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Abstract

Consider a proper, isometric action by a unimodular, locally com-
pact group G on a complete Riemannian manifold M. For equivariant
elliptic operators that are invertible outside a cocompact subset of M,
we show that a localised index in the K-theory of the maximal group
C*-algebra of G is well-defined. The approach is based on the use of
maximal versions of equivariant localised Roe algebras, and many of
the technical arguments in this paper are used to handle the ways in
which they differ from their reduced versions.

By using the maximal group C*-algebra instead of its reduced coun-
terpart, we can apply the trace given by integration over G to recover
an index defined earlier by the last two authors, and developed further
by Braverman, in terms of sections invariant under the group action.
As a very special case, this allows one to refine numerical obstruc-
tions to positive scalar curvature on a noncompact Spin manifold X
defined via Callias index theory, to obstructions in the K-theory of the
maximal C*-algebra of the fundamental group 7 (X).

As a motivating application in another direction, we prove a version
of Guillemin and Sternberg’s quantisation commutes with reduction
principle for equivariant indices of Spin® Callias-type operators.
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1 Introduction

Background

Let M be a complete Riemannian manifold, and let D be an elliptic differ-
ential operator on a vector bundle E — M. The coarse index [37] of D lies
in K,(C*(M)), the K-theory group of the Roe algebra C*(M) of M. This
Roe algebra is the closure in the operator norm of the algebra of locally
compact, bounded operators on L?(E) that enlarge supports of sections by



a finite amount. If M is compact, then C*(M) is the algebra of compact
operators, and the coarse index of D is its Fredholm index. A strength of
the coarse index is that it applies very generally, without any assumptions
on compactness of M, or on the behaviour of D at infinity. Coarse index
theory has a range of applications, for example to Riemannian metrics of
positive scalar curvature [39], and to the Novikov conjecture [43], [44]. A
central role here is played by the coarse Baum—Connes conjecture [36].

The general applicability of the coarse index can come at the cost of
computability. For that reason, it is worth looking for special cases, or
variations, where a version of the coarse index is more explicit or computable.
One useful approach is Roe’s localised coarse index [38]. If D? is positive
outside a subset Z C M in a suitable sense, then Roe constructed a localised
coarse index

index?(D) € K.(C*(Z)).

The special case where Z is compact is already of interest: then D is Fred-
holm, and its localised coarse index generalises the Gromov—Lawson index
[11], the Atiyah—Patodi-Singer index on compact manifolds with boundary
[2], and the index of Callias-type Dirac operators [1,[7,25] D = D+®, where
D is a Dirac operator, and @ is a vector bundle endomorphism making D
invertible at infinity.

The localised coarse index was generalised to an equivariant version in
[14], for a proper, isometric action by a unimodular locally compact group
G on M, preserving all structure including D. Then, if Z/G is compact, one
obtains a localised equivariant index

indexlé)',:red(D) € K*( :ed(G))v (11)

where C ;(G) is the reduced group C*-algebra of G. The fact that this index
lies in K,(C} 4(G)) is useful, because that K-theory group is independent
of M, and it is a very well-studied object that is central to many problems
in geometry, topology and group theory. In particular, it is large enough
to contain relevant group-theoretic information. And importantly, there
is a range of traces and higher cyclic cocycles on subalgebras of C? ;(G)
that allows one to obtain a number from the index (LIJ), for which one can
then find a topological expression. Examples of such expressions are the
equivariant Atiyah—Patodi-Singer index theorems in [8] 24] 42], in the case
of manifolds with boundary.



Results

This paper is about the construction and application of a mazimal localised
equivariant coarse index, taking values in the K-theory of the maximal group
C*-algebra C}_(G)

indexS°(D) € K, (C..(@)). (1.2)

The first result in this paper is that this index is well-defined: see Proposi-
tions Bl and B3]

The index ([.2]) has several advantages over (ILI). From a general point
of view, the natural map from Cj . (G) to C¥,(G) maps the index in
K, (Cy.x(G)) to the one in K,(C¥(G)), so the former is a more refined
invariant. On a more practical level, the integration map I: L'(G) — C
extends to a trace on Cf, . (G) (not on C¥,(G)). That means it can be

applied to the index (L2]), to yield the integer
I, (indexS¢(D)) € Z. (1.3)

Morally, applying the integration trace I should correspond to taking the
G-invariant part of the equivariant index. The second result in this paper,
Theorem [39] is that this is indeed the case in a precise sense:

I, (index$°(D)) = index(D)“, (1.4)

where the right hand side is the Fredholm index of D restricted to G-
invariant sections that are square integrable transversally to orbits in a cer-
tain sense. The latter index was defined in [I8], and developed further by
Braverman [6].

In the example where Dy is an elliptic operator on a possibly noncom-
pact manifold X, invertible outside a compact set, and D is its lift to the uni-
versal cover of X, Theorem implies that I, maps the 7 (X)-equivariant,
localised, maximal index of D to the Fredholm index of Dx. This means
that the index (L2]) refines the Gromov-Lawson index, the index of Callias-
type operators, as well as the Atiyah—Patodi—Singer index. One application
of this fact is that it leads to refinements of obstructions to Riemannian met-
rics of positive scalar curvature defined through the Gromov-Lawson and
Callias indices on Spin manifolds. This is analogous to the way in which
the image of D under the analytic assembly map [3] for the maximal group
C*-algebra of 71 (X)) refines the index of Dx in the case where X is compact.
Explicit applications to positive scalar curvature will be explored in future
work.



A completely different application that motivates the development of
the index ([2]) and Theorem is a version of Guillemin and Sternberg’s
quantisation commutes with reduction principle [12] for Callias-type Spin®-
Dirac operators. That principle was initially stated and proved for compact
Kéhler and symplectic manifolds [31], [32], 34, 40]. This principle was ex-
tended in various directions, including results for proper actions by possibly
noncompact groups, with possibly noncompact orbit spaces, see [I§] for the
symplectic case and [19] for Spin®-manifolds. The index, or quantisation,
used in those papers, was defined just in terms of sections invariant under
the group action. Furthermore, the index was only well-defined after a suit-
able order zero term was added to the operator in question. The first of these
issues was partially remedied in [23], where the quantisation commutes with
reduction principle was proved for an index with values in the completed
representation ring of a maximal compact subgroup of G.

Since the work of Paradan and Vergne [35], the quantisation commutes
with reduction principle is known to be a general property of equivariant
indices of Spin®-Dirac operators in general, and not just of geometric quan-
tisation in the narrow sense. For a Callias-type operator D = D + ®, where
D is a Spin®-Dirac operator, the third result in this paper, Theorem B.I1]
states that the quantisation commutes with reduction principle holds, in the
sense that

I, (indexS°(D + ®)) = index(Dy), (1.5)

where Dy is a Dirac operator on a reduced space My, a Spin‘-analogue of
a reduced space in symplectic geometry, for high enough powers of the de-
terminant line bundle of the Spin®-structure. In this setting, the use of the
maximal localised coarse index allows us to prove such a result in the set-
ting of noncompact groups and orbit spaces, for a truly equivariant index in
Ko(C*(@G)), which is defined without the need of an added term.

The equality (L3 already appears to be new in the case where G is
compact. Then D+® is Fredholm, and has an equivariant index in the usual
sense. In this case, a version of the shifting trick in symplectic geometry
applies to yield information about the multiplicities in that index of all
irreducible representations of G.

Techniques used

The key ingredient in the construction of the index (2] is the notion of a
maximal localised equivariant Roe algebra for arbitrary unimodular, locally
compact groups. This involves the notion of an admissible module, which



was defined in [45] for discrete groups, and in [14] in general. In the non-
equivariant, non-localised case, the natural maximal norm for such algebras
was shown to be well-defined in [10]. In the equivariant, localised case, this
is less clear, and getting around this is a step in the construction of the
algebras we need.

The construction of the index (L2]) is very different form the construction
of the reduced version (1)) in [14]. Instead of viewing D as an unbounded
operator on L%(E), we view it as an unbounded operator on a maximal
localised equivariant Roe algebra A, viewed as a Hilbert C*-module over
itself. The reason for this is that the localisation results in [38] that make
the definition of the localised coarse index possible do not directly carry over
to the norm on the maximal Roe algebra. Indeed, it is not even clear if the
operators involved lie in the unlocalised maximal Roe algebra, let alone if
they localise in a suitable way.

We prove versions of Roe’s localisation results for D as an operator on
A, thus allowing us to define ([.2]). To do this we prove that the functional
calculus for such operators on A is well-defined. This was done in [I5] for
the uniform maximal Roe algebra; in our setting it works for usual maximal
Roe algebras due to localisation at a cocompact set.

To prove the equality (L4]), we use various averaging maps, which map
G-equivariant operators on M to operators on M / G. Comparing such maps
for operators on L?(E) and on A to the integration trace I then leads to a
proof of (L.4).

Using (LL4]), we see that the left hand side of (LI equals a more concrete
index in terms of G-invariant sections. For the latter index, we obtain
localisation estimates that allow us to show that this index equals the right
hand side of (LH]). These localisation estimates build on those in [18, 19} [30L
40], but a fundamental difference is that we now need the key deformation
term to go to zero at infinity, rather than grow towards infinity.

Outline of this paper

We start by defining equivariant localised maximal Roe algebras in Section
That allows us to state the three results in the paper mentioned above,
in Section Bl Well-definedness of the index (L2]) is proved in Section El To
prepare for the proof of (LL4]), we construct several averaging maps in section
Bl In Section [6l we use these maps to prove (L4). We conclude this paper
by using (I4]) and some localisation estimates to prove (IL5]) in Section [7l
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2 Equivariant localised maximal Roe algebras

2.1 Equivariant Cy(X)-modules

Let (X,d) be a metric space in which all closed balls are compact. Let G
be a unimodular, locally compact group, acting properly and isometrically
on X. Let dg be a Haar measure on G.

A G-equivariant Co(X)-module is a Hilbert space Hx equipped with a
unitary representation 7 of G, and a *-homomorphism p: Cy(X) — B(Hx),
such that for all g € G and ¢ € Cy(X),

Here (g-¢)(x) = p(g~ 1), for all z € X. We will omit the representations

and p from the notation, and for example write ¢-& := p(p)E, for ¢ € Cy(X)
and £ € Hx.

Fix a G-equivariant Cp(X)-module Hx. Let B(Hx)® be the algebra of
G-equivariant bounded operators on Hy. An operator T' € B(Hx) is said
to be locally compact if for all ¢ € Cy(X), the operators T and Ty are
compact. And T has finite propagation if there is an r > 0 such that for all
v, € Cy(X) whose supports are at least a distance r apart,

oI = 0.

