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Abstract 

 

Non-destructive testing plays an important role in structural health monitoring. One of the 

promising options is the use of guided wave for damage detection in engineering applications, 

such as pipeline and truss system. Common types of damage in the structures include cracks 

and corrosion. Guided wave is sensitive to cracks up to micro scale. Long range inspection is 

the other benefit of using guided wave. The overall aim of this thesis is to present a systematic 

investigation of guided wave in pipe-like structures to gain physical insights into linear and 

nonlinear features associated with torsional guided wave interaction with damage.  

This thesis includes a number of published and prepared journal papers under the same 

topic. The overview of linear and nonlinear guided wave, and guided wave mixing is 

introduced in Chapter 1. A computational model using one-dimensional time-domain spectral 

finite element with cracked element is presented in Chapter 2. This chapter mainly focuses on 

linear features of guided wave, such as scattering and mode conversion phenomena. The results 

show that the proposed cracked model has good agreement between the experimental results 

and three-dimensional (3D) finite element (FE) simulations.  

Nonlinear guided wave is highly sensitive to early stage of micro cracks. Material 

nonlinearity is one of the nonlinear phenomena in the presence of the micro cracks. It can 

induce higher-order harmonics of guided wave. Guided wave mixing is the advanced version 

of nonlinear guided wave since the generation of combinational harmonics at sum and 

difference frequencies can minimise the effect due to the nonlinearity generated by equipment. 

Chapter 3 analyses the nonlinear characteristics of two interacting fundamental torsional 

guided wave modes numerically and experimentally.  
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Chapter 4 and Chapter 5 are the extension parts based on the work in Chapter 3 since 

pipe-like structures are commonly used in many circumstances, for example embedded pipes 

and pre-stressed hollow structures. Comprehensive studies in this thesis can gain more 

understanding for the real applications. In Chapter 4, a 3D FE embedded pipe model with the 

implementation of nonlinear strain energy function is established to simulate the energy 

leakage of guided wave propagation due to the existence of soil media. The use of 3D laser 

scanning system receives guided wave signals from the surface of the pipe for verification. 

Both numerical and experimental results indicate a significant decline in the interested 

harmonics at mixed frequency and single frequency. On the other hand, acoustoelastic effect 

is studied in Chapter 5. A series of case studies are carried out to observe the group velocity 

change with respect to different levels of loading. The nonlinear features, such as 

combinational harmonics and second harmonics, are also investigated numerically and 

experimentally.  
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Chapter 1  

Introduction 

1.1 Background knowledge 

Cylindrical structures have many applications in our daily life, such as underground pipelines 

and hollow sections in truss systems. It is necessary to carry out damage detection for this type 

of structure. Assigning workers for inspection is the easiest way, yet restrictions usually emerge 

during the interrogation. Thus, structural health monitoring (SHM) has been widely used for 

damage diagnosis in different engineering fields. This is a process to identify damage due to 

material and geometric changes in structures. The damage include cracks, composite 

delamination and corrosion, etc [1]-[4]. SHM can constantly update the performance of in-

service structures and ensure their integrity [5]. It is also used as a fast screening tool when 

small flaws are induced by a sudden impact.   

 

Figure 1.1 Release of flammable gas due to the damage of a butane oil pipeline [6] 

 

 The importance of SHM has attracted increasing attention in extending the life of 

existing buildings or structures. There were some catastrophic failure examples in the last 

decade. In 2012, a gas plant was exploded and caused 26 people dead in Mexico. Rupture of a 
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butane oil pipeline in 2018 released flammable gas [6], which affected dozens of homes to be 

evacuated (Figure 1.1). Because of those miseries, it is necessary to advocate the development 

of efficient and cost-effective damage detection systems in SHM which includes many aspects 

(Figure 1.2). The major elements of SHM [7] are shown in the chart 

  

Figure 1.2 Major elements of SHM 

 

Non-destructive testing (NDT) is considered as a method for inspecting and evaluating the 

severity of a material. In other words, it provides early warnings to failure for different kind of 

structures, such as pipelines and concrete structures. Different techniques for NDT have been 

used in the literature [8]-[10]. The existing techniques used in the industry are visual inspection, 

eddy current and ultrasonic guided wave. Visual inspection simply uses our bare eyes to check 

the existence of cracks. However, it is impractical to be used in a larger inspection area. Eddy 

current testing can only apply to electrically conductive materials. On the contrary, the 

advantage of using guided wave far outweigh the benefits of the other applications. 

Guided wave is recognised as a prominent technique for damage detection. It is defined as 

mechanical stress wave travelling with boundaries in various structures [11], such as plates, 

bars and pipes. It initially starts with analysing scattered wave in time domain signals, which 

is named as linear guided waves. From Rayleigh waves [12] along the surface of solids to Lamb 

waves [13] in plate-like structures, the research on guided waves for damage detection has been 
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carried out in the last two decades. The investigation has also conducted in pipe-like structures 

[14] due to its nondispersive feature in the fundamental torsional guided wave. Another 

attractive advantage is the long propagation distance available in pipe-like structures. It is noted 

that the utilisation of low frequency (i.e. below 250 kHz) is more preferable in experimental 

studies since a relatively less wave modes are made from the excitation of torsional guided 

waves [15]. 

The generation of higher harmonics has attracted significant research interests in the 

development of guided wave [16]. It is categorised as nonlinear guided wave as the time 

domain signals are distorted due to the appearance of micro-cracks. High sensitivity of 

nonlinear guided wave to microscale cracks provides early warning for structural failure. 

However, second harmonic generation from material nonlinearity can possibility be 

contaminated by transmitting or receiving systems, such as amplifiers and transducers [17]. 

As compared with nonlinear guided wave, guided wave mixing technique is more attractive 

since it can eliminate undesired harmonics from the equipment. It is because mixing two guided 

waves can generate combinational harmonics at sum and difference frequencies, which are 

purely from material nonlinearity itself. Therefore, even without analysing the second 

harmonics generated by a material, the combinational harmonics can be used to detect small 

damages. In the literature, wave mixing has been studied for different structures, such as 

polymers [18], concrete structures [19] and plates [20]. However, the use of torsional guided 

wave mixing in pipes has not been fully discussed and investigated.  

The study of combinational harmonic generation is extensive, which can be employed in 

different situations. Guided wave experiences tremendous energy leakage when it propagates 

in embedded pipes [21]. Such effect weakens the strength of the received time domain signals 

and thus damage information cannot be obviously observed. On the other hand, mechanical 
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stress and thermally-induced stress are not preventable which can potentially generate flaws in 

structures. It causes a phenomenon called acoustoelasticity in guided wave. While the 

acoustoelastic effect has the influence on the wave speed [22], limited research studied the pre-

stress effect on the nonlinear features of guided wave. With the aid of guided wave mixing, 

micro cracks induced in cylindrical structures can be quantified promisingly. 

1.2 Objective and aims of the research 

This PhD research comprehensively studies different circumstances in cylindrical structures. It 

initially focuses on the wave propagation of linear guided waves in pipes, such as wave 

scattering and mode conversion effect. It then focuses on torsional guided wave mixing to 

investigate the nonlinear features, combinational harmonic generation, in detail. The following 

aims help to achieve the objective: 

• To propose spectral finite element method (SFEM) to the simulation of linear guided 

wave propagation in pipes for macro scale damage 

• To gain insight into the effect of material nonlinearity experimentally and numerically 

in nonlinear torsional wave mixing approach for hidden damage 

• To develop a FE pipe model assembling with soil for the investigation of nonlinear 

features of torsional guided waves due to material nonlinearity 

• To study the acoustoelastic effect on nonlinear torsional guided wave mixing in 

cylindrical structures under different levels of loading  

1.3 Thesis structure 

Chapter 1 gives a general background for SHM and the importance of SHM is highlighted. 

Different NDT methods are discussed in this chapter. Among those, guided wave techniques 
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are more preferential for damage identification. The use of linear guided wave, nonlinear 

guided wave and guided wave mixing are then discussed. 

Chapter 2 proposes a one-dimensional time domain SFEM model with cracked element to 

predict the torsional wave propagation, which deals with visible cracks. In this chapter, the 

proposed method can accurately and efficiently simulate the scattering and mode conversion 

effect with the presence of an asymmetric crack in pipes and is validated by experiments.   

Chapter 3 investigates the generation of the combinational harmonics at sum and difference 

frequencies in low frequency range using wave mixing technique in pipes for micro scale 

damage. The experimentally data measured by a three-dimensional (3D) scanning laser is 

validated by numerical results from a 3D FE model with the inclusion of strain energy function. 

Fast Fourier Transform (FFT) is implemented to analyse the frequency response of the 

combinational harmonics in pipe-like structures and demonstrate the existence of material 

nonlinearity. 

Chapter 4 extends the finding in Chapter 3, which is the effect of material nonlinearity using 

two interacting guided waves, to the response under a certain soil condition. Pipes, in practice, 

usually embedded in soil or covered by materials, such as high temperature pipes. An 

embedded pipe model is developed to gain physical insight into the energy leakage of the 

guided wave signals due to the partial energy transmission to an external media, e.g. soil. The 

nonlinear characteristics of the combinational harmonics with the effect of soil are discussed 

in this chapter. 

Chapter 5 is based on the study in Chapter 3 and further investigates the effect of 

acoustoelasticity in hollow structures, such as members of truss systems. Experiments are 

conducted to validate the 3D FE model under the pre-stressed condition where the results in 

terms of nonlinear features are compared with the values obtained from the FE models. A series 
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of case scenarios using the FE simulations are presented in order to study the effect on material 

nonlinearity with different pre-stressed loadings.  
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Abstract 

 

This paper presents a computationally efficient time-domain spectral finite element method 

(SFEM) and a crack model to take into account guided wave propagation, scattering and mode 

conversion in pipes. The proposed SFEM couples torsional and flexural motions of guided 

waves. A cracked element is proposed to predict the scattering and mode conversion effect of 

guided wave interaction with the crack in the pipes. The proposed SFEM and cracked element 

are verified by 3D finite element and experimental data. The results show that the proposed 

SFEM is able to predict the torsional guided wave propagation, scattering and mode conversion 

accurately. A series of numerical and experimental case studies are carried out to investigate 

the effect of the crack size on the scattering and mode converted guided waves. The findings 

of the study provide physical insights into the guided wave scattering and mode conversion 

and further advance the development of damage detection using guided waves. 

 

Keywords: Guided waves, spectral finite element method, scattering, mode conversion, crack, 

pipe, torsional wave, circular waveguide 
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2.1 Introduction 

Structural health monitoring (SHM) plays an important role in assessing condition of structures 

in many engineering fields, such as civil, mechanical and, oil and gas industry. Successful 

applications of SHM could help engineers achieve cost-effective management of infrastructure 

and avoid catastrophic failure by providing an early detection of defects. This improves the 

safety and sustainability of the infrastructures. In the last two decades, different damage 

detection techniques have been developed [1,2], for example, non-destructive evaluation (NDE) 

techniques, such as conventional ultrasonic techniques, eddy current, infrared thermography, 

vibration-based techniques [3], and guided wave techniques [4-6]. 

2.1.1 Damage detection in circular waveguides  

Guided waves are elastic waves travelling in solid materials and the wave propagation 

characteristics depend on the boundary conditions of structures. Based on the wave propagation 

characteristics, guided waves can be categorized as different types of waves, e.g. shear 

horizontal wave [7], torsional wave [8], Rayleigh wave [9] and Lamb wave [10], etc. The shear 

horizontal wave refers to the wave with propagation direction perpendicular to the particle 

motion. The torsional wave is a shear horizontal wave in pipes with propagation direction 

aligning with the longitudinal axis [11]. The Rayleigh wave is a type of surface wave and has 

been commonly used in the literature [12]. The Lamb wave are elastic waves propagating in 

thin-walled structures, such as plates [13,14]. There are two common types of waveguides, 

one-dimensional (1D) waveguides, such as beams, rods and pipes [15,16], and two-

dimensional (2D) waveguides, such as plates and shells [17-19].  
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2.1.2 Damage detection in circular waveguides  

Pipelines are commonly used in different industrial sectors and pipes are usually treated as 

circular waveguide in the context of wave propagation. Defects in a pipe are a considerable 

problem for oil, chemical or other industries [20]. When pitting defects and corrosion appear 

in the structures, there is higher chance of structural failure. The safety inspection becomes 

more difficult if external surface of the pipes has a layer of protective material, such as bitumen. 

For example, if flawed pipelines are buried as underground utilities, this will cause a significant 

inconvenience to the public. The study of Ahmad et al. [21] showed that pipes were frequently 

embedded in the soil with insulated coatings. Angani et al. [22] studied the use of eddy current 

to inspect the defects in pipelines but the inspection can be carried out in a limited area only. It 

is impractical to use inspection methods that require direct access to the pipes since the 

associated cost of removing the insulation is unpredictably high. 

Damage detection using torsional guided waves in circular waveguide has been 

demonstrated that it can provide long-range inspection. Due to the non-dispersive characteristic 

of the fundamental torsional wave T(0,1), the use of this wave mode has practical significance 

in structural integrity assessment [23,24]. Løvstad and Cawley [25] proposed to use torsional 

guided waves to detect defects in pipes. They concluded that the damage inspection can cover 

ten meters of pipe section and the long-range testing is not affected by the pipe coatings. 

Eybpoosh et al. [26] further investigated the application of guided waves for damage detection 

of pipelines under varying environmental and operational conditions. The study of circular 

waveguides can further advance damage detection techniques for the pipes using guided waves. 

2.1.3. Numerical method for wave propagation simulations 

Different methods for modelling wave propagation phenomena in structures have been 

developed in the literature. Numerical methods have been used for simulating guided wave 
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propagation in different types of structures [27]. The finite difference method (FDM) is defined 

on regular grids, which is efficient for large scale simulations. But it is not capable of handling 

wave simulation when there are changes in material property and geometry of the structures 

[28]. The boundary element method (BEM) is capable for modelling small surface/volume 

ratio. By contrast, it is not computational efficient for modelling large structures [29]. The finite 

strip element method (FSE) requires a low discretisation level, but it is not suitable to model 

geometrically complex structures [30]. The finite element method (FEM) is extensively used 

in modelling complex geometries. However, it is computationally expensive for wave 

propagation simulations [31,32]. 

The main difference of the spectral finite element method (SFEM) and FEM is that 

SFEM uses a higher-order interpolation with specific quadrature formulae [33,34]. Less 

arithmetic operations can be achieved since the mass matrix is diagonalized by using particular 

formulations. The computation time can be enhanced when SFEM is applied due to the mass 

matrix diagonalization. With the use of this higher-order numerical simulation method, the 

number of degrees of freedom (DoFs) can be minimized significantly [37].  SFEM is capable 

of simulating wave propagation and has better convergent rate than FEM. The research on 

SFEM for wave propagation has been conducted since 1984 [35]. Most of the studies in the 

early stage started by employing Chebyshev–Gauss–Lobatto (CGL) nodes to simulate acoustic 

waves [36]. Gauss–Lobatto-Legendre (GLL) nodes, which have similar capability of CGL, 

were then introduced to model elastic waves.  

Other higher-order schemes, such as SFEM, p-version of FEM (p-FEM) and 

isogeometric analysis (IGA) [37-39], have been applied for wave propagation analysis in order 

to reduce the computational costs. The selection of basis functions is the difference between 

these three numerical methods. The SFEM uses the Lagrange interpolation polynomials. The 

normalized integrals of the Legendre polynomials are deployed as the basis functions of the p-
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FEM. The IGA employs NURBS-based (Nonuniform Rational B-splines) basis functions. 

Among these numerical simulation methods, the main advantage of SFEM is the diagonal mass 

matrix due to the Kronecker delta property of the shape functions and the GLL quadrature.  

This paper presents a cracked element to take into account the mode conversion effect 

of guided waves in pipe using time-domain SFEM. A comprehensive study of guided waves in 

pipes using time-domain SFEM is conducted and the results are verified by 3D FEM and 

experimental data. The findings of this study gain physical insights into the guided wave 

scattering and mode conversion at the crack in pipes and can further advance the development 

of damage detection methods using guided wave.  

The structure of this paper is as follow. Section 2.2 presents the time-domain SFEM 

and the proposed crack model. The properties and selection of the guided wave mode are 

discussion in Section 2.3. Section 2.4 presents a comparison of the results between SFEM and 

3D FEM. This section validates the proposed cracked model for the time-domain SFEM, and 

also investigates the scattering and mode conversion effect of guided waves at the crack in 

pipes. The proposed time-domain SFEM is then validated by experimental data in Section 2.5. 

Finally, conclusions are drawn in Section 2.6. 

