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Purpose: The ability to accurately quantify immunohistochemically labeled retinal
ganglion cells (RGCs) on wholemounts is an important histopathological determinantin
experimental retinal research. Traditionally, this has been performed by manual or semi-
automated counting of RGCs. Here, we describe an automated software that accurately
and efficiently countsimmunolabeled RGCs with the ability to batch processimages and
perform whole-retinal analysis to permit isodensity map generation.

Methods: Retinal wholemounts from control rat eyes, and eyes subjected to either
chronic ocular hypertension or N-methyl-D-aspartate (NMDA)-induced excitotoxicity,
were labeled by immunohistochemistry for two different RGC-specific markers, Brn3a
and RNA-binding protein with multiple splicing (RBPMS). For feasibility of manual count-
ing, images were sampled from predefined retinal sectors, totaling 160 images for Brn3a
and 144 images for RBPMS. The automated program was initially calibrated for each
antibody prior to batch analysis to ensure adequate cell capture. Blinded manual RGC
counts were performed by three independent observers.

Results: The automated counts of RGCs labeled for Brn3a and RBPMS closely matched
manual counts. The automated script accurately quantified both physiological and
damaged retinas. Efficiency in counting labeled RGC wholemount images is accelerated
40-fold with the automated software. Whole-retinal analysis was demonstrated with
integrated retinal isodensity map generation.

Conclusions: This automated cell counting software dramatically accelerates data
acquisition while maintaining accurate RGC counts across different immunolabels,
methods of injury, and spatial heterogeneity of RGC loss. This software likely has poten-
tial for wider application.

Translational Relevance: This study provides a valuable tool for preclinical RGC neuro-
protection studies that facilitates the translation of neuroprotection to the clinic.

Introduction of retinal ganglion cells (RGCs).! Currently, IOP
reduction is the only proven treatment; however,

additional neuroprotective strategies that attenuate

Glaucoma describes a group of ocular conditions RGC loss would be highly clinically desirable.
united by a clinically characteristic intraocular pressure Quantification of RGCs on retinal wholemounts
(I0P)-associated optic neuropathy with associated loss is a commonly used outcome measure in preclinical

Copyright 2020 The Authors
tvst.arvojournals.org | ISSN: 2164-2591

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. @. BY _NC_ND


mailto:robert.casson@adelaide.edu.au
https://doi.org/10.1167/tvst.9.6.28
http://creativecommons.org/licenses/by-nc-nd/4.0/

translational vision science & technology

Novel Software for Counting Retinal Ganglion Cells

studies investigating potential efficacy of neuroprotec-
tants to RGCs in animal models. A variety of labeling
techniques can be used to assess RGC survival, includ-
ing the use of retrograde tracers, such as Fluorogold;
labeling with neuronal markers, such as NeuN, Neuro-
trace, or BIII-tubulin; or immunolabeling with RGC
specific markers, including Brn3a, RNA-binding
protein with multiple splicing (RBPMS), and gamma
(y)-synuclein.” ' Each marker provides a different
methodological challenge. For example, quantifying
RGCs using markers, such as y-synuclein, that stain
axons as well as somas is problematic from a technical
perspective, because labeled axon fibers often obscure
underlying RGCs.’

RGC quantification is typically approached by
selectively imaging predefined sectoral regions of the
retina at set distances from the optic nerve and count-
ing the number of RGCs within each region.'* Semi-
automated or manual counting methods are normally
used, and these are labor-intensive, time-consuming,
and open to subjective bias. Sectoral differences in
RGC density can also produce bias in the results,
unless the entire retina is imaged.!” Rapid automation
of RGC quantification on retinal wholemounts, there-
fore, has the potential to accelerate data collection and
reduce bias. It could also potentially be applied to the
whole retina, enabling the generation of RGC isoden-
sity maps.!%-16

A limited variety of software packages have
been developed to expedite cell counting in rodent
retinal wholemounts. These include commercially
available software, such as MetaMorph,'® Stereoln-
vestigator,!® and IPlab;*® novel programs created
by individual laboratories'®?!; and open-source
programs, such as ImageJ and CellProfiler, with
macros providing automated cell counting function-
ality (see Table 4). However, the wider adoption of
these programs has been limited, perhaps due to the
limited applicability to different immunolabels or tissue
mediums.