In that case, the infimum of such numbers r is the propagation of T. The G-
equivariant reduced Roe algebra of X with respect to Hx is the closure in the
operator norm of the algebra of locally compact operators in B(Hx )¢ with
finite propagation. In this paper, we will use an algebra that differs from
the equivariant reduced Roe algebra in two ways: we consider a localised
version, and complete it in a mazimal norm.

A relevant example of a G-equivariant Co(X )-module is the space L?(E)
of square integrable sections of a G-equivariant, Hermitian vector bundle
FE — X, with respect to a G-invariant measure dr on X. The algebra



Co(X) acts on L?(E) by pointwise multiplication, and G acts in the usual
way. Consider the vector bundle Hom(F) := FX E* — X x X. Let
Cy (X; L?(E))% be the algebra of locally compact operators T € B(L?(E))“
with finite propagation, for which there is a bounded, measurabldl section
x of Hom(E) such that for all s € L?(E) and z € X,

(Ts)(x) :/ k(x,2")s(z’) da’.
X
We will identify such operators with their kernels .

2.2 Admissible modules and the maximal Roe algebra

In Definition 2.2 in [45], the notion of an admissible T'-equivariant Cy(X)-
module was introduced, for discrete groups I'. In Definition 2.4 in [I4], this
was extended to general unimodular, locally compact groups G. The main
difference between the discrete and general group case is the role played by
local slices in the sense of Palais [33] in the non-discrete case.

A G-equivariant Cy(X)-module Hx is defined to be admissible if there
is a G-equivariant, unitary isomorphism

Hx = L*(G) @ H,

for a Hilbert space H, such that locally compact operators on Hx are
mapped to locally compact operators on L?(G) ® H, and operators with
finite propagation are mapped to operators with finite propagation, in both
cases with respect to the pointwise action by Co(G).

The point of using admissible modules is that the resulting equivariant
Roe algebras encode the relevant group-theoretic information. It is clear
that such information may be lost in the example where X is a point, acted
on trivially by a compact group, and one uses the non-admissible module C.

By Theorem 2.7 in [I4], an example of an admissible module is L?(E) ®
L*(G). Here E — X is as at the end of the previous subsection, Cy(X) acts
pointwise on the factor L?(E), and G acts diagonally, with respect to the
left regular representation of G'in L?(G). By definition of admissibility, we
have an isomorphism

L*(E)® L*(G) 2 L*(G)®H (2.1)

!One can also work with continuous sections, the main reason why we use measurable
sections is that the map x — & in Proposition does not preserve continuity.



with the properties above. Let Cy (X; L?*(F) ® L*(G))Y be the algebra of
locally compact operators on L?(E) ® L?(G) with finite propagation, given
by bounded, measurable kernels

/i(ﬁGXG—)]C(H)

via the isomorphism (2I). Explicitly, for such a kg, the corresponding
operator T is defined by

(T(f®8))( /f k(9,9 )¢ dg',

for f € L*(G), ¢ € H and g € G. If X/G is compact, then Theorem 2.11 in
[14] states that Cf_(X; L>(E)®L?(G))“ is isomorphic to a dense subalgebra
of C*(G) ® K(H), where C*(G) is either the reduced or maximal group C*-
algebra of G. (To be precise, C. (X; L?(E) ® L?(G))¢ is isomorphic to the
convolution algebra of compactly supported, bounded, measurable functions
on G with values in the algebra of compact operators on H.) This implies
that the mazimal norm of an element x € C}_(X; L*(E) ® L*(G))Y,

[ max = Sl;pHn(H)”B(H,,)a (2:2)

where the supremum is over all x-representations
0 Cee(X; LP(B) © L*(G))% = B(H,),

is finite. This norm is equal to the tensor product norm on C} . (G) @ KC(H).
So the completion of Cf, (X; L?(E) ® L*(G))% in the maximal norm equals

Crax( X5 L2(E) ® L*(G)) 2 Crax(G) ® K(H). (2:3)

Since this algebra is independent of the admissible module used, we will
denote it by
Crrax(X)9 i= O (X5 L2 (B) @ L*(G))7.

Remark 2.1. In the case where G is trivial, and X is not assumed to be
compact but is only assumed to have bounded geometry, finiteness of the
maximal norm (2.2) was proved by Gong, Wang and Yu, see Lemma 3.4
n [10]. See also Lemma 1.10 in [4I]. It is our understanding that this
generalises directly to free actions by discrete groups, see Lemma 3.16 in
[10].



2.3 The map ©0 and the maximal norm for non-admissible
modules

We will use a completion of Cy, (X;L?(E)) in a version of the maximal
norm. It is unclear a priori if an analogue of the supremum (2.2 is fi-
nite, however. We therefore define the norm we use via an embedding of
Cy (X; L*(E))% into G}, (X;L*(E) ® L*(G)), which has a well-defined
maximal norm if X/G is compact, as we saw at the end of the previous
subsection.

Let C’;‘lg(X : Hx )€ be the algebra of bounded, G-equivariant, locally com-
pact operators on an equivariant Co(X )-module H x, with finite propagation.
In Section 3.2 in [I4], a map

® 0: Cog (X5 LA(E))C — Coy(X; L*(B) ® L*(G)C (2.4)

is defined as follows. Let y € C(X) be a function whose support has compact
intersections with all G-orbits, and has the property that for all x € X,

/Gx(gx)2 dr = 1. (2.5)

(The integrand is compactly supported by properness of the action.) Such
a function will be called a cutoff function. The map j: L?(E) — L*(E) ®
L*(G), given by

((s))(x, 9) = x(g")s(x)
for s € L?(E), x € X and g € G, is an isometric, G-equivariant embedding.
Let p: L?(F) ® L*(G) — j(L?*(E)) be the orthogonal projection. The map

® 0: B(L*(E)) — B(L*(E) ® L*(Q@)) (2.6)

that maps T € B(L?(E)) to jTj 'p is an injective *-homomorphism, and
preserves equivariance, local compactness, and finite propagation. Hence it
restricts to an injective *-homomorphism (2.4). (The notation & 0 reflects
the fact that T@0 equals j75~! on the image of j, and zero on its orthogonal
complement.)

Lemma 2.2. The map Z4) maps C;. (X;L*(E))Y into C}(X;L*(E) ®
L*(G))“.

Proposition is a refinement of this lemma. If X/G is compact, then
for k € Oy (X;L2(E))%, we define its G-mazimal norm as

[£]lmax.c := [|% © Oflmax-

We denote the completion of G}, (X; L?(E))% in this norm by C;:

max

(X; L(B)“

10



Remark 2.3. In the case of reduced Roe algebras, defined with respect to
the operator norm for a Co(X )-module, the algebra C}, (X; L?(E)®L?*(G))“
is dense in C, (X L*(E) ® L*(G))Y. See Proposition 5.11 in [I4]. In that
case, kernels and operators can be used more or less interchangeably, but

this is less clear for the maximal completions we use here.

2.4 Localised maximal Roe algebras

Let Z C X be a G-invariant subset. Let Hx be a G-equivariant Cp(X)-
module. An operator T' € B(Hx)® is supported near Z if there is an r > 0
such that for all ¢ whose support is at least a distance r away from Z,
the operators ¢T" and Ty are zero. Let C}, (X;Z,Hx))“ be the algebra of
elements of Cy, (X;H x )¢ supported near Z.

For r > 0 and any subset Y C X, we write

Pen(Y,r) :={z € X;d(z,Y) <r}.
Then we have a natural isomorphism

Cer (X3 Z, Hx) = lim Ce, (Pen(Z, 7); Hx ). (2.7)

Now suppose that Z/G is compact. The algebra C}, (X; Z, Hx )@ is then
independent of Z, as long as Z/G is compact. For this reason, we write

Cltor(X; HX)gC = Cltor(X; Z, HX)G'
For every r > 0, we have the norm || - |max,c on Ci..(Pen(Z,r); L*(E))%.
Let || - ||max,c¢ be the resulting norm on C}, (X, L2(E))gC via (271).

Definition 2.4. The localised, G-mazimal equivariant Roe algebra of X for
L?(E), denoted by Cf,. (X; L*(E))€ ., is the completion of C;_ (X, L*(E))%.
in the norm || - ||max,G-

The localised, G-maximal equivariant Roe algebra of X, denoted by

Cax(X)$_, is the completion of Cy (X;L*(F) ® L*(G))$, in the norm
” ) Hmax'
By construction, C,. (X; L2(E)){¢_ is isometrically embedded into C

By 2.3) and 7)),

Crnax(Xfoe = Craax(G) ® K(H).

loc

11

(X)

G

loc®



3 Results

Our first result is the fact that a maximal version of the localised equivariant
index of [14] is well-defined, see Propositions Bl and B.3] and Definition
B4 We will show that that index is an equivariant refinement of the index
defined in terms of invariant sections in [6l [I8] [30], see Theorem B9l The
quantisation commutes with reduction results for proper, non-cocompact
actions in [I8] [20] only involved sections invariant under a group action. In
Theorem BIT], we generalise this to the equivariant index of Definition [34]
in the case of Callias-type Spin®-Dirac operators.

3.1 The localised maximal equivariant index

From now on, we suppose that X = M, a complete Riemannian mani-
fold, and and that d is the Riemannian distance corresponding to a G-
invariant Riemannian metric. We suppose that £ — M is a smooth, G-
equivariant, Hermitian vector bundle and D a symmetric, first order, ellip-
tic, G-equivariant differential operator on sections of E. Suppose that D
has finite propagation speed, i.e. if op is its principal symbol, then

sup{[lop(&)I;§ € T"M, [[§]| = 1]} < oc.

Then D is essentially self adjoint as an unbounded operator on L?(E), see
Proposition 10.2.11 in [17].

Let Z C M be a closed, cocompact G-invariant subset. Let CS2.(M; L?(E))¢
be the algebra of smooth kernels in C}, (M;L?*(E))¢.. Then D acts on
k€ Oy, (M L2(E))G, by

(Dr)(m,m') == (D ® 1p:  (k(—,m")))(m).

Here we used the fact that for every m’ € M, k(—,m’) is a smooth section
of EQE”,.

For A a C*-algebra and M a Hilbert A-module, we write £4(M) and
KA(M) for the C*-algebras of bounded adjointable operators and compact
operators on M, respectively. We can view A as a right Hilbert C*-module
over itself, with A-valued inner product.

