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An equivariant Poincaré duality for proper cocompact
actions by matrix groups

Hao Guo and Varghese Mathai

Abstract. Let G be a linear Lie group acting properly on a G-spinc manifold M with compact
quotient. We give a short proof that Poincaré duality holds between G-equivariant K-theory of M ,
defined using finite-dimensional G-vector bundles, and G-equivariant K-homology of M , defined
through the geometric model of Baum and Douglas.

1. Introduction

Poincaré duality inK-theory asserts that theK-theory group of a closed spinc manifold is
naturally isomorphic to itsK-homology group via cap product with the fundamental class
in K-homology. This class can be represented geometrically by the spinc-Dirac operator.
More generally, if a compact Lie group acts on the manifold preserving the spinc structure,
the analogous map implements Poincaré duality between the equivariant versions of K-
theory and K-homology. In the case when the Lie group is non-compact but has finite
component group, induction on K-theory and K-homology allows one to establish the
analogous result [7] for proper actions. The observation underlying Poincaré duality in all
of these cases is that there exist enough equivariant vector bundles with which to pair the
fundamental class.

In contrast, Phillips [14] showed through a counter-example with a non-linear group
that, for proper actions by a general Lie group G on a manifold X with compact quo-
tient space, finite-dimensional vector bundles do not exhaust the G-equivariant K-theory
of X , and that it is necessary to introduce infinite-dimensional vector bundles into the
description of K-theory (see also [10]).

One case in which finite-dimensional bundles are sufficient is when the group G is
linear (see [13]), owing to the key fact that in this case every G-equivariant vector bundle
over X is a direct summand of a G-equivariantly trivial bundle, i.e. one that is isomorphic
to X � V for some finite-dimensional representation of G on V .

Motivated by this, we give a short proof of Poincaré duality in this setting. That is, we
show that the natural map from G-equivariant K-theory to G-equivariant K-homology
(which for us means Baum–Douglas’ geometric K-homology [2]), given by pairing with

2020 Mathematics Subject Classification. Primary 19K33; Secondary 19L47, 53C27.
Keywords. Poincaré duality, equivariant, matrix groups, linear groups.

https://creativecommons.org/licenses/by/4.0/


H. Guo and V. Mathai 1398

the fundamental class, is an isomorphism for proper cocompact G-spinc manifolds where
G is a matrix group.

Theorem 1.1. Suppose that a linear Lie group G acts properly and cocompactly on a
G-equivariantly spinc manifold X . Then there is a natural isomorphism

 WK�G.X/! KG� .X/; (1.1)

where the left- and right-hand sides denote G-equivariant K-theory and geometric K-
homology, respectively.

For compact Lie group actions, Theorem 1.1 is implied by the work of [5] on the
isomorphism between the equivariant geometric and analytic models of K-homology.
Meanwhile, by the Peter–Weyl theorem, such groups form a subclass of linear Lie groups.
Consequently, Theorem 1.1 provides another approach to some of the results in [5].

While Theorem 1.1 makes no reference to the analytic model of K-homology [1, 9],
we note that (1.1) still holds when the right-hand side is replaced by the analytic K-
homology groupKKG� .C0.X/;C/. Indeed, as a special case of Emerson–Meyer’s general
second duality result in [6, Section 6], (in particular, see the first display after (1.5) in [6]),
we have

KKG�
�
C0.X/;C

�
Š K�G.TX/:

By the Thom isomorphism from [14, Theorem 8.11] (see also Theorem 2.6 below), we
have

K�G.TX/ Š K
�
G.X/:

Putting this together givesK�G.X/ŠKK
G
� .C0.X/;C/. Combined with Theorem 1.1, this

gives the following corollary.

Corollary 1.2. Suppose that a linear Lie groupG acts properly and cocompactly on aG-
equivariantly spinc manifoldX . Then we have an isomorphism between theG-equivariant
geometric and analytic K-homology groups of X :

KG� .X/ Š KK
G
�

�
C0.X/;C

�
: (1.2)

In particular, the geometricK-homology groupsKG� are part of a G-equivariant extraor-
dinary homology theory.