Here, we present an automated, freely available
software validated for RGC-specific labels Brn3a and
RBPMS in rodent retinal wholemounts. It has the
capacity to differentiate individual cells in a cluster,
batch process images with the same immunolabel, and
export the results in tabular format to a spreadsheet to
expedite data analysis. This program has been validated
on RGC-specific immunolabels on confocal low magni-
fication (x10) images, can tolerate both naive and
injured retina interchangeably, and has the added
feature of automatically subtracting dirt or artifacts in
the case of imperfect immunostaining. It also has the
ability to provide whole-retinal analysis and integrated
retinal isodensity map generation.
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Materials and Methods

Animals and Procedures

This project was approved by the Animal Ethics
Committees of SA Pathology/Central Adelaide Local
Health Network and the University of Adelaide
(Adelaide, Australia) and conformed with the
Australian Code of Practice for the Care and Use
of Animals for Scientific Purposes, 2013, and with
the ARVO Statement for the use of animals in vision
and ophthalmic research. Adult Sprague-Dawley rats
(aged 10 weeks+, <230 g; n = 18) were housed in
a temperature- and humidity-controlled room with
12-hour light and dark cycles. Food and water were
provided ad libitum.

The experimental plan comprised three cohorts of
animals (groups 1 to 3) that were immunolabeled and
analyzed as discrete batches. For group 1, experimen-
tal glaucoma was induced in the right eye, leaving the
untouched left eye to serve as a control. This group
comprised » = 10 injured eyes and n = 10 naive
eyes and all eyes were analyzed for Brn3a. Glaucoma
was induced using a slightly modified protocol of the
method described by Levkovitch-Verbin et al.?> Rats
were humanely euthanized after two weeks. Elevated
IOP over the course of two weeks using this model
causes measurable loss of RGCs and their axons.”>**
Group 2 comprised n = 4 untreated rats of which one
eye per rat was analyzed for RBPMS. For group 3, an
intravitreal injection of 40 nmol of NMDA (5 ul in
sterile saline) was performed in the right eye, leaving
the untouched left eye to serve as a control. Group 3
comprised # = 4 injured eyes and n = 4 naive eyes and
all eyes were analyzed for RBPMS. Rats were humanely
euthanized after one week, because NMDA causes a
marked loss of RGCs at this time point.>>-2

Tissue Processing and
Immunohistochemistry

All rats were terminally anesthetized by transcardial
perfusion using physiological saline. Whole eyes were
removed and placed in 10% neutral buffered forma-
lin for one hour. Posterior eye-cups were carefully
dissected and each retina was prepared as a flattened
wholemount via four relaxing incisions. Retinas were
permeabilized with phosphate buffered saline (PBS;
137 mM NaCl, 5.4 mM KCI, 1.28 mM NaH,POy, 7
mM Na,HPO,; and pH 7.4) containing 1% Triton X-
100 (PBST-1%), blocked in PBST-1% containing 3%
(v/v) normal horse serum, then incubated for three
days at 4°C in the same solution containing either goat
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Figure 1.

anti-Brn3a primary antibody (1:600; SC-31984; Santa
Cruz Biotechnology, Santa Cruz, CA) or rabbit anti-
RBPMS primary antibody (1:500; ABN1362; Merck
Millipore, Bayswater, Victoria, Australia).

After multiple washes with PBST, wholemounts
were incubated overnight at 4°C with alexa fluor
488 or 594-conjugated donkey anti-goat secondary
antibody (for Brn3a) or alexa fluor 488 or 594-
conjugated donkey anti-rabbit secondary antibody
(for RBPMS; 1:500; Invitrogen, Mulgrave, Victoria,
Australia), before rinsing in PBS and mounting using
anti-fade mounting medium.

Imaging of Retinal Wholemounts

Wholemounts were examined under a confocal
microscope with images captured at 10x magnifica-
tion, corresponding to a sampling region of 700 x
525 um. For feasibility of manual counting, of this
sampled region the image was cropped to 150 x 150
um and these fames were manually and automati-
cally quantified. For Brn3a (group 1), images were
sampled from both central and peripheral regions
of each of the superior, inferior, nasal, and tempo-
ral quadrants, corresponding to eight images per
sampled retina. For RBPMS (groups 2 and 3), images
were sampled from central, middle, and peripheral
regions of each superior, inferior, nasal, and tempo-
ral quadrants, corresponding to 12 images per sampled
retina (Fig. 1). The primary aim of this study was
to compare the accuracy of manual counts to corre-
sponding automated cell counts in each sampled image
for each immunolabel rather than measuring the effect
of any intervention on RGC density. Therefore, the
manual cell count was directly compared with the
corresponding automated cell count of each immuno-
labeled image and results collated for each RGC
marker.

