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This work explores the technical challenges that emerge when applying bio-inspired op-

timisation methods to real-world engineering problems. A number of new heuristic algo-

rithms were proposed and tested to deal with these challenges. The work is divided into

three main dimensions:

i) One of the most significant industrial optimisation problems is optimising renewable

energy systems. Ocean wave energy is a promising technology for helping to meet fu-

ture growth in global energy demand. However, the current technologies of wave energy

converters (WECs) are not fully developed because of technical engineering and design

challenges. This work proposes new hybrid heuristics consisting of cooperative coevo-

lutionary frameworks and neuro-surrogate optimisation methods for optimising WECs

problem in three domains, including position, control parameters, and geometric param-

eters. Our problem-specific algorithms perform better than existing approaches in terms

of higher quality results and the speed of convergence.

ii) The second part applies search methods to the optimization of energy output in wind

farms. Wind energy has key advantages in terms of technological maturity, cost, and

life-cycle greenhouse gas emissions. However, designing an accurate local wind speed

and power prediction is challenging. We propose two models for wind speed and power

forecasting for two wind farms located in Sweden and the Baltic Sea by a combination

of recurrent neural networks and evolutionary search algorithms. The proposed models

are superior to other applied machine learning methods.

iii) Finally, we investigate the design of water distribution systems (WDS) as another

challenging real-world optimisation problem. WDS optimisation is demanding because

it has a high-dimensional discrete search space and complex constraints. A hybrid evo-

lutionary algorithm is suggested for minimising the cost of various water distribution

networks and for speeding up the convergence rate of search.
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Chapter 1

Introduction

Real-world problems in engineering domains are generally categorised as challenging

problems of optimisation, as the majority of them are large-scale, nonlinear, multi-modal,

constrained and computationally expensive. Where some of these characteristics emerge

together in a real engineering problem, we can see the low efficiency of the traditional

numerical methods and existing global optimisation approaches. In this thesis, we study

these challenges of technical optimisation problems through several case studies belonging

to three different domains. Working with multiple real-world engineering problems in

various domains enables us to understand better the practical challenges in employing

bio-inspired optimisation methods in an industrial setting and proposing appropriate

algorithms with high efficiency. This thesis contains three parts, which we will describe

in detail throughout the rest of this chapter.

• Part I: Wave farm Power optimisation, we propose several fast and efficient opti-

misers to improve the produced total power output of a wave farm with different

sizes in various sea sites.

• Part II: Wind farm Power Forecasting, we design two accurate forecasting models

to model the wind speed and power output of wind turbines in a wind farm through

a combination of evolutionary algorithms and deep neural networks.

• Part III: Water distribution network design optimisation, we develop a new hybrid

evolutionary framework that consists of three distinct phases for optimising the

water distribution networks with various dimensions.

1
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1.1 Part I: Wave Farm Power Optimisation

The development of renewable energy technologies has increased remarkably throughout

many countries in response to the future global energy demand. Among currently avail-

able renewable sources, wave energy is one of the most promising forms of renewable

energy due to, the high energy density of wave environments and source’s minimal en-

vironmental impact [18]. However, wave energy technologies are not fully-developed in

terms of technical and economical issues, and no device has reached the expected level

of reliability for full-scale commercialization [19].

A Wave Energy Converter (WEC) is a device, commonly in the form of a buoy, which

captures ocean wave energy and then converts it to electricity. One of the popular options

for improving the levelized cost of energy (LCoE) of WEC technology is to expand the

number of WECs in a wave farm. The use of a farm of converters (rather than one big

device) presents the following advantages [19, 20]: it allows for the sharing of mooring

points and electrical cables connections, increases power production, allows maintenance

to be performed without the need to shut down the whole power output, and facilitates

cost-effective deployment. The amount of power generated by a farm or an array of WECs

depends on several factors including the number of WECs, their arrangement relative

each other, the power take-off (PTO) configurations on each buoy’s tethers, geometric

parameters (buoy shapes and dimensions) and wave climate [21, 22]. To illustrate the

complexity of WECs optimisation problem [19], Figure 1.1 shows a simplified landscape

of the most significant WECs system variables. Arrows indicate relationships and the

impact of factors on the produced power output. The figure shows that there are complex

mutual relations among variables. In this thesis, we focus on three dimensions of the

WEC optimisation problem: placement of the converters (layout design), adjusting the

PTO parameters (control optimisation) and geometric settings (shape and size of WEC).

Interactions between buoys in a wave farm are very complex to model, and the evaluation

of each layout is computationally expensive, sometimes taking several minutes or even

hours in a large wave farm. This complexity increases quadratically in proportion to

increases in the number of converters [23]. Furthermore, the high number of decision

variables in large farms expands in proportion to the size of the search space. These

features lead to a very challenging environment for optimisation. In terms of WECs

position optimisation, The most pertinent current research question is how to arrange

WECs in a size-constrained environment with respect to safety distance constraints, in

order to maximise the constructive hydrodynamic interactions and minimise destructive

interactions of buoys.
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geometry [26] is generally planned for the prevailing sea conditions in a given location

and a control technique is subsequently required to develop the performance of the device

for sea states other than the design sea state.

There has been considerable research into the WEC optimisation problem. Various bio-

inspired optimisation methods have been proposed to deal with the associated challenges,

like Genetic Algorithm (GA) [31–34], improved GA [35, 36], hybrid GA (GA + multiple

analytical scattering (MAS) method) [37], hidden genes genetic algorithm (HGGA) [38],

CMA-ES [35, 39, 40], Differential Evolution (DE) [41] and 1+1EA [39], glow-worm swarm

optimisation (GSO) [35], particle swarm optimisation (PSO) [42, 43], surrogate-model

based optimisation method [40]. However, these earlier studies exhibited the following

deficiencies:

1. an overly simple environmental wave model with just one or a few wave directions

and wave frequencies,

2. most of the studies optimised a wave farm of small size,

3. application of a relatively large number of layout evaluations (costly and inefficient

optimisation techniques) in order to optimise the WEC problem.

Our Contributions

In Part I of this thesis, we offer significant contributions to optimise various aspects of

wave energy converters problem. Part I consists of three chapters addressing the layout

design, PTO settings and geometric parameters optimisation. The main contributions

of this Part are summarised as follows:

• In Chapter 2

1. In Section 2.1, we propose a new heuristic approach to optimising the WEC

arrangement, which is a hybrid search consisting of stochastic local search

combined with downhill search. This approach is an improvement on previ-

ously published methods in terms of performance and convergence speed for

a reasonably large wave farm (16-buoy). Furthermore, we deploy a more re-

alistic and practical wave model compared with the previous works with 50

wave frequencies and seven different wave directions. Another most important

contribution is that it explores the use of surrogate functions in a partial eval-

uation [44] framework. The experiments with the partial evaluation method



Chapter 1 Introduction Page 5

show that it can be a suitable alternative method for solving expensive op-

timisation problems. Nevertheless, this method requires more investigations.

The outcomes of this research are published in [1].

2. In Section 2.2, we extend on our prior work [1] substantially. We begin by

expanding the findings of [1] to include nine new heuristic search methods,

including a novel surrogate-based search model. This model consists of a

learned model-based local search interleaved with numerical optimisation, all

applied to the original irregular wave model. Furthermore, it includes four

new real wave regimes from the southern coast of Australia (Adelaide, Perth,

Tasmania and Sydney) using a higher granularity of wave-directions than the

previous studies [1, 32, 39]. A comprehensive and systematic comparison is

made to assess the performance of the new hybrid heuristic method, and it

can outperform previous optimisation methods in terms of both convergence

rate and higher total power output for 16-buoy layouts. These findings are

published in [23].

3. In Section 2.3, we design an adaptive neuro-surrogate optimisation framework

that is composed of a surrogate Recurrent Neural Network (RNN) model.

This model is trained with a very limited number of layout observations and

estimates the power output of the new arrangement. It is also a fast meta-

heuristic optimiser which can adjust the model’s hyper-parameters in order

to deal with the expensive WECs position optimisation problem. Experi-

mental results confirm that the adaptive neuro model is a fast and effective

optimisation technique in comparison to previous optimisation methods. The

best-found wave farm layout designs and other comparative results have been

published in [4].

4. In Section 2.4, we extend previous WECs position optimisation work by using

a new hybrid multi-strategy evolutionary framework. This framework com-

bines smart initialisation, a binary population-based evolutionary algorithm,

discrete local search and continuous global optimisation. A more detailed en-

ergy model is also applied to place buoys in large farms of up to 100 WECs.

We compare the performance of our proposed method with a wide variety of

state-of-the-art optimisation approaches, including six continuous evolution-

ary algorithms, four discrete search techniques and three hybrid optimisation

methods. Results indicate that this approach significantly outperforms the

applied meta-heuristic methods in this work. The details of our approach and

its optimisation results have been published in [6].
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• In Chapter 3

1. In Section 3.1, we propose a new hybrid heuristic approach. This approach

entails combining a symmetric local search with a Nelder-Mead Simplex direct

search, in combination with a back-tracking optimisation strategy. This strat-

egy serves to optimise the position and PTO parameters of a wave farm simul-

taneously. Furthermore, we explore a comprehensive range of modern optimi-

sation techniques including alternative, cooperative, hybrid and well-known

off-the-shelf evolutionary algorithms for evaluating and comparing their per-

formance for optimising this expensive and complex problem. Finally, we

show that our hybrid method is able to outperform previously defined search

techniques by up to 3% [3].

2. In Section 3.2, the wave energy converter model is extended using additional

details relating to the power take-off settings for each wave frequency. This

extension entails a large-scale optimisation problem. Accordingly, we extend

the prior our work [3] by introducing a new hybrid cooperative co-evolution

algorithm that consists of a symmetric local search plus Nelder-Mead. We also

use a cooperative co-evolution algorithm (CC) with a backtracking strategy in

order to optimise the positions and PTO settings of WECs, respectively. The

experimental study reveals that the hybrid cooperative framework performs

best in terms of both runtime and quality of acquired solutions. This approach

and all associated experimental results have been published in [45].

• In Chapter 4

1. In Section 4.1, we present an efficient hybrid approach for the optimisation of

geometric parameters and PTO configurations. This approach is intended to

maximise the total harnessed power output and minimise the levelised cost of

energy (LCoE) of a cylinder-shape WEC. The model of WEC applied in this

paper is the CETO 6 technology [46] being under development by Carnegie

Clean Energy Limited in Australia. Six different optimisation methods are

applied in order to assess and compare the performance of the best-known

evolutionary algorithms. The optimisation results represent that our approach

performs better than other evaluated evolutionary algorithms [7].

1.2 Part II: Wind farm Power Forecasting

Recently, there has been an acceleration in the extension of power by industries, along-

side increasing global demands for energy and restrictions in the reserves of traditional
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energy resources. Within this setting, wind power (an economically and environmentally

friendly source of renewable energy) has expanded rapidly and attracted much atten-

tion [47]. However, because of intermittent and stochastic wind speed characteristics,

forecasting wind power is a challenging process. To design a stable and appropriate in-

tegrated wind power management system, we need an accurate wind forecasting model.

Moreover, the non-stationary attribute of the wind speed can significantly affect the

safety and stability of the energy systems [48, 49], wind farm management, inadequate

power factor, voltage instability and imbalance influence on the performance of electrical

devices. Consequently, improving wind power forecasting models is of numerous interest

in power conversion and management fields.

Recently, several studies [50–52] have strongly recommended applying non-parametric

models like artificial neural networks (ANN) in order to form accurate predictions and

reliable forecasting models. They argue that such models are superior to physical models

considerably. Some of the well-known time series forecasting methods for wind power

prediction include the autoregressive moving average (ARMA), autoregressive integrated

moving average (ARIMA), fractional version of ARIMA (f-ARIMA) [53], recurrent neural

networks (RNNs) [54], Long short-term memory networks (LSTMs) [55], A combination

of principal component analysis (PCA) and LSTM (PCA-LSTM) [56], hybrid LSTM and

Echo State Network (ESN-LSTM) [57] and LSTM with an enhanced forget-gate network

model (LSTM-EFG) [58].

However, the main challenge of applying neural network (NN) and deep NN model to

the forecasting of wind power is in tuning the hyper-parameters. Designing an auto-

matic tuning model, involves porting the models to a new setting and makes it possible

to compare modelling approaches more rigorously. Some recent works that have ap-

plied bio-inspired optimisation method for tuning the neural models hyper-parameters

are including the application of Cuckoo Search Optimization (CSO) method to improve

performance of a Back Propagation Neural Network (BPNN) by adjusting the connection

weights [59], the dragonfly algorithm (DA) to tune RNN hyper-parameters [60], Differ-

ential Evolution (DE), Genetic Algorithm and Grey Wolf Optimiser (GWO) to optimise

LSTM parameters [4, 61, 62].

Our contribution

In Part II of this thesis, we demonstrate two accurate wind speed and power forecasting

frameworks using Deep neural networks and evolutionary algorithms. The principal

contributions of this Part are summarised as follows:
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1. In Chapter 5, we propose a hybrid evolutionary deep forecasting model combining

a recurrent deep learning model (LSTM network), coupled with the CMA-ES algo-

rithm, (called CMAES-LSTM) for predicting the short-term wind speed with high

accuracy. Moreover, we investigate a landscape analysis of the hyper-parameters in

order to represent the impact of each LSTM hyper-parameters on the forecasting

results. Details of this forecasting model and obtained results are published in [9].

2. In Chapter 6, we design a composite Machine Learning approach–namely a hy-

brid neuro-evolutionary algorithm–for precise forecasting of the power output in

wind-turbine farms. We utilise historical data in the supervisory control and data

acquisition (SCADA) systems as input to predict the power output from an on-

shore wind farm in Sweden. At the first stage, to detect and filter noise in the

SCADA measurements, a k-means clustering method and an autoencoder are used

respectively. Furthermore, we propose the use of a self-adaptive differential evolu-

tion (SaDE) algorithm as a hyper-parameter optimiser, as well as a recurrent neural

network (RNN) called Long Short-term memory (LSTM) to model the power curve

of a wind turbine in a wind farm. The components and performance of this model

cab be seen in the published paper [10].

1.3 Part III: Water Distribution Network Design

Optimisation

Water distribution networks present an interesting real-world optimisation problem. Wa-

ter distribution networks are a type of a hydraulic infrastructure that conveys water from

reservoirs to consumers, and are composed of various elements such as pipes, valves,

pumps, tanks and reservoirs. Water distribution systems (WDSs) are indispensable to

the infrastructure of a modern city to satisfy of the water consumption demands posed

by households, agriculture and industry. WDS development is a vital part of dealing

with population expansion. In the majority of cases, the capital cost of WDS expansion

is very high. Furthermore, WDS design presents a challenging optimisation problem with

a high number of search dimensions and constraints. With this in mind, a considerable

number of optimisation techniques have been studied with the goal of minimising the cost

of the designed/extended water distribution systems, including traditional methods, like

linear programming and non-linear programming [63, 64], and evolutionary algorithms

(EAs), such as genetic algorithms [65–68], simulated annealing [69, 70], tabu search [71],

harmony search [72, 73], the shuffled frog leaping algorithm [74] , particle swarm optimi-

sation [75, 76], ant colony optimisation [77–81], memetic algorithm [82] and differential

evolution [83–85]. The principal benefit of applying bio-inspired optimisation methods
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over the traditional methods is that such optimisation methods can handle the specific

characteristics of the WDS design problems. These characteristics include non-linearity

of relationships between individual pipe sizes and pressure at nodes, multi-modality with

many local minima in the cost-function, large dimensions and discrete search space [86].

However, in spite of the promising performance of bio-inspired methods, they are often

time-consuming and require a large number of evaluations.

Our contribution

In Part III of this thesis, we propose the contribution below in order to deal with the

complex challenges of WDS optimisation problems:

• In Chapter 7, we deploy a Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) in pure and hybrid form to various ranges of small- and large-scale

WDS benchmark networks, as well as performing a systematic comparison with

previous results. The hybrid search methods combine CMA-ES with novel greedy

search heuristics in order to make up the violation of solutions found by CMA-ES.

We show that CMA-ES, when combined with a greedy search, performs compa-

rably to the current best search heuristics in terms of runtime and network costs.

Furthermore, this is the first research to explore, as a baseline, the performance

of simple randomised local search (RLS) and a 1+1 Evolutionary Algorithm (1+1

EA). The experimental results and best-found WDS designs are published in [8].
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2.1 A detailed comparison of meta-heuristic methods for

optimising wave energy converter placements

2.1.1 Synopsis

The main focus of the article in this section is on position optimisation of Wave Energy

Converters (WECs) in a more realistic and practical wave model with 50 wave frequencies

and seven different wave directions. The hydrodynamic interactions between WECs in

a farm are complex, extensive, and dependent on local conditions. Furthermore, there

is no straightforward recipe for WEC arrangement. In this section, we propose a new,

fast, effective heuristic consisting of a stochastic local search combined with Nelder-Mead

Simplex direct search intended to optimise the placement of converters. In contrast to the

other optimisation algorithms, which take an ‘all-at-once’ approach, this algorithm places

and optimises the WECs one-at-a-time. The algorithm does this using a three-sample

local search for each buoy placement, followed by a Nelder-Mead search; and makes a

sequential array of converters. The experimental results show that the proposed heuristic

outperforms previous optimisation methods in terms of efficiency and convergence speed.

Reference

[1] Neshat, M., Alexander, B., Wagner, M., & Xia, Y. (2018, July). A detailed com-

parison of meta-heuristic methods for optimising wave energy converter placements. In

Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1318-1325).
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2.1.2 Abstract

In order to address environmental concerns and meet growing energy demand the de-

velopment of green energy technology has expanded tremendously. One of the most

promising types of renewable energy is ocean wave energy. While there has been strong

research in the development of this technology to date there remain a number of techni-

cal hurdles to overcome. This research explores a type of wave energy converter (WEC)

called a buoy. This work models a power station as an array of fully submerged three-

tether buoys. The target problem of this work is to place buoys in a size-constrained

environment to maximise power output. This article improves prior work by using a more

detailed model and exploring the search space using a wide variety of search heuristics.

We show that a hybrid method of stochastic local search combined with Nelder-Mead

Simplex direct search performs better than previous search techniques.

2.1.3 Introduction

Wave Energy Converters (WECs) are of interest to governments and industry as a means

of complementing other renewable energy sources such as solar and wind-power. WECs

have advantages in terms of high availability of resource (over 90%, depending on the

location) [18] and wave energy densities of up to 60kW per square meter of water surface

in prime locations. Individual WECs in the form of buoys can also be produced to have

a high capacity for each unit with current proposals for units with over 1MW each [46] –

providing potential for economies of scale. Finally, WEC’s have a low impact on aquatic

life [87], comparing favourably with other generation technologies.

This study focuses on WECs in the form of fully-submerged buoys. Submerged buoys are

one of the most promising and cost-effective technologies for extraction of energy from

waves [39]. The buoys in this study are hollow metallic vessels, floating a few meters

below the water surface and tethered to the sea floor. Energy is extracted from changes

in tension on the tethers as waves propagate through water. Buoys are usually deployed

in farms or arrays consisting of multiple buoys. This is done for the reason of amortizing

fixed infrastructure cost but also to take advantage of constructive interference between

buoys [21]. To maximise the energy returned by a WEC farm buoys must be placed

to exploit prevailing wave conditions, maximise constructive interference between buoys,

and minimise destructive interference.

The interactions between buoys in a farm are complex, extensive, and dependent on local

conditions. As a consequence there is, as yet, no simple recipe for buoy placement. Re-

search to date on farm design has primarily focused on the placement of semi-submerged
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Table 2.1: Key parameters for WECs simulated in this work

Buoy number 4, 16
Buoy radius 5m

Submergence depth 3m
Water depth 30m
Buoy mass 376 tonnes
Buoy volume 523.60m3

Tether angle 55◦

arrays [31]. Research on placement of fully-submerged arrays [39] has applied two pop-

ular evolutionary algorithms, the (1+1)EA [88] and CMA-ES [89]. This found that a

(1+1)EA with simple mutation performed better than CMA-ES. However, this earlier

work used a greatly simplified environmental model with just one wave direction and

few wave frequencies. The current paper improves on prior work substantially in the

following ways: deploying a more realistic and practical model with 50 wave frequencies

and seven different wave directions; comparing a much broader range of heuristic search

techniques adapted to functioning with a small number of function evaluations; exploring

the use of surrogate functions in a partial evaluation framework [44]; and conducting a

preliminary investigation of the local landscape for buoy placement. As a fair means of

comparison, we examine how various frameworks perform within the context of a limited

(but realistic) computational budget. Through this comparison we show that a hybrid

search consisting of stochastic local search combined with downhill search outperforms

previously published methods in terms of performance for 16-buoy array layouts. We

also describe layouts resulting from these runs.

The remaining sections of the paper are organised as follows. In the next section we

describe the buoy model. The optimisation problem is defined in Section 2.1.5 and the

search methods to be compared are briefly described in Section 2.1.4.2. Section 2.1.6

presents experimental results and finally, Section 2.1.7 discusses these results and can-

vases future work.

2.1.4 Model for wave energy converters (WECs)

This research considers a model for a WEC consisting of a fully submerged three-tether

buoy. Each tether is anchored to a generator placed on the sea floor. The anchors are

assumed to be placed in a triangular pattern below each buoy in a configuration that

optimises the transmission of energy from heave and surge wave motions in the waves,

through to the generators [90]. Table 2.1 gives relevant details of the WECs modelled in

this work.
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2.1.4.1 System dynamics and parameters

The WEC model calculates the energy output of WEC based on a formula of dynam-

ics [91] with three principle force components:

1. The force of wave excitation (Fexc,p(t)) incorporates the forces of incident and

diffracted waves when all converters are in a fixed position.

2. The force of radiation(Frad,p(t)) describes the force of an oscillating body indepen-

dent of incident waves.

3. Power take off force(Fpto,p(t)) is the force applied to the buoys through their tethers.

Because oscillating buoys exert a force on the surrounding water they can interact with

each other at distance. Buoys can interact not only destructively but also constructively,

depending on their relative angles and distances, and depending on the surrounding sea

conditions. In a buoy array the power accruing to a buoy number p is characterised by

Equation 2.1.

MpẌp(t) = Fexc,p(t) + Frad,p(t) + Fpto,p(t) (2.1)

where Mp is the displacement of the pth buoy, Ẍp(t) is a vector of body acceleration in

heave, sway and surge. The final term, describing the power take-off system, is simulated

as a linear damper and spring. For each mooring line two control factors are applied: the

coefficient of damping Bpto and stiffness Kpto. Thus the extended version of Equation

(2.1) for all converters is:

((MΣ +Aσ(ω))jω +Bσ(ω)−
Kpto,Σ

ω
j +Bpto,Σ)ẌΣ = F̂exc,Σ (2.2)

where AΣ(ω)) and BΣ(ω) are hydrodynamic parameters which are derived from the semi-

analytical model based on [92]. In addition,Kpto,Σ and Bpto,Σ are control coefficients

which are tuned to provide the maximum level of isolated buoy power absorption.

In the following, two performance measures are described. To compute the total power

output of the layout, we utilise Equation (2.3):

PΣ =
1

4
(F̂ ∗exc,ΣẌΣ + Ẍ∗ΣF̂exc,Σ)− 1

2
Ẍ∗ΣBẌ∗Σ (2.3)

The second important performance measure used here is the the q-factor (q) of the array.

q measures the efficiency of an entire array of N as compared power output from each

buoy taken in isolation. q is defined in Equation (2.4) as:
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q =
P∑
N · P0

(2.4)

In favorable circumstances q > 1 due to constructive interference, even though the buoys

extract energy from the waves. In this work we aim to maximise the total power output:

PΣ of an array of a given size N within a constrained farm area. Because each buoy in

the array is identical the corresponding q-factor is easily derived from the total output.

2.1.4.2 Optimisation Setup

The optimisation problem here can be stated as:

P ∗Σ = argmaxx,yPΣ(x,y)

where PΣ(x,y) is the average power obtained by placements of the buoys in a field at

x-positions: x = [x1, . . . , xN ] and corresponding y positions: y = [y1, . . . , yN ]. In the

experiments here N = 16.

Constraints All buoy positions (xi, yi) are constrained to a square field of dimensions:

l × w where l = w =
√
N ∗ 20000m. This gives 20000m2 of farm-area per-buoy. In

addition buoys are required to maintain a safety distance of at least 50 metres from each

other. For any layout x,y the sum-total of the inter-buoy distance violations, measured

in metres, is:

Sumdist =
∑N−1

i=1

∑N
j=i+1(dist((xi, yi), (xj , yj))− 50),

if dist((xi, yi), (xj , yj)) < 50 else 0

where dist((xi, yi), (xj , yj)) is the L2 (Euclidean) distance between buoys i and j. The

penalty applied to the power output (in Watts) is ( Sumdist+1)20. This penalty is steep

but continuous which allows better handling of constraint violations during search.

Buoy placements which are outside of the farm area are handled by repeating the place-

ment process.

2.1.4.3 Computational Resources

This study aims to compare a diverse set of search methods in a realistic buoy-layout

optimisation setting. The setting here assumes a limited computational time budget of

three days on a moderately high performance shared-memory parallel platform. In this
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study the hardware platform are compute nodes with 2.4GHz Intel 6148 processors and

with 128GB of RAM. In terms of software, the meta-heuristic frameworks as well as the

evaluative function for PΣ(x,y) were run in MATLAB R2017. The used Matlab license

allows us to run 12 worker threads in parallel.

For each heuristic search method, we exploit parallel processing by either evaluating

individual layouts in a population in parallel or by evaluating all wave frequencies in

parallel. The dimension of parallelism chosen was determined according to which gave the

best performance for each search method. In both cases, if there are enough frequencies

or individuals to make use of the parallel worker threads, up to ten-fold speedups were

achieved.

It should be emphasised that we are not comparing search methods for buoy placement

by simply counting evaluations of PΣ(x,y). This is because the computational cost

of each evaluation varies greatly between search methods depending on the number of

frequencies considered; similarly, run times vary with the number of buoys in the layout.

