the
most suitable time to update the memory is immediately after the change
happens. Otherwise, the memory may also be updated after each or a certain
number of generations. Usually the best elements in the memory will be used

to replace the worst individuals in the population.

2.4. Evolutionary algorithms for dynamic problems: state of the art 15

Some works have shown that redundant coding does not ensure sufficient
diversity for population to adapt to random changes [14, 15]. To improve
their results, several studies have tried to combine memory-based approaches
with diversity schemes [111, 128]. Redundant coding approaches might
not be promising for cases where the number of oscillating states is large,
since the redundant code might also become too large, and hence reduce the
performance of the algorithm. Furthermore, it might not always be possible
in practice to know the number of oscillating states of the problem. Without
this information, it is impossible to design an appropriate representation for
the redundant code. The information stored in the memory might become

redundant (and obsolete) when the environment changes.

2.4.4 Prediction-based

In certain cases, changes in dynamic environments may exhibit some patterns
that are predictable. Where this occurs, it might be effective to attempt to
learn these type of patterns from the previous search experience and, based
on these patterns, to aim at predicting changes in the future. Based on this
idea, some studies have attempted to exploit the predictability of dynamic
environments. Obviously, memory approaches, which are proposed to deal
with periodical changes, can also be considered a special type of prediction
approach. However, methods following the prediction approach are often
capable of using their memory to deal with greater variety of change types
than cyclic/recurrent changes.

A common prediction approach is to predict the movement of the moving
optima. In [51], an autoregressive forecasting technique is combined with an
EA and is used to predict the location of the next optimum solution after a
change is detected. The forecasting model (time series model) is created using
a sequence of optimum positions found in the past. A similar approach has
been proposed in [106], where the movement of optima was predicted using
Kalman filters. The predicted information is incorporated into an EA in three
ways. First, modifying the mutation operator by introducing some bias to
favour the search toward the predicted region. Second, individuals close to
the predicted position are rewarded by modifying the fitness function. Third,
some individuals (called as gifts) are generated at the predicted position, and
introduced into the population.

Another approach is to predict the locations to which individuals should be
re-initialised when a change occurs. In [137], this approach is used to solve

two dynamic multi-objective optimisation benchmark problems in two ways.

16 Chapter 2. Dynamic Constrained Continuous Optimisation

First, the solutions in the Pareto set from the previous change periods were
used as a time series to predict the next re-initialization locations. Second,
to improve the chance of the initial population to cover the new Pareto set,
the predicted re-initialization population is perturbed with a Gaussian noise
whose variance is estimated based on the historical data. Compared with
random-initialization, the approach was able to achieve better results on the
two tested problems. Another approach to estimate the areas to re-initialize

individuals after a change occurs is the relocation variable method [124].

Another interesting approach is to predict the time when the next change will
occur and which possible environments will appear in the next change [110,
112]. In these works, the authors used two prediction modules to predict two
different factors. The first module, which uses either a linear regression [110]
or a non-linear regression [112], is used to estimate the generation when
the next change will occur. The second module, which uses Markov chain,
monitors the transitions of previous environments and based on this data
provides estimations of which environment will appear in the next change. In
relation to prediction approaches, some studies have addressed time-linkage
problems . The authors of these studies [12, 13] have suggested that the only
way to solve such problems effectively is to predict future changes and take
into account the possible future outcomes when solving the problems online.

Besides these methods, neural networks (NNs) have gained increasing atten-
tion in recent years [58, 70, 72, 73]. In [73], a temporal convolutional network
with Monte Carlo dropout is used to predict the next optimum position. The
authors propose to control the influence of the prediction via estimation of the
prediction uncertainty. In [72] a recurrent NN is proposed that is best suited
for objective functions where the optimum movement follows a recurrent
pattern. In other works [58, 70], where the change pattern is not stable, it is
proposed to directly construct a transfer model of the solutions/fitness using
NNs, considering the correlation and difference between the two consecutive

environments.

Generally, methods following prediction approach may become very effec-
tive if their predictions are correct. In this case, the algorithms can detect,
track, or find the global optima quickly, as shown in [51, 109, 126]. However,
prediction-based algorithms are prone to training errors. These errors might
occur because of wrong training data. For example, if the algorithm has not
performed successfully in the previous change periods, the history data col-
lected by the algorithm might not be helpful for the prediction or might even

Iproblems where the current solutions made by the algorithms can influence the future
dynamics

2.4. Evolutionary algorithms for dynamic problems: state of the art 17

provide the wrong training data. Situations featuring lack of training data
can be characterised as follows: as in the case of any learning, predicting, and
forecasting model, the algorithms may need a large enough set of training
data to produce satisfying results. In addition, prediction can only be started
after sufficient training data has been collected [12, 13, 110, 112]. In the case of
dynamic optimisation, where there is a need to find and track the optima as

quickly as possible, this might present a disadvantage.

Overall, the nature of the dynamic problems plays a role in the success of
these approaches [86]. If changes in the dynamic environment are easily
predictable (trends of linear, periodic or deterministic is to be found), the
result is expected to be promising, as can be seen in [51, 106]. However, if the
changes are stochastic, or history data is misleading, prediction approaches
might not lead to satisfactory results.

2.4.5 Multi-population-based

In this approach, multiple sub-populations are used simultaneously, each
handling a separate area of the search space and becoming responsible for a
different task. Methods following this approach mainly have two goals. First,
assigning different tasks to each sub-population, for example Py, to search
and P,k to track. Second, dividing the sub-populations in a way to have the

best diversity and ensure the sub-populations are not overlapped [86].

For the first goal, different approaches has been proposed. One approach was
proposed in [93], called as shifting balance GA. In this method, there are a
number of small populations in Pggareh, searching for new solutions, and there
is only one large population in Py, to track changing peaks. Conversely, the
self-organizing scouts method [17], uses the main large population to search
for optimum, and dedicates several small populations to track any change of
each optimum. Once the main population finds a new peak, it will create a
new sub-population to track changes in that peak. This approach was adopted
in different types of EAs and meta-heuristics, DE [71, 74], and PSO [41].

Similarly, an algorithm named RepairGA was proposed in [85, 89], that uses
one large population to search and a smaller population to track changes.
The difference between RepairGA and previous approaches is that its two
sub-populations can overlap in the search space. The distinction between the
two sub-populations is that the main population accepts both infeasible and
teasible individuals, while the sub-population only includes feasible individu-
als. Another approach, the multinational GA, introduced in [119], implements
both the features of Pgearc, and Pi,ck into each sub-population. Meaning each

18 Chapter 2. Dynamic Constrained Continuous Optimisation

population can both search for new solutions and track changes. Whenever a
sub-population detects a new optimum, it will split into two sub-populations
to assure that each sub-population only tracks one optimum at a time. This
approach has also been implemented in artificial immune algorithms [33],
and PSO-based algorithms. For example, speciation PSO [64] is proposed
where each sub-population, or species, is a hyper-sphere defined by the best
fit individual and a specific radius. The other example, the clustering PSO [62,
131], also has multi-swarms with equal roles.

Relating to the goal of assigning the tasks to sub-populations, it should be
noted that in dynamic optimisation, multiple populations are used not only
for the purpose of exploring different parts of the search space, but also for the
purpose of co-evolution [45, 85, 89] or maintaining diversity and balancing
exploitation and exploration [122].

For the second goal, dividing the sub-populations and prevent overlapping
between sub-populations, clustering probably is the most common approach.
In clustering, some individuals are selected as the centres, then each sub-
population is defined as a hyper-cube with a specific size (all individuals
within the range are part of that sub-population). SOS [17], is one of the
earliest methods that adopt this approach. It keeps the sub-populations
from being overlapped by using an idea coming from the forking genetic
algorithm [118] which divides up the space. Whenever the main population
in Pgearcn finds a new optimum, it creates a new population in Py, and
assigns this new population to the optimum. To separate the sub-populations,
SOS [17] restrict each sub-population to a hyper-cube determined by a centre
(the most fit individual in the population) and a pre-determined range. If
an individual that belongs to one of the sub-populations enters to the area
monitored by another sub-population, this individual will be discarded and
re-initialized. The same forking approach is used in other EAs, such as DE [71,
74] or PSO in multi-swarm PSO [10]. Swarms are also divided into sub-swarm
in the same way as in SOS, so that each swarm caters a different peak. In
addition, multi-swarm PSO also maintains a similar mechanism, known as
anti-convergence, to the Pgeorch in SOS so that there is always one free swarm to
continue exploring the search space. Another example is speciation PSO [64],
where each species is a hyper-sphere whose centre is the best-fit individual in

the species and each species can be used to track a peak.

For clustering approaches, not always the best solutions are nominated as the
clusters’ centres. In other studies [62, 123], density-based clustering methods
are used to divide the sub-populations allowing the algorithms to explore

different parts of the search space. Due to the pair-wise distance calculations

2.5. Benchmarks in dynamic optimisation 19

among particles these techniques are computationally expensive. The second
approach is to incorporate some penalty or rewarding strategies to isolate the
sub-populations, of which SBGA [93] is a typical example. SBGA maintains the
separation of populations by selecting individuals in Pgeyycpy for reproduction
based on their distance from the core in Py, rather than their original fitness
values. The third approach is to estimate the basins of attractions of peaks
using these basins as the separate regions for each sub-population, such as
MGA [119]. In this work the authors introduced a mechanism called "hill-
valley detection’ that by considering two individuals, they calculate the fitness
of several random samples on the line connecting these two individuals. If
the fitness in a sample point is lower than that of the two individuals, then a
valley is detected. If a sub-population contains more than one valley, it will be
split.

Methods following the multi-population approach can maintain enough
diversity for the algorithm to adaptively start a new search once a new
change emerges [15]. These approaches are also successful in tracking the
changes of multiple optimum, as analysed in many existing studies on multi-
population [15, 119]. They can be very effective for solving problems with
competing peaks or multimodal problems.

The drawbacks of the multi-population approaches are the number of popula-
tions, the search area under each population, and the size of each population
are difficult to be defined. Too many sub-populations may slow down the
search [10].

2.5 Benchmarks in dynamic optimisation

As well as developing algorithms, it is important to test them using a com-
prehensive benchmark that considers a range of characteristics. A range
of benchmarks have been proposed to test the relevant algorithms for dis-
crete spaces [105], and /or multi-objective optimisation in dynamic environ-
ments [59]. However, for continuous spaces in single objective optimisation,
the most commonly used benchmark so far is that proposed in [86].

According to Nguyen benchmark [86], dynamic changes are applied by adding
time-dependent terms to the objective function and the constraints of one
of the functions (G_24) of the static benchmark proposed in CEC 2006 [66].
Table 2.1 summarises the main features of these test problems. This test
suite comprises 22 problems in total. The first 18 test cases are from [90],

20 Chapter 2. Dynamic Constrained Continuous Optimisation

TABLE 2.1: Main features of the test problems [18, 90].

Problem Obj. Function Constraints DFR SwO DbNAO OICB OISB PFR S =20
G24_u Dynamic No Constraints 1 No No No Yes T100%
G241 Dynamic Static 2 Yes No Yes No 44.61%
G24_f Static Static 2 No No Yes No 44.61%
G24_uf Static No Constraints 1 No No No Yes 100%
G24_2* Dynamic Static 2 Yes No Yes and No Yes and No 44.61%
G24_2u Dynamic No Constraints 1 No No No Yes 100%
G243 Static Dynamic 2-3 No Yes Yes No 7.29-44.61%
G24 3b Dynamic Dynamic 2-3 Yes No Yes No 7.29-44.61%
G24_3f Static Static 3 No No Yes No 7.29%
G244 Dynamic Dynamic 2-3 Yes No Yes No 7.29-44.61%
G24_5* Dynamic Dynamic 2-3 Yes No Yes and No Yesand No 7.29-44.61%
G24_6a Dynamic Static 2 Yes No No Yes 17%
G24_6b Dynamic Static 1 No No No Yes 50.5%
G24_6c Dynamic Static 2 Yes No No Yes 33.63%
G24_6d Dynamic Static 2 Yes No No Yes 17%

G24_7 Static Dynamic 2-3 No No Yes No 7.29-44.61%
G24_8a Dynamic o Constraints 1 No No No No 100%
G24_8b Dynamic Static 2 Yes No Yes No 44.61%
G24v_3 Static Dynamic 2 No No Yes No 0.37%
G24v_3b Dynamic Dynamic 2 Yes No Yes No 0.37%
G24w_3 Static Dynamic 3 No No Yes No 0.10%
G24w_3b Dynamic Dynamic 3 Yes No Yes No 0.10%
Dynamic The function is dynamic Static There is no change

DFR Number of disconnected feasible regions PFR Percentage of feasible region

OICB Global optimum is in the constraint boundary OISB Global optimum is in the search boundary
SwO Switched global optimum between disconnected regions

bNAO Better newly appear optimum without changing existing ones

* In some change periods, the landscape either is a plateau or contains infinite number of optima

and all optima (including the existing optimum) lie in a line parallel to one of the axes

which captures various characteristics of DCOPs, such as their multiple dis-
connected feasible regions, gradually moving feasible regions and global
optimum switching between different feasible regions. However, there are
parameters in this test suite which are defined to alter the severity of changes
in the environment, this benchmark is based on only one objective function
and the transformation of this function. Thus, it is not applicable to the testing
of different functions with the purpose of considering a range of character-
istics such as multi-modality, convex versus non-convex, etc. Moreover, the
proposed problem is two-dimensional and is not sufficiently flexible to be
applied to larger problem dimensions. In addition, the feasible regions of the
dynamic constraint function in this benchmark are very large, which might

not be sufficiently complicated to challenge an algorithm.

Bu et al. [19], introduce one variant from Nguyen benchmark suite with a
parameter to control the size and the number of the feasible regions (the
last 4 test cases presented in Table 2.1). A similar benchmark is proposed
in [135]. This benchmark is based on dynamic transformations introduced by
Nguyen in [86, 90]. However, the problem information, including the number
of feasible regions, the global optimum, and the dynamics of each feasible
region, is lacking in this benchmark. The lack of such information makes it
difficult to measure and analyse the performance of an algorithm, and this
is probably the reason that this benchmark has become less popular than
Nguyen’s benchmark [86].

In terms of having a scalable and flexible benchmark, [63] propose a dynamic
benchmark generator that is designed with the idea of constructing dynamic

2.5. Benchmarks in dynamic optimisation 21

environments across binary, real, and combinatorial solution spaces. The
dynamism is obtained by tuning some system control parameters, creating
six change types: 'small step’, ‘large step’, ‘random’, ‘chaotic’, 'recurrent’, and

‘recurrent change with noise’.

There are shortcomings in the current benchmarks, and only a couple of
benchmarks exist for the purpose of testing algorithms for dynamic problems
in continuous spaces. So in this thesis (Chapter 5) we propose a framework to
create benchmarks. While the aforementioned benchmark generator’s main
focus is on creating dynamic objective functions, our focus is on creating
dynamic constraints. Our motivation comes from characteristics of some real-
world problems such as the dynamic linear constraints of the power system
scheduling problem (which are due to variable demand and availability of
resources over-time). For a clearer insight into the effects of constraint changes,
we keep the objective function static. Indeed, this is the case in some real
world problems in which only constraints will change, such as the problem of
hydro-thermal power scheduling in continuous spaces [36] or the problem of
ship scheduling in discrete spaces [75].

Dynamic changes are imposed by the translation and rotation of the con-
straint’s hyperplane. Some examples of these two operations on constraints in
a real-world dynamic environment are the reduction and increase of demand
that occur regularly in a power system (hyperplane translation), and changes
to the share of each plant’s power production (hyperplane rotation) [81]. Our
proposed benchmark generator is flexible (frequency and severity of changes,
number of environmental changes, and dimension of the problem); simple to
implement (with any objective function), analyse, or evaluate; and computa-
tionally efficient. Finally our benchmark generator allows for the formation
of conjectures about real-world problems. Chapter 5 discusses details of this
framework, as well as presenting experimental investigations based around
it.

We also extend our framework to the creation of benchmarks for the testing
of algorithms in neural network experiments (Chapter 7, and 8). Dynamic
environments are created in two general cases for common functions in the
literature: Sphere, Rosenbrock and Rastrigin. In the first two experiments, the
objective function is constant, while the constraints change, and for the third
and fourth experiments, we define the problem as unconstrained, while its
objective function is dynamic. Details of the dynamism which we have built
into each experiment are presented in Table 2.2.

22 Chapter 2. Dynamic Constrained Continuous Optimisation

TABLE 2.2: Designed test problems for neural networks experiments

expl | Uniformly random changes on the boundaries of one linear constraint b[t +1] = b[t] + U(Ik, uk)

exp2 | Patterned sinusoidal changes on the boundaries of one linear constraint b[t +1] =5 sin(b[t]) + N (0,0.5)
exp3 | Linear transformation of the optimum position Xiy1 = X; +0.1¢

exp4 | Transformation of the optimum position in sinusoidal pattern with random amplitudes | X;+1 = X; +5-N(0,0.5) - sin(5t)

In the first two experiments, the changes are targeted on b values (constraint

boundaries) of one linear constraint in the form of a;x; < b [50]°.

2.6 Performance measures

In this section, we gather all the performance metrics that are applied in the
rest of this thesis in different experiments. The last two relates to experiments

using neural networks.

Modified offline error (MOF) represents the average of the sum of errors in
each generation divided by the total generations [87].

Gmux
MOF =S¥ (17, 6) — F(Fresrc,1)]) 2.4)
Ginax G—1

Where Gyqy is the maximum generation, f(X*,t) is the global optimum at
current time ¢, and f(Xpest G, f) represents the best solution found so far at
generation G at current time f. Only feasible solutions are considered to
calculate the best errors at every generation. If there were no feasible solution
at a particular generation, the worst possible value that a feasible particle can

have would be taken.

Absolute recovery rate introduced in [87] is used to analyze the convergence
behaviour of the algorithms in dynamic environments. This measure infers
how quick an algorithm starts converging to the global optimum before the
next change occurs. An important observation about this metric is that it
reports the speed of convergence relatively to the first achieved solution [72].

- 1 Lo ngf(t) ‘fbest(t/ G) B fbest(tll)‘
ARR =2) (Z G (0 = Fra (6 1)

Tax =1

) (2.5)

Success rate (SR) calculates in how many times (over all times) each algorithm
is successful to reach to e-precision from the optimum before reaching to the

next change.

2a; is the coefficient of the variables in the linear constraint

2.6. Performance measures 23

Feasibility ratio (FR;): The feasibility ratio consists on the number of feasible
solutions per time (f;) divided by the total number of times performed (T), as
indicated in Equation 2.6.

FRy = ft/T (2.6)

The range of values for FR; goes from 0 to 1, where 1 means that in all times

feasible solutions were found. In this way, a higher value is preferred.

Success ratio (SR;): The success ratio is calculated by the ratio of the num-
ber of successful times (s;) ® to the total number of times performed (T), as

indicated in Equation 2.14.

SRt = St/T (27)

Similar to FR¢, the range of values for SR; goes from 0 to 1, where 1 means
that in all of the times successful solutions were found. Therefore, a higher
value is preferred.

Average evaluations (AE;): This measure is calculated by averaging the num-
ber of evaluations required on each successful run to find the first successful

solution.
St

AE; = (1/s1) - Y (Er) (2.8)

i=1
where E; is the number of evaluations required to find the first successful
solution in any successful time. For E;, a lower value is preferred because it
means that the average computational cost is lower for an algorithm to reach

the vicinity of the feasible optimum solution.

Convergence score (CS;): The two previous performance measures (SR; and
AE;) are combined to measure the speed and reliability of an algorithm

through a successful performance.

CS; = AE;/SR; (2.9)

For this measure, a lower value is preferred because it means a better ratio

between speed and consistency of the algorithm.

3a time is considered successful if the best solution for this time is near to the optima with
a precision (107%)

24 Chapter 2. Dynamic Constrained Continuous Optimisation

Progress ratio (PR;): The objective is to measure the improvement capability
of the algorithm within the feasible region of the search space. For this mea-
sure high values are preferred because they indicate a higher improvement of

the first feasible solution found (see Equation 2.10).

\/?g))’ iff(fbest,G/ t) >0
(¥first,crt)+1 o
PRe= m ‘ if f(Xpest,c,t) =0 (2.10)

rst,Gob) 2| est. G| . .
\/ el i f (Fhes,1) <0

Xpest, Gt

\

Where f(X First,G t) is the value of the objective function of the first feasible
solution found and f (Xpest ,) is the value of the objective function of the best

solution found. For this measure, statistical values are also provided.

Success rate: This measure is calculated such that considers how many of
the infeasible solutions were successful to be repaired after 100 iterations.
For each infeasible solution, a repair is needed and at the end of repair itera-
tion(Maximum 100 tries), if the solution is feasible a counter is increased. In
another words, it is considered a success if before achieving to the maximum
number of allowed iterations for repair (100 in our case) a solution is feasible.
The total number of these successful repaired solutions (s) divided by the total
number of solutions that need repair (n7)is equal to success rate percentage.
Based on this, the repair methods with success rate values equals to 100%, are

able to convert all the solutions.

5 = > 2.11)

Required number of iterations: In order to distinguish the difference be-
tween the number of evaluations that each method consumes for repairing
the solution, a measurement is defined called as required number of iterations
(rn;). In this way;, it is possible to compare the efficiency of each repair method.
The range of values of this measure is € [1 — 100]. The more efficient method
uses lower number of evaluations in order to repair an infeasible solution. The
final amount for this measurement value is the average between the number

of tries taken to convert each infeasible solution into feasible one.

Best error before change (BEBC) is another common measure that considers

the behaviour of algorithm only in the last solution achieved before next

2.6. Performance measures 25

change happens.
1 Tinax
BEBC = =—) (If (") = f (Rpest, 1)) (2.12)
max ;—q

Number of fitness evaluations (NFE) needed at each time to reach to an
e-precision from the global optimum are averaged over all the times for this
measure. The termination criteria is to find a value smaller than the e-level
from the global optimum (value to reach (VTR)) before reaching to the next
change.

1 tond
NFE = ———) NFE,
end — to t=ty

(2.13)

f*/ t) - f(fbest,G/ t)|

F(x)]

vTR = ¢

Success rate (SR) calculates the percentage of the number of times each al-
gorithm is successful to reach to e-precision from the global optimum (VTR)

over all time scale.

SR — number of times reached to VIR (2.14)

tend — tp

Diversity: Diversity measures differences among individuals at distinct lev-
els; genotypic: considers individuals position within the search space or
phenotypic: evaluate populations fitness distribution. We choose a genotypic
measure as it is more common in the literature. For this purpose, we measure
relative standard deviation of the population (known as coefficient of varia-
tion): CV = % at each generation, where ¢ is the standard deviation and y is

the mean of the population.

NN-Error reports the Euclidean distance of the predicted solution and the

best_known. Lower values are preferred.

NN-time reports the percentage of the time spent to train and use NN per

overall optimisation time.

27

Chapter 3

Designing Evolutionary Algorithms for
Dynamic Constrained Continuous

Problems

3.1 Introduction

Optimisation is intrinsically found in many natural processes, considering in
nature every species had to adapt their physical structures to fit to their envi-
ronments. This observation inspired the researchers to develop an important
class of computational intelligence, the evolutionary computing techniques
to perform very complex searches [32]. Evolutionary computation is based
on iterative progress, examples of which include growth or development in
a population. This population is then selected in a guided random search
using parallel processing to acquire the desired objective. Originally, research
on evolutionary computation was focused on optimisation of static, non-
changing problems. Many real-world optimisation problems, however, are
dynamic. On this basis, optimisation methods need to be capable of continu-
ously adapting the solution to a changing environment. If the optimisation
problem is dynamic, the goal is no longer to find the optimum, but to track
their progression through the search space using some extra mechanisms. In
this chapter, we first introduce differential evolution as our chosen algorithm
for the experimental studies in this thesis. We then introduce the mechanisms
we need to include in the baseline DE, namely change detection, change reac-
tion and constrained handling techniques. All of these techniques will allow

the algorithm to solve dynamic and constrained problems.

28 Chapter 3. Evolutionary Dynamic Optimisation

Algorithm 1 Dynamic differential evolution (DDE)

1: Create and evaluate a randomly initial population ¥, i =1,..., NP
2: for G < 1 to Gy do
3: fori<« 1toNPdo

4: Change detection mechanism (¥;)

5: Randomly select 0 # r1 # r2 # i

6: Jrana = randint[1, D]

7: forj < 1toD do

8: if rand; < CROr j = ;44 then

9: uijc = xn,j,c + F(X26 — %13,,G)
10: else
11: ui,]',G = x,‘,j,G
12: end if
13: end for
14: Select u;j, or x; ; c based on the constraint handling
15: end for
16: end for

3.2 Differential evolution

Differential evolution (DE) is known as one of the most competitive, reli-
able and versatile evolutionary algorithms for the optimisation of continuous
spaces [31]. Recent studies show that, despite its simplicity, DE exhibits much
better performance than several other algorithms of current interest on a
variety of problems including multi-objective [98], multi-modal [9], large-
scale [92], expensive [40], constrained [20] and dynamic optimisation prob-
lems [2, 95]. It exhibits remarkable performance in terms of final accuracy,
computational speed, and robustness. The space complexity of DE is low
compared to that of some of the most competitive real parameter optimisers
like CMA-ES [47]. This means that DE is capable of handling large-scale
and expensive optimisation problems. Indeed, the variants of DE have been
selected as top ranks among other EAs in various competitions organized by
IEEE congress on evolutionary computation conference series [63, 66, 115].

DE implementation is similar to a standard EA. However, in contrast, the DE
variants mix the current generation individuals with the scaled differences of
randomly selected and distinct individuals. Therefore, there is no need for
a separate probability distribution to generate the offspring [32]. The initial
iteration of a standard DE algorithm consists of four basic steps: initialization,
mutation, recombination or crossover and selection, of which only the last
three steps are repeated into the subsequent DE iterations. The iterations con-
tinue until a termination criterion (such as exhaustion of maximum function

evaluations) is satisfied. Each vector ¥; ¢ in the current population (called

3.3. Change detection mechanisms 29

a target vector at the moment of the reproduction) generates one trial vec-
tor if; ¢ using a mutant vector 7; ;. The mutant vector is created applying
¥ic = %06 + F(¥1,6 — X0,6), where X, G, X1, and X, g are vectors chosen
at random from the current population (10 # r1 # r2 # i); X, ¢ is known as
the base vector, ¥,1 g, and X, ¢ are the difference vectors and F > 0 is a pa-
rameter called scale factor. The trial vector is created by the recombination of
the target vector and mutant vector using a crossover probability CR € [0, 1].
In this thesis, a simple version of DE called the DE/rand/1/bin variant is
chosen; “rand" indicates how the base vector is chosen, “1" represents how
many vector pairs will contribute to differential mutation, and “bin" is the
type of crossover (binomial, in our case). In the following sections, we will
integrate this baseline DE with change detection, change reaction and con-
straint handling mechanisms to help us solve DCOPs. A general overview of
DE algorithm crafted for dynamic and constrained problems is presented in
Algorithm 1.

3.3 Change detection mechanisms

Among the many change detection mechanisms proposed, two approaches
are considered in this work: (a) detecting changes by re-evaluating dedicated
detectors [86], and (b) detecting changes based on algorithm behaviours.

3.3.1 Re-evaluation of solutions

In the literature, re-evaluation of solutions is the most common change detec-
tion approach [86]. The algorithm regularly re-evaluates specific solutions (in
this work, it re-evaluates the first and the middle individuals of the popula-

tion) to detect changes in their function values and/ or the constraints.

3.3.2 Error calculation

Irregularities in algorithm behaviours can also be used to detect changes. In
order to do this, we calculate the error after each increase in the evaluations.
This error is the difference between the values of the objective function and
the optimum values at each time. In minimisation problems, the values of this
error should be decreasing over generations. But if a change occurs, this value
may not be decreasing anymore. In real world optimisation, incorporating
the use of optimal values defeats the purpose of optimising the function in
the first place. Contrastingly, the main focus of this work is not to develop
and test the performance of the algorithm itself, but to develop and test the

30 Chapter 3. Evolutionary Dynamic Optimisation

constraint handling techniques that are used. If any differences are detected,
then all vectors in the current population are re-evaluated to derive updated

values.

3.4 Change reaction mechanisms

As mentioned in Section 2.4, different dynamic handling reaction mechanisms
have been proposed in the literature. In this section, we will introduce the
diversity handling mechanisms and neural networks (which are used for
change reaction mechanism) that we use in the following chapters for our

experimental studies.

3.4.1 Diversity promoting techniques

In this section, diversity handling mechanisms are reviewed. Among the
many popular niching methods, such as fitness sharing, clearing and species-
based, we use standard crowding. The reason for excluding the other niching
methods is that they were originally designed for and applied to multi-modal
functions. An extensive separate study is needed to apply these methods using
a moving peak benchmark (designed for testing multi-modal optimisation in
DCOPs) and to investigate the methods thoroughly.

3.4.1.1 Chaos local search

Chaos is a natural phenomenon characterised by randomness and sensitivity
to initial conditions. Due to those attributes, chaos has been implemented
with success in local searches [57]; such a method was implemented in the
case of this mechanism with the purpose of promoting diversity. In our case,
chaos only affects the best solution at each iteration to avoid computational
complexity and do a fair comparison with other methods. We applied an
adaptive dynamic search length that is triggered by change detection.

3.4.1.2 Crowding

From among the many niching methods ! in the literature, we choose the
standard crowding method[108]. According to this method, similar individ-
uals in the population are avoided, creating genotypic diversity >. Rather
than competition with the parents, the offspring competes with the individ-
ual that has the lowest Euclidean distance from it. The crowding distance

!Niching techniques are the extension of standard EAs to multi-modal domains
Diversity can be defined at distinct levels; genotypic level refers to differences among
individuals over X values

3.4. Change reaction mechanisms 31

operator is a density metric of solutions surrounding a particular solution in
the population. It is used to determine the extent of their proximity to other
solutions. A solution with a lower crowding distance value implies that the
region occupied by this solution is crowded by other solutions. The solutions
with a higher crowding distance value are preferred for reproduction. As the
problem dimension in Chapter 8 is high and because of the selected crossover
rate for DE, in each iteration, the generated offspring is not much different
from the parent. This happens because due to a low crossover rate, only a
small number of dimensions in the individual will change. In this case, the
parent is often the closest individual to the offspring. Thus, we modified the

method such that the offspring competes against the N closest individuals.

3.4.1.3 Fitness diversity

While the focus of other methods is on creating genotypic diversity, this
method creates phenotypic diversity by avoiding individuals with too close
titness values to each other. The offspring in this method competes with the
individual that has the closest fitness value to it [53].

3.4.1.4 No diversity mechanism

This method is a base DE algorithm which uses feasibility rules [35] as its
constraint handling technique. There is no explicit method used as its diversity
promotion technique. Note that all the other methods use feasibility rules as

their constraint handling mechanism.

3.4.1.5 Opposition

This mechanism is based on the estimation of the symmetric opposites of
individuals in the population, which leads to find new positions which are
closer to the problem optimum [97]. Rahnamayan et al. claim that when
solving a problem with several dimensions (and without a priori knowledge),
evaluating opposites helps the algorithm in finding fitter individuals. Purely
random re-sampling or selection of solutions from a given population increase
the chance that the algorithm visit or even revisit unproductive regions of the

search space.

3.4.1.6 Random immigrants

This method replaces a certain number of individuals (defined by a parameter
‘called replacement rate’) with random solutions in the population to assure
continuous exploration [46]. In the original paper and the one drew upon it

32 Chapter 3. Evolutionary Dynamic Optimisation

in Chapter 6, random immigrants are inserted into the population at every
generation. In our version (Chapter 8), we consider wall clock timing between
each change. Therefore, if we insert solutions at each generation, there is
insufficient time for the evolution process and the results are affected adversely.

Thus, random solutions are inserted only when a change is detected.

3.4.1.7 Restart population

In this method, the population is re-started by random individuals. This is
an extreme case of Rl that involves considering the replacement rate to the

population size.

3.4.1.8 Hyper-mutation

This method was first demonstrated through the use of an adaptive mutation
operator in genetic algorithms to solve dynamic constrained optimisation
problems [25]. Later, it was used for DE in [5]. After a change detection,
some of the DE parameters (CR and F) change for a number of generations,
defined empirically (dependent on frequencies of change) to favour larger
movements. However, for DE, other mechanisms are needed. This is because
when the algorithm is converged, it is not able to promote diversity. Indeed,
DE requires population diversity to enhance diversity (see mutant vector
Equation in Section 3.2). Therefore, for our version (denoted by HMu), we not
only create changes in the DE parameters, but also insert a number of random

individuals into the population.

