ACCEPTED VERSION

Xuguang Duan, Qi Wu, Chuang Gan, Yiwei Zhang, Wenbing Huang, Anton Van Den
Hengel, Wenwu Zhu

Watch, reason and code: Learning to represent videos using program
Proceedings of the 27th ACM International Conference on Multimedia (ACM Multimedia
2019), MM '19, 2019 / pp.1543-1551

© 2019 Association for Computing Machinery.

Definitive Version of Record: http://dx.doi.org/10.1145/3343031.3351094

PERMISSIONS

https://authors.acm.org/author-services/author-rights

ACM Author Rights

Post

Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published authors of
magazine articles, journal articles, and conference papers retain the right to post the pre-
submitted (also known as "pre-prints"), submitted, accepted, and peer-reviewed versions of
their work in any and all of the following sites:

e Author's Homepage

e Author's Institutional Repository

e Any Repository legally mandated by the agency or funder funding the research on
which the work is based

¢ Any Non-Commercial Repository or Aggregation that does not duplicate ACM tables of
contents. Non-Commercial Repositories are defined as Repositories owned by non-
profit organizations that do not charge a fee to access deposited articles and that do
not sell advertising or otherwise profit from serving scholarly articles.

28 April 2021

http://hdl.handle.net/2440/129989



http://dx.doi.org/10.1145/3343031.3351094
http://hdl.handle.net/2440/129989
https://authors.acm.org/author-services/author-rights

Watch, Reason and Code: Learning to Represent Videos
Using Program

Xuguang Duan® Qi Wu Chuang Gan’
duan_xg@outlook.com qi.wu01 @adelaide.edu.au ganchuang 1990 @gmail.com
Tsinghua University The University of Adelaide MIT-IBM Watson Al Lab

Yiwei Zhang Wenbing Huang Anton van den Hengel
yw_zhangthu@ 163.com hwenbing@126.com anton.hengel @adelaide.edu.au
Tsinghua University Tencent AI Lab The University of Adelaide

Wenwu Zhu'

wwzhu@tsinghua.edu.cn
Tsinghua University

ABSTRACT

Humans have a surprising capacity to induce general rules that de-
scribe the specific actions portrayed in a video sequence. The rules
learned through this kind of process allow us to achieve similar goals
to those shown in the video but in more general circumstances. En-
abling an agent to achieve the same capacity represents a significant
challenge. In this paper, we propose a Watch-Reason-Code (WRC)
model to synthesise programs that describe the process carried out in
a set of video sequences. The ‘watch’ stage is simply a video encoder
that encodes videos to multiple feature vectors. The ‘reason’ stage
takes as input the features from multiple diverse videos and gener-
ates a compact feature representation via a novel deviation-pooling
method. The ‘code’ stage is a multi-round decoder that the first step
leverages to generate a draft program layout with possible useful
statements and perceptions. Further steps then take these outputs and
generate a fully structured, compile-able and executable program.
We evaluate the effectiveness of our model in two video-to-program
synthesis environments, Karel and ViZdoom, showing that we can
achieve the state-of-the-art under a variety of settings.

KEYWORDS

video understanding, video embedding, video to program translation

1 INTRODUCTION

The human ability to learn a skill by observing it being executed by
another is fundamental to our individual development, and forms
the backbone of our education process. Showing a video of ‘making
coffee using coffee machine’ to a ten-year-old child is typically
sufficient for them be able to operate a simple coffee machine, even
if the appearance of the machine differs from that in the video.
Showing a video of someone playing a game of ‘Super Mario’ (see

*Beijing National Research Center for Information Science and Technology (BNRist)
TCorresponding authors.

©2021
ACMISBN...$
https://doi.org/

def runQ:
while true:
while frontlisClear:

moveForward()

if therelsMonster:
if not hasWeapon:
runAway )
else:
attack()
if therelsWall:
JumpQ)

1111'\‘!‘\:’
e b e

Figure 1: An illustration of the game of ‘Super Mario’. Hu-
mans can imply general rules from these diverse videos. Our
aim, known as video-to-program synthesis, is to train a ma-
chine to synthesise the underlying programs from several dif-
ferent video demonstration sequences, i.e. the model is required
to summarise information from all input videos and predict the
underlying logics, as shown in the right part of the figure.

Figure 1) similarly provides most of the information required to
play it. Even better, the viewer will also do a better job of playing
‘Sonic’ because the two games have similar rules and a similar
interface. Humans have such strong learning abilities because we
can abstract over behaviours and situations to extract general rules
that are applicable far more broadly. For example, rules like ‘A mug
needs to be placed under the outlet’, ‘press the full-cup button if you
want a lungo’ can be learned from coffee making videos, while rules
like ‘eat coins to gain points’, and ‘jump over items that have thorns’
can be surmised from watching ‘Super Mario’.

Implying a general rule from a specific instance of a behaviour is
an ill-posed problem, that humans solve on the basis of a lifetime’s
experience in observing and acting upon the world. For a machine
to achieve the same task without the same lifetime’s experience is
complicated, but offers the prospect of machines that can learn to
achieve a task by observation rather than instruction.


https://doi.org/

Although action recognition [Ali and Shah, 2010, Simonyan and
Zisserman, 2014], description [Pan et al., 2017, Xu et al., 2016, Yu
et al., 2016] and event prediction of further activities [Ryoo, 2011]
in videos have progressed well thanks to the rapid development of
deep learning, our task in this paper, is different. Our goal is to
make a step towards a model that can generate executable programs
by learning perception-based decision making logic rules from be-
haviours observed in multiple demonstrating videos, i.e., program
synthesis from videos. The video-based program synthesis empow-
ers machines a more in-depth understanding ability on the diverse
behaviours in videos, because a program is one of the most compact
structured formal languages that can represent the decision making
logic of different behaviours.