2.2 Methodology 

2.2.1 Coupling of torsional and flexural motions for circular waveguide 

In this study, the time-domain SFEM for a pipe is developed based on the elementary rod theory 

[40] and Timoshenko beam theory [15]. Figure 2.1 shows a schematic diagram of a pipe 

element with a crack. Timoshenko beam theory considers the vertical/horizontal direction and 

the corresponding shear deformation defect. The torsional motion is modelled by the 
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elementary rod theory based on Saint-Venant principle. The governing equations for coupling 

torsional and flexural motions of circular waveguide are [41]  

𝐺𝐽
𝜕2𝜃

𝜕𝑥2
+ 𝐹𝜃(𝑥, 𝑡) = 𝜌𝐼𝑜𝜃̈ 

𝐾1
𝑇𝑖𝑚𝐺𝐴

𝜕

𝜕𝑥
(

𝜕𝑣

𝜕𝑥
− 𝜑) = 𝜌𝐴𝑣̈ − 𝐹𝑉(𝑥, 𝑡) 

(2.1) 

𝐸𝐼
𝜕2𝜑

𝜕𝑥2
+ 𝐾1

𝑇𝑖𝑚𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜑) = 𝐾2

𝑇𝑖𝑚𝜌𝐼𝜑̈ 
(2.2) 

where θ is the rotation about x-axis, v is the displacement along y-axis, and φ is the rotation 

about z-axis (Fig. 2.1). The mass density and cross-section area of the pipe are denoted by ρ 

and A, respectively. I, J and Io are the second moment of inertia about z-axis, the polar moment 

of inertia, and the second moment of inertia about x-axis, respectively. E is Young’s modulus 

and G is shear modulus. The influence of group velocity is controlled by K1
Tim and K2

Tim [42]. 

The parameters for torsional guided waves are K1
Tim = 0.28 and K2

Tim = 45K1
Tim/π2. 𝐹𝜃 and 𝐹𝑣 

represent the function for the external torsional and vertical excitation, respectively. 

 

 

Figure 2.1 Schematic diagram of a pipe with a surface crack 
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2.2.2. Time-domain spectral finite element method 

The wave propagation can be represented by ordinary differential equation [43] 

𝐌𝐮̈ + 𝐂𝐮̇ + 𝐊𝐮 = 𝐅(𝑡) (2.3) 

where M is the global mass matrix, C=ηM is the global damping matrix with damping 

parameter η [44,45]. K is the global stiffness matrix and F(t) is the global force vector. 

𝐮, 𝐮̇ and 𝐮̈ denote the displacement, velocity and acceleration vector, respectively. The local 

mass matrix m, local stiffness matrix k, and local load vector f are 

𝐦 ≈ ∑ wi𝐍𝐞(ξi)
T𝛍𝐍𝐞(ξi)det (𝑱(ξi))

𝑛

𝑖=1

 
(2.4) 

𝐤 ≈ ∑ wi𝐁𝐞(ξi)
T𝐃𝐁𝐞(ξi)det (𝑱(ξi))

𝑛

𝑖=1

 
(2.5) 

𝐟 ≈ ∑ wi𝐍𝐞(ξi)
T𝐟(ξi)det (𝑱(ξi))

𝑛

𝑖=1

 
(2.6) 

where n is the node number in the element. 𝑱 =
𝜕𝑥

𝜕𝜉
 is the Jacobian function used to assign the 

local coordinate to the global domain. 𝐟(ξi) is the external force and 𝜉𝑖 is the local coordinate 

of node i in the element. 

In this study, completed Lobatto polynomial is applied [46]. The derivatives of the 

Legendre polynomials are the Lobatto polynomials. GLL nodes are used in each element [47]. 

The nodes are taken as roots of the equation 

(1 − 𝜉𝑖
2)𝐿′

𝑛−1(𝜉𝑖) = 0      for       𝜉𝑖 ∈ [−1,1] and 𝑖 ∈ 1, … , 𝑛     (2.7) 

where 𝐿′
𝑛−1  denotes the first derivative of the (n-1)th order Legendre polynomial. The 

weighting function of the corresponding GLL point 𝜉𝑖  is  
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𝑤𝑖 =
2

𝑛(𝑛 − 1)(𝐿𝑛−1(𝜉
𝑖
))2

 
(2.8) 

 

The diagonal form of mass matrix is achieved due to the Kronecker property of the shape 

function in conjunction with the use of the (p+1)-point GLL integration scheme. Equation (2.3) 

can be solved by the central difference scheme. The shape function matrix 𝐍𝐞 in equation (2.4) 

is defined as  

𝐍𝐞 = 𝐍 ⊗ 𝐈 (2.9) 

where ⊗ is the Kronecker product, 𝐈 is a 33 identity matrix, and 𝐍 = [𝑁1(𝜉), … , 𝑁𝑛(𝜉)]. The 

spectral shape function 𝑁𝑖(𝜉) for node i is defined as 

𝑁𝑖(𝜉) = ∏
𝜉 − 𝜉𝑘

𝜉𝑖 − 𝜉𝑘

𝑛

𝑘=1,𝑘≠𝑖

 

(2.10) 

 

In the SFEM, each node consists of three DoFs which are presented in the following matrix 

[
𝜃𝑒

𝑣𝑒

𝜑𝑒
] = ∑ [

𝑁𝑖(𝜉) 0 0

0 𝑁𝑖(𝜉) 0

0 0 𝑁𝑖(𝜉)
]

𝑛

𝑖=1

[

𝑞𝜃
𝑒(𝜉𝑖)

𝑞𝑣
𝑒(𝜉𝑖)

𝑞𝜑
𝑒 (𝜉𝑖)

] 

(2.11) 

 

The strain-displacement operator B is a 33 matrix and is defined as 

𝐁 = [
𝐸𝑇𝑜𝑟 0

0 𝐸𝑇𝑖𝑚
] 𝐍 

(2.12) 

where  𝐸𝑇𝑜𝑟 = [
1

𝑱

𝜕

𝜕𝜉
] ,   𝐸𝑇𝑖𝑚 = [

1

𝑱

𝜕

𝜕𝜉
−1

0
1

𝑱

𝜕

𝜕𝜉

] 

(2.13) 
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𝐸𝑇𝑜𝑟  and 𝐸𝑇𝑖𝑚  are differential operator for elementary rod theory and Timoshenko beam 

theory, respectively. D and μ are 33 stress-strain matrix and 33 mass density matrix, 

respectively. They are defined as 

𝐃 = [
𝐷𝑇𝑜𝑟 0

0 𝐷𝑇𝑖𝑚
] 

(2.14) 

where  𝐷𝑇𝑜𝑟 = [𝐺𝐽]   , 𝐷𝑇𝑖𝑚 = [𝐾1
𝑇𝑖𝑚𝐺𝐴 0

0 𝐸𝐼
] 

(2.15) 

𝛍 = [
𝜇𝑇𝑜𝑟 0

0 𝜇𝑇𝑖𝑚
] 

(2.16) 

  𝜇𝑇𝑜𝑟 = [𝜌𝐼𝑜], 𝜇𝑇𝑖𝑚 = [
𝜌𝐴 0

0 𝐾2
𝑇𝑖𝑚𝜌𝐼

]     
(2.17) 

  

2.2.3 Cracked element modelling 

This section presents the formulation for the cracked element for pipes in SFEM. The analysis 

of cracks in circular shape structural elements has been reported in the literature [48,49]. The 

following derivation of the cracked element is an extension of the work of Darpe et al. [50]. 

Consider a circular waveguide with hollow cross-section at the crack location as shown in Fig. 

2. D and d are outer and inner diameter of the pipe, respectively, and a is crack depth.  

 

Figure 2.2 Cross-section of circular waveguide at the crack location 
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The notations h, β and α in Fig. 2.2 are for calculating the flexibility matrix and are used in 

equation (2.31). h and α in equations (2.18) and (2.19) are linked by D, a and y.  

ℎ = 2√(
𝐷

2
)2 − 𝑦2 

(2.18) 

𝛼 =
ℎ

2
− (

𝐷

2
) + a 

(2.19) 

 

The proposed cracked element is a two-node element having three DoFs (θ, v and φ) at 

each node. Figure 2.3 shows the discretization of a circular waveguide with a two-node cracked 

element. Due to the existence of crack, the stiffness properties in the cracked element are 

different to the uncracked element. The modified stiffness matrix takes into account the mode 

coupling effect. So the guided wave scattering and mode conversion effect can be simulated 

by the time-domain SFEM. 

 

  

Figure 2.3 Discretization of a circular waveguide with a cracked element and general outline 

of assembling global stiffness matrix by local stiffness matrices 
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The modified stiffness matrix can be obtained from the local flexibility matrix since they are 

interrelated to each other. By using Castingliano’s theorem, 

𝑄𝑖 =
𝜕𝑈

𝜕𝑃𝑖
           for         𝑖 ∈ 1,2,3 (2.20) 

where 𝑄𝑖  and Pi are the displacement and load along the ith coordinate at the first node, 

respectively. P1, P2 and P3 are torsional moment, shear force and bending moment, respectively. 

U is the total strain energy, which can be separated from the strain energy of the uncracked (Uu) 

and cracked (Uc) elements. Equation (2.20) can be expressed as  

𝑄𝑖 = 𝑄𝑖
𝑢 + 𝑄𝑖

𝑐 =
𝜕𝑈𝑢

𝜕𝑃𝑖

+
𝜕𝑈𝑐

𝜕𝑃𝑖

 
(2.21) 

 

The strain energy with the uncracked element is written as  

𝑈𝑈 =
1

2
∫[

𝑃1
2

𝐺𝐼𝑜

+
𝑘𝑃2

2

𝐺𝐴
+

(𝑠𝑃2 + 𝑃3)2

𝐸𝐼
] 𝑑𝑥 

(2.22) 

where 𝑘 is the shear coefficient [51]. The individual displacement of the uncracked elements 

is given by the following expression 

𝑄1
𝑢 =

𝑙𝑃1

𝐺𝐼𝑜

 

𝑄2
𝑢 = (

𝑘𝑙

𝐺𝐴
+

𝑙3

3𝐸𝐼
) 𝑃2 +

𝑙2

2𝐸𝐼
𝑃3 

 

𝑄3
𝑢 =

𝑙

𝐸𝐼
𝑃3 +

𝑙2

2𝐸𝐼
𝑃2 

(2.23) 

 

The strain energy due to crack Uc can be calculated by fracture mechanics, which is defined in 

the form 
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𝑈𝑐 = ∫ 𝑅(𝐴)𝑑𝐴

𝐴

 

(2.24) 

where 𝑅(𝐴) is the strain energy density function. The function is defined as 

𝑅(𝐴) =
1

𝐸
[(∑ 𝐾𝐼𝑖

3

𝑖=1

)

2

+ (∑ 𝐾𝐼𝐼𝑖

3

𝑖=1

)

2

+ 𝑚 (∑ 𝐾𝐼𝐼𝐼𝑖

3

𝑖=1

)

2

] 

(2.25) 

where 𝑚 = 1 + 𝜐. 𝜐 is the Poisson ratio. 𝐾𝐼𝑖, 𝐾𝐼𝐼𝑖 and 𝐾𝐼𝐼𝐼𝑖 are the stress intensity factors (SIF) 

for opening mode, sliding mode and shearing mode of crack displacement, respectively. The 

stress intensity factors for different opening modes are 

 

SIF for opening mode, 

𝐾𝐼3 =
(𝑃3 + 𝑠𝑃2)𝛽

𝜋/64(𝐷4 − 𝑑4)
√𝜋𝛼𝐹1 

 

𝐾𝐼1 = 𝐾𝐼2 = 0 (2.26) 

SIF for sliding mode, 

𝐾𝐼𝐼1 =
𝑃1𝛽

𝜋/32(𝐷4 − 𝑑4)
√𝜋𝛼𝐹𝐼𝐼  

 

𝐾𝐼𝐼2 = 𝐾𝐼𝐼3 = 0 (2.27) 

 

SIF for shearing mode, 

𝐾𝐼𝐼𝐼1 =
2𝑃1ℎ

𝜋/32(𝐷4 − 𝑑4)
√𝜋𝛼𝐹𝐼𝐼𝐼  

 

𝐾𝐼𝐼𝐼2 =
𝑃2𝑘

𝜋 (𝐷
2⁄

2
− 𝑑

2⁄
2

)
√𝜋𝛼𝐹𝐼𝐼𝐼 

 

𝐾𝐼𝐼𝐼3 = 0 (2.28) 

 

The calculations of 𝐹1, 𝐹𝐼𝐼 and 𝐹𝐼𝐼𝐼  are depicted as 



Chapter 2 

22 

 

𝐹1 = √
2ℎ

𝜋𝛼
tan (

𝜋𝛼

2ℎ
)

0.752 + 2.02 (
𝛼
ℎ

) + 0.37 [1 − sin (
𝜋𝛼
2ℎ

)]
3

cos (
𝜋𝛼
2ℎ

)
 

 

𝐹𝐼𝐼 =
1.122 − 0.561 (

𝛼
ℎ

) + 0.085 (
𝛼
ℎ

)
2

+ 0.18 (
𝛼
ℎ

)
3

√1 − (
α
h

)

 

 

𝐹𝐼𝐼𝐼 = √
2ℎ

𝜋𝛼
tan (

𝜋𝛼

2ℎ
) 

(2.29) 

 

Substitute the equations (2.26)-(2.29) into equations (2.24) and (2.25), 𝑄𝑖
𝑐 is simplified to 

𝑄1
𝑐 = (𝐼𝑔1

+ 𝐼𝑔2
) 𝑃1 + 𝐼𝑔5

𝑃2  

𝑄2
𝑐 = 𝐼𝑔5

𝑃1 + 𝑠(𝑠𝑃2 + 𝑃3)𝐼𝑔3
+ 𝐼𝑔4

𝑃2  

𝑄3
𝑐 = (𝑠𝑃2 + 𝑃3)𝐼𝑔3

 (2.30) 

where 𝐼𝑔1
, 𝐼𝑔2

, 𝐼𝑔3
, 𝐼𝑔4

 and 𝐼𝑔5
 in equation (2.30) are defined as 
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                                                             (2.31)   

 

By combining equations (2.23) and (2.30), the total displacement 𝑄𝑖 from equation (2.21) can 

be expressed in a matrix from as 

[𝑄𝑖] = 𝑮[𝑃𝑖]           for         𝑖 ∈ 1, … ,6 (2.32) 

 

The flexibility matrix G is defined as 
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𝑮 = [

𝑔11 𝑔12 𝑔13

𝑔21 𝑔22 𝑔23

𝑔31 𝑔32 𝑔33

] 
(2.33) 

where                                                                                                                                             

𝑔11 =
𝑙

𝐺𝐼𝑜
+ 𝐼𝑔1

+ 𝐼𝑔2
  𝑔12 = 𝑔21 = 𝐼𝑔5

  

𝑔22 =
𝑘𝑙

𝐺𝐴
+

𝑙3

3𝐸𝐼
+ 𝐼𝑔4

+ 𝑠2𝐼𝑔3
  𝑔13 = 𝑔31 = 0  

𝑔33 =
𝑙

𝐸𝐼
+ 𝐼𝑔3

  𝑔23 = 𝑔32 =
𝑙2

2𝐸𝐼
+ 𝑠 𝐼𝑔3

  

 

Considering the static equilibrium of the cracked element, the flexibility matrix G can 

be converted to the stiffness matrix by transformation matrix T. The orders of the DoFs in this 

two-node element are presented by the subscripts q. 

{𝑞𝑖}
𝑇 = 𝑻{𝑞𝑗}

𝑇
   for         𝑖 ∈ 1, … ,6   &   𝑗 ∈ 1,2,3 (2.34) 

 

𝑻𝑇 = [
1 0  0 −1 0 0
0 1 0 0 −1  −𝑙
0 0 1 0 0 −1

] 
(2.35) 

The stiffness matrix for the cracked element can be calculated by flexibility matrix as 

𝒌𝑐 = 𝑻𝑮−1𝑻𝑇 (2.36) 

It should be noted that the global stiffness matrix K in equation (2.3) is assembled by the 

local uncracked stiffness matrix 𝒌  and the local cracked stiffness matrix 𝒌𝑐 . Figure 2.3 

illustrates the assembly procedure of how k and kc form K. So the proposed time-domain 

SFEM can take into account the torsional-flexural coupling effect in modelling the guided 

waves scattering and mode conversion at the crack on pipes.  
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2.3 Wave Mode Selection 

Dispersion curves are a fundamental indication for the selection of optimal excitation 

mode and excitation frequency in damage detection. Figure 2.4(a) shows the group velocity 

dispersion curves of longitudinal, torsional and flexural modes in pipes, which are marked as 

L(m,n), T(m,n) and F(m,n), respectively. ‘m’ and ‘n’ are integers, which represent the harmonic 

order of circumferential variation and a sequential number of modes of each category, 

respectively [52]. Torsional modes are axially symmetric, while the flexural modes are non-

axisymmetric. Most of the wave modes are dispersive, which limits the wave propagation 

distance. But the fundamental torsional mode T(0,1) is non-dispersive, which is useful for 

damage detection in pipes. So torsional T(0,1) mode is adopted as incident wave in this study. 