3.4.2 Neural networks

A neural network (NN) is a computing system that learns a function which
is a mapping from it’s input to outputs. The function is defined by the
weight values, connectivity of the network and activation functions of the
neurons. In this thesis, the strong approximator, multilayer feedforward
artificial NN is adopted. When extracting the change law of a dynamic
environment, NN maps the solutions of one environment to the solutions
of the next environment [69]. NN consists of multiple layers. Each layer is
connected to other layers through multiple neurons and connections. Each
neuron has a bias, b, and each connection has a weight, w. The first layer is
called an input layer, the last layer is called an output layer, and the other
layers are called hidden layers. The output of each layer becomes the input of

the following layers.

3.4. Change reaction mechanisms 33

wn
>

(B) k-best individuals of each time are selected to train
NN

FIGURE 3.1: Building samples for neural network

NN is intended to precisely model the optimum movement to make a reliable
forecast of the future optimum position. To do this, the best solutions of the
previous change periods found by the EA are required to build a time series
(X0, s X122, xtil) for which the optimum x; of the next change period t has
to be predicted (Figure 3.1a). To learn the change pattern of the optimum
position, NN will go through a training process. To train the network, k-best
individuals (Figure 3.1b: example with k = 3) of each time are collected for a
number of the previous times (based on a time-window (1;)). When using NN,
it is worth questioning how far back in time (change) an algorithm should
search in terms of selecting information on which to form a prediction. In [69],
the results of changes in n; show that the addition of older data introduces
noise and misleads the NNs. It is concluded that the accumulation of old
data is useful only to extract the overall environmental change information.
Therefore, a suggestion is when constructing the training set to select data
that has a strong correlation to the predicted targets. In this work, n; = 51is
chosen for the experiments. For future work, the effect of using various time
windows (1;) can be explored. Considering a proper time window, in which
the shape of changes has a pattern is effective, as in some real-world problems,
the form of the dynamism could change overtime. In addition, another future
work is to apply relational NN which prioritise data based on the distance to
the predicted value in a time-series prediction (higher priority for closer ones
accordingly).

We consider two cases. The first case collects only one best individual (k =
1) for five previous time-points (n; = 5) and then predicts the next one
(Figure 3.1a). The second procedure considers k-best individuals at each time
for n; = 5 and considers a combination of all possibilities (k’*), in order to
build training data (Figure 3.1b). In the latter case, the samples are collected
at a faster speed. However, we opt to limit the number of samples collected
by choosing a random subset of the above-mentioned combination. This is

34 Chapter 3. Evolutionary Dynamic Optimisation

30 x 4]

(&]— —- [20 x 30]
. |
o /

FIGURE 3.2: Structure of neural network

because, if we do not consider limits, the time spent in training data increases
exponentially as a result of the large number of samples collected. Also, as we
have a sufficiently high number of samples when using k > 1, we can limit the
NN to use the samples from 1, previous changes. However, where k = 1, we
keep collecting data, and so do not consider limits for the number of collected
samples (114, = 00). Otherwise, the number of samples would remain too low.
It should be noted that, for the first environmental changes, we have a small
number of samples. Hence, it is difficult for the NN to generalise from these
data. To avoid this situation, we wait until a minimum number of samples are
collected in order to train the NN. We call this minimum number of samples
‘min_batch size” and empirically assign it a value of 20. When k = 1, we have
to wait for a large number of time changes before we can begin using the NN.
But where k > 1, we collect samples at a faster rate, so that the time lag to

start using the NN is shorter.

The structure of the applied neural network has two hidden layers (presented
in Figure 3.2). The first layer takes as an input an individual position X; with 4
dimensions and outputs a hidden representation /; of the individual with four
dimensions. As the network uses the best individuals from the past five times
to predict the next one (Figure 3.1a), the first layer is applied to each of these
five individuals ¥7, ..., ¥5 independently. As a result, we obtain five hidden
representations with four dimensions hy, ..., hs; to aggregate their information,
we choose to concatenate them into a variable H with 4 x 5 dimensions.
The second layer takes H as its input and then outputs a prediction with d
dimensions, representing the next best individual. The first layer employs
the rectified linear units (ReLU) activation function and the second layer
has a linear output without an activation function. To train the network,
we use mean squared error as a loss function. The predicted solution or its
neighbouring positions can then be used by EA to intensify the search in that
region of the solution space. The mechanism to insert the predicted solutions
into the population can either entail replacing the worst individuals of the

population, or replacing random individuals.

3.5. Constraint handling techniques 35

3.5 Constraint handling techniques

EAs lack a mechanism to incorporate the constraints of a given problem into
the fitness value of individuals. Thus, many studies have been dedicated to
handling the constraints in EAs. Within most successful constraint-handling
techniques, the objective function value and the sum of constraint violations
(or the constraint violation) are handled separately. The algorithm searches
for an optimal solution while balancing the optimisation of the function value
and the optimisation of the constraint violation. For a comprehensive survey
of constraint handling techniques see [77]. In addition [38] introduces a tax-
onomy of constraint handling techniques that considers a characterisation
of constraints to address black-box and simulation-based optimisation prob-
lems. The authors provide formal definitions for several constraint classes
and present illustrative examples in the context of the resulting taxonomy.
In this section, we only introduce the methods we apply for experimental
studies in future chapters.

One important distinction between constraint handling techniques involves
the way in which they deal with infeasible solutions. Some techniques (such
as penalty function and feasibility rules) are stricter regarding infeasible
solutions, while others (such as e-constrained method and stochastic ranking)
are more flexible.

3.5.1 Penalty functions

The idea of penalty functions is to transform a constrained optimisation
problem into an unconstrained problem. The penalty function can achieve
this by adding or subtracting a certain value to or from the objective function
based on the extent to which a certain solution violates constraints. Indeed,
it tries to decrease the fitness of infeasible solutions in order to favour the
selection of feasible solutions. There are different kinds of penalty methods,
including static (known as ‘death’), dynamic, adaptive, co-evolved and fuzzy-
adapted. In this thesis, we only apply a simple penalty method which, for each
infeasible solution, considers the following objective function formula [88].

f(x,t) = f(X,t) +2.5¢(F,t) (3.1)

The sum of constraint violation ¢ (¥,) can be calculated as follows:

m P
P(%,t) = Y max(0, (%, 1)) + Y Ihy(%, 1) (62)
h —

i=1]

36 Chapter 3. Evolutionary Dynamic Optimisation

where g;(¥, t) are inequality constraints,i=1...mand h;(%,t) =0,j =1...p

are equality constraints.

The major drawback of penalty functions is that selecting a proper penalty
factor is somewhat difficult without knowing the problem at hand (in our
case, on the basis of an empirical experiment, we have chosen a factor of 2.5).
If the penalty is too high, for the case where the optimum is at the boundary
of the feasible region, the EA will be forced inside the feasible region very
quickly. Therefore, it will not be able to move back towards the boundary
with the infeasible region. On the other hand, if the penalty is too low, a major
part of the search time will be spent to explore the infeasible region, because
the penalty will be negligible with respect to the objective function.

3.5.2 Feasibility rules

Feasibility rules are one of the most popular constraint handling techniques
used in the context of EAs. This technique (proposed by Deb [35]), consists of
a set of three feasibility criteria:

i) Between 2 feasible vectors, the one with the highest fitness value is se-
lected.

ii) If one vector is feasible and the other one is infeasible, the feasible vector
is selected.

iii) If both vectors are infeasible, the one with the lowest sum of constraint
violation is selected.

The lack of user-defined parameters is one of this method’s main advantages.
In addition, the rules are simple and flexible, which makes them very suitable
for relatively easy combination with any sort of selection mechanism. How-
ever, this method may lead to premature convergence [78], since this type of
scheme strongly favours feasible solutions. Thus, if no further mechanisms
are adopted to preserve diversity (particularly paying attention to the need to
keep infeasible solutions in the population), this approach will significantly
increase the selection pressure [76].

3.5.3 e-constrained

The e-constrained method was proposed by Takahama et al. in [114]. This
method is a type of transformation method that converts an algorithm for
unconstrained optimisation into an algorithm for constrained optimisation.
This technique has two main elements. The first element is a relaxation of
the limit within which a solution is considered feasible, based on its sum of

3.5. Constraint handling techniques

37

Algorithm 2 Stochastic Ranking sort algorithm [107].

1: fori =1to NP do

22 forj=1to NP—-1do
3: u = random(0,1)
4: if (p(x),t) = ¢(xj11,t)) = 0 or (u < Py) then
5: if f(xj,t) > f(xj}1,t) then
6: Swap 3?]-, t with x]TH,t
7: end if
8: else
9: if ¢(x;,t) > ¢(xj11,t) then
10: Swap)?j, t with x]i’H, t
11: end if
12: end if
13: end for
14: if swap not performed then
15: break
16: end if
17: end for

constraint violation previously defined in equation 5.5, with the aim of using

its objective function value as a comparison criterion. The second element is a

lexicographical ordering mechanism in which the minimisation of the sum of

constraint violation precedes the minimisation of the objective function of a

given problem. For any e satisfying € > 0, the € level comparisons <, and <,
between (f1, ¢1) and (f2, ¢,) are defined in Equation 3.3 and 3.4.

f(x1) < f(x2),
(f(x1), ¢(x1)) <e (f(x2),p(x2)) & { f(%1) < f(32),
P(x1) < ¢(x2),
f(x1) < f(#),
(f(x1),¢(x1)) <e (f(22),¢(x2)) < < f(x1) < f(32),
¢(x1) < ¢(x2),

i (1), 9(8) < ¢
if () = p(72)

otherwise

(3.3)
if p(x1), p(2) <€
if p(x1) = P(x2)
otherwise

(3.4)

When € = 0,<g and < are equivalent to the lexicographic order in which the

constraint violation ¢(X) precedes the function value f(X). Furthermore, in

the case of € = oo, the € level comparisons < and < between function values.

38 Chapter 3. Evolutionary Dynamic Optimisation

3.5.4 Stochastic ranking

Runarsson and Yao proposed the stochastic ranking (SR) [107]. This technique
was designed to deal with the shortcomings of a penalty function (i.e., that
neither under-nor over-penalisation represents a good constraint handling
technique, and there should be a balance between preserving feasible individ-
uals and rejecting infeasible ones). Rather than being controlled by penalty
factors, SR employs a user-defined parameter called Py, that controls com-
parison of infeasible solutions: 1) based on their overall constraint violation
sum or 2) based only on their objective function value. This technique uses
a bubble-sort-like process to rank the solutions in the population, described
in the algorithm 2, where [is an individual of the population. ¢(I;) is the
constraint violation sum of the individual I;. f(I;) is the objective function

value of individual I -

3.5.5 Repair methods

Repair methods have shown competitive results compared to other constraint
handling methods in constrained optimisation. Particularly, repair methods
have some attributes which would make them a successful candidate to solve
DCOPs. First, the operation of the repair methods do not conflict with the
operation of dynamic handling strategies. Some constraint handling tech-
niques may not work well with some dynamic handling mechanisms, such as
diversity-maintaining or introducing strategies. This is because, these strate-
gies select individuals based on their feasibility, and feasible individuals might
have a different probability of selection than infeasible individuals. Such a
bias in selection might cause many diversified individuals to be discarded be-
cause of their infeasibility. Repair methods somewhat prohibit this drawback,
because they accept both feasible and infeasible individuals in the same way.
In other words, it does not care about the feasibility of an individual, given

that this individual can provide a high quality repaired solution.

Second, repair methods are naturally ideal for tracking the moving feasible
region. In the repair operation, the repaired individuals will always be closer
to existing reference individuals than the original individual. As a result of
that operation, if the algorithm is able to have at least one reference individual
in the moving feasible region, the repair method will have a chance of sending
more individuals toward that reference individual. Consequently, the repair
method will be capable of tracking that moving region. Third, the repair
method intrinsically supports elitism because the best found feasible solutions

3.5. Constraint handling techniques 39

Algorithm 3 Dynamic differential evolution (DDE) with repair methods

1: Create and evaluate a randomly initial population X;;,i =1,..., NP
2: for G <~ 1to MAX_GEN do
3: fori<« 1to NP do

4: Change detection mechanism (¥;)
5: Randomly select 0 # r1 # r2 # i
6: Jrana = randint[1, D]
7: forj < 1toD do
8: if rand; < CROr j = ;4,4 then
9: UjjG = Xr1,j,G + F(sz,j,G - xr3,j,G>

10: else

11: ui,j,G = xi,]',G

12: end if

13: end for

14: if u; j g is infeasible then

15: Use the repair method

16: end if

17: if f(ljl’i,c) < f(J_C)i,G) then

18: Xicy1 = UG

19: else

20: XiG+1 = XiG

21: end if

22: end for

23: end for

will always be stored in the reference population. This feature enables the
method to maintain diversity effectively in DCOPs.

The main idea of a repair method is to use a transformation process to convert
an infeasible solution into a feasible one. However, unlike other constraint
handling techniques, this method does not require special operators or any
modifications of the fitness function. In some repair methods, reference fea-
sible solutions are required [79, 87, 94, 95]. However, the repair methods
presented in [4] and [18] does not require feasible reference solutions. Repair
methods used in DCOPs have had an important role in the algorithm’s recov-
ery after a change, since they help to move the infeasible solutions toward the
teasible region. In the related literature on DCOPs, there have been four repair
methods utilised for constraint handling, which we present below. A general

overview of a DE algorithm using repair methods is presented in Algorithm 3.

3.5.5.1 Reference-based repair method

This method was originally proposed in [79], and [87] who utilises this method
with a simple genetic algorithm to solve DCOPs. In this method, a reference
teasible population (R) is first created. If an individual of the search population
(S) is infeasible, a new individual is generated on the straight line joining the

40 Chapter 3. Evolutionary Dynamic Optimisation

Algorithm 4 Reference-based and offspring-repair methods

Require: if; ¢ {trial vector}
counter =0
2: while i; ; is infeasible and counter < RL do
Select the reference individual 7 € R based on:
Randomly <reference-based >

Min distance between i/; c and r <offspring>

6: Create random number a = U|[0, 1]

Create a new individual in the segment between ii; ¢ (s € S) and r
8: ﬁ'i,G:a-r—k(l—a)-ﬁ,-IG

if if; ; is infeasible then

10: go to step 2
else
12: Update reference population if the repaired solution has better fitness
value than R
end if
14: counter = counter +1
end while

16: Return if; g

infeasible solution and a randomly chosen member of R. This process will
continue until the infeasible solution is repaired or a repair limit (RL=100) is
computed. If the new feasible solution has a better fitness value, it will be
replaced by the selected reference individual. An overview of this method

used for our investigations is presented in Algorithm 4.

3.5.5.2 Offspring-repair method

This method was applied to DCOPs in [94, 95]. Within this method, a reference
feasible population (R) is generated. For any infeasible solution of the search
population (S), a new individual is generated on the straight line joining the
infeasible solution and the nearest member of the reference population R,
based on Euclidean distance. This process will continue until the infeasible
solution is repaired or a repair limit (RL=100) is computed. If the new feasible
solution has a better fitness value, it will be replaced by the selected reference
individual. This method is similar to the reference-based repair method [87],
with the only difference being the process of selecting the reference solution.

An overview of this method is presented in Algorithm 4.

3.5.5.3 Mutant-repair method

The mutant-repair method (see Algorithm 5) is based on the differential
mutation operator, and does not require reference solutions [4]. For each

infeasible solution, three new and temporal solutions are generated at random,

3.5. Constraint handling techniques 41

Algorithm 5 Mutant-repair method

Require: ii; ; {trial vector}
counter =0
2: while ii; ¢ is infeasible and counter < RL do
Generate three random vectors (i, 1,1 G and iy G)
4 g = inc + Fili,c — tlnc)
counter = counter + 1
6: end while
Return if; g

Algorithm 6 Gradient-based repair method

Require: if; ¢ {trial vector}
counter = 0
2: while ii; ¢ is infeasible and counter < RL do
Calculate the constraint violation
4: Calculate the amount of solution movement Aii; ; based on the current
constraint violation and the gradient information
ujc =g+ Ailjg
6: counter = counter +1
end while
8: Return if; g

and a differential mutation operator similar to the one used in DE is applied.
This repair method is applied until the infeasible solution is repaired or a
specific number of unsuccessful trials to obtain a feasible solution have been
carried out (RL).

3.5.5.4 Gradient-based repair method

The gradient-based repair method (see Algorithm 6) was first applied in a
simple GA [23] to handle constraints in a static optimisation problem, and
in [18], it was applied to the solving of DCOPs. In this method, gradient
information pertaining to the constraints is utilised to repair the infeasible
solutions [23]. For this purpose, the gradient of the constraints based on
the solution vector (which represent the rate of change of constraints based
on each variable) is calculated. At the next step, the constraint violations
are calculated. Based on this calculation and the vector of the gradient, the
solutions move toward the feasible region with the proportional quantity.
The constraints that are non-violated are not considered in these calculations.
The main idea of this method is to only change the effective variables over
constraints that have a violation. More detail about this method can be found
in [18].

43

Chapter 4

Constraint Handling Techniques in
Dynamic Constrained Continuous

Problems

4.1 Introduction

There are studies about the effect of constrained handling techniques in static
optimisation problems. However, when dealing with DCOPs, there is not a
substantial study in the behaviour of common constraint handling techniques.
In this section, we conduct two distinct experiments. First, we study four
most commonly used constraint handling techniques (stochastic ranking, e-
constrained, penalty and feasibility rules) with DE to observe the behaviour of
these techniques. Second, we conduct an experiment pertaining repair meth-
ods separately. The reason to conduct a separate study for repair methods
from other constraint handling techniques is that repair methods often require
a noticeable number of extra fitness evaluations compared to standard meth-
ods. This is because the repair methods need to create reference population,
as well as evaluate the fitness for each repaired solution.

For the purpose of analysis, we use a common benchmark to determine which
techniques are suitable for the most prevalent types of DCOPs. In addition,
common measures in static environments are adapted to suit dynamic en-
vironments. While an overall superior technique could not be determined,
certain techniques outperformed others in different aspects such as rate of
optimisation or reliability of solutions.

Existing algorithms already find it difficult to optimize static constrained
problems, and it becomes even more difficult when constraints are dynami-

cally changing [87]. There currently exists a substantial amount of research

44 Chapter 4. Constraint Handling Techniques

into dynamic unconstrained optimisation [86] and static constrained optimi-
sation [77] for EAs. However, this is not the case for dynamic constrained
optimisation. One of the most important aspects of solving DCOPs is using an
effective constraint handling technique to deal with the dynamic constraints in
order to guide the search to those regions with feasible solutions and quickly
adapt if constraints are changing. In the specialized literature about DCOPs,
the constraint handling techniques that have been applied include penalty
function [85], repair methods [19, 87, 94] and feasibility rules [5].

While these methods show sound results for applying in DCOPs, other meth-
ods like e-constrained [114] and stochastic ranking [107] due to their char-
acteristics seem to have competitive results in DCOPs. These characteristics
mostly relate to the ability of the constraint handling method to increase or
maintain diversity in the balance of feasible and infeasible solutions of the
population. A comprehensive survey about the details of constraint handling
techniques used with EAs can be found in [77]. In e-constrained, the infeasible
solutions are treated more mildly compared to feasibility rules, which implies
that a higher diversity is usually maintained. Similarly, stochastic ranking
ranks the solutions not only based on the objective values and the feasibility
of the solutions, but also a stochastic behaviour is seen in the algorithm selec-
tion. This implies that infeasible solutions close to the region of feasibility are
maintained in the population, which may help when constraints change. In
the remainder of this chapter, firstly, we present the results of the experiment
with common constraint handling techniques. Afterwards, we introduce the

experiment results for repair methods.

4.2 Standard constraint handling techniques

In this section, we investigate common constrained handling techniques,
introduced in Chapter 3, including stochastic ranking, e-constrained, penalty
and feasibility rules. As mentioned earlier, we consider repair methods in a
separate study (Section 4.3) because they are mechanisms that apply special
operators to transform solutions [77]. They use extra evaluations during
the optimisation procedure compared to the standard constraint handling
techniques [3], this provides an unfair advantage in the results due to repair
methods’ ability to optimise faster and increase performance dramatically.

Briefly, the results show based on the offline error, feasibility and epsilon
outperform the other techniques and maintain competitive performance with
each other. However, the other techniques are more suited for alternative

measures. Stochastic severely outperforms all other techniques in terms of

4.2. Standard constraint handling techniques 45

Algorithm 7 Differential Evolution Algorithm (DE/rand/1/bin)
1. G=0
2: Create a randomly initial population ¥;, fori =1,..., NP
3: Evaluate f(X;g), fori=1,...,NP
4: for G < 1to MAX_GEN do

5 fori < 1to NP do
6 ifi=1o0ori= NP/2then
7: Change detection mechanism (¥;)
8 end if
9: Randomly select 70 # r1 # 12 # i
10: Jrand = randint[1, D]
11: forj < 1toD do
12: if rand; < CR Or j = J44 then
13: uijc = %6 + F(xXn2,j6 — %13j,6)
14: else
15: UiiG = Xij,G
16: end if
17: end for
18: Select u; ; c or x; ¢ based on the constraint handling technique
19: end for
200 G=G+1
21: end for

speed, it makes up for its lack of reliability in how few evaluations it requires
to find an optimum solution. While penalty is not the fastest nor does it
have the least number of constraint violations, it is the most reliable of all the
techniques and frequently returns the greatest number of successful solutions,
considering the proposed measure (convergence score). Stochastic is also the
highest performing technique for static constraints. However in the dynamic
constraints, the techniques struggle to find successful solutions in the given
time frame. A suggested solution to this issue is the addition of mechanisms

to increase diversity or repair solutions to increase feasibility.

4.2.1 Experimental design

For e-constrained method, the value of T is used in order to change the value
of € after a known number of iterations. The chosen benchmark originally has
18 test problems [87] (see Chapter 2 for details of the benchmark). However,
in this section, only constrained problems were used for the experiments,
consisting of 14 test problems. In this benchmark, the test problems consist
of a variety of characteristics such as i) disconnected feasible regions (1-3),
ii) the global optima at the constraints” boundary or switchable between
disconnected regions, or iii) the different shape and percentage of feasible
area. In the experiments, for the objective function, only medium severity is

considered (k = 0.5), while different change severities are considered for the

46 Chapter 4. Constraint Handling Techniques

TABLE 4.1: Average and standard deviation of modified offline error values. Best
results are remarked in boldface.

Algorithms s =10
G243 G24_3b G24 4 G245 G24_7
Epsilon 0.177(X0.022) 0.23(£0.026) 0.232(X0.028) 0.223(£0.031) 0.362(=0.054)
Feasibility 0.165(+£0.022) 0.227(£0.024) 0.23(£0.03) 0.216(£0.083) 0.298(1-0.06)
Penalty 0.235(£0.06) 0.491(£0.225) 0.628(+0.297) 2.316(£1.521) 1.51(40.479)
Stochastic 0.219(£0.047) 0.254(£0.078) 0.231(£0.057) 0.392(+0.118) 0.457(0.124)
Algorithms 5 =20
G241 G24_f G242 G243 G24_3b G24_3f G244

Epsilon | 0.25(:0.04) 0.028(£0.011) 0.101(£0.014) 0.179(:0.037) 0.289(:0.026) 0.028(0.011) 0.282(0.039)
Feasibility | 0.266(0.05) 0.032(:0.019) 0.097(:0.017) 0.148(:0.015) 0.276(0.03) 0.077(0.258) 0.273(0.033)
Penalty | 0.714(+0.392) 0.035(:0.024) 1.142(+0.977) 0.197(+0.06) 0.706(:0.297) 0.063(0.039) 0.729(+0.357)
Stochastic | 0.289(£0.062) 0.227(+0.143) 0.123(+0.04) 0.203(0.044) 0.258(:0.046) 0.132(+0.15) 0.277(+0.056)
G245 G24_6a G24_6b G24_6c G24_6d G24_7 G24_8b

Epsilon | 0.158(+0.022) 0.122(£0.037) 0.087(£0.012) 0.1(£0.03) 0.143(£0.04) 0.264(£0.034) 0.285(0.039)
Feasibility | 0.141(£+0.017) 0.105(+0.024) 0.082(:0.012) 0.089(£0.021) 0.169(0.062) 0.247(-:0.029) 0.276(0.034)
Penalty | 1.955(+1.349) 0.247(+0.079) 0.213(0.075) 0.284(+0.077) 0.141(:0.053) 0.704(£0.153) 0.612(+0.095)
Stochastic | 0.162(0.04) 0.091(+0.022) 0.111(+0.029) 0.103(£0.027) 0.138(::0.039) 0.204(£0.053) 0.457(+:0.118)

Algorithms 5 =50
G24_3 G24_3b G24 4 G24 5 G24_7
Epsilon 0.174(4+0.036) 0.286(40.031) 0.282(£0.035) 0.13(+0.021) 0.193(+0.029)
Feasibility 0.1(£0.018) 0.257(+0.05) 0.241(+0.03) 0.135(£0.023) 0.188(+0.03)
Penalty 0.122(+0.04) 0.698(+0.374) 0.718(+0.382) 1.494(+1.243) 0.385(+0.09)
Stochastic 0.127(4+0.032) 0.226(+0.043) 0.238(+0.042) 0.146(+0.045) 0.24(+0.127)

constraints (S = 10, 20 and 50). Based on the definition of the constrains in
this benchmark [87], S = 10, S = 20 and S = 50 represent the severity of
the changes on the constraints. The frequency of change (f.) is considered
equal to 1000 evaluations (only in the objective function). The configurations
for the experiments are as follows. The number of runs in the experiments
are 30, and the number of considered times for dynamic perspective of the
test algorithm is 5/k (k = 0.5). Parameters relating to DE algorithm are as
follows: DE variant is DE/rand/1/bin, population size is 20, F ~ 1/(0.2,0.8),
crossover probability is 0.2, and the maximum number of evaluations is a
multiplication of frequency and time: f. - 5/k. These parameters have been
chosen in a set of primarily experiments. We discard to bring the relevant
experiments to maintain the focus of this section on comparing the different
constraint handling techniques rather than the behaviour of the DE algorithm.
In the experiments, four approaches including e-constrained, feasibility rules,
penalty function and stochastic ranking, as explained in Chapter 3, have been
applied for handling the constraints in the DE algorithm.

4.2.2 Experimental analysis

In the analysis, the effects of different severities on the constraints are consid-
ered for these fourteen test problems. We do not bring the results for changes
of frequency since frequency does not have any effect in the behaviour of the

constraint handling techniques.

4.2. Standard constraint handling techniques 47

TABLE 4.2: Statistical tests on the offline error values in Table 2. “X(~)” means that

the corresponding algorithm outperformed algorithm X. “X(+)” means that the corre-

sponding algorithm was dominated by algorithm X. If algorithm X does not appear in
column Y means no significant differences between X and Y.

. S =10

Functions Epsilon(1) Feasibility(?) ~ Penalty(3) Stochastic(4)
G24_3 (7.1-49.21%) 305),40) 305,405 100, 205 14,2+
G24_3b (7.1-49.21%) 3(-) 30) 1), 2(+) 4(+) 3(-)
G24_4 (0-44.2%) 3(-) 3(-) 1(H), 2(+) 4(+) 3(-)
G24_5 (0-44.2%) 3(=), 40 3(=),40) 10, 2(+) 4(+) 1(+) 2(+) 3(=)
G24_7 (0-44.2%) 3(-) 3(=),40-) 1), 2(+) 4(+) 2(+),3()
Functions 5=20

Epsilon(1) Feasibility(2) Penalty(3) Stochastic(4)
G24_1 (44.2%) 30) 30 100, 201 4(+) 30)
G24_f (44.2%) 4(-) 4(-) 4) 10),2(+) 3(+)
G24_2 (44.2%) 3(-) 30) 1(H), 2(H) 4(+) 3()
G24_3 (7.1-49.21%) 2(+) 1), 3(2), 4(=) 2(+) 2(+)
G24_3b (7.1-49.21%) 3(-) 30 1(H), 2(+) 4(+) 3(-)
G24_3f (7.1%) 3(-),4) 3(-),4(-) 1), 2(H) 1), 2(+)
G24_4 (0-44.2%) 3(-) 3(-) 1(5), 2(+) 4(+) 3(-)
G24_5 (0-44.2%) 3(-) 3(-) 1(H), 2(+) 4(+) 3(-)
G24_6a (16.68%) 3(-),4(+) 305 1(H), 2(+) 4(+) 1), 305
G24_6b (50.01%) 3(-),45) 3(-),4(-) 10, 2(0) 4(+) 1) 2(+) 3(=)
G24_6¢ (33.33%) 3(-) 30 1(+) 2(+), 4(+) 302
G24_6d (20.91%) - 3(+), 4(+H) 2(=) 2(=)
G24_7 (0-44.2%) 3(=), 4(+H) 3(=), 4(H) 10, 2(+) 4+) 1(=) 2(=) 3(=)
G24_8b (44.2%) 3(=),4) 3(=),40-) 10, 2(+) 4(+) 1(+) 2(+) 3(=)
Functions 5=350

Epsilon(1) Feasibility(2) Penalty(3) Stochastic(4)
G24_3 (7.1-49.21%) | 2(1),3(+), 4(+) 105),40) 1) 15,200
G24_3b (7.1-49.21%) | 3(), 4(H) 30 1(H), 2(+) 4(+) 1), 3(=)
G24_4 (0-44.2%) 201, 3(=), 4(H) 1), 305 1(H), 2(+) 4(+) 1), 35
G24_5 (0-44.2%) 3(-) 30) 1(H), 2(+) 4(+) 30
G24_7 (0-44.2%) 3(-) 30 1(H), 2(+) 4(+) 3(-)

4.2.2.1 Analysis I: performance measure

The results obtained for the four constraint handling techniques using modi-
fied offline error are summarized in Table 4.1. Furthermore, for the statistical
validation, the 95%-confidence Kruskal-Wallis test and the Bonferroni post hoc
test, as suggested in [37] are presented (see Table 4.2). Non-parametric tests
were adopted because the samples of runs did not fit to a normal distribution
based on the Kolmogorov-Smirnov test. Worth to mention that we removed
the functions G24_1, G24_f, G24 2, G24 3f, G24_6a, G24_6b, G24_6¢, G24_6d
and G24_8b from severity S=10 and 50 because they have static constraints.
Therefore we include the results for these functions only for severity S=20

since they are the same for other severities as well.

Table 4.1, illustrates the modified offline error values for different functions
separated for each severity. From this table, one immediate conclusion is

that penalty performed the worst among all techniques based on modified

48 Chapter 4. Constraint Handling Techniques

offline error values as it has higher error values for almost all of the func-
tions, regardless of severity. However, to observe whether the methods have
significant differences or not, the Kruskal-Wallis test has been carried out
and the results are presented in Table 4.2. The results of the statistical tests
can be summarized as following observations: in static constraint function
G24_6d penalty performed better than feasibility, and in function G24_f it
outperformed stochastic for severity S=20. In dynamic constraint function

G24_3, for severity S=50 it outperformed epsilon.

Among the techniques, epsilon and feasibility showed similar results. This is
because epsilon uses a modification of feasibility rules, thus they have a similar
trend to handling the constraints. This causes the two to lack significant
difference in almost all of the functions excluding G24_3 (for S=20 and 50)
and G24_4 (for S=50) where epsilon is the better performing technique.

In regards to stochastic, it was outperformed by both epsilon and feasibility
in some functions like G24_3, G24_5 (5=10), G24_f, G24_3f, G24_6b, G24_8b
(5=20) however, it only had significant difference with feasibility and not
epsilon in functions G24_7 (S=10) and G24_3 (S=20 and 50).

In general, severity did not have any significant effect on the results. For
testing other characteristics of the constraint handling techniques like feasibil-
ity probability, convergence rate, average number of function evaluations re-
quired for finding the first successful solution, convergence score and progress
ratio to determine which performs the most effectively, other measures are
defined and analysed in the next section.

4.2.2.2 Analysis II: behaviour measures

Tables 4.3, and 4.4 show the result of the measurements that were defined in
Section 4.2.1. General observations regarding to the algorithms’ behaviour in

these measures are summarized as follows.

Due to the lower rate of success (SR;) in the stochastic ranking, this technique
also tends to not find the optimum solution more often than its counterparts
as shown in G24_f and G24_3f. This is attributed by the random nature of
the stochastic ranking and its lack of consistent reliability as shown in all

functions with non-zero success rates (SR;).

Due to the large area of feasibility in this benchmark, the constraint handling
techniques tended to have very high if not perfect feasibility rates (FP;), how-
ever the penalty technique showed lower feasibility rates than its counterparts

due to its nature of accepting infeasible solutions during optimisation.

4.2. Standard constraint handling techniques 49

Based on the three measurements (CS;, AE; and SR;) in dynamic constraint
functions including G24_3, G24_3b, G24_4, G24_7, with the exception of
G24_5, when the severity of the constraints is equal to 20 and 50, it is harder
for the constraint handling techniques to converge with the optimal solutions.
Conversely, for s=10, the constraint handling techniques are unable to con-
verge to optimal solution for function G24_7. Although this trend is also true
for the static constraint function G24_1.