In contrast to conventional video understanding tasks [Ali and
Shah, 2010, Pan et al., 2017, Ryoo, 2011, Simonyan and Zisserman,
2014, Xu et al., 2016, Yu et al., 2016], program synthesis from videos
has two major challenges. First, the diversity of the demonstrating
videos is large. A given collection of video demonstrations may only
share the same final goal (for example, ‘to survive’ in the ViZdoom),
but the action order or behaviour type might be totally different, due
to the randomised setting of the perception environment. Hence, a
sophisticated video summarisation model is required for synthesising
underlying logic rules from diverse behaviours observed in videos.
Since we have multiple video demonstrations that correspond to the
same underlying program, this is a new multi-sequence-to-single-
sequence problem, which is more challenging than the conventional
sequence-to-sequence problem that only has a single input sequence.
A powerful summarising model is thus required.

The second challenge is the strict constraints upon the output
format. In contrast to the video classification task that only has a
label output, and the video captioning task that only needs to generate
a natural language description, the program synthesis problem is
required to generate a piece of program code (with domain specific
language) that can be executed in a domain-specific simulator. This
requires that the generation process is able to strictly follow the
grammar, for example, a ‘while’ statement must be followed by a
‘condition’, and there must be a ‘then’ if there is an ‘if” token.

To this end, we propose a Watch-Reason-Code (WRC) model.
The ‘watch’ stage is a recurrent neural network (RNN) based video
encoder. However, in contrast to previous video encoders that encode
each video independently, we use a peer-aware video encoder strat-
egy to encode multiple diverse videos at the same time, through two
correlated RNNs. The ‘reason’ module is responsible for summaris-
ing the output features from the last step, which we formulate as a
pooling task. In order to reason and summarise diverse behaviours
observed at different moments in different videos, we propose a
novel deviation-pooling method which considers the feature simi-
larity, deviation and the model complexity simultaneously. The last
stage is a ‘code’ module that is formed by multiple RNNs. The first
RNN focuses on producing a collection of possibly useful statements
and perception conditions as a draft code statement. Subsequent steps
(a sequence of RNNs) then refine the draft code repeatedly, to ensure
it is executable and aligned with the input videos.

We evaluate the method’s effectiveness on two video-based pro-
gram synthesis datasets: Karel [Pattis, 1981] is a toy size dataset with
a fully observable, third-person environment. ViZdoom [Kempka
et al., 2016] is a large-scale shooting game dataset with partially

Xuguang Duan et al.

observable, egocentric environment. Different settings of our model
under different settings of environments are tested, and we outper-
form the baseline model in a large margin. Our final model achieves
the state-of-the-art in both environments.

To summarise, our contributions are threefold:

e We propose a novel framework for a recently raised chal-
lenging problem, video-to-program synthesis. Our proposed
framework divides the process into three stages which are
‘watch’, ‘reason’ and ‘code’, corresponding to a human pro-
grammer.

e We propose a novel deviation-pooling method that can effec-
tively fuse features from multiple videos and domains. The
proposed pooling strategy can reach similar performance with
Relation-Network pooling[Santoro et al., 2017] method and
cost much less resource.

e We show that in two datasets, whether fully or partially ob-
servable, our proposed Watch-Code-Deliberate model outper-
forms the comparison method, achieving the new state-of-art.
Besides the performance, the results show that our model
indeed learns to summarise the logic instead of memorise
training examples, which is the most encouraging part of our
work.

2 RELATED WORKS
2.1 Program Synthesis.

In addition to learning from video demonstrations, our work can be
categorised as fulfilling the classic task of Program Synthesis, which
aims to produce a program that describes the underlying logic of
the given examples. Among program synthesis work, [Balog et al.,
2017] makes use of search algorithms for inductive program synthe-
sis, [Parisotto et al., 2017] proposes a Recursive-Reverse-Recursive
neural network (R3NN) for string transformation, and [Bartoli et al.,
2014] focus on the task of regular expression generation synthesis.
Besides those works focusing on string transformation, [Bunel et al.,
2018] uses a reinforcement learning framework and masks the de-
coder to address the importance of grammars in the KAREL [Pattis,
1981] environment, [Ellis et al., 2017] tries to infer the underlying
graphics programs from hand-drawn images.

Most recently, [Sun et al., 2018] extends the task to a visual do-
main, that is, learning from video demonstrations. They introduce a
‘summariser’ module to integrate multiple demonstrations varying
in behaviour with an RNN-based programme generator. We follow
a similar encoder-decoder approach, but we extend it to three mod-
ules — a reasoning module that can effectively summarise diverse
behaviours observed at different moments of different videos is
inserted between the encoder and decoder. We also devise a sophisti-
cated multi-round decoder which improves the program generation
ability. Several experiments performed in Section 4 show the advan-
tages of our proposed novel modules, compared to the models in
[Sun et al., 2018].

2.2 Program Induction.

Instead of generating programs, Program Induction tries to discover
the underlying logic of a certain task (e.g. sorting) and inducts a
latent representation of their models. The Neural Turing Machine
[Graves et al., 2014] and several other models [Kaiser and Sutskever,



Watch, Reason and Code: Learning to Represent Videos Using Program '

2015, Kurach et al., 2015] try to solve the problem with the back-
ground of Turing Machines, and they work well at the tasks of
sorting, memory-access, and long binary multiplication. Also, Stack-
RNN [Joulin and Mikolov, 2015] makes use of an external stack-
structured memory to learn algorithmic patterns of small description
length. More recently, [Devlin et al., 2017] proposed an interesting
approach to few-short program induction.