To demonstrate RGC quantification of entire retinal
wholemounts with corresponding retinal isodensity

Flowchart summarizing the protocol followed for manual and automated analysis of immunolabeled images.

map generation, high resolution images of two
naive entire retinal wholemounts immunolabelled with
Brn3a were captured on Hamamatsu NanoZoomer
2.0-HT fluorescence module at 20x magnification.
These images were viewed using the Hamamatsu
NanoZoomer Digital Pathology system and exported
as a TIFF.

Algorithm Development

The code steps through five procedures that “de-
clump” and count “circular” cells within an image. The
first three steps are designed to intensify the boundary
between cells. Existing programs can count cells when
the images are well structured with clear boundaries
between cells but are often compromised by: (1) cell
clumping or overlapping; (2) nonuniform illumination;
(3) artifacts; (4) markers camouflaged by background
noise; and (5) irregularity of shape.

The fourth step undertakes an analysis of the
prepared image and identifies areas of circular patterns
using an efficient Hough transform. An optional fifth
step checks the validity of the cell count generated
in the fourth step by comparing the integrated image
intensity within the proposed cell to a user specified
threshold, the degree to which the cell is filled as well
as the overlap between neighboring cells. An optional
heat map can be generated from the output from
steps 4 and 5 based on the industry standard Kernel
Density Function using a gaussian Kernel. Please refer
to Supplementary Material S1 for a more detailed
explanation of the algorithm development. A graphic
user interface (GUI) for the algorithm was developed
to facilitate ease of use, with an example and explana-
tion of its functions demonstrated in Figure 2.

Batch Processing

The user has the option to batch-process a direc-
tory of images using either a set of parameters



translational vision science & technology

Novel Software for Counting Retinal Ganglion Cells

TVST | May 2020 | Vol.9 | No.6 | Article 28 | 4

Browse

Current Directory  /Volumes/NO NAME/Cell counting program/Brn3a Pyruvate/Control Normal Settings Advanced Seﬂings Heat M. »
Individual Results Batch Results

PUY19_L infl.png Stain Colour Cell Size
PUY19_L inf2.png Original Image Stain Channel Noise Floor Analysis Cell Mask Normal Results Advanced Results Ho>
PUY19_L_nast.png ®)Red i i
PUY19_L nas2.png % Zoom &%) Pan ' Reset i Save Image Min Cell Radius 5]
PUY19_L_supl.png )
AV S Gieen] Max Cell Radius 10/
PUY19_L_temp1.png
PUY19_L_temp2.png ) Blue (Max <= Min x 3)
PUY42_L inf1.png
PUY42_L int2.png Clean Images Zoom & Pan
PUY42_L_nas1.png
PUY42_L_nas2.png
PG v| Remove foreground speckles V] Link

Analyse

Normal Settings | Advanced Settings | Heat M >

CellFill
Min Fill Percentage 50| [¥]Check Cells

Min Fill Intensity 02| [¥|Check Overtap

Histogram Thresholds
Overide Defautt Calculation
Lower
Upper
Cell Mask - Adaptive Intensity Thresholding
| Adaptive Thresholding  Sensitivity | 0.4

PUY10_L_sup2.png 124 124

A.

Orginalimago St Chamel | Nose Floor Anayis | ColMask | Normal Resuts | Advancod Resuls Orginal image

id Swveimage L Zeom % Pan

E.

Figure 2.

__| Remove background blur

B.

Normal Settings Advanced Settings HeatM. >

Cell Fill

Min Fill Percentage 50| [v|Check Cells

Min Fill Intensity 0.2| |v|Check Overlap

Histogram Thresholds
Overide Default Calculation

Lower
== Copy to Table

Upper

B Copy to Clipboard
Cell Mask - Adaptive Intensity Thresholding

/| Adaptive Thresholding ~ Sensitivity | 0.4

SuinChamel | Noise Floor Anaysis | ColMask | Normal Results | Advanced Resuts C

N ot

s ©

d Sov mage Gopy Raw D

< ieneral Settings Big Image Settings Batch

Batch mode runs through all the images in the
current directory and counts the cells in the images.
The settings defined on the 'Basic Settings' and
‘Advanced Settings' panels are used as is.
Results are placed in the Results Table and can be

saved after the analysis has been completed.
O )