For all of the functions, the three constraint handling techniques (epsilon,
teasibility and penalty) had near identical success rates (SR;), while not exactly
the same they fell within one standard deviation of each other. However, the
stochastic ranking technique had vastly different success rates compared to

its counterparts.

Larger values for the progress ratio (PR;) do not always indicate better per-
formance, since it depends on the distance between the first feasible solution
and the best solution found. Even if the distance between these solutions is
large, the best solution found can be stuck in a local optimum and could never
reach the global optimum. Indeed, the calculation of this measure does not

take optimum values into consideration.

Improvement of the constraint handling techniques would require additional
optimisation mechanisms as these techniques have very small standard devia-

tion in the rate of optimisation leading to similar progress ratio values.

By gauging the performance of the constraint handling methods using this
extensive list of measures, it has allowed an in-depth analysis of the nuances
and specific behaviours of each algorithm and how they compare to each
other. Simply analyzing the difference in fitness between them only works

until they reach the same solution.

4.2.3 Conclusion and discussions

In this section, we have compared common constraint handling techniques
for solving DCOPs. For the measurements, a modified version of offline
error and other measures including average evaluations, convergence score,
progress ratio, feasibility ratio and successful ratio were adapted for dynamic
environments and used for different constraint’s change severity. While
the modified offline error data revealed competitive results between epsilon
and feasibility, stochastic was considerably less reliable with large variations
in the results and penalty presents the worst performance in terms of this
measurement. However, stochastic managed the constraints and guided the

algorithm to a successful solution much faster than any other technique, albeit,

50 Chapter 4. Constraint Handling Techniques

with a considerably lower reliability. This would make stochastic the more
effective choice for simpler optimisation problems, where reliability is not an
important factor in the performance. Conversely, penalty is the most reliable of
the techniques which makes up for its lack of speed in constraint management.
It takes far longer than the other techniques to reach a feasible solution, but,
it consistently finds more successful solutions overall. Taking the proposed
measure (convergence score) into consideration, stochastic compensates for its
unreliability with its speed and frequently scores the best out of the techniques
in functions with static constraints. While this may be the case, in the functions
with dynamic constraints, all of the techniques struggled to find successful
solutions in the given time frame. This problem can be mitigated by adding
additional mechanisms to the algorithms that increase its performance like
methods of increasing diversity of solutions or repairing infeasible solutions.
In the future of dynamic constrained optimisation, new constraint handling
techniques would need to be developed to deal with the dynamic nature of
the problem.

51

4.2. Standard constraint handling techniques

(000)+00°0 (000)¥00°0 (000)¥00°0 (000)¥00°0 (800)F0¥'0 (z00)F6V°0 (r00)FLV'0 (s00)F£V'0 NS
(000)+00°L (r10)FVL0 (000)¥00°L (000)+00°L (000)+00°L (600)F48°0 (000)¥00°T (000)F00°L ‘dd
(200)F56°0 (200)796°0 (100)746°0 (000)746°0 (900)F1£0 (600)F04°0 (c00)FEL0 (v00)F040 NI
NEN NEN NEN NEN (tsor)F9098 (g06g)FISC0E (1zeen)FIV I (Losen)FLCEST 'S0
NEN NEN NEN NEN (orse=EUPE (e s€L 6P (se0030T9CL (pr60)3OL6LL 7y
J1ISeYD0IG Ayeuag Aypqisesy uorisdg J1SeYD0IG Ayeuag Aypqisesy uorisdyg
= - SoInsea
L ¥TO S ¥2O
(000)+00°0 (000)¥000 (000)¥000 (000)¥00°0 (000)+00°0 (200)+00°0 (000)¥00°0 (000)+00°0 (000)00°0 (000)¥00°0 (000)¥00°0 (000)00°0 NS
(000)F00°L (210)F020 (000)F00°T (000)F00°T (000)F00°L (zr0)FS4°0 (000)F00°T (000)F00'T (000)F00°L (@r0)F£9°0 (000)F00°T (000)F00°L ‘dd
(600)F00°L (¢10)¥88°0 (500)F96°0 (£00)F96°0 (600)¥86°0 (#10)¥¢6°0 (c00)¥£6°0 (900)¥86°0 (100)¥48°0 (100)¥68°0 (000)¥88°0 (000)¥88°0 Nd
NeN NeN NeN NeN NeN (000)¥00°0%¥6 NEN NEeN NeN NEeN NEeN NEeN)
NEeN NEN NeN NeN NEeN (000) T4V TE NEeN NEeN NEeN NEeN NEeN NEeN ay
o1ISeYR0Ig Ayeusg Aypiqrseag uoqisdg o1seyYd0Ig Ayeua g Ayiqrseay uorisdg o1seyYd0Ig Aeuag Ayiqrseag uorrsdg somseal
¥ ¥7O q9€ ¥¢O € 77O
0s=s
(000)¥00°0 (000)¥00°0 (000)¥00°0 (000)¥00°0 (zro)¥6£0 (€00)¥67°0 (v00)F8Y°0 (v00)¥8V0 NS
(60°0)F68°0 (6c0)F65°0 (s00)76°0 (v00)7C6°0 (900)F68°0 (1z0)F1£4°0 (z00)¥L6'0 (e00)¥16°0 ‘dd
(€00)¥95°0 (g00)F05°0 (c00)¥65°0 (z00)65°0 (£00)F0¥°0 (g00)F9C0 (r00)FCV'0 (s00)FEV'0 Nd
NEN NEN NEN NEN (r9z0)T69TL (3= 1L (eroen LV 19T (rezen)=000LC | 1S
NEN NEN NEN NeN (0895)F0S'6¥ (601)F00CEL (ze29)FEI VL (e8£9)F04'8CT av
o1)SeYO0IS Ayeuag Aypqisesy uorisdg o1)SeYO0IG Ayeuag Annqises g uorisdg
— — SaINSeaJN
L ¥TO S ¥¢O
(900)F81°0 (200)F6C°0 (s00)FSC0 (c00)F£C 0 (800)F£1°0 (z00)F0€°0 (900)F9C0 (v00)¥8C°0 (900)F£0°0 (g00)¥61°0 (c00)F£1°0 (z00)¥0CT'0 R
(000)+00°L (a20)FSL0 (000)¥00°T (000)¥00°T (000)+00°L (L00)¥£L°0 (000)¥00'T (000)¥00'T (100)¥¢8°0 (000)+€8°0 (000)+€8°0 (000)¥€8°0 ‘dd
(s00)FIC'T (00)FST'T (c00)F1CT (900)FECT (c00)FICT (600)FCL'T (c00)FICT (800)FSC'T (zo0)F£0'L (000)¥60°T (000)760°T (000)F60°T N
(98160) FLV'LLOL (9£600)FO6L'LELL (9g087)¥80°9CCL (ezpep)+88CEVL | (82220)FOV'LL8 (qroom) FLESVIL (£6een)FEEBOCL (£5008)FO8TICL | (£9106)FL606VY (ze600) FIO IV (3990027)F00'SSCY (sc0pw)765°G68€)
(6£20)FEO'E6L (110 ¥0L0EE (o) FEV'COE (82gen)FOLCBE | (oprn)x€TTHL (orge)¥L9OVE (1rgen)+LUOVE (169e)+LLVEE | (09930)FEE'6CE (366c0)F0S89L (361o1)TLL'60L (s6201)+EL'99L v
J1ISeYD0IG Ayeusg Aynqqisea,g uofisdg J1ISeYD0IG Ayeuag Aypqisesy uorisdg J1SeYO0IG Ayeuag Aynqisesy uorisdyg sonseapy
¥ ¥2O q€ ¥7O ¢ ¥2O
0r=s

*90JPOq UI Pas[IeuIal a1k S}Nsal 1sag ‘pake[dsIp are Sjurerisuod druueudp aAey Jey} suonduny ay) A[Uo gg pue 01=s
10 (1yS) omyer myssaoons ‘(fy 7)oner Aqiqrsesy ‘(1) oner ssaxdoxd ‘(1gD) 2100s 2d0UZIOAU0D ‘(17T7) SUOHENRAS 9SRIDAR JO UORIASP PIEPUR)S pue d8eIaAy Cy H14V],

Chapter 4. Constraint Handling Techniques

52

(¢00)F10°0 (or0)FVL0 (500)F€0°0 (#00)F€0°0 (000)F00°0 0)+00'0 00)+00°0 (000)¥00°0 NS
(000)¥00°T (¥20)FLS0 (000)F00°L (000)+00°L (000)F00°L (st eﬂoc.o so 0)F00°T (000)F00'T ‘dd
(£00)FLL0 (61:0)F79°0 (c00)F76°0 (c00)¥76°0 (100)¥88°0 (g00)F58°0 (000)88°0 (100)¥88°0 nd
(r6:67) FOSTIEI (0612p1)FLG88VL (15056)F00'808L (cgvgr)+SL'8806 NeN NeN NeN NeN)
(19127)F0LV8 (6 FOV8VE (210m)FLC09C (egpop)FLE TV NEN NEN NEN NEN av
JI}SEYD0IS Ayeuag Anqqisea;g uorisdg JI)SEYD0IG Ayeusg Aqises g uorrsdg
— — SaImseaN
a8 ¥¢O L ¥TO
(r1r0)F9¢0 (oro)¥160 (e10)¥58°0 (£00)F56°0 (sr0)FPe0 (s10)¥69°0 (Tro)F94°0 (1ro)FS4°0 (81:0)F9¢°0 (10990 (60°0)FC4L'0 (or0)F1£0 NS
(000)+00°T (000)+00'T (000)00°L (000)+00°L (000)¥00°T (0r0)¥98°0 (00°0)+00°L (000)+00°L (000)¥00°T (or0)¥58°0 (000)¥00'T (000)¥00'T ‘dd
(800)F0V'L (oro)FEV'L (oro)FCV'L (L00)FI7'T (100)C6°0 (c00)+88°0 (200)F160 (000)F16°0 (100)6°0 (zr0)F8°0 (000)F16°0 (000)16°0 nd
(0z09)FLETSIL (eg66)FC0889 (06eeT)FEITCLL (1920)FC0T8Y | (oot TSI TLYL (1926n)FCE8EVIL (e n)FECTV6 (03131)F1L'996 | (12:9e01)FOCEOEL (zegon)FEV EELL (cae6)7EOF86 (g1zan)FPLCC0L)
91)FEELY (onF01'909 (cen)FL999 (zem)F0S99 | (reen)FAC90S (erup)FCCO8L (9gan)FECOLL (966m)FCSLIL | (reon)FACI0S (geTin)FL08VL (g04q)FCV UL (goa9)FLC0EL ‘v
d1SEYD0}G Ayeuag Anqiqisea, uorisdg J1ISEYD0IG Ayeuag Anqqisea,y uofisdg o1)SEYD0IG Ayeuag Ayqisesy uorisdg somseapy
P9 ¥7O 29 ¥¢O 99 ¥¢O
(Tro)Fve0 (z10)¥64°0 (910)¥£9°0 (r10)¥99°0 (zo0)F 170 (500)76V°0 (r00)F8V°0 (r00)F8V'0 (000)+00°0 (000)¥00°0 (000)¥00°0 (000)+00°0 RS
(000)¥00°T (600)F76°0 (000)F00°L (000)¥00°T (000)¥00°L (or0)¥78°0 (000)¥00°T (000)¥00°T (000)+00°L (or0)F1£°0 (000)¥00°L (000)+00°L ‘dd
(100)F€6°0 (110)758°0 (000)F16°0 (000)F16°0 (00)F19°0 (900)F09°0 (200)F€9°0 (200)F€9°0 (s00)FIT'L (zro)F10'T (60° eﬂmﬁﬁ (900)FST'T nd
(824s1D)FVOCIL (62762) FECTVO (coper) FLCCCL (sg96e) FVIVICL | (repm)+9¥'LS (£966)FVLE0E (ggTin)¥ICEIC (ggzen)+CL'19C NEN NEN NEN NEN 'sD
(s801)T06'99S (crg)¥0S' VL (co9q)¥0L'C6L (vy45) LS EOL (0s70) FLE'ET () Fe8 8Vl (2040)FLE9CL (4949)xLVVCL NEN NEN NEN NEN v
o1SeYD0Ig Ayeuag Aypiqiseag uorisdg 21SEYI0IG Ayeuag Anqqisea uofisdg o1SeYD0IG Ayeuag Aypqrsesg uorisdg soamseal
®9 ¥7O S 7¢O ¥ ¥7O
(000)F00°0 (600)F89°0 (#10)F020 (500)FV4°0 (000)¥00°0 (000)+00°0 (000)¥000 (000)F00°0 (000)+00°0 (000)¥00°0 (000)+00°0 (000)+00°0 s
(000)¥00°T (or0)¥84°0 (000)¥00°T (000)F00°L (000)¥00°T (610)¥99°0 (000)F00°L (000)F00°T (000)F00°L (Fr0)FeL0 (000)¥00°T (000)¥00°T 'dd
(100)¥¢8°0 (000)+€8°0 (¢00)F¢80 (000)7€8°0 (600)¥CL'T (910)¥£6°0 (800)F9L'L (6070)FAL'T (100)¥56°0 (100)746°0 (000)¥96°0 (100)¥96°0 nd
NEN (6996 78LEL (1010)TLS'E8 (g0 FELB6 NEN NEN NeN NEN NEN NEN NEN NEN h)
NEN (L0 lFE6 (0gon)0S'8S (cyog)z€LTL NEN NEN NEN NEN NEN NEN NEN NEN Ty
o1SeY0lg Aeusg Anqqiseay uofisdg d1}SEYD0IS Aeusg Anqqises; uofisdg d1)SeYD0IS Ajeusg Aqisesg uoyisdg sonseay
J¢ ¥¢O q€ ¥¢O ¢ ¥2O
(600)F6V°0 (000)¥09°0 (000)¥09°0 (000)¥09°0 (000)F00°0 (zr0)¥89°0 (900)FV£0 (500)FV4°0 (000)¥00°0 (000)¥00°0 (000)¥00°0 (000)¥00°0 NS
(000)F00°T (1r0)¥68°0 (000)F00°L (000)F00°T (000)¥00'L (s1:0)F64°0 (000)F00°T (000)¥00°T (000)¥00°T (cr0)FCL0 (000)¥00°L (000)¥00'L ‘dd
(100)¥£5°0 (v00)¥£5°0 (000)765°0 (00°0)+65°0 (z00)¥10°T (000)+€0'T (000)+€0'L (000)+€0'L (z00)¥60'L (or0)¥10°T (100)¥CL'T (100)¥CL'T Nd
Awﬁ.nmvHHm.wm Amw.wiﬂww.wo (¥¢ .mmfnmw 69 Amm.omvﬂhﬁ.mm NEeN (68°651) Hmw.wwﬁ :o.ﬁmvﬂﬁw.mw Amﬁ.miﬂwﬁ.wm NEeN NeN NEeN NeN SO
(1z07)¥04°€€ (s590)¥£0°TY (1002)¥06°T¥ (ee09)¥0S'4Y NEN (2092)F0€9CL (z6e) FAL'99 (035e)¥0€CL NEN NEN NEN NEN av
o1SeYD0}G Ayeuag Anqiqiseag uorisdg J1ISEYD0IS Ayeuag Anqqisea,y uorisdg o1)SEYD0IG Ayeuag Ayqisesy uorisdg somseapy
¢ 7¢O J ¥2O L ¥2O
0c=s

*90JPIOq UI PISIeWaI a1k S)NsaI 1s9¢g “pake[dsip ar1e suonouny 1 a3 [[e 0g=5
10 (1yS) omyer myssadons ‘(Hy 7)oner Aqiqisesy ‘(1yg) oner ssaxdoid (1g)) 2100s dUZI0AU0D “(1717) SuOnENEAd 98RIDAR JO UOTJRIASD PIEpUR)S pue aeraAy 'y A14V],

4.3. Repair methods
TABLE 4.5: Average and standard deviation of offline error values obtained by all
the repairs methods with k = 0.5, S = 10, 20 and 50, and f. = 1000. Best results are
remarked in boldface.
Algorithms 5 =10
G24_1 G24_f G242 G243 G24_3b
Reference | 0.07(£0.029) 0.029(£0.022) 0.394(£0.212) 0.041(%0.025) 0.058(£0.027)
Offspring | 0.07(£0.053) 0.036(£0.036) 0.451(£0.317) 0.068(40.056) 0.073(4-0.048)
Mutant 0.271(£0.051) 0.095(%0.048) 0.29(£0.021) 0.159(%0.031) 0.193(£0.041)
Gradient | 0.043(0.028) 0.004(:0.003) 0.259(-0.012) 0.01(40.004) 0.033(::0.015)
G24_3f G244 G245 G24_7 G24_8b
Reference | 0.007(£0.004) 0.071(£0.035) 0.071(£0.024) 0.12(£0.088) 0.105(£0.062)
Offspring | 0.04(+0.083) 0.067(£0.031) 0.089(£0.035) 0.253(40.128) 0.114(4-0.056)
Mutant 0.046(£0.019) 0.187(%0.045) 0.126(£0.021) 0.208(%0.034) 0.338(£0.048)
Gradient | 0.002(£0.003) 0.032(0.013) 0.024(-0.007) 0.021(£0.008) 0.031(=-0.009)
Algorithms 5=20
G24_1 G24_f G242 G243 G24_3b
Reference | 0.078(40.042) 0.026(+0.019) 0.406(£0.328) 0.02(£0.009) 0.06(40.036)
Offspring | 0.086(£0.061) 0.03(£0.025) 0.416(£0.321) 0.039(40.033) 0.035(40.023)
Mutant 0.246(£0.047) 0.1(%0.05) 0.296(£0.02) 0.156(£0.033) 0.207(40.031)
Gradient | 0.048(0.026) 0.004(40.004) 0.258(--0.009) 0.004(£0.002) 0.035(:-0.017)
G24_3f G244 G245 G24.7 G24_8b
Reference | 0.008(40.005) 0.06(£0.032) 0.075(£0.033) 0.107(40.045) 0.108(+0.041)
Offspring | 0.023(£0.029) 0.043(£0.038) 0.092(40.048) 0.213(40.075) 0.12(+0.069)
Mutant 0.05(£0.019) 0.218(£0.033) 0.132(40.024) 0.267(£0.039) 0.333(40.044)
Gradient | 0.002(£0.002) 0.033(£0.015) 0.029(£-0.013) 0.021(£0.009) 0.033(4-0.008)
Algorithms 5 =50
G24_1 G24_f G242 G24_3 G24_3b
Reference | 0.069(£0.031) 0.031(£0.024) 0.371(£0.232) 0.011(40.005) 0.045(+0.025)
Offspring | 0.06(+0.032) 0.039(£0.037) 0.39(£0.187) 0.037(40.069) 0.029(40.025)
Mutant 0.26(£0.051) 0.1(£0.047) 0.298(40.023) 0.1(£0.023) 0.161(40.024)
Gradient | 0.043(4-0.018) 0.003(£0.003) 0.257(£0.01) 0.002(+0.002) 0.027(4-0.011)
G24_3f G24 4 G245 G247 G24_8b
Reference | 0.008(40.009) 0.053(+0.042) 0.062(+0.018) 0.084(+0.024) 0.096(£0.041)
Offspring | 0.03(+0.049) 0.038(£0.046) 0.08(£0.032) 0.2(£0.078) 0.111(=40.065)
Mutant 0.046(£0.018) 0.162(+0.022) 0.145(£0.025) 0.289(40.037) 0.351(40.04)
Gradient | 0.003(30.003) 0.026(£0.011) 0.033(£+0.012) 0.026(+0.011) 0.031(40.007)
4.3 Repair methods

In this section, through an empirical study, we investigate different repair
methods to be applied in DCOPs. Among the other constraint handling
techniques, repair methods has not only been suitable to deal with the con-
straints, but also has been able to improve the algorithm performance when
has been used in dynamic environments. The reason is that this technique
is not only choosing between the solutions in the selection, but also moves
the solution towards feasible region by the repair operator. Indeed, the main
idea of a repair method is to convert infeasible solutions into feasible ones.
Based on the competitive results that these methods have shown, we carry
out investigations on the behaviour of these repair methods for DCOPs.

54 Chapter 4. Constraint Handling Techniques
TABLE 4.6: Statistical tests on the offline error values in Table 4.5. “X(=)” means
that the corresponding algorithm outperformed algorithm X. “X(+)” means that the
corresponding algorithm was dominated by algorithm X. If algorithm X does not ap-
pear in column Y means no significant differences between X and Y.
Functions 5=10
Reference(1) Offspring(2) Mutant(3) Gradient(4)
G24_1 (44.2%) 3() and 4(H) 305 1(H), 2(H) and 4(H) 15) and 3(-)
G24_f (44.2%) 3(-) and 4(H) 3(=) and 4(+) 100, 2(8) and 40 1(=),2(=) and 3(-)
G24_2 (44.2%) 4(+) 4(+) 4(+) 1=), 2(=) and 3(-)
G24_3 (7.1-49.21%) 3(-) and 4(H) 3() and 4(+) 1), 2(8) and 40 1(=),2() and 3(-)
G24_3b (7.1-49.21%) | 3(-) and 4(+) 3(=) and 4(+) 10, 2(8) and 4+ 1(=),2(=) and 3(-)
G24_3f (7.1%) 3(-) and 4(H) 3(=) and 4(+) 100, 2(8) and 4+ 1(=),2(=) and 3(-)
G24_4 (0-44.2%) 3(-) and 4(H) 3(=) and 4() 1), 2(+) and 4+ 1(=),2(=) and 3(-)
G24_5 (0-44.2%) 3(-) and 4(+) 3(-) and 4(+) 1), 2(8) and 40 1(=),2() and 3(-)
G24_7 (0-44.2%) 2(5),3(-) and 4(+) 1(+) and 4(+) 1(+) and 4(+) 1), 2(=) and 3(-)
G24_8b (44.2%) 3(-) and 4(H) 3(=) and 4(+) 100, 2(8) and 4+ 1(=),2(=) and 3(-)
S =20
Reference(1) Offspring(2) Mutant(3) Gradient(4)
G24_1 (44.2%) 3() and 4(H) 3(-) and 4(H) 10,200 and 40 105, 2(5) and 3(-)
G24_f (44.2%) 3(-) and 4(+) 3(-) and 4(+) 10, 2(H) and 4() 1), 2(=) and 3(-)
G24_2 (44.2%) 4(+) 4 1) and 3(-)
G24_3 (7.1-49.21%) 3(-) and 4(H) 3(=) and 4(+) 10, 2(+) and 4+ 1(=),2(=) and 3(-)
G24_3b (7.1-49.21%) | 2(+), 3(-) and 4(+) 1(=) and 3(-) 1(H), 2(+) and 4(+H) 1(=) and 3(-)
G24_3f (7.1%) 3(-) and 4(+) 3(-) and 4(H) 10, 2(H) and 4() 1), 2(=) and 3(-)
G24_4 (4.75-44.2%) | 2(1),3(=) and 4(+) 1) and 3(-) 1), 2(+) and 4(+) 1) and 3(-)
G24_5 (4.75-44.2%) 3(-) and 4(H) 3(=) and 4(+) 10, 2(+) and 4+ 1(=),2(=) and 3(-)
G247 (4.75-44.2%) | 2(-),3(=) and 4(+) 1(+) and 4(+) 1(+) and 4(+) 1), 2(=) and 3(-)
G24_8b (44.2%) 3(-) and 4(H) 3(=) and 4(+) 100, 2(8) and 4+ 1(=),2(=) and 3(-)
S =50
Reference(1) Offspring(2) Mutant(3) Gradient(4)
G24_1 (44.2%) 3(-) and 4™ 305 1(H), 2(H) and 4(H) 1=) and 3(-)
G24_f (44.2%) 3(-) and 4(+) 3(-) and 4(+) 10, 2(H) and 4() 1), 2(=) and 3(-)
G24_2 (44.2%) 3(+) 1(+) and 4(+) 3(-)
G24_3 (7.1-18.63%) 3(-) and 4(H) 3(=) and 4(+) 1), 2(8) and 4+ 1(=),2(=) and 3(-)
G24_3b (7.1-18.63%) | 2(*+),3(-) and 4(+) 1) and 3(-) 1(H), 2(+) and 4(H) 1) and 3(-)
G24_3f (7.1%) 3(-) and 4(+) 3(-) and 4(H) 10, 2(H) and 4() 1), 2(=) and 3(-)
G24_4 (28.9-44.2%) | 2(+),3(-) and 4(+) 1) and 3(-) 1), 2(+) and 4(H) 1) and 3(-)
G24_5 (28.9-44.2%) 3(-) and 4(H) 3(=) and 4(+) 10, 2(8) and 4+ 1(=),2(=) and 3(-)
G247 (28.9-44.2%) | 2(2),3(-) and4(+) 1(H) 3(=) and 4(+) 1(+), 2(+) and 4(+) 1), 2(=) and 3(-)
G24_8b (44.2%) 3(-) and 4(+) 3(-) and 4(H) 10, 2(H) and 4() 1), 2(=) and 3(-)

Based on the literature for the current repair methods applied in DCOPs, four
types of repair methods including i) reference-based repair [87], ii) offspring-
repair [94, 95], iii) mutant-repair [4, 6] and iv) gradient-based repair [18]
have been distinguished. (i) uses reference solutions in order to convert an
infeasible solution to a feasible one. In (ii) the repair method is similar to (i),
the only difference between these two methods is that choosing the feasible
reference solution in (i) is completely random, while in (ii) the nearest feasible
reference solution is selected. (iii) is a repair method which does not require
feasible solutions to operate, and is inspired by the differential mutation
operator. (iv) is based on gradient information derived from the constraint set
to systematically repair infeasible solutions.

Our main focus is to investigate the specifications of each of these methods on
a recent benchmark set for DCOPs [87] when applying DE. For the comparison

of the effectiveness of each method, the offline error [87] and two newly

4.3. Repair methods 55

proposed measures are used. The analysis shows that the gradient-based
method outperforms other repair methods based on almost of the measures.
However, this method can not be used like a black-box, since it should be
known if the constraints have derivative. On the contrary, based on offline
error, the worst method seem to be mutant repair method. But this method
repairs the solutions very fast after only a few tries. Although, these small
number of tries for repairing a solution in this method is mostly because in
this benchmark, most of the problems have a huge feasible area. Finally, based
on the analysis, the benefits and drawbacks of each method are pointed out

and directions for future work are given.

The rest of this section is organized as follows. In Section 4.3.1, experimental
setup is introduced. In Section 4.3.2, the experimental investigations regarding
the effectiveness of repair methods with respect to different performance
measures are described. The experimental results are divided in offline error
analysis and success rate analysis and are presented in Section 4.3.2.1 and
Section 4.3.2.2 respectively. Finally, in Section 4.3.3, we finish this chapter with
some conclusions and directions for future work.

4.3.1 Experimental setup

The chosen benchmark problem originally has 18 functions [87] (see Chapter 2
for the benchmark), however in this work, 10 functions among them were
used for the experiments. The reason for this selection was that part of these
functions were not constrained and part of them did not have derivative
for the constraints and could not be applied in gradient-based method. The
test problems in this benchmark consist a variety of characteristics like i)
disconnected feasible regions (1-3), ii) the global optima at the constraints’
boundary or switchable between disconnected regions, or iii) the different
shape and percentage of feasible area.

In the experiments, for the objective function, only medium severity is con-
sidered (k = 0.5), while different change severities are considered for the
constraints (S = 10, 20 and 50). Based on the definition of the constrains in
this benchmark [87], S = 10 represents for large severity, S = 20 for medium
severity and S = 50 for the small severity of changes on the constraints. The
frequency of change (f,) is considered equal to 1000 evaluations (only in the
objective function). Worth to mention that, in the repair methods, the con-
straints evaluations are not considered as extra evaluations when using for
DCOPs [6]. More details on the benchmark can be found in [87].

56 Chapter 4. Constraint Handling Techniques

The configurations for the experiments are as follows. The number of runs
in the experiments are 50, and number of considered times for dynamic
perspective of the test algorithm is 5/k (k = 0.5). Parameters relating to DDE
algorithm are as follows: DE variant is DE/rand/1/bin, population size is 20,
scaling factor (F) is a random number € [0.2,0.8], and crossover probability
is 0.2. In the experiments, four repair methods including Reference-based,
Offspring, Mutant and Gradient-based, explained in Chapter 3, have been
applied for handling the constraint in DE algorithm.

4.3.2 Experimental results

The experimental results are divided as i) offline error analysis and ii) success
rate and required number of iterations. In these experiments, we investigate
the behaviour of different repair methods in DE algorithm based on the
previous defined measures. In the analysis, the effects of different severities
on the constraints are considered for these ten test problems. We do not bring
the results for changes of frequency since it does not have any effect in the
behaviour of the repair methods.

4.3.2.1 Offline error analysis

The results obtained for the four repair methods using offline error are sum-
marized in Table 4.5. Furthermore, for the statistical validation, the 95%-
confidence Kruskal-Wallis (KW) test and the Bergmann-Hommels post-hoc
test, as suggested in [37], are presented (see Table 4.6). Non-parametric tests
were adopted because the samples of runs did not fit to a normal distribu-
tion based on the Kolmogorov-Smirnov test. Based on the results, for the
constraint’s change severity S = 10, the gradient-based repair outperformed
almost all of the other methods in nine test problems (G24_f, G24_2, G24_3,
G24_3b, G24_3f, G24_4, G24_5, G24_7 and G24_8b) except one test problem
(G24_1) that in which offspring-repair has similar performance. For this sever-
ity, reference-based repair and offspring-repair performed almost the same
for nine test problems (G24_1, G24_f, G24_2, G24_3, G24_3b, G24_3f, G24_4,
G24_5 and G24_8b) except one test problem (G24_7), where reference-based
repair outperformed offspring-repair. As Table 4.6 illustrates, mutant-repair
is the worst among all the methods for eight test problems (G24_1, G24_f,
G24_3, G24_3b, G24_3f, G24_4, G24_5 and G24_8b) except two test prob-
lems, in which has similar results with reference-based repair (G24_2) and
offspring-repair (G24_2 and G24_7).

4.3. Repair methods 57

For the constraint’s change severity S = 20, the gradient-repair excelled
almost all the other methods in seven test problems (G24_1, G24_f, G24_3,
G24_3f, G24_5, G24_7 and G24_8b) with exceptions including G24_2, G24_3b
and G24_4, that in which offspring-repair had similar performance. For
this change severity, reference-based repair and offspring-repair performed
almost the same for seven test problems (G24_1, G24_f, G24_2, G24_3, G24_3f,
G24_5 and G24_8b) except three test problems (G24_3b, G24_4 and G24_7).
For these three problems, while in two test problems (G24_3b and G24_4)
offspring-repair had better results, in one test problem (G24_7) reference-
based repair outperformed the offspring-repair. Mutant-repair had the worst
results between all the methods for eight test problems (G24_1, G24_f, G24_3,
G24_3b, G24_3f, G24_4, G24_5 and G24_8b) except two test problems in which
had similar results with reference-based repair (G24_2) and offspring-repair
(G24_2 and G24_7).

For the constraint’s change severity S = 50, the gradient-repair excelled the
other methods in six test problems (G24_f, G24_3, G24_3f, G24_5, G24_7 and
G24_8b) with exceptions of having similar performance with offspring-repair
(G24_1, G24_2, G24_3b and G24_4) and reference-based repair (G24_2). For
this change severity, reference-based repair and offspring-repair performed
almost the same for seven test problems (G24_1, G24_f, G24_2, G24_3, G24_3f,
G24_5 and G24_8b) except three test problems (G24_3b, G24_4 and G24_7).
For these three problems, while in two test problems (G24_3b and G24_4)
offspring-repair had better results, in one test problem (G24_7) reference-
based repair outperformed the offspring-repair. Mutant-repair had the worst
results between all the methods for nine test problems (G24_1, G24_f, G24_3,
G24_3b, G24_3f, G24_4, G24_5, G24_7 and G24_8b) except one test problem

(G24_2) in which showed similar results with offspring-repair.