Figure 2.4(b) indicates the detail view of the dashed red region in Fig. 2.4(a). The group 

velocity calculated by SFEM and DISPERSE. Red dashed line and blue solid line denote the 

group velocities of T(0,1) mode and F(1,1) mode from a commercial software DISPERSE [53]. 

The markers represent the group velocities calculated from the proposed SFEM.         

 

 

 

Figure 2.4 (a) Group velocity dispersion curves obtained from DISPERSE and (b) group 

velocities calculated by the proposed SFEM and DISPERSE 
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A 1m long aluminium pipe is modelled using the proposed time-domain SFEM method. 

The density and Poisson’s ratio are 2700kg/m3 and 0.3, respectively. The wall thickness and 

outer diameter of the pipe are 3mm and 25mm, respectively. A crack is modelled at the middle 

of the pipe using the proposed cracked element. Polynomial degree (p=7) with 0.01m long 

spectral elements were used to model the pipe. The central difference method was applied to 

solve the semi-discrete equation of motion (Eq. 2.3). The time step was 110-7 s to ensure the 

solution to be converged. The torsional guided wave T(0,1) was generated by applying nodal 

rotation about x-axis at the left end of the pipe to generate the torsional guided waves. The 

excitation signal was a 50kHz 5-cycle sinusoidal tone burst modulated by a Hann window. 

 

Figure 2.5 Wave propagation of torsional wave and mode converted flexural wave 

 

The propagation of the T(0,1) wave and mode converted F(1,1) wave due to the crack 

is shown in Fig. 2.5. Torsional wave and flexural wave are indicated by red dashed line and 
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blue solid line, respectively. The trend lines for different wave modes are shown in Fig. 2.5. 

The propagation velocities for T(0,1) wave and F(1,1) wave are different. The group velocity 

for the T(0,1) and F(1,1) wave are 3130 m/s and 1900 m/s, respectively. The mode converted 

F(1,1) wave first appears at the middle of the pipe because of the presence of the crack. Since 

the incident T(0,1) and the T(0,1) reflected from the crack have the same group velocity, the 

slopes of their trend lines are in parallel as shown in Fig. 2.5. 

2.4. Verification by Three-dimensional finite element model 

A 3D finite element model of the same aluminium pipe with the same crack and incident wave 

used in Section 2.4 was created by ABAQUS and used to verify the accuracy of the proposed 

SFEM. 3D eight-node brick elements (C3D8R) [54] were used to model the pipe and the 

maximum size of the element used in the model is 0.8mm, which ensures there are at least 20 

elements per wavelength for both T(0,1) and F(1,1) modes [55]. The thickness of the elements 

is 0.6mm so that there are five elements across the thickness of pipe wall. A notch having 1mm 

width and different depths was modelled at the middle of the pipe by removing the elements. 

Crack dimensions a and b, which were used in the numerical and experimental case studies, 

are listed in Table 2.1. The excitation of the T(0,1) mode was achieved by applying a tangential 

force at four nodes in circumferential direction. The excitation signal is the same as the signal 

used in Section 2.3. Figure 2.6 shows the notch modelled at the middle of the pipe, which is 

modelled asymmetrically about the longitudinal axis.  

 

Table 2.1. Crack dimensions a and b according to Figure 2.2  

 

 



Chapter 2 

27 

 

 

 

Figure 2.6 Notch at the middle of the pipe in the 3D finite element model  

 

Figure 2.7 compares the wave signals simulated by SFEM and 3D FEM. The signals 

were obtained at 0.3m away from the excitation location and the crack depth is 2.01mm. Figure 

2.7a shows the deformation in torsional DoF (θ), which contains the information of the incident 

wave T(0,1) wave and T(0,1) wave due to the crack (T-T wave). Figure 2.7b shows that the 

deformation in vertical DoF (v), which is the mode converted F(1,1) wave due to the crack (T-

F wave). There is good agreement between the results calculated by SFEM and 3D FEM. The 

incident T(0,1), T-T wave from the crack and the mode converted T-F wave from the crack are 

labelled in Fig. 2.7. 

 

Figure 2.7 Signals simulated by SFEM and 3D FEM (a) torsional DoF and (b) vertical DoF  
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A series of parametric studies were carried out using the SFEM and 3D FEM to 

investigate the characteristics of T-T wave and mode converted T-F wave due to the crack. 

Different crack depths were simulated using the SFEM and 3D FEM the results are shown in 

Figs. 2.8 and 2.9. These two figures show the relationship between the wave amplitudes and 

the crack depth against pipe wall thickness ratios. Figure 2.8 shows the reflected T-T wave and 

the reflected T-F wave due to mode conversion effect at the crack and Fig. 2.9 shows the 

corresponding transmitted waves.  

 

 

Figure 2.8 Normalized amplitude of (a) the reflected T-T wave and (b) the reflected T-F wave 

as a function of crack depth to thickness ratio for the results simulated by SFEM and 3D 

FEM 

 

 

 

Figure 2.9 Normalized amplitude of (a) the transmitted T-T wave and (b) the transmitted T-F 

wave as a function of crack depth to thickness ratio for the results simulated by SFEM and 

3D FEM 
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The transmitted and reflected waves are generated due to the interaction of the incident 

guided wave at the crack. The transmitted guided wave propagates toward the measurement 

point located at x = 0.7m. Meanwhile, the reflected wave travels back from the crack to the 

measurement point located at x = 0.3m. The amplitude of the measured data was normalized to 

allow comparison. The generation of mode converted waves is due to the asymmetric crack. 

The transmitted wave is the superposition of scattered wave and incident wave, while the 

reflected waves only contain scattered waves. This explains why the transmission signal is 

much larger than the wave reflected from the crack. The amplitude of transmitted T-T wave 

slightly decreases with crack depth to thickness ratio because part of the energy is transferred 

to the other wave mode. As shown in Figs. 2.8 and 2.9, there is good agreement between the 

results simulated by SFEM and 3D FEM. 

2.5 Experimental Setup for Actuating and Sensing 

Torsional Guided Wave 

A 1m long aluminium pipe with an outer diameter of 25mm and pipe wall thickness of 3mm 

was used to further validate the accuracy of the proposed time-domain SFEM. A slot cut of 

1mm width was created at the middle of the pipe. Three different depths of the slot cut, a = 

1.94, 2.20 and 2.81, were considered in the experiment. Figure 2.10 shows the aluminium pipe 

with piezoceramic transducers and the location of the slot cut. Four equally-spaced Ferroperm 

Pz27 piezoceramic shear plates were bonded on the outer diameter surface at the left end of the 

pipe using conductive epoxy adhesive (Fig. 2.10). These piezoceramic shear plates generate 

shear forces in torsional direction of the pipe to induce the T(0,1) incident wave. In this study, 

it has been found that four piezoceramic shear plates are enough to generate the T(0,1) incident 

wave. The other piezoceramic shear plate was bonded at 0.3m away from the excitation 

location and it is used to measure the guided waves. The dimensions of each piezoceramic 
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transducer are 6×6×1mm3. The density, Possion’s ratio and relative dielectric constant of the 

piezoceramic transducers are 7700 kg/m3, 0.39 and 1800, respectively. The incident wave is 

excited by applying the equivalent torque generated by the piezoceramic transducers to the 

node of torsional motion (θ) in the SFEM model.  

 

 

Figure 2.10 Piezoceramic transducers for generating incident T(0,1) wave and measurement, 

and the location of the slot cut in the aluminium pipe 

 

A 5-cycle Hann windowed tone burst with centre frequency of 50kHz was generated 

by a computer-controlled function generator NI PIX-5412. A power amplifier (KROHN-HITE 

7500) was used to amplify the signal from the function generator. The signal measured by the 

piezoceramic transducers was digitized by a data acquisition system (NI PIXe-5105). The 

sampling rate was 60MHz and the quality of the received signals was improved by averaging 

the measurements 500 times. A schematic diagram of the experiment setup is shown in Fig. 

2.11. 
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Figure 2.11 Schematic diagram of the experiment setup 

 

The guided wave signals simulated by the proposed time-domain SFEM was compared 

with the experimentally measured data. Fig. 2.12 shows the guided wave simulated by SFEM 

and the experimental data measured at a distance of 0.3m from the excitation location. The red 

dashed line indicates the experimentally measured data, while the blue solid line presents the 

data simulated by the proposed SFEM. The incident wave T(0,1) interacts with the slot cut and 

generates T-T wave and mode converted T-F wave. The first captured wave packet is incident 

T(0,1). The second and third wave packets with small amplitude are T-T wave reflected from 

the slot cut and T-F wave induced due to mode conversion effect at the slot cut. The fourth 

wave packet is the T-T wave generated from the slot cut. It propagates to the left pipe end and 

then reflects back to the measurement point. The last wave packet is the incident T(0,1) wave 

reflected back from the right pipe end. There is good agreement between the results simulated 

by the SFEM and experimental data for all three different depths of slot cuts. This shows the 

proposed time-domain SFEM and the cracked element are able to accurately predict the 
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incident torsional wave, and scattered waves and mode converted wave due to the slot cut.

 

Figure 2.12 Guided wave signals simulated by time-domain SFEM and measured in 

experiment 

 

Figure 2.13 Normalized amplitude of SFEM simulated and experimentally measured wave 

signals as a function of crack depth to thickness ratio for (a) reflected T-T wave, and (b) 

reflected T-F wave. 
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The amplitudes of the reflected T-T wave and T-F wave are extracted from the 

measured time-domain signals shown Fig. 2.12 and they are plotted in Fig. 2.13. The SFEM 

results of the parametric studies with different crack depth to thickness ratios are shown in the 

same figure. Figure 2.13 shows that there is good agreement between the amplitudes obtained 

by SFEM and experiment for different crack depths to thickness ratios. 

2.6 Conclusions 

A time-domain SFEM has been presented to simulate the torsional guided wave propagation, 

scattering and mode conversion at cracks in pipes. The proposed time-domain SFEM has three 

DoFs at each node, which is developed based on elementary rod theory and Timoshenko beam 

theory. A cracked element has been proposed to simulate the scattering and mode conversion 

when the guided wave interacts with the cracks in pipes. 3D finite element model has been 

used to validate the proposed time-domain SFEM and the cracked element. A series of 

parametric studies has been carried out to investigate the scattering and mode conversion effect 

of the torsional guided waves at different depths of the cracks. Experimental studies have been 

carried out to further verify the proposed SFEM method and the cracked element. The results 

have shown that the time-domain SFEM with the proposed cracked element is able to 

accurately predict the torsional wave propagation, scattering and mode conversion effect at the 

cracks in pipes. The reflected and transmitted wave amplitudes are sensitive to the change of 

the crack depth. The results of this study have gained physical insights into the torsional guided 

wave propagation, scattering and mode conversion at the cracks in pipes. The findings can 

further support the developments of damage detection techniques using torsional guided wave. 

Future research can extend the study to bent pipe and buried pipe. 
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Abstract 

 

Pipes have multiple applications in daily life and they are subjected to different types of defects. 

Nonlinear guided wave has attracted significant attention in detecting microstructural change 

at early stage of material deterioration. Extensive research using wave mixing with different 

wave modes has focused on plate-like structures. However, limited experimental studies have 

been conducted on the detection of material nonlinearity in pipes using two interacting guided 

waves. This study investigates nonlinear features generated due to mixing of torsional guided 

waves and material nonlinearity in pipes at low frequency range. The nonlinear theory of 

elasticity is implemented in a three-dimensional (3D) finite element (FE) method to simulate 

the effect of material nonlinearity on torsional guided wave mixing. The phenomenon of 

nonlinear features generated due to torsional guided wave mixing is investigated by 3D FE 

models. There is good agreement between the data obtained in the laboratory and numerical 

simulation results. This study demonstrates the existence of the combinational harmonic 

generation experimentally and provides physical insight into the phenomenon of nonlinear 

wave mixing. The findings of this study can further advance the damage detection techniques 

based on material nonlinearity in wave mixing.  

 

Keywords: Guided wave, wave mixing, material nonlinearity, finite element simulation, pipe, 

torsional wave, circular waveguide 
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3.1 Introduction 

Non-destructive evaluation (NDE) and damage detection techniques are important for safety-

critical structures [1]. Time-dependent loads result in material degradation in metallic 

structures. Cracks developed in degrading materials may cause catastrophic failures if proper 

structural investigation has not been done to identify damage at early stage. Studies focused on 

using ultrasonic guided wave have been carried out in the literature [2]. Ultrasonic guided 

waves are one of the reliable NDE techniques. The benefits includes the high sensitivity to 

small defects and a relatively large inspection area [3-5]. Linear ultrasonic guided waves can 

also interrogate inaccessible location of structures and provide online condition monitoring of 

in-service structures [6].  

Torsional guided wave has an advantage of long-range damage detection in pipelines. 

Fundamental axisymmetric torsional mode of guided wave T(0,1) has attracted increasing 

attention due to its nondispersive characteristic [7-8]. The use of low frequency is preferential 

for actuating torsional waves experimentally since less wave modes are generated at low 

frequency range. Carandente and Cawley [9] carried out an experimental study on the T(0,1) 

mode in a frequency range around 100kHz. Geometrical change due to various defects in pipes, 

such as corrosion [10], notch [11] and delamination [12], can be identified using linear guided 

wave scattered from the damage. In most of the situations, baseline measurement is essential 

[13-14] to extract the damage information which is limited to macro-scale. To address these 

restrictions of linear guided wave methods, research has focused on adopting nonlinear features 

of guided waves because this approach is highly sensitive to micro-scale damage [15].  

Many studies on nonlinear guided waves have focused on contact and material nonlinearity 

[16-18]. Examples of contact nonlinearity have fatigue cracks and loosening [19-21]. Material 

nonlinearity is primarily induced by the interaction with discontinuities at lattice level, such as 
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micro-cracks and voids. In the time-domain signals, the nonlinear features do not show 

significant difference compared to linear guided wave responses in terms of scattering and 

mode conversion. However, the distortion due to the nonlinear elastic wave behaviours of a 

material has a significant change after the transformation to frequency-domain [22]. By 

studying material nonlinearity, nonlinear guided wave provides damage information at higher 

order harmonics in frequency-domain. They are always the integral multiples of the incident 

wave frequency. In most of the cases, higher harmonic generation [23] caused by the contact 

and/or material nonlinearity can be applied to baseline-free damage detection because baseline 

data from pristine condition of the structure is not necessary for this approach. Liu et al. [24] 

conducted a study on shear horizontal wave for the generation of Rayleigh-Lamb secondary 

mode in plates. Ideally, primary Rayleigh-Lamb mode should not appear if shear horizontal 

wave is generated. However, due to finite width transducers, they concluded that non-planar 

wavefront leads to the generation of both primary and secondary harmonics in Rayleigh-Lamb 

wave. 

Research focused on harmonic generation in cylindrical waveguide has been conducted 

theoretically and experimentally [25-27] using single frequency guided wave. Liu et al. [17] 

carried out analytical studies for the second harmonics generation from different modes which 

were applicable to simple pipe-like structures. Chillara and Lissenden [28] used longitudinal 

mode of guided wave to study the nonlinear features in pipes. Li and Cho [29] measured second 

harmonics with thermal fatigue damage in pipes. Choi et al. [30] applied the fundamental 

torsional mode of guided wave in pipe-like structures and measured the higher harmonic 

generation. Li et al. [31] investigated the generation of second harmonics due to material 

nonlinearity in tube-like structures. However, it is potentially difficult to distinguish the cause 

of nonlinearity between weakly material nonlinearity and instrumentation nonlinearity. The 
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nonlinear distortion can be induced by measurement systems, such as amplifiers and 

transducers [32].  

Due to the generation of undesired higher harmonic from equipment, relevant research 

work has been focused on the feasibility of combinational harmonic generation induced by the 

mix of two incident waves at different frequencies [33-34]. It has been demonstrated that 

guided wave mixing is sensitive to material degradation [35]. The harmonics are generated at 

sum and difference of the excitation frequencies due to guided wave mixing for damage 

detection. Early development of the guided wave mixing focused on bulk waves [36]. It can be 

used to detect contact acoustic nonlinearity (CAN) induced by imperfect bond interfaces in 

structures [37]. Alston et al. [38] investigated CAN in aluminium specimens using two incident 

waves propagating in different directions. The wave mixing technique can also be applied to 

different materials. Demčenko et al. [39] implemented bulk wave mixing method to study 

different dynamic processes in polymers, such as ageing problem. McGovern et al. [40] used 

the mixing of two bulk waves in non-collinear direction to study the nonlinear response in 

concrete structures. However, the use of bulk wave is ineffective as the inspection area is very 

limited, which is much smaller than Rayleigh wave and Lamb wave. 