D, Progress

Execute

T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100

Interface of the Automated Cell Counting Program Software. (A) The “browse” option allows the user to access image folders and

files, as listed in the upper left window titled “Images in Directory.” (B, C) Images can be individually analyzed with user-defined parame-
ters calibrated to accurately capture and quantify cells, or (D) a “batch” analysis can be performed of all images in that directory using the
highlighted tab in the bottom left window. In this window, the user can select the settings necessary to direct automated cell capture and
quantification by the algorithm, such as (B) stain color, cell size (setting the radius of the circular sample, which defines the immunolabeled
cell), “clean images” option to remove foreground speckles (i.e. artifact) or background blur (background noise), (C) “cell fill” defining the
minimum threshold by which the immunolabel should occupy the circular sample (expressed as a percentage), and minimal fill intensity
(i.e. brightness / intensity of stain color taken up by the cell). The “check cell” option will circumscribe the cells identified by these param-
eters in the “advanced results” tab to allow the user to check automated cell capture against the original image. The “normal results” tab
circumscribes cells based on all user-defined parameters other than the “cell fill” and “minimal fill intensity” options. (B, E) The “link zoom”
feature allows a zoomed-in area of interest from the original image to be mirrored in the “normal results”and “advanced results” tabs to allow
the user to manually check the accuracy of automated cell capture and adjust the settings to optimize the result. Tabulated results can be

exported to Excel for ease of data analysis.

determined in advance by the user or by letting the
program automatically threshold a number of images
stored together using the above method. Processed
images are annotated to indicate the number of cells
counted, along with the estimated cell boundaries.
Results are provided in tabular format for further statis-
tical analysis with user controls simplifying the data
export to comma separated value (CSV) format.

Data Acquisition

The program was initially calibrated for each respec-
tive immunohistochemical label prior to batch analysis

(i.e. all images of that label were seamlessly analyzed
using the same objective parameters set by the user to
ensure adequate cell capture). Calibrations taken into
account were as follows: (1) stain color channel (red,
green, and blue), (2) cell size (pixels), (3) option to
remove foreground speckles (artifact) or background
blur for imperfect immunostaining, (4) cell fill (i.e. the
minimum fill percentage was set to 50%, indicating that
for cells abutting the border of an image at least 50%
of its sphere must be visible for it to be counted, and
minimum fill intensity was set to 0.2 (20%), to exclude
background artifact and poorly visible background
cells without clear border definition), and (5) adaptive
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Representative immunolabeled images for Brn3a and RBPMS (A-E) and the corresponding processed images ready for

automated counting (F-J). Scale bar = 25 um, 10 x magpnification immunolabeled confocal photomicrographs, 150 x 150 um cropped
frames. Arrows demonstrate faintly visible cells in the background with poor border definition, which were excluded from both manual and

automated counts.

Figure 4.

Examples of counting rules followed by manual observers (please note zoomed-in images are not to scale). (A) Brn3a immuno-

labelled RGCs. (B) RBPMS immunolabelled RGCs. Arrows (—) highlight faintly visible cells with poor border definition and dashed arrows;
(—>) demarcate cells of which <50% of the cell was visualized on the image border, both of which were excluded from manual counts.

thresholding of 0.4 that calculates a locally adaptive
lighting threshold with a sensitivity toward threshold-
ing more pixels as background than foreground. These
parameters were in keeping with manual “counting
rules,” as described below. Apart from being aware of
which particular label was being quantified, automated
analyses were performed in a blinded fashion (i.e. the
operator remained unaware of the corresponding
manual count for each image). An example of the end
point of processing to produce automated counts of
RGCs for each particular label and group is shown
in Figure 3.

Manual RGC counts were acquired by three
independent observers using the “point tool” counter
with ImageJ software (imagej.net, version 2.0.0-rc-
43/1.51q). Observers were provided with “counting
rules” to follow, namely: (1) cells that were abutting
the boundary of the image were only to be counted
if at least 50% of the cell was visualized (i.e. forming
a semicircle, but no less), and (2) poorly visible cells in
the background were to be excluded if their cell bound-
aries were not clearly evident (Fig. 4). Observers were
blinded both to counts from other observers and to that
of the automated cell counting software.
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Table 1. ICC (95% Cl) of Immunohistochemical Labels (Correlation Between all Three Observers)
Group 1: Brn3a Group 2: RBPMS Group 3: RBPMS
(OHT model) (Controls only) (NMDA model)
Naive retina 0.876 0.924 0.977
(0.826 t0 0.914) (0.882 to 0.954) (0.964 to 0.986)
Injured retina 0.991 N/A 0.917
(0.987 to 0.994) (0.871 to 0.950)

Cl, confidence interval; ICC, intraclass correlation coefficient; N/A, not applicable; NMDA, N-methyl-D-aspartate; OHT, ocular

hypertension.