The natural map realizing this isomorphism (1.2) is the Baum–Douglas map [2, 7],
which can be described as follows. Let .M;E; f / be a G-equivariant geometric K-cycle
for KG� .X/ (see Definition 2.8 below). Then M is a G-equivariantly spinc manifold with
Dirac operator DM acting on sections of a spinor bundle SM , E is a G-equivariant vector
bundle over M , and f WM ! X is a G-equivariant continuous map. The Baum–Douglas
map takes

ŒM;E; f � 7! f�
�
L2.SM ˝E/; ';DE .1CD

2
E /
�1=2

�
;
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where ' is the �-representation of C0.M/ on B.L2.E// given by pointwise multiplica-
tion, and the right-hand side is the pushforward under f of a class in KKG� .C0.M/;C/.
Corollary 1.2 then implies that the following holds.

Corollary 1.3. Suppose that a linear Lie group G acts properly and cocompactly on a
G-equivariantly spinc manifold X . Then for any e 2 KKG� .C0.X/;C/, there exist a G-
equivariantly cocompact spinc manifoldM and aG-equivariant continuous map f WM!
X such that e is the pushforward under f of the class of a Dirac-type operator on M in
KKG� .C0.M/;C/. More precisely, there exists a vector bundle E !M such that

e D f�
�
L2.SM ˝E/; ';DE .1CD

2
E /
�1=2

�
:

2. Preliminaries

We begin by recalling the definitions and facts we will need. Unless specified otherwise,
G will always denote a closed subgroup of GL.n;R/ for some n. All vector bundles will
be complex. For this section, let X be a locally compact proper G-space.

2.1. Equivariant K -theory

In [13], Phillips showed that theG-equivariantK-theory of the spaceX withG-cocompact
supports can be defined in a such a way that is directly analogous to non-equivariant,
compactly supported K-theory.

Definition 2.1 ([13, Definition 1.1]). AG-equivariantK-cocycle forX is a triple .E;F; t/
consisting of two finite-dimensional complexG-vector bundles E and F overX and aG-
equivariant bundle bundle map t W E ! F whose restriction to the complement of some
G-cocompact subset of X is an isomorphism. Two K-cocycles .E; F; t/ and .E 0; F 0; t 0/
are said to be equivalent if there exist finite-dimensional G-vector bundles H and H 0 and
G-equivariant isomorphisms

a W E ˚H ! E 0 ˚H; b W F ˚H ! F 0 ˚H 0

such that b�1x .t 0x ˚ id/ax D tx ˚ id for all x in the complement of a G-cocompact subset
of X . The set of equivalence classes ŒE; F; t � of K-cocycles forms a semigroup under the
direct sum operation, and we define the group K0G.X/ as the Grothendieck completion of
the semigroup of finite-dimensional complex G-vector bundles over X .

Remark 2.2. When it is clear from context, or when X is G-cocompact, we will omit the
map t from the cycle, and simply denote a class in K0G.X/ by ŒE� � ŒF �.

Remark 2.3. For general locally compact groups, Definition 2.1 needs to be modified to
include infinite-dimensional bundles [14, Chapter 3]. For G linear, this is not necessary
[13, Theorem 2.3].
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Definition 2.4. For each non-negative integer i , let

KiG.X/ D K
0
G.X �Ri /;

where G acts trivially on Ri .