(a,b) :== a™b, (3.1)

for a,b € A. Then K4(A) = A, with the isomorphism being given by
identifying the operator
Oap: c— alb,c)

12



with left multiplication by ab*. We also have that £4(A) is the multiplier
algebra of 4 (A).

To simplify notation, we will from now on use A to denote the G-
maximal, localised equivariant Roe algebra C,. (M;L?(E))¢ .. Then A is
a Hilbert module over itself. We will use functional calculus for self-adjoint,
regular operators on the Hilbert A-module A. (For a uniform version of the
maximal Roe algebra, this was developed in [I5].) This functional calculus

applies to D because of the following result.

Proposition 3.1. The unbounded operator D on the Hilbert A-module A is
essentially self-adjoint and regular.

This proposition is proved in Subsection 14l Because of Proposition
B we can apply the following general result (see [26], [I6] Theorem 3.1
and [9] Theorem 1.19) about functional calculus on Hilbert C*-modules to
the self-adjoint closure of D.

Theorem 3.2. Let B be a C*-algebra and M a Hilbert B-module. Let
C(R) be the x-algebra of complex-valued continuous functions on R. For
any reqular, essentially self-adjoint operator T on M, there is a x-preserving
linear map

Tt C(R) — RB(M),

with values in the set Rp(M) of regular operators on M, such that:
(i) mr restricts to a x-homomorphism wp : Cp(R) — L(M);
(ii) If |f(£)] < [g(t)] for allt € R, then dom(mr(g)) € dom(mr(f));

(i5i) If (fn)nen is a sequence in C'(R) for which there exists F' € C(R) such
that | fn(t)| < F(t)| for allt € R, and if f,, converge to a limit function
f € C(R) uniformly on compact subsets of R, then mr(fyn)x — mr(f)x
for each x € dom(mwr(f));

(iv) wp(Id) = T;
(U) ”7TT(f)HCB(M) < SUP \espec p(T) ’f()‘)‘7

In the context of this theorem, we write f(T) := wp(f).

Suppose that there are a G-equivariant, Hermitian vector bundle F' —
M, a differential operator P: I'°(E) — I'*°(F), a G-equivariant vector
bundle endomorphism R of E, and a constant ¢ > 0 such that

D?=P*P+R, (3.2)
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and R > 2, fibrewise outside Z. (The use of ¢? instead of ¢ is a convention
here, which implies that D > ¢ outside Z in an appropriate sense.)

In this setting, and when G is trivial but without assuming Z to be com-
pact, Roe [38] developed localised index theory with values in the K-theory
of a reduced completion of C}),(M; Z, L?(E)). We will use an equivariant
version of this index theory for the maximal completion, in terms of ad-
missible modules. The reason for using the maximal completion is that we
then obtain an index in the K-theory of Cj .. (G), to which we can apply
an integration map to recover the G-invariant index from [I8] as a special
case, see Theorem 3.9 The construction of the localised index is based on

the following analogue of Lemma 2.3 and Theorem 2.4 in [3§].
Proposition 3.3. If f € C.(R) is supported in [—c,c]|, then
f(D) € A=Ka(A) C La(A).

This proposition is proved in Subsection

Let b: R — R be a continuous, increasing, odd function, such that b(x) =
+1 for all 2 € R with || > ¢. Then b? — 1 has the property of the function
f in Proposition B3l So, in particular, b(D) € L4(A) is invertible modulo
KA(A), and hence has an index in

K. (Ka(A)) = K.(A).

This index lies in even K-theory if D is odd with respect to a G-invariant
grading on F, and in odd K-theory otherwise. See for example Definition
3.2 in [14] for details.

Explicitly, consider the case where is D odd with respect to a G-invariant
grading £ = Ey @ E_. Let C2(X;L?(E))S. be the algebra of kernels in
O (X; L3(E))Y supported near Z. Let b(D); be the restriction of b(D)
to kernels in O (X; L2(E))¢. that are sections of Ey ® E*. Then b(D)
is invertible modulo K4(A), and its inverse is the restriction of b(D) to
E_ ® E*. Hence this operator defines a class [b(D)y] € K1(LA(A)/Ka(A)),
and the index of b(D) is defined as

O[b(D)+] € Ko(A), (3.3)

where 0: K1(LA(A)/Ka(A)) — Ko(Ka(A)) is the boundary map in the
six-term exact sequence correspondig to the ideal K4(A) C L4(A). For
ungraded operators, one uses the projection (b(D) + 1) in L4(A)/Ka(A)
and applies the boundary map to its class in even K-theory to obtain the

index of b(D) in K;(A).
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Definition 3.4. The localised, mazximal, equivariant index of D is the image
of the index of b(D) in K,(A) described above under the map

B 0: Ki(A) = Ki(Crax(G))-
It is denoted by indexS¢(D).

Remark 3.5. One could consider (B3] (and its analogue in K;(A) in the
non-graded case) as a localised index of D, defined in terms of the non-
admissible Co(M)-module L?(E). Two advantages of the index in Definition
B4l over (B3) are that it takes values in a K-theory group independent of
X or E, and that the application of the map €0 on K-theory means that
the index of Definition [3.4] captures group-theoretic information that is not
encoded in (3.3). This is clear in the example where G is compact, M is a
point, and D is the zero operatoron £ =V € K , as discussed in Example 3.8
in [14]. This illustrates why it is useful to use the admissible Cy(M)-module
L*(B) ® L*(Q).

Another approach to constructing the index of Definition [3.4lwould be to
use an extension map & 1, extending operators by the identity operator on
the orthogonal complement to j(L?(E)), before applying boundary maps.
See Definition 3.6 and Lemma 3.7 in [14].

Example 3.6. If D is a Dirac-type operator associated to a Clifford con-
nection V on E, then
D? = V*V + R,

for a vector bundle endomorphism R of E. (If D is a Spin-Dirac operator,
then R is scalar multiplication by a quarter of scalar curvature, by Lich-
nerowicz’ formula.) If R > ¢? outside Z, then the condition on D holds,
with F' = E®T*M and P = V. This is the situation considered in [3§], for
G trivial.

Example 3.7. Let D be a G-equivariant Dirac operator on E, and let
® be a G-equivariant vector bundle endomorphism of E. Suppose that
{D,®} := D® + @D is a vector bundle endomorphism of E, and that

{D,®} + &2 > 2 (3.4)

fibrewise outside Z. Then D := D + ® satisfies the conditions on D as
above, with F = E, P =D and R = {D, ®} + ®2.

This type of operator is a Callias-type operator. Indices of Callias-type
operators equivariant under proper actions were studied in [13] [14].

The main application of the maximal localised index in this paper, The-
orem [3.17] is about the maximal localised index of Callias-type operators.

15



3.2 The invariant index

ax(G). We will see
in Theorem [3.9] that applying this trace to the localised index of D recovers
an index defined in terms of G-invariant sections in [18]. This fact will be
used in the proof of Theorem BIIl It can also be used to obtain refined
index theoretic information on non-compact manifolds; see Remark [3.101
Let x € C*°(M) a function with the property (23]). Consider the space
I'io(E)S of transversally compactly supported sections of E, defined as the
space of continuous, G-invariant sections of £/ whose supports have compact
images in M/G under the quotient map. The Hilbert space L2(E)% of G-
invariant, transversally L?-sections of E is the completion of T'y.(E)“ in the
inner product

Integrating L'-functions over G extends to a trace on C*

(81782)L%(E)G = (X317X32)L2(E)-

The space L2.(E)% is independent of the choice of x; see Lemma 4.4 in [I8].
Suppose that D is odd with respect to a G-invariant grading £ = E, &
E_. 1In Proposition 4.7 in [I8], it is shown that D defines a Fredholm
operator D from a suitable Sobolev space inside L2(E)% into L4(E)¢. In
Proposition 4.8 in the same paper, it is deduced that the space

ker(D) N LA(E)“
is finite-dimensional, and that the index of D equals
dim (ker(D) N L3.(E4)%) — dim(ker(D) N L3(E_)%). (3.5)

Definition 3.8. The G-invariant index of D, denoted by index(D)%, is the
number (3.3]).

In [6], Braverman further develops the theory of this index, when ap-
plied to Dirac operators with an added zero-order term that is relevant to
geometric quantisation, and in particular proves that it is invariant under a
suitable notion of cobordism.

The map from L!(G) to C given by integrating functions over G extends
continuously to a x-homomorphism, or a trace

I:C:

max

(G) — C.

The integer
I..(indexi¢(D)) € Ko(C) = Z

plays the role of the G-invariant part of the localised index of D), and this
will be made precise in Theorem below.
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If M/G is compact, then all smooth sections of E are transversally L.
Then the G-invariant index of D equals

dim (ker(D+)G) — dim (ker(D_ )9,

where D4 is the restriction of D to sections of F. This index was developed
and applied by Mathai and Zhang in [30], with an appendix by Bunke. In
Theorem 2.7 and Proposition D.3 in that paper, it is shown that the index
can be recovered from the equivariant index of D in Ky(C} . (G)), defined
via the analytic assembly map, if one applies the integration trace I. We will
show that this generalises to the index in Definition B.4lin the non-cocompact
case.

Theorem 3.9. We have
I.(index}2°(D)) = index(D)¢ € Z. (3.6)
This theorem is proved in Section

Remark 3.10. Theorem allows us to construct a more refined invariant
of operators that are invertible at infinity in the non-equivariant case than
their Fredholm index. Suppose that M is the universal cover of a manifold
M and that G = I is the fundamental group of M, acting on M in the
natural way. Let D be an elliptic operator on M that is invertible at infinity
in the appropriate sense, so that it lifts to a I'-equivariant operator on M
satisfying the conditions of Theorem [3.9. That theorem then implies that

I, (index?¢(D)) = index(D).

In this sense, indeX{QC(D) refines the Fredholm index of D, much like the
image of D under the analytic assembly map for the maximal group C*-
algebra refines the Fredholm index of D if M is compact.

This can for example be used to obtain stronger obstructions to Rie-
mannian metrics of positive scalar curvature that classical obstructions from
Callias index theory [1] or the Gromov-Lawson index [11]. Applications to
positive scalar curvature will be worked out in a future article.

More generally, for any proper, isometric action by a discrete group I
on M, the quotient M = M/T is an orbifold, and the index}¢(D) refines an
orbifold version of the index of D.