Research on wave mixing has been gradually extended to Lamb waves [41-42] because 

they are capable of selecting multiple wave modes for damage detection and able to provide 

large inspection area. Jingpin et al. [32] mixed two Lamb waves with different excitation 

frequencies in plates using collinear interaction approach. They investigated the generation of 

combinational harmonics due to the Lamb wave mixing phenomenon. Hassanian and 

Lissenden [35] studied the generation of secondary combinational harmonics at sum and 

difference of excitation frequencies in plate-like structures due to wave mixing. They 

demonstrated that material defects appeared in plates can be characterised by studying material 

nonlinearity.  Extensive studies have been done on bulk wave mixing and Lamb wave mixing 



Chapter 3 

 

45 

 

to study the phenomenon of combinational harmonic generation. However, a very limited 

experimental investigation has been carried out on combinational harmonic generation due to 

torsional wave mixing in pipes. The purpose of this study is to carry out experimental validation 

for the existence of the combinational harmonics generated by torsional guided wave mixing 

in pipe-like structures and the measured results are also compared with three-dimensional (3D) 

finite element (FE) simulations.  

The paper is organised as follows. Section 3.2 introduces the guided wave mixing 

approach and the theory of elasticity for material nonlinearity. The 3D scanning laser 

vibrometer is used to collect experimental data in Section 3.3. Section 3.4 applies the weakly 

nonlinear elasticity in FE method. The development of the FE model can confirm the 

experiment conducted in this study and provide the framework for more complex studies in 

future. In Section 3.5, the 3D FE model of a pipe is described and validated using 

experimentally measured data. This section also studies the sensitivity of the combinational 

harmonic generation due to torsional wave mixing in relation to different levels of fatigue 

damage. Finally, conclusions are drawn in Section 3.6.  

 

3.2 Nonlinear guided wave mixing techniques 

3.2.1 Generation of combinational harmonics 

The generation of combinational harmonics requires the interaction of two or more wave 

sources. Using two wave sources as an example, mixed frequency (f1 & f2) is composed by two 

incident waves at frequencies f1 and f2, where f2 > f1. It not only induces their corresponding 

second order harmonics (i.e. 2f1 and 2f2), but also generates the combinational harmonics at 

their sum and difference frequencies when mixing the waves. Figure 3.1a shows a schematic 
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frequency spectrum which indicates the interaction of fundamental waves and the 

combinational second harmonic generation due to wave mixing. For more practical application, 

a single excitation point of two individual wave sources has the advantage to provide 

convenient access because it only requires one-side access to implement the ultrasonic guided 

wave mixing. The wave mixing zone indicated in Figure 3.1b represents the interaction of the 

wave mixing.  

 

 

Figure 3.1 Schematic diagram of a) frequency spectrum for ultrasonic guided wave mixing, 

and b) wave mixing zone in pipe 

 

3.2.2 Theoretical framework for weakly nonlinear elasticity 

The following FE modelling framework for material nonlinearity not only can be used in 

simple structures, but also can apply to complicated configurations. In order to gain physical 

insights of combinational harmonic generation for wave mixing in pipes, this study aims to 
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have experimental validation by a FE model with the aid of nonlinear strain energy function. 

The derivation of nonlinear guided wave equation is based on continuum mechanics. The 

interaction of wave propagation is regarded as an infinitesimal deformation. The deformation 

gradient F (Figure 3.2) can quantify the change of a shape and the rigid rotation of a material. 

[16] 

d𝐬 = 𝐅d𝐒 =
∂𝐬

∂𝐒
d𝐒 

(3.1) 

where S is the position of the material particle in the stress-free reference configuration located 

at s in the current configuration.  

 

  

Figure 3.2 Illustration of deformation gradient 

  

The right Cauchy-Green strain tensor C considers the rigid body translation between 

configurations. This strain tensor is symmetric and can be related to F as below 

𝐂 = 𝐔𝟐 = 𝐅T𝐅 (3.2) 

where U is the right stretch tensor for local stretching at S. It is noted that C and U are the 

material tensors. The Green-Lagrange strain tensor E is used in the nonlinear strain energy 

function.  
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𝐄 =
1

2
(𝐅T𝐅 − 𝐈) 

(3.3) 

where I is the identity tensor. It is noted that E is also symmetric. Polar decomposition is a way 

to separate the deformation gradient into the rotation tensor and the stretch tensor.  

𝐅 = 𝐑𝐔 (3.4) 

R is an orthogonal tensor for local rotation of the material at S.  

𝐑−1 = 𝐑T (3.5) 

where det R=1 

The governing equation used in the theory of elasticity (Eq. (3.6)) refers to the strain 

energy function W, where the strain is in the second order terms. To perform a small amplitude 

wave motion in an elastic object, the function W is presented in the Green-Lagrange strain 

tensor E. This particular form of strain tensor allows the expansion of the strain energy function 

to the third order. The equations are capable of studying nonlinear guided waves since they 

take material nonlinearity into consideration due to the inclusion of the third order terms. Based 

on the study of Murnaghan [44] , the expansion of the nonlinear strain energy function W can 

be written as 

𝑊(𝐄) =
1

2
(𝜆 + 2𝜇)𝑖1

2 +
1

3
(𝑙 + 2𝑚)𝑖1

3 − 2𝜇𝑖2 − 2𝑚𝑖1𝑖2 + 𝑛𝑖3 
(3.6) 

where 𝜆 and 𝜇 are the Lamé elastic constants; l, m and n are the third order elastic constants. 

The principal invariants of E (𝑖1, 𝑖2 and 𝑖3 ) are given by  

𝑖1 = 𝑡𝑟𝐄  
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𝑖2 =
1

2
[𝑖1

2 − 𝑡𝑟(𝐄)2] 
 

𝑖3 = 𝑑𝑒𝑡𝐄 (3.7) 

The second Piola-Kirchhoff (PK2) stress is obtained by the partial derivation of W(E) with 

respect to E, i.e.  
∂𝑊(E)

∂E
 . The Cauchy stress can be written in terms of the PK2 stress and the 

deformation gradient as below 

𝛔 = J−1𝐅
∂𝑊(𝐄)

∂𝐄
𝐅T 

(3.8) 

where J−1is the Jacobian determinant and equals to det (𝐅). 

 

3.3 Excitation using piezoceramic transducers and 

measurements using 3D scanning laser Doppler vibrometer 

This section illustrates the mixing of torsional waves at two different excitation frequencies 

and the details of the excitation using piezoceramic transducers and measurements using 3D 

scanning laser Doppler vibrometer [46] to investigate the material nonlinearity of torsional 

wave mixing phenomenon in an aluminium pipe. Figure 3.3 is a schematic diagram of the 

experimental setup used in this study. The outer diameter of the pipe is r = 25 mm with wall 

thickness of 1.5 mm. The excitation of torsional guided wave was achieved by four square-

shaped piezoceramic shear transducers (Ferroperm Pz27) with dimensions of 6 mm  6 mm  

1 mm. Reflective spray was coated on the surface of the pipe specimen to improve the signal-

to-noise ratio of the signals measured by the 3D scanning laser vibrometer.  
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Two excitation signals with low frequencies at f1 = 70 kHz and f2 = 110 kHz were used 

in the laboratory test to avoid less complication of multi-modes. The combined frequency 

excitation signal was achieved by merging the two single frequency excitation signals together. 

The signal at frequency f1 lagged behind the signal at frequency f2 for 22 μs in the pre-mixing 

procedure. Hann-windowed tone burst pulses [45] of 6 and 13 cycles at f1 and f2 were employed, 

respectively. The actual excitation from the actuators in time-domain was measured by the 

laser Doppler vibrometer and is shown in Figure 3.4a. The Fast Fourier Transform (FFT) was 

employed to transform the time-domain data to the frequency-domain data for analysis. Figure 

3.4b shows the corresponding response in frequency-domain. The excitation signal was 

generated by a computer-controlled signal generator. The peak-to-peak output voltage was 

amplified by a power amplifier to 120 V.  
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Figure 3.3 (a) Experimental setup of piezoceramic shear transducers, 3D laser Doppler 

vibrometer and the pipe specimen, (b) cross-section of the pipe specimen 

  

 

Figure 3.4 Actual mixed frequency excitation from actuators measured by laser Doppler 

vibrometer, a) time-domain and b) frequency-domain 

 

The experimental data was collected using Polytec high-frequency 3D scanning laser 

Doppler vibrometer (PSV-400-3D-M). Low-pass filter with the cut-off frequency of 600 kHz 

and signal averaging with 2000 acquisitions were applied to enhance the signal-to-noise ratio 

of the measured data. This 3D laser scanning system is for non-contact optical vibration 

measurement. It consists of three spatially independent laser scanning heads. Figure 3.3b 

indicates the measurement locations in Cartesian coordinate system (i.e. in-plane horizontal x, 

in-plane vertical y and out-of-plane z). The measurements were done by using the three heads 

at the measurement point. The intersection point of the laser beams measures the velocity fields. 
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Section A-A in the same figure illustrates that the velocities in tangential and longitudinal 

directions were measured simultaneously at Point A. The torsional wave has the maximum 

signal magnitude in tangential direction.  

Figures 3.5a and 3.5b present the time-domain experimentally measured mixed 

frequency waves in torsional (tangential) and longitudinal direction, respectively. Figures 3.5c 

and 3.5d show the corresponding signals in frequency-domain. The measurement point is at 

450 mm away from the excitation location. The time-domain signals are normalised by the 

maximum signal amplitude so that the harmonics are comparable for the subsequent sections. 

 

 

 

Figure 3.5 Experimentally measured of time-domain signal in (a) torsional direction and (b) 

longitudinal direction, and (c)-(d) corresponding signals in frequency-domain 
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Figure 3.6 compares the experimentally obtained single and mixed frequency responses 

in frequency-domain. In this experimental study, the generation of combinational harmonics 

are the main focus which are highlighted in Figure 3.6b. Three different tests were carried out 

in the study. The first test used the fundamental frequency f1 excitation signal. The second test 

used the fundamental frequency f2 excitation signal. The third test used the mixed frequencies 

(f1 & f2) excitation signal. They are indicated using black dotted line, red solid line and blue 

solid line in Figure 3.6, respectively. The tangential motion of the fundamental torsional guided 

wave mode shall not give second harmonics in wave mixing. Previous study [17] used 

analytical method and stated this point of view at single frequency. However, very limited 

research was carried out to experimentally confirm the generation of combination harmonics 

in torsional wave mixing for material nonlinearity. Therefore, the current study focuses on the 

combinational harmonics generation due to guided wave mixing and experimentally validates 

this phenomenon.  

It is expected that no higher harmonics appear in the torsional direction when the two 

incident waves interact with each other in Figure 3.6. Apart from the fundamental frequency at 

f1 and f2, the combinational harmonics at difference frequency (f2 – f1 = 40 kHz) and sum 

frequency (f2 + f1 = 180 kHz) have obvious peaks in the longitudinal measurement, which are 

highlighted by dotted vertical lines.  
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Figure 3.6 Experimentally measured single and mixed frequency velocity responses in 

frequency-domain, (a) torsional and (b) longitudinal directions 

 

3.4 Three-dimensional finite element model of pipes 

In this study, a 3D FE model was used to simulate guided wave mixing for the phenomenon of 

material nonlinearity. The excitation location was the same excitation position in the pipe 

specimen using in the experiment. The geometry of the pipe model was created and meshed in 

ABAQUS. The pipe is modelled by eight-node linear brick elements with hourglass control 

and reduced integration (C3D8R). The in-plane dimension of the element is approximately 

0.25 mm × 0.25 mm to ensure the simulation is stable. This ensures that there are at least 20 

and 25 FE nodes per wavelength for torsional wave and longitudinal wave. The thickness of 

the elements is 0.25 mm so there are six layers of elements in the thickness direction (Figure 

3.7a). The dynamic simulation is solved by ABAQUS/Explicit. The density and Young’s 

modulus of the aluminium are 2700 kg/m3
 and 69 GPa, respectively. The Lame’s and third 

order elastic constants used in the user-defined subroutine are listed in Table 3.1.  

Table 3.1 Lame’s and third order elastic constants of aluminium used in the FE simulations 

(in GPa) 

Lame’s constants Third order elastic constants 

λ μ l m n 

54.9 26.5 -252.2 -325 -351.2 

 

A layout of the pipe modelled using FE method is shown in Figure 3.7. As shown in 

Figure 3.7a, the incident T(0,1) waves at f1 and f2 excitation frequencies were excited by 

applying tangential point loads at four edges of the circumference located at the pipe end. The 

coordinate of Point B is (r,0,0), which has the measured velocity in vy. This is the maximum 

signal magnitude of the torsional wave in y direction. The longitudinal wave signal can be 
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obtained from the nodal displacement in z direction. The study used the same frequencies and 

number of cycles Hann-windowed tone burst pulses used in experiment as the excitation signals. 

This study considered three different situations in the excitation signals at low frequency range, 

which are fundamental frequency f1 excitation signal, fundamental frequency f2, excitation 

signal, and pre-mixed frequencies (f1 & f2) excitation signal. The three situations considered in 

FE are the same as in the experimental study. The existence of combinational harmonics at the 

sum and difference frequencies can be associated with the induction of shear coupling from the 

fundamental torsional waves to longitudinal waves at the combinational harmonic frequencies. 

Thus, the data in the FE simulations were extracted in both the torsional and longitudinal 

directions. Figures 3.8a and 3.8b show the numerically simulated time-domain signals in 

tangential and longitudinal directions at the location of 500 mm from the excitation location. 

The corresponding data in frequency domain are shown in Figures 3.8c and 3.8d. The FE model 

includes the nonlinear strain function (Section 3.2.2) to simulate the effect of material 

nonlinearity. 

 
Figure 3.7 (a) 3D FE model and T(0,1) mode excitation (b) schematic diagram of the 

configuration used in the FE model 
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Figure 3.8 Numerical simulated time-domain signals in (a) tangential direction and (b) 

longitudinal direction, and (c)-(d) the corresponding signals in frequency-domain 

 

Figure 3.9 shows the phase velocity dispersion curves for the torsional and longitudinal 

wave modes from 50 kHz to 330 kHz in steps of 20 kHz. The signals at five measurement 

points were recorded and used to calculate the averaged phase velocity at each excitation 

frequency. The first measurement is located at 300 mm from the excitation signal and the 

distance between two consecutive measuring points is 1 mm.  Therefore, the separation of two 

measurement points is less than one half of the incident wave wavelength. The following 

equation is used to calculate the phase velocity 

𝑐𝑝 =
2𝜋𝑓∆𝑦

∆𝜑
 

(3.9) 

where f is the central frequency of the incident wave, ∆𝑦 is the distance between the two 

measurements and ∆𝜑 is the change in phase angle. 
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Results calculated by a software DISPERSE [47] is used to compare with the results 

calculated from FE simulation data in Figure 3.9. The theoretical calculation is indicated by 

dashed lines while the FE data is indicated by square markers. The T(0,1) mode and L(0,1) 

mode are represented by blue and red colours, respectively. The FE calculations are in 

agreement with the theoretical values. Thus, the FE model can accurately predict both the 

torsional and longitudinal wave propagations.  

 

 

Figure 3.9 Phase velocity dispersion obtained from DISPERSE and FE simulation 

 

3.5 Experimental validation 3D FE model with nonlinear 

elasticity  

Figure 3.10 is the comparison between the data from the FE model with the consideration of 

material nonlinearity and the experimentally measured mixed frequency response. FFT was 

used for the conversion in experimental and numerical data. The results from the experiment 

and the FE model were normalised to allow direct comparison. The blue solid line and the red 

dotted line refer to the FE simulated frequency spectra and the experimentally measured 

frequency spectra, respectively. The corresponding frequencies are labelled in Figure 3.10. The 
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FFT signals simulated by the nonlinear FE model in the tangential and longitudinal directions 

generally share the same pattern with those signals in the experiment. It implies that the 

direction of torsional force for the nonlinear FE model does not generate any combinational 

harmonics. 

The generation of primary and combinational harmonics at sum and difference 

frequencies (i.e. f2 ± f1) can be observed in the longitudinal motion (Figure 3.10b). It should be 

noted that the primary harmonics at f1 and f2 in the longitudinal direction are induced because 

of the non-planar wavefront generated by finite width transducers [24]. In the current study, 

the excitations in the experiments and simulations were four individual piezoceramic 

transducers at the end of the pipe. This produces non-planar wavefront, and hence, it induces 

the primary harmonics at f1 and f2 in the longitudinal direction. Therefore, the longitudinal 

signal contains both primary and combinational harmonic frequencies when mixed frequency 

torsional wave is generated. 