Table 2. Bland-Altman Tests - Bias (95% Limits of Agreement) (GT versus Automated Counts)

Group 1:Brn3a

Group 2: RBPMS Group 3: RBPMS

(OHT model) (Controls only) (NMDA model)
Naive retina —0.231 —0.314 —0.058
(—7.209 t0 6.747) (—12.054to0 11.426) (—12.130t0 12.014)
Injured retina —3.03 N/A 5.18

(—18.553 to0 12.493)

(—4.700 to 15.060)

GT, ground truth (average of manual counts of three independent observers); NMDA, N-methyl-D-aspartate; N/A, not appli-

cable; OHT, ocular hypertension.

Table 3. Linear Regression Analysis — Slope of Best Fit (R2) (GT vs Automated Counts)
Group 1:Brn3a Group 2: RBPMS Group 3: RBPMS
(OHT model) (Controls only) (NMDA model)
Naive retina 0.909 0.801 0.962
(0.979) (0.875) (0.979)
Injured retina 0.949 N/A 0.945
(0.991) (0.978)

GT, ground truth (average of manual counts of three independent observers); NMDA, N-methyl-D-aspartate; N/A, not appli-

cable; OHT, ocular hypertension.

The average manual count of the three independent
observers was set as the ground truth (GT). Agree-
ment among the observers was quantified using the
intraclass correlation coefficient (ICC; Table 1). Agree-
ment between the GT and the automated cell count was
investigated using Bland-Altman plots (Table 2, Fig.
5), and linear regression analysis (R2; Table 3, Fig. 6)
was used to model the relationship between these two
variables. To obtain accurate estimates of the SDs in
the Bland-Altman plots, which accounted for the corre-
lated nature of the data (multiple images from each rat
retina), a linear mixed model was constructed and the
variance components analyzed.?’-?® Statistical analyses
were performed by using statistical software GraphPad
Prism 8 and R statistical Software. Integrated whole

retinal analysis and retinal isodensity map generation
are demonstrated (Fig. 7).

Overall Performance of Automated versus
Manual Counts on Brn3a and RBPMS
Immunolabeled Retina

There was excellent agreement among the three
experienced observers performing the manual cell
counts (Table 1) and the automated script performed
equally well for both healthy and damaged retinas
(Table 2, Table 3, Fig. 5, Fig. 6). Each immunolabeled
image took a manual observer approximately 2 minutes
to count, whereas the automated program was able
to batch process 40 immunolabelled images within 2
minutes. Hence, efficiency in counting immunolabeled
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Figure 5.

Bland-Altman Plots of Ground Truth (GT) versus Automated Counts in both naive and injured retina. The uninterrupted line (___)

indicates the bias. The dashed lines (—) indicate the 95% limits of agreement. Group 1, Brn3a OHT model (n = 80 frames for both naive and
injured retinas); group 2, RBPMS naive cohort (n = 48 frames for naive retinas only); group 3, RBPMS NMDA model (n = 48 frames for both

naive and injured retinas).

RGC wholemount images can be accelerated by 40-fold
using the automated script.

Bland-Altman tests (Table 2, Fig. 5) in Brn3a and
RBPMS immunolabeled retinal images taken from
naive retina across all groups (1-3) calculated a bias
close to zero (—0.314 to —0.058). This indicates that, on
average, there was almost no difference between manual
and automated counts. There was more ambiguity
in the average difference in manual and automated
counts for group 1 Brn3a immunolabeled injured
retinal images and group 3 RBPMS immunolabeled
injured retinal images, given the larger bias (—3.03
and 5.18, respectively) and 95% limits of agreement
(—18.553 to 12.493, and —4.700 to 15.060, respec-
tively). The quality of immunohistochemistry was
varied both within and between sampled groups, for
naive and injured retina, and the quality of immunohis-
tochemistry labeling can influence the accuracy of the
automated cell counts. Injured retinas generally exhib-
ited poorer quality immunolabeling, with increased
background staining and artifact, which may account
for the difference.