We ran the experiments on dedicated compute resources to minimise the variance of

the number of evaluations between runs of the same method and thus avoid bias due to

noise or resource contention. In these experiments the standard deviation in the number

of evaluations between trials of the same search method is less than 5%. While this

deviation might seem substantial at first, we shall later see that the algorithms either

tend to converge well before the computation budget is used up, or their performance

variance is not significant.

The computation budget for each single optimisation run is three days (72 hours) using

12 worker threads. In practice, this can give engineers two rounds of what-if analyses

per week.

2.1.5 Meta-Heuristic Search Methods

We list the search methods compared in this study in Table 2.1.4.2. All methods are run

with the computational resources described in the previous section and each method is

run for ten times, with the best output produced by each framework measured at the

end of the trial. The bulk of experiments were run for N = 16 buoys, although we have

also conducted experiments with N = 4 buoys. The dimension of parallelism used in

each is specified in the second column of Table 2.2.

Describing the table in row-order: Random Search (R-S) places buoys at random across

the search field; PE50,µ and PEf,µ are partial-evaluation searches (see Section 2.1.5.1)

evaluating solutions (in tournaments) on randomly selected subsets of unique frequencies;
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Table 2.2: Summary of the search methods used in this paper. All methods are
given the same computational budget. Parallelism can be expressed as per-individual
or per-frequency depending on the number of individuals in the population (see Sec-

tion 2.1.4.2).

Abbreviation Parallelism Description
R-S per-frequency Random Search
PE50,µ per-individual Partial Evaluation[44], all frequencies (PEFull),

population µ ∈ {10, 50, 100}
PEf,µ per-individual Partial Evaluation [44], partial frequencies, f ∈

{1, 4, 16}, µ ∈ {10, 50, 100}
TDA per-individual Algorithm for optimising wind turbine place-

ment from [93]
CMA-ES per-individual CMA-ES[89] all dimensions, µ =′ 4 + int(3 ∗

log(D))ndim , σ = 0.17 ∗Area
CMA-ES (2+2) per-individual Setup for CMA-ES from [39], σ = 20m

CMA− ESPF (2+2) per-frequency All settings are based on [39]
DEPcr per-individual Differential evolution [94], µ = 50, F = 0.5,

Pcr ∈ {0.3, 0.5, 0.7, 0.9}
1+1EAσ per-frequency 1+1EA(all dimensions), mutation step size with

σ ∈ 3, 10, 30(m)
1+1EAs per-frequency 1+1EA (all dimensions) with uniform mutation

in range [0, s] with s = 30 from [39]
1+1EALinear per-frequency 1+1EA (all dimensions) with linearly decaying

mutation step size [95]
1+1EA1/5 per-frequency 1+1EA (all dimensions) with adaptive step

size [95]
Iterative 1+1EA per-frequency Iterative local search - buoys are placed in se-

quence using best of local neighborhood search,
σ = 100(m) for inserting the new buoy,
Mutation step size= (l/10) decreased lineally
(Eq.2.5), Stopping Criteria for optimising each
buoy based on power and number of mutations

LS+NMallDims per-frequency Local sampling + Nelder-Mead search in all Di-
mensions

NM_Norm2D per-frequency Buoys placed in sequence using Nelder-Mead
search, Initial placement normally distributed
from last buoy position, MaxFunEvals=30, for
inserting the new buoy σ = 100(m)

NM_Unif2D per-frequency Buoys placed randomly and then refined us-
ing Nelder-Mead Initial placement uniformly
distributed from last buoy position, MaxFu-
nEvals=30.

LS1 +NM2D per-frequency Local Sampling + Nelder Mead search. Buoys
placed at random offset from previous buoy and
placement refined by Nelder-Mead search. [96],
Stopping criteria for NM for optimising added
buoy (Tolerance=0.1% ∗ Power), σ = 100m
(inserting buoys) and step size based on Equa-
tion 2.5

LS3 +NM2D per-frequency Repeated local sampling + Nelder Mead search.
Placements sampled at three random offsets
from previous location, best placement used as
starting point for Nelder-Mead search.
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TDA is an algorithm for placing wind-turbines described in [93]. CMA-ES applies CMA-

ES to all the dimensions of the search problem with a population determined by the

formula in that row; CMA-ES (2+2) is one of the two major buoy placement search

methods in [39]. DE is differential evolution with population 50 and three different

values for the Pcr parameter (Pcr ∈ {0.3, 0.5, 0.7}); (1+1)EAσ and (1+1)EAs mutate

one buoy’s location at a time using either a normal distribution (σ = 100m) or a uniform

distribution ([0, s]) respectively ; (1+1)EALinear uses a mutation step size that decreases

linearly [95]1; (1+1)EA1/5 uses a step size that becomes larger if more than 1/5th of the

steps are successful in improving fitness and it reduces the step size if less than 1/5th of

steps are successful; Iterative-(1+1)EA is an iterative algorithm (see Section 2.1.5.2) for

one-at-a-time buoy placement; LS+NMallDims is a hybrid-search (see Section 2.1.5.3 for

all hybrid methods) which follows stochastic buoy placement with optimisation by the

Nelder-Mead (NM) simplex direct search [96]; NM_Norm2D and NM_Unif2D are the

same as LS+NMallDims but it uses NM search to refine buoy positions one at a time

rather than all-at-once; LS1 + NM2D alternates stochastic placement and NM search;

finally, LS3 + NM2D conducts a three-sample local search for each buoy placement

followed by NM search. Short descriptions of the more specialised search methods listed

above follow.

2.1.5.1 Partial Evaluation

PE [44] saves evaluation time by evaluating the fitness of an individual just partially. In

our work we applied partial evaluation with randomly selected subsets of frequencies in

each generation, where the number of such frequencies is fixed for the duration of the

run. We used the non-elitist µ + λEA in [44] as the framework for driving evolution.

Note that, because fitness is assessed on partial information it is necessary to include a

single generation at the end of the process where each individual layout is evaluated at

all frequencies so the best-performing individual can be selected. The cost of this last

generation depends on the population. For µ = 100, this time is substantial and 12 hours

must be allocated at the end, leaving 2.5 days to run the actual PE search algorithm.

Proportionately less time is needed for smaller populations. In the meantime, two kinds

of mutations are used. Firstly, the position of buoys are mutated based on uniformly

distributed random numbers in a circle (r = l/16) with a radius of 18(m) and 35(m) for

4 and 16 buoys respectively. Secondly, a normal distribution is employed for resampling

the buoys location with σ = 10(m) (PE −N).
1

Mutation− stepsize = (Initialstepsize) ∗ (1− 0.92 ∗ iter/Maxiter) (2.5)
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Figure 2.1: The wave farm’s power landscape for the insertion of the last buoy of
4-buoy layout into locations across the farm area. Dashed lines show the locations of

the local optima for adding a fourth buoy.

2.1.5.2 Iterative 1+1EA

In contrast to the other (1+1)EA algorithms described in Table 2.2 the Iterative

(1+1)EA method positions buoys one after the other. Each buoy is placed using a

(1+1)EA-like search starting from the previously placed buoy. Step size decreases lin-

early during search (see Equation 2.5). For each buoy the search stops either when the

new buoy has a q-factor of ≤ 1.0, or when a preset number of mutation steps is reached.

The latter is done in order to limit the time spent in the local search as further buoys

remain to be placed.

2.1.5.3 Hybrid Search

In pursuit of a more informed search heuristic, a brief study was conducted to sample the

marginal energy gain resulting from adding a new buoy to the neighbourhood of buoys

that have already been placed. Figure 2.1 shows the results of this landscape analysis for

placing a fourth buoy near three previously placed buoys. Areas of high energy output

are shown in yellow, while the blue chasms represent closeness constraint violations.2

Two important properties are apparent from these graphs. First, is that the landscape,

though multi-modal, is smooth. This means that a search with a local search component
2In fact, the actually underlying 4-buoy layout is the result of comprehensive 4-buoy layout optimi-

sations. For each of the four figures, one buoy was removed and then the landscape mapped using a
grid search. This figure confirms that the underlying layout was indeed a local optimum with respect to
single-buoy mutations.
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may be beneficial. The second property is that, due to positive reinforcement effects,

peak energy output is often in the neighbourhood of previously placed buoys. This

indicates that it might be good to start the search near a previously placed buoy.

These observations have informed the design of the last five search methods in Table 2.2.

The first of these is LS+NMallDims, described in Algorithm 2.1.

Algorithm 2.1 LS+NMallDims
1: procedure Local Sampling + Nelder-Mead Search (all Dims)
2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: x = [x1, . . . , xN ] = ⊥ . x-positions
5: y = [y1, . . . , yN ] = ⊥ . y-positions
6: lastx=size/2; lasty=0 . first buoy position
7: bestEnergy = 0 . Best energy so far
8: bestLayout = [x,y] . Best layout so far
9: search

10: while stillTime() do . Iterative search
11: for i in [1, .., N ] do
12: while not valid (x,y) do
13: xi = randn(σ) + lastx . new buoy position
14: yi = randn(σ) + lasty . new buoy position
15: end while
16: lastx= xi; lasty= yi . Update last buoy position
17: end for
18: ([x,y], energy)= NM_Search(Eval , [x,y]) . Local search
19: if thenenergy > bestEnergy . If better?
20: bestEnergy = energy . Update energy
21: bestLayout = x,y] . Update layout
22: end if
23: end while
24: return bestLayout . Final Layout
25: end procedure

This algorithm repeatedly adds buoys at random offsets from the previous one followed

by a Nelder-Mead local search on all buoy positions. The Nelder-Mead local search

is limited to 10 iterations so that the outer while loop has time to build and test

repeated configurations until the time budget for buoy placement runs out. Inside the

for loop the buoys are placed one at a time with each successive buoy being placed at a

distance, sampled from a normal distribution, from the previous buoy. In this algorithm

the normal distribution has σ = 100m, which is an educated guess informed by the

landscape mapping in Figure 2.1. Note that, for this algorithm, the Eval function is

parallelised on a per-frequency basis.

The next two search methods in Table 2.2 are: NM_Norm2D and NM_Unif 2D are

greedy algorithms that, like LS+NMallDims, place buoys one at a time at a random



Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 24

offset from the previous buoy. However, in these algorithms the NM_Search is run to

optimise each buoy position before proceeding to the next buoy placement. The time

budget for each NM_Search phase is: 3days/N so that there is equal time devoted to

each buoy placement. Note that in this algorithm the call: Eval ([x1,...,x−i],[y1,...,y−1]) is

implicitly passed the arguments for the buoys placed to date so that it can evaluate

the new buoy position [xi, yi] with respect to these. Also note that, due to the shorter

evaluation time for smaller numbers of buoys this equal time allocation results in more

search iterations for earlier buoys which serves as a good foundation for the rest of

the search. The algorithm for NM_Norm2D (normally-distributed offset σ = 100m) is

shown in Algorithm 2.2. NM_Unif 2D (uniformly-distributed offset in range [0, size])

differs from this only in the sampling approach.

Algorithm 2.2 NM_Norm2D

1: procedure Nelder-Mead Search (2 Dims)
2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: x = [x1, . . . , xN ] = ⊥ . x-positions
5: y = [y1, . . . , yN ] = ⊥ . y-positions
6: lastx=size/2; lasty=0 . first buoy position
7: search
8: for i in [1, .., N ] do
9: while not valid (x,y) do

10: xi = randn(σ) + lastx . new buoy position
11: yi = randn(σ) + lasty . new buoy position
12: end while
13: ([xi, yi], energy)=
14: NM_Search(Eval ([x1,...,xi−1],[y1,...,yi−1]), [xi, yi])
15: lastx= xi; lasty= yi . Update last buoy position
16: end for
17: return [x,y] . Final Layout
18: end procedure

The last two search methods in Table 2.2 are: LS 1 + NM2D and LS 3 + NM2D. The

algorithm for LS 3 + NM2D is shown in Algorithm 2.3. This algorithm makes three

samples of the neighbourhood surrounding the last buoy and conducts NM_Search from

the sampled point giving the highest energy. The stopping condition for NM_Search is

also different from previous algorithms with a stopping tolerance of 0.1% in the energy

output. Compared to earlier approaches, this NM_Search configuration devotes rela-

tively little time to the search for early buoy placements, which tend to converge fast,

and more to the later buoy placements which converge slowly. Note that the stopping

tolerance was tuned to make sure the algorithm’s running time is close to three days.

The LS 1 +NM2D is identical to LS 3 +NM2D but with iters = 1.
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Algorithm 2.3 LS 3 +NM2D

1: procedure Local Sampling + Nelder-Mead Search (2 Dims)
2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: x = [x1, . . . , xN ] = ⊥ . x-positions
5: y = [y1, . . . , yN ] = ⊥ . y-positions
6: lastx=size/2; lasty=0 . first buoy position
7: search
8: for i in [1, .., N ] do
9: iters = 3 . Number of local samples

10: bestx = 0; besty = 0; bestEnergy = 0
11: for j in [1, .., iters] do
12: while not valid (x,y) do
13: xi = randn(σ) + lastx . new buoy position
14: yi = randn(σ) + lasty . new buoy position
15: end while
16: energy = Eval([x1, . . . , xi−1, xi, y1, . . . , yi−1, yi])
17: if energy > bestEnergy then
18: bestx = xi; besty = yi
19: bestEnergy = energy
20: end if
21: end for
22: ([xi, yi], energy)=
23: NM_Search(Eval ([x1...xi−1],[y1...yi−1]), [bestx , besty ])
24: lastx= xi; lasty= yi . Update last buoy position
25: end for
26: return [x,y] . Final Layout
27: end procedure

2.1.6 Experiments

In this section, we report on the results of our experiments. The search methodologies

can be divided into single-solution and population-based methods. In the latter group

the sizes of populations used vary from 2 to 100 depending on the algorithm. Figures 2.2

and 2.3 show box-and-whiskers plots for the power output of the best individuals re-

sulting from all the configurations of the all the search heuristics shown in Table 2.2

for determining well-performing 16-buoy layout. Note that, Figure 2.3 is a subplot of

Figures 2.2 showing the outputs for all the variations of PE. The PE variations shown

in Figure 2.2 are full-frequency evaluation variants of the µ + λ algorithm used for PE

with uniform and normally distributed mutation, respectively.

The first observation from both figures is that the differences in the mean output attained

by all methods is less than 20%. This shows that even the most naive search methods

are able to obtain non-trivial power outputs. The second observation is that with the

limited number of function evaluations at hand highly adaptive search heuristics such as
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Figure 2.2: The comparison of the all proposed ideas results from 16-buoy layout in
terms of the best layout per each experiment. With regard to the median performance

, LS3 +NM2D can overcome other methods .
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Figure 2.3: The optimisation results of Partial Evaluation method with three popu-
lation sizes:µ = 10, 50, 100 and different wave frequencies are used (1, 4, 16 and 50(f))

for 16-buoy layout.

CMA-ES and DE only perform moderately well. One potential reason for this is that

small number of evaluations possible, in the order of 300 full evaluations of 16 buoy

layouts in three days, gives little time for these methods to learn the search landscape.3

Another observation is that the (1+1)EAs and the buoy-at-a-time placement algorithms

(with local search) all perform well. The best performing algorithms are the LS1+NM2D

and LS3 + NM2D which are hybrid searches with settings informed by the landscape.

Of these two, the LS3 +NM2D, which does the local sampling appears to have a slightly
3Early experiments with four buoy layouts – which allow thousands of evaluations – show CMA-ES

performing at least as well as other methods.
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higher mean performance but the difference is not significant with this sample size. The

best performance overall of 7608600 Watts is given by one of the runs of LS1 +NM2D.

Examining the PE methods in Figure 2.3, it appears that variants with lower number of

frequencies sampled seem to perform better. These variants are able to perform many

more evaluations than those sampling higher numbers of frequencies, at the cost of having

a less informed and more noisy evaluative function. From both figures it appears that

there is no clear advantage accruing to methods with larger population sizes. This is

likely to be a product of the limited number of evaluations available. Overall there seems

to be an advantage in evaluating on fewer frequencies and using a smaller population.

To examine how the various search methods converged the average fitness of the best

individuals in each population were recorded for each method. These results are plotted

in Figures 2.4 for partial evaluation and 2.5 for all others. Note that, in both sets of plots

the averages were obtained by fully evaluating the population at the sampled time and

extracting the best performing individual for that run — in case of PE, this happened in

post-processing. The top row of Figure 2.4 is ordered by the number of frequencies. As

can be seen there is a clear decrease in the speed of optimisation as the number of sampled

frequencies increases. Moreover the relative advantage in speed of optimisation for small

populations becomes more marked for more evaluated frequencies. In the second row,

ordered by population, the speed of evolution is highest for the lowest population but

starts off a lower base.

In Figure 2.5 the distinct groups of algorithms are observable. The PE full frequency

heuristics start with relatively good performance but have relatively flat fitness curves.

Next the CMA-ES variants progress quickly from a low base and then flatten out in

performance. The DE and 1+1EA variants, respectively, follow smoother and higher

curves. Finally, the LS1 +NM2D starts off a very low base (below the x-axis) and steps

up steeply with initial buoy placements followed by Nelder-Mead search (the shallow-

sloping steps). The overall result of this hybrid algorithm is slightly better overall than

the other methods. Finally, the layout of wave-buoy’s produced by the algorithms

offers some interesting insight into the features of these highly productive individuals.

Figure 2.6 shows the most productive individual layout found in all the search runs.

This layout is built by the algorithm from the x-axis upwards with buoys numbered in

the figure in order of placement. It is clear that the initial placement order forms an

almost straight diagonal line from the bottom sloping upwards to the right. The buoys

then start to slope leftwards toward the front. These placement make sense in terms of

placement of adjoining buoys in the peaks of the power landscape. Note that buoy 8 is

placed in front of the others which reduces the energy output of the buoys behind before

buoy 9 and 10 are placed in the original diagonal pattern. At this point, options that
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global optimisation of these best buoy layout have yielded very little improvement, indi-

cating that substantial improvement will involve more than simply tuning the discovered

layout.

This work also explored partial evaluation by frequency and showed that a small number

of frequencies and a small population yielded the best results in terms of search but still

less effective overall than other methods.

Finally from many observations of different optimal layouts and analysing the landscapes

of the farms, it appears that a positive hydrodynamic interaction can be obtained if buoys

are placed at a relative angle of approximately 45 degrees. This observation might be

exploited in the initialisation phase.

This work can be carried in several potential directions. First new, more informed hybrid

algorithms can be developed. It may be possible to combine smarter initialisation with

iterative local search. Variants of partial evaluation can be used that evaluate on the

energy from a sample of buoys rather than frequencies. If carefully designed such an

algorithm may allow the productive use of crossover as a way of combining individuals

with complementary partial fitnesses. There is also scope to apply this work to an even

more refined model with more wave directions and non-uniform water depth. Finally,

the optimisation can be extended to incorporate a cost model based on sharing tether

points, accounting for the different tether angles and tether lengths that this analysis

would entail.

Our code, layouts, and auxiliary material are publicly available: https://cs.adelaide.

edu.au/~optlog/research/energy.php
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Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 31

2.2 New Insights into Position optimisation of Wave Energy

Converters using Hybrid Local Search

2.2.1 Synopsis

As discusses in the previous section, optimising WEC positions is a challenging research

problem due to the complex and extensive interactions (both constructive and destruc-

tive) between devices. The problem is complicated by the fact that WEC arrangement

strongly affects the farm’s power output. Meanwhile, we revealed in the previous sec-

tion that placing and optimising each WEC, one at a time, at a local or neighbourhood

position of the previous converter strategy results in better performance than the other

global optimisation methods. However, the stochastic local search phase can be a time-

consuming method of optimising a large wave farm. This paper focuses on improving

our prior work by placing the next converter in a relative position informed by peaks

in the power landscape built from sampling positions in a two-buoy model under local

wave conditions. This new approach composed of local search, a surrogate power model,

and numerical optimisation. In the following section, the proposed hybrid method is

compared with other state-of-the-art search methods in five different wave scenarios –

one simplified irregular wave model and four real wave regimes. The new hybrid method

outperforms well-known previous heuristic methods in terms of both quality of achieved

solutions and the convergence rate of searches in all tested wave regimes.

[23] Neshat, M., Alexander, B., Sergiienko, N., & Wagner, M. (2019). New insights into

the position optimization of wave energy converters by a hybrid local search. Published

by Swarm and Evolutionary Computation–journal on [26 July 2020] .
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2.2.2 Abstract

Renewable energy will play a pivotal role in meeting future global energy demand. Of

current renewable sources, wave energy offers enormous potential for growth. This re-

search investigates the optimisation of the placement of oscillating buoy-type wave energy

converters (WECs). This work explores the design of a wave farm consisting of an array

of fully submerged three-tether buoys. In a wave farm, buoy positions strongly determine

the farm’s output. Optimising the buoy positions is a challenging research problem due to

complex and extensive interactions (constructive and destructive) between buoys. This

research is focused on maximizing the power output of the farm through the placement

of buoys in a size-constrained environment. This paper proposes a new hybrid approach

mixing local search, using a surrogate power model, and numerical optimisation. The

proposed hybrid method is compared with other state-of-the-art search methods in five

different wave scenarios – one simplified irregular wave model and four real wave regimes.

The new hybrid methods outperform well-known previous heuristic methods in terms of

both quality of achieved solutions and the convergence-rate of search in all tested wave

regimes. The best performing method in real-wave scenarios uses the active set non-

linear optimisation method to tune final placements. The effectiveness of this method

seems to stem for its capacity to search over a larger area than other compared tuning

methods.

2.2.3 Introduction

Wave energy represents one of the most promising forms of renewable energy due to the

high energy density of wave environments and minimal environmental impact [18].

One of the current-best designs for wave energy converters (WEC) consists of a large

floating buoy tethered to the seafloor. With this design, energy is produced by the motion

of the buoy exerting force on the tether [97]. In some actual deployments, multiple

buoys, laid out in a farm, are able to extract power from the waves more than 90% of

the time [18]. In addition, WECs are able to take advantage of the high energy-density

of marine environments – up to 60 kW per meter of wave front length with a very low

impact on aquatic life [87].

The amount of power produced by a farm or an array of WECs depends on their number,

their arrangement with respect to each other, and the prevailing wave conditions [21, 22].

Thus, generating the appropriate arrangement of WECs in an array is an important factor

in maximizing power absorption.
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Currently deployed designs for WECs produce up to 1 MW per buoy [97]. Thus, to be

of commercial scale, it is necessary for farms to consist of multiple buoys. However, as

the number of converters increases, the optimisation of buoy placement becomes more

challenging because of the complex hydrodynamic interactions among converters. These

interactions can be constructive or destructive, and the geometry of these interactions

depends strongly on the prevailing wave regime in the environment.

In evaluating potential layouts, it is important to use an energy-model that has both

high-fidelity and simulates the best available WEC designs. The model used in this study

[98] simulates the hydrodynamic behaviour of a fully submerged three-tether WEC in

irregular directional waves for several sea sites.

The search space for optimizing array layouts for WECs is multi-modal. Interactions

between buoys in an array are complex to model, and the evaluation of each layout is

expensive, sometimes taking several minutes. This is because of complex and extensive

hydrodynamic interactions between buoys, which in turn depend on the local condi-

tions modelled. These challenges require the use of search meta-heuristics that reliably

optimise buoy configurations using a very limited number of layout evaluations.

Work to date on WEC layouts has primarily employed evolutionary algorithms (EAs),

which combine stochastic search with selection to progressively improve a population of

candidate layouts. In early work [31], Child and Venugopal applied both a simple (and

deterministic) Parabolic Intersection (PI) heuristic and a more computationally intensive

Genetic Algorithm (GA) to create small (five-buoy) WEC layouts.

Later work by Sharp and DuPont [32] used a GA, coupled with heuristics to ensure

minimum separation between buoys, to place a small number of WECs (5 converters,

37000 evaluations) in a discretised space. The same authors later explored a similar

problem with an improved GA with a cost model [36]. In both studies, the wave-model

used assumed only a single wave direction. The studies also required a relatively large

number of layout evaluations, which would limit their application to more detailed wave

energy models.

In [99], two meta-heuristic algorithms to optimise the geometry of the wave energy

generators were introduced, which combines both particle swarm optimisation [42] and

Box’s complex optimisation method [100]. An alternative approach was proposed by

Ruiz et al. [35], who compared the convergence rate and efficiency of three EAs in a

discrete search space with a simple wave energy model. The EAs included: CMA-ES

[89], a custom GA, and glow-worm swarm optimisation (GSO) [101]. Their work found

that search using CMA-ES converged faster than other methods but was outperformed,

in terms of energy production by both the GA and GSO. In another recent study of
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WEC position optimisation, Ferri [40] used two global optimisation algorithms, CMA-ES

and surrogate-model based optimisation method (MM), and compared the performance

of both methods in terms of convergence rate and design quality. The experimental

outcomes in [40] realised that the MM algorithm convergence speed is faster than CMA-

ES, although the best found array by MM has an estimation error of 10%.

In a recent publication, a Differential Evolution with an adaptive mutation operator

(IDE) [41] was applied for optimizing a wave farm with three, five and eight converters.

Fang et al. proposed some new arrangements of layouts with higher produced energy;

however, IDE was not assessed on large wave farms.

In other studies, Wu et al. [39] investigated two popular EAs: the 1+1EA and CMA-ES

for optimizing the locations of fully submerged three-tether buoys. The results show that

the 1+1EA performed better than CMA-ES when constrained to a very limited number

of layout evaluations. A much more detailed wave scenario was applied in Neshat et

al. [1], using an irregular wave model with seven wave directions and fifty sampled wave

frequencies, to evaluate a wide variety of EAs and hybrid methods. This work found

that a combination of a stochastic local search combined with the Nelder-Mead simplex

method (LS-NM) can obtain better 4 and 16-buoy configurations in terms of the total

absorbed power. The same real wave scenarios were applied in [4] for optimising the

16-buoy layout position by an adaptive neuro-surrogate optimisation (ANSO) method

that constituted of a surrogate Recurrent Neural Network (RNN) model and SLS-NM.