 

 

Figure 3.10 Mixed frequency response of FE simulation and experimentally measured data in 

(a) tangential and (b) longitudinal directions 
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3.5.1 Simulation results and discussion 

In this section, two FE models were used to simulate the guided wave responses. The FE model 

with the use of the material subroutine VUMAT [48] which implemented extended 

Murnaghan’s strain energy equation in Section 3.2.2 is labelled as nonlinear FE (blue solid line) 

in the figure. The other model is a benchmark simulation which does not take into account the 

material nonlinearity. The corresponding FFT response is labelled as linear FE (black dashed 

line) in the figure. Figures 3.11 and 3.12 show the measured data in both directions for 

individual excitation frequencies f1 and f2. The linear and nonlinear signals do not have much 

difference in the tangential direction (Figures 3.11a and 3.12a).  

Since the primary fundamental torsional waves cannot generate second harmonic 

torsional waves, the second harmonic does not appear in those plots. Only the peaks at the 

excitation frequencies, which are the fundamental frequency components, appear in the 

tangential direction. Instead, there are additional peaks at 2f1 and 2f2 in nonlinear FE. It is 

demonstrated that the modified strain energy function with third order terms in Eq. (3.6) can 

effectively model the nonlinear guided wave behaviours through the utilisation of user 

subroutine. The second harmonics at 2f1 and 2f2 appear in the data measured in longitudinal 

direction (Figures 3.11b and 3.12b). In the meantime, no harmonic appears in the linear 

response (black dashed lines) at the double frequency of the excitation signals.   
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Figure 3.11 FE model verification of single frequency at f1 in (a) tangential and (b) 

longitudinal directions 

 

 

Figure 3.12 FE model verification of single frequency at f2 in (a) tangential and (b) 

longitudinal directions 

 

Similarly, Figure 3.13a shows that the signal does not contain any second harmonic 

components in the data calculated in the tangential direction. In Figure 3.13b, the 

combinational harmonic at the sum frequency (f2 + f1) is approximately 20 % higher than at the 

difference frequency (f2 – f1). Due to the mutual wave interaction [28], the combinational 

harmonics at the sum and difference frequencies can be observed in the mixed frequency 

response. It is noticeable that single frequency excitation does not generate the combination 

harmonics at sum and different frequencies since they are originally from the mutual interaction 
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of two waves. Therefore, none of these combinational harmonic components can be observed 

in the measured data using single frequency excitation at f1 and f2, respectively.   

 

Figure 3.13 Mixed frequency response in frequency domain for FE models in (a) tangential 

and (b) longitudinal directions 

 

3.5.2 Effect on relative nonlinear parameter in material nonlinearity at different fatigue stages 

This section presents a study to relate the relative nonlinear parameter with the several stages 

of evenly distributed fatigue damage growth using FE simulations. A material with various 

fatigue states subjected to the accumulation of dislocation substructures leads to the change in 

the value of higher harmonics. This can be applied to the combinational harmonics in nonlinear 

guided wave mixing in pipes to characterise the fatigue damage of a material quantitatively. 

The relative nonlinear parameter β’ is defined as [43]  

β’=
𝐴3

𝐴1𝐴2
 

(3.10) 

where A3 is the amplitude of the harmonic wave and A1, A2 are the amplitudes of the two 

incident waves. The parameter β’ can used as an indicator as the term A3 is the generation of 

combinational harmonic frequencies in the incident wave frequency signal. It can monitor the 

material nonlinearity quantitatively prior to the initiation of micro-cracks. An accurate 
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experimental study about the fatigue damage of aluminium was carried out in the previous 

research [49] which provided convincible data at different stages in an evenly distributed 

fatigue damage cycle. The relevant data is shown in Table 3.2. 

Table 3.2 Material properties of aluminium at three different stages in a fatigue life cycle (in 

GPa)[49] 

                            Fatigue  

                            life (%) 

 Third order  

elastic constants 

0 40 80 

l -149.4 -153.7 -155.9 

m -102.8 -113.2 -115.3 

n -351.2 -358.3 -359.8 

 

Figure 3.14 Percentage change in the nonlinear parameter calculated from the FE simulation 

against the fatigue damage 

  

In order to allow direct comparison between the sum and difference harmonics, the data 

is expressed in percentage change for the relative nonlinear parameter β’ when the fatigue life 

is at 40 % and 80 %. As shown in Figure 3.14, the combinational harmonics at sum and 

difference frequencies are indicated by blue colour and yellow colour, respectively. The 

measurement points are at the distance of 450 mm away from the excitation points. The 
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increase in β’ at sum frequency is more obvious than that at difference frequency. The overall 

value of β’ at difference frequency is about a half of the value of β’ at sum frequency.  

 

3.6 Conclusions 

The study of guided wave mixing of two fundamental torsional waves in pipe-like structures 

has been investigated numerically and experimentally. The 3D scanning laser Doppler 

vibrometer was used in the experiment. The generation of combinational harmonics due to 

guided wave mixing in pipes has been measured in experiment. They were induced at the sum 

and difference frequencies of the incident waves in longitudinal direction when the two T(0,1) 

mode waves interact with each other. The modified Murnaghan’s energy equation to third order 

terms was implemented in the 3D FE model to capture the combinational harmonic generation 

in guided wave mixing. There is good agreement between the frequency responses of 

experimental measurements and numerical simulations. The experimentally validated 3D FE 

model has been used to investigate the generation of combinational harmonics with increasing 

percentage of fatigue damage level. Current investigations are focusing on extending the study 

to higher order harmonic generation due to material nonlinearity using guided wave mixing.  
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3.7 Appendix 

In this study, the material nonlinearity is taken into account in the 3D FE model. A set of 

equations are implemented through a user subroutine VUMAT in ABAQUS/Explicit to analyse 

the effect of material nonlinearity on guided wave mixing in pipes. The stress in ABAQUS is 

the Cauchy stress tensor 𝛔 in the basis of Green-Naghdi rate.  

𝛔̂ = 𝐑T𝛔𝐑 (A.1) 

Using Eq. (3.4), (3.6), (3.8) and (A.1), the stress in ABAQUS can be interpreted as 

𝛔̂ = J−1𝐑T𝐅
∂𝑊(𝐄)

∂𝐄
𝐅T𝐑 

 

= J−1𝐑T𝐑𝐔
∂𝑊(𝐄)

∂𝐄
𝐔T𝐑T𝐑 

 

= J−1𝐔
∂𝑊(𝐄)

∂𝐄
𝐔T 

(A.2) 

The values of U and F at the end of final time step (𝑡) will be updated in the stress equations at 

the end of an integration step (𝑡 + ∆𝑡) and renewed in stressNew(i). 
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Abstract 

 

Pipes have widespread applications, such as drainage and the conveyance of chemical products. 

Pipelines are usually installed underground, which increases the difficulty in structural integrity 

inspection. Numerous studies have investigated the phenomenon of guided wave propagation 

in buried pipes and its interaction with different types of damage, e.g. corrosion and thermal 

damage. However, very limited studies focused on utilising guided-wave mixing techniques 

for embedded pipes. This study develops a three-dimensional (3D) finite element (FE) model 

incorporating strain energy function to analyse wave-mixing phenomena in pipes embedded in 

soil. To characterise nonlinear features due to guided-wave mixing, combinational harmonic 

generation, the 3D FE model is used when two torsional guided waves interact with each other. 

The numerical results are then verified by experimentally measured data which show that the 

amplitude in frequency-domain exhibits sharp drop due to the energy leakage in the existence 

of soil medium at fundamental frequencies, second and combinational harmonics. 

 

Keywords: Guided-wave mixing; material nonlinearity; finite element; buried pipes; 

combinational harmonic; second harmonic 
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4.1 Introduction 

Reliable non-destructive testing (NDT) provides early precaution for failure of underground 

structures, for example gas pipe leakage. The current commonly used practice is to send labours 

to manholes for pipeline integrity inspection. This approach is time consuming and unreliable. 

Moreover, it disturbs the normal operation of pipelines. Cost effective pipe inspection 

techniques can be developed using ultrasonic guided waves. This kind of techniques can 

inspect the internal conditions of pipeline with less manpower. The use of guided wave in 

damage detection has attracted significant interest due to its high sensitivity to small and 

different types of damage, and long inspection distance [1]. In the last decade, the study of 

guided wave mainly paid attention on linear features [2], for example time-of-flight 

information and amplitudes of scattered wave from damage, to detect damage in composite 

laminates [3], concrete [4], metallic plates [5] and pipes [6]. Different guided wave-based 

inspection systems were also developed for in-service integrity inspection and structural health 

monitoring. 

 

4.1.1 Pipes embedded in soil 

Detection of underground burst pipeline is a challenging issue. The use of guided waves for 

inspecting cylindrical structures covered by other materials were investigated in the literature 

[7-8]. Compared with bare pipes, the performance of wave propagation in pipes embedded in 

soil becomes more unpredictable since the energy propagated by guided waves can be radiated 

to the surrounding materials [9]. The amount of energy leakage is determined by the material 

properties from two sources: the pipeline itself and the surrounding medium. Ahmad et al. [10] 

investigated whether guided wave signals would be weakened when pipes were buried in soil. 

They compared the received signals with and without soil surrounded. The results showed that 
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the embedded pipes have weaker signals due to energy leakage. Muggleton et al. [11] derived 

and extended equations for guided wave propagation with the consideration of the ambient soil 

behaviour. They used a numerical model to validate assumptions in their analytical model for 

studying the effect of soil. Leinov et al. [12] studied the energy leakage of guided wave in 

buried pipes. They also investigated the effect of soil properties in the cases of loose sand, 

compacted sand, saturated sand and drained sand. They demonstrated that soil condition has 

direct influence on the amplitude of propagating waves. Therefore, one of the purposes of this 

study is to further elaborate the application of guided wave in embedded pipes. 

 

4.1.2 Linear and nonlinear features of guided waves in pipes 

Linear features of guided waves have been widely used to detect and characterise different 

types of macro-scale defects [13-14]. Most of the linear guided wave methods rely on baseline 

subtraction method to extract the scattered wave from damage for damage detection and 

identification in plate-like and pipe-like structures [6]. Sun et al. [15] used torsional guided 

wave to detect damage in pipes. The nondispersive nature is one of the advantages of using the 

torsional guided wave. Related studies focusing on torsional wave were carried out because it 

is applicable for long range damage detection in pipelines [16]. The preferential frequency 

range for exciting the fundamental mode of torsional wave is about 100kHz [17]. The reason 

is that higher excitation frequency generates many unwanted wave modes, which make the 

analysis of wave signals become very challenging. Different studies were carried out to 

investigate the propagation and scattering of the torsional guided wave because it is sensitive 

to different types of defects, e.g. corrosion [18] and delamination [19]. However, the use of 

linear guided wave approach is limited to investigate micro-scale defects. The deficiency of 

recognising small damage in structures through linear guided waves can be overcome by using 
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nonlinear features, for example higher harmonic and combinational harmonic generation of 

guided waves. These nonlinear features of guided wave are sensitive to micro-scale damage. 

Waveform distortion in time-domain response is not noticeable to identify micro-scale defects. 

In the literature, studies focused on analysing higher harmonic generation in frequency-domain 

provided an aid to scrutinise the nonlinear characteristics of the guided wave signals [20,21], 

which can potentially be a baseline free approach. 

Material nonlinearity [22-23] detects material imperfections which is distributed along 

the entire structure. The microstructural change results in the generation of second harmonic 

which is an important indicator for damage detection. The nonlinear behaviour of the material 

is the focus of this paper since the amplitudes of the harmonic waves provide information for 

revealing the nonlinearity at the early stage of health status of the structure. Nonlinear features 

of guided wave propagation in pipes have been studied in the literature. The second harmonic 

generation of longitudinal wave in pipes was studied by Chillara and Lissenden [24] 

theoretically. The criteria for generating higher harmonics in cylinders using different wave 

modes were investigated [25]. Li and Cho [26] carried out fatigue tests to experimentally 

demonstrate the cumulative effect of second harmonic in pipes. It was demonstrated that 

laboratory equipment, such as signal amplifiers, data acquisition systems and transducers, can 

potentially generate non-damage related higher harmonics, which can contaminate the damage 

related higher harmonics [27]. 

 

4.1.3 Wave mixing technique 

The method of mixing distinct frequencies of ultrasonic waves can effectively rule out the 

nonlinearities generated by the equipment [27]. When the waves interact with each other, 

combinational harmonics at sum or difference excitation frequencies are generated if micro-
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scale defects exist in the materials [28-29]. Wave mixing technique is applicable to different 

types of guided waves and can be used for damage interrogation. Bulk wave is one of the 

popular used waves for NDT. It was studied in the early development of guided-wave mixing 

in the literature [30-32]. The strategy of sending two wave sources into a structure is utilised 

to identify imperfect bonds for localised nonlinear behaviour in different materials [33-34]. 

Nevertheless, bulk waves are only applicable for inspecting a relatively small area compared 

to other types of guided wave, such as Lamb waves and shear horizontal (SH) waves.  

As compensation, Lamb waves provide larger inspection area while they have multiple 

wave modes to be selected for damage prognosis [35]. Metya et al. [36] investigated nonlinear 

characteristics of two nonlinear Lamb waves interaction during creeping. They also studied the 

material nonlinearity experimentally to predict the structural failure. The other study of Shan 

et al. [37] carried out a wave mixing analysis subjected to material nonlinearity in plates by 

exciting two SH waves using collinear interaction approach. A recent study [38] on guided 

wave mixing associated with thermal aging has been carried out to measure the nonlinear 

parameter at adhesive joints. The aforementioned research demonstrated that wave mixing 

technique is a good candidate for the development of damage detection in solid blocks and 

plate-like structures. However, the studies were limited to bulk wave and Lamb wave only. 

There were only few studies investigated the guided-wave mixing in circular waveguide, e.g. 

pipes [39]. Despite that, very limited studies focused on nonlinear guided-wave mixing in 

buried pipes. Pipes, in practice, are installed underground or covered by insulated materials for 

working in high temperature areas. It would be valuable and essential for carrying out a 

research on the application of wave mixing technique in buried pipes. The objective of this 

paper is to gain fundamental insights into the nonlinear features (i.e. combinational harmonics 

and second harmonics) of guided-wave mixing in pipes embedded in soil. 
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The paper is organised as follows. The theory of weakly nonlinear elasticity describes 

the material nonlinearity of the embedded pipes and the choice of frequency range is explained 

in Section 4.2. The three-dimensional (3D) scanning laser vibrometer setup is presented, and 

the experimental results regarding to the combinational harmonic and the second harmonics 

are analysed in Section 4.3. A 3D finite element (FE) model of a pipe buried in soil is 

established in Section 4.4. Meanwhile, the experimentally observed nonlinear guided wave 

phenomenon in guided-wave mixing and single frequency excitation are endorsed by the FE 

simulation results. In Section 4.5, parametric studies are carried out to analyse the change in 

the combinational harmonic at the sum of the excitation frequencies and the second harmonics 

from two single frequencies under different stages of thermal fatigue damage. Finally, 

conclusions are given in Section 4.6. 

 

4.2 Theoretical background 

4.2.1 Weakly nonlinear elasticity theory 

A set of constitutive equations in the basis of continuum mechanics is employed to simulate 

the behaviour of material nonlinearity in guided wave propagation. The definition of nonlinear 

strain energy function is from deformation gradient F which is expressed as [40-41] 

𝐅 =
∂𝐲

∂𝐘
 

(4.1) 

where y and Y are the positions for material particle in the current and reference configuration, 

respectively. The rotation tensor R and the right stretch tensor U can constitute F from polar 

decomposition.   

𝐅 = 𝐑𝐔 (4.2) 
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where R is orthogonal and det R=1. The elastic strain energy function W can be interpreted 

by Cauchy stress tensor. 

𝛔 = J−1𝐅
∂W

∂𝐅
 

(4.3) 

where J−1 is the inverse of Jacobian function. 

The right Cauchy-Green strain tensor C can be decomposed by F. It can also use to 

express the term Green-Lagrange deformation tensor E. 

𝐂 = 𝐅T𝐅 (4.4) 

𝐂 = 2𝐄 + 𝐈 (4.5) 

where I is the identical matrix.  

By using Murnaghan model [42], the governing equation for weakly nonlinear elasticity 

is employed. The strain energy function W is a function of E and is defined in Equation 4.6. 

The Murnaghan’s third order elastic coefficients (l, m and n) in the equation describe the 

nonlinear response of materials.  

𝑊(𝐄) =
1

2
(𝜆 + 2𝜇)𝑖1

2 +
1

3
(𝑙 + 𝑚)𝑖1

2 − 2𝑚𝑖1𝑖2 − 2𝜇𝑖2 + 𝑛𝑖3 
(4.6) 

where  𝑖1 = 𝑡𝑟𝐄, 𝑖2 = 0.5[𝑖1
2 − 𝑡𝑟(𝐄)2] and 𝑖3 = 𝑑𝑒𝑡𝐄 are the principal invariants; 𝜆 and 𝜇 

are the Lamé elastic constants.  