Linear regression analysis (Table 4, Fig. 6) of
automated versus manual counting for group 1 (ocular

hypertension model) Brn3a-labeled RGCs demon-
strated a slope of best fit of 0.909 (naive retina)
and 0.949 (injured retina) with R2 of 0.979 and
0.991, respectively. Similarly, group 3 (NMDA model)
RBPMS-labeled RGCs demonstrated a slope of best
fit of 0.962 (naive retina) and 0.945 (injured retina)
with R2 of 0.979 and 0.978, respectively. Given that
the slope was almost 1, this indicates that essentially no
underestimation occurred. For group 2 naive RBPMS-
labeled RGCs, linear regression analysis of automated
versus manual counting demonstrated a slope of best
linear fit of 0.801 with R2 of 0.875, indicating a slight
underestimation of RGC using the automated method.

Whole Retinal Analysis and Retinal
Isodensity Map Generation

The program has the integrated ability to efficiently
provide whole-retinal RGC quantification and gener-
ate a corresponding retinal isodensity map (“heat
map”; Fig. 7). The script is able to automatically
delineate the retinal wholemount borders and is able
to exclude small areas of artifact. Retinal wholemount
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Linear regression analysis in naive and injured retina demonstrated a strong linear correlation between the averaged manual

counts of three observers (Ground Truth [GT]) and automated cell counts. Group 1, Brn3a OHT model (n = 80 frames for both naive and
injured retinas); group 2, RBPMS naive cohort (n = 48 frames for naive retinas only); group 3, RBPMS NMDA model (n = 48 frames for both

naive and injured retinas).

Table 4. Reported Automated Methods for RGC Counting in the Rodent Retina

Author Immunostain Free to use? Accuracy
Guymer et.al. (2020) Brn3a Yes
- Naive retina R2 =0.979
- Injured retina R2 =0.991
RBPMS
- Naive retina R2 =0.875-0.979
- Injured retina R2 =0.978
Nadal Nicholas et al. (2009)'° Brn3a No R2=0.98
Geeraerts et al. (2016)'° Brn3a Yes R2 =0.96
(widefield images)
R2 =0.99
(confocal images)
Salinas-Navarro et al. (2009)?' Fluorogold No R2 =0.99
Denias et al. (2002)"” Fluorogold Yes R2 =0.94
Danias et al. (2003)'° Fluorogold Yes R2 =0.95
Dordea et al. (2016)*° DAPI and gl Tubulin Yes R2 =0.64
(optimal quality images)
R2=0.22

(poorer quality images)

RGC automated counts are displayed in a summary
table, which can be exported into an Excel (Microsoft
Office) spreadsheet, and the counted image with
corresponding heat map can be saved as a high-
resolution JPEG or PNG file. Retinal wholemount
RGC automated counts can be visually checked

against the original immunolabeled image by zooming
in on any area of interest. The density of cells across
the image is calculated using a Kernal Density Estimate
(KDE) to generate the heat map. Please refer to Supple-
mentary Material S1 (Heat Map Generation section)
for a more detailed explanation.
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Figure 7.
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Representative images of (A, B) original image of two naive retinal wholemounts immunolabeled with Brn3a (captured on

Hamamatsu NanoZoomer 2.0-HT fluorescence module, 20 x magnification, viewed using the Hamamatsu NanoZoomer Digital Pathology
system, exported as a TIFF), (C, D) respective whole-retinal RGC quantification and (E, F) corresponding retinal isodensity maps (“heat maps”).

Scale bar =1 mm.

Discussion

Manual counting has traditionally represented the
standard way to accurately quantify RGC popula-
tions on immunohistochemically labeled retinal whole-
mounts. This procedure, however, is a labor intensive
and time-consuming task prone to subjectivity relat-
ing to sampling bias and inter/intra-observer variabil-
ity. This, in turn, has motivated us to develop software
built on the MathWorks product to perform automated
cell counts. Our program, which we intend to make
freely available, has the versatility of being able to
analyze RGC-specific labels (Brn3a and RBPMS) and
can handle both naive and diseased retinas. We have
validated this software against the manual counting
of three independent observers and proven that it
possesses an accuracy is at least comparable to quoted
data in the recent literature'?-15-17:29:39 (Table 4). We
have also demonstrated this script’s ability to provide
efficient automated RGC counts of entire retinal
wholemounts, permitting the generation of retinal
isodensity maps to allow the detection of regional
differences in RGC density. These features have been
seamlessly integrated into the script, thereby avoiding
use of commercially available software packages.