2.3 Video Understanding.

As our task tries to record the underlying logic of a set of video
demonstrations using programming language, our work is also re-
lated to the task of video understanding. To understand videos, one
common approach is to focus on discovering events and their corre-
lations within videos, e.g. action recognition [Simonyan and Zisser-
man, 2014], and event prediction [Xu et al., 2016]. Some methods
translate videos into other data modalities first [Song et al., 2016,
Venugopalan et al., 2015]. Among the array of tasks related to video
understanding, video captioning [Hori et al., 2017, Krishna et al.,
2017, Shen et al., 2017, Venugopalan et al., 2015] is the most similar
to ours, except in that case the output is natural language rather
than an executable description of the actions observed. As natural
language is flexible, and very robust, the process of generating and
interpreting video captions is less demanding. However, in our pro-
gram prediction scenario, the accuracy of the syntax and content
is critical to developing an executable interpretation of the action,
which increases the complexity of our task.

3 THE WATCH-REASON-CODE MODEL

Given k video demonstrations V' = {ui}le, the goal of the program

synthesis is to generate an underlying program P that implies the
behaviour logic in these videos. The program P is restricted to a
Domain-Specific-Language(DSL) (see Figure 2) and is represented
by a code: P = {wy,ws, ..., wr }, where L is the length of the program
and w is a code token. Each of the video demos v; € RTXHXWXC jq
a video with length T;, height H, width W, channel C generated with
a simulation environment (i.e. a program executor), conditioned on
the program P and a random initial state. The video frame rate is syn-
chronous with the program, i.e. each executed action (e.g. ‘move()’)
results in a specific frame in the video. Based on different initial
state, the video demos would be different from each other, but all
together traversal through all the branches and loops of the given
program.

This problem can be seen as a new type of sequence-to-sequence
prediction problem where the input sequence is a set of demonstra-
tions V and the output is a code token sequence P. However, different
from the conventional sequence-to-sequence problem, the input of
this problem is more than one sequence. To solve the task, the model
is required to be able to: 1) model every frame in every video demo,
discover the implicit action (and condition) underlying the frame
image; 2) discover and integrate the relationship between different
video demos, find the underlying condition between different actions
from different video demos; 3) decode the program correctly with
the integrated information from previous stages.

To this end, we devise a Watch-Reason-Code (WRC) model (as
shown in Figure 3) to address the above challenges. Our WRC model

def run():
while isTargetDemon: » “while” loop
move ()
moveRight () --------------------- » actions
if isTargetHellKnight:----- » perception
attack()
else:
if isTargetRevenant:
moveLeft() “if/else”
else: statement
turnRight ()

Figure 2: A DSL program example in the ViZDoom, where all
the typical components of modern program language are in-
cluded, without variables.

consists of three modules: the ‘watch’ module is an encoder mod-
ule that encodes multiple input videos simultaneously, mindful of
their correlations and inter-dependencies; based on the output of the
‘watch’ module, the ‘reason’ module is required to summarise these
features into a compact representation to avoid feature dimension
explosion, and improve the performance at the same time. After
obtaining the compact feature, the ‘code’ model is used to predict
the program code. We thus propose a multi-stage decoding pipeline
loosely based on the human reviewing process. We provide a detailed
explanation of these three modules below.

3.1 Watch Module — A Peer-aware Encoder

Using Recurrent Neural Network (RNN) for video sequence en-
coding has been well studied [Krishna et al., 2017, Yuan et al.,
2018]. Given the i-th input video v; = (v;0,9i1,....v;T;), RNN
would model it as:

9;j = CNN(v;;),j € [0, T;]

R . )]
h{; = RNN“(d;j,h{;_,).j € [0.T;]

where CNN is a convolution neural network for the j-th frame
embedding and RNN? is a recurrent neural network for sequence
encoding, both of which shares parameters for all k video demos.
The h?’ ; is the hidden state of v; from the RNN¢ at time step j , and
h¢_, =0.

"In our setting, since we have k correlative video sequence at the
same time, ideally, the encoding process for each single video should
consider other videos. Thus, following [Sun et al., 2018], we use a
peer-aware video encoding strategy that uses another RN N}, to en-
code videos agian. Different from the RNN? that is initialised with
zero, the RNN? is initialised by the average of the k video repre-

sentation from the previous RN N,. That means hll.’nit = % Zle h?,Ti’
and

h? = RNNP(h¢, hY, ). j € [0,T;] 2)

i.e. a two-stage encoder is used, the information from different
video demos is summarised in hi.’m. , and used in the second stage
encoding. Besides, within each encoding stage, different videos are
independent, which ensures efficient computing.



Then the last hidden state hb from the RN N, will be used as the
feature representation for the i- th video (for simplicity, we denote it
as h; in the following).

3.2 Reason Module — A Deviation-pooling Net

The vector h; is a good representation of video v; considering its
correlation with the other k — 1 videos. However, in contrast to
conventional single-sequence-to-single-sequence problems, under
the multi-sequence-to-single-sequence setting, one of the biggest
challenges is how to aggregate information from all input features.
One straightforward way is concatenating all the input features
together for decoding. However, as the dimension of h is usually
hundreds or thousands of elements, and k is usually large, simple
feature concatenation risks dimension explosion and thus model
divergence.