By [13, Lemma 2.2], KiG satisfies Bott periodicity, so that we have a natural isomor-
phism KiG.X/ Š K

iC2
G .X/ for each i . We will use the notation

K�G.X/ D K
0
G.X/˚K

1
G.X/:

In addition, KiG are contravariant functors from the category of proper G-spaces and
proper G-equivariant maps to the category of abelian groups, and form an equivariant
extraordinary cohomology theory with a continuity property. In particular, Bott periodic-
ity implies that for anyG-invariant open subset U � X , there is a six-term exact sequence
of abelian groups

K0G.U / K0G.X/ K0G.XnU/

K1G.XnU/ K1G.X/ K1G.U /:

@@ (2.1)

Here, the map KiG.U /! KiG.X/ is induced by the extension-by-zero homomorphism –
see Remark 2.5 below, and the boundary maps @ are defined as in equivariant K-theory
for compact group actions [15].

Remark 2.5 (Extension-by-zero). Any inclusion of G-invariant open subsets U1 ,! U2
induces in the obvious way an extension-by-zero �-homomorphism C0.U1/! C0.U2/.
This extends to a �-homomorphism C0.U1/ Ì G ! C0.U2/ Ì G between crossed prod-
ucts. The induced map on operator K-theory, together with the identification

KiG.Uj / Š Ki
�
C0.Uj / ÌG

�
;

gives a map
KiG.U1/! KiG.U2/:

To prove the Poincaré duality, we will make use of the following Thom isomorphism
theorem for G-spinc bundles:

Theorem 2.6 ([14, Theorem 8.11]). Let E be a finite-dimensional G-equivariant spinc

vector bundle over X . Then there is a natural isomorphism

TG WK
i
G.X/

Š
�! KiCdimE

G .E/

for i D 0; 1, where dimE is the real dimension of E and i C dimE is taken mod 2.
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2.2. The Gysin homomorphism

Theorem 2.6 can be used to give an explicit geometric description of the Gysin (pushfor-
ward) homomorphism in G-equivariant K-theory, which we will need later.

Let Y1 and Y2 be twoG-cocompactG-spinc manifolds and f WY1!Y2 aG-equivariant
continuous map. By cocompactness, both Y1 and Y2 contain only finitely many orbit types.
Together with the fact that G is a linear group, this implies, by [11, Theorem 4.4.3], that
there exists a G-equivariant embedding

jY1 WY1 ! R2n

for some n, where G is considered as a subgroup of GL.2n;R/. Let

iY2 WY2 ! Y2 �R2n

denote the zero section, and define the G-equivariant embedding

iY1 WY1 ! Y2 �R2n;

y 7!
�
f .y/; jY1.y/

�
:

Let �1 be the normal bundle of iY1 , which we identify with a G-invariant tubular neigh-
bourhood U1 of its image. Note that it follows from the two-out-of-three lemma for
G-equivariant spinc-structures (see [12, Section 3.1] and [8, Remark 2.6]), together with
the assumption that Y1 and Y2 are G-spinc , that �1 has a G-spinc structure, and so Theo-
rem 2.6 applies. Identifying the normal bundle with U1, we have the Thom isomorphism

TG WK
i
G.Y1/

Š
�! K

iCdim �1
G .U1/; (2.2)

for i D 0; 1. The Gysin homomorphism

fŠWK
i
G.Y1/! K

iCdimY2�dimY1
G .Y2/ (2.3)

associated to f is then the composition

KiG.Y1/ K
iCdimY2C2n�dimY1
G .U1/

K
iCdimY2C2n�dimY1
G .Y2 �R2n/ K

iCdimY2�dimY1
G .Y2/;

TG

�

Š

where � is induced by the extension-by-zero map associated to the inclusion of U1 into
Y2 � R2n (see Remark 2.5 below), and the right horizontal isomorphism is due to Bott
periodicity.

Remark 2.7. It can be seen from the above that fŠ depends only on theG-homotopy class
of f and that the Gysin map is functorial under compositions.
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2.3. Equivariant geometric K -homology

We briefly review the equivariant version of Baum and Douglas’ geometric definition of
K-homology [2]; see [3–5], or [7] for more details. As before, X is a locally compact
proper G-space.

Definition 2.8. A G-equivariant geometric K-cycle for X is a triple .M;E; f /, where

• M is a proper G-cocompact manifold with a G-equivariant spinc-structure,

• E is a smooth G-equivariant Hermitian vector bundle over M ,

• f WM ! X is a G-equivariant continuous map.