However, other dimensions of WECs (PTO and geometric parameters) and the large size

of wave farms were not assessed in [4].

Other aspects of wave-farm design have also been considered. For example, Neshat et

al. [3] considered the optimisation of power take-off parameters in addition to the layout

optimisation simultaneously for farms to maximise power output by comparing several

optimisation strategies, and proposing a hybrid method combining a symmetric local

search with Nelder-Mead simplex search and a backtracking technique (SLS-NM-B).

In other recent WEC optimisation work [102] compared the performance of the several

modern multi-objective optimisers to maximise the total power output with respect to

three opposing objectives including the necessary farm area, WEC positions and the

length of the cable for connecting all converters. Further, a Particle Swarm optimisation

(PSO) algorithm [43] has been used to minimise the technology’s Levelized Cost of Energy

(LCOE) of the P80 hybrid wind-wave farm by adjusting the parameters of the layout,

the offshore substation position, and the size of the export cable option. However, that

work did not compare the performance of PSO with modern adaptive and self-adaptive

EAs [103–105]. In the following work [38], PTO parameters were tuned by using the

hidden genes genetic algorithm (HGGA). While the improved GA boosted the total
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energy generated, the performance of HGGA was not compared to other state-of-the-art

EAs. Glass et al. [37] proposed a hybrid GA (GA + multiple analytical scattering (MAS)

method) to tune the geometric and control parameters of a small wave park (5 and 9-

buoy). The layouts produced by that work show considerable constructive interactions

in a simple (uni-directional) wave scenario. Furthermore, various dimensions of WECs

array optimisation were studied by [33] and [106], where both works optimised WECs

position and buoy dimensions by employing GAs. In the mentioned studies, it was

achieved that the array performance can be increased if the farm includes different WEC

dimensions.

Blanco et al. [107] proposed a Multi-Objective Differential Evolution Algorithm (MODE)

to optimise the power output of a particular 2-Body Point absorber by adjusting the

arrangement, power take-off (PTO), control strategy and hydrodynamic design. A simple

wave model (direction of wave propagation is from left to right) was used by Arbones

et al. [108, 109] in a multi-objective optimisation problem. In that study, two methods

(MO-CMA-ES and SMS-EMOA) were applied to produce good trade-offs between the

converter positions, the farm area and required cable length. One of the shortcomings of

these approaches, in terms of real-world applicability, is that these works used only a very

simple wave model with just one wave frequency and direction. Furthermore, recently

Blanco et al. [110] refined their prior approach by considering PTO constraints and two

cost functions, including the mean annual power produced and WEC surface. Bonovas

et al. [111] modelled and optimised a special PTO wave energy converter that couples

with hydraulic energy storage in a coastal reservoir using Multi-Objective Evolutionary

Algorithms (MOEA) with two objective functions: the total cost of the investment and

the rate of flow in the reservoir.

This paper improves on prior work in the following ways: augmenting the findings of [1]

to include another nine new heuristic search methods, including a novel surrogate-based

model, all applied to the original irregular wave model; and including four new real wave

regimes from the southern coast of Australia (Adelaide, Perth, Tasmania and Sydney)

using a higher granularity of wave-directions.

From the experimental results, it is shown that a hybrid framework consisting of a learned

model-based local search interleaved with numerical optimisation outperforms previous

heuristic methods in terms of both convergence rate and higher total power output for

16-buoy layouts.

The paper structure is as follows. The next section describes the design of the buoy and

the model that is used to simulate the inter-buoy interactions. Section 2.2.5 describes the
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only on the incoming wave parameters and settings of the power take-off system. How-

ever, in the case of a wave farm, the motion of all converters is coupled, and the strength

of this hydrodynamic coupling directly depends on the distances between WECs. Thus,

in a regular wave with a frequency ω, the motion of all buoys comprising the wave farm

can be described by the following equation:

(M + A)ẍ + (B + Bpto)ẋ + Kptox = Fexc, (2.6)

where vector x ∈ R3N×1 describes the motion of N buoys in three translational degrees

of freedom, M = mI3N is a diagonal mass matrix of the wave farm (I3N is the identity

matrix of size 3N), A and B are the matrices of hydrodynamic added-mass and radiation

damping coefficients respectively, Kpto = KptoI3N and Bpto = BptoI3N are the PTO

stiffness and damping matrices respectively, and Fexc is the frequency dependent vector

of excitation forces acting on all WECs.

Once the parameters of the incoming wave, such as the wave frequency and the trav-

elling direction, and the coordinates of all WECs in a farm are known, hydrodynamic

coefficients (matrices A, B and a vector Fexc) can be calculated using a semi-analytical

model presented in [92]. As a result, Eq. (2.6) can be solved in the frequency domain

with respect to vector x obtaining the motion of all converters in a regular wave of unit

amplitude, wave frequency ω and wave angle β. Thus, knowing x(β, ω), the averaged

power production of a wave farm can be estimated as:

P (β, ω) =
ω2

2
xT(β, ω)Bptox(β, ω). (2.7)

2.2.4.2 Wave Resource

Four potential sites on the southern coast of Australia are considered in this study:

Adelaide, Perth, Tasmania (southwest coast) and Sydney. The directional wave rose and

wave scatter diagram for the Sydney and Tasmania sea sites are shown in Figure 2.8.

These underlying wave data were obtained from the Australian Wave Energy Atlas [112].

2.2.4.3 Wave Farm Performance Evaluation:

The total average annual power (PAAP ) produced by the wave farm is calculated by

summing the contribution of energy absorption from each of the sea states representing





Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 41

where N is a number of WECs forming the array, P isolatedAAP is the power generated by an

isolated WEC. If the wave interaction has, on average, a constructive effect on the power

production of the array, then q > 1, and if the effect is destructive then, q < 1.

In this work, all optimisation algorithms are, first, evaluated using a simplified synthetic

wave model that corresponds to the most frequently occurring sea state at the Sydney

site (Hs = 2 m, Tp = 9 sec) using Eq. (2.9). Subsequently, the algorithms are tested for

four real wave scenarios using Eq. (2.8).

2.2.5 Optimisation Setup

Using the wave model, the optimisation problem can be stated in terms of positioning

N WECs over a bounded area of a wave farm Ω in order to maximise the total power

production PAAP .

P ∗AAP = argmaxx,yPAAP (xi,yi)

Subject to

[xi, yi] ∈ Ω, i = 1, ..., N

dist((xi, yi), (xj , yj)) ≥ R′ i 6= j = 1, ..., N

(2.11)

where PAAP (x,y) is the sum of mean power output by buoys positioned in an area at

x-positions x = [x1, . . . , xN ] and corresponding y positions y = [y1, . . . , yN ]. In this

study, the maximum number of buoys is predefined to be N = 16. Each buoy i’s

position is expressed as the coordinate: [xi, yi], so the representation of a 16-buoy array

is [(x1, y1), (x2, y2), · · · , (x16, y16)] and the decision variable size is 2×N . This position

is constrained to be within the area Ω. Where Ω = l × w and l = w =
√
N ∗ 20000m.

This constraint is given to model the scenario where there are strict limits on the area

allotted to a wave farm lease. A second constraint is a minimum separation between

buoys (R′ = 50m), representing a gap required for maintenance vessels to safely pass.

For each array, x,y the sum-total of the safety distance violations is:

Sumdist =
∑N−1

i=1

∑N
j=i+1(dist((xi, yi), (xj , yj))−R′,

if dist((xi, yi), (xj , yj)) < R′ else 0

where dist((xi, yi), (xj , yj)) is the Euclidean distance between buoys i and j. To provide

a smooth response to such violations, a steep penalty function (Sumdist+ 1)20 is applied

to the total power output (in Watts).
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Table 2.4: Optimisation Framework availability details

Name of the framework: ISLS-AS
Version: 1.00
Available from: Mathworks file-exchange repository [115]
Created with: R2018b
Supported System: Windows, MacOS, Linux, Unix
Year first available: 08 Dec 2019

search methods that converge quickly and produce little pay-off for additional evalua-

tions. To allow for a valid statistical comparison all search methods are repeated 10

times.

The implemented optimisation framework code employed to produce the optimisation

results in this paper, called ISLS-AS, has been made available. Details of the distribution

used to generate the achievements in this paper are shown in Table 7.1. ISLS-AS is

written in the MATLAB programming language and has an, easily extensible, portable

and modular design. ISLS-AS is set up to run on the four real wave scenarios and

one simplified irregular wave model considered in this paper. The primary inputs for

running the framework are the wave scenario name, the number of WEC, and the selected

optimisation method. Other control parameters are selected based on the optimisation

process.

2.2.7 2-buoy layout evaluation

In this section, the effect of a separation distance and a relative angle between WECs on

the power production for a 2-buoy wave farm is investigated (refer to Figure 2.10). For

this set of experiments, the position of the first buoy (B1) is kept fixed at (0,0), while the

position of the second buoy (B2) is changed iteratively varying the separation distance

from 50 m to 238 m with a 1-m increment, and the angle from 0◦ to 359◦.

The power production as a function of the relative position between the two buoys is

demonstrated in Figure 2.11 for two wave climates, namely Sydney and Perth. Inter-

estingly, for the Sydney location, the power output from each WEC increases with a

separation distance having the highest power generated at a relative angle α = 90◦.

However, the absorbed power from a farm located at Perth reaches its maximum at a

relative short separation distance and a specific angle of 135◦.

It is important to note that for both wave climates, the separation distance has a different

effect on the power generation of each buoy. While increase in the distance leads to higher

efficiency of the second buoy regardless the relative angle α, the first buoy experiences a

negative interaction effect at angles of 90◦ and 135◦. Therefore, it is important to note,
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Figure 2.12: The overall effect of 2-buoy layout wave interactions with different dis-
tances and angles between two buoys in Perth and Sydney wave model.

Meta-heuristic optimisation methods have been applied extensively in fields where the

global search is needed, including in the field of renewable energy deployment [116].

This paper compares the methods described in the previous work [1] to nine new algo-

rithm variants derived for this work, and to other recent approaches. This previous work

compared the performance of random search (R-S); forms of partial evaluation (PE) [1]

where layouts are evaluated on random subsets of frequencies; TDA [93], used for wind-

farm layout; CMA-ES [89]; Differential Evolution (DE) [94, 117]; Improved Differential

Evolution [41]; binary Genetic Algorithm [36]; 1+1EA’s with various mutation settings;

local or neighbourhood search (LS); Nelder-Mead downhill search (NM); and three state-

of-the-art self-adaptive meta-heuristic methods including LSHADE-EpSin [118], IPOP-

CMAES [119] and HCLPSO [120, 121]. In this earlier work, the best performing heuris-

tic, LS3−NM2D combined one-at-a-time buoy placement with iterated local search and

Nelder-Mead to refine each buoy position. The algorithms described here improve sig-

nificantly on the performance of this earlier work by exploiting knowledge specific to the

target wave scenario. These new (smart) search heuristics are described next. All of the

heuristic methods that are compared in this paper are listed in Table 2.5.

2.2.8.1 Smart Local Search (SLS)

In previous work, it was observed that a good candidate position for the next buoy is

in the neighborhood of the previous buoy. The SLS method improves upon these earlier

searches by placing the next buoy in a relative position informed by peaks in the power

landscape built from sampling positions in a two-buoy model under local wave conditions.

Examples of such landscapes are given in Figure 2.13, which shows a 3D power landscape

of the simplified irregular, Sydney, and Perth wave models. It can be seen from these

landscapes that, even for two buoys, there is variation in the shape of the landscape and
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Figure 2.13: The 3D power landscape a two-buoy array based on the simplified
irregular (a), Sydney (b) and Perth (c) wave scenarios. The first buoy’s position is
fixed, the second buoys is varied to measure total energy output. The mapped area
extends 360◦ and a distance of between 50 m (safety distance) and 283 m (maximum

distance between two converters based on the farm size).

the positions of the point at which there are constructive interactions. Note that, for a

given wave regime, it is not practical to infer the shape of this power landscape by means

other than sampling it. Furthermore, the inter-relationship among the absorbed power,

angle and distance between two-buoy layouts for different wave scenarios can be seen in

Figure 2.14. In the SLS method, this two-buoy power landscape is sampled. The pattern

of sampling into this landscape is shown in Figure 2.15. This sampling landscape has

an angular resolution of 45-degree intervals and a distance resolution of 5m intervals.

This sampled landscape is computationally cheap to build because it models interactions

between only two buoys. Moreover, this sampling exercise only has to be run once for

each wave scenario at the beginning of the search process. These samples are then used

to define the most promising sectors, called the search-sectors, in the search landscape

for the placement of the next buoy. These sectors, marked in Figure 2.15 with a dotted

line, lie between the best and second-best points in the search landscape on either side

of the current buoy.
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Algorithm 2.4 Smart Local Search (SLS)
1: procedure Smart Local Search

2: First Step

3: WMD = Load (wave model data)

4: S=Sur-Power(WMD) . generate surrogate power model (Section 2.2.8.1)

Initialization

5: size = Ω . Farm size

6: pos = [(x1, y1), . . . , (xN , yN )] = ⊥ . positions

7: pos(1) = (size/2, 0)

8: N1S = 15 . number of Sample in search sector

9: Second Step:Search Strategy

10: for i in [1, .., N ] do

11: update search sectors S

12: bestEnergy = 0

13: bestPosition = (0, 0)

14: for j in [1, · · · , N1S ] do

15: (xs, ys) = U(S) . sample sectors

16: pos(i) = (xs, ys)

17: energy = Eval(pos)

18: if energy > bestEnergy then . update best-found layout

19: bestEnergy = energy

20: bestPosition = (xs, ys)

21: end if

22: end for

23: pos(i) = bestPosition

24: end for

25: return pos . Final Layout

26: end procedure

Figure 2.14: A 3D power landscape, for relative angle and distance between two buoys
based on the simplified irregular wave model (a) and two real wave scenarios: Sydney
(b) and Perth (c). Note that there are ridges in the power landscape corresponding
to areas of constructive interference. The Improved Smart Local Search algorithm

variants, described in this paper, exploit this local landscape when placing buoys.
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Table 2.5: Summary of the search methods used in this paper. All methods are given
the same computational budget. Parallelism can be expressed as per-individual or per-
frequency depending on the number of individuals in the population from section.2.2.8.

Abbreviation Parallelism Description
R-S per-frequency Random Search
PE50 µ per-individual Partial Evaluation[44], all frequencies (PE-FULL), population µ ∈

{10, 50, 100}
PEf µ per-individual Partial Evaluation [44], partial frequencies, f ∈ {1, 4, 16}, µ ∈

{10, 50, 100}
CMA-ESPF per-frequency All settings are like CMA-ES
CMA-ESPF (2+2) per-frequency All settings are based on [39]
TDA per-individual Algorithm for optimizing wind turbine placement from [93]
CMA-ES per-individual CMA-ES[89] all dimensions, µ =′ 4 + int(3 × log(D))ndim , σ =

0.17× size
CMA-ES (2+2) per-individual Setup for CMA-ES from [39], σ = 20m
DEPcr per-individual Differential evolution [94], µ = 50, F = 0.5, Pcr ∈ {0.3, 0.5, 0.7, 0.9}
bGA per-individual binary Genetic Algorithm, All settings are based on [36]
Improved DE per-individual Improved Differential evolution , All settings are based on [41]
LSHADE-EpSin per-individual An ensemble sinusoidal parameter adaptation incorporated with L-

SHADE [118, 122]. µ = µMax = 50, µMin = 4, memorysize = 5,
µF = µCR = 0.5

IPOP-CMAES per-individual a restart CMA evolution strategy, where the population size is in-
creased for each restart (IPOP) [119, 123]. µ = 20, λ = floor(µ2 ),
IncPopSize = 1.5, σ = 0.3× size

HCLPSO per-individual Heterogeneous comprehensive learning particle swarm optimisation.
µ = 50, µG1 = 15, other parameters are based on [120, 121]

1+1EAσ per-frequency 1+1EA(all dimensions), mutation step size with σ ∈ 3, 10, 30(m)
1+1EAs per-frequency 1+1EA (all dimensions) with uniform mutation in range [0, s] with

s = 30m from [39]
1+1EALinear per-frequency 1+1EA (all dimensions) with linearly decaying mutation step size [1]
1+1EA1/5 per-frequency 1+1EA (all dimensions) with adaptive step size [124]
Fuzzy-1+1EA per-frequency 1+1EA (all dimensions) with fuzzy adaptive mutation step size
Iterative-1+1EA per-frequency Iterative local search - buoys are placed in sequence using best of

local neighborhood search [1]
LS-NMallDims per-frequency Local search + Nelder-Mead search in all Dimensions [1]
NM_Norm2D per-frequency Buoys placed in sequence using Nelder-Mead search, Initial placement

normally distributed from last buoy position [1]
NM_Unif2D per-frequency Buoys placed randomly and then refined using Nelder-Mead Initial

placement uniformly distributed from last buoy position [1]
LS1-NM2D per-frequency Local Sampling + Nelder Mead search. Buoys placed at random offset

from previous buoy and placement refined by Nelder-Mead search. [1]
LS3-NM2D per-frequency Iterative local search + Nelder-Mead search. Placements sampled

at 3 random offsets from previous location, best placement used as
starting point for Nelder-Mead search. [1]

SLS per-frequency Providing the two-buoy power landscape+ Extracting a proper do-
main of the distances and the angles +Iterative local search +Smart
Mutation;Uniform distribution, N1S = 15 samples, step= rand(R′,
BuoyDistance + κ2(20m)). 4.5 folds faster than the best method of
the prior study [1] for 16-buoy layout.

SLS-NM per-frequency Smart Local Search with three samples of the mutation+ Nelder-
Mead search, NNM = 20

ISLS per-frequency Improved Smart Local Search : Creating a more accurate knowledge-
based surrogate power model, placing a new buoy: the initial sequen-
tial Nsb-buoy number σ = R′ and for next buoys σ = 2 × R′: Mu-
tating:N1S samples for initial sequential Nsb-buoy number, and for
next buoys N2S = 20 samples, step = rand(R′,BuoyDistance+10m).
60% faster than LS3-NM2Din [1] for 16-buoy layout.

ISLS-NM per-frequency Improved Smart Local Search (N1S samples ) for the initial sequen-
tial Nsb-buoy number and for last buoys N2S = 3 samples + Nelder-
Mead search, NNM = 20

ISLS(II)-F per-frequency Improved Smart Local Search (for initial sequential Nsb-buoy num-
ber) (NSF = 3 samples)+ Applying SQP (for finding the furthest
point of the area based on the layout position). 20 times faster than
the best method of the prior work [1] for 16-buoy layout.

ISLS(II)-NM per-frequency Improved Smart Local Search(II) (for initial sequential Nsb-buoy
number) 3 samples + Nelder-Mead Search.

ISLS(II)-SQP per-frequency Improved Smart Local Search(II) ( for initial sequential Nsb-buoy
number) 3 samples + Sequential Quadratic Programming Search.

ISLS(II)-AS per-frequency Improved Smart Local Search(II) for initial sequential Nsb-buoy num-
ber) 3 samples + Active-Set Search.

ISLS(II)-IP per-frequency Improved Smart Local Search(II) for initial sequential Nsb-buoy num-
ber) 3 samples + Interior-Point Search.
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Figure 2.15: The 2D power landscape of two-buoy array based on the Adelaide wave
scenario.

For the placement of each buoy, a local search makes N1S samples, uniformly distributed

in the search sectors (subject to boundary constraints). These samples are assessed with

the full model, which calculates all buoy interactions in the current array. From these

N1S samples, the best buoy location is selected. Algorithm 2.4 describes the SLS method.

2.2.8.1.1 Tuning SLS parameter

One of the most important parameters is the sample number (N1S) of the local search.

It is recommended that N1S should be tuned for obtaining a great trade-off between the

produced power of the wave farm and the optimisation method runtime. Analysis of the

experiments has shown that 15 samples have been sufficient to improve upon the initial

placement with a probability of 99% with an expected improvement of power production

almost identical to that of a much larger number of samples.

2.2.8.2 Smart Local Search + Nelder-Mead (SLS-NM)

Smart Local Search + Nelder-Mead (SLS-NM) explores the same search sectors as the

SLS algorithm defined above. The SLS-NM algorithm differs in that it takes only three

random samples from the search sectors and uses the best of these as the start point for

a Nelder-Mead (NM) simplex search process. The NM search process can robustly move

to a local optimum from its starting point.
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power landscape causes some buoys to encounter the left or right boundary of the

farm.

In response to these observations, a refined search method called Improved Smart Local

Search (ISLS) was designed. This search method addresses the first observation above

by only sampling the search sector in the direction of the current opposite boundary

of the farm (upwards in the implementation). ISLS addresses the second observation

by allowing the user to set the angular and radial extent of the search sector for the

wave scenario. The third observation is addressed by reducing the number of samples

used when placing buoys on the first sweep to the opposite farm boundary (phase 1) and

running more samples to place subsequent buoys (phase 2). Lastly, the fourth observation

is addressed by placing the first buoy in the left corner of the landscape if the best angle

is between zero and 90 degrees and in the right corner otherwise.

2.2.8.3.1 Tuning the ISLS parameter

We base the decision on the number of samples to use in the first sweep of buoy placement

(phase 1) and then for the placement of subsequent buoys (phase 2) on empirical studies

on the impact of different numbers of samples depending on the different wave scenarios.

To illustrate the findings of this process, Figure 2.17(a) shows the average power gain

from sampling for the first 12 buoys for ten runs in the Perth wave scenario. The red and

blue vertical lines, respectively, indicate the average power gained after three and ten

samples. For the experiments leading to this Figure, the buoys were placed according to

the best result obtained after 20 samples. The Figure indicates that for the placement

of the first 12 buoys (phase 1) the curves flatten after ten samples, with buoy three

showing the largest gain, after ten samples, of 0.018%. This indicates that we gain little

from sampling the real power landscape beyond this point. Thus for phase 1, 10 samples

were allocated for each buoy placement. For the placement of the last four buoys (phase

2), as illustrated in Figure 2.17(b) the gain from sampling is steeper and, for buoy 16,

the improvement between 10 and 20 samples is 0.032%. A second notable feature of

Figure 2.17(a) is that the power curves for some buoys are vertically displaced relative

to others. This indicates that for some buoy placements the power landscape is more

challenging. In general, we have observed that the displacement of these sampling curves

for later buoys depends on the placement of previous buoys. In some experiments, we

have observed that this dependence on placement history can even lead to some minor

anomalies in search behaviour where sampling less for earlier buoy placements appears

to make the search landscape slightly easier for subsequent buoy placements. However,

we have observed for all wave regimes that the best median performance for wave farms
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Figure 2.17: The impact of sample number on the ISLS performance (16-buoy) for
the Perth wave model. The red vertical line shows 3-sample.

is obtained by employing as many samples as the time budget allows in both phases of

the search process.

2.2.8.4 Improved Smart Local Search Nelder-Mead (ISLS-NM)

As previously noted, due to occlusion by other buoys, the power landscape for phase 2

of the search is different from that for phase 1. This means that, for phase 2 buoy

placements, the search sector from the surrogate power landscape might not contain the

best location for the placement of the next buoy. To search more broadly a variant of

ISLS, called ISLS-Nelder-Mead (ISLS-NM) was created. This variant has an identical

phase 1 search to ISLS, but in phase 2 it performs a local search with three samples

followed by 20 samples of Nelder-Mead search starting at the best of these three sampled
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locations. In almost all experimental runs, these 20 samples were enough to converge to

a point where the step size is less than 1% of the total power output for that buoy.

2.2.8.5 Improved Smart Local Search-II (ISLS-II)

One drawback of ISLS is the need for the user to define the angular and radial extent of

the search sector for a wave regime through observation of the surrogate power landscape.

In ISLSII this process is automated by, first performing fine-grained sampling of the

2-buoy power landscape. The readings from this sampling are arranged into a table

– with columns representing angular increments and rows representing radial distance

increments. The maximum power value is then located. The search sector is then defined

by the area between this highest and second-highest sample – subject to a maximum

radial distance constraint of 283m that comes from the maximum distance between two

buoys based on the boundary constraints. As with ISLS, this method tends to produce

a longer and narrower search sector than SLS.

We have implemented five variants of ISLSII . Apart from the determination of the search

sector, each of these variants has an identical first phase to ISLS using the ten-sample

randomized local search within the search sector that is defined by a surrogate landscape.

Each of these variants, in their second phase, still begins by identifying the best of three

random sample positions in the search sector relative to the previously placed buoy. The

variants differ, however, in the type of search that proceeds from each sample point. In

the following, we describe these search variants in turn.