To solve the dimension explosion problem a pooling strategy
is typically applied. A simple pooling strategy would fail to pre-
serve the complex information within the input features, however.
Consider, for example, two input videos, containing the program seg-
ments ‘move(), turnLeft(), move()’, ‘move(), turnRight(), move()’.
The mean value can help us to decode the "move()" action, as that
this action is shared. However, solely using mean pooling may fail
to predict the condition branch ‘turnLeft()’, ‘turnRight()’, as that
condition branch relies not only on the similarity of the inputs but
also on the diversity.

To solve the above problem,Sun ez.al. [Sun et al., 2018] propose
to use RN-Pooling for feature aggregation, which, is a simplify of
the Relation Network[Santoro et al., 2017]. Given a set of features
{ fz}, 1» RN-Pooling conducts the following computation:

~ 1
h=ﬁZ%wmx 3)
L]

within which the relationship between every input pair is modeled
using gg(a MLP under parameter set 0), and then all the relationship
features are averaged. Though achieved satisfying performance, RN-
Pooling has its natural drawback: the computing complexity of
RN-Pooling is extremely large compared with other simple pooling
methods.

Based on the aforementioned requirement for a good pooling
methods and the drawback of the RN-Pooling, we introduce a novel
deviation-pooling strategy, which models the similarity and diversity
of input features explicitly, and considers the pooling complexity
at the same time. Formally, given a set of input features {h,-}i.‘:1
from the encoder, where h; € R" is the corresponding feature of a
certain input video. Given the similarity and deviations, the mean
and max-min range of input feature {hl-}i?:1 is computed:

1
== N'h;

8 = max ({hi}{-‘:l) — min ({hi}{-‘:l)

“)

where max () and min (-) compute the point-wise maximum and
minimum values respectively. Then, an MLP (denoted as gy as
before) together with a residual connection is applied as follow:

h=go(n8)+p )

Xuguang Duan et al.

Deviation-Pooling considers the deviation directly to address the
importance of diversity in the program synthesis scenario. Com-
pared with the relationship network-pooling (RN-pooling) method
proposed in [Santoro et al., 2017] for multiple video encoding, our
method is much more efficient. Specifically, the GPU memory usage
is roughly 30% lower than RN-Pooling using the same number of
parameters.

3.3 Code Module — A Multi-Round Decoder

Based on the features f extracted by the previous ‘reason’ module,
the goal of the ‘code’ module is to generate a sequence of statements
that form a program.

Given the features h extracted from the previous watch module as
the initial hidden state for the decoder. A vanilla decoder conducts
the following action:

yi, hi = RNNg(hi-1,xi-1)
wi = fo(yi)

where RN Ny, is a specific type of RNN cell (e.g. LSTM[Hochreiter
and Schmidhuber, 1997]) for sequence decoding, fp is a linear map-
ping that maps y; from feature space to the statement token space,
and w; is the i-th token in the decoded sequence. Note that wy is usu-
ally a pre-defined begin-of-sentence token ‘BOS’, and the decoding
process ends when w; is a predefined end-of-sentence token ‘EOS’.

We denote the decoding model in Eq. 6 as Dy, then we rewrite
the process as:

6

witl (iYL, = Dy(h) )

where L is the length of the decoded sequence.

The above procedure is the same as is used in many natural
language generation tasks, such as machine translation and image
captioning. However, one of the biggest differences between natural
language and program generation is the constraints upon the accept-
able output: a natural language sentence could be understood even
with some mistakes, but even a small error in piece of code can make
it fail to compile, thus rendering it unusable. Human programmers
also make mistakes, that are eliminated repeatedly compiling and
correcting.

One straightforward way to perform multi-round decoding is
to make use of the attention mechanism as in [Xia et al., 2017].
However, in [Xia et al., 2017], it proposes that such a framework
would be hard to optimise (see [Xia et al., 2017] for more details).
Instead, we make use of the hidden state and yield an easy-to-train
framework. As that the decoding process would last more than twice
(decode, refine), we describe a multi-round decoding module here.

Formally, denote the i-th decode model (A RNN decoder) as Déi)
and its initial hidden state is defined as follow:

h(l 1) h(O) h(l) . h(l 1)) (8)

(i) _ (0) 4 (1)
hol —Mh(ho ’ho No> "Ny ? Ni4

where Mp,g is a pooling method (we use the aforementioned Deviation-

pooling method of here). h(j ) is the Jj-th decoder’s initial hidden

state and h(j ) is its final hidden state, wehre Njj is the length of code

generated by the j-th decoder. Eq. 8 means that the initial hidden
state relies on the initial hidden states and final hidden states of
all the previous decoder. The results are easy to obtain following



Watch, Reason and Code: Learning to Represent Videos Using Program )

Pooling

MAX(:)-MIN(:)

def x
hite tate ‘argetbemon :
move ()
moveRight ()
i€ isTargetHellKnight:

1°t Pass
Decoder

MEAN() ucn:n)
Pooling ) % e
bt t\lxnllght()
Decoder

Deviation-Pooling

I equal

(LSTM J (LSTM J (LSTM J

video 2 video k

video 1
Peer-Aware Video Encoder

|Action

/ | move() turnLeft() ... attack() def run():
/ = ; while isTargetDemon:
{ move() turnLeft() ... move() | move ()

N move() turnRight() ... turnLeft() i) ()

NG i if isTargetHellKnight:

attack ()
else:
[ Pp— if isTargetRevenant:

isTargetHellKnight() yes moveLeft ()
isTargetDemon() no ] else:

_____

ht/).

isTargetRevenant() no b-d turnRight ()

Action/Perception Decoder Multi-Round Decoder

Figure 3: The overall model structure. There are 4 functional blocks of our model: 1) the peer-aware video encoder (the ‘watch’
module) that encodes k video demos in consideration of each other; 2) the deviation pooling net (the ‘reason’ module) that integrates
all video features into a compact representation; 3) The Multi-Round program decoder (the ‘code’ module), which will refine the
generated program round by round; 4) The Multi-task objective decoder for actions and perceptions.

standard decoding pipeline:
{W(l) }j 1’ {hy) }{‘:lo
When a two-layer decoding pipeline is used, the initial hidden
state of the second decoder would become M,y (h(()o) , h;(;o)), which
relies on the initial and final hidden state of the first decoder. The
initial hidden state of the first decoder module is from the encoder
which is zero-error, while the final hidden state stores the information
of the decoding stage, using which the first decoder module can also
be considered as an encoder encoding the information used for
debugging. Under such a strategy, the information from previous

decoding state is leveraged and such a process is very similar to a
human programmer’s debugging activity.