Based on offline error, gradient-repair outperformed other methods for all
severities. One reason is that in this work all test problems have the global
optimum on the boundary of the constraints. Unlike gradient-repair, other
methods take larger random steps towards feasible area so they often cross the
boundary and as a result lose to reach the global optima. Although, gradient-
repair cannot be applied for the functions that do not have derivative for
their constraints. For this reason, the four functions G24_6a, G24_6b, G24_6¢
and G24_6d (that are functions inside this set of benchmark) were not used
in our experiments. Therefore, for this method an understanding about the
behaviour of the constraints is specifically needed. Changes in severity do
not decrease the performance of this method. Even though, we observe that
in severity S = 50 it outperformed other methods in less test problems. It is

58 Chapter 4. Constraint Handling Techniques
TABLE 4.7: Average and standard deviation of: i)Success rate(s;), ii) required num-
ber of iterations(r;) for each of the repairs methods with k = 0.5, S = 10, 20 and 50,
and f. = 1000. Best results are remarked in boldface.
. Success rate(s,) Required number of iterations(rn;)
Functions
Reference Offspring Mutant Gradient ‘ Reference Offspring Mutant Gradient
S=10
G241 | 99.95(£0.08) 99.94(0.08) 100.00(0.00) 99.72(0.15) | 67.98(£7.99) 79.78(£4.33) 2.26(£0.03) 4.30(£0.24)
G24_f 99.97(£0.05) 99.97(£0.05) 100.00(x0.00) 99.71(£0.17) | 64.77(£8.41) 74.95(£8.33) 2.26(£0.03) 3.96(10.23)
G242 | 99.99(£0.02) 99.96(::0.08) 100.00(-0.00) 99.78(::0.18) | 51.20(10.65) 70.18(£5.94) 2.26(£:0.04) 3.80(£0.26)
G24_3 99.98(10.04) 99.96(+0.06) 99.98(+0.02) 95.19(£1.73) | 60.35(£7.92) 70.91(£6.07) 4.74(£0.13) 8.03(11.64)
G24_3b | 99.97(£0.07) 99.97(£0.06) 99.99(4:0.03) 95.96(1.38)| 66.51(£7.95) 71.81(£7.50) 4.74(£0.11) 7.60(:1.30)
G24_3f | 99.88(20.11) 99.85(£0.12) 99.94(:£0.05) 93.33(£2.21)| 84.66(:3.47) 89.90(:3.49) 14.04(:0.25) 10.26(£2.10)
G244 | 99.98(£0.04) 99.94(£0.07) 99.99(£0.02) 95.45(1.75) | 62.23(£9.58) 72.54(£6.27) 4.77(£0.15) 8.05(11.66)
G245 | 95.76(3.55) 74.16(11.24)71.44(+0.69) 74.31(£1.90) | 47.28(£6.52) 72.00(£3.66) 38.09(0.74) 28.79(:1.78)
G247 | 92.79(£6.18) 75.81(£9.57) 72.40(£0.66) 75.55(£2.06) | 63.57(£6.47) 73.20(£4.76) 37.30(£0.73) 27.44(+1.97)
G24.8b | 99.97(£0.06) 99.95(£0.06) 100.00(£0.00) 99.75(£0.13) | 63.29(£6.01) 69.54(£6.26) 2.26(£0.03) 3.94(£0.19)
S=20
G241 | 99.97(£0.05) 99.94(0.08) 100.00(:0.00) 99.75(0.11) | 66.87(£7.25) 78.58(£5.85) 2.25(0.04) 4.22(+0.24)
G24_f | 99.98(+0.04) 99.97(+0.07) 100.00(:0.00) 99.67(+0.19) | 65.19(+8.69) 76.88(+6.91) 2.26(0.04) 4.02(:0.26)
G242 | 99.97(0.05) 99.95(:0.10) 100.00(-:0.00) 99.83(0.11) | 50.61(£10.83) 69.63(£6.42) 2.26(£0.03) 3.75(£0.22)
G243 | 99.96(£0.07) 99.93(£0.09) 100.00(£0.01) 92.37(£2.48) | 69.44(£5.67) 74.51(+4.81) 6.11(+0.14) 11.09(£2.37)
G24.3b | 99.96(0.07) 99.89(:0.11) 100.00(:0.01) 92.12(:2.83) | 71.79(£6.88) 79.61(£3.70) 6.08(:0.14) 11.60(+2.68)
G24_3f | 99.90(£0.11) 99.84(+0.13) 99.94(£0.04) 92.96(+2.17) | 85.00(£3.61) 90.97(£2.55) 14.12(40.23) 10.63(+2.04)
G24.4 | 99.96(£0.07) 99.89(£0.10) 99.99(:0.02) 92.54(£+2.23)| 72.50(£6.14) 79.75(+3.84) 6.12(+0.12) 11.22(£2.11)
G245 97.47(+1.19) 82.19(£9.70) 100.00(+0.00) 92.46(+2.64) | 39.24(+11.07) 69.08(+4.56) 4.96(+0.11) 10.85(42.53)
G24.7 | 96.09(+1.84) 86.39(5.93) 100.00(:0.00) 93.03(+2.25) | 56.24(£6.08) 69.03(£4.75) 4.90(+0.11) 10.41(+2.17)
G24 8b | 99.97(£0.05) 99.95(-£0.07) 100.00(:£0.00) 99.70(%0.20) | 61.55(£5.67) 68.86(:7.18) 2.27(40.04) 3.95(10.26)
S =50
G24_1 | 99.97(:0.05) 99.91(:0.10) 100.00(£0.00) 99.70(:0.15) | 68.09(£8.06) 78.75(:4.43) 2.26(£0.04) 4.28(:0.23)
G24_f | 99.97(£0.05) 99.95(£0.07) 100.00(£0.00) 99.69(-£0.15) | 64.98(£10.06) 74.94(£7.47) 2.26(:£0.04) 4.02(£0.27)
G242 99.99(£0.02) 99.93(+0.11) 100.00(%0.00) 99.84(=+0.08) | 50.01(£10.05) 69.64(£5.59) 2.27(£0.04) 3.76(10.17)
G243 | 99.92(£0.09) 99.89(£0.13) 99.99(:0.01) 92.90(£2.42) | 75.99(£4.35) 80.88(+£4.04) 8.63(0.15) 10.62(+2.31)
G24_3b | 99.92(£0.10) 99.86(=0.12) 99.99(:0.02) 93.04(£2.19) | 77.14(45.02) 83.60(:2.87) 8.63(£0.18) 10.82(2.12)
G24_3f | 99.91(£0.09) 99.84(0.11) 99.95(:0.04) 93.18(-2.16) | 84.12(£3.39) 90.11(£3.96) 14.01(40.25) 10.40(-2.08)
G244 | 99.90(:0.10) 99.85(:0.13) 99.99(£0.02) 93.36(:2.01) | 78.17(£4.62) 84.28(+2.89) 8.66(:0.15) 10.51(%1.91)
G24.5 | 97.64(£1.30) 86.30(£8.46) 100.00(£0.00) 91.57(£+3.13) | 40.28(£9.01) 66.52(£6.61) 2.83(£0.05) 11.66(+2.99)
G24_7 96.88(+1.65) 89.71(£6.01) 100.00(+0.00) 93.04(£2.82) | 55.12(£6.69) 66.17(£5.68) 2.82(+0.04) 10.38(£2.70)
G24_8b | 99.97(£0.06) 99.97(:£0.07) 100.00(£0.00) 99.77(-0.16) | 63.97(£7.20) 71.18(£6.15) 2.27(£0.03) 3.89(:0.24)

because offspring-repair performance increased for some test problems for
this severity. Similar behaviour in reference-based repair and offspring-repair
based on offline error for all the severities is due to the similar procedure
(uniform crossover in GA) that they use for repairing the infeasible solutions.

The only difference is the way they choose the reference solution.

4.3.2.2 Analysis of success rate and required number of iterations for re-

pairing solutions

Regardless of severity, the total number of infeasible solutions (1) that needed
repair for different functions were in the range between 1882 and 2981. The
nt values were increased for the functions that had dynamic constraints like
G24_3, G24_3b, G24_4, G24_5 and G24_7. The reason is because, when the
constraints are changing, it is more probable that some feasible solutions be

4.3. Repair methods

59

TABLE 4.8: Main features of each repair method

Method

Advantages

Disadvantages

Reference

i) Maintain infeasible solution infor-
mation, ii) increase diversity

i) Random behaviour ii) high num-
ber of required iterations and iii) ref-
erence solutions needed

Offspring

i) Maintain infeasible solution infor-
mation

i) High number of required itera-
tions and ii) roughly random be-
haviour

Mutant

i) High success rate, ii) low itera-
tions needed, iii) no reference solu-
tion needed, iv) increase diversity

i) Not a good performance (offline
error) ii) loose the information and
iii) random behaviour

Gradient

i) Prominent performance when the
optimal solution is in the bound-
aries of the feasible area, ii) good
performance (offline error), iii) no

i) Knowledge about the character-
istic of constraints needed and ii)
only can be applied when the con-
straints have derivate

reference solution needed, iv) main-
tain infeasible solution information
and v) low iterations needed

converted to infeasible ones after a change occurs.

The results for the success rate (s;) and required number of iterations (nr;)
measures are presented in Table 4.7. Regarding to these results, some general
observations can be concluded. The number of required iterations (nr;), was
the smallest for mutant-repair with a range between 2 to 8 and in second place
is gradient-repair with the range between 4 to 10. An exception of this trend
was seen in the function G24_3f in all the severities, and functions G24_5
and G24_7 for the severity S = 10, which gradient-repair excelled mutant-
repair since the percentage of feasible area in these cases were small (see
Table 4.6 for the feasibility percentages). Overall, in mutant-repair method
since the process of producing a feasible solution is completely random and
in this applied benchmark functions, the percentage of feasible area is huge,
so this method achieved to feasible solutions after a few tries. In another
words, this method is roughly dependent to the percentage of the feasible area.
As mentioned before, the second smallest values for this measure was for
gradient-based method; but in this case the reason was based on this method’s
wise selection and the fact that it only moves in the direction and with the

amount of satisfying the constraint violations.

The worst results for this measure belonged to offspring-repair with an aver-
age number of required iterations ranging from 66 to 91 and reference-based re-
pair with a range from 47 to 85. Compared to offspring-repair, reference-based
repair required lower number of iterations, and this was because offspring-
repair’s step sizes are smaller and for this reason it needed more iterations
to convert the infeasible solution to a feasible one. Other drawback in these

two methods is that a number of evaluations is needed to produce feasible

60 Chapter 4. Constraint Handling Techniques

reference population. This can be expensive in high computational complex

problems [40].

Generally, based on considering all the measures, offspring and reference-
based repair methods in most functions had similar behaviours. This is mostly
because, the process of converting the infeasible solutions to feasible ones are
approximately the same in these methods, and the only difference is the way
they choose the feasible reference solution. They do not loose the information
of infeasible solution completely, as they use this individual to move in the
direction of one of the feasible solutions (this is more evident in offspring as it

uses the nearest reference feasible solution).

As regards to the third measure (success rate), although mutant-repair has
the best values, but this is because in this set of benchmark, most of the test
problems has a huge feasible area. For this reason, reaching to a feasible
solution randomly after a few tries is easily possible based on this method.
Obviously, for the cases of small feasible area, this method’s efficiency will
decrease. This was the case for the functions G24_5 and G24_7; as can be
seen from Table 4.5, the values for this measure dropped drastically for this
method as the percentage of feasible area is small for some time periods in
these two functions. Reference-based and offspring were on the second place
based on the values of this measure and the results of these two methods are
roughly similar. Although, gradient-based method seemed to have worse
results based on this measure, the differences between these values and the
values for other methods were not significant. Moreover, practically, there is
no need to convert all the infeasible solutions. In Table 4.8, a review of the

advantages and disadvantages of each method is presented.

4.3.3 Conclusions and discussions

In this section, an investigation on different current repair methods in DCOPs
were carried out. For the comparison, three different measures including
offline error, success rate and the average number of required iterations for
repairing the infeasible individuals were used. The results showed regardless
of the change severities, in most cases gradient-based method outperformed
the other methods based on offline error. This method especially performs
much better than the other methods for the problems that have the optimal
solution in the boundaries of the feasible area. Indeed, this method moves
in very small steps and will not lose the optimal solution in the boundaries.
Although, this method can not be applied for the functions that do not have

derivative of the constraints. For the other measurement criteria, the number

4.3. Repair methods 61

of required repair for mutant repair was the smallest and the second rank was
for gradient-based method. Finally, based on the success rate, all of the repair
methods were able to repair most of the infeasible solutions. Such promising
performance was based on the fact that the feasible region of the main static
test problem ((G24) [65]) occupy around 79% of the whole search space [4]. For
future work, a combination of different repair methods can be investigated in
order to make the most of each method.

63

Chapter 5

A Benchmark Generator for Dynamic
Constrained Continuous Problems

5.1 Introduction

Besides developing algorithms, there should be a comprehensive benchmark
that can test algorithms considering a range of characteristics. Although,
there are a range of benchmarks proposed to test the relevant algorithms
for discrete spaces [105], and/or multi-objective optimisation in dynamic
environments [59], for continuous spaces in single objective optimisation so
tar, the most used benchmark is the proposed benchmark by Nguyen [86]. In
this benchmark, the dynamic changes are applied by adding time-dependent
terms to the objective function and the constraints of one of the functions
(G_24) of the static benchmark proposed in CEC 2006 [66].

Although, there are parameters included in Nguyen benchmark to alter the
severity of environmental changes, this benchmark is based on only one
objective function and the transformation of this function. Thus it is not
applicable to test different characteristics. Moreover, all of the problems in
this benchmark are two-dimensional and are not extensible to larger prob-
lem dimensions. In addition, the feasible regions of the dynamic constraint
function in this benchmark are very large, which might not be sufficiently
complicated [19]. Bu et al in [19], introduces one variant of this benchmark
that has a parameter to control the size and the number of the feasible re-
gions. The other variant introduced in this paper is based on the moving peak
benchmark.

The proposed benchmark in [135] is based on dynamic transformations of
Nguyen benchmark [86]. However, the problem information including the
number of feasible regions, the global optimum, and the dynamics of each

64 Chapter 5. Benchmarks in Dynamic Constrained Optimisation

teasible region is lacking. The lack of such information makes it difficult to
measure and analyze the performance of an algorithm and probably this is
the reason this benchmark have become less popular than Nguyen bench-
mark [86].

In terms of having a scalable and flexible benchmark, there are some bench-
mark generators proposed in the literature. Like in [63], a dynamic benchmark
generator is proposed that is designed with the idea of constructing dynamic
environments across binary, real, and combinatorial solution spaces. The
dynamism is obtained by tuning some system control parameters, creating
six change types including small step, large step, random, chaotic, recurrent,

and recurrent change with noise.

While the aforementioned benchmark generator’s main focus is on creating
dynamic objective functions, we concentrate on creating dynamism in the
constraints in this study. Our motivation comes from characteristic of some
real-world problems such as scheduling power system problem having dy-
namic linear constraints (due to the variable demand and available resources
over-time). For a better insight about the effects of constraint changes, we
keep the objective function static. Indeed, this is the case in some real world
problems in which only constraints will change such as the problem of hydro-
thermal power scheduling in continuous spaces [36] or the ship scheduling

problem in discrete spaces [75].

Dynamic changes are imposed by the translation and rotation of the con-
straint’s hyperplane. The examples of these two operations on the constraint
in a real-world dynamic environment are: the reduction and increment of
demand that happens regularly at power system (hyperplane translation)
or changes on the share of each power production plant (hyperplane rota-
tion) [81]. Our proposed benchmark generator is flexible (frequency and
severity of changes, number of environmental changes, and dimension of
the problem), simple to implement (with any objective function), analyze,
or evaluate and computationally efficient and finally allows conjectures to

real-world problems.

In the experiments, we apply DE algorithm with different constraint handling
techniques and observe how they deal with these changes depending on the
magnitude and frequency of changes. Our experiments are repeated across
some well-known functions including sphere, Rastrigin, Ackley and Rosen-
brock. For the analysis on the performance of the tested algorithms, a ranking
procedure is introduced that uses the values of the objective function and the

constraint violations to rank the performance of the algorithms. In addition,

5.2. Dynamic changes framework 65

the common modified offline error is also evaluated for the experiments and
the results are investigated. The results reveal that the changes on frequency
and hyperplane rotation and translation have a direct correlation with the
performance of the constraint handling techniques. Therefore, we could effec-
tively put the algorithms to struggle and test their performance with imposing
simple linear changes.

The remainder of this chapter is as follows. In Section 5.2, our proposed
dynamic changes’ framework is described. Experimental setup is presented
in Section 5.3 followed by experimental results in Section 5.4. Finally in

Section 5.5 conclusions and future work are summarized.

5.2 Dynamic changes framework

Many of the real-world problems have single or multiple linear constraints.
Therefore, the relevant benchmark can be as simple as creating some changes
in the constraint’s coefficients and boundaries that represent changes in differ-
ent times. In this section, we will introduce a framework to create changes on
linear constraints to emulate a dynamic environment. Our proposed changes
is observed in some real-world problems such as power scheduling prob-
lem [81]. In this problem, the conditions in the system such as demand or
available resources will change over time. In the remaining of this section,
first the constraint setup is presented and then the frequency setup will be
explained.

5.2.1 Constraint setup

For emulating the dynamic constraints, simple linear constraints are used for
search space modification. Although linear constraints are simple, they are
used as a representation of some of the real world problem constraints and
prevents over-complication of the analysis. The general formulation for the
linear constraints are as follows.

D
gl(f) :Zajxj—bigO 1€ {1,...,711} (5.1)
j=1

where g;(¥) is the ith inequality constraint, a; is the jth variable coefficient, x;
is the jth decision variable, b; is the upper limit of the ith constraint and D is
the problem dimension. First, a general case for one constraint is defined and
then is developed for multiple constraints.

66 Chapter 5. Benchmarks in Dynamic Constrained Optimisation

Two operations are defined for changes on constraint, the first one is related
to changes on b coefficient (hyperplane translation) and the second one is
changes of a; coefficients (hyperplane rotation). These two changes in the
simple linear constraint can happen commonly in real-world problems. Ex-
ample of hyperplane translation can be the changes of demand or capacity of
each production plants including stochastic renewable plants in a scheduling
power plant problem. Similarly example of hyperplane rotation can be the
changes on the share of each plant to produce overall supply, or the probability

of renewable resources production.

Hyperplane translation: If 4; coefficients are chosen in a way to create a unit
normal vector of 4, changes of b will directly show the effects of changing
the distance from the optimum point!. The distance (d) of the constraint
hyperplane from the origin 07 is defined in Equation 5.2.

D 1/2
d:w<zya (5.2)

i=1
The constraint bound value (b(t)) at time ¢ is obtained by adding a random

value to its previous time value (b(t — 1)) as in Equation 5.3.

b(t) = b(t—1) +k, (5.3)

where k, is chosen uniformly at random within the interval [Ik, uk]. Figure 5.1
shows an example of these settings for creating different magnitudes of change
for single constraint case. These values are only samples of constraints bound-
aries for creating dynamic environment. As mentioned before, we can create
multiple benchmarks for testing the algorithms with different scales of the
changes based on the problem type. The two criteria that will affect the proper
choice of the values of /k and uk are the dimension of the problem and the

variable ranges.

Hyperplane rotation: In this operation, the changes are created by rotating
the hyperplane at each separate time. Random numbers are created in € [0, 1]
such that we have a unit normal vector of 4. For any time we randomly select
some of the coefficients and swap their values. As in this way, 4 is still a unit
normal vector, therefore the changes at each time is only related to the rotation
and not the translation of hyperplane. So by making these changes at each
time, we will have a rotated hyperplane and we can observe how it will effect
the algorithm’s behaviour.

Ifor all the chosen functions zero is the optimum point

5.2. Dynamic changes framework 67

T
1
80 b_Large||
- - b_Med
== b_Small
60 - 7 D
-
Y
/
40 + / 7
%
!
%] "
L 20 AN . ,’ N] b
= A
[A <) \ \ N\
= 1\ \\ ’,’\,f T i, . . ALy DNy TN
| onm_ !V R N A WA \ P AR/ AVA N Vo, Loy NS A
K WS XA\ - AN <hav Y N NGO
VONRSLA VS [O AN N VT, NPt
\ \ YAy I\ VST
L / ! 1 v v |
20 \ \\ ! ‘i
A v/
-40 - f :
60 b
L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
Time

FIGURE 5.1: Sample settings for large, medium and small changes on b_values

In another setting, both changes of 4; and b values are considered. In this
case, we have changes on either b or a; based on a known probability at any

separate time.

With the current settings of the changes on the linear constraint coefficient, we
can observe how the algorithms response to the new modified search space.
With the comparisons, we will observe which one of the compared algorithms
will react faster in order to converge to the optimum after a change occurs.
The coefficients of the linear constraints are generated through a proposed
constraint generator and are then fed to the algorithm. Since the constraint
coefficients are random, for a fair algorithms comparison, it is needed that all
the generated coefficients for each run be the same for all the algorithms and a
per algorithm generation would lead to a difference in compared constraints.
At each environment change, the number of feasible and infeasible solutions
will change so that we expect to observe how efficiently the algorithms will

manage the new set of constraints within the problem.

In many real-world problems including hydro-thermal scheduling problem,
multiple constraints rather than single constraint will define the dynamic
environment of the problem. In this case, changes are imposed on b; value of
ith constraint. In order to avoid complexity, at each time we only change one
of the constraints boundaries. This is aligned with the real-problems that one

or a few criteria and not all will change at the new environment condition.

5.2.2 Frequency setup

The frequency of change (7) is defined as how often the problem changes.

A higher frequency seems to be more difficult for an algorithm to solve the

68 Chapter 5. Benchmarks in Dynamic Constrained Optimisation

related problem as less time is available at each period to reach the new global
optimum [104]. In the literature of DCOPs, the number of fitness evaluations
is considered as a criteria to represent how frequently a change occurs [87].

Three different constraint handling techniques, introduced in Chapter 3, in-
cluding penalty [116], feasibility rules [35] and e-constrained [114] are chosen
to be included as for handling constraint with DE algorithm. With different
constraint handling techniques, we will observe how these algorithms will

respond to the new changes in the environment.

5.3 [Experimental setup

The experiments are conducted for different magnitudes of hyperplane trans-
lation (first experiment), changes of frequency (second experiment), and
a combination of hyperplane translation and rotation (third experiment).
The settings for b_values for hyperplane translation are large: [k=-25, uk=25,
medium: lk=-15, and uk=15 and small: [k=-5, uk=5 with initial value of b:
b_0=2. The settings for changes of frequency are large (t = 500), medium
(T = 1000) and small (T = 2000). The maximum number of evaluations is
obtained by: 1007 + 1000, where 100 is the number of changes in the envi-
ronments and 1000 is the buffer that allows the algorithms proceed in their
optimisation process for the first time before a change occurs. The first col-
umn of the tables 5.1 and 5.3 show severities on magnitude of hyperplane
translation, and the second column show severities of frequency.

The results are repeated for four artificial functions including sphere, Rastrigin,
Ackley and Rosenbrock. Parameters of DE are chosen as NP = 20, CR = 0.2
and F is a random number in € [0.2,0.8]. The dimension of the problem is 30

for all the experiments.

Two distinct measurements are applied for comparing the algorithms, the first
one is the modified offline error [87] explained in chapter 2 and the second
one is the following ranking procedure.

5.3.1 Ranking mechanism

The following ranking procedure is build upon the feasibility rules [35]. Con-
sidering the best solution obtained before a change in time for algorithms i

and j, a lexicographical ordering mechanism in which the minimization of

5.4. Experimental results 69

the sum of constraint violation precedes the minimization of the objective
function will define the ranking of the algorithms (Equation 5.4).

(f(Raip), (Xaip)) < (f(Zaje), ¢(Xaji)) &
{f(fAi,t) < f(Xaje), EP(Xair) = ¢(Xajs) (5.4)

(X aip) < ¢(¥4j:), otherwise

where f(X4;;) and ¢(X,;;), are the objective function and the sum of con-
straint violation (Equation 5.5) of the best solution achieved with algorithm i
before a change happens respectively. The sum of constraint violation ¢ (¥, t)
is calculated as follows:

p(%,t) = imax(o,gi(ic’,t)) + 2]h]-(a_c’,t)| (5.5)

i=1 j=1

where the inequality (g;(¥,t)) and equality (h;(X,t)) constraints have been
defined in chapter 2.

This lexicographical ranking procedure is applied across every test conducted
for analytical testing. In each time change, the performance of the algorithms
are ranked and these scores are combined into an overall performance score.
Once the overall scores are calculated, the algorithms are ranked in order of
the performance. We applied this ranking procedure for three algorithms,
although it is adaptable to be used for comparing any number of algorithms

(multi-compare).

5.4 Experimental results

In this section, a complementary method to compare the algorithms qualita-
tively is followed by the statistical test results which are divided to two cases:

i) single constraint and ii) multiple constraints.

5.4.1 Illustration of results for sphere

One qualitative way that helps compliment the comparison of the algorithms
is to plot the objective values and sum of constraint violation for different
changes in the environment, Figure 5.2. This figure will represent the dif-
ferences between the objective function values of each algorithm (averaged

across thirty runs) for the last generation before a change in time. The dot

70 Chapter 5. Benchmarks in Dynamic Constrained Optimisation

T
c ——Best_known
2600 --—-Penalty H
8 - — Feasibility
=) !
2 400 e-constrained
g
=
2,200 i|
e} i j
8 1 Mo e 1 RIWRONL ;A
____________________ \
0" . ’
80 90 100
60 T
3 40 |
©
€
320 |
0 ‘ ‘ ‘

80 90 100

FIGURE 5.2: Sphere objective function and sum of constraint violation over-time

coded plot shows the best-known solution. In the top graph, the y-axis rep-
resents the values of the objective function and in the bottom graph a bar
chart is representing the sum of constraint violations for the corresponding
time for each algorithm. This figure belongs to the relevant details of the
sphere function with medium frequency and large amplitude of hyperplane
translation changes. As the figure shows, the created changes by the hyper-
plane translation, have successfully created the new environment and made
the algorithms to struggle to find the new optimum. At first look it seems
feasibility and e-constrained are more successful to reach near-optimum solu-
tions, however the bottom graph shows for some of the times they reach to
infeasible solutions with the shown sum of constraint violation. Thus, for a

better comparison of algorithms, the statistical analysis are essential.

In addition to the figure, Table 5.1 shows part of the results (25 times out of
100) of applying the benchmark for testing the sphere function with a single
dynamic linear constraint. As the table shows, the hyperplane translation
(medium changes of b_values) changes the size of the feasible region” inside
of the search space. In this case there is an inverse relation between the size of
the feasible region for the sphere function and b_value that is observable in
the results. As the feasible region changes over time, new optimal points can

appear, represented in the table as best_known. The way the algorithms track

2The feasible region is calculated by generating one million random solutions and getting
the percentage of those that do not have constraint violations.

5.4. Experimental results

71

TABLE 5.1: Testing benchmark for single constraint setup (sphere function)

Time | b_Values | Feasible region(%) | Best-Known | Penalty Feasibility e-constrained
25 18.90 100 0 68.24(48.56) 0.14(40.06) 19.76(+£3.23)

26 15.68 100 0 65.68(+8.56) 0.13(£0.04) 18.29(+£3.46)

27 12.36 99.99 0 63.22(+8.30) 0.13(£0.04) 18.1554(43.35)
28 | 14.68 100 0 61.82(+7.02) 0.12(+0.04) 18.0836(+3.24)
29 4.72 94.90 0 61.73(16.98) 0.11(=£0.03) 17.65(+3.07)

30 13.81 100 0 60.67(16.92) 0.10(=£0.02) 17.40(£3.02)

31 3.43 88.29 0 61.16(18.46) 0.10(=£0.02) 17.21(£2.72)

32 -3.73 9.88 13.86 120.29(£19.31) | 50.79(+3.04) | 72.16(£10.62)
33 3.36 87.71 0 78.24(+12.88) | 0.23(£0.10) 23.34(+5.39)

34 -6.24 1.52 38.83 186.09(£30.30) | 124.59(£2.69) | 105.79(413.04)
35 | -2.79 16.65 7.79 103.78(+14.56) | 31.22(£2.56) | 57.34(+8.82)

36 | -7.59 0.40 57.416 208.18(+£45.91) | 176.86(+1.20) | 129.04(+12.59)
37 | -17.71 0 312.29 432.27(+43.40)" | 249.90(£0.26)" | 373.68(£8.93)*
38 -23.18 0 535.18 449.60(4+40.75)" | 249.96(+0.19)* | 564.60(48.40)*
39 -37.95 0 750 445.62(£37.58)" | 249.99(£0.02)* | 622.19(+26.84)*
40 -29.763 0 750 446.50(439.38)" | 249.95(+0.17)* | 631.42(+27.00)*
41 -16.24 0 262.70 406.37(146.45)" | 249.94(+0.15)* | 332.44(49.65)*
42 | -13.63 0 184.99 346.09(+31.43) | 249.93(+0.16)* | 262.38(+11.48)*
43 | -16.74 0 279.02 416.34(£37.78)" | 249.98(£0.05)" | 345.43(+9.60)*
44 -5.81 218 33.62 160.23(£23.39) | 109.16(+2.41) | 98.47(+11.50)
45 | -9.827 0.02 96.12 248.92(+28.16) | 249.73(+1.24)* | 175.17(+9.74)
46 0.51 57.04 0 86.80(+12.70) | 0.37(40.16) 31.98(16.47)

47 -1.52 29.99 2.29 94.192(£18.16) | 11.24(£2.03) | 43.25(412.46)
48 -11.59 0.00 133.88 282.30(£33.81) | 249.86(+0.30)* | 211.62(+11.46)
49 -14.86 0 219.82 378.82(+44.47)" | 249.98(40.07)* | 292.40(+14.35)*
50 -6.50 1.18 42.07 177.18(£26.29) | 134.64(£2.25) | 111.69(£10.12)

these new best-known solutions is recorded across all of the runs and then
the distribution is measured in the table. This allows a comparison between
algorithms for specific times, although, for larger time scales individual com-
parisons are not preferable. The highlighted points with an asterisk shows
that the relevant algorithm has sum of constraint violation other than zero for

the relevant times.

5.4.2 Single constraint

The results of this section and the next section (multiple constraints) are based
on measuring the performance of the algorithms with the ranking mechanism
and the modified offline error explained in Chapter 2; where the results are
summarized in Tables 5.2 and 5.3. To validate the results, the 95%-confidence
Kruskal-Wallis statistical test and the Bonferroni post hoc test, as suggested
in [37], are presented. Nonparametric tests were adopted because the samples
of runs did not fit to a normal distribution based on the Kolmogorov-Smirnov

test.

The results of statistical tests for single constraint case, presented in Table 5.2,
showed in all of the cases, all the methods have significant difference with each
other based on the modified offline error (M_off_e) values. For the hyperplane
translation, it is expected that as the magnitude of changes increases from
small to large, the M_off_e values also increases as it gets harder for the

algorithms to track the bigger changes. However, for multi-modal functions

72 Chapter 5. Benchmarks in Dynamic Constrained Optimisation

TABLE 5.2: Statistical test results for single constraint setup

Function 1: Sphere

Hyperplane translation Fr n Penalty Feasibility e-Constrained
yperplane transiatio equency Rank M_off_e Rank M_off_e Rank M_off e
Small 2 12347(£3.22) 1 51.09(£0.41) 3 82.02(£1.21)
Medium 1000 1 115.82(+£2.78) 2 60.03(£0.48) 3 76.59(%1.38)
Large 2 185.07(£3.45) 1 158.70(%0.54) 3 131.53(£1.26)
Medium 2000 |: 2 99.89(+186) 1 1 5529(x021) 3 4252(055)
500 1 130.548(42.858) 2 66.45(+0.67) 3 110.88(+2.52)
“Medium & rotation 1000 |- 2 14487(£2.92) 1 1 10413(£057) 3 100.70(+140)
Function 2: Rastrigin
Hyperplane translation Frequenc Penalty Feasibility e-Constrained
yperp q Y| Rank M_off_e Rank M_off_e Rank M_off e
Small 1 342.56(+5.13) 2 74.51(£1.01) 3 276.78(44.33)
Medium 1000 1 302.96(+4.83) 2 72.83(+0.88) 3 244.01(+3.53)
Large 2 281.67(+4.79) 1 155.14(+0.79) 3 221.16(+3.24)
Medium 2000 |° T 27469(£372) - 2 6285(041) 3 18357(£338)
500 1 327.74(46.18) 2 88.30(+1.42) 3 295.96(+4.41)
“Medium &rotation 1000 |~ 2 29525(+4.07) 1 11075(£0.82) 3 24491(+420)
Function 3: Ackley
Hyperplane translation Frequency Rank M_I;ef?_aelty Rank I\f_egfsfl_b;hty Rank EMC_ (;r;fs_tzamed
Small 2 5.59(£0.07) 1 1.65(%0.04) 3 1.53(£0.05)
Medium 1000 2 5.68(40.07) 1 2.87(40.04) 3 4.37(£0.06)
Large 2 4.99(£0.05) 1 2.35(4:0.05) 3 3.69(0.05)
Medium 2000 |: 2 523(£0.08) 1 1 214(F001) 3 292(x0.04)
500 2 6.12(+0.13) 1 4.03(40.07) 3 5.56(10.07)
“Medium & rotation 1000 |- 2 5.18(£0.05 1 1 2094004 3 405(x0.04)
Function 4: Rosenbrock
Hyperplane translation Frequenc Penalty Feasibility e-Constrained
yperp 1 q Y| Rank M_off_e Rank M_off e Rank M_off e
Small 2 253460.47(+9060.06) 1 178489.77(+1984.36) 3 173310.42(+4686.65)
Medium 1000 1 247669.98(+7753.57) 2 182819.77(+1604.41) 3 198033.54(+2506.62)
Large 2 617497.34(+6471.45) 1 564491.21(+1645.71) 3 488869.17(+4354.94)
Medium 2000 | T 230607.72(+4989.70) 2 184070.57(£963.10) 3 121674.39(+1650.03) -
500 1 265362.75(+7965.06) 2 180453.32(+1898.88) 3 243173.54(+5108.13)
“Medium &rotation 1000 |~ 2 40392026(+5611.91) 1 340830.23(:2661.17) 3 319687.74(%3933.93)

(Rastrigin and Ackley), this trend is not observable with the exception of
feasibility for Rastrigin function. The reason behind this is that with small
changes, algorithms are not able to come out of their previous local optima
but with larger changes this will happen resulting to smaller M_off_e overall.
For the experiment 2, all the algorithms for all the functions showed similar
trend in which M_off_e increased as the frequency of changes increased. This
is expected as with higher frequencies, algorithms have less time to reach to
near optima solutions. Thus their overall deviation from the optima counted

over all times increases (M_off_e).