For i D 0 or 1, the G-equivariant geometric K-homology group KGi .X/ is the abelian
group generated by geometric K-cycles .M;E; f /, where dimM D i mod 2, subject to
the equivalence relation generated by the following three elementary relations.

(i) (Direct sum – disjoint union) For two G-equivariant Hermitian vector bundles
E1 and E2 over M and a G-equivariant continuous map f WM ! X ,

.M tM;E1 tE2; f t f / � .M;E1 ˚E2; f /:

(ii) (Bordism) Suppose two cycles .M1; E1; f1/ and .M2; E2; f2/ are bordant, so
that there exists a G-cocompact proper G-spinc manifold W with boundary, a
smooth G-equivariant Hermitian vector bundle E ! W and a continuous G-
equivariant map f WW ! X such that .@W;Ej@W ; f j@W / is isomorphic to

.M1; E1; f1/ t .�M2; E2; f2/;

where �M2 denotes M2 with the opposite G-spinc structure. Then

.M1; E1; f1/ � .M2; E2; f2/:

(iii) (Vector bundle modification) Let V be a G-spinc vector bundle of real rank 2k
over M . Upon choosing a G-invariant metric on V , let yM be the unit sphere
bundle of .M � R/˚ V , where the bundle M � R is equipped with the trivial
G-action. Let F be the Bott bundle over yM , which is fibrewise the non-trivial
generator ofK0.S2k/. (See [4, Section 3] for a more detailed description.) Then

.M;E; f / �
�
yM;F ˝ ��.E/; f ı �

�
;

where � W yM !M is the canonical projection.

Addition in Kgeo;G
i .X/ is given by

ŒM1; E1; f1�C ŒM2; E2; f2� D ŒM1 tM2; E1 tE2; f1 t f2�;

the additive inverse of ŒM;E; f � is its opposite Œ�M;E; f �, while the additive identity is
given by the empty cycle, where M D ;.



An equivariant Poincaré duality for proper cocompact actions by matrix groups 1403

Remark 2.9. The above definition of classes ŒM; E; f � continues to make sense if we
replace the bundle E by a K-theory class. Indeed, if

e D ŒE1� � ŒE2� D ŒE
0
1� � ŒE

0
2� 2 K

0
G.M/;

then there exists a G-vector bundle F over X such that

E1 ˚E
0
2 ˚ F Š E

0
1 ˚E2 ˚ F:

By Definition 2.8 (i), this means that

ŒM;E1; f �C ŒM;E
0
2; f �C ŒM; F; f � D ŒM;E

0
1; f �C ŒM;E2; f �C ŒM; F; f �:

Adding the inverse of ŒM; F; f � to both sides and rearranging shows that the class

ŒM; e; f � WD ŒM;E1; f � � ŒM;E2; id� D ŒM;E 01; id� � ŒM;E
0
2; id�

is well defined.

Finally, we can describe vector bundle modification using the Gysin homomorphism
(2.3). To do this, let yM be the manifold underlying the vector bundle modification of a
cycle .M;E;f / by a bundle V , as in Definition 2.8 (iii). Then yM is the unit sphere bundle
of .M �R/˚ V . We will refer to the G-equivariant embedding

sWM ! yM � .M �R/˚ V;

m 7! .m; 1; 0/

as the north pole section.