2.2.8.5.1 ISLS-II + Active Set (ISLSII-AS)

Here, we refine the placement of each buoy with NNM evaluations (which is tuned in

Section 2.2.8.2.1) of the Active-Set [125] search method. This method identifies the set

of boundary constraints that are relevant to the current state of search and concentrates

search close to these. This method is able to take large steps through the search space,

thus allowing for quick coverage of the search area. This variant is described in Algorithm

2.5.
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Algorithm 2.5 ISLS (II )−AS

1: procedure Improved Smart Local Search(II) + Active-Set

2: First Step:

3: WMD = Load (wave model data)

4: S=Sur-Power(WMD) . Generate surrogate power model in Section 2.2.8.1

5: Initialization

6: size = Ω . Farm size

7: SafeDis = 50 . safe distance between buoys

8: N1S = 10, N2S = 3 . tuned and described in Section 2.2.8.3.1

9: NNM = 20 . tuned Nelder-Mead evaluation number in Section 2.2.8.2

10: pos = [(x1, y1), . . . , (xN , yN )] = ⊥ . WECs positions

11: if 0◦ < bestLocalAngle < 90◦ then pos(1) = (0, 0)

12: else pos(1) = (size, 0)

13: end if

14: BNrow = round(size/ cos(bestLocalAngle)) . buoy number in first row

15: buoyNum = 2

16: Second Step: Search strategy

17: Phase 1 . described in Section 2.2.8.3

18: update search sector S

19: while bottomYBoundary(S) < size do

20: bestEnergy = 0 , bestPosition = (0, 0)

21: for j in [1, .., N1S ] do . N1S random samples

22: (xs, ys) = U(S) . sample sector

23: pos(i) = (xs, ys)

24: energy = Eval(pos)

25: if energy > bestEnergy then . update best-found layout

26: bestEnergy = energy

27: bestPosition = (xs, ys)

28: end if

29: end for

30: pos(i) = bestPosition

31: buoyNum = buoyNum + 1

32: update search sector S

33: end while

34: Phase 2 . placing and optimising the subsequent buoys (Section 2.2.8.3)

35: for i in [buoyNum, .., N ] do

36: bestEnergy = 0 , bestPosition = (0, 0)

37: for j in [1, ..N2S ] do . N2S random samples

38: (xs, ys) = U(S) . sample sector

39: pos(i) = (xs, ys)

40: energy = Eval(pos)

41: if energy > bestEnergy then . update best-found layout

42: bestEnergy = energy

43: bestPosition = (xs, ys)

44: end if

45: end for

46: Third Step . enhancing buoys postion by local search (Section 2.2.8.5 )

47: if (bouyNum ≥ BNrow ) ∨ (bestPosition ≥ size − SafeDis) then

48: bestPosition = ActiveSearch(bestPosition, NNM )

49: pos(i) = bestPosition

50: end if

51: update search sector S

52: end for

53: return pos . Final Layout

54: end procedure
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2.2.8.5.2 ISLS-II + Sequential Quadratic Programming(ISLSII-SQP)

This approach refines the placement of each buoy by performing Sequential Quadratic

Programming (SQP) [126]. This search method employs Newton’s method when the

search is away from boundary constraints and reverts to constrained search when bound-

aries are encountered.

2.2.8.5.3 ISLS-II + Fast placement (ISLSII-F)

We observed in the earlier ISLS-NM that the phase 2 buoy placements tended to reside

on the lee-side behind the front row of buoys, with these buoys finishing far from each

other. Informed by this observation the ISLSII -F algorithm uses 20 iterations of SQP

search to place each buoy, one at a time, at a position that is the maximum Euclidean

distance from the previously placed buoys. Note that using distance as a proxy function

makes this method very fast compared to other variants.

2.2.8.5.4 ISLS-II + Nelder-Mead (ISLSII-NM)

This approach is similar to the earlier ISLS-NM, but it applies 20 iterations of the Nelder-

Mead algorithm to the placement of each buoy.

2.2.8.5.5 ISLS-II + Interior point algorithm (ISLSII-IP)

This algorithm refines each buoy position using the interior-point (IP) algorithm [127] for

constrained search. This method is similar to other active-set methods above except that

boundaries are approximated using barrier functions which allow search near constraint

boundaries rather than on constraint boundaries. This concludes the description of the

different buoy placement algorithms explored in this paper. The next section presents

detailed results comparing the performance of these algorithms.

2.2.9 Experimental Results

This section presents the results of the experiments comparing the performance of the

algorithms described above on the placement of buoys under the different wave scenarios.

One challenge for the approaches is that the farm’s dimensions do not allow for all 16

buoys to be placed in a single line. Another challenge is that, because of interactions,

the cost of the evaluative model scales quadratically with the number of buoys. This





Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 57

T
a
bl

e
2.

6:
P
er
fo
rm

an
ce

co
m
pa

ri
so
n
of

va
ri
ou

s
he
ur
is
ti
cs

fo
r
16
-b
uo

y
la
yo
ut
s
fo
r
th
e
si
m
pl
ifi
ed

ir
re
gu

la
r
w
av
e
m
od

el
(1
0
ru
n
ea
ch
).

M
et
h
od

s
P
E
-F
u
ll
(U

n
if
or
m
)

|
P
E
-F
u
ll
(N

or
m
al
)

|
D
E

µ
=

10
µ

=
50

µ
=

10
0

µ
=

10
µ

=
50

µ
=

10
0

P
cr

=
0.

3
P
cr

=
0
.5

P
cr

=
0.

9

Ma
x

69
74

94
8

69
00

02
4

69
52

01
7

69
57

38
8

69
48

74
6

68
92

21
0

71
79

68
1

70
25

87
3

70
79

96
2

Me
di

an
68

59
47

5
68

39
55

7
68

51
34

2
68

53
98

7
68

12
86

6
68

16
28

2
69

44
79

5
69

99
35

6
69

83
52

3
Me

an
68

56
33

7
68

21
86

4
68

60
03

7
68

69
58

6
68

37
97

2
68

22
55

3
69

71
23

1
69

81
19

5
69

94
17

2
St

d
48

70
1

61
88

0
50

37
7

61
15

3
70

04
8

52
91

1
89

24
4

41
93

1
48

94
3

M
et
h
od

s
1+

1E
A

|
N
M

2
D

|I
te
r-
(1
+
1)
E
A

M
u-
s=

3
M
u-
s=

10
M
u-
s=

30
Li
ne

ar
1/

5
ru
le

Fu
zz
y

U
ni
fo
rm

N
or
m
al

Ma
x

70
08

38
0

74
02

58
4

73
51

11
2

74
37

48
1

74
25

66
5

74
54

92
2

73
80

31
8

72
67

24
2

73
70

97
2

Me
di

an
69

27
23

0
72

97
46

5
72

78
12

0
73

17
40

8
73

54
58

9
73

48
67

6
71

93
11

0
71

36
71

2
73

54
58

9
Me

an
69

08
20

3
72

92
03

5
72

75
11

8
73

30
28

6
73

43
85

8
73

35
62

4
72

05
09

8
71

08
69

3
72

74
98

9
St

d
83

15
7

77
79

4
51

74
5

60
80

3
59

69
0

67
06

1
83

94
4

11
63

80
54

38
0

M
et
h
od

s
L
S

1
-N
M

2
D

T
D
A

C
M
A
-E
S

R
-S

1+
1E

A
S

(2
+
2)
C
M
A
-E
S

L
S

3
-N
M

2
D

L
S

1
-N
M
a
ll
D
im
s

S
L
S

Ma
x

76
08

60
0

71
48

65
5

71
18

99
6

68
25

72
3

73
70

38
9

72
05

95
6

75
87

75
8

70
94

64
2

76
69

43
9

Me
di

an
74

09
02

9
70

57
56

4
70

53
35

1
66

58
52

3
72

14
26

3
70

73
29

5
74

59
61

4
68

39
91

1
75

90
03

9
Me

an
74

27
02

7
70

05
87

3
70

38
35

2
66

76
83

1
72

36
97

7
70

80
01

1
74

26
74

2
68

23
83

6
75

87
41

0
St

d
12

97
80

13
39

77
84

85
9

63
88

3
67

40
6

49
77

1
12

36
03

19
85

12
52

53
8

M
et
h
od

s
S
L
S
+
N
M

IS
L
S

IS
L
S
-N

M
IS
L
S
I
I
-F

IS
L
S
I
I
-N

M
IS
L
S
I
I
-S
Q
P

IS
L
S
I
I
-A

S
IL
S

3
-N
M

2
D

IS
L
S
I
I
-I
P

Ma
x

76
80

16
1

77
13

74
4

76
85

63
3

77
30

79
9

77
63

24
9

77
90

67
9

78
78
91
7

76
19

40
4

77
30

84
4

Me
di

an
75

48
23

5
76

47
33

5
76

70
40

1
77

23
82

5
77

02
16

1
77

06
78

8
77

14
01

1
74

63
92

8
76

94
38

1
Me

an
75

37
58

2
76

51
36

0
76

66
20

1
77

21
95

4
76

98
63

9
77

01
11

5
77
24
37
0

74
69

49
3

76
88

42
2

St
d

81
72

7
25

63
5

23
43

7
97

73
31

79
0

60
01

2
58

34
1

10
27

60
30

45
3





Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 59

Table 2.7: Summary of the best 4-buoy layouts per-experiment (Power (Watt)) for
the real wave scenarios .

Sydney wave model
Methods DE [94] CMA-

ES [89]
LS3-
NM2D[1]

IDE [41] bGA [36] 2+2CMA-
ES [39]

LSHADE-
EpSin [118]

IPOP-
CMAES [119]

HCLPSO
[120]

ISLS(II)-AS

Max 412667 412705 412294 412683 413061 412796 412799 412736 412802 411291
Median 412557 412488 411069 412529 413028 412424 412799 412623 412799 410094
Mean 412580 412477 410839 412560 413004 412350 412764 412638 412796 409376
Std 63 140 1184 74 54 395 95 52 12 1534

Perth wave model
Max 398844 399607 396759 399607 397822 399604 399607 399603 399607 399476
Median 395898 399607 392753 399607 397822 399601 399607 399601 399607 399466
Mean 396615 399117 391361 399607 397822 399600 399607 399600 399606 399467
Std 1415 1033 5543 0.003 0.00 1.80 0.098 2.90 0.74 3.65

Adelaide wave model
Max 399431 402278 401858 402278 402072 402276 402278 402275 402278 402206
Median 397176 402278 398352 402278 402072 402274 402278 402271 402278 402186
Mean 395620 402073 396106 402278 402072 402273 402277 402271 402270 402189
Std 4271 709 6685 0.025 0.00 2.42 4.6 3.26 22 6.17

Tasmania wave model
Max 1093468 1094611 1094524 1094611 1072416 1094605 1094611 1094610 1094611 1094530
Median 1090833 1094611 1079619 1094611 1072379 1094596 1094611 1094606 1094611 1094524
Mean 1090734 1094611 1079429 1094611 1072190 1094597 1094611 1094605 1094604 1094523
Std 1985 0.0072 10432 0.008 471 4.078 0.097 3.25 29 5.50

(DE [94], CMA-ES [89], LS3NM2D [1], IDE [41], bGA [36], 2+2CMA-ES [39], LSHADE-

EpSin [118, 122], IPOP-CMAES [119], HCLPSO [120], ISLS(II)-F and ISLS(II)-AS) for

4 and 16-buoy layouts on the Sydney, Perth, Adelaide and Tasmania wave scenarios.

2.2.9.1.1 4-buoy layout results

Table 2.7 summarises the results of the ten best-performing search methods on the 4-

buoy layout problem in the four real wave scenarios. The output for the search method

with the best maximum performance in each wave scenario is highlighted in bold. This

table shows that the best results for each of the ten methods shown are within 1% of

each other in terms of raw performance. All methodologies are able to produce layouts

with a q-factor more than one except arrays in the Sydney wave model. The q-factor can

be interpreted as an optimisation rate, it shows the impact of constructive interference

compared with destructive ones. Thus a q-factor is greater than one; it is associated

with the wave farm of devices is generating more power than the devices would work

individually. It is also clear from these results that the global CMA-ES, IDE, LSHADE-

EpSin and HCLPSO methods consistently have the best performance across all wave

scenarios (except in the Sydney wave scenario) and the performance variance is quite

small.

The 4-buoy layouts produced are shown in Figure 2.20. The buoys are coloured based

on their power output. From these layouts, we can observe that, except for the Sydney

wave scenario, all buoys form a row with the spacing and orientation determined by the

wave environment. The orientation of this row (in the Perth, Adelaide and Tasmania

scenarios) is aligned to the norm of the predominate wave direction for each scenario.

We can also see that the middle two buoys in these three layouts also produce slightly

more energy than the outer buoys. This is due to constructive interactions between
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Figure 2.25: Interpolated wave energy landscape for the best 16-buoy layouts for
Perth wave scenario, a) CMA-ES, b) DE, c) LS-NM and d) ISLS(II)-AS. White circles

represent the buoy placement. (the wave angle propagates at 232.5 degrees).

In this research, the algorithms that performed best in experiments were hybrid search

heuristics that used local search informed by inexpensive proxy models that were cus-

tomised for local conditions. These methods further optimised the cost of function eval-

uations by placing one buoy at a time – thus minimising the number of modelled inter-

actions. The most effective search techniques of all used the proxy model to inform the

placement of the first row of buoys and switched to a combination of local search and

gradient search techniques once the farm boundary was reached.

One possible limitation of the best approaches described here is that they allow no

backtracking to further optimise buoy positions once they have been placed. Preliminary

experiments with further global optimisation of four buoy layouts have shown some small

potential gains from further global optimisation, though at a much much greater (87-fold)

computational cost.

This work can be extended in several ways. First, while the hydrodynamic models

employed here are state-of-the-art in terms of fidelity, the wave farm environments are still

simplified in terms of farm geometry (assumed to be squared) and seafloor topography

(assumed to be uniform in depth). In the future, both of these assumptions can be

relaxed with farm geometry allowed to vary to match realistic lease-boundaries and the

hydrodynamic model updated to allow varied seafloor depth. It is also possible to increase

the complexity of the model for each buoy in terms of size, depth, and tether parameters.
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Some of these parameters impact on cost and, thus, produce scope for multi-objective

optimisation. Finally, there is scope to learn a robust and accurate proxy function for

evaluating energy outputs. Such an approach might use machine learning techniques

such as Deep Neural Networks to act as a partial or complete estimator function for the

output of a given layout. Such an estimator has the potential to increase the speed of

search significantly and open the way for further improvements in search heuristics.

Acknowledgements

We would like to show our gratitude to Prof.Suganthan from the Nanyang Technological

University, Singapore, Dr.Hansen from the National Institute for Research in Computer

Science and Control, France and Dr.Kalami from the Khaje Nasir Toosi University of

Technology, Iran for publishing their valuable source codes. Meanwhile, this research is

supported by the supercomputing resources provided by the Phoenix HPC service at the

University of Adelaide.





Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 67

2.3 Adaptive Neuro-Surrogate-Based Optimisation Method

for Wave Energy Converters Placement Optimisation

2.3.1 Synopsis

To gain a more in-depth insight into the challenges of Wave energy converter (WEC)

position optimisation problem, we include an article in this chapter which outline a new

adaptive neuro-surrogate optimisation (ANSO) method. This method consists of a sur-

rogate Recurrent Neural Network (RNN) model trained with a very limited number of

observations. This neuro model is applied to simulate complicated hydrodynamic inter-

actions and estimate the power output of the layout. As the model’s hyper-parameters

tuning is challenging, we apply a fast meta-heuristic approach to exploring the hyper-

parameters search space and proposing better settings. After training the model, we

develop a greedy local search with a backtracking search strategy to repair the position

of the converters with low absorbed power in farms. The performance of the proposed

method (ANSO) is evaluated by four real wave scenarios (Sydney, Perth, Adelaide and

Tasmania) and compared with some of the more popular Evolutionary Algorithms (EAs).

Comparison of results shows that the adaptive neuro model performs better than previ-

ously reported optimisation methods in terms of computational complexity and the total

power output of the farm.

Reference

[4] Neshat, M., Abbasnejad, E., Shi, Q., Alexander, B., & Wagner, M. (2019, Decem-

ber). Adaptive Neuro-Surrogate-Based Optimisation Method for Wave Energy Convert-

ers Placement Optimisation. Published by International Conference on Neural Informa-

tion Processing (pp. 353-366). Springer, Cham on 2019.







Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 70

2.3.2 Abstract

The installed amount of renewable energy has expanded massively in recent years. Wave

energy, with its high capacity factors has great potential to complement established

sources of solar and wind energy. This study explores the problem of optimising the

layout of advanced, three-tether wave energy converters in a size-constrained farm in a

numerically modelled ocean environment. Simulating and computing the complicated

hydrodynamic interactions in wave farms can be computationally costly, which limits

optimisation methods to have just a few thousand evaluations. For dealing with this ex-

pensive optimisation problem, an adaptive neuro-surrogate optimisation (ANSO) method

is proposed that consists of a surrogate Recurrent Neural Network (RNN) model trained

with a very limited number of observations. This model is coupled with a fast meta-

heuristic optimiser for adjusting the model’s hyper-parameters. The trained model is

applied using a greedy local search with a backtracking optimisation strategy. For evalu-

ating the performance of the proposed approach, some of the more popular and successful

Evolutionary Algorithms (EAs) are compared in four real wave scenarios (Sydney, Perth,

Adelaide and Tasmania). Experimental results show that the adaptive neuro model is

competitive with other optimisation methods in terms of total harnessed power output

and faster in terms of total computational costs.

2.3.3 Introduction

As the global demand for energy continues to grow, the advancement and deployment

of new green energy sources are of paramount significance. Due to high capacity factors

and energy densities compared to other renewable energy sources, ocean waves energy

has attracted research and industry interest for a number of years [18]. Wave Energy

Converters (WEC’s) are typically laid out in arrays and, to maximise power absorption,

it is important to arrange them carefully with respect to each other [21]. The number

of hydrodynamic interactions increases quadratically with the number of WEC’s in the

array. Modelling these interactions for a single moderately-sized farm layout can take

several minutes. Moreover, the optimisation problem for farm-layouts is multi-modal–

typically requiring the use of many evaluations to adequately explore the search space.

There is scope to improve the efficiency of the search process through the use of a

learned surrogate model. The challenge is to train such a model fast enough to allow an

overall reduction in optimisation time. This paper proposes a new hybrid adaptive neuro-

surrogate model (ANSO) for maximizing the total absorbed power of WECs layouts in

detailed models of four real wave regimes from the southern coast of Australia (Sydney,

Adelaide, Perth and Tasmania). Our approach utilises a neural network that acts as
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a surrogate for estimating the best position for placement of the converters. The key

contributions of this paper are:

1. Designing a neuro-surrogate model for predicting total wave farm energy by train-

ing of recurrent neural network (RNNs) using data accumulated from evaluations

of farm layouts.

2. The use of the Grey Wolf Optimiser [128] to continuously tune hyper-parameters

for each surrogate.

3. A new symmetric local search heuristic with greedy WEC position selection com-

bined with a backtracking modification (BO) to improve the layouts further for

delicate adjustments.

We demonstrate that the adaptive framework described outperforms previously published

results in terms of both optimisation speed (even when total training time is included)

and total absorbed power output for 16-WEC layouts.

2.3.4 Related work

In this application domain, neural networks have been utilized for predicting the wave

features (height, period and direction) more than other ML techniques [129]. In early

work, Alexandre et al. [130] applied a hybrid Genetic Algorithm (GA) and an extreme

learning machine (ELM) (GA-ELM) for reconstructing missing parameters from read-

ings from nearby sensor buoys. The same study [131] investigated a combination of the

grouping GA and ELM (GGA-ELM) for feature extraction and wave parameter esti-

mation. A later approach [132], combined the GGA–ELM with Bayesian Optimisation

(BO) for predicting the ocean wave features. BO improved the model significantly at

the cost of increased computation time. Sarkar et al. [133] combined machine learning

and optimisation of arrays of, relatively simple, oscillating surge WECs. They were able

to use this technique to effectively optimise arrays of up to 40 WEC’s – subject to fixed

spacing constraints. Recently, James et al. [134] used two different supervised ML meth-

ods (MLP and SVM) to estimate WEC layout performance and characterise the wave

environment [134]. However, the models produced required a large training data-set and

manual tuning of hyper-parameters.

In work optimising WEC control parameters, Li et al. [135] trained a feed-forward neu-

ral network (FFNN) to learn key temporal relationships between wave forces. While the

model required many samples to train it exhibited high accuracy and was used effectively

in parameter optimisation for the WEC controller. Recently, Lu et al. [136] proposed a



Chapter 2 Position Optimisation of Wave Energy Converters (WECs) Page 72

hybrid WECs PTO controller which consists of a recurrent wavelet-based Elman neu-

ral network (RWENN) with an online back-propagation training method and a modified

gravitational search algorithm (MGSA) for tuning the learning rate and improving learn-

ing capability. The method was used to control the rotor acceleration of the combined

offshore wind and wave power converter arrangements. Finally, recent work by Neshat et

al. [1] evaluated a wide variety of EAs and hybrid methods by utilizing an irregular wave

model with seven wave directions and found that a mixture of a local search combined

with the Nelder-Mead simplex method achieved the best array configurations in terms

of the total power output.

2.3.5 Wave Energy Converter Model

We use a WEC hydrodynamic model for a fully submerged three-tether buoy. Each

tether is attached to a converter installed on the seafloor [90]. The relevant details of the

WECs modelled in this research are: Buoy number=16, Buoy radius=5 m, Submergence

depth=3 m, Water depth=30 m, Buoy mass=376 t, Buoy volume=523.60 m2 and Tether

angle=55◦.

2.3.5.1 System dynamics and parameters

The total energy produced by each buoy in an array is modelled as the sum of three

forces [137]:

1. The power of wave excitation (Fexc,p(t)) includes the forces of the diffracted and

incident ocean waves when all generators locations are fixed.

2. The force of radiation(Frad,p(t)) is the derived power of an oscillating buoy inde-

pendent of incident waves.

3. Power take-off force(Fpto,p(t)) is the force exerted on the generators by their tethers.

Interactions between buoys are captured by the Fexc,p(t) term. These interactions can

be destructive or constructive, depending on buoys’ relative angles, distances and sur-

rounding sea conditions. Equation 2.12 shows the power accumulating to a buoy number

p In a buoy array.

MpẌp(t) = Fexc,p(t) + Frad,p(t) + Fpto,p(t) (2.12)

Where Mp is the displacement of the pth buoy, Ẍp(t) is a vector of body acceleration in

the surge, heave and sway. The last term, denoting the power take-off system, that can

be simulated as a linear spring and damper. Two control factors are involved for each
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mooring line: the damping Bpto and stiffness Kpto coefficients. Therefore the Equation

(2.12) can be elaborated as:

((MΣ +Aσ(ω))jω +Bσ(ω)−
Kpto,Σ

ω
j +Bpto,Σ)ẌΣ = F̂exc,Σ (2.13)

where AΣ(ω)) and BΣ(ω) are hydrodynamic parameters which are derived from the
semi-analytical model based on [92]. Hence, the total power output of a buoy array is:

PΣ =
1

4
(F̂ ∗exc,ΣẌΣ + Ẍ∗ΣF̂exc,Σ)− 1

2
Ẍ∗ΣBẌ∗Σ (2.14)

While we can compute the total power in Equation 2.14, it is very computationally

demanding and increases exponentially with the number of buoys. With constructive

interference the total power output can scale super–linearly with the number of buoys.

The detailed wave characteristics including the number, direction and the probability of

wave frequencies can be seen in figure 2.26.

2.3.6 Optimisation Setup

The optimisation problem studied in this work can be expressed as:

P ∗Σ = argmaxx,yPΣ(x,y)

,where PΣ(x,y) is the average whole-farm power given by the buoys placements in a field

at x-positions: x = [x1, . . . , xN ] and corresponding y positions: y = [y1, . . . , yN ]. The

buoy number is here N = 16.

2.3.6.1 Constraints

There is a square-shaped boundary constraint for placing all buoys positions (xi, yi):

l × w where l = w =
√
N ∗ 20000m. This gives 20 000 m2 of the farm-area per-buoy.

To maintain a safety distance, buoys must also be at least 50 metres distant from each

other. For any layout x,y the sum-total of the inter-buoy distance violations, measured

in metres, is:

Sumdist =
∑N−1

i=1

∑N
j=i+1(dist((xi, yi), (xj , yj))− 50),

if dist((xi, yi), (xj , yj)) < 50 else 0

where dist((xi, yi), (xj , yj)) is the L2 (Euclidean) distance between buoys i and j. The

penalty applied to the farm power output (in Watts) is ( Sumdist + 1)20. This steep
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2.3.8 Evolutionary Algorithms (EAs)

Five popular off-the-shelf EAs are compared in the first strategy to optimise all problem

dimensions. These EAs include: (1) Differential Evolution (DE) [94], with a configuration

of λ = 30 (population size), F = 0.5 and Pcr = 0.5; (2) covariance matrix adaptation

evolutionary-strategy (CMA-ES) [89] with the default settings and λ =DE configura-

tions; (3) a (µ+λ)EA that mutates buoys’ position with a [95] probability of 1/N using

a normal distribution (σ = 0.1 × (Ub − Lb)) when µ = 50 and λ = 25; and (4) Particle

Swarm optimisation (PSO) [42], with λ= DE configurations , c1 = 1.5, c2 = 2, ω = 1

(linearly decreased).

2.3.8.1 Hybrid optimisation algorithms

Relevant researches [1, 23, 138] noticed that employing a neighborhood search around

the previously placed-buoys could be beneficial for exploiting constructive interactions

between buoys. The two following methods utilise this observation by placing and opti-

mising the position of one buoy at a time.

2.3.8.1.1 Local Search + Nelder-Mead(LS-NM)

LS-NM [1] is one of the most effective and fast WEC placement methods. LS-NM

positions generators sequentially by sampling at a normally-distributed random deviation

(σ =70 m) from the previous buoy location. The best-sampled location is optimised using

Ns iterations of the Nelder-Mead search method. This process is repeated until all buoys

are placed.

2.3.8.1.2 Adaptive Neuro-Surrogate Optimisation method (ANSO)

Given the complexity of the optimisation problem we devise a novel approach with the

intuition that (a) sequential placement of the converters provide a simple, yet effective

baseline and (b) we can learn a surrogate to mimic the potential power output for an

array of buoys. Hence, we provide a three step solution (as detailed in Algorithm 2.6).