Based on the results for M_off e, the magnitude of the effect that hyperplane
translation has on the performance of the algorithms is greater than the effect
that frequency has. The magnitude of difference in M_off_e between the
respective small and large settings was greater for hyperplane translation in
every single test case. The reason behind this is that drastic changes lead to
early solutions being infeasible or non-optimal, leading to larger M_off_e.

The third experiment tends to have one of the highest M_off_e, however,
it is usually beaten by large hyperplane translation (large setting). This is
because, in this experiment, the hyperplane is both translating and rotating
(the b_value in this experiment is medium). The effect of hyperplane rotation
on algorithm performance is lesser than that of translation, this leads to larger

translation values affecting performance to a greater degree.

5.4. Experimental results 73
TABLE 5.3: Statistical test results for multiple constraint setup
Function 1: Sphere
. Penalt Feasibili e-Constrained
Hyperplane translation Frequency Rank M_off_e Y Rank M_off_e g Rank M_off e
Small 3 185.99(£7.13) 1 152.72(Z0.68) 2 79.15(1£4.38)
Medium 1000 3 346.88(+3.1763) 1 388.44(+0.88) 2 241.99(+2.63)
Large 3 474.22(+3.78) 1 563.38(+0.87) 2 361.96(+1.87)
i ;V[ie;i;u?n:l 77777777777 2000 |° 3 341.00(+381) 1 363.18(x040) 2 14200(£093)
500 3 347.31(+5.20) 1 419.49(+1.28) 2 307.56(+2.46)
“Medium+ rotation 10000 3 437.82(£386) 1 BIL31(£0.700 2 33700199
Function 2: Rastrigin
Hyperplane translation Frequenc Penalty Feasibility e-Constrained
yperp q Y| Rank M_off_e Rank M_off e Rank M_off e
Small 3 276.75(+9.08) 1 136.66(+0.63) 2 212.42(+2.46)
Medium 1000 3 231.74(+4.65) 1 351.49(1+0.84996) 2 171.66(£2.41)
Large 3 201.14(+3.86) 1 504.28(0.82) 2 140.25(1.64)
i Me;i;;[;\ 77777777777 2000 | : 3 222.76(£493) 1 34477(£039) 2 121.30(+£2.10)
500 3 237.96(+4.70) 1 371.18(+1.49) 2 210.80(£3.01)
"Mediumé& rotation 1000 | ¢ 3 21877(%348) 1 46051(x1.09) 2 15614(x215)
Function 3: Ackley
Hyprpane randaion Ty | eyt s ke e e
Small 3 2.93(%0.08) 1 3.32(£0.01) 2 2.19(%0.03)
Medium 1000 3 3.1001(£0.05) 1 1.92(40.03) 2 2.01(£0.02)
Large 3 2.18(4:0.02) 1 0.91(40.01) 2 1.23(£0.01)
i ;V[ie;i;u?n:l 77777777777 2000 ¢ 3 290(+0.05) 1 1B5(x001) 2 137(£002)
500 3 3.21(+0.04) 1 2.37(+0.04) 2 2.67(+0.03)
"Medium & rotation 1000 | ¢ 3 249(£004) 1 133(x001) 2 153(£0.02)
Function 4: Rosenbrock
Hyperplane translation Frequenc Penalty Feasibility e-Constrained
yperp 1 q Y | Rank M_off e Rank M_off e Rank M_off e
Small 3 671088.17(+30354.75) 1 455385.39(+3183.39) 2 334609.91(+15684.28)
Medium 1000 3 1422991.18(+8921.85) 1 1379550.37(+£2485.46) 2 1050610.91(£11110.19)
Large 3 2098319.20(+8777.84) 1 2074607.43(+3342.87) 2 1647633.16(+7008.78)
i ;v[?e;i;;[; 77777777777 2000 | : 3 1411721.36(+14660.1552) 1 1280034.81(£979.24) 2~ 646148.54(£5147.41)
500 3 1406504.59(+14776.65) 1 1494601.78(+3355.88) 2 1280330.18(+5866.88)
"Mediumé& rotation 1000 | ¢ 31 1909408.88(+£11346.38) 1 1895323.55(+£3172.15) 2 1519570.30(:7386.32)

One of the limitations of M_off_e measure is that it is biased against genera-
tions where solutions are infeasible (considers worse solution of population in
case of an infeasible solution). This makes our ranking procedure better suited
to dynamic environments because it only uses an algorithm’s best solution for
each time and considers both criteria (objective value and sum of constraint

violation) in selecting a higher performing result.

In the results, some algorithms are ranked higher than others despite having
greater observed M_off_e. This discrepancy is caused by the ranking solutions
selecting the single best solution for each time and then comparing the algo-
rithms, whereas, M_off_e is measured per generation. Based on discrepancy
of these two measures, ranking procedure will give higher priority to feasi-
bility of the achieved solutions, while M_off_e is more in favour of the more
closer to optima solutions. So an algorithm can be chosen based of which

criteria is in our priority based of these two measures.

Based on ranking results, penalty is competitive with feasibility across the
functions, despite usually having a higher M_off_e. Higher M_off_e values
for penalty is because it accepts more infeasible solutions (based on our
adaptive penalty method, this happens especially for the first generations)
and M_off_e picks the worst solution if the best is infeasible. While, when
ranking algorithms the best solution overall for each time is selected and this

allows penalty to rank higher (as generations proceed penalty tend to increase

74 Chapter 5. Benchmarks in Dynamic Constrained Optimisation

penalization factor to choose feasible solutions leading to final solutions more
teasible). Achieving the third rank for e-constrained also is expected based
on its less strict behaviour toward infeasible solutions compared to feasibility.
This becomes the reason to get more final infeasible solutions at each time,

leading to its lower ranking compared to feasibility.

For Ackley function, regardless of the experiment, the algorithms ranked
identically relative to each other. Feasibility outperformed the others, with
penalty coming second and e-constrained coming last. For the other functions,
penalty and feasibility are struggling for the ranking. For the hyperplane
translation and rotation, feasibility wins regardless of the tested function.

5.4.3 Multiple constraints

Statistical test for multiple constrained case, presented in Table 5.3, also shows
all the methods have significant difference with each other. As the results in
this table show, multiple constraint experiments tend to have higher M_off ¢
compared to their single constraint experiments counterparts. This is due to
the increased difficulty that comes with satisfying multiple constraints at the
same time over a single one. Regardless of the experiments and severities,
in the rankings, feasibility is consistently as the best, the second ranking is
for e-constrained and the last one is for penalty. This is expected as in our
ranking procedure the priority is with feasibility of the solutions. In the case
of multiple constraints, in most of the experiments, algorithms are not able
to find any feasible solution. As a result, based on the proposed ranking
procedure, they will be ranked based on lower sum of constraint violations.
Thus, feasibility based on its algorithm mechanism is usually the winner in

this case.

5.5 Conclusion and future work

In this chapter, a framework has been proposed to generate benchmarks for
testing algorithms in DCOPs. Our proposed framework can produce multiple
benchmarks to be applied for testing any function and for any number of
changes and dimension in the optimisation problem. The changes in the envi-
ronment are imposed by translation and rotation of the hyperplane in single
and multiple linear constraints. For testing our benchmark, three constraint
handling techniques have been applied and compared (penalty, feasibility and
e-constrained) using DE algorithm. A procedure for ranking the algorithms,
that is based on the feasibility rules, was proposed to analyse the results
and compare the algorithms behaviour. Implementing different functions

5.5. Conclusion and future work 75

showed that our proposed benchmark can be applied to test any function in
DCOPs effectively. Moreover, the results showed that created changes had
an observable effect on the performance of the compared algorithms. For
future work, the proposed benchmark would need to be used with more
advanced algorithms as the current constraint handling techniques struggled

with dynamism.

77

Chapter 6

On the Use of Diversity Mechanisms in
Dynamic Constrained Continuous

Optimisation

6.1 Introduction

For avoiding premature convergence, that is a common problem in EAs, a
diverse population is needed. Otherwise, there is no benefit of having a
population; lack of diversity in population in the worst case, may lead the
EA to behave like a local search algorithm, but with an additional overhead
from maintaining many similar solutions [113]. Premature convergence in
dynamic environments pose more serious challenges to EAs as when they are
converged, they cannot adapt well to the changes. Indeed, having a diverse set
of solutions in population helps to ensure the algorithm caters for changes in
a dynamic environment. In the literature of EAs, diversity has been found to
have various positive effects. To name a few, it is highly beneficial for enhanc-
ing the global exploration capabilities of EAs. It enables crossover to work
effectively, improves performance and robustness in dynamic optimisation,
and helps to search the whole Pareto front for evolutionary multiobjective
optimisation [54]. In the related studies of runtime analysis [43, 113], diver-
sity mechanisms proved to be highly effective for the considered problems,
speeding up the optimisation time by constant factors, polynomial factors, or

even exponential factors.

Diversity in EAs has been promoted through different approaches. A compre-
hensive classification is given in [29], that overall divides them into niching
and non-niching approaches. Moreover, another classification is given based

on the affected section of the algorithm: population-based, selection-based,

78 Chapter 6. Diversity Mechanisms in Dynamic Constrained Optimisation

crossover /mutation-based, fitness-based, and replacement-based. These ap-
proaches have been applied in many different classes of optimisation problem
so far including multi-objective [54], multi-modal [133], and constrained
optimisation [28]. To name a few of them in DCOPs based on the aforemen-
tioned classification include: mutation-based [26], replacement-based [46] or
population-based diversity mechanisms [18, 45].

However, regardless of the multiple benefits of diversity in EAs and in partic-
ular in dynamic optimisation, there is not an extensive study so far in DCOPs.
What makes study of diversity in this problem class important is the contra-
dictory effect of diversity and constraint handling techniques. While diversity
mechanism spreads the solutions over the search space, the constraint han-
dling technique has a tendency to guide the search toward feasible areas. The
results of such study gives insight into the role of these opposing forces and

their overall effect on algorithm’s performance.

What we aim is to carry out a survey study over commonly used explicit
diversity promotion methods (we exclude implicit methods that are via pa-
rameter tuning or selection mechanisms) investigating their effects in DCOPs.
Our comparison aims to reveal which diversity promotion technique work
better in each specific problem characteristic and why. Our investigations help
to develop a better understanding of diversity role in DCOPs. The presented
results reveal applying the diversity promotion techniques enhanced algo-
rithm performance significantly based on statistical test applied in modified

offline error values.

The remainder of this chapter is as follows. Experimental setup will be
presented in Section 6.2. Results and discussion are reviewed in Section 6.3

and finally in Section 6.4 conclusions and future work are summarized.

6.2 Experimental setup

The classical benchmark, introduced in Chapter 2, is used to test the algorithms
in this section. In the experiments, medium severity is chosen for the objective
function (k = 0.5) and the constraints (S = 20). The other parameters are:
frequency of change (f.)=1000, runs=30, the number of considered times for
dynamic perspective of the algorithm 5/k (k = 0.5) and the maximum number
of evaluations 10* - f. - 5/k. Parameters of DE are chosen as population size
ny, =20,CR =0.2, F ~1(0.2,0.8), and rand/1/bin is the chosen variant of
DE.

6.3. Results and discussion 79

6.3 Results and discussion

In this section, first the results for diversity measure is reviewed and then the
results for MOF, BEBC, SR, and NFE values will be discussed.

6.3.1 Diversity results

Figure 6.1 illustrates the results for coefficient of variation of population (a
measure for considering diversity explained in Chapter 2) for different meth-
ods per generation. Three functions have been opted for plots considering a
range of different characteristics. Notice that the generations are not equal
for all the methods. This is because the frequency of changes is mapped with
the number of fitness evaluations, and some methods like Opp and RI use
different number of fitness evaluations per generations compared to the other
methods. Opp has almost half the number of generations when a change
happens and RI is different from the other methods within a range (based on

what the replacement rate is).

In general, RI shows almost the same trajectory regardless of the test case. It
starts with maximum diversity around 0.6 and remains with a minor drop
through the last generations. The lack of convergence in this method is due
to random individuals inserted in the population at each iteration keeping
diversity at a consistent level. For No — div and CLS also an identical be-
haviour is observed regardless of the test case. They both start with a high
value for diversity measure equal to 1 and converge to near zero after 45
generations which represents the number of generations in which the first
change happens. Thus as diversity measure shows these two methods are
not able to promote any diversity in population after they converge in the
first change. As explained in Chapter 3, the way the tested algorithms react
to changes is through re-evaluation of the solutions. For the other methods
due to the applied diversity promotion technique, they can diverge faster
leading to higher MOF values overall (is discussed in next section). But for
these two methods finding new optimum after a change is very slow. This
is because DE relies on differential vectors to maintain diversity, which are
dependent on the population’s diversity itself. So without increasing diversity
extrinsically, diversity will remain low in them leading their inability to track

new optimum.

For Opp, the diversity depends whether the opposite individual is accepted
in the population or not. For test cases with smaller feasible regions, the
diversity is low as the opposite individual is infeasible and hence it is rejected.

80 Chapter 6. Diversity Mechanisms in Dynamic Constrained Optimisation

As if it is accepted, there is more diversity in the population, otherwise, this
method behaves like No-div technique. For G24_7, the feasible area shrinks
from 44.61% to 7.29% over time. This explains the behaviour of Opp in which
at each change, the diversity increases sharply and then reduces gradually
until next change happens. This pattern is repeated until around generation
160. From this generation afterwards, it loses its diversity as all of the opposite
individuals fail to be chosen in the selection process (due to small feasible

region).

Crowding is able to maintain high diversity over many generations in all test
cases, thus keeping its effectiveness in responding to dynamic environment.
This method shows higher diversity, near to 0.9, at the first generations and
linger around 0.4 until termination for functions G24_f and G24_7. For func-
tion G24_6b, its behaviour is slightly different as this test case has a special
characteristic. For this test case, the objective function changes over time
causing the global optimum to switch between two corners of the search
space at each change step. This characteristic in this function can attribute
the oscillated behaviour of diversity in Fitnessdiv method. By starting the
tirst time before a change happen at generation 45, the diversity decreases.
When the change happens, as the new optimum is in the other boundary
of the search space, so the solutions must diverge again gradually to reach
to the new optimum on the other corner of the search space until reaches
to the next change in the environment and the same pattern repeats. For
the other two test cases, Fitnessdiv showed a similar trend to Crowding, but
with lower diversity. Another difference is after 150 generations, it looses
its diversity. However, Crowding still keeps its diversity at around 0.4 until
the end of generations. In general, as our selected measure of diversity is
based on genotypic level, Crowding that is based of promoting diversity in

genotypic level has got higher scores.

6.3.2 Statistical results

The results obtained for the compared algorithms using MOF values are
summarized in Table 6.1. Furthermore, for the statistical validation, the 95%-
confidence Kruskal-Wallis (KW) test and the Bonferroni post-hoc test, as
suggested in [37] are presented (see Table 6.2). Non-parametric tests were
adopted because the samples of runs did not fit to a normal distribution based

on the Kolmogorov-Smirnov test.

Based on Tables 6.1 and 6.2, MOF shows significantly superior results for
almost all of the methods compared to the base algorithm, No — div, for most

6.3. Results and discussion 81

1 \

M\k A —cts
0.5 . A = Crowding
Fitnessdiv

== No-div
= Opp
A :
0 150

50 10 200 250

G24_7

FIGURE 6.1: Y-axis: Diversity score (coefficient of variation of population), X-axis:
Generations

of the test cases. Among them, Crowding has the highest frequencies of wins
over the base algorithm compared to other methods. The difference of outper-
formance of Crowding compared to other methods is more significant in test
cases by dynamic objective functions. This shows the other methods decrease
in their performance dealing with dynamic objective functions compared to

static ones, leading to bigger difference in dynamic cases.

On the contrary, the method that is very similar to No — div method is CLS. As
diversity results showed, this method is not increasing diversity that much, as
it is more like a local search. This explains its superior performance compared
to other methods in fixed test cases (G24_3f, G24_f). But it can not promote
diversity that much (as only best solution at each iteration changes) and its

inability to react to changes explains its higher MOF values.

RI preformed worse than the base algorithm for the problems with small fea-
sible area (like G24_3f, G24_f, G24v_3, G24w_3) as there is a high probability
that the inserted solutions are infeasible and hence they can not compete with
the current best solution based on the applied constraint handling technique.
On the contrary, for unconstrained ones and the ones with large feasible areas

82 Chapter 6. Diversity Mechanisms in Dynamic Constrained Optimisation

NFE
[NEN
S o
s 3
-
=

C*E
p%-i._._....._ -t-i-;éi et . . i

G24u G241 G24.f G24_uf G242

NFE

PR e L,

i —— T e T
G24_2u G243 G24_3b G24_3f G244

NFE
-

e Pk Wi i % Rk

6245 G24_6a G24_6b G24_6c G24_6d G247

[¢

e L

-
e
HilH
ﬁ--.
gi_.

624_8a G24_8b G24v_3 G24v_3b G24w_3 G24w_3b

FIGURE 6.2: Boxplot of NFE values for € = 10%V TR, color-coded with SR values:

dark-red: SR < 20%, purple: SR € [20% — 50%], blue: SR € [50% — 80%], dark-green:

SR > 80%. From left to right 1 = CLS, 2 = Crowding, 3 = Fitnessdiv, 4 = No — div,
5=0Opp,and 6 = RI.

showed the best results (like G24_u, G24_2, G24_2u, G24_6b, G24_8a). So
generally, although the diversity of population is increased by inserting new
solutions to the population, but because they are not feasible solutions they are
not that effective. In addition, in this method the algorithm spends some more
titness evaluations (to the extent of replacement rate) compared to the base
algorithm at each generation. Thus, the algorithm will have less computation
budget for the evolution process itself as the changes happen after known
number of fitness evaluations. In this benchmark there are some pairs of test
cases that are used to test one behaviour of the algorithms like their abilities to
handle constraints in the boundaries or the cases with disconnected feasible re-
gions versus non-disconnected feasible area. Comparing the pairs of test cases
with optima in constraint or search boundary over optima not in constraint
or search boundary, with No — div the optima in constraint boundary has got
better results (G24_1, G24_2), (G24_4, G24_5), (G24_8b, G24_8a). While for
other methods the trend is similar, for RI the trend is the other way, meaning
with increasing diversity by inserting random solutions in RI, algorithm en-
hances its ability for finding optima which is not in constraint boundary. The
pairs of fixed constraints versus dynamic constraints (G24_f, G24_7), (G24_3f,
G24_3) show significant decrease in MOF values for dynamic constraints as
it gets harder for the methods to deal with dynamism. The only exception

6.3. Results and discussion 83
TABLE 6.1: Average and standard deviation of MOF values over 30 runs. Best
results are remarked in boldface.
. Functions
Algorithms G24_u G241 G24_f G24_uf G242 G24_2u
CLS 0.4331(£0.022) 0.5658(£0.014) 0.0294(£0.012) 0.0027(+0.002) 0.7965(£0.085) 0.3125(+0.058)
Crowding | 0.0576(£0.027) 0.0823(+0.025) 0.0698(+0.029) 0.0033(+0.004) 0.2030(+0.049) 0.2488(-0.247)
Fitnessdiv | 0.2084(+0.161) 0.5804(£0.014) 0.0394(40.014) 0.0046(£0.004) 0.9292(+£0.202) 0.8327(+0.293)
No-div 0.6215(40.002) 0.5737(£0.014) 0.0332(£0.014) 0.0026(40.002) 1.5727(£0.091) 1.5208(£0.002)
Opp 0.6118(40.013) 0.5364(£0.080) 0.0446(%£0.019) 0.0020(40.002) 1.3765(£0.076) 0.0299(£0.015)
RI 0.0344(40.017) 0.5183(+0.044) 0.4356(+0.040) 0.0031(40.003) 0.1935(£0.029) 0.0292(+0.011)
G24_3 G24_3b G24_3f G24_4 G24_5 G24_6a
CLS 0.2433(+0.058) 0.7861(£0.108) 0.0263(0.014) 0.8449(+0.109) 0.7077(£0.099) 1.9470(-0.146)
Crowding | 0.1618(40.039) 0.1556(10.023) 0.0471(+0.017) 0.1204(+0.017) 0.1628(+0.033) 0.0734(+0.022)
Fitnessdiv | 0.0745(0.013) 0.5126(0.112) 0.0314(£0.009) 0.6216(:0.052) 0.8183(£0.134) 1.8504(<0.131)
No-div 0.3619(40.152) 0.9496(£0.192) 0.0269(£0.011) 0.6756(40.073) 1.2418(£0.094) 2.1163(£0.434)
Opp 0.3036(40.117) 0.6724(£0.180) 0.0460(£0.020) 0.3271(40.070) 0.9553(£0.041) 1.5525(£0.546)
RI 0.4339(40.038) 0.5102(£0.037) 0.4079(£0.040) 0.5129(40.043) 0.2170(£0.034) 0.2753(£0.075)
G24_6b G24_6¢ G24_6d G24 7 G24_8a G24_8b
CLS 0.9702(£0.397) 1.7536(£0.458) 0.6860(£0.013) 0.3440(£0.094) 0.7243(0.031) 0.6747(0.028)
Crowding | 0.2554(£0.064) 0.0993(+0.050) 0.0775(+0.015) 0.1475(£0.026) 0.5850(+0.030) 0.1864(+0.039)
Fitnessdiv | 1.1505(4+0.377) 0.9252(£0.523) 0.5438(+0.061) 0.1614(40.032) 0.5200(£0.056) 0.7040(+0.069)
No-div 1.7479(£0.789) 1.9300(x0.646) 0.7887(40.010) 0.3442(£0.162) 1.1064(£0.013) 0.7265(4-0.007)
Opp 0.8291(40.624) 0.8088(£0.696) 0.7756(£0.012) 0.2025(40.148) 1.1914(£0.050) 0.7510(£0.032)
RI 0.1876(40.023) 0.1882(+0.025) 0.2320(£0.039) 0.3904(40.044) 0.4755(£0.031) 0.5557(£0.041)
G24v_3 G24v_3b G24w_3 G24w_3b
CLS 0.5923(£0.507) 0.6941(+0.205) 1.0406(0.503) 1.2456(%0.161)
Crowding | 0.2529(10.081) 0.2214(+0.057) 0.5503(+0.198) 0.6458(+0.141)
Fitnessdiv | 0.2943(40.147) 0.4219(£0.051) 0.4784(+0.161) 0.6905(+0.186)
No-div 0.8776(40.701) 0.9734(£0.222) 1.1860(%0.467) 1.2710(+0.215)
Opp 0.7725(4+0.719) 0.6778(£0.132) 1.1778(%0.371) 1.1999(+0.213)
RI 1.4512(£0.101) 0.8169(£0.097) 1.2991(40.091) 1.2263(+0.085)

is the behaviour of RI method in which MOF values are almost the same in

these two cases and this is attributed with stochastic nature of this method.

The pairs of test cases for observing the effect of connected feasible region
versus disconnected feasible region (G24_6b, G24_6a), (G24_6b, G24_6d) do
not show any trend in the results. As this behaviour depends to the constraint

handling technique of algorithms to a greater extent, that is similar in our

case. Opp showed similar performance to the base algorithm in most of the

cases with some exceptions. As the authors claim this method is to enhance

convergence speed compared to base DE algorithm and is more effective in

higher dimension problems. Our case is a two dimension, it is recommended

to test this algorithm with higher dimension to see its effects in DCOPs.

The results of BEBC values also show Crowding has the best performance

over the other methods in most of the test cases. In addition, for two test
cases (G24_2, G24_8a) that RI showed better results in MOF values, based on
BEBC values Crowding has better performance meaning Crowding end-up to

closer values to optimum at the end of the change periods. For G24_uf, all

the methods except RI reach to optimum values as the BEBC values are zero.

Also for G24_u, Crowding and RI reach to optimum at all times.

Figure 6.2 shows the distribution of NFE values in box-plots. Boxes represent
the values obtained in the central 25%-75%, while the line inside the box

shows the median values. Whiskers depict highest and lowest values within

84 Chapter 6. Diversity Mechanisms in Dynamic Constrained Optimisation

interquartile range and dots show outliers. The figure is color-coded based on
SR values. The dark-red color shows SR values lower than 20%, the purple
color belongs to SR € [20% — 50%|, the blue color is for SR € [50% — 80%],
and finally the dark-green belongs to SR values above 80%. In general for the
test cases with fixed characteristics (G24_f, G24_uf, G24_3f) or unconstrained
cases (G24_u, G24_2u) in most cases the algorithms manage to reach to VTR
values in lower NFE and higher SR values. For the rest of the test cases, there
is this general observation that shows regardless of the test case, Crowding and
Fitnessdiv are more successful based on SR values that is easily observable
based on stages that we defined and color-coded. Based on the colors, these
two methods are usually one stage higher than the other methods in SR

values.

Based on the characteristics of some functions, the distribution of NFE show
quiet a high standard deviation in the results. These cases show less reliability
in algorithms behaviour as in each run they achieve the VTR in different NFE
values. Those belong to test cases with either smaller feasible areas or the
test cases with specific characteristics (G24_2, G24_5). In these two test cases
in some change periods the landscape is either a plateau or contains infinite
number of optimum. In some cases the algorithms are almost unable to reach
VTR in the given number of evaluations. The cases are colored with dark-red
based of SR values. Figure 6.2 for RI shows in unconstrained cases it reaches
to 10%V TR values with 100% of SR in almost of the cases but with high NFE
values. In addition, for the functions with small feasible areas the results show
a high number of standard deviation. Indeed, this was expected based on
the random nature of this method. So depending on the random solutions
inserted, in some cases, they can manage to track the optimum and in the
others they are unable to do so. In general, RI is the most different method

that has different trend compared to other methods in almost all the functions.

6.3.3 Discussions

Overall, results show Crowding that has higher diversity in population could
reach to better MOF values. It also shows higher speed and frequency of
reaching to 10%V TR values due to the results of SR and NFE values. Sta-
tistical test shows (Table 6.2) this method not only have significantly better
results compared to base algorithm (No — div), but also compared to other
methods in most of the test cases. Despite this method shows competitive
results regardless of the test case, success of some methods highly depend on
the tested problem. In this method, high diversity in population is created
by avoiding genotypic similar individuals and without the need for extra

6.3. Results and discussion 85

titness evaluations. While for some other methods such as RI high diversity
in population is achieved with the need for extra evaluations and the new
solutions are inserted randomly. Although, the random insertion of solutions
is often successful in unconstrained problems, in constrained problems it
is dependant to the feasibility status of the new solutions and the applied
constraint handling method. Indeed, the constraint handling technique forces
the solutions toward feasible areas avoiding infeasible areas while diversity
mechanisms tend to have solutions spread over the search space. Of course
the severity of the competition depends to both opposing forces: diversity
promotion technique and constraint handling technique applied. So depend-
ing to the applied methods, the created solution may not be accepted (rejected
by constraint handling method) to be inserted to the population like in Opp,
leading to low diversity in constrained problems; Or the solutions are inserted
in the population increasing diversity (like in RI) but unable to compete with
the best solution. Thus, one solution is applying adaptive constraint handling
mechanisms. They can be designed in a way that at the first generations
after a change, they increase their threshold (more relaxed with constraint
violation) in order to allow diversity mechanisms explore the whole search
space and then decrease to conduct the search toward feasible areas. The other
suggestion is to use repair methods [3] as constraint handling technique, in
which if the created solution by diversity handling mechanism is infeasible
but a good solution (in terms of fitness function), preserve it in the population
by repairing it. For more elaborate investigations on the roles of these two
forces over each other and the overall algorithm performance, a measure that
shows percentages of feasible and infeasible solutions that are selected for
next generation can be helpful. As this measure can imply diversity handling
mechanism ability to how it will balance exploiting feasible regions while
exploring infeasible regions.

Since the results of Fitnessdiv are not as promising as Crowding for the prob-
lem types in this benchmark, this can infer that phynotypic diversity has less
effectiveness in comparison to gynotypic diversity. For CLS, although an
adaptive approach is used in such a way that at the first generations after a
change, the local search length is large and gradually reduces; But as this local
search is only applied to best solution at each generation, it is not enough to
promote diversity as the results show. One solution is to do chaos local search
randomly for some other individuals of the population besides to the best
solution to increase diversity more. RI showed less reliability in NFE and
SR values (based on high standard deviation in results) and its worse per-

formance for MOF values for problems with small feasible area. Conversely,

86 Chapter 6. Diversity Mechanisms in Dynamic Constrained Optimisation

TABLE 6.2: The 95%-confidence Kruskal-Wallis (KW) test and the Bonferroni post-
hoc test on the MOF values in Table 6.1. The compared variants are denoted as: 1 =
CLS, 2 = Crowding, 3 = Fitnessdiv, 4 = No — div, 5 = Opp, and 6 = RI.

Functions | Statistical Test
G24_u 1>24>1,1>6,4>25>24>35>3,3>6,4>6,5>6

G24_1 1>2,3>2,4>25>2,6>23>64>6,5>6
G24_f 2>1,6>1,2>3,2>4,6>2,6>3,6>4,6>5
G24_uf

G242 1>2,4>15>1,1>6,3>2,4>25>24>3,3>64>65>6
G24_2u 4>1,1>51>6,3>2,4>22>52>6,3>5,3>6,4>54>6
G24_3 1>3,6>1,2>34>25>2,6>24>35>3,6>3,6>5
G24_3b 1>2,1>3,1>6,3>24>25>2,6>2,4>3,4>54>65>6
G24_3f 2>15>1,6>1,2>4,6>2,6>3,5>4,6>4,6>5

G24_4 1>2,1>3,1>5,1>6,3>24>2,6>2,3>54>54>6
G245 1>2,4>15>1,1>6,3>2,4>25>24>3,3>64>65>6
G24_6a 1>2,1>6,3>2,4>25>23>64>5,4>65>6

G24_6b 1>2,1>6,3>24>25>23>64>54>65>6

G24_6c¢ 1>2,1>5,1>6,3>2,4>25>24>3,3>6,4>54>6,5>6
G24_6d 1>2,4>1,1>6,3>2,4>25>24>35>34>65>6
G24_7 1>2,1>3,1>54>2,6>2,4>3,6>3,4>5,6>5

G24_8a 1>3,5>1,1>6,4>25>2,2>6,4>3,5>3,4>6,5>6
G24_8b 1>24>15>1,3>2,4>25>25>3,3>6,4>65>6
G24v_3 1>2,6>1,4>2,5>2,6>2,4>3,6>3,6>5

G24v_3b |1>2,1>34>14>25>26>2,4>35>3,6>3,4>5
G24w_3 1>2,1>3,4>25>2,6>2,4>35>3,6>3

G24w_3b | 1>2,1>3,4>2,5>2,6>24>35>3,6>3

this method is highly suggested to be used for unconstrained problems as it

showed best results for these cases.

6.4 Conclusions and future works

Maintaining and promoting diversity in EAs is crucial to enable them adapt to
dynamic environments in DCOPs. We have surveyed analysis of the diversity
mechanisms, ranging from chaos local search, crowding, fitness diversity,
opposition and random immigrants with a base DE algorithm for solving
DCOPs. We have seen that diversity can be highly beneficial for enhancing the
capabilities of DE for solving DCOPs. We found that diversity mechanisms
that are effective for one problem may be ineffective for other problems, and
vice versa. We observed that in some cases, the diversity mechanisms tend to
have an opposing force towards the constraint handling technique. To gain
more insights, comparing combination of diversity promoting mechanisms
with different constraint handling techniques is worth to be studied. Another
future study is to explore niching methods, such as clearing and fitness shar-
ing, in the context of multi-modal optimisation. We did not include these
methods in our study since our benchmark does not have any multi-modal

problems.