Lemma 2.10. Let .M;E; f / be a geometric cycle for X . Let . yM;F ˝ ��.E/; f ı �/ be
its modification by a G-spinc vector bundle V of even real rank, and let � W yM ! M be
the projection. Let sWM ! yM be the north pole section. Then�

yM;F ˝ ��.E/; f ı �
�
�
�
yM; sŠŒE�; f ı �

�
:

Proof. The proof we give is similar to that of [5, Lemma 3.5] concerning the case of
compact Lie group actions; compare also the discussion following [4, Definition 6.9].
To begin, observe that the total space of V can be identified G-equivariantly with a G-
invariant tubular neighbourhood U of the embedding sWM ! yM . The Gysin map sŠ is
then the composition

K�G.M/
TG
��! K�G.U /

�
�! K�G.

yM/; (2.4)

where TG is the Thom isomorphism in the form (2.2), while � is the homomorphism
induced by the extension-by-zero map C0.U / ! C0. yM/. Note that TG is essentially
given via tensor product with a “Bott element", and (2.4) admits the following geometric
description. Let F be the Bott bundle over yM , and let F0 be the bundle defined by pulling
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back the restriction F jM along � . The composition (2.4) is then given by pulling back a
vector bundle overM along � and tensoring with the class ŒF �� ŒF0�. On the other hand,
since yM is the boundary of the unit sphere bundle of .M � R/˚W , and the bundle F0
is pulled back from M , the cycle . yM;F0 ˝ �

�.E/; f ı �/ is bordant to the empty cycle.
Thus we have a bordism of cycles�

yM;F ˝ ��.E/; f ı �
�
�
�
yM;
�
ŒF � � ŒF0�

�
˝ ��.E/; f ı �

�
;

whence the right-hand side is equal to . yM;sŠŒE�; f ı �/ by the description of the compo-
sition (2.4) given above.

3. Poincaré duality for geometric K -homology

In this section, we prove Theorem 1.1. For the rest of this section, let X be a proper
G-spinc manifold with X=G being compact.

We can define the following natural map between K�G.X/ and KG� .X/, which can be
thought of as cap product with the fundamental K-homology class on X . For this, let S1

be the unit circle in C, and define the map

cWX ! X � S1

x 7! .x; 1/:
(3.1)

Definition 3.1. Define �WK�G.X/! KG� .X/ by

�WKiG.X/! KGiCdimX .X/;

x 7!

´
ŒX; e; id�; if i D 0;�
X � S1; cŠ.e/; pr1

�
; if i D 1;

where pr1WX � S
1 is the projection onto the first factor, and we have used the notation

from Remark 2.9.

We now show that � is an isomorphism by defining explicitly a map  that will turn
out to be its inverse.

Definition 3.2. Define the map  WKG� .X/! K�G.X/ by

 WKGiCdimX .X/! KiG.X/;

ŒM;E; f � 7! fŠŒE�;

for i D 0; 1, where fŠ is the Gysin homomorphism from (2.3).

Remark 3.3. Note that

fŠŒE� 2 fŠ
�
K0G.M/

�
� KdimX�dimM

G .X/ D K
dimX�.iCdimX/
G .X/ D KiG.X/;

so the degrees make sense.
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We first need to show that is well defined. For this, we will use the following lemma.

Lemma 3.4. Let W be a G-cocompact, G-spinc manifold-with-boundary, and let X be a
G-cocompactG-spinc manifold. Let hWW !X be aG-equivariant map, and let i W@W ,!

W be the natural inclusion. Then the composition

K�G.W /
i�

�! K�G.@W /
.hj@W /Š
����! K�G.X/

is the zero map.

Proof. We give the proof when dim @W D dimX mod 2 and show that

K0G.W /
i�

�! K0G.@W /
.hj@W /Š
����! K0G.X/ (3.2)

is the zero map; the proofs for the other cases are similar.
Let us consider the composition (3.2) upon applying the Thom isomorphism, Theo-

rem 2.6, in the form of (2.2), and use the description of the Gysin map from (2.3).
Let jW be a G-equivariant embedding ofW into R2n for some n, where G is realized

as a subgroup of GL.2n;R/; note that this is possible because G is assumed to be linear.
Let j@W denote the restriction of jW to @W . Let iX WX ! X � R2n be the zero section.
Define the embedding

iW WW ! X �R2n;

w 7!
�
h.w/; jW .w/

�
;

and let i@W be the restriction of iW to @W . Let �W and �@W denote the respective normal
bundles of the embeddings iW and i@W . We may identify these normal bundles with G-
invariant tubular neighbourhoods UW and U@W in X � R2n, noting that in general UW
has boundary. Since the normal bundle of @W in W is trivial and one-dimensional, there
is a natural G-equivariant identification