The only limiting “human factor” in quantifying
cells with our software is the definition of the criti-
cal objective parameters, such as pixel diameter based
on cell size and percentage fill within each circular
rim, color channel, and histogram thresholds. Once
calibrated to ensure adequate cell capture for each
respective label, then an automated batch analysis of a
series of images can be efficiently performed. Although
there may be a slight over- or under-representation of
true RGC counts, automated cell counting using fixed
objective parameters is more likely to generate consis-
tent RGC counts upon repeated sampling than using a
manual method with considerable potential subjectiv-
ity, and, therefore, variability.?!

Our program provides a useful research tool with
a number of attractive features: (1) wide spectrum
of automation, including both image optimization
and RGC quantification; (2) applicability to a variety
of different antigens (validated to date for the RGC-
specific labels Brn3a and RBPMS) with accuracy
comparable to manual counting and the existing litera-
ture; (3) interchangeability in handling both naive and
injured retinal wholemounts; (4) ability to differentiate
clusters or clumps of cells with acceptable accuracy;
(5) “batch processing” function with seamless transfer
of tabulated results to a spread sheet application for
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ease of statistical analysis; and (6) automated whole-
retinal analysis with integrated retinal isodensity map
generation.

In addition to these features, our software also
provides the ability to manually adjust and optimize
cell capture for weaker cell labeling by changing
histogram parameters, cell size, percentage fill, cell
intensity, and adaptive thresholding. Moreover, the
accuracy of cell detection can be manually checked by
the “link zoom” feature, which enables the user to zoom
in on sections to check that exclusion parameters are as
accurate as possible.

Comparison of our Novel Software to
Existing Automated Counting Software

Danias et al.!*"!7 were arguably the first to conceive
and validate a freely available software called Image-
Tool to provide semi-automated counts of Fluorogold
labeled RGCs on rat, and then later mouse, retinal
wholemounts. This software, however, requires time-
intensive preprocessing steps using separate software
(Adobe Photoshop, Adobe Systems, Inc., San Jose,
CA) for images prior to generating the automated
cell counts.!” Image preprocessing is integrated into
the script of our software, provided that the actual
immunolabeling and resultant image capture are of
reasonable quality.

The Vidal-Sanz laboratory also developed a script
validated for Fluorogold-labeled RGCs on rodent
retinal flat mounts and this was later validated for
Brn3a-labeling with excellent accuracy (R2 > 0.94)
when compared to manual counting.*'>-? In addition,
they also validated its use in quantifying immuno-
labeled photoreceptors.*> Importantly, this program
is also able to distinguish between clusters of cells
and automates the image optimization stages. From
a mosaic of 154 frames of the retinal whole-mount
photographs, retinal isodensity maps were generated
using Adobe Photoshop CS 8.0.1 (Adobe Systems,
Inc.), IPP (IPP version 5.1 for Windows; Media
Cybernetics, Silver Spring, MD), and Sigmaplot
(Sigmaplot version 9.0 for Windows; Systat Software,
Inc., Richmond, CA) commercial software.?’ The only
potential disadvantage to its widespread use is that
it requires the commercially available software Image
Pro-Plus. Geeraerts et al.'® developed an ImageJ plug-
in to provide semi-automated counts of Brn3a-labelled
RGCs on mouse retinal wholemounts with excellent
accuracy (r > 0.99) that permitted the generation
of retinal isodensity maps integrated into the script.
Manual interventions that are required involve the
outlining the borders of the retina and excluding
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damaged regions/ artifacts from the retinal image.'® We
have integrated both whole-retinal analysis and retinal
isodensity map generation into our script, which does
not require the user to outline the retinal borders. A
degree of image optimization is also integrated into
our script, to enable the exclusion of small artifacts
(“speckles”) and background blur. Heavily damaged
regions or large artifacts, however, do need to be
removed prior.

To our knowledge, Dordea et al.”’ were the
first to validate automated RGC counts for Beta-
I tubulin and DAPI-labeled RGCs with use of
a machine-learning plug-in using CellProfiler open
source software. It was estimated that data acquisition
was accelerated 10-fold by this automated program.
This software requires both an image preprocessing
step involving binary contrast enhancement carried out
through ImagelJ software prior to quantification using
CellProfiler, and an initial supervised machine-learning
step to ensure accuracy in automated cell recognition
for each label.*°

An open source Image]J plug-in was developed and
validated by Hedberg Buenz et al.3 for quantifying
hematoxylin and eosin-labeled mouse retinal whole-
mounts (R2 = 0.953 to 0.993). RGCs were identifi-
able with reasonable accuracy (83.2%) by using random
forest classification based on morphological criteria.’!
Similar to our program, this plug-in initially requires
the user to manually calibrate the program with a
“training” set of images to ensure accurate RGC
detection prior to performing automated RGC counts.
Despite using high magnification (200x) photomi-
crographs and manually subtracting artifacts from
photomicrographs prior to automated counting, some
difficulty was encountered with missed nuclei associ-
ated with cell clumps or concealment by the nerve fiber
layer.> Hedberg Buenz et al.>} also report that the
program is cumbersome when used in conjunction with
immunohistochemistry or retrograde tracers, thereby
limiting its versatility.