87

Chapter 7

Neural Networks in Evolutionary
Dynamic Constrained Continuous
Optimisation: Computational Cost and
Benefits

7.1 Introduction

The previous works on prediction mechanisms used as dynamic handling
technique show how environmental change pattern can be extracted from the
previous environments to provide effective guidance for the EA to predict
the future optimum. For instance, in [106] the Kalman filter is adopted to
model the movement of the optimum and predict the possible optimum in
new environments. Similarly, in [110] linear regression is used to estimate
the time of the next change and Markov chains is adopted to predict new
optimum based on the previous times optimum. Likewise, in [136] the center
points of Pareto sets in past environments are used as data to simulate the
change pattern of the center points by using a regression model. In other
works [58, 70], where the change pattern is not stable, it is proposed to directly
construct a transfer model of the solutions/fitness, considering the correlation

and difference between the two consecutive environments.

What is neglected in previous works is the time used for training and calling
the predictor. In one recent work [69], the time spent for training the neural
network (NN) is reported, however, it is not compared to the overall optimi-
sation time. Such a comparison is needed, to reflect the overhead caused by
using NN. In the relevant literature of dynamic problems, often a change is
designed to happen after a constant number of fitness evaluations or gener-

ations [86]. But we need to consider the difference between the algorithm

88 Chapter 7. Neural Networks in Evolutionary Dynamic Optimisation

using NN and the baseline algorithm in terms of the real computational cost.
In some real-world problems [16], the condition that leads to the dynamic
behaviour of the problem, happens after a time constraint (for instance prices
are updated hourly in a power market). In this situation, we want an opti-
misation algorithm to achieve an optimum solution in a limited time budget,
regardless of the number of fitness evaluations. In particular, time is impor-
tant to be accounted when using a NN since by including several stages (data
collection, training and predicting new solutions) can produce a noticeable
time overhead in the optimisation. Therefore, we propose to create a change
after an actual running time. With this, the time spent for training NN, is
subtracted from the EA time. In consequence, all the methods have the same
time budget for overall optimisation in each time. The purpose is to observe,
considering the assigned time to NN that is indeed taken from the EA time
for optimisation, if still NN helps the EA to improve the results.

Aside from the time constraint, our other concerns are regarding collecting
sufficient samples to generalize predictions for new data, and the reliability
of the samples. For those dynamic problems that the overall time horizon is
short, we are not able to collect enough samples to train the NN in proper
time. To alleviate this, we propose to consider more individuals on each time
to speed up sample collection in shorter time steps. In problems with high
frequency of changes, the solutions produced by EA at the end of each time
are likely to be far from the real optimum. In such cases, using unreliable
train data for the NN, in consequence, will produce unreliable predictions.
Also, as the time spent for NN stays fixed regardless of the frequency, a higher
frequency will mean a higher produced overhead by the NN in proportion to
the EA.

Using differential evolution as our baseline, we experiment with different
NN specifications. We explore how to introduce predicted solutions into
population and the effect of the number of individuals introduced to be
replaced on each change. The results of this chapter is published in European
conference on artificial intelligence (ECAI 2020) [48]. The remainder of this
chapter is as follows. Experimental setup will be presented in Section 7.2.
Experimental results are reviewed in Section 7.3 and finally in Section 7.4 the

results are concluded.

7.2 Experimental setup

In this section, designed experiments, the test problems and the applied

parameters are reviewed.

7.2. Experimental setup 89

7.2.1 Designed experiments

Regarding to integration of NN with DE algorithm, there are a couple of
experiments designed as follows.

* Frequency changes: In this experiment, we observe how the frequency
of changes will affect the results. The frequency of change, denoted
by 7, represents the width that each time lasts. Notice that when we
refer to higher frequencies of change, we mean lower values for 7, since
higher frequencies of change happens when there is shorter time inter-
val between each change (7). Three frequencies of change: 0.5, 1 and 4
will be used to experiment with high, medium and low environmental
changes respectively. As mentioned, in this work the real time is con-
sidered, so the values above represents time in seconds between the
two consecutive changes. To have an idea, these values represent the
following number of fitness evaluations: 0.5 ~ 1000, 1 ~ 2000, 4 ~ 9000.
Undoubtedly, these numbers are not constant for all test cases due to

different time-complexity of each function and stochastic nature of EA.

* Building train data set: In this experiment, we explore the effect of
using more individuals (k-best) of population at each time for training
the NN. We change the parameters of NN like batch size, epochs, and
number of samples accordingly to have roughly the same timing budget
for NN with respect to the overall time in each case. In the case for one
individual (k = 1), we do not limit the overall sample size, so as time
increases, the samples aggregate. In other words at every time, NN is
trained with all previous times best individuals. The reason is as we
consider one individual at each time, the collected samples are a few;
hence in order to have a reasonable number of samples we keep the
previous samples. Conversely, for k > 1 case, we use a window as the
samples aggregation limit window (denoted as 1,,=5). For this case, we
limit the number of samples since otherwise as the time increases, they
will exponentially increase. In such case, as we have a constant budget

then the time assigned to the EA decreases severely.

¢ Number and mechanism to insert predictions: In this experiment,
number of individuals to be replaced (denoted by 7,) with predicted
solutions are varied and tested. More number of predicted individu-
als are created by adding noise to the one predicted value by NN. In
this experiment, the added noise is constantly at 10% of the variable
boundaries. However, experimenting the noise effect on the results can

be considered in a future study. In addition to the number of replaced

90 Chapter 7. Neural Networks in Evolutionary Dynamic Optimisation

expl-Sphere

0
-20 T
0 20 40 60 80 100
exp2-Sphere
7.5
5.0
2.5
0 20 40 60 80 100
exp3-Sphere
0
—20 +
0 20 40 60 80 100

FIGURE 7.1: pca plot of best_known positions for each experiment over time

individuals, two different replacement approaches are also compared.
The first one, denoted by NNR, replaces randomly chosen individuals
of population with the predicted solutions. The second one, denoted by
NNW, first ranks the individuals of population and then replaces the
top worst among them with the predicted solutions.

7.2.2 Test problems and parameters settings

We applied the test problem introduced in chapter 2 for neural network exper-
iment. Figure 7.1 shows the pattern in which the position of optimum changes
in each experiment!, using principal component analysis (PCA) method to
map the thirty dimension to one dimension scale. Feasibility rules [35] is
applied for the constraint handling. For change-detection approach we used
re-evaluation of the solutions. As change reaction mechanism, two approaches
are considered. In the first approach, called noNN, the whole population is
re-evaluated. In the second approach, some individuals of the population
will be replaced with the predicted solutions (randomly selected or worst
solutions of the population) and the rest of the individuals are re-evaluated.

The results belong to best_known solutions of each time retrieved by executing 100,000
runs of our baseline DE algorithm.

7.3. Experimental results 91

expl-Rastrigin exp2-Rastrigin exp3-Rastrigin 1e5 exp4-Rastrigin

1.50 1

6004 1,500 125

1.00 4
400 1,000

0.751

0.501

200 500

0.254

:

0 0.00
[20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

FIGURE 7.2: Fitness values of Rastrigin for T = 1, color-coded with each method
over time

The other parameters are: frequencies of change 7= 0.5, 1, 4; problem dimen-
sion=30, runs=30 and the number of changes or times=100. Parameters of
DE are chosen as NP = 20, CR = 0.2, F ~ U(0.2,0.8), and rand/1/bin is
the chosen variant of DE [7]. Variable boundaries are limited in x; € [—5,5].
Parameters of NN are different based on number of individuals considered to
build training data: case k = 1: epochs=10, ny, = oo (e.g. all previous times
are considered) and case k > 1: epochs=3, n,, = 5. Also in both cases, we use
batch_size=4, min_batch=20 and n, = 3. All the experiments were run on
a cluster, allocating 1 core (2.4GHz) and 4GB of RAM. Our code is publicly
available on GitHub: https : / / github.com /renato145/DENN.

7.3 Experimental results

In this section, the main findings about designed experiments explained in

Section 7.2 are presented.

7.3.1 Frequency changes

For most experiments and functions, by increasing 7, MOF values decrease,
presented in Figure 7.3. However, there are some exceptions: for all functions
using noNN (expl and exp4) and also for Rastrigin function in all methods
(exp3). Looking to PCA plot of the optimum positions in Figure 7.1 for exp4
(and expl for some changes), the optimum alters drastically between two
consecutive changes. As noNN only reevaluates the solutions when a change
is detected, they are far away from new optimum and lacking a diversity
promotion technique to aid exploring other regions of the search space lead
to higher MOF values. However, this is only happening in T = 4 as the
solutions are more converged in this case compared to the other T values.
As for expl, drastic changes repeat less often, the drop in performance of
MOF value is less severe compared to exp3 (drop in values as T increases).
The best fitness values achieved by each method are presented in Figure 7.2

over time. From this figure, it is also observable that in most functions and

MOF

expl-Sphere exp2-Sphere exp3-Sphere expd-Sphere
25
—— 009 — N 05 B 10 B 40
14 0.08 175
20
- ; = -
0.06
15 10 125
8 0s 005 =
=z 100
10 0.6 0.04
- = | - =
0.4
° 0.02 ; 50
02 — - L] ==
- — — —_ 001 —_ | - —_
noNiN W NNR N W NNR NN W NNR i W NNR
expl-Rosenbrock exp2-Rosenbrock exp3-Rosenbrock 1e7 expa-Rosenbrock
90000 300
—_—— 6 mE o5 mm 10 B 40
80000 600
- | T
70000 500
50000 200 B
400 %
50000 %
150
40000 300 3
30000 200 100 R *
20000 — ==
= = = . =
10000 == = = = == == ﬁ
oNN W NNR noNN W NRR noNiN W NNR noNiN W NNR
expl-Rastrigin exp2-Rastrigin exp3-Rastrigin expa-Rastrigin
15 180 — N 05 B 10 B 40
= %0 =
2 40 * 160
. ﬁ . -
20
w 30 20 120
s
= 100
1 25 s
" =
* *
10 60 é
. = ; i -
40
1o = = s = =
noNiN W NNR noNiN W NNR nohiN W NNR noNiN W NNR

FIGURE 7.3: Distribution of MOF values for each method color-coded with T for
30 runs

experiments, the best value achieved by NN variants is tracking the optimum
more closely. Figure 7.4 illustrates the overall performance of the methods
compared to each other color-coded with different functions considering their
performance on all the frequencies. Overall comparison of methods is not
easily possible with MOF values as they are not of the same scale. So we use
another measure denoted as MOF_norm that enables an overall comparison
of methods as they represent standard MOF values (Figure 7.4). To achieve
standard values in each set of function and experiment, the values are divided
by the minimum value among all methods. So the method with lowest MOF
value has MOF_norm value equal to one and the others are proportionally
calculated.

From aforementioned figures (7.2, 7.3, and 7.4) it can be observed that NN
variants show their best performance for the experiments where there is a
trend in the position changes. Looking to PCA plots (see Figure 7.1) for
exp3 until the time around 50, we have a linearly decreasing trend and from
then it is saturated in variable boundary remaining constant. As the training
data for NN depends to previous behaviour of the algorithm, it is unable
to self-improve as time passes. The NN variants can obtain better results
even in expl without a consistent trend. In this experiment, as we consider
5 previous times to train the NN (n; = 5), for this n; there is not a consistent
trend observable. The better results achieved is partly because the newly

generated solutions can increase diversity (as our baseline algorithm lacks a

7.3. Experimental results 93

M Rastrigin
I Rosenbrock
M Sphere

80

| 60

MOF_norm
MOF_norm
w
8

40

=z =z
2 2 E
c =z c

FIGURE 7.4: MOF-norm values considering all frequencies

i"x:ﬂﬂﬁﬂ i%"::ﬂﬂﬁﬁ ‘"~“~"¥EEEEH%EEE

z z
H H

NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR
NNW
NNR

(A)T=05 B)t=1 ()t =4

FIGURE 7.5: Kruskal-Wallis statistical test on MOF values for different frequencies

proper diversity mechanism to be activated when a change happens). Thus,
even though the change pattern is not fully consistent, but for the algorithm
without other proper mechanism for reacting to changes still can improve
the results. In addition, this is the reason the difference between MOF values
(Figure 7.3) for this experiment between noNN and NN variants is more
significant. Figure 7.2 also shows for this frequency, the optimum is not
tracked closely for noNN. However, for 7=0.5, as still population has a fair

amount of diversity, the optimum is tracked more closely.

To validate the results, the 95%-confidence Kruskal-Wallis statistical test and
the Bonferroni post hoc test, as suggested in [37] are presented. Nonparametric
tests were adopted because the samples of runs did not fit to a normal distri-
bution based on the Kolmogorov-Smirnov test. Figure 7.5 shows a heat-map
of the test results on MOF values. In this figure, as the legend represents, the
pink squares show the methods with not-significantly different (NS) results,
and the squares in the spectrum of the green colors show the significantly
different methods with the mentioned p-values. Results show in most test
cases in different frequencies, the methods have significant difference to each
other. However, for higher T values (1 and 4) the NN variants show similar
behaviour for almost half of the test cases. The reason is as the solutions
are converged in high frequencies, there is not significant difference between
replacing the worst solutions or select them randomly.

Figures 7.6 and 7.7 show a boxplot of the ARR and SR values respectively,

ARR

ARR

ARR

08

06

04

02

0.0

08

06

0.4

02

0.0

08

06

04

02

0.0

94 Chapter 7. Neural Networks in Evolutionary Dynamic Optimisation

expl-Sphere exp2-Sphere exp3-Sphere expd-Sphere

10 10 10 =05 mm 10 mm 40
=
08 == 08 — 08 == =-=
= == ==
+ = = = | = - 0 =
= -
04 04 04 mmm +
T
—_— 0.0 0.0 0.0
noNiN W R NN W NNR oNN W NNR i NW NNR
expl-Rosenbrock exp2-Rosenbrock exp3-Rosenbrock expa-Rosenbrock
10 10 == 10 mE o5 mm 10 B 40
==
o8 08 08 =+ -=
06 0.6 0.6 % é
= 04 0.4 == 0.4
—
= = ==
== = - - - =
—_— = 02 02 02
—— 00 0.0 0.0
noNN W NNR noNiN W NNR noNiN W NNR noNiN W NR
expl-Rastrigin exp2-Rastrigin exp3-Rastrigin expd-Rastrigin
10 10 10 =05 mm 10 mm 40
08 08 08
= =
06 06 06
04 04 04 =-= -
- =
i & | 0z oz
- _= = - = = | =
— 00 0.0 0.0
ol

FIGURE 7.6: Distribution of absolute recovery rate (ARR) values color-coded with
T for 30 runs

for different methods and frequencies of change. NN variants in most ex-
periments and functions show better ARR values; meaning they can recover
taster after a change. In addition, SR values show better results for NN vari-
ants; meaning they can reach to an e-precision (=10%) of optima for more
changes (or times) compared to the method without using prediction. When
comparing each method for different frequencies, there is this general trend
that better results are achieved as we proceed from frequency 0.5 to 4, as the
algorithms have more timing budget to get better results. In addition, NN
variants in this frequency, are trained with more precise data as EA has more

timing to achieve better solutions.

Table 7.1 represents the percentages of the amount of time spend for calling
NN unit compared to overall optimisation time. Regardless of the experiment
and function, the results for T = 0.5 show around 20-25%, T = 1 around
10-12% and T = 4 around 3%. This shows when T is higher, it is more cheap
to use NN in terms of the computational cost. When 7 is low the proportion
of the time for doing optimisation itself is lower, hence, the samples used to
train NN do not represent real optimum or near optimum values and the
prediction from NN is not exact in consequence. For this, in most test cases
the difference of the performance of NN variants in 7 = 0.5and 7 = 4 is

bigger compared to noNN method.

SR

7.3. Experimental results

95

expl-Sphere

exp2-Sphere

exp3-Sphere

expd-Sphere

N 05 B 10 EE 40

noNN

exp2-Rosenbrock

exp3-Rosenbrock

expd-Rosenbrock

*+ = T

=

7& -

=

N 05 BN 10 = 40

NNW

expl-Rastrigin

NNW

exp2-Rastrigin

exp3-Rastrigin

expd-Rastrigin

N 05 B 10 EE 40

noNN

FIGURE 7.7: Distribution of success rate (SR) for 30 runs; number of times algo-
rithms reach to 10% of the vicinity of optima values per overal times

TABLE 7.1: NN-time; time spend for training and using NN in proportion to overall
optimisation time (mean + std: for 30 runs)

experiment

expl

exp2

exp3

expd

freq

05

1.0

4.0 05 1.0

4.0

05 1.0 4.0

05

1.0 4.0

Sphere

NNW | 0.24 (0.00)

0.11 (20.00)

0.02 (20.00) | 0.25 (0.00) | 0.10 (=0.00)

0.03 (x0.00;

0.24 (20.00) | 0.12 (£0.00) | 0.03 (000

0.19 (x0.00,

0.10 (20.00) | 0.03 (0.00

NNR [021 (0.02)

0.12 (0.03)

0.03 (20.00) | 0.22 (=0.03,

0.03 (0.00;

024 (20.01) 0.03 (2000,

0.19 (x0.00;

0.12 (20.00) | 0.02 (+0.00

Rosenbrock

NNW | 0.23 (0.00)

0.12 (£0.00)
0.12 (£0.02)

0.02 (20.00) | 0.22 (z0.00,

0.02 (000,

0.23 (+0.00) 0.03 (£0.00;

0.22 (+0.00,

0.11 (20.00) | 0.02 (+0.00

NNR [0.20 (20.02)

0.03 (z0.00) | 0.21 (x0.02

0.03 (000,

0.24 (20.01) 0.03 (2000,

0.19 (20.01

0.12 (20.00) | 0.03 (+0.00

Rastrigin

NNW | 0.20 (+0.00)

0.03 (20.00) | 0.20 (0.00)

0.03 (£0.00;

0.24 (+0.00) 0.03 (£0.00;

0.19 (+0.00)

0.11 (20.00) | 0.03 (0.00

NNR | 0.19 (x0.04)

0.14 (£0.00)
0.12 (£0.02)

0.03 (20.00) | 0.20 (20.02)

0.03 (2000,

0.24 (20.00) 0.03 (2000,

0.19 (20.01)

0.11 (20.00) | 0.03 (+0.00

Mean values

0.21

0.12

0.03 0.22 0.12

0.03

0.24 0.03

02

0.11 0.03

7.3.2 Building train data set

We tested 1, 3, 7 and 9 individuals (k-best) to be used to train NN. As Figure 7.8
represents, one individual (k = 1) has not showed good performance based

on MOF_norm values. The reason is the slow sample collection leads to non-

promising MOF values. Due to our min_batch size (=20), our first prediction

is possible at change (time) 26. On the other hand, the results for 9 individuals

also degrade. For building our sample data, we take a random combination

of solutions for k-best solution of each time. Therefore, if the diversity of

population is high, the first best solutions are distant from one another and

consequently might not represent the change pattern of the optimum correctly.

Overall, too few or high number of individuals is not a proper choice. So

for the rest of the experiments, k = 3 is chosen to feed NN trainer. Due to

space limitation, for this and next experiment, we exclude exp3 to base our

conclusions on the experiments where NN performed more promising.

96 Chapter 7. Neural Networks in Evolutionary Dynamic Optimisation

Sphere Rosenbrock Rastrigin Sphere Rosenbrock Rastrigin Sphere Rosenbrock Rastrigin

3
0. 0

k-best individuals:
FIGURE 7.8: k-best individual selection for building NN samples

o
g
o

S
g
o

-
3]

exp1 (MOF_norm)
5

N
exp4 (MOF_norm)

exp2 (MOF_norm)

o
3]

W1 W3 W7 mo

Sphere Rosenbrock Rastrigin Sphere Rosenbrock Rastrigin Sphere Rosenbrock Rastrigin

. 1.0
) |
| || |‘ | |I| ||I| I|I|) | | |
0.0 0.0 0.0
np

FIGURE 7.9: Number of individuals of population replaced by predicted solutions

-
=}
=
5

[N
o

o
o

expl (MOF_norm)
o
4]

exp2 (MOF_norm)
exp4 (MOF_norm)

H1 W3 W7 mo

7.3.3 Number and mechanism to insert predictions

When we use a small n pr the effect that NN have in the overall optimisation is
minor. On the other hand, using a high 1, will decrease the diversity of the
population, given that all the individuals to be included are centered around
the same predicted solution with a small added noise (10% of the variable
boundary). We expect this decrease of diversity to adversely affect the results.
However, on our experiments using high 1, values, we do not always observe
such a behaviour, as can be seen in expl and exp4 (see Figure 7.9). Also,
looking to the pattern of the changes for exp4 (see Figure 7.1), the position
changes drastically between two alternative times. Since for the rest of the
population we only reevaluate the solutions, thus replacing more individuals
will help to transfer the population to a new region of the search space. This
is because our baseline algorithm does not promote any diversity, as it only
reevaluates the solutions when a change happens. Hence, replacing more
individuals, particularly for the case with correct predictions, does not have
an adverse effect. However, we believe that in cases where extra mechanisms
to promote diversity are considered, the decrease of diversity generated by
choosing a high n, will decrease the overall performance. In general, there is
not significant difference in the results of MOF values when using n,, > 1.

Regarding to replace mechanism, based on the results for MOF values shown

7.4. Conclusions and future works 97

in Figure 7.4, we can observe in general that NNW shows better performance
than NNR. The difference is clearly seen for 7= 0.5, as seen in Figure 7.5a,
where there is a significant difference between these two methods for 10 out of
12 test cases. For larger values of T (1 and 4), on the other hand, approximately
half of the test cases show significant difference. The reason for this is the
small distance between worst and random picked solutions. As with a higher
7, all individuals in population are likely to have converged close to the same
optimum position. To conclude, we suggest to insert the predicted solutions
by replacing the worst solutions of the population.

7.4 Conclusions and future works

We studied the behaviour of using a NN together with DE for solving DCOPs.
Considering generated overhead by NN, we observed when the frequency of
changes is high, the time spent for NN becomes more noticeable in propor-
tion to overall time. In addition, due to shorter time between changes, the
optimisation algorithm might not achieve good solutions. In this case, the
collected data is not helpful for the prediction or even becomes misleading
for the optimisation algorithm. In our experiments, for high frequencies of

change, NN variants showed their worst results.

Moreover, for the algorithms integrating with NN enough training data is
needed. Hence, for short overall time horizons, this might not be an efficient
method as for the first change periods, we need to collect data. Moreover,
training a NN with small amounts of data will overfit the NN, making it diffi-
cult to generalize and make predictions for new data. The proposed method
to collect more individuals of population from each time to train NN, will
lead to make NN ready faster but this is possible when there is lower diversity
in population. If the population is diverse, the first best solutions will have
higher distance and might not be a good data to train the network. In general,
we observed that diversity has a significant role when applying prediction
methods in DCOPs. For replacing predicted solutions, we observed when we
have diversity among solutions, selection of 1, worst solutions performed bet-
ter than selecting them randomly. In general we believe controlling diversity
besides prediction methods is essential. To do so, and for a better understand-
ing of the behaviour of the prediction it is suggested to check prediction error
and based on that, diversity mechanisms be applied properly together with
prediction. We observed in some experiments the lack of diversity lead to poor
results, while a basic diversity mechanism could improve results, particularly

when predictions are wrong. One suggestion for future work is to define an

98 Chapter 7. Neural Networks in Evolutionary Dynamic Optimisation

adaptive parameter that considers the prediction error to control to which
extent to use diversity mechanisms. The other future work is to explore the
effect of the noise added to the predicted solutions on the final performance of
the methods. Less noise indicates relying more on the results of the predicted
solution. Perhaps we can have an adaptive noise, that varies based on the

results of the prediction error.

99

Chapter 8

Neural Networks and Diversifying
Differential Evolution

8.1 Introduction

Among the many approaches proposed for reacting to the changes in dy-
namic environments, diversity mechanisms [21, 45] are the simplest and most
popular. In Chapter 6, we observed how common diversity mechanisms
can significantly enhance the performance of a baseline differential evolution
(DE) for different environmental changes [49]. Other approaches include
memory-based approaches [99], multi-population approaches [17] and predic-
tion methods [18]. Previous work on prediction approaches has shown that
they can be well suited to dealing with dynamic problems where there is a
trend in the environmental changes [72]. For instance, in [106], a Kalman filter
is applied to model the movement of the optimum and predict the possible
optimum in future environments. Similarly, in [110], linear regression is used
to estimate the time of the next change and Markov chains are adopted to
predict a new optimum based on the previous time’s optimum. Likewise,
in [136], the centre points of Pareto sets in past environments are used as data
to simulate the change pattern of those centre points, using a regression model.
Besides these methods, neural networks (NNs) have gained increasing atten-
tion in recent years [58, 70, 72, 73]. In [73], a temporal convolutional network
with Monte Carlo dropout is used to predict the next optimum position. The
authors propose to control the influence of the prediction via estimation of the
prediction uncertainty. In [72], a recurrent NN is proposed that is best suited
for objective functions where the optimum movement follows a recurrent
pattern. In other works [58, 70], where the change pattern is not stable, the
authors propose directly constructing a transfer model of the solutions and

100 Chapter 8. Neural Networks and Diversifying Differential Evolution

fitness using NN, considering the correlation and difference between the two

consecutive environments.

However, despite previous attempts, there are still some concerns regarding
the application of NNs to the evolution process. As integrating NNs in EAs is
more complicated than using standard diversity mechanisms, the question
arises as to whether they enhance the results to an extent that compensates for
their complexity. In addition, previous work has mainly compared prediction-
based methods with a baseline algorithm and other prediction-based meth-
ods [48, 72]. To the best of our knowledge, only one recent work considers

other mechanisms for dynamic handling in comparison with prediction [73].

However, the time spent by NN has not been accounted for. We believe
that to compare NN with other standard methods fairly, the relative time
consumption of different methods needs to be accounted for, as this may
create a noticeable overhead in the optimisation process; time costs can occur
across the following stages: data collection, training and prediction of new
solutions. To account for the timing used by NN, we create a change after
an actual running time of the algorithm. This is not the usual technique; in
the dynamic problem literature, a change is often designed to happen after
a number of fitness evaluations or generations [86]. But such a method fails
to account for the time spent by NN. Therefore, to evaluate the effectiveness
of NN in the described setting, this chapter compares common diversity
mechanisms using a DE algorithm with and without NN. In this study, we try
to answer the following questions, taking into account the time spent on NN:

* How is NN comparison with other simpler mechanisms for diversifying

DE in order to handle dynamic environments?

* Does diversity of population in DE play a role in the effectiveness of
NN?

* Do different frequencies of change impact the suitability of NN in com-
parison to diversity mechanisms?

The results of our study show that the extent of the improvement in the re-
sults of tracking the optimum (speed and error of tracking), when integrating
the neural network and diversity mechanisms, depends on the type and the
frequency of environmental changes. In addition, we observe that having a
sound diversity in the population has a significant impact on the effectiveness
of NN. The remainder of this chapter is as follows. Our experimental method-

ology is presented in Section 8.2. In Section 8.3, a comparison across all the

8.2. Experimental methodology 101

expl-Rosenbrock exp2-Rosenbrock exp3-Rosenbrock exp4-Rosenbrock

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0

FIGURE 8.1: PCA plot of best_known positions for each experiment over time

methods is presented. In Section 8.4, we carry out detailed experimental in-
vestigations on the use of NNs in different variants of diversifying DE. Finally,
in Section 8.5, we finish with some conclusions and elaborate directions for

future work.

8.2 Experimental methodology

In this work, two approaches are considered as change reaction mechanisms
with DE. In addition to these change reaction mechanisms diversity mecha-
nisms are considered. In the first approach (noNN), the whole population is
re-evaluated. In the second approach (NN), a number of the worst individuals
(in terms of objective function) in the population are replaced with the pre-
dicted solutions, and the rest of the individuals are re-evaluated. We applied
the most common diversity mechanisms, explained in Chapter 3: crowding
(CwN), random immigrants (RI), restart population (Rst) and hyper-mutation
(HMu). For a review regarding the effect of diversity mechanisms in dynamic

constrained optimisation, see Chapter 6 [49].

The test problem for neural networks explained in Chapter 5 is applied. Fig-
ure 8.1 shows the pattern in which the position of optimum changes for
Rosenbrock function in each experiment !. To achieve this plot, the principal
component analysis (PCA) method is used to map the thirty dimensions to
a one-dimensional scale. The frequency of change, denoted by 7, represents
the width for which each time lasts. We indicate that when referring to higher
frequencies of change, we are talking about lower values of 7, since higher
frequencies of change happen when there is a shorter time interval between
each change (7). Different frequencies of change (1, 5, 10 and 20) will be tested.
As mentioned earlier, this work will consider wall clock time. As such, the
values above represent time in seconds between the two consecutive changes.
To provide an idea based on number of fitness evaluations, these values repre-

sent the following number of fitness evaluations for the baseline algorithm:

1The results belong to best_known solutions of each time, retrieved by executing 100,000
runs of a baseline DE algorithm.

102 Chapter 8. Neural Networks and Diversifying Differential Evolution

1 ~ 2000, 5 ~ 11000, 10 ~ 22000, 20 ~ 45000. Undoubtedly, these numbers
are not constant for all test cases, due to the differing time-complexity of each
function and the stochastic nature of DE. The other parameters are: d = 30,

expl-Sphere exp2-Sphere
50-
BN 10 5N 50 BN 100 BN 10 [N 50 B 10.0

30-
10.0 -

mof
HIH
HH

= =+ = 0 2
5.0
- - & =
107 2.5- - = == =
I = = = = = - - - — =
— == _ - —— — = —_ -
& S > S S © g S S g S b © N
&S @*@ & & @\\“ & @\\‘\ & & @\\‘\
& ® 5 S S & 5 S
<§ N
exp3-Sphere exp4-Sphere
040 N 10 == 50 = 100 N 10 ==50 = 100

1000 -
0.35-
0.30- ; 800 -

N o W@ D N ENE S
SO é‘f‘\“ X $$§ ‘f‘\‘\ N ’ & s ’ 0y S
& N 5 = S S
<

FIGURE 8.2: Distribution of MOF values for 20 runs, different frequencies (7).
Lower values represent better performances

runs = 20 and the number of changes or times = 100. Parameters of DE are
as follows: NP = 20, CR = 0.3, F ~ 14(0.2,0.8) and rand/1/bin is the chosen
variant of DE [7]. The solution space is within [—5, 5]¢. For the Rl and HMu
methods, the replacement rate for noNN methods is 7, and for NN methods,
it is 2. Since we insert five individuals with NN, we want to insert a constant
number of individuals in each case overall. For the HMu method, F and CR
are changed for a number of generations (depending on 1) to F ~ 1/(0.6,0.8)

and CR = 0.7, then, after this generation (67), they return to normal.

Parameters of NN were selected in a set of preliminary experiments [48]: k = 3:
epochs =4, ny, = 5, batch_size = 4, min_batch = 20 and n, = 5. All the ex-
periments were run on a cluster, allocating one core (2.4GHz) and 4GB of RAM.
Our code is publicly available on GitHub: https : //github.com/renato145/DENN.