2.3.8.1.3 Symmetric Local Search (SLS):

Inspired by LS-NM [1, 138], in the first step we sequentially place buoys by conducting a

local search for each placement. SLS starts by placing the first buoy in the recommended
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Algorithm 2.6 Adaptive Neuro-Surrogate Optimisation (ANSO)
1: procedure Adaptive Neuro-Surrogate Optimisation (ANSO)

2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: Res = 3 . angle resolution
5: angle = {0 ,Res, 2 × Res, . . . , 360 − Res} . symmetric samples angle
6: iters = Size([angle]) . Number of symmetric samples
7: EvalSet = {2nd, 3rd, 5th, ..., 15th} . Set of evaluated buoys
8: EstimSet = {4th, 6th, 8th, ..., 16th} . Set of estimated buoys
9: S = {〈x1, y1〉, . . . , 〈xN , yN 〉} = ⊥ . Positions
10: S(1) = {〈size, 0〉} . first buoy position
11: energy = Eval([S(1)])

12: bestPosition = S(1);
13: for i in [2, .., N ] do
14: bestEnergy = 0;

15: if i ∈ Evalset then . layouts should be evaluated by Simulator
16: for j in [1, .., iters] do
17: (Samplej , energyj )=SymmetricSampleEval(anglej , S(i−1))

18: if Samplej is feasible & energyj > bestEnergy then
19: tPos = Samplej . Temporary buoy position
20: bestEnergy = energyj

21: bestAngle = j

22: end if
23: end for
24: if No feasible solution is found then
25: (Sample1, energy1 )=rand(S(i−1))
26: end if
27: (Es1, Es2)=SymmetricSampleEval(bestAngle ± Res/2 , S(i−1))

28: (S(i), energy)=FindbestS(tPos, Es1, Es2)

29: DataSeti = UpdateData(Sample, energy)

30: else . layouts should be estimated by the LSTM
31: (HyperParametersi)=Optimise-Hyper(DataSeti) . Optimising by GWO
32: (Deepi)=reTrain(Deepi ,DataSeti ,HyperParametersi)

33: for j in [1, .., iters] do
34: (Samplej , energyj )=SymmetricSampleEstim(anglej , S(i−1),Deepi)

35: if Samplej is feasible & energyj > bestEnergy then
36: tPos = Samplej . Temporary buoy position
37: bestEnergy = energyj

38: bestAngle = j

39: end if
40: end for
41: end if
42: end for
43: (bestPosition ′, bestEnergy ′) = BackTrackingOp(bestPosition)

44: return bestPosition ′, bestEnergy ′ . Final Layout
45: end procedure
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2.3.8.1.4 Learning the neuro-surrogate model:

The hydrodynamic simulator is computationally expensive to run. A fast and accurate

neuro-surrogate is used here to estimate the power of layout based on the position of the

next buoy: (xi, yi). Our motivation is that a fast surrogate function can quickly estimate

what the simulator takes a long time to compute. The key challenges to overcome in

designing a neuro-surrogate are: 1) function complexity: a highly nonlinear and complex

relationship between buoys position and absorbed farm power, 2) changing dataset: as

more evaluations of the placements are performed, new data for training is collected that

has to be incorporated, and, 3)efficiency: training time plus the hyper-parameter tuning

has to be included in our computational budget.

For handling these challenges, we use a combination of recurrent networks with LSTM

cells [139] (sequential learning strategy), and, an optimiser (GWO) [11] for tuning the

network hyper-parameters for estimating the power of the layouts. The overall framework

is shown in Figure 2.27. The proposed LSTM network is designed for sequence-to-one

regression in which the input layer is from 2D buoy positions (xi, yi) and the output of

the regression layer is the estimated layout power. The LSTM training process is done

using the back-propagation algorithm, in which the gradient of the cost function (in this

case the mean squared error between the true ground-truth and the estimated output of

the LSTM) at different layers are computed to update the weights.

For tuning the hyper-parameters of the LSTM we use the ranges: MiniBatch size (5 −
100), learning rate (10−4 − 10−1), the maximum number of training epochs (50 − 600),

LSTM layer number (one or two) and hidden node number (10− 150). At each step of

the position optimisation, a fast and effective meta-heuristic algorithm (GWO) [128] is

used. This is because the collected data-set is dynamic in terms of input length (increases

over time) and the arrangement of buoys. This hybrid idea depicts an adaptive learning

process that is fast (is converged by a few evaluations (Figure 2.31)), accurate and easily

scalable to larger sizes.

2.3.8.1.5 Backtracking Optimisation:

The third component of ANSO is applying a backtracking optimisation strategy (BO).

This is because the initial placements described above are based on greedy selection,

the previous buoys’ positions are revisited during this phase. Consequently, introducing

backtracking can help maximise the power of the layouts. For this part, a 1+1EA[140]

is employed. In each iteration, the buoys position (xi, yi) is mutated based on a Gaus-

sian normally distributed random variable with a dynamic mutation step size (σ) that
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Figure 2.28: The best-obtained 16-buoy layouts: figure(a) presents how the pro-
posed hybrid method can optimise buoys position and estimate the power of some
buoys (4th, 6th, ..., 16th) sequentially. Two rings around each buoy show the exploration
space(Res = 3◦,∆R =20 m). Other figures show the best layouts arrangement of the

four real wave scenarios based on Table 2.9.

is decreased linearly and an adaptive probability rate (Pm). The mutated position is

evaluated by the simulator. Both Equations 2.15 and 2.16 represent the details of these

control parameters of the BO method.

σiter = σMax × 0.08× iter/iterMax ∀ iter ∈ {1, ..., iterMax} (2.15)

Pmi = (1/N)× (1/(PowerBuoyi/MaxPower)) + ωi ∀ i ∈ {1, ..., N} (2.16)

Where σMax is the initial mutation step size at 10 m and Pmi shows the mutation prob-

ability of each buoy in the layout. We assume that the buoys with lower absorbed power

need more chance of modification, so the highest mutation probability rate should be

allocated to that buoy with the lowest power and vice-versa. In addition, ωi is a weighted

linear coefficient from 0.1 (for the lowest power of the buoys) to 0 (highest buoy power).

The reserved runtime for the BO method is one hour. Algorithm 2.6 describes this

method in detail.

2.3.9 Experiments

The adaptive tuning of hyper-parameters in ANSO makes it compatible with each layout

problem. Moreover, no pre-processing time is required for collecting the relevant training

data-set, ANSO is able to collect the required training data in real-time during the

sampling and optimisation of previous buoy positions.
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in Table 2.9, ANSO-S4-B is best, on average, in Sydney, Perth and Tasmania. ANSO-S3-

B shows the best performance in Adelaide. However, all methodologies using the neuro-

surrogate are competitive in terms of performance. The results of applying the Friedman

test are shown in Table 2.10. Algorithms are ranked according to their best configuration

for each run. Again, ANSO-S3-B obtained first ranking in the Adelaide wave model and

non-neuro-surrogate ANSO-S4-B algorithm ranks highest in other scenarios. The best

16-buoy layouts of the 4 compared algorithms (CMAES, (µ + λ)EA, LS-NM and the

best-performing versions of ANSO) are shown in Figure 2.28. The sampling used by the

optimisation process of ANSO-S1 is shown in Figure 2.28(a). It shows how ANSO-S1

explores each buoy’s neighbourhood and modifies positions during backtracking.

Figure 2.29 shows box-and-whiskers plots for the best solutions power output per run for

all approaches and all wave scenarios. It can be seen that the best mean performance is

given by ANSO-S4-B in three of four-wave scenarios. In the Adelaide case study, ANSO-

S3-B performs best. Another interesting observation is that, among population-based

EAs, (µ + λ)EA excels. However, both ANSO and LS-NM outperform all population–

based methods.

Figure 2.30 exhibits the convergence diagrams of the average power output of the nine

compared algorithms. In all wave scenarios, ANSO-S2-B has the ability to converge very

fast because it estimates two sequentially placed buoys layouts power after each training

process instead of evaluating one of these using the expensive simulator. ANSO-S2-B

is able to not only save the runtime for evaluating samples but also save the surrogate

training time and is, respectively, 3, 4.5 and 14.6 times faster, on average, than ANSO-

S4-B, LS-NM and (µ + λ)EA. Note again, that these timings include training and

configuration times.

For our neuro-surrogate model to produce accurate and reliable power estimation, we

need to obtain good settings for hyper-parameters. Finding the best configuration for

these parameters in such a continuous, multi-modal and complex search space is not

a trivial challenge. Figure 2.31 shows the GWO performance for tuning the LSTM

hyper-parameters for ANSO-S1. In addition, the Pearson correlation coefficient testing

values (R-value) for all trained LSTMs estimates the performance of the trained LSTM

(R̄ >= 0.7). The most challenging training process is related to the power estimation of

the 14th buoy because ANSO is faced with the boundary constraint of the search space,

so the arrangement of the layouts changes.





Figure 2.31: Evolutionary (GWO) hyper-parameters optimisation: a) The vertical
axis is test-set accuracy of the mean best configuration by cross-validation per genera-
tion. b) and c) show the optimisation process of the learning rate and minibatch size
for estimating the power of the seven buoys. Both d) and e) show the optimised number

of neurons in the first and second LSTM layers.
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2.4 Optimisation of Large Wave Farms using a Multi-

strategy Evolutionary Framework

2.4.1 Synopsis

In the previous sections of this chapter, we discuss a wide range of optimisation algo-

rithms and then propose the most effective heuristic (problem-specific) algorithms in

order to optimise the WECs placement. However, the performances of the proposed

heuristic approaches are not evaluated by large wave farms. There are some challenges

involved in optimising large wave farm in real wave scenarios. These include a difficult

and time-consuming initialisation of the first population due to the safety distance con-

straint, high dimensionality of the search space, very complex hydrodynamic interactions

between WECs and the computationally expensive evaluation. In order to deal with the

listed challenges, we extend and modify previous works using a new hybrid multi-strategy

evolutionary framework which combines smart initialisation, a binary population-based

evolutionary algorithm, discrete local search and continuous global optimisation. The

statistical results show that, on average, the new multi-strategy evolutionary algorithm

outperforms other applied optimisation methods for both 49- and 100-buoy layouts in

terms of convergence speed and power production.

Reference

[6] Neshat, M., Alexander, B., Sergiienko, N. Y., & Wagner, M. (2020). Optimisation of

Large Wave Farms using a Multi-strategy Evolutionary Framework. Accepted for publi-

cation by the Genetic and Evolutionary Computation Conference on 2020.( this paper

has been nominated as a Best Paper Award in the Real World Application

(RWA) Track)
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2.4.2 Abstract

Wave energy is a fast-developing and promising renewable energy resource. The pri-

mary goal of this research is to maximise the total harnessed power of a large wave

farm consisting of fully-submerged three-tether wave energy converters (WECs). Energy

maximisation for large farms is a challenging search problem due to the costly calcula-

tions of the hydrodynamic interactions between WECs in a large wave farm and the high

dimensionality of the search space. To address this problem, we propose a new hybrid

multi-strategy evolutionary framework combining smart initialisation, binary population-

based evolutionary algorithm, discrete local search and continuous global optimisation.

For assessing the performance of the proposed hybrid method, we compare it with a wide

variety of state-of-the-art optimisation approaches, including six continuous evolution-

ary algorithms, four discrete search techniques and three hybrid optimisation methods.

The results show that the proposed method performs considerably better in terms of

convergence speed and farm output.

2.4.3 Introduction

The use of renewable energy sources continues to exhibit very fast growth of deployment,

and it has resulted in savings of more than two gigatonnes of carbon dioxide in 2018

alone [141]. One of the most promising renewable sources is ocean wave energy, which has

a high energy density per unit area of ocean, high level of predictability, and potentially

high capacity factors [18, 142]. However, compared to wind and solar energy, wave energy

is still a nascent field, and research is still very active converter design [7], wave-farm

layout, and power-take-off parameters [21, 143].

While there has been significant research on the placement of wave energy converters

(WECs) in farms [1, 23, 31, 35, 39], to date, only Wu et al. [39] has considered the design

of larger layouts of over 20 converters, using a much-simplified wave energy model.

The research described in this paper extends previous work by using a much more detailed

energy model to place buoys in large farms of up to 100 WECs. Due to the much

higher number of interactions modelled in such farms this work requires the development

of novel, specialised, and highly-efficient search heuristics. Using an improved energy

model, we demonstrate the performance of these new algorithms in two contrasting real

wave scenarios (Sydney and Perth) and compare their performance to a suite of extant

optimisation algorithms.
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This paper is organised as follows. In the next section, we survey related work. Sec-

tion 2.4.5 describes our WEC model. Section 2.4.5.3 formulates the optimisation prob-

lem. The proposed optimisation methods are described in Section 2.4.6. The results of

the optimisation experiments, including simple landscape analysis, are described in Sec-

tion 2.4.8. Section 2.4.9 concludes this paper and canvases future work.

2.4.4 Related Work

Placement of WECs in larger farms is a challenging optimisation problem. Hydrodynamic

interactions between WECs are complex, which makes evaluation of each potential layout

time-consuming [1], ranging from minutes to hours for large farms. Second, due to

complex inter-WEC interactions, the search space for this problem is multi-modal – thus

requiring global search to be assured of good results. Finally, the high number of decision

variables in large farms increases the search space to traverse.

There has been substantial past research into the problem of WEC placement. One

of the first studies to optimise WEC layout compared a customised genetic algorithm

(GA) with an iterative Parabolic Intersection (PI) method [31] for a small wave farm

(five buoys). The GA outperformed PI, but required more evaluations to do so. A more

recent position optimisation study [35] compared three search metaheuristics: a custom

GA, CMA-ES [89], and glow-worm optimisation [101]), using a simple wave model. The

study observed that CMA-ES converges the fastest, while the other models produced

slightly better results. Wu et al. [39] considered optimising a large wave farm (25–100

WECs) as an array of fully submerged three-tether buoys using 1+1EA and 2+2CMA-

ES. That research found that the 1+1EA with a simple mutation operator performed

better than CMA-ES. A limitation of that work was that it was limited to a highly

simplified single-wave-direction wave scenario.

In a move toward problem-specific algorithms, Neshat et al. [1] proposed a hybrid optimi-

sation method (LS-NM) combined with a neighbourhood search and Nelder-Mead search.

Their study found that LS-NM performed better than generic and custom EAs. However,

the wave model applied by that study, though quite detailed, still used an artificial wave

scenario and small farm sizes (4 and 16 WECs). More recently, more problem-specific

search techniques [3, 23] were, respectively, proposed for optimising WECs positions by

utilising a surrogate power model (that is learned on the fly); and hybrid symmetric

local search by defining a search sector to speed up the optimisation process. These

approaches were also applied to real wave scenarios. For handling this real expensive op-

timisation problem, a neuro-surrogate optimisation approach was recommended [4] that

is composed of a surrogate Recurrent Neural Network (RNN) model and a symmetric
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local search. This surrogate model is joined with a metaheuristic (Grey Wolf optimiser)

for tuning the model’s hyper-parameters. However, these search strategies performance

were not evaluated on a large farm.

This article differs from previous work by optimising large layouts using an improved

high-fidelity hydrodynamic model to optimise layouts in real wave scenarios. We de-

velop a new hybrid multi-strategy evolutionary algorithm for optimising the positions of

buoys in the wave farm to maximise the average total farm power output. For evaluat-

ing the new algorithm, we compare its performance to: (1) six continuous off-the-shelf

evolutionary methods, (2) four discrete heuristic approaches (3 new), population and

individual-based, and (3) three new hybrid EAs (continuous+discrete). We use these

methods to optimise wave farms of sizes 49 and 100. We use fine-grained models of con-

trasting real wave climates, Perth and Sydney, which are located off the southern coast

of Australia. The optimisation results demonstrate that the new hybrid multi-strategy

search approach produces the best results.

2.4.5 The wave energy converter model

This section describes the energy model for WEC layouts used in this study. The WEC

design simulated here is a three-tether spherical buoy based on the highly effective CETO

6 system developed by Carnegie Clean Energy [97].

2.4.5.1 Equation of motion

We model a fully submerged spherical buoy of 5 m radius that is tethered to three power

take-off units installed on a seabed. A detailed description of this WEC and its physical

parameters can be found in [1].

The motion of each buoy in the farm depends on the forces due to the fluid-structure

interaction and the force exerted on the buoy from the PTO system. The generalised

equation that describes the motion of all buoys can be written in the frequency domain

as:

(M + A)Ẍ + (B + Dpto)Ẋ + KptoX = Fexc, (2.17)

where X ∈ R3N×1 is a vector of surge, sway and heave displacements of each buoy,

M = mI3N is a diagonal mass matrix of the wave farm, A and B ∈ R3N×3N are the

matrices of hydrodynamic added mass and damping coefficients respectively, Kpto and

Dpto ∈ R3N×3N are the block diagonal matrices of PTO stiffness and damping coefficients

respectively, and Fexc ∈ R3N×1 is a vector of excitation forces.
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2.4.5.2 Performance assessment

After solving the equation of motion (2.17), we can calculate the power absorbed by the

farm in a regular wave of frequency ω that propagates from direction β:

p(ω, β) =
1

2
Ẋ∗DptoẊ (2.18)

where ()∗ denotes the conjugate transpose of a matrix.

Eq. (2.18) allows us to estimate the power production of a farm assuming that the ocean

wave has only one frequency component (like a sinusoidal wave) and propagates only

from one direction. In reality, ocean waves travel from different directions and contain

multiple frequencies. This behaviour of the wave is usually described by the directional

wave spectrum S(ω, β), and power generated by the wave farm in the irregular wave, or

sea state (Hs, Tp), can be approximated by:

P (Hs, Tp) =

∫ 2π

0

∫ ∞
0

S(ω, β)p(ω, β) dω dβ. (2.19)

A potential deployment site (e.g. Perth or Sydney) can be characterised by the wave

climate where each sea state has the probability of occurrence O(Hs, Tp). Therefore,

using values from Eq. (2.19) and having historical wave climate statistics, it is possible

to calculate the annual average power generated by the wave farm at a given location:

PΣ =
∑

P (Hs, Tp)O(Hs, Tp). (2.20)

The Perth and Sydney sites are qualitatively very different: Perth has a small sector from

which the prevailing waves arrive, while Sydney’s wave directions vary much more. For

Perth, this can result in very pronounced constructive and destructive interference, while

the same are “smeared” out for Sydney, thus resulting in two very different optimisation

scenarios.

Another metric that is widely used to demonstrate the quality of the buoy placement

in a farm is called the q-factor. It can be calculated as a ratio of the power generated

by the entire farm PΣ to the sum of power outputs from all WECs if they operate in

isolation (not in a farm) P iΣ:

q =
PΣ∑N
i P

i
Σ

(2.21)

Values of q > 1 indicate that this particular farm benefits from the constructive interac-

tion between WECs, and more energy can be generated if these WECs operate together.
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The MATLAB implementation of this model can be downloaded at [144].

2.4.5.3 Optimisation problem formulation

Based on our WEC model, the problem of positioning N converters on a restricted area

of a wave farm (l×w) in order to maximise the average annual power production PΣ is:

P ∗Σ = argmaxx,yPΣ(x,y)

where PΣ(x,y) is the average power obtained by placements of the buoys in a field at

x-positions x = [x1, . . . , xN ] and corresponding y positions y = [y1, . . . , yN ]. In our

experiments, the number of buoys is N = 49 and 100.

Constraints All buoy positions (xi, yi) are constrained to a square field of dimensions:

l × w where l = w =
√
N ∗ 20000m. This allocates 20000m2 of farm-area per-buoy. In

addition, the intra-buoy distance must not be less than 50 meters for reasons of safety

and maintenance access. For any layout x,y the sum-total of the inter-buoy distance

violations, measured in metres, is:

Sumdist =
∑N−1

i=1

∑N
j=i+1(dist((xi, yi), (xj , yj))− 50),

if dist((xi, yi), (xj , yj)) < 50 else 0

where dist((xi, yi), (xj , yj)) is the Euclidean distance between each pair of buoys i and j.

Violations of the inter-buoy distance constraint are handled by applying a steep penalty

function: ( Sumdist+1)20 and then applying the Nelder-Mead simplex algorithm over this

penalty function to repair the violations in the layout. This approach avoids expensive

re-evaluations of the full-wave model that would be required if the penalty function were

combined with the full model whilst repairing distance violations. Meanwhile, we handle

buoy placements outside of the farm area by moving them back to the farm boundary.

Computational Resources In this paper, we aim to compare several heuristic search

methods, for 49 and 100-buoy layouts, in two realistic wave models. Because the search

methods apply the interaction model to differing numbers of buoys at a time, it is not

feasible to compare methods fairly in terms of a fixed number of model evaluations.

Instead, we use an allocated time budget for each run of three days on dedicated nodes of

an HPC platform with 2.4GHz Intel 6148 processors and 128GB of RAM. The software

environment running the function evaluations and the search algorithms is MATLAB
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R2019. On this platform, 12-fold parallelisation inside of Matlab yields up to 10-fold

speedup. All algorithm variants are carefully implemented to make use of the parallelism

available.

2.4.6 Optimisation Methods

The algorithms that follow apply three broad strategies. In the first strategy, we optimise

in a continuous space using five off-the-shelf evolutionary algorithms. We also use the

LS-NM [1] algorithm, which places and fine-tunes one buoy at a time. In the second

strategy, we optimise the positions in a discretised grid where the spacing is based on

the safety-distance. Here, we consider four different EAs.

Last, we propose a hybrid multi-strategy heuristic that is designed based on our ob-

servations that attempts to combine the strengths of the algorithms from the first two

strategies.

2.4.6.1 Continuous methods

For the continuous optimisation strategy, we compare six meta-heuristic approaches to

optimise all problem dimensions simultaneously:

1. covariance matrix adaptation evolutionary-strategy (CMA-ES) [89, 145] which is

an state-of-the-art and self-adaptive EA with the default λ = 12, and initial σ =

0.25× (Ub − Lb);

2. (2+2)CMA-ES [39] with the default λ = 2, and σ = 0.3× (Ub − Lb);

3. Differential Evolution (DE) [94], a well known global search heuristic using a bino-

mial crossover and a mutation operator of DE/rand/1/bin, The population size is

adjusted by the λ = 12 and other control parameters are F = 0.5, Pcr = 0.8, 0.9

respectively for 49 and 100-buoy layouts;

4. Improved Differential Evolution [41], with λ = 12, and generating mutation vector

in the form of DE/best/1/bin with an adaptive mutation operator F = F0 ×

2e
1− Gm

Gm+1−G , where F0 = 0.5 and Gm is the maximum number of generations and

G is the current generation;

5. a simple (1+1)EA as used in [39] that mutates one buoy location in each iteration

with a probability of 1/N using a normal distribution (σ = 0.1× (Ub − Lb));
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6. Local Search + Nelder-Mead (LS-NM) [1]: which is a fast and effective WEC

position optimisation method. Each buoy is placed and optimised one-at-a-time

sequentially by sampling at a normally-distributed random offset (σ = 70m) from

the earlier placed buoy position. The sampled position proffering the highest power

output, after NM search, is taken.

2.4.6.2 Discrete methods

We test and compare four discrete optimisation methods. All methods place buoys at

locations on a grid spaced at the safety distance of 50m. A-priori this discretisation offers

advantages in terms of avoiding infeasible layouts and reduced overall search space.

The discrete algorithms used here are:

1. binary Genetic Algorithm (bGA) [36] with λ = 12, ep = 10%, Cr = 80%, Mr =

10%, a binary mutation and double point crossover with respect to the number of

buoys as a constraint, where ep, Cr andMr are the elitism, crossover and mutation

rate respectively.

2. Improved binary Differential Evolution (bDE) [146] with the same IDE settings

and to construct the mutant vector, formula 2.22 and 2.23 are used;

Diff −Vector j =

0, if(Xj
r1 = Xj

r2)

Xj
r1, otherwise

(2.22)

Mutant −Vector j =

1, if(Diff −Vector j = 1)

Xj
Gbest

, otherwise
(2.23)

where r1 and r2 are the index of two randomly chosen individuals, and Gbest

mentions the best solution number in the current population.

3. Enhanced binary Particle Swarm Optimisation (bPSO) [147, 148] with λ = 12,

and other settings are C1 = C2 = 2, ωini = 0.9, ωmax = 0.9, ωmin = 0.4, and ω is

linearly decreased to 0.4. the applied transfer function (V-shaped) is represented

by Equation 2.24 and the position vector is updated by Equation 2.25.

T (vki (t)) =

∣∣∣∣ 2π arctan(
π

2
vki (t))

∣∣∣∣ (2.24)

Xk
i (t+ 1) =

(Xk
i (t))−1 if rand < T (vki (t))

Xk
i (t) otherwise

(2.25)
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model to interactions between just 4 buoys makes these evaluations very fast and

efficient. Figure 2.32 shows the detailed behaviour of this step.

• Second step: Discretising the search space (wave farm) based on the size of the

surrogate sub-layout model as a smart initialisation method. Thus composing a

large wave farm as a mosaic of the small surrogate sub-layouts that produce the

most energy.

• Third step: Generating the initial population with a sufficient number of well-

arranged 4-buoy sub-layouts (smart initialisation) and then encoding to binary

representation in preparation for running binary GAs on WEC positions.

• Fourth step: Applying discrete optimisation methods on binary representations.

We evaluate and compare the performance of three methods (bDE [146], bGA [36]

and bPSO [147]).

• Fifth step: if the improvement rate of the last populations of the applied optimi-

sation method is low, the rotate procedure is run to perturb sub-layouts and avoid

premature convergence. The rotate algorithm mutates a 4-buoy sub-layout by a

random clockwise rotation degree with discrete 45 intervals.

The probability of the applied rotation on each sub-layout is 1
N .