=0 (h{") ©)

3.4 Learning Details

Multi-Round Decoder Objective Loss. Though equipped with a
very complex structure, the above model can still be organised in
an end-to-end manner and be trained with the vanilla sequence-to-
sequence loss. For the i-th decoder, with the final predicted program
{w(l) }L and ground truth program {w; }%
loss is forrnulated as:

L i
£ == 3" InpOweti” ™ A, (10)

and the final loss is:

i—1> the program prediction

L=y (1D

Also, there are two tricks on learning the Multi-Round Decoder.
Firstly, to train the i-th decoder, the final state of the previous decoder
is obtained using greedy decoding strategy instead of using the
ground truth, in another word, the previous decoder is in its testing
mode, otherwise, the i-th decoder learns to repeat the previous results

which are not what we want. Secondly, as the i-th decoder depends
on the previous decoder’s prediction, our model is trained gradually,
i.e. we train the first decoder and then train the second one, and then
the following ones.

Multi-Task Objective Loss. Followed Sun et.al. [Sun et al.,
2018], we also use a multi-task objective loss function. Besides
predicting the final program directly, the model is also required
to predict the action sequence and perception sequence of every
video demo, which corresponds to the action(e.g. ‘move()’) and con-
dition(e.g. ‘frontIsClear()’) in the underlying program logic. More
specifically, given the final representation h; of a video demon(See
Section 3.1), we make uses of two extra single layer RNN decoder
to predict the action sequence:

K T
1 N
Laction = % kZ; ; lnp(ak,t|ak,0 SOk t-1s hi) (12)

Ti

K
Lper = - Z Z Inp(preelpro : Pre-10hi) (13)
k: 1=

where {dk,i}g" and {ﬁk,i}gk is the ground truth action and perception

sequence, {ak,i}OTk and {Pk,i}gk is the predicted sequence given
by the action decoder and perception decoder Dyerjon, 0 (hx) and
Dper,e(hk)‘

4 EXPERIMENTS

In this section, we will give the evaluation results of our method.
Firstly, an introduction of implementation details, datasets and eval-
uation metrics we used will be given. We then discuss the overall



results on two datasets. To verify the effectiveness of our newly pro-
posed Deviation-Pooling and Multi-Round Decoder module, several
ablation studies are then performed.

4.1 Datasets and Metrics

Datasets We evaluate our methods on two datasets: ViZdoom [Kempka
et al., 2016] and Karel [Pattis, 1981]. ViZdoom is a large-scale shoot-
ing game dataset with partially observable, egocentric environment,
which is used as our main experiment dataset. Karel is a toy size
dataset with a fully observable, third-person environment, which
is used in most of the papers on Program Synthesis, and we will
evaluate our final model on it. More statistics about the two datasets
are given in Table 1, and see Figure 6 for visualisation on ViZdoom
dataset.

Metrics Following [Sun et al., 2018], the metrics used in our
experiments include sequence accuracy, program accuracy, and
execution accuracy. Sequence Accuracy counts exact match be-
tween ground truth program P and the generated program P, which
is formally written as:Accseq = ﬁ 221:1 ]lseq(ﬁn, P,). Program
Accuracy considers the program aliasing, i.e. different program
code may indicates the same meaning(e.g. ‘repeat (2):(move())’
and ‘(move() move()’). Thus, a function to exploit the syntax of
the DSL is used to identify program aliasing: e.g. unfolding re-
peat statements, decomposing if-else statement. This accuracy can
be written as Accseq = ﬁ Zﬁ:le ]lpmg(f’n, Py) where 1,704 is an
indicator function that returns 1 if P, and ﬁn have the same pro-
gram meaning. Execution Accuracy. Also, we use the simulator to
regenerate the video demos with our predicted program P, and com-
pare the generated video with the ground truth video, i.e. Accexe =
E N Teve({oni )7, E(Pu, {on,i0} 7)), where & is the simula-
tor environment, and 1., is another indicator function comparing
similarity between videos. Note that when the number of seen demo
increase, the execution accuracy will converge to the program accu-
racy.

Implementation Details Our peer-aware encoder is a stack of
five CNN layers and two LSTM layers (see Eq. 1). The basic com-
ponent of our decoders is a dynamic LSTM decoder, and all video
demos share the same action decoder and perception decoder (see
Eq. 6). All the LSTM hidden states are 512 in our experiment. Be-
sides, the train, test, validate split is 25,000:5,000:5000 for Karel,
80,000:8,000:800 for Vizdoom as [Sun et al., 2018] does. We use
Adam optimiser with the initial learning rate of 0.01 to train our
model on a TITAN XP(12G memory) GPU.

Table 1: Datasets Statistics.

Statistic | ViZdoom | Karel
aspects First Person Third Person
dataset size 88,800 35,000

seen video per program | 10 25

max video length 20 20

max program length 43 20

Xuguang Duan et al.