U@W Š @UW � .�"; "/ (3.3)

for some " > 0. It follows from the two-out-of-three lemma for G-equivariant spinc-
structures (see [12, Section 3.1] and [8, Remark 2.6]), together with the fact thatW andX
areG-spinc , that �W and �@W areG-spinc vector bundles, and hence Theorem 2.6 applies.
The resulting Thom isomorphisms for W , @W , and X (in the notation of (2.2)) are shown
as vertical arrows in the following commutative diagram:

K0G.W / K0G.@W / K0G.X/

K1G.UW / K0G.U@W / K0G.X �R2n/;

i�

TG

.hj@W /Š

TG TG

TG i
�

�

(3.4)
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where the map TGi� is determined uniquely by commutativity, and the homomorphism �

is induced by the extension-by-zero map C0.U@W /! C0.X �R2n/ as in Remark 2.5. It
thus suffices to show that the composition � ı TGi� vanishes.

By [13, Lemma 2.2] or [14, Chapter 5], we have a six-term exact sequence

K0G.UW n@UW / K0G.UW / K0G.@UW /

K1G.@UW / K1G.UW / K1G.UW n@UW /;

� j�

ıı

j� �

(3.5)

where j � is induced by the inclusion j W @UW ,! UW and the maps � are again induced
by the extension-by-zero map C0.UW n@UW /! C0.UW /. The identification (3.3) gives
a natural isomorphism K1G.@UW / Š K

0
G.U@W /. Using this, the bottom row of (3.4) fits

into the following commutative diagram:

K1G.UW / K0G.U@W / K0G.UX /

K1G.@UW / K0G.UW nU@W /:

TG i
�

j�

�

ı

Š � (3.6)

It follows from exactness of (3.5) that � ı TGi� D 0, and hence .hj@W /Š ı i� D 0.

Proposition 3.5. The map  is well defined.

Proof. That  respects disjoint union/direct sum is clear, since for any element of the
form ŒM;E1 ˚E2; f � 2 K

G
� .M/, we have

 ŒM;E1 ˚E2; f � D fŠŒE1 ˚E2� D fŠŒE1�C fŠŒE2� 2 K
�
G.M/:

Next, let ŒW; E; h� be an equivariant bordism between two elements ŒM1; E1; h1� and
Œ�M2; E2; h2�. Then Lemma 3.4 applied to @W DM1 t �M2 implies that

.h1/ŠŒE1� D .h2/ŠŒE2�;

hence  is well defined with respect to the bordism relation. To see that  is well defined
with respect to vector bundle modification, let . yM;F ˚ ��.E/; f ı �/ be the modifica-
tion of a cycle .M;E; f / for X by a bundle V , as in Definition 2.8 (iii). By Lemma 2.10,
we have �

yM;F ˚ ��.E/; f ı �
�
D
�
yM; sŠŒE�; f ı �

�
:

Functoriality of the Gysin map with respect to composition, together with the fact that
� ı s D id, now implies that

 
�
yM; sŠŒE�; f ı �

�
D .f ı �/ŠsŠŒE�

D fŠ ı .� ı s/ŠŒE�

D fŠŒE�

D  ŒM;E; f �:
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Proposition 3.6. The map � is injective.

Proof. For any e 2 KiG.X/, we have

 ı �.e/ D

´
 ŒX; e; id� D idŠ.e/; if i D 0;

 
�
X � S1; cŠ.e/; pr1

�
D .pr1/Š

�
idŠ.e/

�
D .pr1 ı id/Š.e/; if i D 1;

which are both equal to e, where we have used functoriality of the Gysin map. Hence
 ı � D id, so � is injective.