Using this configurable method, we compare three combinations:

1. SLS-NM + binary GA + Rotate (SLSNM-bGA)

2. SLS-NM + Improved binary DE + Rotate (SLSNM-bDE)

3. SLS-NM + Enhanced binary PSO + Rotate (SLSNM-bPSO)

2.4.7.1 Hybrid Multi-strategy Evolutionary algorithms

The binary-encoded search space in the third hybrid search strategy is discrete. This

means that, often, there is still scope to further tune layout locations. To implement

this tuning we develop the third hybrid search strategy using a backtracking method for

enhancing the buoys position. This backtracking idea is consists of

1. A discrete local search (DLS) for providing a second chance for running a fast

neighbourhood exploration of the buoys with a large step size (interval=50m)

2. and a continuous local search (CLS) that uses a 1+1EA for exploring near each buoy

using small random normally distributed step size (σ = 20m, linearly decreased).
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Furthermore, the rotation procedure is embedded with the discrete metaheuristic algo-

rithms as a mutation operator which is applied to perturb the best solution after each

generation. According to the above descriptions, three Hybrid Multi-strategy Evolution-

ary algorithms are proposed including

1. SLS-NM + bGA-Rotate + DLS + CLS (MS-bGA)

2. SLS-NM+Improved bDE-Rotate + DLS + CLS (MS-bDE)

3. SLS-NM+Enhanced bPSO-Rotate + DLS + CLS (MS-bPSO)

Algorithm 2.7 describes MS-bDE in detail, where N , Ns, Nb are the buoy numbers,

the surrogate model’s buoy number (4-buoy layout) and the number of binary decision

variables respectively. And also both Tr1 and Tr2 are the stopping criteria of 24 (hours)

and 48 (hours) respectively.

2.4.8 Experimental study

This section shows detailed optimisation results comparing the 17 variations of search

heuristics (six existing methods with and 11 new combinations) described in the previous

section. In order to evaluate the performance of the proposed algorithms, we performed

a comparative study using two distinct real wave scenarios (Perth and Sydney), and for

two different large farm sizes with N = 49 and N = 100 buoys. For each optimisation

method with the configurations above, we execute ten runs. For a set of runs, we tracked

performance distributions, and the best layouts were gathered to compare each method.

Table 2.11 shows summary statistics from the experimental runs. The best-obtained

results are indicated in bold type. The minimum, maximum, average, median and stan-

dard deviation (STD) of the best-produced solutions (power output) for each experiment

are reported.
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Algorithm 2.7 MS − bDE

1: procedure Hybrid Multi-strategy Evolutionary Algorithm

2: Initialisation
3: N = 49, 100, Ns = 4, Nb = N/Ns,NPop = 12, F0 = 0.5, Pcr = 0.9, iter = 1

4: size =
√
N ∗ 20000 . Farm size

5: ~̃Ss = {〈x1, y1〉, . . . , 〈xNs
, yNs

〉} = ⊥ . Continuous surrogate position
6: ~S = {〈x1, y1〉, . . . , 〈xN , yN 〉} = ⊥ . Discrete layout position
7: χdis = {〈 ~S1〉, 〈 ~S2〉 . . . , 〈~SNPop

〉} . Discrete Population
8: Symmetric Local Search + Nelder-Mead (SLS-NM)
9: (energys ,Arrays) = SLS−NM([ ~Ss]) . Optimise surrogate model

10: χiter
dis =IniFirstPop(Arrays , χdis) . Generate initial discrete population

11: (Energy , bestEnergy , bestArray) = Eval(χiter
dis ) . Evaluate population

12: χiter
b =ConDisBin(χiter

dis , Nb) . Encode discrete to binary population
13: Discrete Differential Evolution (bDE)
14: while ImPorate ≥ 0 .1 % &

∑iter
t=1 runtimet ≤ Tr1 do

15: for i in [1, .., NPop] do . Mutation
16: Generate two rand indexes r1, r2 ∈ (1, NPop), r1 6= r2 6= i

17: Compute mutant vector (V iteri ) by Equations. 2.22 and 2.23
18: for j in [1, ..,Nb ] do . Crossover
19: if rand ≤ Pcr or j == jrand then U iteri,j = V iteri,j

20: else U iteri,j = χiterbi,j

21: end if
22: end for
23: if f(U iteri ) ≥ f(χiterbi

) then χiter+1
bi

= U iteri . Selection(Maximisation)
24: else χiter+1

bi
= χiterbi

25: end if
26: end for
27: (bestarray , bestIndex , bestEnergy , ImPorate)=Max(χiter+1

b )
28: Rotation Operator
29: for k in [1, ..,Nb ] do
30: if rand < 1

Nb
then

31: (arrayRk
)=Rotate(bestarray , k)

32: end if
33: end for
34: (EnergyR) = Eval(arrayR) . Evaluate rotated layout

35: χiter+1
bbestIndex

=

arrayR, if EnergyR > bestEnergy

bestarray , Otherwise
36: iter = iter + 1 , and Update ImPorate

37: end while
38: (bestarray , bestIndex , bestEnergy , ImPorate)=Max(χiterb )
39: Discrete Local Search
40: while ImPorate ≥ 0 .001 % &

∑iter
t=1 runtimet ≤ Tr2 do

41: (arraydls ,Energydls) = DLS(bestarray)

42: if Energydls > bestEnergy then
43: bestarray = arraydls , bestEnergy = Energydls , Update ImPorate

44: end if
45: end while
46: Continuous Local Search
47: while

∑iter
t=1 runtimet ≤ 72 (hour) do

48: (arraycls ,Energycls) = CLS(bestarray)

49: bestarray =

arraycls , if Energycls > bestEnergy

bestarray , Otherwise
50: Update bestEnergy

51: end while
52: return bestarray , bestEnergy . Final Layout and Energy
53: end procedure
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in all case studies. It can be seen that, overall, MS-bDE produces the best optimisation

performance.

In Figure 2.35, in all configurations of the Perth wave model, three hybrid and three

multi-strategy methods converge very fast and still outperform the other methods. It

is notable that these six proposed methods start the optimisation process with a high

power output solution due to the smart initialisation technique described in Section

2.4.7. Looking more closely at Figure 2.35, we can see that all discrete optimisation

approaches converge faster than the continuous algorithms on average. Furthermore,

because of the embedding of the rotation operator with the binary EAs, the multi-

strategy techniques are able to converge faster than the hybrid methods, especially in

the initial iterations. In terms of other algorithms, in the Sydney wave model, the

performance of the DLS is strong (N = 100) and outperforms other methods in terms of

the convergence rate and the produced power. However, we can see that in the smaller

farm, the performance of multi-strategy EAs are competitive, and MS-bGA performs

better than other optimisation methods in the final iterations.

Some of the most productive 49 and 100-buoy layouts are presented by Figure 2.36 from

all the runs in the two scenarios. The absorbed power of buoys is characterised by their

colour. It can be seen that the best layouts in Perth are multi-row diagonal arrangements;

however, this trend is different in the Sydney wave site where the optimisation method

pushes some buoys to the farm boundaries.

Lastly, to further investigate the hydrodynamic interactions between buoys in the best

layouts, we perform two different analyses.

In the first analysis, we iteratively remove the buoy with the lowest absorbed power

and evaluate the performance of the layout. While this experiment focuses on the least-

performing buoy, the interactions of these buoys might be beneficial for the wave farms

nevertheless. Figure 2.34 shows that a lot of constructive interference is exploited in

both the 49 and 100 buoy Perth scenario (up to the 26th buoy), while the marginal

improvement from adding buoy’s declines after that. For Sydney, there is an almost

uniform decline in marginal performance from the start.

The second analysis of the best layouts selects the buoy with the highest power, removes

it, and then maps the landscape using a 25-meter grid. We record both the absorbed

power of the buoy and the total wave farm power output per each sample. Figure 2.37

shows the power landscape analysis of this experiment.

Note that the gaps are the infeasible areas around the already-placed buoys. The subplots

(b) and (d) indicate a multimodal and complex power landscape, for the placement of

the last of the 49 buoys, especially for Sydney.
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Figure 2.38: The comparison of the optimisation algorithms performance for 49 and
100-buoy layouts in Sydney and Perth wave models. The optimisation results present

the best solution per each experiment. (10 independent runs per each method)

This optimisation problem is challenging in terms of the cost of its evaluation model

and the large multimodal search landscape. Our new framework addresses this problem

through careful problem decomposition into sub-farms, the use of discrete search spaces

and a customised mutation operator (rotation).

The statistical results indicate that the new multi-strategy evolutionary algorithm con-

sisting of symmetric local search and Nelder Mead search, combined with an embed-

ded rotation operator, plus an improved binary DE and a hybrid backtracking strategy

(DLS+CLS) performs better than other applied optimisation methods on average. In

our experiments, this method overcomes other state-of-the-art algorithms, for both 49

and 100-buoy layouts, in terms of convergence speed and power production.

Future work could explore other optimisation dimensions, including considering other

effective buoy designs and power take-off system settings.
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3.1 A hybrid evolutionary algorithm framework for opti-

mising power take off and placements of wave energy

converters

3.1.1 Synopsis

In the previous chapter, we considered and proposed several new heuristic (problem-

specific) methods for optimising the arrangement of wave energy converters in order to

harness the maximum produced power. However, the performance of a wave farm can

be significantly increased when we adjust adequate power take-off (PTO) parameters

rather than assigning random PTO values. Consequently, our main goal in this chapter

is to explore, investigate and propose new insights into optimisation of a wave farm by

configuring WEC locations and power-take-off (PTO) settings for each WEC. In this pa-

per, our optimisation methods apply three comprehensive strategies. The first strategy

is to optimise all decision variables at once. ’All-at-once’ means that both placement

and PTO settings of all WECs in the farm should be optimised simultaneously. Here,

we evaluate and compare the performance of five well-known off-the-shelf optimisation

methods that apply this strategy. In the second optimisation strategy, we focus on opti-

mising the placements and PTO parameters of all WECs in an alternating cooperative

algorithm. We propose four new methods that apply this strategy. Finally, the third

strategy, (adopted in [1]) is to place and optimise each WEC in a sequential layout.

Here, we apply this strategy in order to propose three new hybrid heuristics. We assess

the effectiveness of these approaches in two real wave scenarios (Sydney and Perth) with

farms of two different scales. Results indicate that the combination of symmetric local

search, a Nelder-Mead Simplex direct search combined and a back-tracking optimisation

strategy can outperform previously specified search techniques by up to 3%.

Reference

[3] Neshat, M., Alexander, B., Sergiienko, N. Y., & Wagner, M. (2019, July). A hy-

brid evolutionary algorithm framework for optimising power take off and placements of

wave energy converters. In Proceedings of the Genetic and Evolutionary Computation

Conference (pp. 1293-1301).(Received The Best Paper Award in the Real World

Application (RWA) Track [150])
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3.1.2 Abstract

Ocean wave energy is a source of renewable energy that has gained much attention for

its potential to contribute significantly to meeting the global energy demand. In this

research, we investigate the problem of maximising the energy delivered by farms of

wave energy converters (WEC’s). We consider state-of-the-art fully submerged three-

tether converters deployed in arrays. The goal of this work is to use heuristic search

to optimise the power output of arrays in a size-constrained environment by configuring

WEC locations and the power-take-off (PTO) settings for each WEC. Modelling the

complex hydrodynamic interactions in wave farms is expensive, which constrains search

to only a few thousand model evaluations. We explore a variety of heuristic approaches

including cooperative and hybrid methods. The effectiveness of these approaches is

assessed in two real wave scenarios (Sydney and Perth) with farms of two different

scales. We find that a combination of symmetric local search with Nelder-Mead Simplex

direct search combined with a back-tracking optimisation strategy is able to outperform

previously defined search techniques by up to 3%.

3.1.3 Introduction

Environmental concerns and declining costs are favouring the widespread deployment of

renewable electricity generation. Wave energy converters (WECs), in particular, offer

strong potential for growth because of their high capacity factors and energy densities

compared to other renewable energy technologies [18]. However, WECs are relatively

new technology, which presents design challenges in the development of individual con-

verters and in the configuration of farms consisting of arrays of WECs. The WEC model

considered in this research is similar to a new generation of CETO systems that were

introduced and developed by the Carnegie Clean Energy company [97]. The CETO sys-

tem is composed of an array of fully submerged three-tether converters (buoys) [151].

The aim of this research is to maximise the absorbed power of an array (farm) of these

buoys. In maximising the power produced by such an array the key factors are [21]: (1)

the layout of WECs in the sea, (2) the power-takeoff (PTO) parameters for each WEC,

(3) wave climate (wave frequencies and directions) of a specific test site, and (4) the

number of WECs.

The combined search space for optimising WECs placements and PTO settings is non-

linear and multi-modal. Furthermore, because of complicated and extensive hydrody-

namic interactions among generators, the evaluation of each farm configuration is expen-

sive, taking several minutes in larger farms. These factors make the use of smart and

specialised meta-heuristics attractive for this problem.
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In this paper, we develop a new hybrid Evolutionary framework for simultaneously op-

timising both placement and PTO parameters of a wave farm. We study a broad range

of meta-heuristic approaches: (1) five well-known off-the-shelf EAs, (2) four alternat-

ing optimisation ideas, and (3) three hybrid optimisation algorithms. Additionally, two

new real wave scenarios from the southern coast of Australia (Perth and Sydney) with

a high granularity of wave direction is used (Figure 3.1) to evaluate and compare the

performance of the proposed methods. According to our optimisation results, a new hy-

brid search heuristic combining symmetric local search with Nelder-Mead simplex direct

search, coupled with a backtracking strategy outperforms other proposed optimisation

methods in terms of the power output and computational time.

The rest of this paper is arranged as follows. Section 3.1.4 formulates the WEC model.

Section 3.1.5 gives the details of the optimisation problem. The search methods are

explained in Section 3.1.6 and a brief characterisation of the fitness landscape is given.

We present our comparative studies and experimental results in Section 3.1.7. Finally,

Section 3.1.9 concludes this paper.

3.1.4 Model for wave energy converters

In this paper, we consider a fully submerged three-tether buoy model with each tether

fastened to a converter installed on the seabed. We assume an optimal tether angle of 55

degrees, which was previously observed to maximise the extraction of energy from heave

and surge motions [90]. Other features of the wave energy converters (WECs) used in

this investigation, such as physical dimensions and submergence depth, can be found

in [1].

3.1.4.1 Power Model

In the WEC model used here, linear wave theory is used to calculate the system dynam-

ics [91]. This model includes three different key forces:

1. The wave excitation force (Fexc,p(t)) combines the incident and diffracted waves

forces from generators in a fixed location.

2. The radiation force (Frad,p(t)), derived by the oscillating body due to their motion

independent of incident waves.

3. Power take-off (PTO) force (Fpto,p(t)) is the control force applied to the buoy from

the PTO machinery.
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Through these forces, the buoys can affect each other’s output through hydrodynamic

interactions. The complex nature of these interactions, which can either be constructive

or destructive, makes the calculation of farm layout and PTO parameter settings a

challenging optimisation problem. The dynamic equation that describes a buoy motion

in ocean waves has the form:

MpẌp(t) = Fexc,p(t) + Frad,p(t) + Fpto,p(t) (3.1)

where Mp is the mass matrix of a pth buoy, Xp(t) is the buoy displacement expressed as

surge, heave and sway. Finally, the power take-off system is modeled as a linear spring-

damper system. For each mooring line two control factors are involved: the dampingDpto

and stiffness Kpto coefficients. Therefore, Equation (3.1) can be written in a frequency

domain for all WECs in a farm as:

F̂exc,Σ = ((MΣ +Aσ(ω))jω +Bσ(ω)−
Kpto,Σ

ω
j +Dpto,Σ)ẌΣ (3.2)

The hydrodynamic parameters (AΣ(ω)) and BΣ(ω) ) are calculated from the semi-

analytical model described in [92]. In addition, Kpto,Σ and Dpto,Σ are control factors,

described above, which can be adjusted to maximise the power output of each buoy. The

total power output of the layout is computed by Equation (3.3):

PΣ =
1

4
(F̂ ∗exc,ΣẌΣ + Ẍ∗ΣF̂exc,Σ)− 1

2
Ẍ∗ΣBẌ∗Σ (3.3)

Additionally, the q-factor (q) of the array measures the efficiency of a entire wave farm as

compared to the power output from N isolated WECs. For a given layout, the q-factor

can be calculated as:

q =
P∑∑N
i=1 Pi

. (3.4)

q > 1 indicates constructive interference between WECs. The main purpose of this study

is maximising the total power output: PΣ for N buoys within a constrained farm area.

3.1.5 Optimisation problem formulation

The formulation of the optimisation problem in this paper can be declared as:

P ∗Σ = argmaxX ,Y ,Kpto ,Dpto
PΣ(X ,Y ,Kpto ,Dpto)

where PΣ(X ,Y ,Kpto ,Dpto) is the mean power obtained by placements and PTO pa-

rameters of the buoys in a 2-D coordinate system at x-positions: X = [x1, . . . , xN ],
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y-positions: Y = [y1, . . . , yN ] and corresponding Power Take-off parameters including

Kpto = [k1, . . . , kN ] and Dpto = [d1, . . . , dN ] . In the experiments here N ∈ {4, 16}.

Constraints All buoy locations (xi, yi) are constrained to a square search space S =

[xl, xu] × [yl, yu]: where xl = yl = 0 and xu = yu =
√
N ∗ 20000m. This allocates

20000m2 of farm-area per-buoy. Moreover, a safety distance for maintenance vessels must

be maintained between buoys of at least 50 meters. For spring and damper coefficients

the boundary constraints are dl = 5× 104, du = 4× 105 and kl = 1, ku = 5.5× 105. For

any array X ,Y the sum-total violations of the inter-buoy distance calculated in meters,

is:

Sumdist =
∑N−1

i=1

∑N
j=i+1(dist((xi, yi), (xj , yj))− 50),

if dist((xi, yi), (xj , yj)) < 50 else 0

where dist((xi, yi), (xj , yj)) is the Euclidean distance between buoys i and j. The penalty

function of the power output (in Watts) is computed by (Sumdist + 1)20. The penalty

strongly encourages feasible buoy placements. This penalty is also used to handle farm-

boundary constraints. For the Dpto and Kpto parameters, we handle constraint violations

by setting the parameter to the nearest valid value.

Computational Resources In this paper, we aim to compare a various heuristic

search methods, for 4 and 16 buoy arrays, in two realistic wave scenarios. We allocate a

time budget for each optimisation run of three days on dedicated platform with a 2.4GHz

Intel 6148 processor running 12 processes in parallel with 128GB of RAM. Note, that

where the search heuristic allows, we tune algorithm settings to utilise this time budget.

The software environment running the function evaluations and the search algorithm is

MATLAB R2017. On this platform, parallelisation provides up to 10 times speedup.

3.1.6 Optimisation Methods

In this research, our search methods employ three broad strategies. The first strategy is

to optimise all decision variables at once. This means that for a 16-buoy farm we search

in 16×4 dimensions simultaneously. Here, we test five heuristics that apply this strategy.

The second strategy is to optimise the positions and PTO parameters of all buoys in an

alternating cooperative algorithm [154]. We test four different methods that apply this

strategy. Finally, the third strategy, used in [1] is to place and optimise each buoy in

sequence. Here, we deploy this strategy for three hybrid EAs. Details of the algorithms

tested for each strategy follow.
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3.1.6.1 Evolutionary Algorithms (All-at-once)

For the first strategy, five well-known off-the-shelf EAs are deployed to simultaneously

optimise all problem dimensions (Positions+PTOs). These EAs are: (1) covariance

matrix adaptation evolutionary-strategy (CMA-ES) [89] with the default λ = 12, for

4-buoy layouts and and λ = 16 for 16-buoy layouts; (2) Differential Evolution (DE) [94],

with parameter settings of λ = 50, 30, respectively for 4 and 16-buoy layouts, and F =

0.5, Pcr = 0.5; (3) a (1+1)EA [95] that mutates buoys’ location and PTO parameters

with a probability of 1/N using a normal distribution (σ = 0.1× (Ub−Lb)); (4) Particle
Swarm optimisation (PSO) [42], with λ= DE settings, c1 = 1.5, c2 = 2, ω = 1 (linearly

decreased); (5) Nelder-Mead simplex direct search (NM) [96] is combined with a mutation

operator (Nelder-Mead+Mutation or NM-M). The mutation operation is applied when

the NM has converged to a solution before exhausting its computational budget, so that

it can explore other parts of the solution-space (Algorithm 3.1).
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Algorithm 3.1 NM+Mutation
1: procedure Nelder-Mead + Mutation (all Dims)

2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: S = {〈x1, y1, k1, d1〉, . . . , 〈xN , yN , kN , dN 〉} . Positions&PTOs
5: bestEnergy = 0 . Best energy so far
6: bestLayout = [S] . Best layout so far
7: EIRate = 0 . Energy Improvement rate
8: Iterative search
9: while stillTime() do

10: (S ′, energy)= NM_Search(S,MaxEval) . Local search
11: EIRate= ComputeEIRate(energy , bestEnergy)

12: if energy > bestEnergy then
13: bestEnergy = energy . Update energy
14: bestLayout = S ′ . Update layout
15: S = S ′

16: end if
17: if EIRate = 0 then
18: while (EIRate = 0) do
19: S ′ = randn(σ) + S . new buoys Position&PTO
20: energy = Eval(S ′)

21: EIRate= ComputeEIRate(energy , bestEnergy)

22: end while
23: if energy > bestEnergy then
24: bestEnergy = energy . Update energy
25: bestLayout = S ′ . Update layout
26: S = S ′

27: end if
28: end if
29: end while
30: return bestLayout , bestEnergy . Final Layout
31: end procedure
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Algorithm 3.2 CMAES+NM
1: procedure (2+2)CMA-ES + Nelder-Mead (all Dims)

2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: NPop = 2 . Population size
5: S = {〈x1, y1, k1, d1〉, . . . , 〈xN , yN , kN , dN 〉} . Positions&PTOs
6: 〈S1 ,S2 〉 = Decompose(S ) . Decomposing
7: S1 = {〈x1, y1〉, . . . , 〈xN , yN 〉} = ⊥ . Positions
8: S2 = {〈k1, d1〉, . . . , 〈kN , dN 〉} = ⊥ . PTO parameters
9: Pop = initPopulation({S1,S2},NPop)

10: bestEnergy = 0 . Best energy so far
11: bestPosition = [S1 ] . Best Position so far
12: bestPTO = [S2 ] . Best PTO parameters so far
13: MaxEval = MaxIterC ×NPop

14: Cooperative search
15: while stillTime() do
16: Position Optimisation
17: (PopS1 , energies)= 2+2CMA-ES(Pop,MaxIterC )

18: 〈bestPosition, bestIndex 〉= FindBest(PopS1 , energies)

19: PTO Optimisation
20: (bestEnergy , bestPTO)= NM(Pop(bestIndex ),MaxEval)

21: PopS2(bestIndex ) = bestPTO . Update best solution
22: end while
23: return bestPosition, bestPTO , bestEnergy

24: end procedure

3.1.6.2 Alternating optimisation methods (Cooperative ideas)

Optimising both positions and PTO parameters of a WEC array simultaneously can

be challenging because of the high number of dimensions and heterogeneous kinds of

variables. There is a natural division of variables into two subsets which might, at

least in part, be optimised separately. In this section, we describe a set of alternating

optimisation techniques which combine one evolutionary algorithm idea such as CMA-

ES, DE, and 1+1EA, with Nelder-Mead. In addition, a cooperative, Dual-DE (DE+DE),

algorithm is also described. The details of each are given next.

(2+2)CMA-ES + Nelder-Mead This alternating strategy applies CMA-ES with

µ = λ = 2 for iter = 25 iterations to optimise buoy positions. Then the best solution

is selected and NM is applied to PTO settings for iter ∗ λ iterations. This improved

setting is then given to the CMA-ES population for another round of optimisation. The

CMA-ES and NM optimisation processes are alternated until the time budget expires.

Algorithm 3.2 shows the process of the CMAES-NM approach.



Chapter 3 Control Optimisation of Wave Energy Converters Page 118

DE + Nelder-Mead (DE-NM) This method alternates DE, for buoy-positions, and

NM for PTO parameters, using the same iteration settings as above until the time budget

runs out.

1+1EA + Nelder-Mead (1+1EA-NM) This method alternates a 1+1 EA, for buoy

positions, and NM, for PTO parameters until the time budget runs out. The iteration

settings for the 1+1EA are, respectively, 200 and 50 times, for 4 and 16-buoy layouts.

The same limits are also used for the NM optimisation rounds.

Dual-DE This method uses the same parameter settings as described for DE in subsec-

tion 3.1.6.1 to optimise both buoy positions and PTO parameters in parallel. After iter

iterations the improved values from the positional and PTO optimisations are exchanged.

This iterative pattern continues until the time budget runs out.

3.1.6.3 Hybrid optimisation algorithms

In other WEC-related research [1], it was found that applying local search around the

neighborhood of previously placed buoys could help exploit constructive interactions

between buoys. The following methods exploit this observation by placing and optimising

the position and PTO parameters of one buoy at a time.

Local Search + Nelder-Mead(LS-NM) This method places buoys sequentially.

The position of each buoy placement is optimised by sampling at a normally-distributed

random offset (σ = 70m) from the previous buoy position. The sampled location giving

the highest output is chosen. In our experiments we try three different numbers of

samples: (Ns = 24, 25 and 26). After the best position is selected, we optimise the PTO

parameters of the last placed buoy using Ns iterations of Nelder-Mead search. This

process is repeated until all buoys are placed. Note that, the Eval function of LS-NM is

parallelised on a per-wave-frequency basis. An example of 16-buoy layout that is built

by LS-NM(16s) and the sampling process used to build it, is shown in Figure 3.4(a). The

details of the proposed method can be seen in Algorithm 3.3.
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Algorithm 3.3 LS +NM

1: procedure Local Search + Nelder-Mead (2 Dims)

2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: S = {〈x1, y1, k1, d1〉, . . . , 〈xN , yN , kN , dN 〉} . Positions&PTOs
5: 〈S1 ,S2 〉 = Decompose(S ) . Decomposing
6: S1 = {〈x1, y1〉, . . . , 〈xN , yN 〉} = ⊥ . Positions
7: S2 = {〈k1, d1〉, . . . , 〈kN , dN 〉} = ⊥ . PTO parameters
8: S1 (1) = {〈size/2, 0〉} . first buoy position
9: S2 (1) = {〈rand×Maxk, rand×Maxd〉} . first buoy k and d

10: (S2(1))=NM(S1(1), S2(1),MaxEN) . Optimise first buoy PTO
11: bestPosition = S1(1); bestPTO = S2(1)

12: for i in [2, .., N ] do
13: iters = MaxSN . Number of local samples
14: bestEnergy = 0;

15: Position Optimisation
16: for j in [1, .., iters] do
17: while not feasible position do
18: tPos = randn(σ) + S1 (i−1) . new buoy position
19: end while
20: energy = Eval([S1(1), . . . , S1(i−1), tPos])

21: if energy > bestEnergy then
22: S1(i) = tPos . Update last buoy position
23: bestPosition = [S1(1), . . . , S1(i−1), S1(i)]

24: bestEnergy = energy

25: end if
26: end for
27: PTO Optimisation
28: (S2(i), energy)=NM(bestPosition, S2(i−1),MaxEN)

29: if energy > bestEnergy then
30: bestPTO = [S2(1), . . . , S2(i−1), S2(i)]

31: bestEnergy = energy

32: end if
33: end for
34: return bestPosition, bestPTO , bestEnergy . Final Layout
35: end procedure

Symmetric Local Search + Nelder-Mead (SLS+NM(2D)) This method also

places one buoy at a time, but performs a more systematic local search. The search

starts by placing the first buoy in the middle of the bottom of the field and then uses

NM to optimise the PTO parameters for 25 iterations.