4.2 Overall Performance

Table 2 displays the overall results on ViZdoom and Karel dataset.
We compare our model with the previous state-of-art in [Sun et al.,
2018] using the same experiment setting. On ViZdoom, we can see
that the performance increases of all the three metrics with the adding
of Deviation Pooling, and more decoding steps, which demonstrates
the effectiveness of our model. On Karel, however, DV-Pooling + 2
Decoder achieves the best performance. The reason is that Karel is a
toy dataset where two rounds decoding are totally enough, and more
decodings would lead into over-fitting.

Moreover, the scores under three metrics are consistent with all of
our experiments: the ‘Program Accuracy’ is higher than ‘Sequence
Accuracy’ and the ‘Execution Accuracy’ is higher than the other
two. These evaluation metrics can be seen as a kind of mutual
verification. For example, If two program codes(e.q. ‘move() move()’
and ‘repeat 2(move())’) are not exactly matched, the ‘Sequence
Accuracy’ would not take it into account. However, the two code
segments are equal from the perspective of programming code, and is
taken into consideration under ‘Program Accuracy’. Reaching higher
‘Program Accuracy’ indicates that our model indeed has learned
to discover the logic and express it using its own ‘comfortable’
way, instead of remembering training examples and repeating them.
According to the ‘execution’ accuracy, our model achieves 68.1%
successful rate, which is higher than our own baseline model, which
is implemented based on the code provided in [Sun et al., 2018].

In Figure 4, we show one demo result under Karel dataset. In the
left is the demo videos observed by the model. In the right, we show
the ground-truth and synthesised program, which demonstrates the
model’s ability. In Figure 4, we give an illustration of results under
ViZdoom dataset. We give two cases. On the top is an example that
the model succeeds in predicting the program. On the bottom is a
more convincing example that the model generates a different but
totally correct program, which proves our above analysis.

4.3 Effectiveness of the Pooling Strategies

The key differentiator of our proposed Watch-Reason-Code model
is the reason model, which is a deviation-pooling net that can learn
information from diverse videos. To evaluate its effectiveness, in
this section we compare our DV (Deviation) pooling strategy with
‘Mean-Pooling’ and ‘RN-Pooling’, where Mean-Pooling is the most
common pooling strategy, while RN-Pooling is used in [Sun et al.,
2018] and achieved the state-of-art performance.

In Table 3, we give the complexity of the aforementioned pooling
strategies. Specifically, RN-Pooling is very expensive with respect
to memory and computation, for that it will produce an intermediate
tensor of shape 2K2V, which is hundreds of times costly than Mean-
Pooling and our DV-Pooling (K is 10 or 25 in our experiment). In
our experiment, the total GPU memory consumption of RN-Pooling
is about 30% higher than other pooling methods.

In Table 4, the results using different pooing strategies are given,
where a single-time program decoder is used, and the best per-
forming model of each method on the validation set is chosen for
evaluation. From the result, we can see that both RN-Pooling and DV-
Pooling outperform the basic Mean-Pooling strategy. Mean-Pooling
tries to find the average representation of all the input features, which
is in conflict with the need of the decoder to make use of the diversity



Watch, Reason and Code: Learning to Represent Videos Using Program

Table 2: Overall results. We compare our model with [Sun et al., 2018]’s model with the same setting.

Dataset Karel ViZdoom
Model Sequence | Program | Execution | Sequence | Program [ Execution
Induction [Sun et al., 2018] - - 62.8 - - 35.1
Synthesis [Sun et al., 2018] 35.7 42.4 64.1 33.1 393 48.2
RN-Pooling [Sun et al., 2018] 41.0 48.9 72.1 532 62.5 78.4
Mean-Pooling 40.3 48.3 71.8 51.2 58.5 62.5
RN-Pooling(our)1 41.5 493 73.2 54.1 61.7 66.4
DV-Pooling + 1 Decoder 43.0 50.6 74.7 54.8 62.4 66.2
DV-Pooling + 2 Decoder 43.3 51.2 74.7 55.6 62.8 67.5
DV-Pooling + 3 Decoder 42.5 49.8 72.2 55.8 63.4 68.1*

! We re-implement the model from [Sun et al., 2018] and we actually get competitive and even better results than the original ones on most of the metrics.
However, we failed to reproduce the results for the ‘execution’ accuracy in the Vizdoom split.

Ground Truth Program
def run():
while leftIsClear:
turnRight ()

]

move ()
turnRight()
move ()

putMarker ()

EJE;JEJIBJE_IEJB_IHJEJEJBJ

move ()

Synthesised Program

A 1 R ' Ay B B B

def run():
while leftIsClear:
turnRight ()
move ()

-1 T3-1-1-1-1-3

® marker § agent H wall

turnRight ()
move ()
putMarker ()
move ()

Figure 4: Selected results from Karel dataset. The model is able to synthesis correct program from given demo videos. In the demo
videos, agent moves according a certain logic, and the model is required to find these underlying logic considering all given demos

and synthesises a program to express the logic.

Table 3: Complexity of different pooling strategy. V is the di-
mension of feature and K is the number of demos;

Pooling [ #parameter [ Space [ Computation
Mean 0 0 O(KV)

RN [Sun | O(V?) 2K2V | O(K?V?)

et al.,

2018]

DV (ours) o(V?) 2V | O(KV +V?)

of all input feature, which, in our opinion, is the reason for its bad
performance. Besides, compared with RN-Pooling, our DV-Pooing
reaches a higher performance while consumes much less computa-
tion and memory resource. The reason, in our opinion, is that our
pooling methods, though simple, models the average representation
and max-min margin(deviation) of features which is sufficient for
the decoding of programs.