8.3. Cross comparison of approaches 103

TABLE 8.1: Pairwise comparison of methods on MOF values for T = 1 and 20
(mean of 20 runs)

Experiment [Function | noNN_RI NN_RI [noNN_HMu NN_HMu [noNN_No NN_No [noNN_CwN NN_CwN [noNN_Rst NN_Rst
=1

Rastrigin 100.59 103.36 105.7 113.28 517.9 489.26 222.97 376.18 144.39 140.48

1 Rosenbrock | 73601.01 84413.69 64690.02 68315.59 1958799.29 73601.56 624341.74 315775.79 188898.12 206130.53
Sphere 21.15 24.38 20.45 21.5 546.55 25.67 173.99 96.84 46.46 41.03
Rastrigin 84.23 59.59 96.73 82.08 30.42 30.76 196.99 74.28 157.8 147

2 Rosenbrock | 3495.21 2386.98 8014.1 3814.8 2143.16 619.47 73201.31 3838.93 17171.11 10804.96
Sphere 4.25 3.12 8.31 4.86 9.98 1.29 68.38 5.59 16.55 10.7
Rastrigin 21.06 33.74 24.87 42.19 472.29 318.94 247.64 333.28 30.98 34.38

3 Rosenbrock | 109.23 146.53 122.73 159.75 1787.22 128.55 699754.07 1722.27 399.02 307.96
Sphere 0.09 0.11 0.09 0.11 0.08 0.1 133.52 2.03 0.36 0.31
Rastrigin 841.9 871.99 772.83 688.72 3832 1139.29 1748.45 2848.3 754.38 716.17

4 Rosenbrock | 223395465.4 151705461.9 | 189535874 108888429.1 | 957940673.4 205570867.9 | 477280317 945221760 175355577.9 127501241
Sphere 733.49 609.08 625.98 428.99 3541.08 780.85 1431.8 2833.45 549.18 492.19

=20

Rastrigin 34.84 33.88 40.16 46.77 516.94 483.62 159.09 263.95 46.86 47.12

1 Rosenbrock | 9210.76 11159.41 11588.09 10445.52 1988246.32 12044.2 567717.09 183479.33 19508.38 21891.08
Sphere 2.86 3.44 3.56 3.26 545.61 3.46 143.29 43.39 5.4 597
Rastrigin 20.78 19.82 25.47 23.21 42.58 20.83 121.64 21.71 46.56 40.38

2 Rosenbrock | 445.51 290.08 1555.23 624.17 105.43 88.32 24211.28 1307.21 2762.26 1549.64
Sphere 0.51 0.41 1.38 0.77 12.87 0.19 35.24 2.38 217 1.41
Rastrigin 11.54 51.33 31.99 118.2 874.81 802.81 86.23 430.54 10.41 8.69

3 Rosenbrock | 22.3 16.06 21.73 17.1 74.6 17.49 204135.11 274.62 11.34 16.79
Sphere 0.04 0.03 0.03 0.07 0.05 0.03 35.14 0.52 0.02 0.02
Rastrigin 129.34 118.55 131.28 107.88 3930.78 320.03 717.04 1472.18 111.38 103.62

4 Rosenbrock | 23445061.73 16785682.65 | 20298120.95 12073567.99 | 1322886269 34616064.68 | 152205349.1 391706791.9 | 16297615.87 8864684.95
Sphere 74.36 57.94 68.51 56.91 4256.18 129.66 588.71 1209.84 53.91 42.82

8.3 Cross comparison of approaches

Figure 8.2 presents a boxplot for MOF value distribution based on each fre-
quency for 20 runs. For this plot, we omitted the worse performing algorithms
to allow for a better resolution when analysing other methods. The results
demonstrates that as 7 increases from 1 to 10, the MOF values decrease. For
higher T values, the algorithms have more timing budget within each change
to evolve the solutions and achieve closer values to the optimum. The biggest
difference in MOF values is that between T = 1 and other T values. However,
there are some exceptions to this general trend. For instance, the behaviour of
NN_No in exp3 for the Rastrigin function is an anomaly. According to Fig-
ure 8.2, when increasing T from 1 to 20, the MOF values also increase. Looking
to the plot for optimum position changes in Figure 8.1, there is a linearly
decreasing trend in the first half of the time scale and a constant optimum
position in the second half. As NN does not have the correct new optimum
(based on specific characteristics of this experiment), it is not helpful to DE. In
addition, with the Rastrigin function, there are chances of getting stuck in local
optima, as it has a multimodal attribute. This intensifies at higher T values, as
the population becomes more converged. However, algorithms with diversity
variants can avoid the local optimum by promoting diversity. This shows
the importance of diversity variants in the case of wrong predictions. NN
relies on the previous time solutions achieved by DE. If the solutions are far
from the optimum, the resulting training data will be poor in quality and,
therefore, not longer useful to DE. Furthermore, the poor performance of
NN_No (compared to its diversity variant counterparts in exp1 and exp3 for
the Rastrigin function) shows how we can improve the results of NN by using

diversity mechanisms. In addition, Table 8.1 shows the MOF values allowing

104 Chapter 8. Neural Networks and Diversifying Differential Evolution

-10

1-Rastrigin ----

1-Rosenbrock

©
I
©
I
i
©

©
©

5
©
©

1-Sphere

o

2-Rastrigin

(o]

2-Rosenbrock

n
w
n

2-Sphere

5

3-Rastrigin

o

3-Rosenbrock

3-Sphere

4-Rastrigin 5.5

w»

4-Rosenbrock

5
5

4-Sphere

E E v w o &
..'..II '.l
IS o IS
IIIH..I.'I.
III'I) IIII'

(e
©
©

& © &S & &
S I RN
(\0

4

N\
S S
& N S/ N

FIGURE 8.3: Heatmap of methods’ rank over MOF values for each function and
experiment, considering T = 5, and 10. Lower ranks represent better performances.
Numbers in Y-axis label show experiment number.

pairwise comparison of diversity variants with and without NN for T = 1 and
T = 20, respectively. In each set of columns, the better performing algorithm
is highlighted. We clearly see that for a small 7, methods employing NN
are not competitive with their counterparts in each set of diversity variants.
However, for large values of 7, the trend changes and NN variants outperform
noNN counterparts. First, as for this NN architecture, we train the NN with
three best solutions for each time; thus, when 7 is smaller, the algorithm is
not converged and the best solutions have a greater distance between each
other and may not represent the optimum region properly. Furthermore, for
higher T values, the NN time expenditure is negligible compared to the whole
evolution process (as we see later in Table 8.2). In addition, NN gives direction
to the diversity mechanisms that have a more random nature. Therefore, inte-
gration of NN and diversity variants improves the algorithm in comparison

to its baseline diversity variant.

To compare the algorithms overall, a heatmap with mean rankings of MOF
values is presented in Figure 8.3. To achieve these grades, we begin by rank-
ing every method, grouping them by function, experiment and frequency.
Afterwards, we calculate the mean of the ranks among all the frequencies. The
heatmap helps us to analyse and compare the performance of the algorithms
across each set of experiments and functions. For instance, it is clear from the
heatmap that the methods using CwN are not competent in most functions

8.3. Cross comparison of approaches 105

expl exp2 exp3 oxpé

W Rastrigin
Rosenbroc

M Sphere l

_I-I I.II ___-__
<~\<~\>~‘ S o Q QW a0
SRR & & o
;S & s
& 3 < O

FIGURE 8.4: MOF-norm values considering T = 10 for each method and experi-
ment, color-coded with functions

and experiments. However, this heatmap is not able to define the severity of
differences among methods. For the purpose of relativity analysis, we propose
Figure 8.4 which presents the results of the overall performance of methods in
each experiment. To achieve standard values (denoted as MOF_norm) in each
set of functions and experiments, the values are divided by the minimum
value among all methods. So, for the method with the lowest MOF value,
MOF_norm is assigned to one, and the other values are calculated propor-
tionally. For example, in Figure 8.4, we can observe that CwN and Rst, in
experiment 2 and 3, are considerably worse than other methods. To achieve a
better resolution for the comparison of methods, we limit the y-scale, at the
cost of missing some data from the worse-performing algorithms. Another
observation which can be made based on this figure is that variants of RI and

HMu had better performances overall.

To validate the results of the MOF values, the 95%-confidence Kruskal-Wallis
statistical test and the Bonferroni post hoc test, as suggested in [37] are pre-
sented (see Figure 8.5). Nonparametric tests were adopted because the sam-
ples of runs did not fit a normal distribution, based on the Kolmogorov-
Smirnov test. In this heatmap, the squares with the brightest colour show
the methods with not-significantly different (NS) results, and the squares in
the purple colour spectrum show the methods with statistically significant
differences with the mentioned p-values. Results indicate that, in most test
cases, the methods are significantly different to each other.

To compare the algorithms in each separate time look into Figure 8.6. This
tigure shows the deviation of the best solution achieved at each time, as well
as the best_known solution for that time. Thus, it shows how the different
methods track the best_known solusion, along with the changes. The values
in the legend show the BEBC values for each method, that is, the average of
what the plots show across all times. Lower values indicate that the methods
are capable of closely following the optimum like NN_RI. Overall, most of

106 ~ Chapter 8. Neural Networks and Diversifying Differential Evolution

expl exp2 exp3 exp4

NoNN_RI
NN_RI
NONN_HMu
NN_HMu
noNN_No
NN_No
NONN_CwN
NN_CwN
NnONN_Rst
NN_Rst

Sphere

noNN_RI
NN_RI
NnoNN_HMu
NN_HMu
noNN_No
NN_No
noNN_CwN
NN_CwN
noNN_Rst
NN_Rst

Rosenbrock

noNN_RI
NN_RI
NnoNN_HMu
NN_HMu
noNN_No
NN_No
NONN_CwN
NN_CwN
nONN_Rst
NN_Rst

Rastrigin

NN_RI

noNN_HMu

NN_RI

noNN_HMu

NN_RI

noNN_HMu

NN_No
NN_RI

noNN_CwN

NN_No
nONN_CwN
NN_No

noNN_CwN

noNN_RI
NN_HMu
noNN_No
NN_CwN
NONN_Rst
NN_Rst
noNN_RI
NN_HMu
noNN_No
NN_CwN
noNN_Rst
NN_Rst
noNN_RI
NN_HMu
noNN_No
NN_CwN
noNN_Rst
NN_Rst
noNN_RI
noNN_HMu
NN_HMu
noNN_No
NN_No
noNN_CwN
NN_CwN
NoNN_Rst
NN_Rst

FIGURE 8.5: Kruskal-Wallis statistical test on MOF values for =10, NS represents
not-significant

the methods show similar results; only variants of CwN and noNN_No are
inferior. We only bring the results of sphere function for T = 10. However,
considering other functions and frequencies, overall, when 7 is small, this
measure shows more differences between methods. But for T = 10 most
of the methods could achieve near-to-optimum solutions regardless of the
differences among their evolution processes. In addition, for the Rastrigin
function with multimodal characteristics the differences between methods are
bigger. This is because there are more chances of algorithms with a lack of
diversity following a local optimum and becoming unable to reach near-global
optimum solutions.

The other figure (Figure 8.7) shows the Euclidean distance of the position of
best at the first generation after a change, and the position of best_known. This
plot gives an idea of how far from the best_known position the methods start
for the new time. We observe that Rst is further away as we expected, since it
starts randomly. In this experiment, as the position changes are not huge (see
Figure 8.1), so noNN_No is also not far away the best_known. Nevertheless,
the results for this method for MOF are unsatisfactory (Table 8.1), due to the
lack of diversity in the population. This lack of diversity prevents a proper
exploration of the search space for a new optimum.

In Figure 8.8, the prediction error is plotted for each time. As three solutions

8.3. Cross comparison of approaches 107

are sampled around the predicted solution by NN, we determined the predic-
tion error by considering the average Euclidean distance of the best_known
solution to these three inserted solutions. Notice that NN only starts to predict
the future optimum position after collecting enough data, so the time scale for

this plot is shorter (whereas the timescales of other plots are 100).

Figure 8.9 shows a heatmap of the algorithms’ rankings, based on ARR values
for every method and considering all frequencies of change. This measure
shows which methods can recover more quickly after a change. ARR rank
results show that the noNN version of Rst, Rl and HMu variants have almost
the best recovery from their first best solution after a change, compared to
other methods in all experiments. As we can interpret from ARR Equation
(explained in Chapter 2), this measure is slightly biased over the first solution
achieved. Consequently (according to this measure), algorithms that start
with a very poor solution may achieve higher ARR values than those starting
with a better solution. So if the first best solution is drastically changed for
the next generations, this measure reports better results (higher values). This
is the reason noNN_Rst is the best based on this measure.

Conversely, the worst results for this measure are for CwN variants (both
NN and noNN) and noNN_No. Comparing NN_No and noNN_No, we
can conclude that NN improves the recovery capabilities of the algorithm,
especially for expl and exp4, where we observe drastic changes.

The heatmap for SR values (see Figure 8.10) illustrates satisfactory results
for almost all of the methods. This means that they can reach an e-precision
(=10%) of the optimum for almost all the changes (or times). However, CwN-
variants and noNN_No are the exceptions in which SR values are low. In
addition, all the methods showed difficulty in reaching the optimum in exp2
for the Rastrigin function (low values for SR). Moreover, in other experiments,
the performance of all the methods decreased, based on SR values for this func-
tion compared to the other two functions. This is attributed to its multimodal

characteristic.

Table 8.2 represents the percentages of the amount of time spent for calling NN
unit compared to the overall optimisation time. Regardless of the experiment
and function, the results show for T = 1 around 10-11%, T = 5 around 2%,
T = 10 around 1% and T = 20 around 0.5%. This shows that when 7 is higher,
it is less expensive (in terms of computational costs) to use NN. As NN time
remains constant, when 7 is small, the proportion of time for evolution process

is lower. Hence, the samples used to train NN do not represent real optimum

108

Chapter 8. Neural Networks and Diversifying Ditferential Evolution

expl-sphere

expl-sphere

—— NN_CwN: BEBC= 154.60
—— NN_HMu: BEBC= 151.02
700 —— NN_No: BEBC= 159.86 7004
—— NN_RI: BEBC= 150.58
—— NN_Rst: BEBC= 149.61
600 4 6001
500 4 500
—— noNN_CwN: BEBC= 160.33
© 4004 © 4001 —— noNN_HMu: BEBC= 149.58
a [—— noNN_No: BEBC= 522.26
o o —— noNN_RI: BEBC= 149.57
300 4 3004 —— noNN_Rst: BEBC= 149.56
2004 200
100 4 100 4
04 04 l
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
exp2-sphere exp2-sphere
—— NN_CwN: BEBC= 10.54 —— noNN_CwN: BEBC= 32.40
604 —— NN_HMu: BEBC= 7.14 100 4 —— noNN_HMu: BEBC= 7.13
—— NN_No: BEBC= 7.12 —— noNN_No: BEBC= 13.61
—— NN_RI: BEBC=7.13 —— noNN_RI: BEBC= 7.12
—— NN_Rst: BEBC= 7.15 —— noNN_Rst: BEBC= 7.13
50
804
40+
60 1
Q 9]
2 @
@ 30 @
40
204
204
10
04 04
0 20 40 60 80 100 20 40 60 80 100
Time Time
exp3-sphere exp3-sphere
—— NN_CwN: BEBC= 18.65 —— noNN_CwN: BEBC= 48.01
—— NN_HMu: BEBC= 15.82 ~—— noNN_HMu: BEBC= 15.78
—— NN_No: BEBC= 15.79 —— noNN_No: BEBC= 15.78
400 { —— NN_RI: BEBC= 15.79 4001 —— noNN_RI: BEBC= 15.78
—— NN_Rst: BEBC= 15.78 —— noNN_Rst: BEBC= 15.78
3004 300
Q 9
2 @
i} i
o)
2004 200
1004 100 4
—
04 04 —
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
exp4-sphere exp4-sphere
—— NN_CwN: BEBC= 15702.13 140000 4 —— noNN_CwN: BEBC= 15454.16
—— NN_HMu: BEBC= 15200.26 —— noNN_HMu: BEBC= 15200.45
120000 4 —— NN_No: BEBC= 15051.25 —— noNN_No: BEBC= 17863.73
—— NN_RI: BEBC= 15196.96 120000 - —— noNN_RI: BEBC= 15200.79
—— NN_Rst: BEBC= 15200.07 —— noNN_Rst: BEBC= 15200.07
100000 4
100000 4
80000 4
80000
o O
@ @
@ @
60000 60000 4
40000 4 40000 4
20000 4 20000 4
04 04
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

FIGURE 8.6: Best error before change values over time, T = 10.

8.4. Detailed examination of the use of neural networks 109

exp2-Sphere exp2-Sphere

—— NN_CwN —— noNN_CwN

144 NN_HMu NnoNN_HMu
—— NN_No 1 — noNN_No

— NN_RI —— noNN_RI H

12{ — NN_Rst —— noNN_Rst

10

@

Euclidean distances
o

Euclid dist:
o

N

IS
IS

~
~N

1L

Time Time

FIGURE 8.7: Euclidean distance between the best of first generation after change
and the optimum position for each method, T = 10.

or near-optimum values. Consequently, predictions made using NN are not

exact.

8.4 Detailed examination of the use of neural net-

works

In this section, the methods (NN and noNN), are compared on the basis of

each diversity variant.

8.4.1 Crowding

From Figure 8.6, we observe that CwN variants exhibit the biggest difference
to the optimum, in comparison to other methods. This explains their poor
performance in terms of MOF values (as can be seen in Figure 8.3). Based
on the colours of the heatmap, it is easily noticeable that the variants of this
method perform unsatisfactorily. NN can enhance the results for this method,
but it remains inferior compared to other methods. Variants of this method
(NN_CwN and noNN_CwN) behave particularly poorly in exp2 and exp3,
even compared to noNN_No. By promoting diversity unnecessarily, CwN
adversely affects the convergence of the algorithm to new optimum posi-
tion, which is not too distant from the previous optimum. In addition, from
Figure 8.9, we can see that this variant delays the recovery of the algorithm
(the low rank for ARR values in NN_CwN and noNN_CwN indicates the

algorithm’s inability to recover after a change).

Experiments of Chapter 6, regarding different diversity variants, showed that
CwN has been one of the best methods for handling dynamic environments.
However, CwN is not competitive in the experiments of this chapter, because

110 Chapter 8. Neural Networks and Diversifying Differential Evolution

expl-Sphere

(6]
T T
N N
o w

o
u

nn_errors

~101 — NNRI

——— NN_Rst
—15- = NN_CwN
= NN_HMu ¥
—— NN_No

o ——
T T
o] =
)

Al

I
T
o

—20 4

time

exp2-Sphere

IS
nn_errors

time

FIGURE 8.8: Error of NN plus PCA for =10, right y-axis shows nn_errors and left
y-axis is for pca scale

of the following reasons. Firstly, in the literature, this method was most
effective for multimodal test problems with several local optima. In such
cases, CwN helps to diversify solutions by avoiding similar individuals in
each sub-region of the search space [108]. In addition, CwN demonstrated
superior performance for problems that include features such as disconnected
feasible regions and small feasible areas [49]. Secondly, in experiments of
Chapter 6, CwN was tested on a benchmark with a low problem dimension
(2) [49]. As the problem’s dimension in this chapter is 30, having a crossover
rate (CR) of 0.3 leads the offspring to change in only a number of dimensions.
In this condition, the closest individual to the offspring will be the parent,
causing the method to act in a similar fashion to the no-diversity mechanism,
but with an overhead of calculating distances at each iteration. To alleviate
this in our CwN version, the offspring will compete with its five closest
individuals.

Checking the results of SR-values for noNN_CwN shows this algorithm is
barely able to get to the optimum for almost all the changes in exp2 for all
functions and exp3 for rosenbrock function. While, as we see in Figure 8.10,
most of the other methods are in 100% for exp2 (rosenbrock and sphere).

8.4. Detailed examination of the use of neural networks 111

-10

8.3 8
7'7

©
N

1 1

1 1
R ?~\) 0 () N N X X
“om\ N\ oW ;\M W ,\m “o‘m N “N)* o WO e “o\‘\“'% WFE

exp4d exp3 exp2 expl

FIGURE 8.9: Heatmap of methods’ rank over absolute recovery rate (ARR) values
for each experiment, considering T = 5 and 10. Lower ranks represent better perfor-
mances

1-Rosenbrock - 0.79 0.76 075 0.75 0.76 0.83 0.75
1-Sphere- 0.99 0.98 0.99 0.98 0.96 1.00 0.99
2-Rosenbrock - 0.89 0.87 0.88 0.87 0.89 0.89 0.88 0.85
2-Sphere- 1.00 1.00 1.00 0.99 0.66 1.00 0.01 0.08 1.00 0.99
3-Rosenbrock - 0.90 0.90 0.90 0.90 0.91 0.90 m 0.91 0.89
3.Sphere- 1.00 1.00 1.00 0.96 1.00

4-Rosenbrock - 0.75 0.70 073 0.69 0.56
4-Sphere - 0.99 0.99 0.99 1.00 m !

Y\w Y@ NS o™ d«“ R
@’ N J

1.00 -0.4

-0.8

FIGURE 8.10: Heatmap of mean values (20 runs) for success rate (SR), considering
7T = 5and 10. Higher values represent better performances. Numbers in Y-axis show
experiments

8.4.2 Random immigrants and restart population

From Figure 8.6, it is visible that in most functions and experiments, the
solutions achieved by NN_RI are the best among others in terms of tracking
the optimum. This can explain its best rank amongst all methods, represented
in Figure 8.3. From this figure, we can see that its noNN variant also has a
promising ranking. For a clearer observation, Table 8.1 shows the comparison
of NN and noNN variants for this method. Comparing them, the results for
large T for NN show better performances than noNN in most of the functions
and experiments except for rastrigin with a multimodal characteristic in
exp3, and rosenbrock and sphere in experiment 1 with random changes.
The reason for the better performance of NN_RI is that, in noNN_RI, we
only insert random solutions, while for NN_RI, we diversify solutions by
random immigrants, as well as directing them with the predicted solutions
by NN. This will expedite the convergence to new optimum leading to better
MOF values. However, for small 7, NN has lower ability to beat its noNN

counterpart. Low timing budget leave the algorithm with poor final solutions

112 Chapter 8. Neural Networks and Diversifying Differential Evolution

TABLE 8.2: NN-time; % time spent for training and using NN in proportion to
overall optimisation time (mean for 20 runs)

experiment expl exp2 exp3 exp4

T 1.0 5.0 10.0 200 | 1.0 50 [10.0 [20.0 |1.0 5.0 10.0 1200 |1.0 50 [10.0 [20.0
NN_CwN | 10.763 | 2.154 | 1.124 | 0.554 | 10.941 | 2.144 | 1.129 | 0.551 | 11.046 | 2.182 | 1.191 | 0.555 | 10.611 | 2.103 | 1.079 | 0.728
NN_HMu | 11.106 | 2.227 | 1.117 | 0.579 | 10.928 | 2.224 | 1.150 | 0.589 | 11.081 | 2.272 | 1.149 | 0.757 | 10.608 | 2.144 | 1.074 | 0.540
Rastrigin NN_No 10.755 | 2.136 | 1.085 | 0.548 | 10.951 | 2.190 | 1.097 | 0.564 | 11.009 | 2.190 | 1.090 | 0.561 | 10.628 | 2.139 | 1.056 | 0.553
NN_RI 11.070 | 2.163 | 1.117 | 0.555 | 10.896 | 2.189 | 1.117 | 0.564 | 11.174 | 2.225 | 1.124 | 0.550 | 10.517 | 2.124 | 1.076 | 0.549
NN_Rst 10.970 | 2.197 | 1.081 | 0.544 | 10.817 | 2.166 | 1.073 | 0.544 | 11.644 | 2.323 | 1.137 | 0.556 | 10.719 | 2.147 | 1.072 | 0.539
NN_CwN | 10.658 | 2.122 | 1.079 | 0.539 | 10.772 | 2.167 | 1.140 | 0.543 | 10.859 | 2.193 | 1.194 | 0.555 | 10.803 | 2.113 | 1.082 | 0.529
NN_HMu | 10.826 | 2.197 | 1.106 | 0.558 | 10.878 | 2.216 | 1.163 | 0.572 | 10.839 | 2.194 | 1.108 | 0.572 | 10.674 | 2.152 | 1.107 | 0.541
Rosenbrock | NN_No 10.862 | 2.206 | 1.091 | 0.545 | 10.823 | 2.173 | 1.101 | 0.547 | 10.754 | 2.175 | 1.092 | 0.569 | 10.554 | 2.163 | 1.108 | 0.547
NN_RI 10.921 [2.173 | 1.087 | 0.561 | 10.982 | 2.186 | 1.104 | 0.558 | 11.087 | 2.166 | 1.082 | 0.547 | 10.598 | 2.233 | 1.102 | 0.545
NN_Rst 11.020 | 2.182 | 1.095 | 0.550 | 10.896 | 2.208 | 1.085 | 0.558 | 11.429 | 2.248 | 1.090 | 0.548 | 11.575 | 2.197 | 1.076 | 0.547
NN_CwN | 10.757 | 2.136 | 1.067 | 0.535 | 10.827 | 2.164 | 1.171 | 0.540 | 10.875 | 2.210 | 1.182 | 0.545 | 10.519 | 2.100 | 1.139 | 0.530
NN_HMu | 10.814 | 2.220 | 1.100 | 0.559 | 10.752 | 2.183 | 1.139 | 0.576 | 10.717 | 2.162 | 1.125 | 0.572 | 10.610 | 2.209 | 1.181 | 0.557
Sphere NN_No | 10.952 [2.211 | 1.128 | 0.560 | 10.830 | 2.988 | 1.098 | 0.539 | 10.682 | 2.170 | 1.088 | 0.552 | 10.643 | 2.152 | 1.074 | 0.540
NN_RI 10.981 | 2.179 | 1.111 | 0.562 | 11.229 | 2.186 | 1.504 | 0.548 | 10.903 | 2.136 | 1.082 | 0.544 | 10.653 | 2.188 | 1.101 | 0.550
NN_Rst | 10.932 [2.213 [1.110 | 0.555 | 11.031 | 2.188 | 1.082 | 0.544 | 10.988 | 2.213 | 1.075 | 0.545 | 11.523 | 2.318 | 1.091 | 0.546

at each time. Therefore, NN is fed with poor quality solutions and thus is not
able to predict the correct optimum positions for the future times. Although,
worth to mention, Rl is reported to have lower performance results in cases of
small feasible areas [49]. The reason is the inserted solutions are discarded by
constraint handling mechanism and can not proceed as best solution to guide
the search for next generations. In our test problem, we lack such a small
feasible area in which RI may show its worst performance. For future work,
we will test this method for smaller feasible areas with features of disconnected
feasible areas. In addition, another possible future work is to observe the effect
of randomness over predicted solutions. In our experiments, we test with
inserting five predicted solutions, as well as two random solutions. However,
different combinations of these forces can be experimented based on problem

features.

As mentioned before, Rst can be considered as a sever case of RI, in which,
we discard all the previous attempts of the algorithm and start new random
solutions. Looking to Table 8.1, if we compare NN_RI, NN_Rst and NN_No,
we can conclude the following observations. In most of the experiments,
we can clearly observe the behaviour of Rl is significantly better than Rst
method. However, noNN_Rst is ranked as the best for exp4, in which the
position of the optimum changes drastically. Conversely, noNN_Rst achieves
a low ranking for exp2 and exp3, in which the optimum position changes are
not huge and thus by discarding the previous attempts of the algorithm, the
performance degrades. This implies when using NN, diversity of population
is of high importance. In case of NN_Rst, we have a population scattered
around the search space. This is not helpful when NN tries to direct the
solution toward the new optimum. In case of NN_RI, however, we have a
proper amount of diversity among individuals of population (5 individuals
from NN, and 2 individuals from RI), so the results are promising. This
explains why noNN_No has an inferior performance for exp4, in which for

larger changes, it can not promote diversity to reach optimum. While for

8.4. Detailed examination of the use of neural networks 113

exp2 and exp3 is ranked better, since it does not need a drastic change in the

position.

ARR rank results show noNN_Rst and RI variants have almost the best re-
covery after a change compared to other methods for all experiments. Since
this measure (see ARR Equation in Chapter 2) reports better values for those
algorithms that can get distant from their first generation best solution faster.
For these two methods, the good result for this measure was predictable as
their first best solution is randomly created and often more far away than the
optimum compared to other methods.

According to SR measure, noONN_Rst show medium results. Although the
performance of this algorithm drops based of MOF values for exp2 and exp3,
but the results for SR values show only drop of performance in exp2 for
rastrigin. This discrepancy is due to the fact that MOF values consider the
performance of algorithms over all generations while SR cares only about last

solution achieved by each algorithm.

8.4.3 Hyper-mutation

HMu'’s results are quite similar to RI variant with slightly better performances
for exp1 and exp4 and worse performances for exp2 and exp3. The rankings
in the heatmap 8.3, clarify this observation. The reason lies on the shape of
the changes in the environment for different experiments. Expl and exp4
have bigger changes, in which HMu with larger scale factor after a change
converge faster to the new optimum. While for exp2 and exp3 RI is more
efficiently handle the smaller change. Since considering hyper mutation factor
in HMu, many of the individuals go through a change and convergence is
delayed. Whilst, in these two experiments the optimum position changes
are minor. Due to the same reason, NN_No also outperforms NN_HMu for
exp2 and exp3. This means diversity mechanisms do not always improve
algorithm performance when used on top of NN. In the proposed version of
HMu for DE in [5], it is proposed to change DE variant from DE/rand/1/bin
to DE/best/1/bin (see Chapter 4), when hyper parameters of DE are activated.
The best solution is chosen from the current time or a memory including previ-
ous times best. The test problem in that work is a two-dimensional. For larger
problem sizes like ours, this method is not able to promote diversity. This
is because in a DE promoting diversity needs a minimum level of diversity
among solutions. To achieve this, we insert randomly created solutions (7
individuals for the case without NN and 2 individuals for the case using NN).

114 Chapter 8. Neural Networks and Diversifying Differential Evolution

Although, the proper selection of the number of inserted individuals can be

experimented in a future study.

Based on the statistical test results, this method does not have significant
difference in some cases with RI (for exp1 sphere and rosenbrock) and in some

cases with Rst (exp1 rastrigin and exp2 sphere).

8.5 Conclusions and discussions

Given the complexity of integrating NN into the evolution process, and con-
sidering the time spent to train it, we investigated whether they can be compet-
itive solutions to solve DCOPs compared to standard diversity mechanisms.
We empirically studied the possibility of integrating NN and diversity mech-
anisms to extract the best of each to improve the results. We observed that
diversity of population is essential when using NN for DE. Because the evo-
lution process of DE algorithm depends on the diversity of population, if
we use NN without other diversity mechanism, as the inserted solutions
are distributed around the predicted value, then it is slower to explore the
search space leading to lower MOF values. In addition, in some cases due
to the multi-modality of the function, the algorithm may get stuck in a local
optimum and produce poor samples for NN to train. Hence, it is important
to have a diversity mechanism. On the other hand, we observed that NN
can improve the results of simple diversity mechanisms. This is because NN
helps directing the search toward the next optimum as opposed to random
nature of diversity mechanisms. The presented results were for one simple
teed-forward NN, however, considering several proposed structures of NNs
in literature, their application to handle dynamic optimisation problems is
still in its infancy. So for future work, we encourage application of other NN
designs to investigate their differences based of a range of problem features.

115

Chapter 9

Conclusions

In this thesis, evolutionary algorithms as a popular solution to tackle dynamic
constrained optimisation were studied from various aspects. This class of
optimisation is significantly important since many real-world problems are
attributed as dynamic and constrained. For the early chapters, first we pro-
vided a background on the topic, the problem description, the state of the art
algorithms, the motivation and challenges that led to this research, and the
objectives of this study. In these early chapters, we also introduced bench-
marks and performance metrics that were used as a reference for the technical
chapters. Then, we introduced differential evolution as our chosen baseline
algorithm due to its competency in continuous optimisation. Afterwards, we
explained constraint and dynamic handling mechanisms that were used in
the technical studies of the following chapters.

For the technical chapters (from Chapter 4 on-wards), firstly two empirical
studies regarding constraint handling techniques were presented. The first
one was a survey comparison over common constraint handling mechanisms,
and then specifically, we elaborated in repair methods as a promising solu-
tion to handle DCOPs. Commonly proposed repair methods were applied
and compared on the basis of a standard benchmark that captures different
types of environmental changes. The comparisons clarified the strengths and
weaknesses of each method on the basis of the problem type. In conclusion,
we observed that the proper selection of constraint handling technique is
more challenging where the problem is dynamic. This is because when the
problem is dynamic, the dynamic handling mechanisms tend to diversify the
population looking for the upcoming changes. On the other hand, constraint
handling techniques tend to avoid infeasible areas directing the search toward
feasible areas. We observed that repair methods can be a solution to avoid this
discrepancy. As repair methods are often more relax to accept high quality (in

116 Chapter 9. Conclusions

terms of objective values) infeasible solutions and try to direct them gradually
to the feasible area.

Afterwards, we brought the empirical results of a framework that was used
to create benchmarks to test algorithms in DCOPs in continuous spaces. Our
proposed framework could produce multiple benchmarks to be applied for
testing any function and for any number of changes and dimensions in the op-
timisation problem. In addition, we pointed out to the difficulty of comparing
algorithms in DCOPs, and as a solution, we introduced a ranking procedure

as a measure that did not need optimal points of each time for comparisons.

We continued our research with the study of diversity in evolutionary algo-
rithms and we observed its significant importance in dynamic environments.
Particularly, when the problem is constrained, examining the effect of diver-
sity is even of a higher importance due to the mutual effects that diversity

variants and constraint handling techniques would have.

For the last section of our research, we designed a neural network to be used
as dynamic handling mechanism together with DE to tackle DCOPs. We
proposed to consider neural network time expenditure in the experiments, as
neural network may take considerable time. This is because it includes several
stages: collecting data, training, and predicting, which may not be negligible
in comparison to other standard mechanisms. Thus, to compare the methods
fairly, we used wall clock timing as the measure for the available time between
changes. In this section of our studies, the neural network parameters were
calibrated running some experiments. We observed for short overall time
horizons, this might not be an efficient method given that for the first change
periods, we need to collect data. Moreover, training a neural network with
small amounts of data will overfit the neural network, making it difficult to
generalize and make predictions for new data. To alleviate this we proposed
to use a couple of best solutions at each time to train the network.