Proposition 2.4 in [21I] shows that the index defined in [22] is another
refinement of the invariant index. That index applies to Dirac operators with
certain deformation terms added that are relevant to geometric quantisation.
It takes values in the completion of the representation ring of a maximal
compact subgroup of the group acting.
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3.3 Callias quantisation commutes with reduction

In [I8, 20], the quantisation commutes with reduction principle of Guillemin
and Sternberg [12] 311 [32] 34, [40] and its Spin®-version [35] is generalised to
proper actions by possibly noncompact groups, with possibly noncompact
orbit spaces, for suitably high powers of the prequantum or determinant
line bundle in question. These results in [I8], 20] are stated in terms of the
invariant index of Definition 3.8l The result in [I8] in the symplectic setting
generalises the result in [30] from compact to noncompact orbit spaces. This
is generalised to the Spin‘-setting in [20].

These were the first results on a version of the quantisation commutes
with reduction principle where both the group and orbit space were allowed
to be noncompact, but two drawbacks were that the invariant index used

1. was only well-defined after a deformation term (Clifford multiplication
by the Kirwan vector field) was added to the relevant Dirac operator;

2. only involved G-invariant sections, and therefore provided no informa-
tion about the parts of the kernel of D on which G acts nontrivially.

The second point was partially addressed in Theorem 2.13 in [21], a quan-
tisation commutes with reduction result for non-cocompact actions, where
quantisation takes values in the completion of the representation ring of a
maximal compact subgroup.

We are now able to remedy both points, in the case of Callias-type Spin®-
Dirac operators.

Let D = Dg be a Callias-type operator as in Example B Suppose
that F has a G-invariant Z/2 grading, and that D and ®, and hence D,
are odd for this grading. Suppose that £ = S is the spinor bundle of a
G-equivariant Spin®structure on M, and let L — M be its determinant
line bundle. (The assumption that E is Z/2-graded now means that M is
even-dimensional.) Suppose that D is a Spin®-Dirac operator on S. The
Clifford connection on S used to define D can be constructed locally from
a G-invariant, Hermitian connection V% on L and the connection on the
spinor bundle for a local Spin-structure; see e.g. Proposition D.11 in [2§].
This also induces a Clifford connection on the spinor bundle S ® LP, for any
p € Z>p. Let D™? be the corresponding Spin°-Dirac operator on S ® LP. Set

Dy :=D" +®® 1.

We have . .
{DLP7¢®1LP}:{D7¢}®1LP7 (37)
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where {—, —} denotes the anticommutator. In what follows, we will omit
‘@1rr’ from the notation. By ([B4]) and [B.71), we have

(D" @} + 02 > 2 (3.8)
outside Z, for all p. Hence D), has an index
indexi®®(D,) € Ko(Cr,.(G)). (3.9)

The quantisation commutes with reduction principle in general is an
equality between the invariant part of the equivariant index of a Spin®-
Dirac operator and the index of a Dirac operator localised at the level set
of a moment map. The invariant part of the index will now be represented
by the image of (3.9]) under the integration trace I.

The Spin®-moment map associated to V¥ is the map

w: M — g*
such that for all X € g,
27mi(p, X) = Lx — Vi, € End(L) = C>(M,C),

where Lx denotes the Lie derivative with respect to X, and X is the
vector field induced by X. Our sign convention is that for all X € g and
me M,

XM (m) exp(—tX) - m.

T
Suppose that 0 is a regular value of j, and that G acts freely on p~1(0).
Suppose that the reduced space

My := = '(0)/G

is compact. In Lemma 3.3 in [20], a condition is given for My to in-
herit a Spin®structure from M, with determinant line bundle Lf, with
Lo = (L|y-1(0))/G — M. This is true for example if G is semisimple,
see Proposition 3.5 and Example 3.6 in [20]. It is also true in the symplec-
tic setting, where the Spin®-structure on M is associated to a G-invariant
almost complex structure compatible with a G-invariant symplectic form,
together with a G-equivariant, Hermitian line bundle on M. From now on,

. . L? . .
we assume such a Spin“-structure on My exists. Let Dy, be a Spin®-Dirac
operator on My for this Spin®-structure.
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Theorem 3.11 (Callias Spin°-quantisation commutes with reduction). There
is a po € ZL>o such that for all p > po,

: o Loy _ i Be(Lo)
I (indexg(Dp)) = index(Dy} ) A(My)e .
My

This theorem is proved in Section [Tl

Remark 3.12. In the case of Callias-type operators D = D + ®, as in
Example 3.7 an index in Ko(C*(G)) was constructed directly in [I3]. Here
C*(G) can be either the reduced or maximal group C*-algebra. Let us
denote this index by

indexG(D + ®) € Ko(C*(@)).

Theorem 4.2 in [14] states that, for the reduced group C*-algebra and Roe
algebra, this index of Callias-type operators is a special case of the localised

index: 3 3
index&(D + ®) = index2(D + ®) € Ko(C*4(Q)).

Via analogous arguments, one can show that this equality still holds for the
maximal group C*-algebra and Roe algebra. Then Theorem B.I1] implies
that, under the conditions in that theorem,

. C/ = . L?
I (indexg(Dp + @)) = index (D) ).

Remark 3.13. As far as we are aware, Theorem [B.I1] was not known in
the case where G is compact, so that D is Fredholm in the classical sense.
In that case, by the standard shifting trick (see for example Corollary 1.2
in [31], and [35]), Theorem B.IT] implies expressions for the multiplicities of
all irreducible representations of G in the equivariant index of D,. One can
handle cases where a reduced space u~!(Ad*(G)¢)/G is not smooth by

1. using orbifold line bundles and indices if £ is a regular value of y in an
appropriate sense;

2. using reduced spaces at nearby regular values if £ is a singular value
of p, as in [32], 34] 35]. An alternative approach is developed in [29].

4 Regularity and localisation

In this section, we prove Propositions B and [3:3] which imply that the
localised maximal index of Definition [3.4] is well-defined.
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4.1 Maximal operator modules

Our first goal is to make sense of D as an unbounded, regular, essentially
self-adjoint operator on certain maximal operator modules that we now in-
troduce.

Let My and Ms be Riemannian manifolds equipped with proper, isomet-
ric G-actions. Let Eq and E9 be Hermitian G-vector bundles over M; and
My respectively. Consider the vector bundle Hom(FEs, E) := By X E5 —
M1 X MQ.

Definition 4.1. Denote by
err(El’ E2)loc cre (HOHI(EQ, El))

the C-vector space of smooth G-invariant, cocompactly supported, finite
propagation kernels. Here we say that a kernel x has cocompact support if
there exists cocompact subsets Uy and Us of M7 and My respectively such
that supp(x) C Uy x Us.

There is no natural product or *-operation on He (E1, Eg)10C However,
it admits a natural action of CL (Ma; L?(E))  from the rlght given by
composition of kernels. Further, it has a O (Ma; L%(F3))¢ -valued inner
product given by

loc
(k,K) = K"K/,

for k, k" € H2 (En, E2)loc’ defined through the usual adjoint and multiplica—
tion of kernels. This makes H° (E1, E2)¢ . apre-Hilbert C2 (Ma; L?(E»))S
module.

Now taking the simultaneous completions of ”err(El, B¢
(see p. 5 of [27]) gives a Hilbert C},. (Ma; L2(E))$ -module that we denote
by %max(Ely E2)10C

In the case M7 = My = M and F1 = Ey = FE, equipped with the same G-
action, then HX (B, B)¢ = C2 (M; L*(E))¢ . In this case Hmax(E, E)
is the G-maximal equivariant localised Roe algebra C . (M;L?(E))¢
Definition 241

loc

loc

of

loc

4.2 Unbounded operators on operator modules

To introduce the idea of an unbounded operator on the operator modules
defined in the previous subsections, let us first consider Cj,. (M; L*(E))%
as a right Hilbert module over itself, as in Subsection 3.1l We will consider
D as an unbounded, densely defined operator on this Hilbert module. Note
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that D acts naturally on smooth Schwartz kernels via differentiation on the
first coordinate, so it defines a map

D : Cpo(M; L)) — Cro(M; L*(B))i

loc loc*

More generally, we may consider the situation when M; and M, are
proper G-manifolds with and F4, E5 are Hermitian G-vector bundles over
M; and Ms respectively. Let D be a symmetric, G-equivariant differential
operator acting on a F1. Then D defines an unbounded, symmetric operator

D : ,Hmax(Ela E2)1Goc — ,Hmax(Ela E2)1Goc

with initial domain H2 (E1, E2)S

loc*

4.3 The cocompact case

Proposition 4.2. Let M be a cocompact G-manifold. Then D is a reqular
and essentially self-adjoint operator on the Hilbert C. (M; L?(E))“-module
C o (M; L2 (E))C.

max

The proof is based on Lemmas 3] and [£4] and Proposition The
first lemma is a standard volume estimate for manifolds with bounded Ricci
curvature, which is the case here since M is cocompact.

Lemma 4.3. There exist constants C1,Cy > 0 such that for any r > 0,
every ball in M of radius r has volume at most C;e“?".

The second lemma states that the pointwise norm of the Schwartz kernel
of the operator (D + pi)~! decays exponentially in x4 times the Riemannian
distance. More precisely, let x, denote the Schwartz kernel of (D + wi) "L,
Then:

Lemma 4.4. There ezists a constant Cy, > 0 such that, for all m,m’ € M
with d(m,m’) > 1,

|’Hu(m7 m/)H < Cue—%d(m,m/)7
where the norm is taken fibrewise in £X E*.

Proof. This is Lemma 3.3 in [I5]. The proof works because M and E have
bounded geometry. O
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max (M L*(E))€, we
need to work with the maximal norm on the Roe algebra of the corresponding
admissible module, namely L?(E)® L?(G). Thus let j and p be the inclusion
and projection maps defined in Subsection 2.3] and consider the map @& 0 as

in (2.6]). Let

Finally, in order to make estimates in the norm of C

U:L*(G)®oH — L*(E) ® L*(G)

be the G-equivariant unitary isomorphism as in (2.I]), defined in (21) in
[14]. On a single slice neighbourhood of the form G xx N we have H =
L*(K\G)® L*(E|y), and the isomorphism ¥ is induced by a G-equivariant,
measure preserving bijection

: GXx K\GxN — G x M.

Then for any T' € B(L?(E)), the operator T on L?(G) ®H corresponding to
T @0 can be written as

T=9 Y Ta0)r=U"ojoToj topol.

Proposition 4.5. Let k € T'(Hom(E))® be a bounded, measurable, G-
invariant Schwartz kernel defining a bounded operator T on L*(E). Then T
is given by a G-invariant Schwartz kernel

G xG— KH).