Table 4: Evaluation of pooling strategy using ViZdoom dataset.

Pooling \ Sequence | Program | Execution
Mean 51.2 58.5 62.5
RN 54.1 61.7 66.4
DV+1 Decoder (ours) 54.8 62.4 66.2

Also, as the pooling strategy takes multiple videos’ feature as
input, one may concern whether the proposed method is sensitive
to the number of input videos or not. In Figure 5, we evaluate the
performance of our DV-Pooling model with different number of
videos in the task. From the table, we can see that: 1) both our DV-
Pooling and the RN-pooling[Santoro et al., 2017] outperforms the
basic Mean-Pooling by a great margin for any number of demos; 2)
the model performance increases stably with the number of input
videos increases and reaches almost stable when the number of
videos is more than 25, which means that 25 videos contain enough



information to decode the underlying logic most of the time; 3) the
model performance increases with the number of decoding stage
increases regardless of the number of ‘K’, which means that our
model is stable towards ‘K’, and more decoding stage can always
benefit the model.

4.4 Evaluation of the Multi-Round Decoder on
Underlying Conditions

To evaluate the effectiveness of our Multi-Round Decoder, we vary
the rounds of decoding and compare the results with a standard
single-round decoder. The overall results in Table 2 show that with
the number of rounds of the decoder increasing, we can get better
results. This makes sense because the programs are reviewed again
and again.

To evaluate the ability to infer underlying conditions of our Multi-
Round Decoder, following [Sun et al., 2018] we perform evaluation
only with programs containing a single if-else statement with two
branching consequences. In Table 5, the results using a single round,
two rounds, three rounds decoding strategy are given. We can see
a dramatic increase in performance with the increase in decoding
round. In Table 5, we can see that our DV-Pooling and RN-Pooling
outperform Mean-Pooling strategy by a great margin, which indi-
cates the significance of a pooling strategy for condition decoding.
Also, compared with the single layer decoding pipeline, our multi-
round decoding strategy outperforms the basic model by 2.4% in
Program Accuracy, which proves the ability to debug. [Sun et al.,

—4—mean m cnn+l cnn+2  =¥—cnn+3

75
70
65
60
55
50
a5
40 o«
35

30

Figure 5: Model Sensitivity toward ‘K’ with respect to ‘Exe-
cution Accuracy’. All model are trained using 25 videos, while
tasted using different number of videos.

Table 5: Evaluation of Multi-round Decoder under ‘ViZDoom
if-else conditions’.

Decoding Time Sequence | Program | Execution

Mean Pooling 46.7 57.7 69.8
RN-Pooling 55.1 65.3 82.1
DV + 1 decoder 55.7 65.4 81.7
DV + 2 decoder 57.7 67.3 79.9
DV + 3 decoder 57.6 67.8 81.6

Xuguang Duan et al.

2018] considers a similar problem of refining (debug) the final result.
They make use of edit-distance to distinguish how long is it from
their results to the ground truth (which should not be provided
in the testing time). They find that correcting 2 tokens will lead to
a performance gain of 4.9% in sequence accuracy. For our model,
without using the ground truth correction in the testing, still achieves
similar improvement, which proves the debugging efficiency of our
proposed Multi-Round Decoder module.

5 CONCLUSION

Interpreting videos is a challenging task for a machine, not to men-
tion implying rules from them. In this paper, we look into the task
of synthesising program (a sequence of logic rules) from diverse
video demonstrations. We proposed a novel Watch-Reason-Code
(WRC) model to address two of its intrinsic problems: i) using a
novel Deviation-Pooling strategy to integrate information from mul-
tiple input videos, which is known as a multi-input-single-output
sequence to sequence problem. ii) using a multi-round decoding
strategy to refine the program, which ensures its correctness and
executability. This design is general enough to be extended to other
domain and tasks, such as image captioning. The experiment results
on two datasets demonstrate the effectiveness of our methods.



Watch, Reason and Code: Learning to Represent Videos Using Program

Video Demo 1 Video Demo 2 Ground Truth Program:
def run():
while isTarget HellKnight:
moveLeft ()
attack()
attack

il P § % :
» init() > attack () > init() » moveLeft () > attack () » attack ()
Is target HellKnight (No) Is target HellKnight (Yes) Is target HellKnight (No)

Synthesised Program
def run():
while isTarget HellKnight:
moveLeft ()
attack()
attack

Video Demo 3

> attack () » moveLeft () » attack ()
Is target HellKnight(Yes) Is target HellKnight (Yes) Is target HellKnight (No)

Video Demo 1 Video Demo 2 Ground Truth Program:
def run():
while isTarget Revenant:
moveRight ()
if not isTarget HellKnight:
moveRight ()
else:
moveLeft ()

»init() » moveLeft () > init() > moveRight () » moveRight () » moveLeft ()
Is target HellKnight(Yes) Is target revenant(Yes) Is target revenant(Yes) Is target HellKnight(Yes)

Synthesised Program

def run():
while isTarget Revenant:
moveRight ()
if isTarget HellKnight:
moveLeft ()
else:
moveRight ()

Video Demo 3

P init() » moveRight () » moveRight () » moveRight () » moveRight () » moveRight ()
Is target revenant(Yes) Is target revenant(Yes) Is target revenant(ves) Is target revenant(Yes) Is target HellKnight (No)

Figure 6: Selected results from ViZdoom dataset. The demo videos are in different length, and we annotate each video frames based
on current action and key perception for better understanding. On the top is a success case where our model predicts the underlying
program correctly. On the bottom, however, is a ‘failure’ case, where the prediction is not the same with the ground truth, but
expresses the same meaning, which shows that our model does not try to repeat the training data, but finds the underlying logic.