We continued our investigations with the algorithm using neural network
and compared it with the algorithms using common diversity mechanisms.
We observed for the integration of neural network in the evolution process of
DE, diversity of population has a great impact on the effectiveness of neural
network. Since evolution process of DE depends on the population diversity,
if we only use neural network without other diversity mechanism, as the
inserted solutions are distributed around the predicted value, then it is slower
to explore the search space. In addition, in some cases due to the multi-
modality of the function, the algorithm may get stuck in a local optimum and

Chapter 9. Conclusions 117

produce poor samples for neural network to train. Hence, it is important to

have a diversity mechanism.

For future work, considering different proposed structures for neural net-
works in machine learning community, there is a big capacity to test other
structures combined with EAs to solve DCOPs. The other potential area to
work on regarding DCOPs is to propose measurements to compare algorithms.
The current measures often need optimum solutions of each time that is hard
to achieve for the real-world problems. In addition, considering several fea-
tures of a dynamic problem in a real-world scenario, there is still a shortage of
test problems that emulate DCOPs.

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

119

Bibliography

Hussein A Abbass and Kalyanmoy Deb. “Searching under multi-
evolutionary pressures”. In: International Conference on Evolutionary
Multi-Criterion Optimization. Springer. 2003, pp. 391-404.

M.-Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramirez. “Dif-
ferential evolution with combined variants for dynamic constrained
optimization”. In: Evolutionary Computation (CEC), 2014 IEEE Congress
on. 2014, pp. 975-982.

Maria-Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, and Frank Neu-
mann. “On the use of repair methods in differential evolution for dy-
namic constrained optimization”. In: International Conference on the
Applications of Evolutionary Computation. Springer. 2018, pp. 832-847.
Maria-Yaneli Ameca-Alducin, Efrén Mezura-Montes, and Nicandro
Cruz-Ramirez. “A repair method for differential evolution with com-
bined variants to solve dynamic constrained optimization problems”.
In: Proceedings of the 2015 annual conference on genetic and evolutionary
computation. 2015, pp. 241-248.

Maria-Yaneli Ameca-Alducin, Efrén Mezura-Montes, and Nicandro
Cruz-Ramirez. “Differential evolution with combined variants for dy-
namic constrained optimization”. In: Evolutionary computation (CEC),
2014 IEEE congress on. 2014, pp. 975-982.

Maria-Yaneli Ameca-Alducin, Efrén Mezura-Montes, and Nicandro
Cruz-Ramirez. “Differential Evolution with Combined Variants plus a
Repair Method to Solve Dynamic Constrained Optimization Problems:
A comparative study”. In: Soft Computing (2016), pp. 1-30.
Maria-Yaneli Ameca-Alducin et al. “A comparison of constraint han-
dling techniques for dynamic constrained optimization problems”.
In: 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE. 2018,
pp- 1-8.

HC Andersen. “An investigation into genetic algorithms, and the re-
lationship between speciation and the tracking of optima in dynamic
functions”. In: Brisbane, Australia: Honors, Queensland Univ (1991).

120

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

Aniruddha Basak, Swagatam Das, and Kay Chen Tan. “Multimodal
optimization using a biobjective differential evolution algorithm en-
hanced with mean distance-based selection”. In: IEEE Transactions on
Evolutionary Computation 17.5 (2013), pp. 666—685.

Tim Blackwell and Jiirgen Branke. “Multiswarms, exclusion, and anti-
convergence in dynamic environments”. In: IEEE transactions on evolu-
tionary computation 10.4 (2006), pp. 459-472.

Tim M Blackwell and Peter] Bentley. “Dynamic search with charged
swarms”. In: Proceedings of the 4th Annual Conference on Genetic and
Evolutionary Computation. Citeseer. 2002, pp. 19-26.

Peter AN Bosman. “Learning, anticipation and time-deception in evo-
lutionary online dynamic optimization”. In: Proceedings of the 7th annual
workshop on Genetic and evolutionary computation. 2005, pp. 39-47.
Peter AN Bosman and Han La Poutre. “Learning and anticipation
in online dynamic optimization with evolutionary algorithms: the
stochastic case”. In: Proceedings of the 9th annual conference on Genetic
and evolutionary computation. ACM. 2007, pp. 1165-1172.

J. Branke. “Memory enhanced evolutionary algorithms for changing
optimization problems”. In: Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on. Vol. 3. 1999, 1882 Vol. 3.

Jiirgen Branke. Evolutionary optimization in dynamic environments. Vol. 3.
Springer Science & Business Media, 2012.

Jiirgen Branke and Hartmut Schmeck. “Designing evolutionary algo-
rithms for dynamic optimization problems”. In: Advances in evolution-
ary computing. Springer, 2003, pp. 239-262.

Jiirgen Branke et al. “A multi-population approach to dynamic opti-
mization problems”. In: Evolutionary design and manufacture. Springer,
2000, pp. 299-307.

C. Bu, W. Luo, and L. Yue. “Continuous Dynamic Constrained Opti-
mization with Ensemble of Locating and Tracking Feasible Regions
Strategies”. In: IEEE Transactions on Evolutionary Computation PP.99
(2016), pp. 1-1.

Chenyang Bu, Wenjian Luo, and Lihua Yue. “Continuous dynamic con-
strained optimization with ensemble of locating and tracking feasible
regions strategies”. In: IEEE Transactions on Evolutionary Computation
21.1 (2017), pp. 14-33.

Chenyang Bu, Wenjian Luo, and Tao Zhu. “Differential evolution with
a species-based repair strategy for constrained optimization”. In: Evo-
lutionary Computation (CEC), 2014 IEEE Congress on. 2014, pp. 967-974.

Bibliography 121

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[30]

[31]

[32]

L. T. Bui, H. A. Abbass, and J. Branke. “Multiobjective optimization
for dynamic environments”. In: 2005 IEEE Congress on Evolutionary
Computation. Vol. 3. 2005, 2349-2356 Vol. 3.

Walter Cedeno and V Rao Vemuri. “On the use of niching for dy-
namic landscapes”. In: Proceedings of 1997 leee International Conference
on Evolutionary Computation (Icec’97). IEEE. 1997, pp. 361-366.

Piya Chootinan and Anthony Chen. “Constraint handling in genetic
algorithms using a gradient-based repair method”. In: Computers &
operations research 33.8 (2006), pp. 2263-2281.

H. Cobb. An Investigation into the Use of Hypermutation as an Adaptive
Operator in Genetic Algorithms Having Continuous, Time-Dependent Non-
stationary Environments. Tech. rep. Naval Research Lab Washington DC,
1990.

Helen G. Cobb. “An Investigation into the Use of Hypermutation
as an Adaptive Operator in Genetic Algorithms Having Continuous,
Time-Dependent Nonstationary Environments”. In: 1990.

Helen G Cobb. An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent nonsta-
tionary environments. Tech. rep. Naval Research lab Washington DC,
1990.

Emma Collingwood, David Corne, and Peter Ross. “Useful diversity
via multiploidy”. In: Proceedings of IEEE International Conference on
Evolutionary Computation. IEEE. 1996, pp. 810-813.

L. Contreras-Varela and E. Mezura-Montes. “A Diversity Promotion
Study in Constrained Optimizations”. In: 2018 IEEE Congress on Evolu-
tionary Computation (CEC). 2018, pp. 1-8.

Matej Crepingek, Shih-Hsi Liu, and Marjan Mernik. “Exploration and
exploitation in evolutionary algorithms: A survey”. In: ACM Computing
Surveys (CSUR) 45.3 (2013), p. 35.

Moayed Daneshyari and Gary G Yen. “Dynamic optimization using
cultural based PSO”. In: 2011 IEEE Congress of Evolutionary Computation
(CEC). IEEE. 2011, pp. 509-516.

Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N Sugan-
than. “Recent advances in differential evolution-an updated survey”.
In: Swarm and Evolutionary Computation 27 (2016), pp. 1-30.

Swagatam Das and Ponnuthurai Nagaratnam Suganthan. “Differential
evolution: A survey of the state-of-the-art”. In: IEEE transactions on
evolutionary computation 15.1 (2011), pp. 4-31.

122

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[42]

[43]

Fabricio Olivetti De Franga and Fernando] Von Zuben. “A dynamic
artificial immune algorithm applied to challenging benchmarking prob-
lems”. In: 2009 IEEE Congress on Evolutionary Computation. IEEE. 2009,
pp- 423-430.

C De Prada et al. “Plant-wide control of a hybrid process”. In: Inter-
national Journal of Adaptive Control and Signal Processing 22.2 (2008),
pp- 124-141.

Kalyanmoy Deb. “An efficient constraint handling method for genetic
algorithms”. In: Computer methods in applied mechanics and engineering
186.2 (2000), pp. 311-338.

Kalyanmoy Deb, S Karthik, et al. “Dynamic multi-objective optimiza-
tion and decision-making using modified NSGA-II: a case study on
hydro-thermal power scheduling”. In: International conference on evolu-
tionary multi-criterion optimization. Springer. 2007, pp. 803-817.
Joaquin Derrac et al. “A practical tutorial on the use of nonparamet-
ric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms”. In: Swarm and Evolutionary Computa-
tion 1.1 (2011), pp. 3-18.

Sébastien Le Digabel and Stefan M Wild. “A taxonomy of constraints
in simulation-based optimization”. In: arXiv preprint arXiv:1505.07881
(2015).

Jeroen Eggermont et al. “Raising the dead: Extending evolutionary
algorithms with a case-based memory”. In: European Conference on
Genetic Programming. Springer. 2001, pp. 280-290.

Saber M Elsayed, Tapabrata Ray, and Ruhul A Sarker. “A surrogate-
assisted differential evolution algorithm with dynamic parameters
selection for solving expensive optimization problems”. In: Evolution-
ary Computation (CEC), 2014 IEEE Congress on. 2014, pp. 1062-1068.
Jose Luis Fernandez-Marquez and Josep Lluis Arcos. “Adapting parti-
cle swarm optimization in dynamic and noisy environments”. In: IEEE
Congress on Evolutionary Computation. IEEE. 2010, pp. 1-8.

Patryk Filipiak and Piotr Lipinski. “Dynamic portfolio optimization
in ultra-high frequency environment”. In: European Conference on the
Applications of Evolutionary Computation. Springer. 2017, pp. 34-50.
Wanru Gao and Frank Neumann. “Runtime analysis for maximizing
population diversity in single-objective optimization”. In: Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation.
ACM. 2014, pp. 777-784.

Ashish Ghosh and Shigeyoshi Tsutsui. Advances in evolutionary comput-
ing: theory and applications. Springer Science & Business Media, 2012.

Bibliography 123

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[55]

[56]

C. K. Goh and K. C. Tan. “A Competitive-Cooperative Coevolution-
ary Paradigm for Dynamic Multiobjective Optimization”. In: IEEE
Transactions on Evolutionary Computation 13.1 (2009), pp. 103-127.
John J Grefenstette et al. “Genetic algorithms for changing environ-
ments”. In: PPSN. Vol. 2. 1992, pp. 137-144.

Nikolaus Hansen, Sibylle D Miiller, and Petros Koumoutsakos. “Re-
ducing the time complexity of the derandomized evolution strategy
with covariance matrix adaptation (CMA-ES)”. In: Evolutionary compu-
tation 11.1 (2003), pp. 1-18.

Maryam Hasani-Shoreh, Renato Hermoza Aragonés, and Frank Neu-
mann. “Neural Networks in Evolutionary Dynamic Constrained Opti-
mization: Computational Cost and Benefits”. In: 24th European Con-
ference on Artificial Intelligence 325 (2020), pp. 275-282.

Maryam Hasani-Shoreh and Frank Neumann. “On the Use of Diversity
Mechanisms in Dynamic Constrained Continuous Optimization”. In:
International Conference on Neural Information Processing. Springer. 2019,
pp. 644-657.

Maryam Hasani-Shoreh et al. “On the behaviour of differential evo-
lution for problems with dynamic linear constraints”. In: 2019 IEEE
Congress on Evolutionary Computation (CEC). IEEE. 2019, pp. 3045-3052.
Iason Hatzakis and David Wallace. “Dynamic multi-objective opti-
mization with evolutionary algorithms: a forward-looking approach”.
In: Proceedings of the 8th annual conference on Genetic and evolutionary
computation. 2006, pp. 1201-1208.

Xiaohui Hu and Russell C Eberhart. “Adaptive particle swarm opti-
mization: detection and response to dynamic systems”. In: Proceedings
of the 2002 Congress on Evolutionary Computation. Vol. 2. IEEE. 2002,
pp. 1666-1670.

Marcus Hutter and Shane Legg. “Fitness uniform optimization”. In:
IEEE Transactions on Evolutionary Computation 10.5 (2006), pp. 568-589.
Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. “Diver-
sity improvement by non-geometric binary crossover in evolutionary
multiobjective optimization”. In: IEEE Transactions on Evolutionary Com-
putation 14.6 (2010), pp. 985-998.

Stefan Janson and Martin Middendorf. “A hierarchical particle swarm
optimizer and its adaptive variant”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 35.6 (2005), pp. 1272-1282.
Stefan Janson and Martin Middendorf. “A hierarchical particle swarm
optimizer for noisy and dynamic environments”. In: Genetic Program-
ming and Evolvable Machines 7.4 (2006), pp. 329-354.

124

Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Dongli Jia, Guoxin Zheng, and Muhammad Khurram Khan. “An effec-
tive memetic differential evolution algorithm based on chaotic local
search”. In: Information Sciences 181.15 (2011), pp. 3175-3187.

Min Jiang et al. “Transfer learning-based dynamic multiobjective opti-
mization algorithms”. In: IEEE Transactions on Evolutionary Computation
22.4 (2017), pp- 501-514.

Shouyong Jiang and Shengxiang Yang. “Evolutionary Dynamic Multi-
objective Optimization: Benchmarks and Algorithm Comparisons.” In:
IEEE Trans. Cybernetics 47.1 (2017), pp. 198-211.

Yaochu Jin and Bernhard Sendhoff. “Constructing dynamic optimiza-
tion test problems using the multi-objective optimization concept”. In:
Workshops on Applications of Evolutionary Computation. Springer. 2004,
pp- 525-536.

Oliver Kramer. A brief introduction to continuous evolutionary optimiza-
tion. Springer, 2014.

Changhe Li and Shengxiang Yang. “A clustering particle swarm opti-
mizer for dynamic optimization”. In: 2009 IEEE congress on evolutionary
computation. IEEE. 2009, pp. 439-446.

Changhe Li et al. Benchmark generator for CEC 2009 competition on dy-
namic optimization. Tech. rep. 2008.

Xiaodong Li, Jiirgen Branke, and Tim Blackwell. “Particle swarm with
speciation and adaptation in a dynamic environment”. In: Proceedings
of the 8th annual conference on Genetic and evolutionary computation. 2006,
pp. 51-58.

J. J. Liang et al. Problem Definitions and Evaluation Criteria for the CEC
2006 Special Session on Constrained Real-Parameter Optimization. Tech.
rep. Singapure: Nanyang Technological University, Singapore, 2005.
J] Liang et al. “Problem definitions and evaluation criteria for the CEC
2006 special session on constrained real-parameter optimization”. In:
Journal of Applied Mechanics 41.8 (2006), pp. 8-31.

Li Liu et al. “Adaptive contamination source identification in water
distribution systems using an evolutionary algorithm-based dynamic
optimization procedure”. In: Water Distribution Systems Analysis Sym-
posium 2006. 2008, pp. 1-9.

Lili Liu, Dingwei Wang, and Shengxiang Yang. “Compound parti-
cle swarm optimization in dynamic environments”. In: Workshops on
Applications of Evolutionary Computation. Springer. 2008, pp. 616—625.
Xiao-Fang Liu, Zhi-Hui Zhan, and Jun Zhang. “Neural network for
change direction prediction in dynamic optimization”. In: IEEE Access
6 (2018), pp. 72649-72662.

Bibliography 125

[70] Xiao-Fang Liu et al. “Neural Network-Based Information Transfer for
Dynamic Optimization”. In: IEEE transactions on neural networks and
learning systems (2019).

[71] Rodicaloana Lung and D Dumitrescu. “A new collaborative evolutionary-
swarm optimization technique”. In: Proceedings of the 9th annual confer-
ence companion on Genetic and evolutionary computation. 2007, pp. 2817-
2820.

[72] Almuth Meier and Oliver Kramer. “Prediction with recurrent neural
networks in evolutionary dynamic optimization”. In: International Con-
ference on the Applications of Evolutionary Computation. Springer. 2018,
pp. 848-863.

[73] Almuth Meier and Oliver Kramer. “Predictive Uncertainty Estimation
with Temporal Convolutional Networks for Dynamic Evolutionary
Optimization”. In: International Conference on Artificial Neural Networks.
Springer. 2019, pp. 409—421.

[74] R.Mendes and A.S. Mohais. “DynDE: a differential evolution for dy-
namic optimization problems”. In: Evolutionary Computation, 2005. The
2005 IEEE Congress on. Vol. 3. 2005, 2808-2815 Vol. 3.

[75] Koenraad Mertens, Tom Holvoet, and Yolande Berbers. “The Dyn-
COAA algorithm for dynamic constraint optimization problems”. In:
Proceedings of the fifth international joint conference on Autonomous agents
and multiagent systems. ACM. 2006, pp. 1421-1423.

[76] Efrén Mezura-Montes and Carlos A Coello Coello. “A simple multi-
membered evolution strategy to solve constrained optimization prob-
lems”. In: IEEE Transactions on Evolutionary computation 9.1 (2005), pp. 1-
17.

[77] Efrén Mezura-Montes and Carlos A Coello Coello. “Constraint-handling
in nature-inspired numerical optimization: past, present and future”.
In: Swarm and Evolutionary Computation 1.4 (2011), pp. 173-194.

[78] Efrén Mezura-Montes, Carlos A Coello Coello, and Edy I Tun-Morales.
“Simple feasibility rules and differential evolution for constrained opti-
mization”. In: Mexican International Conference on Artificial Intelligence.
Springer. 2004, pp. 707-716.

[79] Z. Michalewicz and G. Nazhiyath. “Genocop III: a co-evolutionary
algorithm for numerical optimization problems with nonlinear con-
straints”. In: Evolutionary Computation, 1995., IEEE International Confer-
ence on. Vol. 2. 1995, pp. 647-651.

[80] Zbigniew Michalewicz and David B Fogel. How to solve it: modern
heuristics. Springer Science & Business Media, 2013.

126

Bibliography

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[90]

[91]

[92]

Juan M Morales et al. “Managing Uncertainty with Flexibility”. In:
Integrating Renewables in Electricity Markets. Springer, 2014, pp. 137-
171.

Naoki Mori, Hajime Kita, and Yoshikazu Nishikawa. “Adaptation to
a changing environment by means of the thermodynamical genetic
algorithm”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 1996, pp. 513-522.

Ronald W Morrison. Designing evolutionary algorithms for dynamic envi-
ronments. Springer Science & Business Media, 2013.

Khim Peow Ng and Kok Cheong Wong. “A new diploid scheme and
dominance change mechanism for non-stationary function optimiza-
tion”. In: Proceedings of the 6th international conference on genetic algo-
rithms. 1995, pp. 159-166.

T. T. Nguyen and X. Yao. “Benchmarking and solving dynamic con-
strained problems”. In: Evolutionary Computation, 2009. CEC "09. IEEE
Congress on. 2009, pp. 690-697.

Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. “Evo-
lutionary dynamic optimization: A survey of the state of the art”. In:
Swarm and Evolutionary Computation 6 (2012), pp. 1-24.

Trung Thanh Nguyen and Xin Yao. “Continuous dynamic constrained
optimization—The challenges”. In: IEEE Transactions on Evolutionary
Computation 16.6 (2012), pp. 769-786.

Trung Thanh Nguyen and Xin Yao. “Detailed experimental results of
GA, RIGA, HyperM and GA+ Repair on the G24 set of benchmark
problems”. In: School of Computer Science, University of Birmingham, Tech.
Rep (2010).

Trung Thanh Nguyen and Xin Yao. “Solving dynamic constrained
optimisation problems using repair methods”. In: IEEE Transactions on
Evolutionary Computation (submitted) (2010).

T.T. Nguyen. A proposed real-valued dynamic constrained benchmark set.
Tech. rep. School Comput. Sci., Univ. Birmingham, Birmingham, U.K,,
2008.

T.T. Nguyen. “Continuous Dynamic Optimisation Using Evolutionary
Algorithms”. PhD thesis. School of Computer Science The University
of Birmingham, 2010.

Mohammad Nabi Omidvar et al. “Cooperative co-evolution with dif-
ferential grouping for large scale optimization”. In: IEEE Transactions
on Evolutionary Computation 18.3 (2014), pp. 378-393.

Bibliography 127

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Franz Oppacher, Mark Wineberg, et al. “The shifting balance genetic
algorithm: Improving the GA in a dynamic environment”. In: Proceed-
ings of the genetic and evolutionary computation conference. Vol. 1. 1999,
pp. 504-510.

K. Pal et al. “Dynamic Constrained Optimization with offspring repair
based Gravitational Search Algorithm”. In: Evolutionary Computation
(CEC), 2013 IEEE Congress on. 2013, pp. 2414-2421.

In: Swarm, Evolutionary, and Memetic Computing. Ed. by BijayaKetan
Panigrahi et al. Vol. 8297. Lecture Notes in Computer Science. 2013.
ISBN: 978-3-319-03752-3.

Diego Martinez Prata, Enrique Luis Lima, and José Carlos Pinto. “Si-
multaneous data reconciliation and parameter estimation in bulk
polypropylene polymerizations in real time”. In: Macromolecular Sym-
posia. Vol. 243. 1. Wiley Online Library. 2006, pp. 91-103.

Shahryar Rahnamayan, Hamid R Tizhoosh, and Magdy MA Salama.
“Opposition-based differential evolution”. In: IEEE Transactions on Evo-
lutionary computation 12.1 (2008), pp. 64-79.

Pratyusha Rakshit et al. “Uncertainty management in differential evo-
lution induced multiobjective optimization in presence of measure-
ment noise”. In: IEEE Transactions on Systems, Man, and Cybernetics:
Systems 44.7 (2014), pp. 922-937.

Hendrik Richter. “Evolutionary Computation for Dynamic Optimiza-
tion Problems”. In: Springer Berlin Heidelberg, 2013. Chap. Dynamic
Fitness Landscape Analysis, pp. 269-297.

Hendrik Richter. “Memory design for constrained dynamic optimiza-
tion problems”. In: European Conference on the Applications of Evolution-
ary Computation. Springer. 2010, pp. 552-561.

Hendrik Richter and Shengxiang Yang. “Learning behavior in abstract
memory schemes for dynamic optimization problems”. In: Soft Com-
puting 13.12 (2009), pp. 1163-1173.

Hendrik Richter and Shengxiang Yang. “Memory based on abstrac-
tion for dynamic fitness functions”. In: Workshops on Applications of
Evolutionary Computation. Springer. 2008, pp. 596-605.

Marius Riekert, KM Malan, and AP Engelbrect. “Adaptive genetic
programming for dynamic classification problems”. In: 2009 IEEE
Congress on Evolutionary Computation. IEEE. 2009, pp. 674-681.

Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao. “Dynamic evo-
lutionary optimisation: an analysis of frequency and magnitude of
change”. In: Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. ACM. 2009, pp. 1713-1720.

128

Bibliography

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Vahid Roostapour, Aneta Neumann, and Frank Neumann. “On the
performance of baseline evolutionary algorithms on the dynamic knap-
sack problem”. In: International Conference on Parallel Problem Solving
from Nature. Springer. 2018, pp. 158-1609.

Claudio Rossi, Mohamed Abderrahim, and Julio César Diaz. “Tracking
moving optima using Kalman-based predictions”. In: Evolutionary
computation 16.1 (2008), pp. 1-30.

Thomas P. Runarsson and Xin Yao. “Stochastic ranking for constrained
evolutionary optimization”. In: IEEE Transactions on evolutionary com-
putation 4.3 (2000), pp. 284-294.

Bruno Sareni and Laurent Krahenbuhl. “Fitness sharing and niching
methods revisited”. In: IEEE transactions on Evolutionary Computation
2.3 (1998), pp- 97-106.

Anabela Simdes and Ernesto Costa. “An immune system-based genetic
algorithm to deal with dynamic environments: diversity and memory”.
In: Artificial Neural Nets and Genetic Algorithms. Springer. 2003, pp. 168—
174.

Anabela Simdes and Ernesto Costa. “Evolutionary algorithms for dy-
namic environments: prediction using linear regression and markov
chains”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 2008, pp. 306-315.

Anabela Simodes and Ernesto Costa. “Improving memory’s usage in
evolutionary algorithms for changing environments”. In: 2007 IEEE
Congress on Evolutionary Computation. IEEE. 2007, pp. 276-283.
Anabela Simdes and Ernesto Costa. “Improving prediction in evolu-
tionary algorithms for dynamic environments”. In: Proceedings of the
11th Annual conference on Genetic and evolutionary computation. ACM.
2009, pp. 875-882.

Dirk Sudholt. “The benefits of population diversity in evolutionary
algorithms: a survey of rigorous runtime analyses”. In: Theory of Evolu-
tionary Computation. Springer, 2020, pp. 359-404.

Tetsuyuki Takahama, Setsuko Sakai, and Noriyuki Iwane. “Constrained
optimization by the epsilon constrained hybrid algorithm of particle
swarm optimization and genetic algorithm”. In: Australian Conference
on Artificial Intelligence. Vol. 3809. Springer. 2005, pp. 389-400.

Ke Tang et al. “Benchmark functions for the CEC"2008 special session
and competition on large scale global optimization”. In: Nature inspired
computation and applications laboratory, USTC, China 24 (2007), pp. 1-18.
Biruk Tessema and Gary G Yen. “An adaptive penalty formulation

for constrained evolutionary optimization”. In: IEEE Transactions on

Bibliography 129

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Systems, Man, and Cybernetics-Part A: Systems and Humans 39.3 (2009),
pp- 565-578.

Andrea Toffolo and Ernesto Benini. “Genetic diversity as an objective in
multi-objective evolutionary algorithms”. In: Evolutionary computation
11.2 (2003), pp. 151-167.

Shigeyoshi Tsutsui, Yoshiji Fujimoto, and Ashish Ghosh. “Forking
genetic algorithms: GAs with search space division schemes”. In: Evo-
lutionary computation 5.1 (1997), pp. 61-80.

Rasmus K Ursem et al. “Multinational GAs: Multimodal Optimization
Techniques in Dynamic Environments.” In: GECCO. Vol. 20. 0. 2000,
p- 0.

F. Vavak, K. Jukes, and T. C. Fogarty. “Learning the local search range
for genetic optimisation in nonstationary environments”. In: Evolution-
ary Computation, 1997., IEEE International Conference on. 1997, pp. 355—
360.

Frank Vavak, Terence C Fogarty, and Ken Jukes. “A genetic algorithm
with variable range of local search for tracking changing environ-
ments”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 1996, pp. 376-385.

Yao Wang and Mark Wineberg. “Estimation of evolvability genetic
algorithm and dynamic environments”. In: Genetic Programming and
Evolvable Machines 7.4 (2006), p. 355.

Y. G. Woldesenbet and G. G. Yen. “Dynamic Evolutionary Algorithm
With Variable Relocation”. In: IEEE Transactions on Evolutionary Compu-
tation 13.3 (2009), pp. 500-513.

Yonas G Woldesenbet and Gary G Yen. “Dynamic evolutionary algo-
rithm with variable relocation”. In: IEEE Transactions on Evolutionary
Computation 13.3 (2009), pp. 500-513.

S. Yang and X. Yao. “Population-Based Incremental Learning With
Associative Memory for Dynamic Environments”. In: IEEE Transactions
on Evolutionary Computation 12.5 (2008), pp. 542-561.

Shengxiang Yang. “A comparative study of immune system based
genetic algorithms in dynamic environments”. In: Proceedings of the Sth
annual conference on Genetic and evolutionary computation. 2006, pp. 1377-
1384.

Shengxiang Yang. “Associative memory scheme for genetic algorithms
in dynamic environments”. In: Workshops on Applications of Evolutionary
Computation. Springer. 2006, pp. 788-799.

130

Bibliography

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Shengxiang Yang. “Genetic algorithms with memory-and elitism-based
immigrants in dynamic environments”. In: Evolutionary Computation
16.3 (2008), pp. 385-416.

Shengxiang Yang. “Memory-based immigrants for genetic algorithms
in dynamic environments”. In: Proceedings of the 7th annual conference
on Genetic and evolutionary computation. 2005, pp. 1115-1122.
Shengxiang Yang. “On the design of diploid genetic algorithms for
problem optimization in dynamic environments”. In: IEEE International
Conference on Evolutionary Computation. 2006, pp. 1362-1369.
Shengxiang Yang and Changhe Li. “A clustering particle swarm opti-
mizer for locating and tracking multiple optima in dynamic environ-
ments”. In: IEEE Transactions on Evolutionary Computation 14.6 (2010),
pp- 959-974.

Shengxiang Yang and Xin Yao. “Experimental study on population-
based incremental learning algorithms for dynamic optimization prob-
lems”. In: Soft computing 9.11 (2005), pp. 815-834.

Xiaodong Yin and Noel Germay. “A fast genetic algorithm with shar-
ing scheme using cluster analysis methods in multimodal function
optimization”. In: Artificial neural nets and genetic algorithms. Springer.
1993, pp. 450-457.

EL Yu and Ponnuthurai N Suganthan. “Evolutionary programming
with ensemble of explicit memories for dynamic optimization”. In:
2009 IEEE Congress on Evolutionary Computation. IEEE. 2009, pp. 431-
438.

Zhuhong Zhang et al. “Danger theory based artificial immune system
solving dynamic constrained single-objective optimization”. In: Soft
Computing 18.1 (2014), pp. 185-206.

Aimin Zhou, Yaochu Jin, and Qingfu Zhang. “A population prediction
strategy for evolutionary dynamic multiobjective optimization”. In:
IEEE transactions on cybernetics 44.1 (2013), pp. 40-53.

Aimin Zhou et al. “Prediction-based population re-initialization for
evolutionary dynamic multi-objective optimization”. In: International
Conference on Evolutionary Multi-Criterion Optimization. Springer. 2007,
pp- 832-846.

Tao Zhu, Wenjian Luo, and Zhifang Li. “An adaptive strategy for
updating the memory in evolutionary algorithms for dynamic opti-
mization”. In: 2011 IEEE Symposium on Computational Intelligence in
Dynamic and Uncertain Environments (CIDUE). IEEE. 2011, pp. 8-15.

Bibliography 131

[139] Albert Y. Zomaya and Yee-Hwei Teh. “Observations on using genetic
algorithms for dynamic load-balancing”. In: IEEE transactions on parallel
and distributed systems 12.9 (2001), pp. 899-911.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Dynamic Constrained Continuous Optimisation
	Introduction
	Specifications of the dynamic environments
	Problem statement
	Evolutionary algorithms for dynamic problems: state of the art
	Diversity introducing
	Maintaining diversity
	Memory-based
	Prediction-based
	Multi-population-based

	Benchmarks in dynamic optimisation
	Performance measures

	Evolutionary Dynamic Optimisation
	Introduction
	Differential evolution
	Change detection mechanisms
	Re-evaluation of solutions
	Error calculation

	Change reaction mechanisms
	Diversity promoting techniques
	Chaos local search
	Crowding
	Fitness diversity
	No diversity mechanism
	Opposition
	Random immigrants
	Restart population
	Hyper-mutation

	Neural networks

	Constraint handling techniques
	Penalty functions
	Feasibility rules
	-constrained
	Stochastic ranking
	Repair methods
	Reference-based repair method
	Offspring-repair method
	Mutant-repair method
	Gradient-based repair method

	Constraint Handling Techniques
	Introduction
	Standard constraint handling techniques
	Experimental design
	Experimental analysis
	Analysis I: performance measure
	Analysis II: behaviour measures

	Conclusion and discussions

	Repair methods
	Experimental setup
	Experimental results
	Offline error analysis
	Analysis of success rate and required number of iterations for repairing solutions

	Conclusions and discussions

	Benchmarks in Dynamic Constrained Optimisation
	Introduction
	Dynamic changes framework
	Constraint setup
	Frequency setup

	Experimental setup
	Ranking mechanism

	Experimental results
	Illustration of results for sphere
	Single constraint
	Multiple constraints

	Conclusion and future work

	Diversity Mechanisms in Dynamic Constrained Optimisation
	Introduction
	Experimental setup
	Results and discussion
	Diversity results
	Statistical results
	Discussions

	Conclusions and future works

	Neural Networks in Evolutionary Dynamic Optimisation
	Introduction
	Experimental setup
	Designed experiments
	Test problems and parameters settings

	Experimental results
	Frequency changes
	Building train data set
	Number and mechanism to insert predictions

	Conclusions and future works

	Neural Networks and Diversifying Differential Evolution
	Introduction
	Experimental methodology
	Cross comparison of approaches
	Detailed examination of the use of neural networks
	Crowding
	Random immigrants and restart population
	Hyper-mutation

	Conclusions and discussions

	Conclusions
	Bibliography