On any indiwvidual slice neighbourhood of the form G xx N, f(g,g') is the
operator defined by taking v € H = L*>(K\G) ® L?(E|y) to the element of
L*(K\G) ® L?(N) given by
ey s [ [ @0 )0 R0, KR g K )
K\GJN

WX (g, KW ,n")w(KK,n')dn' d(K}),
(4.1)

for h € G and n € N, where
o \' is defined to be x ® 1;

o ¥k is defined to be the pull-back of k along the Cartesian product with
itself of the composition

Gx K\GxN% Mxa 25 .

23



Proof. This is a straightforward calculation. O

Proof of Proposition [[.3, Let o € C(M,L*(E))“. Then for any real
number y > 0, k := (D + pi)"1kg is a smooth, G-invariant Schwartz ker-
nel defining a bounded operator 7' on L%(E). Note that x may not have
finite propagation. However, since kg has finite propagation, is G-invariant,
and hence is uniformly bounded on M x M, it follows from Lemma [£4]
that x(m,m’) decays exponentially in d(m,m’), where d is the Rieman-
nian distance on M. We now show that s in fact defines an element in
Clax (@) ® K(H). ]

In order to do this, we view T as a bounded operator T" on the admissible
module L?(G) ® H, with kernel & given as in Proposition By Lemma
5.9 in [14], T is locally compact.

We now show that & corresponds to an element of L!(G) ® K(H). Since
¥ implements a coarse equivalence, and hence a quasi-isometry since M and
G are path length metric spaces, between M and G (see Lemmas 5.6-5.8
in [I4]), equation (ZI]) and Lemma F4] imply that there exist constants
C,C,, > 0 such that, for all g,¢" € G with d%(g,q") > C,

|7(g, )| < Cle= 209,

where d“ is a left invariant distance function on G, and the norm is taken
in B(H).

Since G has bounded geometry, we may choose u sufficiently large that
#(g,d') is an element in L'(G)®I(H). It follows that  defines as an element
of Cf . (M, L*(E))C. O

max

The proof given above can be easily extended to give the following result.

Theorem 4.6. Let My and My be proper G-manifolds with and FEq, Ey G-
vector bundles over My and M,y respectively. Suppose that My is cocompact,
and let D be a symmetric elliptic first-order differential operator acting on
E1. Then the operator

D ,Hmax(Ela E2)G — ,Hmax(Ela E2)G

loc loc

G _
loc

is regular and essentially self-adjoint in the sense of Hilbert C,..(Ma, L?(FEs))
modules.
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4.4 Proof of Proposition [3.1]

We will prove Proposition B.1] using Proposition for the cocompact case.
The following lemma will be used in a few places.

Lemma 4.7. Let S be a G-equivariant vector bundle homomorphism of E,
whose fibrewise norm is bounded. Then S € La(A), and [|S| 2, a) < [|S]loo-

Proof. The endomorphism ||S||oc1r — S of E is fibrewise nonnegative. Let
T = (|S|ole — S)Y/? be its fibrewise square root. Then for all x €
Croe (M3 L*(E))fg

loc»
(5, (IS oo — S)) = (T, Tk) > 0.
S0 S < ||S]|eo in LA(A). O

Proof of Proposition [31. We need to show that the operators D =+ i have
ranges that are dense in C}, (M; L?(E)){ . We prove the result for D + 1,
with the case of D — ¢ being similar.

Since M is a complete Riemannian manifold, there exists a family {ac }.cp+
of G-invariant, cocompactly supported smooth functions taking values in

[0, 1], such that:
e supp(ae,) C supp(as,) whenever g2 < €1;
e a;'(1) C az'(1) whenever &5 < e1;

o Ufast (1)} = M,
o Suppes [[das(m)] < e.

Now let v € CR5. (M ;LQ(E))SC. Since x has cocompact support, there
exists ¢ such that supp(k) C aZ'(1) x az'(1). Let U. be a G-invariant,
relatively cocompact neighbourhood of supp(a.). Denote the double of its
closure U, by U:, noting that there exists a G-invariant collar neighbour-
hood of AU, inside U.. By restricting the various geometric structures on
M to U, and extending to U;_, we obtain a Dirac operator D, acting on a
bundle E. over the double.

As in Subsection 4.2} D, defines an operator on C23. (U:, L?(E.))¢ that
extends to an unbounded operator on the maximal completion C} . (U:, L*(E.))%,
whose norm we will denote by |||, ., - By Proposition @2 D; is regular,
so there exists a sequence {e. ;}jen in C’lfgr(U:, L?(E.))Y such that

(De +i)ec; — K. (4.2)
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in |||, max.- Since the action of the operator (D, + i)' on k preserves
support in the second coordinate, we may assume that

pry(supp(ec,;)) € pra(supp(k)),

where pr, : U: X U;r — U;r is the projection onto the second factor, so that
ace. ; lies in the domain of D. For each j,

(D + i)(aeee,j) — k= (D + i)(asee,j) — kK

’ 4.3
= a:((D: +1i)e.j — k) + op(dac)ec j, (43)

acting again on the first coordinate.

Because D has finite propagation speed, there is a C' > 0 such that
op(§) < C|¢| forall§ € T*M. By LemmaldT this implies that ||op(dac)lz,a) <
C|IVae||s- It follows that

HO-D(daa)HHmax,G < C Hda’EHoo ”"i”

max,G *
Similarly,
gl max,c < 1llmaxc -
Thus op(da.) and a. define bounded multipliers of C*, (M; L?(E))%_ with

max loc
norms bounded above by their supremum norms. Combining this with (Z3))

gives
(D + i)(aae&j) - "f”max,(; = |las((D: + i)ea,j —K)+ UD(daa)ea,meaxg
S H(Da + i)eavj - H”max,G + C ”daEHOO Heay‘mea)gG .
The algebra C,, (Ue; L*(E ‘Us))G
algebra Cf,, (Us; L*(E o) ® L2(G))G, which is itself a common subalgebra
of both C%, (M)¢_and C’r’;ax(U:; L?*(E.) ® L*(G))%. This implies that for

is a subalgebra of the admissible Roe

1
any kernel x’ € Cgr(M; L*(E))¢ . supported on U, x U,
H/{/Hmax,G = H/{/He,max,G’

as both sides are equal to the norm of the image of ' in the algebra
— G
Chax (Us L (El) ® L*(G)) 7
Also note that (£.2]) implies that there exists jg such that for all j > jo,
we have [lez ;]| aca < 2116l max.q - Continuing the computation with these
facts in mind gives

(D + i)(acee,;) — "i”maxg < [(De + i)es; — H”a,max7G + C'||dac|| Hea,jH&man

< [(De +1)eej = £l max,e + C lldac]o [I]]

max,G *
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Take a sequence €, — 0. Then as j, k — 0o, one sees that (D+i)(ac,e.,) = K
in ||'Hmax,G‘

O

A straightforward adaptation of the above proof, together with Theorem
[46] gives the following result in the more general situation involving two
different bundles and manifolds.

Theorem 4.8. Let My and My be proper, isometric G-manifolds with and
FEq, By Hermitian G-vector bundles over My and Moy respectively. Suppose
that My, and let D be a symmetric, G-equivariant, first order differential
operator acting on a E1, with finite propagation speed. Then the unbounded
operator

D : Huax (E1, E2)C . — Huax(F1, B2)$

loc loc

is reqular and essentially self-adjoint.

4.5 Generalised Fredholmness

We will prove Proposition B.3] by adapting the method in [38] to the Hilbert
A-module A.

We begin by establishing a useful property of the wave operator group
associated to an essentially self-adjoint regular operator, following Proposi-
tion 3.4 of [16].

Lemma 4.9. Let D be an essentially self-adjoint regular operator on A.
Then the wave operator group {eitD } teR satisfies the wave equation: for

k€ C2(M; LA(E))¢

loc?

—etP g = iDetP.

dt
Moreover, each operator e®*P has propagation at most |t|, in the sense that
it does not increase the propagation of k by more than |t|.

Proof. The function s+ €' is in Cy(R). Thus for each t € R, the operator
e™P is bounded adjointable and unitary. For each t € R, the difference
quotient

cilt+h)s _ gits

h
as h — 0, uniformly in s in compact sets. Furthermore, this difference
quotient is bounded uniformly by |1 4 s|. The wave equation property then
follows from the third point in TheoremB.2l The finite propagation property
can be proved exactly as in Proposition 3.4 in [16]. O

— jse'ts
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Corollary 4.10. Let K be a cocompact subset of My. Let r > 0. Let D
and Ds be essentially self-adjoint differential operators on My that are equal
on Pen(K,r). Then for a kernel k € HX (E1, E2)S . supported on K x Ma,

loc

eZtDl K= eZtD2/€

if —r<t<r.

Now suppose that D is as in Subsection Bl and in particular that it
satisfies (8.2)). We will use Corollary [£.10 to establish a norm estimate for
f(D) in £4(A) when f has compactly supported Fourier transform.

Lemma 4.11. The operator D on the Hilbert module Cj . (M; L*(E))S
satisfies
D? > c?
with respect to the Hilbert module inner product.
Proof. For any r € C (M; L*(E))$.,
(D?k, k) = ((P*P + R)k, k) = (Pk, Pr) 4+ (RK, K). (4.4)

As in the proof of Lemma 7] we find that (Rk, k) > c?(k, k). So the right
hand side of (@4 is at least equal to ¢?(k, k). O

Lemma (1Tl is the place where we use form (3.2) of D?, rather than a
slightly milder positivity condition on D? outside Z.

Lemma 4.12. Let v > 0. Suppose f € S(R) is a function with Fourier
transform f supported in [—r,r|. Let ¢ be a smooth, bounded, G-invariant
function with support disjoint from Pen(Z,2r). Then

1F (D)ol 2 ) < lllog - sup LAV A = e} -

The same estimate applies to @ f (D).

Proof. For n = 1,2, let U, = {m € M;d(m,Z) > nr}. Let UIF denote the
double of U;. By extending the various geometric structures on U; to Uf, we
may extend the Dirac operator D]y, to an operator D on UIF acting on the
extension E — UIF of & \U—l Then D is an unbounded symmetric operator

on Humax (U1, M )¢ with initial domain Hl‘zgr(ﬁf, M)¢ . By Lemma A1T]
we have D? > 2. Since U, is complete, Theorem E¥ implies that D is

essentially self-adjoint and regular.
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Now for any x € C2 (M; L*(E))$ . with support contained in Us x M,
Corollary [.10] implies that

eztD/{ — EZtDK/

for all —r <t < r. Together with the equality

o)=L [ fwer® ar,

™ -r

this implies that f(D)p = f(D)e. The bound D? > ¢? implies, by the fifth
point of Theorem B.2] that

1£(D)llzaca) < sup{|F VA = e}

Together with the fact that ¢ defines an element of £4(A) with norm at
most ||¢||, (a special case of Lemma [L7]), this gives

IF (D)l zacay < [#llo - sup{[F (V] Al = ¢}
O

With these preparations, we can now finish the proof of Proposition [3.3l
Again, we follow the idea of Roe [38].