For each subsequent buoy placement, eight local samples are made in different sectors

starting at angles: {angles = [0, 45, 90, ..., 315]} and bounded by a radial distance of

between 50 (safe distance) and 50 + R′. Within each sector a buoy position is sampled

uniformly. Our strategy for handling infeasible solutions is that we refuse them and if all
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symmetric solutions are infeasible, a feasible layout is produced using uniform random

sampling.

After finding the best sample among the eight local samples, two extra samples are done

for increasing the resolution of the search direction. The angles of these two samples are

± 15o plus the best angle sample. The candidate position is then selected from the 8

original samples plus these two extra samples based on the buoy’s energy output.

In the next step a check is done to see if the PTO optimisation process for the previously

placed buoy (using NM) had a high percentage improvement in its last step. A large

improvement indicates that there is scope to improve energy production, in this envi-

ronment, by giving priority to PTO optimisation. Thus, if the last PTO search step for

the last buoy is greater than 0.01% then we optimise PTO parameters for 25 iterations

using NM. Otherwise we check to see if the last position optimisation converged to within

0.01% and if so, we optimise position instead. Otherwise we choose between optimising

PTO or position parameters for this buoy at random.

Note that this design assigns optimisation resources to PTO parameters as a first pri-

ority because we have observed stronger gains in output from tuning PTO parameters.

Position parameters are given priority only when the PTO parameters for the last buoy

were observed to be close to a local optimum. Algorithm 3.4 describes this method in

detail. In addition, experiments were run with different starting buoy positions of were

run with bottom center (C), bottom right (BR) and a uniform random position (r).
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Algorithm 3.4 Symmetric Local Search + Nelder-Mead (SLS +NM(2D))
1: procedure Symmetric Local Search + Nelder-Mead

2: Initialization
3: size =

√
N ∗ 20000 . Farm size

4: angle = {0 , 45 , 90 , . . . , 315} . symmetric samples angle
5: iters = Size([angle]) . Number of symmetric samples
6: S = {〈x1, y1, k1, d1〉, . . . , 〈xN , yN , kN , dN 〉} . Positions&PTOs
7: 〈S1 ,S2 〉 = Decompose(S ) . Decomposing
8: S1 = {〈x1, y1〉, . . . , 〈xN , yN 〉} = ⊥ . Positions
9: S2 = {〈k1, d1〉, . . . , 〈kN , dN 〉} = ⊥ . PTO parameters

10: S1 (1) = {〈size/2, 0〉} . first buoy position
11: S2 (1) = {〈rand×Maxk, rand×Maxd〉} . first buoy k and d
12: energy = Eval([S1(1), S2(1)])

13: (S2(1), bestEnergy)=NM(S1(1), S2(1)) . Optimise first buoy PTOs
14: (ImPTOrate)=ComputeImrate(bestEnergy , energy)

15: bestPosition = S1(1); bestPTO = S2(1)

16: ImPorate = 1 . optimisation improvement rate Position
17: for i in [2, .., N ] do bestEnergy = 0;

18: for j in [1, .., iters] do
19: (Samplej , energyj )=SymmetricSample(anglej , S1(i−1))

20: if Samplej is feasible & energyj > bestEnergy then
21: tPos = Samplej bestEnergy = energyj bestAngle = j . Temporary position
22: end if
23: end for
24: if No feasible solution is found then (Sample1, energy1 )=rand(S1(i−1))
25: end if
26: (Es1, Es2)=SymmetricSample(bestAngle ± 15 , S1(i−1))

27: (S1(i), energy)=FindbestS(tPos, Es1, Es2)

28: if ImPTOrate ≥ 0 .01 % then
29: PTO optimisation
30: (S2(i), energy)=NM(bestPosition, S2(i−1),MaxEN)

31: (ImPTOrate)=ComputeImrate(bestEnergy , energy)

32: if energy > bestEnergy then
33: bestPTO = [S2(1), . . . , S2(i−1), S2(i)]

34: bestEnergy = energy

35: end if
36: else if ImPorate ≥ 0 .01 % then
37: Position optimisation
38: (S1(i), energy)=NM(S1(i), bestPTO ,MaxEN)

39: (ImPorate)=ComputeImrate(bestEnergy , energy)

40: if energy > bestEnergy then
41: bestPosition = [S1(1), . . . , S1(i−1), S1(i)]

42: bestEnergy = energy

43: end if
44: else
45: Optimise one of buoy Position or PTO randomly
46: end if
47: end for
48: return bestPosition, bestPTO , bestEnergy . Final Layout
49: end procedure
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Algorithm 3.5 Backtracking optimisation Algorithm (BOA)
1: procedure BOA (Position,PTOs,Energy )

2: Initialization
3: S1 = {〈x1, y1〉, . . . , 〈xN , yN 〉} = Position . Positions
4: S2 = {〈k1, d1〉, . . . , 〈kN , dN 〉} = PTOs . PTO parameters
5: energy = ([E1, E2, . . . , EN ]) = Energy . Buoys energy
6: Nw = N/4

7: (WIndex )=FindWorst(energy , Nw) . Find worst buoys power
8: for i in [1, .., Nw] do
9: PTO optimisation

10: (S2WIndex(i), energyWIndex(i))=NM(S2WIndex(i),MaxEN)

11: Position optimisation
12: (S1WIndex(i), energyWIndex(i))=NM(S1WIndex(i),MaxEN)

13: end for
14: return S1 ,S2 , energy . Final Layout
15: end procedure

Symmetric Local Search + Nelder-Mead + Backtracking (SLS-NM-B) The

general idea of SLS-NM-B is like SLS-NM but with two differences. The first differ-

ence is optimising the initial buoy PTO settings by Nelder-Mead and then to share this

configuration with the next placed buoys for speeding up the search process and saving

computational time. Therefore, after applying symmetric local sampling and finding the

best position, Nelder-Mead search tries to improve just the position (2D) of the new

buoy.

The second contribution is applying a backtracking optimisation idea (described in Algo-

rithm 3.5). As the search process of SLS is based on the greedy selection, we never come

back to enhance previous buoys’ attributes, so introducing backtracking can be effective

for maximising total power output. Among all placed buoys in the array, the worst

round(N × 0.25) buoys in terms of power are chosen and Nelder-Mead search is then

used to optimise the position (2D) and PTO settings (2D) of these buoys in a bi-level

optimisation process. This procedure is called SLS-NM-B1. We can observe the perfor-

mance of SLS-NM-B1 in Figure 3.4(b,c). This shows how the eight symmetric samples

are done and the effect of the later backtracking process which refines buoy placements.

A second version of this algorithm is proposed (SLS-NM-B2) to evaluate the effectiveness

of optimising both position and PTOs of each buoy (4D) simultaneously instead of in a

bi-level search. Other details of the backtracking algorithm are the same.
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Figure 3.4: Three illustrations of the local search process for the placement of 16 buoys
using LS-NM (part (a)) and SLS-NM-B2 (parts (b) and (c)). Small yellow circles rep-
resent the final buoy positions. The coloured radial lines represent the neighbourhood
sampling process. The black diamonds in parts (b) and (c) represent the positions
sampled by the backtracking algorithm. The internal circles show the safety distance
and the external ones demonstrate the local search space. Part (a) (Power=1525780W,
q-factor=0.89) and (b) (Power= 1562138W, q-factor=0.91), optimise for the Sydney

wave model; and part (c)(Power=2741489W, q-factor=0.972) is for Perth.

3.1.7.1 Landscape analysis

For visualising the impact of PTO parameter optimisation, a simple experiment was done.

First of all, we optimised the buoy positions for a 4-buoy layout using a manufacturer’s

PTOs defaults (k = 407510 and d = 97412) for all converters for both the Perth and

Sydney test sites. The black circle in Figure 3.2 marks this default PTO configuration.

The energy produced by this layout is 402 kW and 703 kW, respectively, for the Sydney

and Perth wave climates. Next, this obtained layout is evaluated where the buoy positions

are fixed and we grid-sample the energy produced when all four buoys are assigned

the same PTO parameters. This process produces the contoured backgrounds shown

in Figure 3.2. Finally, we optimise the PTO parameters for each buoy independently

and plot a marker for each of the four buoys. These markers are roughly, but not

completely, coincident with the peak in the background power landscape produced by

optimising buoys’ PTO parameters in unison. These markers are also at a different point

to that produced by the default setting. The best energy produced after optimisation has

improved to 420 kW and 720 kW respectively for Sydney and Perth. Another observation

from Figure 3.2 is that the best PTO configurations of the 4-buoy layouts are relatively

alike in both wave scenarios.

3.1.7.2 Layout evaluations

In order to evaluate the effectiveness the proposed algorithms in Sections 3.1.6.1, 3.1.6.2,

and 3.1.6.3, we performed a systematic comparison of the best layouts produced by each
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Figure 3.8: The convergence of spring-damping PTOs of 16 buoys by CMA-ES (All-
in-one) and Dual-DE (alternating style) methods in Perth wave scenario. The black

line shows the 16thbuoy PTO settings.

is for N = 16 for Perth, and part (c) is for N = 16 for Sydney.

In all configurations, SLS-NM-B converges very fast and still outperforms the other

methods. To sum up, the experimental results in Table 3.1 and Figure 3.7 reveal that

SLS-NM-B succeeds in attaining higher absorbed power as well as faster convergence

speed. A second important remark about Figure 3.7 is that the alternating optimisation

methods perform worse than the standard EAs, where both positions and PTO settings

are mixed as an all-in-one problem. One possible path to improving these alternating

methods in the future could be to shift some of the budget for PTO optimisation to

positional optimisation, which appears to be more challenging.

Figure 3.8 tracks the convergence of just the PTO parameters for each buoy during a

run for CMA-ES (graphs on the left) and Dual-DE optimisation (graphs on the right).

It can be seen that both methods are able to optimise power output over time and

the phased nature of the search in Dual-DE is visible in the graphs of the parameter

values. It can also be observed that the parameter values for each buoy change non-

monotonically as the best PTO settings interact with buoy positions over the course
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Figure 3.10: The wave power around the best-founded 4 and 16-buoy layouts by SLS-
NM-B2; (a) 16 buoys, Perth wave scenario; (b) 4 buoys, Perth; (c) 16 buoys, Sydney,
and (d) 4 buoys, Sydney wave scenario. Black circles and squares show the buoys

placement and the search space.

The wave resource at the Sydney and Perth sites is 30 and 35 kW/m, respectively. While

these waves propagate through the farm, the wave field is modified by the buoys and we

can see that the wave energy across the farm varies between 10 and 60 kW/m. It can be

seen that, in both sites, the best layout succeeds in extracting much of the energy from

the surrounding environment and, in the case of Perth, the impact of extraction extends

far out to sea beyond the farm. The red areas near buoys are produced by interactions

of buoys with their local environment. It should be noted that, though these areas

might appear to be good candidate positions for further buoy placements, destructive

interference with other buoys would produce sub-optimal results from such a placement.

Another observation is that at both sites at least one row of buoys is perpendicular to the

dominant wave direction (232.5 deg for the Perth site, and 172.5 deg for the Sydney site).

This indicates that this wave direction can inform the initialisation of buoy positions in

optimising wave farm settings.
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3.1.9 Conclusions

In this paper, we have described, evaluated, and systematically compared twelve different

heuristic methods for optimising layout and PTO parameters for wave energy converter

arrays. This study included four alternating hybrid algorithms and three new methods

that are specialised to this domain. The results in this study indicate that the search

problem is challenging, with buoys inducing changes in the local power landscape and

hydro-dynamic interactions occurring between buoys. The PTO optimisation results,

also, indicate at least some interaction between buoy placement and optimal PTO set-

tings for each buoy. Moreover, the hydrodynamic modelling required for larger buoy

layouts is expensive, which constrains optimisation to take place with a limited number

of evaluations.

The best performing method is a new hybrid of a symmetric local search combined

with Nelder-Mead search and a backtracking strategy. In our experiments, this method

out-performed other state-of-the-art algorithms, for 16-buoy layouts, in terms of power

production and in terms of speed-of-convergence. Future work can further improve the

fidelity of the environment including considering a mix of buoy designs, tethering con-

figurations, farm-boundaries and sea-floor shapes. These additional factors also create a

more complex cost landscape, which opens the way for multi-objective optimisation.

Our code, layouts, and auxiliary material are publicly available: https://cs.adelaide.

edu.au/~optlog/research/energy.php
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3.2 A Hybrid Cooperative Co-evolution Algorithm Frame-

work for Optimising Power Take Off and Placements of

Wave Energy Converters

3.2.1 Synopsis

In this chapter which is based on our paper published in [5], we aim to optimise a wave

farm power output by finding appropriate configurations of WEC positions and power

take-off parameters. In the first step, we develop the previous WEC simulator in [3] to al-

low for the PTO configurations to be adjusted for each wave frequency. This allows for a

more realistic consideration of the real sea states. As this extension leads to a large num-

ber of decision variables and a multimodal power landscape, it is also computationally

costly. With this in mind, we propose a new hybrid cooperative co-evolution algorithm

(HCCA) in order to optimise WEC positions in arrays, as well as their PTO param-

eters. This hybrid approach consists of a new adaptive grey wolf optimiser, a Social

Learning Particle Swarm Optimisation [155] (SLPSO) and a Self-adaptive Differential

Evolution with Neighbourhood search [156] (SaNSDE). Finally, in the last step, we pro-

pose a backtracking optimisation strategy (BOA) to further optimise both the position

and PTO settings of the obtained array. We compare this method to a broad range of

meta-heuristics in order to optimise the total power output of a wave farm. These com-

parison heuristics include five popular off-the-shelf Evolutionary Algorithms (EAs), four

cooperative optimisation ideas, and, lastly three hybrid optimisation algorithms. The

real wave scenarios, which are evaluated in this research, are from the Southern coast

of Australia (Perth, Sydney, Adelaide and Tasmania). According to the experimental

results, HCCA performs better than other heuristic search methods in terms of conver-

gence speed (5 times faster than the most effective previous algorithm) and the quality

of layouts (80% development of the sustained energy output in 16-buoy experiment).

Reference

[5] Neshat, M., Alexander, B., & Wagner, M. (2020). A hybrid cooperative co-evolution

algorithm framework for optimising power take off and placements of wave energy con-

verters. Information Sciences, 534:218–244, 2020. Published by Information Sciences–

journal on [15 May 2020].
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3.2.2 Abstract

Wave energy technologies have the potential to play a significant role in the supply of

renewable energy on a world scale. One of the most promising designs for wave energy

converters (WECs) are fully submerged buoys. In this work, we explore the optimi-

sation of WEC arrays consisting of three-tether buoys. Such arrays can be optimised

for total energy output by adjusting both the relative positions of buoys and also the

power-take-off (PTO) parameters for each buoy. The search space for these parameters

is complex and multi-modal. Moreover, the evaluation of each parameter setting is com-

putationally expensive and thus limits the number of full model evaluations that can

be made. To handle this problem, we propose a new hybrid cooperative co-evolution

algorithm (HCCA). HCCA consists of a symmetric local search plus Nelder-Mead and a

cooperative co-evolution algorithm (CC) with a backtracking strategy for optimising the

positions and PTO settings of WECs, respectively. For assessing the effectiveness of the

proposed approach five popular Evolutionary Algorithms (EAs), four alternating opti-

misation methods and two recent hybrid ideas (LS-NM and SLS-NM-B) are compared in

four real wave situations (Adelaide, Tasmania, Sydney and Perth) with two wave farm

sizes (4 and 16). The experimental study shows that the hybrid cooperative framework

performs best in terms of both runtime and quality of obtained solutions.

3.2.3 Introduction

Renewable energy technologies make up an increasing proportion of new-build electric-

ity generating worldwide [157]. Ocean wave energy is one very promising technology

for contributing to the growth in energy demand from renewable sources due to the

high-energy densities of ocean environments, and high capacity factors of wave energy

converter (WEC) technology. Wave energy converters are mechanical systems that are

designed to generate electricity by harnessing the power of ocean waves motions. The

waves’ energy is converted into electricity by the power take-off system of the WECs [18].

It is envisaged that ocean wave energy could supply more than 70% of the world’s whole

energy demand [158]; however, the current WECs technologies are not fully developed

due to the technical engineering challenges of harnessing ocean wave power in harsh

ocean environments.

In this research, we apply a WEC simulator for evaluating the absorbed power of a wave

farm consisting of CETO 6 model WEC converters. CETO converters are spherical sub-

merged three-tether buoys. These converters were first designed in 2007 by the Carnegie

Clean Energy company [151]. The energy output of WECs of this design depends on a
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number of factors including the relative positions of WECs in an array (position optimi-

sation), the power-take-off (PTO) settings on each buoy’s tethers (control optimisation),

and the long-term sea conditions of the wave-farm site.

In position optimisation, the main aim is finding the best location of each converter

to maximise the constructive hydro-dynamic interactions and minimise the destructive

interaction between converters.

In this work, we optimise both the position and PTO parameters of simulated wave

farms consisting of both 4 and 16 buoys in 4 real wave environments. Since comput-

ing the complex hydrodynamic interactions among converters is computationally costly,

the evaluation of each WEC’s arrangement can take several minutes. Moreover, the

combination of the search spaces of both WEC positions and PTO settings creates a

multimodal and large-scale optimisation problem. These challenges require the use of

robust, low-cost global search heuristics customised to this problem domain.

To date, the best performing heuristics for this problem [138] have been hybrid optimi-

sation methods that placed and refined buoys parameters one at a time.

The main contributions of this article are:

1. Extending the simulator to allow for the PTO configurations to be set for each wave

frequency, which allows for a more realistic consideration of the real sea states.

2. Proposing a new hybrid cooperative co-evolution algorithm (HCCA) for optimising

WEC positions in arrays and their PTO parameters, which builds on these previous

approaches.

3. Extending the Grey Wolf Optimiser (GWO) by a new adaptive mechanism

(AGWO) for balancing exploration and exploitation.

4. Embedding the AGWO within a Cooperative Co-evolution method including (so-

cial learning particle swarm optimisation [155] (SLPSO) + self-adaptive differential

evolution with neighborhood search [156] (SaNSDE)) for optimising the PTO con-

figuration of the wave farm.

5. Employing a backtracking optimisation strategy (BOA) to further optimise both

position and PTO settings of the obtained array.

To evaluate this new algorithm, we compare HCCA to a comprehensive range of meta-

heuristics for optimising the total power output of a wave farm, including (1) five popular

off-the-shelf Evolutionary Algorithms (EAs), (2) four cooperative optimisation ideas,

and (3) three hybrid optimisation algorithms. We evaluate these using four real wave
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scenarios from the Southern coast of Australia (Perth, Sydney, Adelaide and Tasmania).

Each scenario embeds a detailed model of a wave environment including time-integrated

distributions of wave-heights, periods and directions. The experimental results show that

HCCA is able to significantly outperform other optimisation approaches with regard to

both the convergence speed and the total absorbed power output.

The remainder of the paper is organised as follows. We provide an overview of the

related works in Section 3.2.4, and introduce the mathematical model for the WECs

being studied in Section 3.2.5. The optimisation setup and the proposed optimisation

methods are described in Sections 3.2.6 and 3.2.7, respectively. In Section 3.2.10, the

experimental results are presented. We conclude with a summary and outline potential

future works.

3.2.4 Related Work

There have been a number of studies in optimising the power output a variety of WEC

models. One initial study [31] optimised WEC positions for five buoys using both the

Parabolic Intersection (PI) method and a GA. The study required a high number of

function evaluations (37000). The wave environment modelled was highly simplified,

with just one wave direction.

A recent study by Ruiz et al. [35] employed another simple wave scenario to compare

a custom Genetic Algorithm (GA), Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [89] and glow-worm optimisation (GSO) [101] for optimising the position of

the buoys in a discrete grid. The investigation found that while the convergence rate of

CMA-ES is faster than of the other two methods, it did not outperform both the GA

and GSO in terms of total power production.

The Multi-Objective Differential Evolution Algorithm (MODE) [107] was applied to

optimise the fundamental dimensions of a particular WEC concept including location,

type of WEC, control strategy, hydrodynamic design and evaluated characteristics of

the power take-off (PTO). However, that investigation evaluated the performance of

one and 2-Body Point absorber. In other recent WEC position optimisation research,

Wu et al. [39] compared a 1+1EA and population-based evolutionary algorithm (CMA-

ES) to optimise both 25 and 50 buoys using a simplified uni-directional irregular wave

model. That paper revealed that the 1+1EA with a simple mutation operator is able to

outperform CMA-ES. However, the performance achieved for both the 25 and 50-buoy

layouts was low. In another WEC array optimisation study, Ferri [40] compared the

performance of two global optimisation algorithms, CMA-ES and surrogate-model based

optimisation method (MM). The experimental results in [40] represented the convergence
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speed of the surrogate-model optimisation algorithm is faster than CMA-ES considerably.

Nevertheless, the introduced best array by MM has an estimation error of 10%. Fang et

al. [41] proposed an Improved Differential Evolution (IDE) with an adaptive mutation

factor for optimising an array of 3, 5 and 8-buoys, where the regular wave direction is just

left to right (one direction). The research represented that IDE performance is superior

to the generic DE.

Neshat et al. [1, 159] characterised a more complicated wave scenario (seven wave direc-

tions and 50 wave frequencies) with the intra-buoy effects and employed this knowledge

to make a customised, single-objective hybrid heuristic (local search + Nelder-Mead).

However, the wave model still used an artificial wave scenario, and the proposed method

did not tune PTO parameters. An adaptive neuro-surrogate optimisation (ANSO)

method [4] was proposed for the 16-buoy layout location optimisation that composed

of a surrogate Recurrent Neural Network (RNN) model, a Symmetric Local Search and

Nelder-Mead (SLS-NM). However, other dimensions of WECs were not evaluated in [4],

such as control and geometric parameters.

Another challenging aspect of maximising the total power output of the wave farm is

controlling the WECs’ oscillations with respect to the incoming waves’ frequency. This

is because maximum efficiency will be achieved at resonance. However, maintaining a

resonant condition can be challenging in the real sea states with the multiple different

frequencies [152].

One way of achieving resonance is by configuring the power take-off (PTO) system of

the WECs, either in online or offline settings. For then online setting, Ding et al. [153]

implemented the maximum power point tracking (MPPT) control method for optimis-

ing the damping rate (dPTO) of one converter (CETO 6). The MPPT is a type of

online-optimisation based on the gradient-ascent algorithm. The outcomes reported a

high efficiency of the MPPT damping controller compared with a fixed-damping system,

but the performance of MPPT was not assessed for layouts with more than one buoy. In

later work Abdelkhalik et al. [38] utilised the hidden genes genetic algorithm (HGGA) to

tune PTO parameters. While the proposed optimiser boosted the total energy produced,

HGGA’s efficiency was not compared to other modern EAs. A collaborative control strat-

egy which is a hybrid model of an artificial neural network (ANN) and latching control

was used [160] to find optimal damping control parameters, and the results found that

the hybrid method performance is better than the uncontrolled WEC PTOs and with

constant latching over 2-fold and 30% respectively. Glass et al. [37] used a combination

of a generic GA with an analytical multiple scattering method to optimise WECs param-

eters including buoy radius, draft, and converter damping. That work produced some
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5 and 9-buoy layouts with constructive interactions in a simple (uni-directional) wave

scenario.

Silva et al. [161] compared the performance of a GA and COBYLA [162] (Constrained

optimisation by Linear Approximations) for maximising the produced annual electrical

output of one WEC with a U-shaped design inside an oscillating water column (UGEN)

by adjusting PTO settings and the buoy’s geometrical characteristics. The obtained

results showed that COBYLA method converged to design with fewer evaluations. How-

ever, the GA produced a better solution overall, because COBYLA had converged to a

local optimum. In another recent study, hybridization of a customized local search with

a Nelder-Mead algorithm and a refinement strategy (SLS-NM-B) was introduced [138]

for optimising both arrangement and PTO parameters of WECs in a farm. While the

optimisation results represented a considerable power improvement of SLS-NM-B com-

pared with other popular EAs, the optimisation of the PTO settings would evolve only

one global PTO configuration for all WECs in the farm. It is our expectation that

WEC-specific PTO settings can significantly improve the overall farm output.

3.2.5 Mathematical modelling for wave energy converters

3.2.5.1 Wave Resource

Based on the 2016 real wave data set from Australian Wave Energy Atlas [112], we

investigate four different sites on the Southern coast of Australia in this paper: Perth,

Adelaide, Tasmania (Southwest coast) and Sydney. Figure 3.11 shows the directional

wave rose and wave scatter diagram of these four wave scenarios.