REFERENCES

Saad Ali and Mubarak Shah. 2010. Human action recognition in videos using kinematic
features and multiple instance learning. IEEE transactions on pattern analysis and
machine intelligence 32,2 (2010), 288-303.

M Balog, AL Gaunt, M Brockschmidt, S Nowozin, and D Tarlow. 2017. DeepCoder:
Learning to Write Programs. In International Conference on Learning Representa-
tions (ICLR). OpenReviews. net.

Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and Enrico Sorio.
2014. Automatic synthesis of regular expressions from examples. Computer 47, 12
(2014), 72-80.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
2018. Leveraging Grammar and Reinforcement Learning for Neural Program
Synthesis. International Conference on Learning Representations (ICLR) (2018).

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet
Kohli. 2017. Neural Program Meta-Induction. In Advances in Neural Information
Processing Systems (NIPS). 2080-2088.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B Tenenbaum. 2017.
Learning to Infer Graphics Programs from Hand-Drawn Images. arXiv preprint
arXiv:1707.09627 (2017).

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines. arXiv
preprint arXiv:1410.5401 (2014).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Chiori Hori, Takaaki Hori, Teng-Yok Lee, Ziming Zhang, Bret Harsham, John R Hershey,
Tim K Marks, and Kazuhiko Sumi. 2017. Attention-based multimodal fusion for
video description. In IEEE International Conference on Computer Vision (ICCV).
IEEE, 4203-4212.

Xuguang Duan et al.

Armand Joulin and Tomas Mikolov. 2015. Inferring algorithmic patterns with stack-
augmented recurrent nets. In Advances in neural information processing systems
(NIPS). 190-198.

FLukasz Kaiser and Ilya Sutskever. 2015. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228 (2015).

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaskowski. 2016. ViZDoom: A Doom-based Al Research Platform for Visual
Reinforcement Learning. In /[EEE Conference on Computational Intelligence and
Games. IEEE, Santorini, Greece, 341-348. http://arxiv.org/abs/1605.02097 The
best paper award.

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. 2017.
Dense-Captioning Events in Videos.. In Proceedings of the IEEE international
conference on computer vision (ICCV). 706-715.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. 2015. Neural random-access
machines. arXiv preprint arXiv:1511.06392 (2015).

Yingwei Pan, Ting Yao, Houqiang Li, and Tao Mei. 2017. Video Captioning With Trans-
ferred Semantic Attributes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 6504-6512.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou,
and Pushmeet Kohli. 2017. Neuro-symbolic program synthesis. International
Conference on Learning Representations (ICLR) (2017).

Richard E Pattis. 1981. Karel the robot: a gentle introduction to the art of programming.
John Wiley & Sons, Inc.

Michael S Ryoo. 2011. Human activity prediction: Early recognition of ongoing
activities from streaming videos. In IEEE International Conference on Computer
Vision (ICCV). IEEE, 1036-1043.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, and Tim Lillicrap. 2017. A simple neural network module for
relational reasoning. In Advances in neural information processing systems (NIPS).
4967-4976.

Zhiqgiang Shen, Jianguo Li, Zhou Su, Minjun Li, Yurong Chen, Yu-Gang Jiang, and
Xiangyang Xue. 2017. Weakly supervised dense video captioning. In The I[EEE
Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 2.

Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing systems
(NIPS). 568-576.

Yale Song, Miriam Redi, Jordi Vallmitjana, and Alejandro Jaimes. 2016. To click or
not to click: Automatic selection of beautiful thumbnails from videos. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 659-668.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. 2018. Neural
Program Synthesis from Diverse Demonstration Videos. In International Conference
on Machine Learning (ICML). 4797-4806.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In
Proceedings of the IEEE international conference on computer vision (ICCV). 4534—
4542.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, and Tie-Yan
Liu. 2017. Deliberation Networks: Sequence Generation Beyond One-Pass De-
coding. In Advances in Neural Information Processing Systems (NIPS), 1. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (Eds.). Curran Associates, Inc., 1784-1794.  http://papers.nips.cc/paper/
6775-deliberation-networks- sequence- generation- beyond- one- pass-decoding.pdf

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 5288-5296.

Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei Xu. 2016. Video paragraph
captioning using hierarchical recurrent neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR). 4584-4593.

Yitian Yuan, Tao Mei, and Wenwu Zhu. 2018. To Find Where You Talk: Temporal
Sentence Localization in Video with Attention Based Location Regression. arXiv
preprint arXiv:1804.07014 (2018).


http://arxiv.org/abs/1605.02097
http://papers.nips.cc/paper/6775-deliberation-networks-sequence-generation-beyond-one-pass-decoding.pdf
http://papers.nips.cc/paper/6775-deliberation-networks-sequence-generation-beyond-one-pass-decoding.pdf

	mm_demo2program__Copy_.pdf
	Abstract
	1 Introduction
	2 Related Works
	2.1 Program Synthesis.
	2.2 Program Induction.
	2.3 Video Understanding.

	3 The Watch-Reason-Code Model
	3.1 Watch Module – A Peer-aware Encoder
	3.2 Reason Module – A Deviation-pooling Net
	3.3 Code Module – A Multi-Round Decoder
	3.4 Learning Details

	4 Experiments
	4.1 Datasets and Metrics
	4.2 Overall Performance
	4.3 Effectiveness of the Pooling Strategies
	4.4 Evaluation of the Multi-Round Decoder on Underlying Conditions

	5 Conclusion
	References