Proof of Proposition[3.3. Let f € C.(R) be supported in [—c¢,c|, and let
€ > 0. There exists a smooth function g with compactly supported Fourier
transform such that

sup{lg(A) = F(V[; A € R} <e.

This implies that |g(\)| < € when |A| > ¢. Suppose that supp(g) C [—r, 7]
for some r > 0. Let ¢ : M — [0,1] be a smooth G-invariant function such
that
- 1 for m € Pen(Z,2r)

10 for m € M\ Pen(Z,3r).

We can write

f(D) =v¢g(D)¢ + (1 =4)g(D)¢ + g(D)(1 — ) + (f(D) — g(D)).

Now the first term on the right hand side is a G-invariant cocompactly
supported smooth kernel. The second and third terms each have maximal
norm bounded by & by Lemma [£12] while the maximal norm of the last
term is bounded by e by the fifth point in Theorem Thus, for any
e > 0, f(D) lies within 3¢ of a G-invariant cocompactly supported smooth
kernel. Thus f(D) is in the completion C*, (M; L*(E))& O

max loc*
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5 Averaging maps

In Subsections B.IH5.3, we return to the general setting of Subsection [2.1]
of a metric space (X, d) rather than a Riemannian manifold.

The main tools in the proof of Theorem are several averaging maps,
which map G-equivariant operators on X to operators on X/G. In this
section, we introduce these maps, and prove their properties that we need.
We then use these maps in Section [6] to prove Theorem

5.1 Averaging kernels

Consider the setting of Subsection 21 Consider the action by G x G on
I'(Hom(E)) given by

((9:9") - &) (@,2") == gr(g~ 'z, g'a")g, (5.1)

for g,/ € G, z,2/ € X and k € T'(Hom(E)). Let I'(Hom(E))“*¢
I'(Hom(FE)) be the subspace of sections invariant under this action.
Let dg be the metric on X/G induced by d:

d "Y:= inf d !
¢(Gz,Gz") Jnf, (gz,2'),

for x,2’ € X. Consider the measure d(Gxz) on X/G such that for all p €

Cu(X),
/X () dz = /X . /G o(gz) dg d(G). (5.2)

(See for example [4], Chapter VII, Section 2.2, Proposition 4b.)

Consider the Hilbert space L2(E)¢ defined in Subsection We view
it as a Cy(X/G)-module by pointwise multiplication after pullback along the
quotient map. Let Cf (X/G; L3(E)%) be the subalgebra of B(L%(E)%) of
locally compact operators T with finite propagation, given by a continuous
kernel x € I'(Hom(E))“*¢ via

(Ts)(x) = /X/G k(z,2")s(2’) d(Ga'),

for x € X and s € L2(FE)Y. The integral is independent of the Borel section
X/G — X used implicitly, by G-invariance of s and G x G-invariance of k.
We will identify operators in Cy (X/G; L2.(E)“) with their kernels.

For k € G} (X;L*(E))Y and x,2 € X, set

Av(k)(z,z") ::/Gg/-i(g_lx,x/) dg.
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The integrand is bounded, measurable and compactly supported, because s
has finite propagation and the action is proper.

Lemma 5.1. For every £ € Cy (X;L*(E))%, Av(k) is an element of
Cy (X/G; L2(E)Y). This defines a surjective x-homomorphism

AV: Cie (X LH(E))S = Gl (X/G; LH(E)).

Proof. Let rk € Cf_(X;L?*(E))“. It follows from a computation involving
G-equivariance of x and left and right invariance of dg that Av(k) is G x
G-invariant. Furthermore, the propagation of Av(k) in X/G equals the
propagation of x in X. So indeed Av(x) € C}. (X/G; LA(E)Y).

Using the fact that the Haar measure dg is invariant under inversion,
one computes directly that for all x € C}, . (X; L*(E))Y,

Av(k*) = Av(k)".

Let x,x" € Cf (X;L?(E))“ be given. Then a computation involving (5.2)
shows that
Av(kr') = Av(k) Av(K').

For surjectivity, let x be a cutoff function as in (21). Choose this func-
tion such that, in addition to its other properties,

d(z,2") < dg(Gz,Ga') +1 (5.3)

for all 2,2’ € supp(x). In other words, the support of x mainly extends
transversally to G-orbits. (See Lemma [5.2] below.)

Suppose that kg € Cf, . (X/G; LA(E)Y), and let 7 be its propagation in
X/G. Define k € I'(Hom(E)) by

K(z,2') = Lx(gx)Qx(gx’)2dg - ka(z,a),

for z,2' € X.

We first claim that s has finite propagation. Indeed, let z,2’ € X be
such that d(z,2') > r+ 1. If dg(Gz,G2’') > r, then kg(z,z’) = 0, so
k(z,2") = 0. So suppose that dg(Gz,Gz') <r. If g € G, and x(gz)?x(g2’)?
is nonzero, then (5.3) implies that

d(w,2') = d(gz,g2") <+ 1,

a contradiction. So x(gz)?x(gz’)? = 0 for all g € G, and hence s(x,z") = 0.
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Right invariance of dg implies that for all z,2' € X and g € G,

g 'k(gz, g2')g = K(z,2),

i.e. k is invariant under the restriction of the action (&) to the diagonal.
This implies that the operator on L?(E) defined by & is G-equivariant.
The property (Z3]) of x and left invariance of dg imply that

Av(k) = kq,
so Av is surjective. O

Lemma 5.2. There is a cutoff function x, satisfying (Z3)), such that for all

x, ' € supp(x),
d(z,2") < dg(Gr,Ga’) + 1.

Proof. Let Y C X be a subset intersecting all G-orbits, such that for all
v,y €Y,
d(y,y') < da(Gy, Gy') + 1/2.

Let U be the open set of all points in X closer than 1/8 to Y. Then the
intersection of U with any G-orbit is open in that orbit. For all u,u’ € U,
choose y,y’ € Y such that d(u,y) < 1/8 and d(v',y’) < 1/8. Then

d(u,u’) < d(y,y') +1/4 < da(Gy,GY') + 3/4 < dg(Gu, Gu') + 1.

Let x¥ be any nonnegative continuous function on X such that the interior
of its support is U. Then the function x, given by

X(@)
(Ji Stay2 dg) "

for x € X, has the desired properties. O

x(z) =

5.2 Averaging operators on Hilbert spaces

We will use an extension of the homomorphism Av to more general bounded
operators on L?(F), not necessarily given by integrable kernels.

We choose a partition of unity {; }]"’;1 on X, which restricts to a com-
pactly supported partition of unity on every orbit, such that there is an
r > 0 such that for all j, the set of k£ for which d(supp;,suppy) < r is
finite.
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Let By, (L?(E))% be the algebra of G-equivariant, bounded operators on
L?(E) with finite propagation. Given T € By, (L*(F))¢ and s € L2(E),
note that ;s € L?(E). Hence T (1;s) is well-defined, and for z € X, we set

(Av2(T)s)(2) = ) (T(¥y5))(x). (5.4)

J

Lemma 5.3. The sum ([B.4) converges for all x € X, and the result is
independent of the choice of the partition of unity {1;}.

Proof. Fix x € X. Let f € C.(X) be a function such that f(x) = 1. Let r
be greater than both the diameter of supp f and the propagation of 7', and
such that

d(supp ¥;, supp ) < 2r
for only finitely many k, for any fixed j. Then there are only finitely many
j for which
d(supp f,suppvy;) < r.

Hence fT%); is nonzero for only finitely many j, and we see that

(Avp2(T)s)(x) = (f AV(T)s)(z) = Y (FT(159))()

J

is a finite sum, and hence converges.
Let {¢;} be another partition of unity on X, with the same properties
as {1;}. We will write

{1}

AVIYHT) and  Avyy(T)

for the operators defined by (B.4]) using these two partitions of unity. As
above, let J C N be a finite set such that f1%; and fT%- are zero if j & J.
Then

[TY by =fT=fT) ¥
JjeJ JjeJ

Since the finite sum over J commutes with 7', we conclude that

AV (1)s) (@) = (F AV (T)s) (@) = Y (1T (W59)) (@)

jed

= S (T (W)s)) () = (Avhy

JjeJ

V(1)s)(@).
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Lemma 5.4. The construction (5.4]) defines a x-homomorphism
Avpe: B (LAH(E))C — B(LA(E)Y).

Proof. Let T € Bp,(L?(E))Y and s € L4 (E)“. We first claim that Av;»(T)s €
L%(E)G. Indeed, the properties of the functions v;, and finite propagation
of T imply that x Av(T)s € L?(E). And for all ¢ € G and z € X, one
checks, using G-equivariance of 1" and G-invariance of s, that

(g (Av(T)s))(x) = ZT((Q “5)s)(x).

Since {g- ¢j}]°~i1 is a partition of unity with the same properties as {v; }]0-‘;1,
the second part of Lemma[b.3limplies that the right hand side equals (Av2(T")s)(z).
Boundedness of the operator Av;(T) on L2.(E)% follows from bound-
edness and finite propagation of 7', via the fact that the sum x ;T pj is
finite.
If 7' is an other operator in Bg,(L2(E))Y, then for all z € X,

(Avp2(TT)s)(z) = Y (TT'y;s)(x)
i

=Y (T T's) (@) = (Avia(T) Av e (T")s) ().

gk

Here we used the fact that the sum over k is finite for each j, since T” has
finite propagation. One checks directly that Av;y2 preserves x-operations.
O

Lemma 5.5. For an operator T € C}. (X,L*(E))Y, with kernel r, the
operator Avy2(T) is an element of Cf. (X/G;LA(E)Y), and its kernel is
Av(k).

Proof. This follows from a direct computation involving (5.2]). O

If s; and sy are sections of E such that their pointwise inner product
(s1,52)g is in L'(X), we will say that the inner product (sy, $2)r2(E) COn-
verges, and define it as the integral of (s1,s2)g over X.