Byun et al.** also developed an Image] plug-in for
nuclei detection on transverse retinal sections, which
to date has not been validated for use on whole-
mounts. Last, Bizrah et al.>> developed a MATLAB
script to automatically quantify apoptotic RGCs in
vivo using fluorescent Annexin V labeling with Detec-
tion of Apoptosing Retinal Cell (DARC) imaging (r =
0.978, R2 = 0.956). This is particularly attractive as
the ability to capture and automatically quantify RGC
populations in real-time throughout disease evolution,
ex vivo, could provide further robustness to preclinical,
and even clinical, trials whereas significantly reducing
required sample sizes with repeated sampling, acceler-
ating workflow and research output.

30



translational vision science & technology

Novel Software for Counting Retinal Ganglion Cells

Challenges to Counting RGCs

Indistinct cells: Over- or underestimation of RGC
counts can potentially lead to erroneous conclusions
in animal models of retinal pathology. Our program
fundamentally works by separating the cell image
from the background image (see Supplementary Fig.
S1: Algorithm Development, steps 1-3). By calculat-
ing and then removing the background blur, even
the faintest cells are observable. When calibrating the
program prior to analyzing each immunolabel, the
researcher is able to correct for over- or underestima-
tion of RGCs by adjusting the objective parameters
and then proceeding to “batch” analyze their image
data set.

Our program is able to discriminate cells in
clusters with excellent accuracy for Brn3a and RBPMS
immunolabels. This is achieved through highlighting
the intensity of the boundaries between cells by ensur-
ing the processed image channel intensity occupies the
complete intensity range. However, there is still a small
window of sampling error whereby a larger cell may be
incorrectly counted as two or more separate cells, or
vice versa.

Sampling bias: Unless the entire retina is analyzed
for RGC quantification, sampling error can arise.
RGC density in the rat retina ranges according to
location, with the highest density peaking in the most
central area (~3000 cells per mm?) and lowest in the
peripheral retina (~600 cells per mm?).3® However, the
spatial distribution of RGCs can vary between rats
of the same species and between eyes of the same
rat.!” There may also be sectoral RGC loss in differ-
ent disease models.!*3” Therefore, although it is scien-
tifically acceptable to quantify RGCs in predefined
areas sampled at a set distance from the optic nerve
in hemiretinas or quadrants,'* this method ultimately
accepts that there is variability compared with count-
ing all cells in the retina. Sampling the entire retina
is arduous unless automated counting is utilized to
expedite the process. Our automated cell counting
program can be used to quantify RGCs in the entire
retina to permit isodensity map generation and avoid
possible sampling bias.

Image quality: Although various preprocessing
techniques can be used to fine-tune poorer quality
images, optimal image capture is the prerequisite for
accurate quantification of any cellular label. Our
software has inbuilt image preprocessing capability to
remove artifact and background noise and sharpen
image quality. It does, however, require images to be
homogenously labeled, be reasonably clean without
significant large debris obscuring cells, and to be well
focused in a single plane. These are obviously techni-

TVST | May 2020 | Vol. 9 | No.6 | Article 28 | 11

cal issues that should be addressed prior to attempting
automated quantification of cells with any software, or
even manual counting.

Conclusions

Quantifying immunostained RGCs on whole-
mounts remain an important outcome measure in
preclinical animal studies. Manual or semi-automated
methods are labor-intensive, time-consuming, and
subject to inter- and intra-observer variability. Our
automated cell counting software, validated for the
RGC specific immunostains Brn3a and RBPMS in
rodent retinal wholemounts, accelerates data acquisi-
tion and reduces analytical subjectivity. Our automated
software demonstrated accuracy and reproducibility
in both naive and injured retinas when compared with
manual counting and has the ability to perform whole-
retinal analysis with integrated retinal isodensity map
generation.
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