For surjectivity, we will use the Gysin homomorphism from Subsection 2.2, together
with the following result, which is a special case of [5, Theorem 4.1] but applied to linear
instead of compact G.

Lemma 3.7. Let M;N; X be three G-cocompact G-spinc manifolds, gWN ! X a G-
equivariant continuous map, and f WM ! N aG-equivariant embedding with even codi-
mension. Then for any G-vector bundle E !M , we have

ŒM;E; g ı f � D
�
N; f ŠŒE�; g

�
2 KG� .X/:

Proof. The proof of Theorem 4.1 in [5], which was stated for compact Lie groups, goes
through with no changes to our setting.

Proposition 3.8. The map � is surjective.

Proof. Examining Definitions 3.1 and 3.2, one sees that � ı  is given, at the level of
geometric cycles, by

ŒM;E; f � 7! fŠŒE� 7!

´ �
X; fŠŒE�; id

�
; if dimM D dimX mod 2;�

X � S1; cŠ
�
fŠŒE�

�
; pr1

�
; otherwise,

where the map c was defined in (3.1). Let i WM ! R2n be a G-equivariant embedding for
some n, and let j WX !R2n �X be the zero section. Upon compactifying R2n, f factors
as

S2n �X

M X;

pr2
i�f

f

(3.7)

where pr2 is the projection onto the second factor, and j becomes an embedding X !
S2n �X .

Suppose first that dimM D dimX mod 2. Then it suffices to prove that any geometric
cycle of the form .M;E; f / is equivalent to .X; fŠŒE�; id/. By Lemma 3.7 applied to the
embedding i � f , we have

ŒM;E; f � D
�
S2n �X; .i � f /ŠŒE�; pr2

�
2 KG� .X/: (3.8)
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Meanwhile, Lemma 3.7 applied to j , together with functoriality of the Gysin map, yields�
X; fŠŒE�; id

�
D
�
X; fŠŒE�; pr2 ı j

�
D
�
S2n �X; jŠ

�
fŠŒE�

�
; pr2

�
D
�
S2n �X; .j ı f /ŠŒE�; pr2

�
: (3.9)

Finally, the maps i � f and j ı f are G-homotopic through

F WM � I ! R2n �X ,! S2n �X;

.m; t/ 7!
�
.1 � t /i.m/; f .m/

�
:

Invariance of the Gysin map underG-homotopy now implies that (3.8) and (3.9) are equal,
and we conclude.

The case of dimM ¤ dimX .mod 2/ proceeds analogously as follows. Here, we
need to show that any geometric cycle of the form .M; E; f / is equivalent to .X �
S1; cŠ.fŠŒE�/; pr1/, where c was defined in (3.1). Similar to (3.8), we have

ŒM;E; f � D
�
S2n �X � S1;

�
i � .c ı f /

�
Š
ŒE�; pr2

�
2 KG� .X/; (3.10)

Define

Qj WX � S1 ! S2n �X � S1;

.x; s/ 7!
�
j.x/; s

�
:

Then �
X � S1; cŠ

�
fŠŒE�

�
; pr1

�
D
�
X � S1; cŠ

�
fŠŒE�

�
; pr2 ı QjŠ

�
D
�
S2n �X � S1; QjŠ

�
cŠ
�
fŠŒE�

��
; pr2

�
D
�
S2n �X; . Qj ı c ı f /ŠŒE�; pr2

�
: (3.11)

The maps i � .c ı f / and Qj ı c ı f are G-homotopic through

F WM � I ! R2n �X � S1 ,! S2n �X � S1;

.m; t/ 7!
�
.1 � t /i.m/; f .m/; 1

�
;

and the claim follows from G-homotopy invariance of the Gysin map.

Proposition 3.8 and equation (3.6) together imply that �WKiG.X/! KGiCdimX .X/ is
an isomorphism for i D 0; 1, which establishes Theorem 1.1.
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