Lemma 5.6. For all T € By, (L*(E))Y, s € T'w(E)Y and o € T(E),
[(Av2(T)s,0) 2y | < NTNI(s,0) 2 (m)l-

In particular, this inner product converges.
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Proof. Let J C N be a finite subset (depending on 7', s and o) such that
ZjeJ¢j =1 on supp(o), and for all j € N\ J, (T'¢js,0)r = 0. Then

(AV(T)s,0) p2()| = (T D 55,0) oy
JjeJ
<N wis:0) pagmy| = ITM(s,0) 22y,

jedJ

O

5.3 Relation to the integration trace
In this subsection, we suppose that X/G is compact. Consider the map @©0
in (2.4).
Lemma 5.7. For all k € C}_(X; L*(E))“,
I AV(R)ll (12 (m)e) = II(1 @ 1)(k & 0)l[534)-

Lemma 5.8. If X/G is compact, then Av has a unique extension to a -
homomorphism

Av: C} .«

(X5 L2(B))Y = K(LT(B)Y).
Proof. If X/G is compact, then C}. (X/G; L2 (E)Y) C K(LA(E)Y). So the
claim is that Av is continuous with respect to the norm || - ||max,c¢ and

the operator norm on K(L2(E)Y). And Lemma [E7 implies that for all
K € Ciy(M; L2(E)),

| AV(K)”B(L%(E))G < £ @ Ollmax = |£lmax,c

because I ® 1 is a *-representation of C}, (X; L?(E) ® L*(G))¢ c LY(G) ®
K(H). O

Proposition 5.9. The following diagram commutes:

(G LA(E)®) 2% Ko(C i (X))

Avl El

Ko(K) = Z ——— Ko(Cloux (@)

Ko(C
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As in Section 4.4 of [24], consider the map
TR: Ol (X: LA(E))Y — L}(G) ® K(L*(E))

such that for k € G} (X;L*(E))Y and g € G, TVR(/{)(Q) is the operator
with compactly supported Schwartz kernel given by

(TR(%)(9)) (z,2") = x(z)x(z")gr (g z,2'),

for z,2’ € X. We will use the following fact in the proofs of Lemma [5.7 and
Proposition [5.91

Proposition 5.10. There is a unitary isomorphism n: H = L?(E) such

that for every conjugation-invariant map 7: L'(G) — C, the following dia-
gram commutes:

Croe (X; LA(E))G 20 O, (X LA(E) ® L(G))S

o |

LY(G) ® K(L*(E)) LYG) ® K(H)
T®1\L T®1l
K(L(E)) i K(H)

This is essentially Proposition 4.10 in [24]. There a specific map 7 is used,
but its only property used in the proof of this proposition is conjugation
invariance.

Consider the isometric embedding j, : L4(E)¢ — L?(E) given by point-
wise multiplication by y. It induces (jy)«: K(L2(E)®) — K(L?(E)), given
by

) [ XTo if s=xo for o € LA(E)Y;
(x)«(T)s = { 0 ifsc (XL%(E)G)J‘,

for all T € K(LA(E)Y) and s € L?(E). Consider the map
I®1: LNG) @ K(LA(E)) — K(L*(E)).
Lemma 5.11. For all s € C}_ (M; L*(E))%,

(I ®1) 0 TR(K) = (jy)s(Av(T))).
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Proof. Let k € Cf (X; L*(E))%, and write
= (I ® 1)(TR(x)).

a b
r=(%a)
with respect to the decomposition L?(E) = xL4(E)% @ (xL2(E)9)*.
If s € L*(E) and z € X, then it follows from the definitions that

(Ts / / Narlg—ta, 2)s(a') dg dar'. (5.5)

For z € X, set
-1 / /
// Ngk(g™'x,2")s(z') dg dx’.

It follows from left invariance of dg that o is a G-invariant section of F.
And xo € L*(E), so 0 € LA(E)%. So the image of T lies inside xL2(E)%,
which means that ¢ = d = 0.

Because I and TR are #-homomorphisms,

( Z: 8 > = T* = (I ®1)(TR(k")).

Write

Since the image of (I®1)(TR(x*)) lies inside xL2(E)% by the same argument
as for x, we find that b* =0, so b = 0.
Ifoe L%(E)G, then it follows from (5.5]), G-invariance of k, o and dm,
and from (2.5 that
Txo = x Av(k)o.

Soa:jXOAV(/{)Ojgl. O

Proof of Lemma [5.7 and Proposition [5.9. Proposition[5.10] with 7 = I, and
Lemma [5.1T] imply that the diagram

Cron (X3 L(E))G —2% O (X5 L2(E) @ L(G))C

o |

K(L3(E)Y) LNG) @ K(H)
(jx)*l I®1l
K(L*(E)) = K(H)
commutes. This implies both Lemma [5.7] and Proposition O
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5.4 Averaging operators on Hilbert C*-modules

As in Subsection B.I] we write A := C,. (X; L*(E))¢_. By ([27) and Lem-

max loc®
mas 5.1l and 5.8, we obtain a surjective *-homomorphism

Av: A — K(LA(E)).
This extends uniquely to multiplier algebras, giving
Av: L4(A) = B(LA(E)S). (5.6)

We return to the setting where X = M is a Riemannian manifold, as in
Subsection B.11

For clarity, we will use subscripts A and L?(E) to denote functional
calculus of operators on the Hilbert module A and on the Hilbert space
L?(E), as in the following lemma.

Lemma 5.12. Let f € Cp(R) such that f € Cy(R), or f(z) = O(x) as
x — 0. By functional calculus on the Hilbert A-module A, we can form the
operator

f(D)a € La(A).

Via the usual functional calculus, we can form the operator
F(D)r2m) € BLY(E))°.

Let k € CZ(M;L2(E)C .. Let T, € B(L*(E))Y be the operator with

Schwartz kernel k. Then the operator f(D)Lz(E) o Ty has a smooth kernel,
and so does

f(D)a(k).

These two smooth kernels are equal.

Proof. For an operator S € B(L?(F))“ with a smooth kernel with finite
propagation, and for all n € N, the operator D"f(D)S = f(D)D"S is
a bounded operator on L?(E). (Indeed, D™S has a smooth, G-invariant
kernel with finite propagation, so it defines a bounded operator since M/G
is compact.) Since D is elliptic, it follows that the image of f(D)S lies in
the smooth sections, so that this operator also has a smooth kernel. Let
f(D)r2g)k be the smooth kernel of f(D)r2gy o 1.

Next, suppose that f(x) = (x £i)~!. The unbounded operator D i on
A is given by applying D %+ to the first coordinate of a smooth kernel. The
element f(D)4(r) lies in the domain of this operator, and

(D +i)(f(D)a(r)) = & = (D £0)(f(D)r2(k)5)-
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So f(D)a(k) = f(D)r2pyk € Cgo.(M; L*(E))$ .. Since the functions z —
(x +14)~! generate Cy(R), the claim follows for all f € Cy(R).

Now suppose that f € Cy(R), and f(z) = O(x) as  — 0. Then g(z) =
f(x)/x defines a function g € Cy(R). The preceding arguments imply that

f(D)a(k) = Dg(D)a(k) = Dg(D)r2(pyk = f(D)r2(m) k-
|

We will use the following relation between the averaging maps in (5.4])
and (5.0 in the proof of Theorem

Lemma 5.13. Let b € Cp(R) be such that b(x) = xg(x) for all z € R, where
g € Co(R) has compactly supported Fourier transform. Then

Av(b(D)a) = Av2(b(D)12(p)) € K(LF(E)Y).

Proof. The map (5.6]) is uniquely determined by the property that for all
ke Aandall S e Ly(A),

Av(kS) = Av(k) Av(S) and Av(Sk) = Av(S) Av(k).

In fact, Avis already determined by these properties for « in the dense subal-
gebra C2° (M; L2(E))¢ .. So the claim is that for all kK € CS2(M; L2(E))¢

loc»
Av(kb(D)a) = Av(r) Avy2(b(D)2);

Av(b(D)ak) = Avy2(b(D)2) Av(k). (5.7)

The second equality in (5.7)) is true, because by Lemmas and B.12]
Avpa(b(D)12) Av(s) = Av(b(D) o) = Av(b(D)ar).
The element xb(D)4 is defined as
L,ob(D)s € Ka(A) = A.

Here L, is left composition with x. Lemma [5.12] implies that for all x, s’ €
C2 (M; L2(E))C ., the element £b(D) 4k’ has a smooth kernel, equal to the

loc?
composition of the kernels of  and of b(D)2x’. By associativity, that equals
the composition of the smooth kernels of xkb(D);2 and k. So kb(D)4 €
O (M; L2(E))¢., and its kernel is the smooth kernel of kb(D)r2. Hence,

loc»

by Lemma 5.5
Av(kb(D)a) = Av(kb(D)r2) = Av(k) Avi2(b(D)2).
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6 The invariant index

In this section, we use the averaging maps from Section [l to prove Theorem

B9

6.1 The index of Av(b(D))

Let b be a normalising function as below Proposition 3.3l That proposition
implies that

Av(b(D))?> — 1 = Av(b(D)? — 1) € K(LA(E)%).

So ;‘Rf(b(D)) is a Fredholm operator.

We will prove Theorem [3.9] by proving Propositions and [6.2] below.
Here, to be precise, by the index of the odd-graded operator Av(b(D)) on
LZ(E)Y, we mean the index in the graded sense; i.e. the index of its restric-

tion ;‘Rf(b(D))+ to even-graded sections.

Proposition 6.1.
index(Av(b(D))) = index(D)C.
Proposition 6.2.
index(Av(b(D))) = I, (index°(D)).
Proof. Consider the boundary maps

05 Ky(B(LH(E)Y)/K(LH(E)Y)) = Ko(K(LF(E)Y));
Da: Ki(L£a(A)/Ka(A)) = Ko(Ka(A)).

Naturality of boundary maps with respect to *-homomorphisms implies that
index(Av(b(D))) = s[Av(b(D))+] = Av(9a[b(D)4])

Here we used the fact that Av(b(D)). = Av(b(D)4). Proposition 5.9 and
[277) now imply that the right hand side equals

L.(94[b(D)4] @ 0) = L. (index'9°(D)).

To prove Theorem [B9] it remains to prove Proposition [6.11
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6.2 The index of Av(b(D)) and the invariant index

In this subsection, we prove Proposition The main point of the proof is
dealing with the fact that sections in L%(E)G are not square integrable in
general.
We may choose the normalising function b so that b(t) = O(t) as t — 0.
Then the operator
b(D
S = —( )
D
on L?(E) is bounded.

Lemma 6.3. For all 0 € T®°(E) and s € T™(E) N L2(E)%, the inner
product (Ds, SO’)Lz(E) is well-defined and equals

(AV(b(D))s, ) 12()-

Proof. As in Subsection [5.4] we use subscripts A and L? to distinguish func-
tional calculus of operators on the Hilbert A-module A and on L?(E).