 

4.2.2 Excitation signals used in FE simulations and experiments 

Two different types of excitation signals were used in the FE simulations and experiments, (i) 

excitation signal combined two signals at different central frequencies (f1 & f2) (Figure 4.1c), 

and (ii) two excitations with different single central frequency f1 and f2 (Figures 4.1a and 4.1b), 

respectively. Figure 4.1c shows the excitation signal generated by combining two sinusoidal 

tone burst pulses modulated by a Hann window. These two tone burst pulses have 15 cycles 
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and 10 cycles and are at different frequencies f1 (110 kHz) and f2 (70 kHz), respectively 

(Figures 4.1a and 4.1b). The use of low frequency excitation is to avoid generating undesired 

wave modes for practical applications, and hence, the cumulative effect is not considered since 

the condition of phase matched is not applicable to the choice at low frequency range in this 

study. In the time-domain, there is no time delay between excitation signals with central 

frequencies f1 and f2. In the guided-wave mixing, the second harmonics and the combinational 

harmonics can be generated due to material nonlinearity. The focus of the present study is to 

investigate and compare the combinational harmonic generation due to torsional guided wave 

mixing at the sum of the excitation frequency and the second harmonic generation due to the 

torsional guided wave at single central frequency. 

 

 

Figure 4.1 The excitation signal with central frequency at a) f2 and b) f1, and c) combined 

excitation signal (f1 & f2) 
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4.3 Experimental study of nonlinear features of guided 

wave in pipes embedded in soils 

4.3.1 Experimental setup 

A pipe of 1m long was embedded into the soil to replicate the embedment condition for 

experimental study. The pipe was placed in a rectangular wooden box with dimensions of 

230×220×250mm3 (Figure 4.2). The container walls were fabricated by 20mm thick plywood 

plates. The wall thickness of the pipe is 3mm and the outer diameter is 25mm. Circular 

apertures were created at the container walls located at both sides. The circular apertures are 

slightly bigger than the pipe diameter so that the pipe can be inserted into the wooden box.  

 

Figure 4.2 Schematic diagram (left) and experimental setup (right) of pipe embedded in soil 

  

The selected cohesionless soils were then backfilled into the wooden box. The soils are 

clean sands (well-graded and dry) [9] with less than 5% fine soils (i.e. finer than 75μm). The 

sand for an experimental test was prepared by a sieving test with the use of the mechanical 

sieve shaker. The soil distribution grading is plotted in Figure 4.3. The particle size was 

controlled not to be coarser than 1.18mm. The major sizes of the sand particles are between 

0.6mm to 1.18mm. Clay and slit were filtered out in the sieving process.  
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Figure 4.3 Grain size distribution chart for soil used in the experimental study 

 

 Four equally spaced shear piezoceramic transducers (shear plates) with thickness of 

1mm were bonded at the end of the pipe and they are actuated at the same time using identical 

excitation signal to generate fundamental torsional guided waves. The cross-section of the 

shear piezoceramic transducers is 66mm2. The signal was generated by a function generator 

and then amplified to 120V through an amplifier (KROHN-HITE 7500) before it was 

transmitted to the shear piezoceramic transducers. 3D scanning laser vibrometer was used to 

measured guided wave signals at 350mm from the left end of the pipe. The measurement was 

carried out in the pipes with and without soil. To improve the signal quality, reflective coating 

was sprayed on the surface of the specimen. Low-pass filter and an averaging of 1500 times 

were adopted to improve the signal-to-noise ratio. Velocity signals were recorded in y- and z-

direction (Figure 4.4), which represent tangential and longitudinal directions, respectively. The 

measured time-domain signals are normalised by their maximum amplitude and transformed 

to frequency-domain for analysis using Fast Fourier Transform (FFT). This allows comparison 

between the data in bare pipe and embedded pipe. The schematic diagram in Figure 4.4 

indicates the laser vibrometer and pipe embedment experimental setup. 
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Figure 4.4 Experimental setup for measurement using laser Doppler vibrometer 

 

4.3.2 Combinational harmonic generation due to guided-wave mixing 

Figure 4.5 shows the time-domain and frequency-domain signals measured at the location of 

350mm in tangential and longitudinal directions, which capture the torsional guided wave and 

longitudinal guided wave, respectively. The mixed frequency response in the absence of soil is 

indicated by grey dotted line, while the response of the pipe embedded in soil is indicated by 

black solid line. Figures 4.5a and 4.5b indicate an obvious decrease of the signals when soils 

were added to the pipe. To have a substantial analysis, frequency spectra are plotted in Figure 

4.5c and 4.5d in which vertical dashed lines are used to indicate the excitation frequencies f1 

and f2, and combinational harmonic at sum frequency (f1 + f2). Aside from the fundamental 

frequencies at f1 and f2, the sum frequency component (f1 + f2 = 180 kHz) is significantly 

indicated in longitudinal direction (Figure 4.5d). But no harmonics are induced in tangential 

direction, which means torsional guided wave does not contain these nonlinear features (Figure 
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4.5c). The results in Figure 4.5 also indicate that the energy of the guided wave radiates to the 

surrounding soil when the guided waves propagate along the pipe. The amplitudes of 

components at the excitation frequencies f1 and f2, and combinational harmonic at the sum 

frequency (f1 + f2) for the specimen buried in soil are reduced because a portion of the wave 

energy leaks to the surrounding soil. The phenomenon of amplitude reduction at the excitation 

frequencies is consistent with the findings from the study carried out by Leinov et al. [9], who 

showed that guided wave leakage can be caused by surrounding soil. 

 

 

 
Figure 4.5 a) & b) Time-domain and c) & d) Frequency-domain velocity responses measured 

by 3D scanning laser in bare pipe and buried pipe in tangential and longitudinal directions 
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4.3.3 Second harmonic generation due to single central frequency guided wave 

The generation of second harmonic due to single frequency torsional guided wave has been 

researched in the literature [25]. The study showed that the fundamental mode of torsional 

guided wave T(0,1) propagation in a pipe with material nonlinearity can induce second 

harmonic of longitudinal wave due to shear coupling, which can be measured from velocity in 

longitudinal direction using laser vibrometer. 

Similar experiments were carried out in the same bare pipe and buried pipe specimen 

using excitation signal with a single frequency. Figures 4.6a and 4.6b show the results obtained 

using excitation with a single central frequency at f1 = 110kHz and f2 = 70kHz, respectively. 

The results in Figures 4.6a and 4.6b indicate that the measured signals also contain second 

harmonic (2f1 or 2f2). These results are consistent with results reported in the literature [24]. 

Compared the results in Figures 4.6a and 4.6b, the amplitude at excitation frequencies and 

second harmonic frequencies in the buried pipe are smaller than those in bare pipe.  

 

 

 Figure 4.6 Experimental data with and without soil at a) 70kHz and b) 110kHz 
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4.4 3D FE simulations of pipe with material nonlinearity 

4.4.1 Modelling of pipe embedded in soil  

The combinational harmonic generation due to guided-wave mixing and the second harmonic 

generation due to single central frequency torsional guided wave in pipes with embedding soil 

are simulated using 3D FE models in this section. The Murnaghan model is implementable 

with the aid of a user defined subroutine in some commercial FE packages, for example 

ABAQUS. The third order constants in the equation can apply to the three-dimensional FE 

model. The stress 𝛔̂ used in ABAQUS is represented as Green-Naghdi rate of Cauchy stress 𝛔 

[40,43].  

𝛔̂ = 𝐑T𝛔𝐑 (4.7) 

𝛔 = J−1𝐅𝐐𝐅T (4.8) 

 

where 𝐐 =
∂W(𝐄)

∂𝐄
 is the second Piola-Kirchhoff stress and J−1 = det (𝐅). Equation 4.7 can 

transform to 

𝛔̂ = J−1𝐔𝐐𝐔T (4.9) 

 

This theory is applied to ABAQUS/Explicit through the user material subroutine VUMAT to 

model the influence of intrinsic material nonlinearity on guided wave simulation. The variables, 

which are material properties, are adopted to define the mechanical constitutive behaviour from 

the strain energy function. The self-defined parameters F and U are replaced by the new 

calculations in each time step. The subroutine updates the stress at the end of each time step 

and carries on proceeding to the following integration step.  

An aluminium pipe embedded in a medium of cylindrical sand layer was modelled 

using ABAQUS. The cross-section of the pipe and the cylindrical sand layer with FE mesh are 
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shown in Figure 4.7. Tie constraint with surface-to-surface option was assigned between the 

nodes located at the external surface of the pipe and the internal surface of the cylindrical sand 

layer. The dimensions of the modelled pipe are the same as the pipe used in the experiment 

described in the previous experimental section. The thickness of the sand layer is 27.5mm. The 

properties of aluminium and sand are listed in Tables 4.1 and 4.2. The VUMAT subroutine of 

the weakly nonlinear elasticity theory was implemented to simulate the nonlinear features of 

guided wave in ABAQUS. Linear and reduced integration elements (C3D8R) were used in the 

FE model. To ensure the accuracy of the FE simulations, there are at least 20 FE elements in 

the smallest wavelength considered in this study. The element sizes used in the pipe and the 

cylindrical sand layer are approximately equal to 0.5×0.5×0.5mm3. The duration of simulation 

was selected to be 0.5ms.  

 

Lamé constants (GPa) 
λ 56.68 

μ 27.13 

3rd order elastic constants (GPa) 

l -277.74 

m -351.7 

n -573.94 

Density (kg/m3) ρ 2700 

Table 4.1 Material properties of aluminium pipe used in the FE simulation 

 

Density, ρ (kg/m3) 1620 

Torsional velocity, vT
  (m/s) 150 

Longitudinal velocity, vL (m/s) 800 

Table 4.2 Sand properties used in the FE simulation 

 

The excitation force was applied tangentially at the circumference of the pipe. The 

signal in longitudinal way was captured in z-direction. It is notable that the signal in torsional 
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position was collected at point X (Figure 4.7) since it has the largest signal magnitude of the 

torsional wave in y-direction. An excitation of mixed frequency and single frequencies at 

f1=110kHz and f2=70kHz, with 15 cycles and 10 cycles respectively, were applied for 

verification. Figure 4.8 is the snapshot of the time-domain signal to visualise the wave 

propagation and it is simulated by the FE pipe model embedded in soil. As shown in the figure, 

a portion of energy is absorbed by the soil media when the wave travels out of the soil zone.  

 

 

Figure 4.7 Cross-section of the 3D FE model of the pipe embedded in soil 

 

 

Figure 4.8 A snapshot of FE simulated displacements when the wave is propagating from soil 

to the pipe 

 

4.4.2 Validation of 3D FE Model 

4.4.2.1 Group velocity 
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The group velocity dispersion curves shown in Figure 4.9 are the fundamental torsional mode 

T(0,1) (circle markers) and the longitudinal mode L(0,1) (square markers), respectively. The 

velocity signals were recorded at five measurement points and the excitation frequencies 

considered were from 70kHz to 430kHz in steps of 40kHz. The velocities were calculated using 

the data measured at the five measurement points and they were then averaged. Two 

consecutive measuring points have a distance of 50mm. There is good agreement between the 

theoretical calculations in DISPERSE [44] (lines) and the numerical results in the 3D FE model 

(markers) for both torsional and longitudinal waves. 

 

Figure 4.9 Group velocity dispersion curves calculated by DISPERSE and 3D FE simulations 

 

4.4.2.2 Combinational harmonic 

The pre-mixed incident torsional waves were excited at the one end of the pipe. It propagates 

and then enters the sand region. In the numerical study, the excitation signal with combined 

frequency f1 = 110kHz and f2 = 70kHz, was adopted as in the section describing experimental 

setup. Experimentally measured and FE simulated time-domain signals were obtained at 

500mm from the excitation location. The signals were normalised by the maximum amplitude 

to allow direct comparison and were then transformed to frequency-domain using FFT. Figure 

4.10a and Figure 4.10b are the frequency-domain signals in tangential direction and 

longitudinal direction, respectively. As shown in Figure 4.10b, the combinational harmonic at 
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the sum frequency (f1 + f2) is highlighted by dashed lines. As shown in the interested bandwidth, 

both FE and experimental results have no combinational harmonic in the signals obtained in 

tangential direction. In longitudinal direction, the combinational harmonic at the sum frequency 

can be observed due to the shear coupling effect [25]. The wave energy leakage from the pipe 

to the sand is observed in Figure 4.10. The FE model with embedded sand validates the 

experimental work. The amplitudes of buried pipe are always lower than that of bare pipe in 

both FE and experimental data.  

 

 

Figure 4.10 Frequency-domain signals of bare and buried pipes obtained from FE simulations 

and experiments in a) tangential and b) longitudinal directions 

 

4.4.2.3 Second harmonic 

Figure 4.11 shows the frequency-domain signals in longitudinal direction using excitation 

signals with single central frequency f1 = 110kHz and f2 = 70kHz, respectively. The results in 

Figure 4.11 indicate that the amplitudes at f1 f2, 2f1 and 2f2 drop significantly in the experimental 

measured data and the FE simulated outcome in the presence of soil. It should be noted that the 

combinational harmonic at sum frequency is absent since the excitation signals are single 



Chapter 4 

 

90 

 

central frequency wave. Therefore, there is no guided-wave mixing effect and only the second 

harmonics are induced in the longitudinal direction.  

 

 

Figure 4.11 Experimental and FE simulated signals at single frequencies a) 70kHz and b) 

110kHz in in longitudinal direction 

 

Figure 4.12 is the extraction of percentage reduction at the interested peaks from Figure 

4.10 and 4.11. By comparing the amplitudes between the bare and buried pipe, the percentage 

reductions of longitudinal guided wave amplitude due to the pipe embedded in soil were 

calculated for both FE and experimental results. The figure calculates the reduction for both 

the combinational harmonic at sum frequency using wave mixing excitation signal and the 

second harmonic using single frequency excitation signals. The analysis quantifies the amount 

of energy leakage in percentage for damage assessment which shows very good agreement 

between FE and experimental results. The wave energy in the pipe is radiated when the pipe is 

embedded into the other medium, such as sand. Therefore, the amplitudes of the wave decrease 

significantly.  
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Figure 4.12 Percentage reduction of longitudinal wave amplitude due to the pipe embedded in 

soil using a) wave mixing at f1 & f2, b) single frequency at f1, and c) single frequency at f2 as 

the excitation signal 

 

4.5 Influence of thermal aging on nonlinear features in 

buried pipe 

Thermal aging in pipes has the possibility to result in material degradation [45]. One of the 

investigation methods is to implement nonlinear guided wave mixing which can determine the 

conditions of aging stage at different damage levels [38]. The level of material degradation is 

varied with aging times. Thus, the combinational harmonic and the second harmonic are 

sensitive to different stages of thermal aging. The nonlinear parameters 𝛽𝑐𝑜𝑚𝑏
′  and 𝛽𝑠𝑒𝑐𝑜𝑛𝑑

′  can 
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describe the combinational harmonic at sum frequency and second harmonic at single 

frequency [40] which are defined as 

𝛽𝑐𝑜𝑚𝑏
′ =

𝐴𝑓1+𝑓2

𝐴𝑓1
𝐴𝑓2

 
(4.10) 

𝛽𝑠𝑒𝑐𝑜𝑛𝑑
′ =

𝐴2

𝐴1
2
 

(4.11) 

where 𝐴𝑓1
, 𝐴𝑓2

, 𝐴𝑓1+𝑓2 , 𝐴1 and 𝐴2 represent the magnitude of the incident waves at f1 and f2, 

the combinational harmonic at sum frequency, the fundamental frequency and the 

corresponding second harmonic, respectively.  

 The nonlinear parameters vary with the increase of thermal aging cycle. A set of 

experimental data contributed from a recent research [46] is used in this section and is 

summarised in Table 4.3. The authors introduced heat treatment on the specimens at a 

temperature of 220ºC for different time period, which were 0, 20, 40, 60, 120, 600 and 6000 

minutes. The data precisely recorded the change of the third-order elastic constants of 

aluminium at different level of thermal aging. 

 

 

Thermal aging time 

0 min 20 min 40 min 60 min 120 min 600 min 6000 min 

Third-order  

elastic  

constants 

(GPa) 

l -277.74 -311.84 -335.04 -292.79 -298.73 -318.1 -264.67 

m -351.7 -381.54 -381.28 -357.23 -338.61 -366.92 -360.23 

n -573.94 -380.15 -524.92 -916.65 -441.99 -379.99 -571.76 

Table 4.3 Material properties of aluminium at different level of thermal aging cycle [46] 
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Figure 4.13 Relationship between the percentage change of nonlinear parameters and thermal 

aging time 

 

Figure 4.13 is the percent change of nonlinear parameter as a function of thermal aging 

time for the combinational harmonic at sum frequency and the second harmonics from the 

respective single frequencies. Under the thermal effect, the variations of all three curves 

(percentage of change of nonlinear parameter) have similar trend but different values. 

Comparing the results with Kim et al. [46], they have the same tendency in the nonlinear 

parameters as a function of thermal aging time. The percentage of change of nonlinear 

parameter initially drop in the first 20 minutes. They then increase more than 30% and reach 

sharp peaks at 60 minutes. The curves indicate that the percentage change of the nonlinear 

parameter for the combinational harmonic at sum frequency and the second harmonics 

gradually decrease in 2 hours.  They eventually grow slowly to the final stage approximately 

after 4 days. By comparing the percentage change of the nonlinear parameters, the 

combinational harmonic has a higher value than or nearly the same value as the second 

harmonics among the seven aging times. Thus, the percentage change of 𝛽𝑐𝑜𝑚𝑏
′  is more 

sensitive to that of 𝛽𝑠𝑒𝑐𝑜𝑛𝑑
′  in most of the cases. As discussed before, the guide-wave mixing 

can avoid the unwanted instrumentation nonlinearity. This makes the combination harmonic 

attractive to be used for damage detection.  
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4.6 Conclusions 

The phenomenon of guided-wave mixing in pipes in the presence and absence of embedded 

soil has been investigated numerically and experimentally in this paper. The energy leakage of 

guided wave propagation is due to surrounding materials. The existence of combinational 

harmonic at sum frequency in longitudinal direction is generated by mixing two fundamental 

torsional waves. The energy leakage causes reduction in the amplitudes of the frequency-

domain signals, especially amplitude at the excitation frequencies, the second harmonics at 

single central frequencies, and the combinational harmonic at sum frequency. The data 

collected in the experiment is in good agreement with the results of FE simulations. In the 

experiments, the guided wave signals were measured by the 3D scanning laser Doppler 

vibrometer. The results of the 3D FE model of a pipe embedded in sand have shown that the 

loss in energy is led by the interaction between the pipe and the sand. A study of the effect of 

thermal aging on the combinational harmonic at sum frequency and the second harmonics have 

shown that the change in 𝛽𝑐𝑜𝑚𝑏
′  is relatively sensitive to that in 𝛽𝑠𝑒𝑐𝑜𝑛𝑑

′ . The findings presented 

in this study provide improved physical insight into the nonlinear features of guided wave 

mixing due to material nonlinearity in buried pipes. 
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Abstract 

Acoustoelastic effect of single frequency guided wave propagation in structures has been well-

established. However, this effect on guided wave mixing has not been fully explored. This 

study carries out a numerical and experimental study of torsional guided wave mixing with 

consideration of acoustoelastic effect in tubular structures and weakly material nonlinearity. A 

three-dimensional (3D) finite element (FE) model is proposed to simulate the effect of stress 

on guided wave mixing in tubular structures. The FE model takes into account the nonlinear 

strain energy function and the theory of incremental deformation. A series of numerical case 

studies are carried out to investigate the change of group velocity in the pre-stressed tubular 

structures subjected to different levels of loading. Experiments are also carried out to measure 

and compare the nonlinear features, such as combinational harmonics and second harmonics. 

The results show that the generation of combinational harmonic at sum frequency due to 

material nonlinearity provides valuable stress information for tubular structures, which is also 

useful for damage diagnosis.  

 

Keywords: Acoustoelasticity, guided wave, wave mixing, torsional wave, circular hollow 

section 
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5.1 Introduction 

Cylindrical hollow section has many applications in engineering structures, such as truss 

members. Stress is developed when the members are subjected to operational loading, such as 

tensile and compressive forces. The effect of stress is unavoidable in these tubular structures. 

The non-destructive evaluation (NDE) of the applied, residual and thermally-induced stresses, 

along with the non-destructive detection of damage plays an important role in ensuring the 

integrity of structures. 

Ultrasonic guided wave has been used for NDE and to interrogate the life expectancy of 

a structure. It has the capability of long-distance inspection [1] and provides in-situ online 

monitoring for inaccessible locations [2]. The techniques using guided wave have been evolved 

from linear guided wave to nonlinear guided wave in recent years. In the literature, studies on 

linear guided wave mainly focused on the analysis of wave scattering and mode conversion 

effect at defect [3]-[4]. The low frequency excitation of guided wave signal, below 250 kHz, 

in tubular structures is more practical in real applications [5] since less wave modes are induced 

in the low frequency range. For nonlinear guided wave, the studies emphasised on the 

investigation of higher harmonic generation in frequency-domain at early stage of damage [6]-

[8]. Higher harmonic generation in cylindrical-like structures has been the major focus in area 

of nonlinear guided waves [9]-[10]. An analytical study carried out by Liu et al. [11] showed 

that only secondary harmonic in longitudinal direction due to shear coupling is generated when 

the primary wave mode is torsional wave. 
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5.1.1 Acoustoelasticity on guided waves 

Guided wave can potentially be used in structures under pre-stressed conditions, which has 

acoustoelastic effect influencing the wave speeds. The study of acoustoelastic guided waves 

has been the subject of research over the last decade [12]-[16]. Pioneering contributions had 

Murnaghan [17] who wrote a book on interpreting finite deformation theory and utilising third 

order elastic modulus. Biot [18] determined the fundamental difference between the stress-free 

and initially stressed condition, and established wave equations for wave propagation in pre-

stressed media. The effect of pre-existing stress has focused on measuring the velocity change 

of ultrasonic wave in different structures, such as wire strands [19] and pipes [20]. Hirao et al. 

[21] studied the acoustoelastic effect on Rayleigh wave. They reported that Rayleigh wave was 

no longer non-dispersive in the presence of non-uniform stress loading. Lu et al. [22] presented 

a comprehensive study on applied and residual stresses. They took into account the stress effect 

in the wave propagation and velocity calculation. Pau and Di Scalea [23] developed an 

analytical model for nonlinear guided wave to monitor the stress condition in structures.  

There has been increasing research interests on nonlinear guided wave due to its high 

sensitivity to micro defects. Some recent works (Mohabuth et al. [24] and Yang et al. [25]) 

applied the theory of incremental deformation to study the change of Lamb wave speed in a 

pre-stressed plate. Yang et al. [26] also carried out an investigation on the nonlinear features 

of Lamb wave (i.e. the generation of second harmonic) under acoustoelastic effect in pre-

stressed plates. 

 

5.1.2 Guided wave mixing  

Guided wave mixing is known as the interaction of more than one guided wave with different 

central frequencies in a structure. The combinational harmonics, which are the sum and 
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difference of the fundamental excitation frequencies, are generated due to the interaction of the 

waves. The study of guided wave with single central frequency encounters an obstacle in 

differentiating material nonlinearity from other unwanted nonlinearities, such as nonlinearities 

from coupling media and data acquisition system [27]. This problem can be overcome by 

guided wave mixing since the combinational harmonics are not affected by the instrumentation.  

Guided wave mixing has been studied for different types of structures, such as plates [28] 

and concretes [29]. Some pioneer works in this field are Liu et al. [30], who generated a 

longitudinal wave and a shear wave in elastic solids and measure the acoustic nonlinearity 

parameter. McGovern et al. [31] used bulk wave mixing in non-collinear direction to study the 

nonlinear response in concrete. Research on mixing of Lamb waves in plates has been 

conducted for some time. To study microscopic imperfections, Hasanian and Lissenden [32] 

derived an analytical solution for Lamb wave mixing phenomenon. Li et al. [33] introduced 

one-way mixing approach in thin plates to study the interaction between symmetric and anti-

symmetric Lamb waves. Shan et al. [34] used two shear horizontal waves with collinear 

interaction approach to interrogate the effect of material nonlinearity in plates. A recent 

research conducted by Yeung and Ng [35] has experimentally demonstrated the generation of 

the combinational harmonic at sum and difference frequencies in pipes. Despite the literature 

have shown the benefits of using wave mixing for damage detection, the acoustoelastic effect 

on guided wave mixing has not been investigated. The objective of this paper is to carry out 

numerically and experimentally studies on torsional guided wave mixing in tubular structures 

under pre-stressed conditions. 

 The organisation of this paper begins with the theoretical background of 

acoustoelasticity with the consideration of material nonlinearity in Section 5.2. The three-

dimensional (3D) finite element (FE) tubular model with the implementation of pre-loading 

effect at both ends is described in Section 5.3. This study investigates the selected frequency 
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range and the application of the nonlinear strain function in the FE model. Verification for 

acoustoelastic effect in the change of speed is provided. The effect of material nonlinearity 

with acoustoelasticity on linear and nonlinear features of guided wave are also compared in 

this section. Section 5.4 is the experimental investigation for validating the FE model. Section 

5.5 presents a series of numerical case studies considering different levels of loading. Finally, 

conclusions are drawn in Section 5.6. 

 

5.2 Theory of nonlinear guided waves under acoustoelastic 

effect 

This section consists of two parts describing the generation of second harmonic and 

combinational harmonic in structures under pre-stressed condition. The concept of finite 

deformation in a structure with weakly nonlinear elasticity is based on based continuum 

mechanics.  

 

5.2.1 Acoustoelastic effect  

The superimposition of incremental motions on a finite homogeneous deformation is expressed 

by a set of governing equations for pre-stressed elastic solids [36]. By considering a 

hyperelastic material in an isotropic medium, we define 𝛼𝑟  as free-of-stress configuration 

(reference) and 𝛼𝑐 stressed configuration (current). The Cartesian coordinates X and x are the 

respective material points in the initial stage and finial stage, respectively. The deformation 

gradient from 𝛼𝑟  to 𝛼𝑐  is expressed by 𝐅 = Grad 𝒙 . The local measure (J = det F > 0) 

represents the volume change in the material. The other expressions for the deformation 

gradient tensor F and the local measure J are 
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𝐅 = 𝐕𝐑 = 𝐑𝐔 (5.1) 

where V, U and R denote as left stretch, right stretch and orthogonal tensors.  

The strain energy function W can be co-related to F via the principal invariants of the right 

Cauchy-Green deformation tensor C  

𝐂 = 𝐅𝑻𝐅 = 𝐔𝟐 (5.2) 

𝐼1 = 𝑡𝑟𝐂, 𝐼2 =
1

2
[(𝑡𝑟𝐂)2 − 𝑡𝑟(𝐂)2]  and 𝐼3 = 𝑑𝑒𝑡𝐂 (5.3) 

𝑺 =
𝜕𝑊

𝜕𝐅
= ∑ 𝑊𝑖

𝜕𝐼𝑖

𝜕𝐅

3

𝑖=1

 

(5.4) 

𝑨 =
𝜕2𝑊

𝜕𝐅𝜕𝐅
= ∑ 𝑊𝑖

𝜕2𝐼𝑖

𝜕𝐅𝜕𝐅

3

𝑖=1

+ ∑ ∑ 𝑊𝑖𝑗

𝜕𝐼𝑖

𝜕𝐅
⊗

𝜕𝐼𝑗

𝜕𝐅

3

𝑗=1

3

𝑖=1

 

(5.5) 

where 𝐼𝑖 , 𝑖 ∈ {1,2,3} are the principal invariants of C. 𝑺 and 𝑨 are the nominal stress tensor and 

elasticity tensor, respectively. The derivations in Equations (5.4) and (5.5) can refer to [37]. 

The symmetric Cauchy stress tensors is defined as 

𝝈 = 𝐽−1𝐅
𝜕𝑊

𝜕𝐅
 

(5.6) 

By defining 𝒖(𝒙, 𝑡) to be the displacement of the material point x. The incremental governing 

equation in a pre-stressed structure is given by 

𝐴0𝑝𝑖𝑞𝑗

𝜕2𝑢𝑗

𝜕𝑥𝑝𝜕𝑥𝑝
= 𝜌

𝜕2𝑢𝑖

𝜕𝑡2
 

(5.7) 

where 𝐴0𝑝𝑖𝑞𝑗
 is the Eulerian elasticity tensor in the fourth order and 𝜌 is the mass density of 

the material in 𝛼𝑐. 

 

5.2.2 Material nonlinearity 

The change of microstructure due to material nonlinearity is for the detection of material 

imperfections. It describes the nonlinear behaviour of the material. The third-order strain 
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energy function for nonlinear guided waves is defined based on the study of Murnaghan [38]. 

The nonlinear strain energy function W can be expressed in a power series 

𝑊 =
1

2
(𝜆 + 2𝜇)𝑖1

2 − 2𝑚𝑖1𝑖2 − 2𝜇𝑖2 +
1

3
(𝑙 + 2𝑚)𝑖1

3 + 𝑛𝑖3 
(5.8) 

where l, m and n are the third order elastic constants; 𝜆  and 𝜇  are the Lamé elastic 

coefficients; 𝑖1, 𝑖2 and 𝑖3 are the principal invariants of the Green-Lagrange strain tensor E. 

This strain tensor is composed of the Cauchy-Green deformation tensor and the identity tensor, 

which is shown in Eq (5.10).   

𝑖1 = 𝑡𝑟𝐄, 𝑖2 =
1

2
[(𝑡𝑟𝐄)2 − 𝑡𝑟(𝐄)2]  and 𝑖3 = 𝑑𝑒𝑡𝐄 (5.9) 

𝐄 =
1

2
(𝐂 − 𝐈) 

(5.10) 

 

5.3 Three-dimensional finite element simulation 

A 1m long aluminium tube was modelled by a commercial software, ABAQUS, to simulate 

the wave propagation and the simulated signals were analysed using different strategies. Table 

5.1 shows the material properties of aluminium used in this study. The inner radius of the 

hollow cross-section is 9.5 mm with wall thickness of 3 mm. C3D8R elements were used to 

model the aluminium tube, which is a solid element with three translational degrees-of-freedom 

at each node. The dynamic simulation was solved by explicit integration approach [39]. The 

mesh size was approximately 0.6 mm × 0.6 mm × 0.6 mm. This ensures more than 20 nodes 

existed for the shortest wavelength of the wave considered in this study. There were five layers 

of elements across the wall thickness of the tube to ensure the accuracy of the wave simulation. 

The torsional guided waves were generated by applying tangential force at eight nodes in 

circumferential direction. These nodes were evenly distributed at the circumference of the left 

end of the tube. 



Chapter 5 

 

108 

 

 

Table 5.1 Material properties of aluminium used in the FE simulations 

Density (kg/m3) ρ 2700 

Lamé constants (GPa) 
λ 56.68 

μ 27.13 

Third order  

elastic constants (GPa) 

l -277.74 

m -351.7 

n -573.94 

 

5.3.1 Frequency selection for guided wave mixing  

The benefit of using low frequency excitation is to avoid the generation of higher order wave 

modes [5]. In this study, the wave mixing frequencies were selected to be f1=70 kHz and f2=110 

kHz, respectively. The two narrow-band sinusoidal tone burst pulses at f1 with 15 cycles and f2 

with 10 cycles were first modulated by Hann window individually. They were then added 

together without time delay to form a combined excitation signal for the wave mixing. 

Although this frequency combination does not satisfy with the phase matching condition of 

cumulative effect, this is not the focus in the current study. In addition to second harmonic of 

the individual excitation frequencies, 2f1 and 2f2, combinational harmonics at sum and 

difference frequencies (i.e.f2 ± f1) were also induced due to material nonlinearity.  

 

5.3.2 Modelling of material nonlinearity 

The generation of harmonics from torsional guided wave mixing, such as second harmonics 

and combinational harmonics, can be simulated using the constitutive model described in the 

theoretical section. In this study, ABAQUS/Explicit was used for 3D FE simulations. The FE 

model implements a material subroutine VUMAT to simulate the effect of material 

nonlinearity. The stress 𝛔̂ recognised by self-defined subroutine is on Green-Naghdi basis 
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𝛔̂ = 𝐑T𝛔𝐑 (5.11) 

Eq (5.11) can also be interpreted in terms of the second Piola-Kirchhoff stress and the right 

stretch tensor. 

 

𝛔̂ = J−1𝐔
∂𝑊

∂𝐄
𝐔T 

(5.12) 

It is noted that the values in stressNew(i) will be updated at the end of the time (𝑡 + ∆𝑡), 

depending on the values of the deformation gradient tensor and the right stretch tensor at the 

end of the last time step (𝑡). 

 

5.3.3 Description of the pre-loading for simulating pre-stressed condition 

Quasi-static loading was applied, which allows the tubular structure to pre-stress slowly for 

studying the acoustoelastic effect in the 3D FE simulation. As shown in Figure 5.1, the quasi-

static loading curve was gradually increased to minimize the influence on wave propagation 

caused by transient effect [25]. Two-stage approach was adapted in the current study as shown 

in Figure 5.2. In Stage 1, the duration of the simulations is 13 ms. Tensile pressure was first 

applied on the surface of the two ends of the tubular structure until it reached a steady state. 