Let (bj);";l be a sequence in Cy(R) converging to b in the sup-norm,
such that for each j, and all z € R, bj(z) = xg;(z), where g; € Cy(R) has
compactly supported Fourier transform. Then g;(D)2, and hence b;(D) 2,

has finite propagation. So by Lemma 5.8} for all s € T'C and o € T'.(E),

[(Avre(bj(D)p2)s, o) r2(m)| < [0;(D) 2l (s, 0) 2k |- (6.1)
We also have
155Dzl < 155Dl 62)
To see that this is true, note that by Lemma [5.12]

bj(D)r2 = bj(D)a =: k € Cior(M; L*(E))i3

loc*

And

kB2 = Ik @ 0llgre(m)or2(@) < Ik S Ollmax = l&lla = (|5l £,(a)-

The inequality is true, because the defining representation of B(L?*(E) ®
L*(G)) in L*(B)®L?(G) trivially restricts to a +-representation of C;, (M; L*(E))% .
So (6.2)) follows.

By the first point of Theorem 3.2,

b;(D) — b(D) € LA(A).
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By Lemma [5.13),
Av(b;(D)) = Avpa(b;(D)) € B(L3(E))“.

This equality, together with (GII) and (62]) implies that

(Av(b;(D))s,0) 12 ()| < 1b5(D)ll 24 ) 1(5:0) 22|
and hence

(Av(b(D))s,0) 2 = lim (Av(b;(D))s, o) 12(p).

J—00

This means it suffices to prove the claim for each finite-propagation approx-
imant b;(D), namely that

(gf(bj(D))Svg)m(E) = (AVLZ(bj(D))Sva)LZ(E) = (DsasjU)LZ(E)-

To prove the latter equality, let 7; > 0 be the propagation of b;(D), and
let the partition of unity {3 }72, be as in (G.4]). Suppose these functions
are real-valued. For o € T'2°(F), only finitely many of the functions 1 have
supports closer than r; to supp(c). Let K, C N be the set of the corre-
sponding indices k. Then for s € I'°(E) N L2.(E)%, since b;(D) commutes
with finite sums,

(Av(b;(D))s,0) 2wy = (b;(D) > s, 0)r2(m)
ke,

= (s, > bj(D)o) () = (5,b;(D)0) 12(my = (Ds,S;0) 12(p).
KER,

O

Lemma 6.4. .
ker(Av(b(D)) C T (E)

Proof. Let s € ker(A\(I(b(D)). Then
s = Av(1 — b(D)?)s.

Here we used the fact that 1—b(D)? € C2 (M; L?(E))¢ . That also implies

loc®

that the right hand side is smooth, and hence so is s. O

Lemma 6.5. The space S(I'°(E)) is dense in L*(E).
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Proof. Let s € L*(E), and let (sj)52, be a sequence in I'?°(E) converging
to s in L2 norm. Then

HSS — Ssj||L2(E) — 0.

So S(I'°(E)) is dense in im(S). Now if t € I'°(E), then ¢t € dom(S™1).
Hence t = S(S7't) € im(S). So im(S) € L?(E) is dense, which completes
the proof. O

Proof of Proposition [6. By elliptic regularity, ker(D) C I'*°(E). So Lemma
[6.3] implies that

ker(D) N LA(E)® C ker(Av(b(D))).
We claim that for all s € ker(xf(b(D))) NI'*(E) and 0 € I'2°(E),
(DS, O')LQ(E) =0. (6.3)

Indeed, Let o € I'2°(E). By Lemmal6.5] there is a sequence (s;)52, in I'2°(E)

such that (Ss;)52, converges to o in L?%norm. For all s € ker A;(b(D)) N
['*°(E), Lemma [6.3] implies that (Ds, Ss;)r2(g) = 0. So (6.3)) follows.
By Lemma [6.4] (6.3) implies that

ker(Av(b(D))) C ker(D) N L3(E)C.

So
ker(Av(b(D))) = ker(D) N L3(E)C,

including gradings. U

7 Quantisation commutes with reduction

In this section, we use Theorem 3.9 to prove Theorem [B.111

7.1 A localisation estimate

Let U be a relatively cocompact, G-invariant neighbourhood of p~1(0).
Since U is relatively cocompact, we can enlarge Z, outside which the es-
timate ([3.4]) holds, if needed so that its interior contains the closure of U.
Fix a G-invariant metric on M x g — M, where G acts on g via the
adjoint action. Let ||u||* be the norm-squared of the Spin“moment map
with respect to this metric. Let v* be the vector field on M induced by the
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map M — g dual to p with respect to this metric. Explicitly, if m € M and
X € gis dual to u(m) € g* for the metric at m, then

v (m) = XM(m).

By G-invariance of the metric on M x g, this vector field is G-invariant.
Let f € C*°(M)% be a nonnegative function with cocompact supportE such
that f =1 on Z. For any h € R, and any p € Z>q, consider the operator

Dypi= DY + hd —ifc(v")

on I'*°(S ® LP).

Let x € C®°(M) be a cutoff function for the action by G on M, as
in (2). The proof of Theorem B.I1] is based on the following localisation
property. This is an analogue of Theorem 2.1 in [40]. Let ¢ be as in ([B3.4]).

Proposition 7.1. There are a constant h > 1 and a pg € Z>q, such that
for all p > po and all s € T(S @ LP)E supported outside U,

IXDppsli2(sgrey = min(e®/2,1)xsl72 (s 0)- (7.1)

Simlarly to [18], 20, [30} 40], the proof of Proposition [7I]is based on an ex-
pression for squares of deformed operators, Proposition This expression
is deduced from an expression in [20].

For p € Z>p and h € R, let IA)p,h be the operator on xI'%9(S ® LP)%
defined by

Dy, n(xs) = xDpns,
for all s € T'22(S ® LP)“. Note that

XI2(S @ LP)Y c ' (S @ LP).
Let D; p, be the formal adjoint of IA)p,h with respect to the L?-inner product.

Proposition 7.2. There is a G-equivariant vector bundle endomorphism B
of S ® LP, which vanishes at points where f and df vanish, such that, on
G-invariant smooth sections,

A

D; yDypp = (D™ +h®)? + B+ (2p + 1)27 f| > (7.2)

?In earlier work on deformed Dirac operators of the form D+ifc(v*) on non-cocompact
manifolds [5] [6] 18] 20} 22], the function f was required to grow at infinity in a suitable way.
In our setting, we actually need f to vanish outside a cocompact set (this is used in the
proof of Proposition [T]). This is possible, because invertibility at infinity is guaranteed
by the term ®.
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Proof. This follows from Corollary 8.5 in [20]. Compared to that corollary,
there is an additional term ® added to the Dirac operator DX’. This leads
to an extra term {®, —ifc(v*)}, which we absorb into B. We have also
absorbed a term proportional to ||v*||? that is present in Corollary 8.5 in
[20] into B. O

Proof of Proposition [7.1. On the cocompact set Z\ U, the positive function
|1]|? is bounded below by a positive constant. Also, ||B|| is bounded on Z.
Choose pg € Z>¢ such that, on Z \ U,

(2po + 1)27|p|® > [|B]| + 1. (7.3)
Let h > 1 be such that, on the cocompact set supp(f),
he? /2 > || B (7.4)

We claim that the estimate (ZI]) holds for these choices of py and h.
Because of (3.7,

(DY 4+ h)? = (D¥)? 4+ h2®? + h{D, ®}.

(Here, as in ([B.8]), we omit ‘®17»’.) Hence Proposition implies that, on
G-invariant sections,

Dz, Dyp = (DY) + 1?®% + h{D,®} + B + (2p + 1)2m f | ul|>-
On M \ supp(f), we have B =0, so
D% Dy = (D)2 + h?®% + h{D, ®}
And, since h > 1,
h?®* + h{D, ®} > .
On supp(f) \ Z, we similarly have
K202+ h{D,®}+B+(2p+1)2n f||u|* > h®>+{D,®}+h~ B > 2 —h7Y|B|| > ?/2.

Finally, on Z \ U, the last two terms on the right hand side of (7.2])
satisfy
B+ (2p+ 1)2nf|lull® = B+ (2p + 1)2n|p]? > 1

if p > po as in ([Z.3). O
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7.2 Proof of Theorem [3.11]

Lemma 7.3. Let D be any operator as in Subsection [31l, where E is 7./2-
graded. Let S € End(E)Y be an odd, fibrewise self-adjoint vector bundle
endomorphism which is zero outside a cocompact set. Then (D + S)? has a
uniform lower bound outside a cocompact set, and

indexS°(D + S) = indexiS¢(D) € Ko(Cx,.(G)).

Proof. The operator D + S is elliptic, and (D + S)? has a positive lower
bound outside ZUsupp(S). Hence its index is well-defined. Since supp(S) is
cocompact, S is a bounded operator on L?(E). Hence the path of operators

t— b(D +tS)

is continuous in the operator norm, where b is a normalising function as in
Subsection B.J1 This defines an operator homotopy showing that

[b(D +tS)+] € K1(La(A)/Ka(A))
is independent of ¢. O
Lemma 7.4. For all h > 1,
indexS°(D + @) = indexS°(D + hd).

Proof. Set . 3
Diy:=D+ (1—t+th)®

For all t, we have (1 —t 4+ th) > 1, so that
D? = D?+ (1 —t+th)(D® + ®D) + (1 — t + th)?®* > (D + ®)2.

This has a positive lower bound outside a fixed cocompact set. So, for a
suitable normalising function b, we have an invertible element

b(Dy)4 € LA(A)/KA(A)

for all t € [0,1]. Because ||®|| is bounded, Lemma .7l implies that this path
of operators is continuous in the operator norm. Hence the class

[b(Di)+] € K1(La(A)/Ka(A))

is independent of ¢. O
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Proof of Theorem [311. Let p be as in Subsection [Z.Jl Let h and pg be as
in Proposition [/.1] and fix p > py. By Lemma [T.4]

index2®(D,) = indexiS°(D" 4 hd).

And by Lemma [7.3] and the fact that f has compact support,

index{° (D™ + h®) = index9°(D, 1,).

So by Theorem [3.9]

L (indexi2°(D,)) = index(D, )€

Proposition [l implies that the index on the right hand side localises near
£ ~1(0) in the sense of Proposition 3.1 in [30], Proposition 6.3 in [I8] and
Proposition 8.2 in [20]. Hence the result follows as in Section 7 of [18]. The
only difference is the addition of the vector bundle endomorphism ®, but
this does not affect the index on M. Indeed, Lemma [7.3] implies that we
may replace ® by an endomorphism that is zero near x~'(0) and equal to

® outside a cocompact set, without changing the index. O
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