The tensile pressure was indicated by red arrows in Figure 5.2a. In Stage 2, the combined 

fundamental torsional guided wave signal (f1 and f2) was excited at the end of the tubular 

structure. The yellow arrows indicate the excitation location and direction of the applied loads 

for generating the incident wave T(0,1) mode (Figure 5.2b).  
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Figure 5.1 Quasi-static loading curve for simulating pre-stressed condition 

 

 

Figure 5.2 Schematic diagram of the two-stage approach, a) applied tensile pressure at both 

ends of the tubular structure in Stage 1 and b) excitation for generating torsional wave in 

Stage 2 

 

Velocities of the nodes in tangential and longitudinal directions at 450 mm away from the 

excitation location were calculated. To have a better understanding of the stress effect on wave 

propagation in tubular structures, different magnitudes of stresses from 0 MPa to 80 MPa in 

steps of 20 MPa were considered in this study and the stress-strain condition is below elastic 

limit in all five cases. 

 

5.3.4 Group velocity change in a pre-stressed tubular structure 

The change in group velocity is one of the indications for pre-stressed structures. Figure 5.3 

compares the difference of the wave velocity measured in torsional and longitudinal directions 
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under stress-free state and pre-stressed state at 20 MPa. As shown in Figure 5.3, an obvious 

shift is presented at the peaks in both torsional and longitudinal directions when a tensile 

pressure of 20 MPa is applied at the end of the tubular structure. It should be noted that the 

time-domain signal in longitudinal direction has distortion while it cannot be observed in linear 

response (Figs 5.4b and 5.4d). A similar distortion response to Figure 5.3 can be found in [34]. 

Material nonlinearity associated with self-interaction is possibly the cause of the distortion. 

Figure 5.4 shows the results of the reference FE simulations using linear material properties, 

in which the peak is not shifted for stress-free and pre-stressed state. It should be noted that the 

magnitude in the longitudinal motion for nonlinear signal is approximately ten times larger 

than that for linear signal due to the effect of material nonlinearity. 
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Figure 5.3 FE simulated wave propagation at stress-free and 20 MPa in torsional direction 

and longitudinal direction at a) & b) f1 and c) &d) f2 with nonlinear material properties 

 

 

 

Figure 5.4 FE simulations at stress-free condition and 20 MPa in in torsional direction and 

longitudinal direction at a) & b) f1 and c) & d) f2 with linear material properties 

 

The results of a further analysis of the acoustoelastic effect in tubular structures are shown 

in Figure 5.5. Since the nonlinear material behaviour with acoustoelasticity distributes along 

the tube, the group velocities are obtained by averaging the velocities calculated at five 

consecutive measurement points in the numerical results. Both torsional and longitudinal 

waves at frequencies f1 (Figure 5.5a) and f2 (Figure 5.5b) have a similar decreasing trend in the 

group velocity changes for the five levels of stresses. Since the change is not significant, 
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another analysis in frequency-domain is proposed to investigate the pre-loading effect on the 

combinational harmonics and the second harmonics.  

 

 

Figure 5.5 Group velocity change due to different levels of pre-stress at frequencies (a) f1 and 

(b) f2 

 

5.3.5 Comparison of linear and nonlinear guided waves 

Figure 5.6 shows the time-frequency spectra of the simulated signals using Short Time Fourier 

Transform (STFT). The excitation was a mixed frequency signal (f1 and f2) and the tubular 

structure was subjected to a tensile pressure of 20 MPa in linear and nonlinear signals. It is 

noted that nonlinear signals have a greater sensitivity to microstructural changes in a material, 

which gives frequencies different from the excitation frequencies. They can be second 

harmonics (2f1 and 2f2) and combinational harmonics at sum and difference frequencies (f2+f1 

and f2-f1). In the meantime, linear signals are only received at their primary modes (f1 and f2). 

The data in Figure 5.6 shows a similar result with the findings from the previous study [35]. 

Except the fundamental frequencies at f1 and f2, there is no other harmonics in the tangential 
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direction (Figures 5.6a and 5.6c) with or without the use of nonlinear strain energy function. 

Meanwhile, the generation of higher and combinational harmonics at frequencies 2f1, 2f2, f2+f1 

and f2-f1 are observed in the longitudinal direction due to the shear coupling phenomenon from 

material nonlinearity (Figure 5.6d). 

 

 

Figure 5.6 Time-frequency spectra of (a) linear torsional, (b) linear longitudinal, (c) nonlinear 

torsional, and (d) nonlinear longitudinal waves 

 

Numerical simulation of guided wave-mixing in tubular structures allows separating the 

time-domain signal into torsional and longitudinal directions to gain better understanding in 

the generation of combinational harmonics. Figure 5.7 is the frequency spectra of the time-

domain signals obtained by Fast Fourier Transform (FFT). The frequencies of excitation, 

second harmonics and combinational harmonics are indicated by vertical dotted lines. In Figure 

5.7b for longitudinal motion, red dash-dot line represents linear guided wave signal, which 

only generates excitation frequencies at f1 and f2. Apart from the fundamental frequencies, blue 
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dashed line indicates the nonlinear guided wave response which generates second order 

harmonics (i.e. f2-f1, 2f1, 2f2 and f2+f1).  

 

 

Figure 5.7 FE simulated frequency-domain signals at the mixed frequency (f1 and f2) 

subjected to 20MPa tensile stress in (a) torsional and (b) longitudinal direction 

 

5.4 Experimental validation of acoustoelastic effect 

5.4.1 Experimental setup 

A 1m long aluminium tube with the same dimensions as the FE model was used in the 

experimental validation. Four 6 mm × 6 mm × 1 mm piezoceramic shear transducers were 

bonded on the surface of the tubular structure using conductive epoxy adhesive. The schematic 

diagram in Figure 5.8 illustrates the experimental setup. The tube was attached to the MTS 

machine for applying pre-stressed loading of 20 MPa before the data collection. A computer-

controlled function generator (NI PIX-5412) creates a pre-mixed frequency signal at f1 and f2 

with the same number of cycles as in the FE simulations. The selection of the low frequency 

excitation prevents the generation of high-order wave modes. The signal was amplified by 

KROHN-HITE 7500 before it was sent to the actuator. The guided wave signal was measured 

by the other shear transducer, which was located 450 mm away from the excitation location. 
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The received signal was digitised by NI PIXe-5105. Signal averaging of 500 times and 

sampling rate of 100 MHz were used for signal improvement.  

 

 

Figure 5.8 Experimental setup for guided wave-mixing with acoustoelastic effect 

 

5.4.2 Generation of harmonics 

The mixed frequency signals in both torsional and longitudinal direction were measured by the 

transducer. Figure 5.9 shows the normalised experimental data (blue dash-dotted line) in both 

directions and compares it with the FE simulated result (red dashed line). The wave signals in 

the FE model and the experiment have the same arrival time.  
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Figure 5.9 Comparison of time-domain signals between FE and experiment in torsional and 

longitudinal direction 

 

Figure 5.10 compares the signals between the experimental measured data and the FE 

results by different harmonics (i.e. combinational harmonics at sum and difference frequencies, 

and second harmonics at 2f1 and 2f2), which were extracted from STFT. The pulses, which 

contain torsional and longitudinal motions, have a consistent decreasing trend along the 

normalised amplitude from the highest value for the difference frequency at f2 - f1 to the lowest 

value for the second harmonic at 2f2. The figure shows a good agreement between FE and 

experiment.  

 

 

Figure 5.10 Comparison of experimental data and FE results extracted from STFT 
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 Figure 5.11 is another comparison on the second harmonic frequencies at 2f1 and 2f2 

from mixed and single excitation frequencies in longitudinal direction. They are extracted from 

FE results and processed by STFT. It is noted that both signals for mixed frequency provides 

a larger response than that for single frequency.  

 

 

Figure 5.11 Signals of second harmonic generation from FE simulations between mixed 

frequency and single frequency 

5.5 Performance of second and combinational harmonics  

The acoustoelastic effect on guided wave mixing in tubular structures has been validated in the 

experimental validation section. As demonstrated, second and combinational harmonics can 

only be induced in the longitudinal direction. This section provides additional numerical case 

studies related to the harmonic generation for the better understanding guided wave-mixing in 

pre-stressed tubular structures. Nonlinear parameters 𝛽𝑐𝑜𝑚𝑏,𝑚𝑖𝑥
′  and 𝛽2𝑛𝑑,𝑚𝑖𝑥

′  are defined to 

quantify the generation of combinational and second harmonics in guided wave mixing [40]. 

The nonlinear parameters are defined as 

 

𝛽𝑐𝑜𝑚𝑏,𝑚𝑖𝑥
′ =

𝐴𝑓1 ± 𝑓2

𝐴𝑓1
𝐴𝑓2

 
(5.13) 
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𝛽2𝑛𝑑,𝑚𝑖𝑥
′ =

𝐴2,𝑚𝑖𝑥

𝐴𝑓1
𝐴𝑓2

 
(5.14) 

where 𝐴𝑓1 ± 𝑓2 , 𝐴𝑓1
, 𝐴𝑓2

 and 𝐴2,𝑚𝑖𝑥 is the amplitude of the combinational harmonics at sum and 

difference frequencies, the amplitude of primary frequencies at f1 and f2, and the amplitude of 

second harmonics. Figure 5.12 is the frequency response of the harmonics under different 

magnitudes of tensile stresses. In general, the combinational harmonic at sum frequency has 

the largest value throughout the whole trend. The amplitude of the sum frequency increase 

from stress-free state to pre-stressed state at 80 MPa. Meanwhile, the amplitude at 2f1 slightly 

decreases and the amplitudes at 2f2 and f2-f1 remain constant from 0 MPa to 80 MPa. The 

amplitude inconsistency is possibly due to energy re-distribution. 

  

 

Figure 5.12 Nonlinear parameters of responses in longitudinal direction with different levels 

of pre-stress 

 

 The frequency at f2 is used for excitation to confirm the energy re-distribution in wave 

mixing approach. This excitation frequency is one of the primary frequencies used in this study, 

which is the same as the five pre-stressed cases (Figure 5.13). It aims to compare the trend in 

terms of nonlinear parameters between the mixed frequency and the single frequency. A 

nonlinear parameter 𝛽2𝑛𝑑,𝑠𝑖𝑛𝑔𝑙𝑒
′  for single frequency is defined as [40] 
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𝛽2𝑛𝑑,𝑠𝑖𝑛𝑔𝑙𝑒
′ =

𝐴2,𝑠𝑖𝑛𝑔𝑙𝑒

𝐴1
2  

(5.15) 

where 𝐴1  and 𝐴2,𝑠𝑖𝑛𝑔𝑙𝑒  represent the magnitude of the incident frequency and the 

corresponding second harmonic, respectively. The combinational harmonic at sum frequency 

(i.e. f1 + f2) shows an ascending trend line and has the most significant response among the 

harmonics in Figure 5.12. The frequency response at f1 + f2 induced by guided wave mixing is 

compared with the frequency response at 2f2 induced by the single frequency. While the effect 

of stress at single frequency purely accumulates on the second harmonic generation (i.e. 2f2), 

the value of nonlinear parameter 𝛽2𝑛𝑑,𝑠𝑖𝑛𝑔𝑙𝑒
′  increases. Figure 5.13 verifies the claim of energy 

re-distribution in Figure 5.12 as 2f2 ascends gradually with increasing loading. The magnitude 

for the combinational harmonics at sum frequency is approximately ten times larger than that 

for the second harmonic. This demonstrates the guided wave mixing is more sensitive and rule 

out the undesired nonlinear signals from the equipment. 

 

 

Figure 5.13 Nonlinear parameters of the combinational harmonic at sum frequency using 

wave mixing and second harmonic using single frequency excitation 
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5.6 Conclusions 

This study has explored the acoustoelastic effect on torsional guided wave mixing in cylindrical 

structures with the aid of 3D FE models, which implemented the nonlinear strain energy 

function. The simulations have been carried out using the two-stage approach to model pre-

stressing part and wave excitation part. The results have showed that the group velocity change 

in both tangential and longitudinal directions with the use of nonlinear strain energy function 

in the models. A series of studies considering different loading cases have been conducted and 

the results have shown decreasing trend in group velocity. 

Linear and nonlinear simulated wave mixing signals in frequency-domain have been 

compared to demonstrate the generation of combinational and second harmonics in 

longitudinal direction due to the shear coupling effect using FFT and STFT. Experiment has 

been conducted to validate the FE simulation with the assigned pre-stressed load. There has 

been good agreement between the laboratory measurement and the FE simulation in terms of 

the nonlinear features. 

To facilitate the use of guided wave mixing, the analysis of signals in frequency-domain 

have been included with different level of stresses in this study. The results in terms of 

nonlinear parameters indicate that the combinational harmonic at sum frequency has the most 

significant value compared with other induced harmonics in the longitudinal motion. Energy 

re-distribution happens when the amplitudes of the generation of both combinational 

harmonics and second harmonics do not consistently increase. While the second order 

harmonics at f2-f1 and 2f2 remain stable and the harmonic at 2f1 slightly descends, the upward 

trend is observed at the combinational harmonic at sum frequency. The findings are beneficial 

to further development on the effect of acoustoelasticity with nonlinear features in guided wave 

mixing.  
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Chapter 6 

 

Conclusions 

 

6.1 Summaries and Contributions of this thesis 

This thesis has provided a comprehensive study of the linear and nonlinear phenomena of low-

frequency torsional guided waves in pipe-like structures. This research commenced by 

introducing the importance of SHM, which can identify different types of damage due to 

material and geometrical changes in structures, in Chapter 1. The advantages of guided wave 

have been discussed over the other NDT techniques. This chapter also summarises the 

advantages and disadvantages of linear guided wave, nonlinear guided wave and guided wave 

mixing. 

 The first part of this research (Chapter 2) focuses on developing a model associated 

with macro cracks. A time-domain SFEM model with cracked element has been developed. 

Torsional and flexural motions are coupled in the basis of the elementary rod theory and the 

Timoshenko beam theory with three DoF. Guided wave scattering and mode conversion have 

been accurately simulated. A 3D FE model has been used to verify the model results. 

Experiments with different crack depth have been conducted which show accurate prediction 

in the series of parametric studies. The proposed 1D waveguide model significantly reduces 

the computational cost of simulation compared with 3D FEM modelling. 

 The second part of this thesis focuses on the nonlinear features of guided wave since 

they are potentially sensitive to small damage due to material nonlinearity. The generation of 
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combinational harmonics in guided wave mixing can prevent the signals from contamination 

by instrumentation nonlinearity. Chapter 3 evaluates the effect of guided wave mixing with 

two interacting torsional guided waves experimentally and numerically. Experiments using 3D 

scanning laser Doppler vibrometer have been carried out to measure the combinational 

harmonic generation at sum and difference frequencies. Murnaghan’s strain energy function in 

nonlinear approach has been applied in a 3D FE model to validate the experimental results, 

which has good agreement between them.  

 Chapter 4 is the extension of Chapter 3 using guided wave mixing technique in buried 

pipes. Energy leakage can be observed from the amplitude of propagating waves. The energy 

dissipation of the combinational harmonic at sum frequency from mixed frequency and the 

second harmonic from single frequency have been compared by using experiments and 3D FE 

simulations. The effect of thermal aging on the corresponding harmonics shows that the 

combinational harmonic at sum frequency has a higher sensitivity than the others. This 

outcome encourages the use of guided wave mixing, especially in buried pipes. 

 Acoustoelastic effect in cylindrical structures is the main focus in Chapter 5. The 3D 

FE model, which has been utilised for simulating the effect of pre-stressed condition, is based 

on the development in Chapter 3. Different levels of loading have been selected to create pre-

stressed condition in the hollow section. The change in group velocity has been investigated 

and the results have shown a velocity decreasing trend in both tangential and longitudinal 

motions. The generation of combinational harmonic at sum frequency has the most obvious 

rising trend compared with that of combinational harmonic at difference frequency and second 

harmonics. On the other hand, the magnitude of the frequency response at sum frequency is 

approximately ten times more than that of the second harmonic from a single frequency.  
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6.2 Recommendations 

This research work has investigated the linear and nonlinear features with fundamental 

torsional guided wave in cylindrical structures in several scenarios. Below are the possible 

research directions for further studies  

1. The current proposed time-domain SFEM model with a cracked element is 

only applicable to straight circular waveguide. The SFEM modelling can be 

extended to bent pipe for studying the complex guided wave effect. It is 

suggested to investigate the wave propagation phenomenon, particularly the 

local wave interaction effect at the bend region.  

2. The current material nonlinearity model can simulate to second harmonic 

generation. However, in some situations cumulative more likely occurs in 

third harmonics than in second harmonics. The material subroutine used in 

FE model can be extended to the fourth order term in the strain energy 

function to simulate the generational of higher order combinational 

harmonics. 

3. Underground pipelines usually have several layers, including insulation layer. 

Defects, such as debonding, can easily be created. Delamination in relation 

to contact nonlinearity in pipe-like structures can be investigated using wave 

mixing technique. 

4. Water pressure inside a pipe causes the pre-stress condition. Micro cracks can 

be potentially induced due to hydrostatic pressure. Therefore, acoustoelastic 

effect with the consideration of material nonlinearity caused by fluid pressure 

in the pipe can be a further study.  