For example, Sydney is characterised by its dominant sea state with a peak wave period

of Tp = 9(s) and a significant wave height of Hs = 2(m); and the probability distribution

of the wave frequency fw can be inferred associated with the Pierson-Moskowitz wave

spectrum. The area of possible incident wave angles (β) for these particular sea sites

vary considerably, e.g., covering approximately 180 ◦ at Sydney. Hence, it is expected

that the distribution of the wave angle is normal driving to f(β|µ, σ) = N(β|0, π/12))

We can further observe that the wave regimes differ with regard to the directional dis-

tributions and cumulative energy. This diversity provides four different search spaces for

evaluating the performance of the optimisation methods. Our model of the ocean uses

irregular directional waves together with the Bretschneider spectrum.
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The applied hypotheses are the following:

F̂exc,Σ =

(
(MΣ +AΣ(ω)) jω +BΣ(ω)−

Kpto,Σ

ω
j +Dpto,Σ

)
ẌΣ

M = mI3N

Kpto = KptoI3N

Dpto = DptoI3N

(3.5)

where Fexc is the frequency-dependent vector of excitation forces and M is known as a

mass matrix (I3N is the identity matrix with size 3N). N is the number of WECs in

the layout, and the constant 3 denotes the number of degrees of freedom. ẌΣ is a vector

of body acceleration in the surge, heave and sway directions. The matrices A and B

define the hydrodynamic added-mass and radiation damping coefficients, respectively.

The PTO mechanism is modelled on an oscillating spring. The Kpto and Dpto are,

respectively, the stiffness of spring and damping PTO matrices. Each row of these

matrices represents the settings for each buoy. For each buoy, there are 50 individual

Kpto andDpto parameter settings representing a tuned response to 50 different ocean wave

frequencies. For modelling the hydrodynamic interaction between submerged buoys, a

semi-analytical solution is given in [92].

For calculating the power output of an entire WEC array, Equation 3.6 computes the

total power harnessed in a regular wave frequency environment:

PΣ =
1

4

(
F̂ ∗exc,ΣẌΣ + Ẍ∗ΣF̂exc,Σ

)
− 1

2
Ẍ∗ΣBẌ∗Σ (3.6)

While we are able to calculate the total power of the wave farm in Equation 3.6, it is

very computationally expensive, and the computational cost rises quadratically with the

number of buoys. Note that, where there is constructive interaction between converters,

the total power output can grow super–linearly with the number of buoys.

Table 3.3 describes all applied symbols in the modelling of the wave energy converters

in this research.

3.2.6 Optimisation Setup

The formulation of the optimisation problem to maximise the power output of a WEC

array is represented by Equation 3.7:

P ∗Σ = argmaxX ,Y ,Kpto ,Dpto
PΣ(X ,Y ,Kpto ,Dpto) (3.7)
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# Definition Symbol
1 Peak wave period Tp(s)
2 Significant wave height Hs(m)
3 Wave frequency fw
4 Wave angles 0◦ ≤ β ≤ 360◦

5 Excitation forces vector Fexc
6 Hydrodynamic added-mass coefficient A
7 Radiation damping coefficient B
8 Spring stiffness PTO matrices 5× 104 ≤ Kpto ≤ 5.5× 105

9 Damping stiffness PTO matrices 4× 104 ≤ Dpto ≤ 5.5× 105

10 Lower and upper bound of Damping stiffness dl, du
11 Lower and upper bound of Spring stiffness kl, ku
12 Mass matrix M
13 WECs number N

Table 3.3: Symbol definitions of the WEC model

where PΣ(X ,Y ,Kpto ,Dpto) shows the annual average power produced for given WEC

locations and PTO settings in a 2-D coordinate system at x-positions: ~X = [x1, . . . , xN ],

y-positions: ~Y = [y1, . . . , yN ] and Power Take-off configurations including
~Kpto = {[B1

k1
, . . . , B1

k50
], . . . , [BN

k1
, . . . , BN

k50
]} and ~Dpto =

{[B1
d1
, . . . , B1

d50
], . . . , [BN

d1
, . . . , BN

d50
]} . where B is the ith buoy here and N ∈ {4, 16}.

it is assumed that all WECs are placed the same depth (5 metres) in ocean with the

uniform depth of 30 metres.

Constraints In this work, there are three types of constraints, including constraints of

farm boundaries, safe distance constraints between generators and constraints on PTOs

variables. In terms of farm boundaries, the positions of each buoy (xi, yi) in the wave

farm is restricted to a square search space S = [xl, xu] × [yl, yu]: where xl = yl =

0 and xu = yu =
√
N ∗ 20000m2. The minimum safety distance constraint, to allow

for shipping egress, is set to 50 meters. The PTO constraints are on spring damping

PTO coefficients of dl = 5 × 104, du = 4 × 105 and kl = 1, ku = 5.5 × 105. Where a

candidate solution satisfies all the constraint functions, it is marked as a feasible layout.

For handing both boundary constraints (position and PTOs), infeasible solutions are

forced to the most adjacent feasible design. For the safety distance constraint, a steep

penalty function is used (Equation 3.8):

Sumdist =
∑N−1

i=1

∑N
j=i+1(dist((xi, yi), (xj , yj))− 50),

if dist((xi, yi), (xj , yj)) < 50 else 0
(3.8)

where sumdist is the sum of violations of the safe distance between buoys. The Euclidean

distance between both buoys ith and jth is denoted by dist((xi, yi), (xj , yj)). The penalty
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value to the total power absorbed of the wave farm is calculated by (Sumdist+1)20. The

penalty strongly encourages selecting feasible layouts during the optimisation process.

Computational Resources The optimisation approaches studies here are evaluated

and compared for both 4 and 16 WEC arrays for four real wave scenarios. For comparing

all proposed methods in a realistic design setting, a time budget criterion of three days

is set for optimisation method trial on an HPC supercomputer with a 2.4GHz Intel

6148 processor running 12 processes in parallel with 128GB of RAM. On this platform,

this mode of parallelisation usually accommodates more than ten times speedup. Note

that the implementations of the proposed optimisation methods are written to so as

to exploit the parallel processing capabilities of the platform maximally. The software

platform used for running the function evaluations and the optimisation algorithms is

MATLAB R2018.

3.2.7 Optimisation Methods

In this research, we employ three different broad optimisation strategies for maximis-

ing the total absorbed power output of 4 and 16-buoy layouts in this research. The

first approach applies search algorithms to all decision variables simultaneously. These

variables include all the x and y buoy position and all of the PTO parameters. For 16

buoys, this approach requires that over 1632 variables are optimised all at once. The

second broad approach is to apply cooperative methods [154], which alternate between

the optimisation of position and PTO parameters. The third strategy, used in [1, 138],

places buoys sequentially (one-at-a-time). Under this strategy, the performance of three

hybrid methods are evaluated and compared: LS −NM [1], SLS −NM −B [138], and

a new hybrid cooperative EA (HCCA). The details of the algorithms evaluated for each

strategy are summarised in Table 3.4.

3.2.7.1 Evolutionary Algorithms (All-at-once)

In these experiments, five popular EAs and a new adaptive variant of GWO are used to

optimise all dimensions simultaneously. These EAs are: (1) covariance matrix adaptation

evolutionary-strategy (CMA-ES) [89], (2) Differential Evolution (DE) [94], (3) Particle

Swarm optimisation (PSO) [42], (4) Grey Wolf optimiser (GWO) [11] and (5) Nelder-

Mead simplex direct search (NM) [96] is combined with a mutation operator (Nelder-

Mead+Mutation). Furthermore, we introduce a new variant of GWO called the adaptive

grey wolf optimiser (AGWO).
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Table 3.4: A review of the proposed framework methods employed in this paper. All
approaches are restricted to the same computational budget constraint. Parallelism
can be categorised into two groups as per-individual or per-frequency according to the

individual’s number in the population.

Abbreviation parallelism Description

All-at-once methods (Positions+PTO parameters)
CMA− ES per-

individual
CMA-ES [89] all dimensions, µ = 4 + int(3 ∗ log(Nvar)) ,
σ = 0.3 ∗Area

DE per-
individual

Differential evolution [94], µ = 50, F = 0.5, Pcr = 0.5

PSO per-
individual

Particle Swarm optimisation [42]. with µ= 50, c1 =
1.5, c2 = 2, ω = 1 (linearly decreased)

GWO per-
individual

Grey Wolf Optimiser [11]. with µ= 50, α = 2 (linearly
decreased to zero)

AGWO per-
individual

Adaptive Grey Wolf optimiser, where µ = 50, α = 2 will
be adaptively updated, CNMax

m =0.3, CNMin
m = 10−6,

Cf = 0.7

NM per-
frequency

Nelder-Mead search [96] is run in all dimensions itera-
tively MaxFunEvals = 100

Cooperative Evolutionary Ideas
(2 + 2)CMA− ES +
NM

per-
individual &
frequency

CMA-ES (µ = λ = 2) cooperates with Nelder-mead
where the position optimisation is done by CMA-ES and
Nelder-Mead adjusts the spring-damping coefficients of
all buoys in the round robin fashion.

(1 + 1)EA+NM per-
frequency

Cooperative strategy of 1+1EA (all position dimensions,
PMu = 1

N ) with linearly decreasing mutation step size (σ)
per generation at 100 iterations and then Nelder-Mead
tries to optimise the PTO parameters in all dimensions.

AGWO +NM per-
individual &
frequency

Adaptive GWO is in charge of optimising the PTO set-
tings of the buoys. Afterward, the position configuration
of the best candidate is optimised by Nelder-Mead search.
This cooperative process is repeated until the time budget
runs out.

CCOS per-
individual

Cooperative Co-evolution of SLPSO and SaNSDE with
Online Optimiser Selection [166]. Where µ = 50, A = 2,
C = N × 2.

SLPSOII per-
individual

Double Social Learning Particle Swarm optimisation,
Setup for SLPSOII from [166]. µ = 50, A = 2, C = N×2

SaNSDEII per-
individual

Double Self-adaptive Neighborhood Search Differential
Evolution [166]. µ = 50, F , Pcr and ρ are initialised
at 0.5, but updated adaptively. A = 2, C = N × 2

Hybrid optimisation methods (one-at-a- time)
LS +NM per-

frequency
Repeated Local Sampling + Nelder Mead search [1] buoys
are placed at normally distributed random offset (σ =
100m) from previous buoy and then (MaxSam = 512)
the best candidate sample is chosen. Next, the PTO pa-
rameters of chosen sample are enhanced by Nelder-Mead
search.

SLS +NM +B per-
frequency

Symmetric Local Sampling + Nelder-Mead + Backtrack-
ing [138]. The new buoy is locally placed by a symmet-
ric search approach. Next, both configurations (positions
and PTOs) are adjusted by Nelder-Mead iteratively. Fi-
nally, the backtracking strategy modifies least-well per-
forming buoy’s locations and PTOs.

HCCA per-
individual &
frequency

Hybrid Cooperative Evolution Algorithm. SLS sets an
initial location for each new buoy; Nelder-Mead optimises
the buoy’s position; then adjusts the PTOs. The process
iterates until all buoys are placed. Backtracking is then
applied to improves the positions and PTO settings for
some buoys (25%) which have the lowest absorbed power.
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# Definition Symbol
1 Parent and offspring population size µ, λ
2 Mutation step size σ(m)
3 Cognitive and social weight c1, c2

4 Inertia weight ω
5 Exploration probability rate α
6 Upper and lower bound of normalisation rate CNMax, CNMin

7 Chaotic factor Cf
8 Probability mutation rate PMu

9 Candidate optimisers A
10 Number of decision variables C
11 Mutation factor F
12 Probability crossover rate Pcr
13 pre-determined period ρ

14 Differential vector of prey and members ~D

15 Random coefficient vector ~C

16 Exploration probability coefficient vector ~A

17 Prey location vector ~Xp

18 Three best-sampled candidates vector ~Xα, ~Xβ. ~Xδ

19 Normalisation factor Nmiter

20 Maximum iterations in each chaotic sequence MaxiterN
21 Normalized chaotic values CCiter
22 Population of solutions S
23 Buoy PTOs values Bk, Bd
24 Accumulated contributions of optimisers U(Aii ,Si )
25 Contribution improvement rate I(Aii ,Si )

Table 3.5: Symbol definitions of the optimisation methods

3.2.7.2 Adaptive Grey Wolf optimiser (AGWO)

The adaptive grey wolf optimiser is a new variant of the grey wolf optimiser that tunes

hyper-parameter settings to improve performance in this search domain.

3.2.7.2.1 Overview of grey wolf optimiser (GWO)

The GWO algorithm [11] is categorised as a bio-inspired stochastic method that mimics

grey wolves hunting behaviours in a pack. In the population, there are four classes of

responsibility: the alpha wolf is responsible for leading the pack members, beta and

delta wolves assist the alpha in decision making, and the remainder of the pack (of

omega wolves) helps sample search space. GWO simulates aspects of the hunting process

including 1) searching for the prey (optimum), 2) encircling the prey, 3) hunting and 4)

attacking the prey.
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3.2.7.2.2 Encircling the prey

~D = |~C. ~Xp(t)− ~X(t)| (3.9)

~X(t+ 1) = ~Xp(t)− ~A. ~D (3.10)

where ~D describes the interval among the prey location ~Xp and a member of the pack ~X in

the current iteration (t). Additionally, There are two coefficient vectors ( ~A and ~C) which

have a substantial effect for adapting the behaviours of the exploration and exploitation

processes, which can be computed by Equations 3.11 and 3.13:

~A = 2.~a.~r1 − ~a→ 0 ≤ a ≤ 2 (3.11)

a = 2− iter.( 2

Maxiter
) (3.12)

~C = 2.~r2 (3.13)

where a is linearly decreased from 2 to 0 during the optimisation process. r1 and r2 are

two random numbers between 0 and 1.

3.2.7.2.3 Hunting

For having a successful exploration of the search space, the solutions are updated based

on the knowledge of three best-sampled candidates (alpha, beta and delta). This is

because we assume a prior that a nearby optimum can be found among these best. The

position update formulas (Equations 3.14, 3.15 and 3.16) are as follows.

~X(t+ 1) =
~X1 + ~X2 + ~X3

3
(3.14)

~X1 = ~Xα(t)− ~A1. ~Dα

~X2 = ~Xβ(t)− ~A2. ~Dβ

~X3 = ~Xδ(t)− ~A3. ~Dδ

(3.15)

~Dα = | ~C1. ~Xα − ~X|
~Dβ = | ~C2. ~Xβ − ~X|
~Dδ = | ~C3. ~Xδ − ~X|

(3.16)
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3.2.7.2.4 Attacking the prey (exploitation)

The hunting manner is followed by attacking the prey and converging to the optimum

positions. This can be achieved mathematically by reducing the a variable from 2 to 0

gradually. It is observed that when | ~A| < 1 search agents are forced to attack the prey

that is like a local search (exploitation process). Inversely, where | ~A| > 1 leads to a

global search (divergence) or exploration process.

Adaptive Grey Wolf optimiser (AGWO) One of the most critical parameters

of GWO is ~A because it can adjust both diversification (| ~A| > 1) and intensification

(| ~A| < 1) of the search process. According to Equation 3.11, the vector of ~A values can

be between −a and a ( ~A ∈ [−2a, 2a]), where a is reduced linearly during the optimisation

from 2 to 0. It means that the probability of exploration (| ~A| > 1) at the initial iteration

is 0.5 and will be linearly decreased until 0 in the middle of the search process. On

the other hand, the exploitation probability in the first iteration is 0.5 that is similar

to exploration probability (giving a balanced-heuristic setting at the start); however,

the exploitation probability is gone up to 1 where half of the iterations are devoted

(iter = Maxiter/2). Significantly, in the remaining iterations (Maxiter/2), exploitation

probability is 1, but exploration probability is 0 without any change. This issue is one

reason why GWO is faced with premature convergence in some cases. Figure 3.12 (a

and c) show this unbalanced search behavior. To overcome this shortcoming, a number

of different mechanisms have been suggested.

Mittal et al. [12] proposed an improved version for updating ~a in (mGWO), which de-

cayed more slowly to improve exploration. Figure 3.13(a) represents this slower decay

function. However, in this static mechanism after 70% of the iterations, the value of a

has still decayed below 1. A similar modification was introduced by Long et al. [167] in

their Improved Grey Wolf optimiser (IGWO). More recently, Saxena et al. [168] scaled

the decay function using a β-chaotic sequence to allow for faster oscillation between

exploration and exploitation phases during the parameter decay process.

In previous research, various approaches were recommended for adjusting the a parame-

ter, but these ideas did not pay attention to the GWO performance during the optimisa-

tion. In this paper, we propose an adaptive mechanism for updating the control variable

a of GWO (AGWO). In this way, the optimisation performance is observed, and after a

pre-determined period of ρ iterations, where the best-found solution does not overcome

the alpha particle, the control parameter should be incremented back to 2. Moreover,

a chaotic distribution is implanted with mapping by a normalise function for obtaining
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Figure 3.12: (a and c) The probability of original GWO exploration per generation
(3D and 2D). (b and d) one example of the proposed adaptation mechanism for the con-
trol vector (a). These figures show the AGWO exploration probability per generation

(3D and 2D).

a great balance between exploration and exploitation. The main AGWO contributions

are:

1. Generating and combining a chaotic sequence with the control parameter (a) in

each iteration. For achieving the best performance, ten various chaotic maps are

applied and compared. Table 3.7 shows the applied these chaotic maps in the

adaptive idea.

2. Using the normalisation function periodically for distributing the chaotic sequence

between upper and lower bias. The mathematical formulation of the function can

be represented by Equation 3.17.

Nmiter = CNMax
m − (

CNMax
m − CNMin

m

MaxiterN
)× iterN (3.17)

where the maximum and minimum values of the normalisation function are

CNMax
m = 0.3 and CNMin

m = 10−6, respectively. Both CNMax
m and CNMin

m con-

trol the chaotic behaviour of the applied chaotic map and let to the optimisation
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3. Introducing an adaptive mechanism for updating the control vector when the op-

timisation results are not satisfied for ρ iterations. When search stagnates in this

way, the control vector is reset to 2, and then the decay slope of the control vector is

adjusted to a sharper gradient. This results in a switch from exploitation (|~a| < 1)

to exploration when search stagnates.

Figure 3.13 demonstrates various mechanisms for updating the control vector include

linear and polynomial ideas (a), and three samples of the new adaptive chaotic method

(b, c and d).

To sum up, AGWO (see Algorithm 3.6) is a combination of two ideas. First, an adaptive

updating mechanism for tuning ~a that depends on the current search performance, in

order to balance exploration and exploitation throughout the entire search. Second, a

chaotic sequence coefficient scales the normalisation function and further helps prevent

premature convergence.

In order to measure and test the impact of various chaotic maps on the AGWO per-

formance, a set of well-known chaotic maps [17, 169] are applied. Table 3.7 shows the

details of these maps (M1,M2, ...,M10). Table 3.4 summarises the AGWO parameters.

To make use of modern computing hardware, we employ parallel computations, which

we do per individual.

To show the effect of the different maps, we conduct a brief case study on 16-buoy farms

for Perth. The results of Figure 3.14 and Table 3.6 are the averages of ten independent

runs. It can be seen that applying the chaotic maps with the adaptive strategy results in

improved performance for GWO. In comparison to GWO results, the best performance

is produced by theM8(Singer) map with better convergence speed and the average total

power outputs improved by 3.83% and 7.95%, respectively. Based on this performance,

we use M8(Singer) for the chaotic map in the subsequent experiments.
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3.2.8 Cooperative optimisation methods

A standard method of employing a Cooperative Coevolution EA (CCEA) to an optimi-

sation problem begins by decomposing the problem into components. Each component

instantiates an independent population worked on by a separate EA instance. These

instances run simultaneously or in an interleaved fashion and periodically share informa-

tion from the best sub-solutions of each instance to improve the overall performance of

search [166].

Advantages of CCEA include:

1. CCEAs provide a convenient way to decompose a high dimensional search domain

into a number of lower-dimensional search domains (instantiated in each popula-

tion) whilst still retaining the capacity for global search through periodic sharing

of sub-solutions from each domain [170].

2. By exchanging whole or partial sub-solutions between populations, CCEAs create

a dynamic search landscape [170]. This changing landscape prevents premature

convergence of search.

3. The global search performance of CCEAs can be faster than canonical evolutionary

algorithms due to the maintenance of a functional diversity of solutions [171].

The main disadvantages of CCEAs are:

1. CCEAs are not naturally suited to non-separable problems where interactions be-

tween problem components mean that many dimensions need to be considered at

once for the global search to progress [172]. Strategies can be employed to better

handle specific problems [173] but there is, to date, no single approach for applying

CCEAs to inseparable problems.

2. CCEAs do not always work well when only one optimiser is applied to all sub-

problems [166].

3. CCEAs also introduce the challenge of ensuring that sub-problems are computa-

tionally load-balanced to ensure that progress in sub-populations is matched [174].

Wave farm parameter (Position+PTO settings) optimisation has a very high dimension-

ality which makes it a challenging search problem. One natural option for dealing with

this issue is to divide the decision variables into two subsets: WEC positions and PTO

settings. This decreases the problem dimension and provides a more homogeneous search
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space. Four cooperative optimisation techniques are proposed and compared including a

new combination of AGWO and the Nelder-Mead, hybrid of (2+2)CMAES and Nelder-

Mead (NM) [138], and a combination of a 1+1EA and Nelder-Mead [138], and, finally,

the CCOS algorithm introduced in [166]. Details of these algorithms are as follows:

3.2.8.1 AGWO + Nelder-Mead

(AGWO-NM) As GWO is designed as an unconstrained meta-heuristic idea, it is not able

to handle the constraint of WECs distances (safe distance) easily. However, GWO can

be a fast and effective unconstrained optimisation method. In this way, a combination

of AGWO and Nelder-Mead is proposed that AGWO adjusts the PTO configurations

of WECs to achieve the highest power output and then NM is used for optimising the

arrangement of buoys. This optimisation process is run iteratively using the same com-

putational budget until the runtime (three days) runs out.

3.2.8.2 Cooperative Co-evolution with Online optimiser Selection: CCOS

The Cooperative Co-evolution with an online mechanism for selecting the suitable opti-

miser (CCOS) introduced by Sun et al. [166]. The CCOS consists of two general parts:

decomposition and optimisation. In the first stage, a robust recursive algorithm [175] is

used to group parameters into subsets based on how they correlated during optimisa-

tion. These subsets are recursively decomposed according to the strength of parameters

interactions.

The algorithm is able to decompose an n-dimensional problem using O(n log n) steps.

During the optimisation phase, two state-of-the-art adaptive optimisers are employed;

the social learning particle swarm optimiser (SLPSO [155]), and self-adaptive differen-

tial evolution with neighbourhood search (SaNSDE [156]). The main contributions of

SaNSDE are 1) incorporating the search biases of distributions, Cauchy and Gaussian

operators. SaNSDE takes into account the trade-off between small and large mutation

step sizes; 2) all control parameters of SaNSDE are self-adapted based on statistical

performance tracking during the optimisation process. Moreover, to assess the CCOS al-

gorithm (SLPSO+SaNSDE) thoroughly, we compared CCOS’s performance against the

performances of a double SLPSO (SLPSOII) and SaNSDE (SaNSDEII ). This evalua-

tion helps isolate the impact of using these optimisers cooperatively.
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3.2.9 Hybrid optimisation algorithms

In the earlier work, a practical WECs optimisation idea was developed [1] called Local

Search + Nelder Mead (LS-NM); that showed using a local sampling by a normal dis-

tribution in the previous buoy’s neighbourhood (outside of the safe distance) combined

with greedy selection could produce high-performing layouts. Such one-at-a-time place-

ment is a fast optimisation strategy. However, tuning the position of the placed buoys

required a considerable computational budget. This work also did not consider other

WEC optimisation parameters such as PTO settings.

More recently, Neshat et al. [138] proposed an improved heuristic (SLS-NM-B) for placing

the new WEC one-at-a-time and tuning PTOs settings. As local sampling in LS-NM is

done without strong regard to useful priors of direction and distance, a repaired step is

needed to modify the current position. SLS-NM-B represented a symmetric local search

with the deterministic directions and bounded search space. Moreover, a backtracking

strategy was introduced for improving the WEC parameters, including both position and

PTO settings (with the latter being tuned in unison for each buoy). Nevertheless, SLS-

NM-B was not designed to handle the high dimensional search problem that arises when

all PTO frequency response settings are allowed to move independently. This is because

the Nelder-Mead optimiser that is applied for tuning the PTO parameters converges

extremely slowly in the high-dimensional search space. Moreover, it has not been proven

that the PTO parameter space in this problem is uni-modal and so the downhill search

heuristics such as Nelder-Mead may not be suitable for global optimisation.
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Algorithm 3.7 Hybrid Cooperative Co-evolution Algorithm (HCCA)
1: procedure HCCA

2: Initialization
3: size =

√
N ∗ 20000 . Farm size and N is buoy number

4: Aii = {1 ≤ ii ≤ |A|} . candidate optimisers
5: angle = {0 , 45 , 90 , . . . , 315} . symmetric samples angle
6: iters = Size([angle]) . Number of symmetric samples
7: S = {〈x1, y1, B

1
k1
, ..., B1

k50
, B1

d1
, ..., B1

d50
〉, . . .

8: . . . , 〈xN , yN , BNk1 , ..., B
N
k50
, BNd1 , ..., B

N
d50
〉} . Positions&PTOs

9: Decomposition
10: 〈S1,S2, ...,SN 〉 = Decompose(S) . Decomposing S per buoy

11:



S1 = {〈x1, y1〉, 〈B1
k1
, . . . , B1

k50
, B1

d1
, . . . , B1

d50
〉} = ⊥

S2 = {〈x2, y2〉, 〈B1
k1
, . . . , B2

k50
, B2

d1
, . . . , B2

d50
〉} = ⊥

. . .

SN = {〈xN , yN 〉, 〈BNk1 , . . . , B
N
k50
, BNd1 , . . . , B

N
d50
〉} = ⊥

12: UAii ,Si = 0 . Initialize the accumulated contributions of optimisers
13: S1 = {〈size, 0〉, 〈~r1 ×Maxk, ~r2 ×Maxd〉} . initialize first buoy
14: Hybrid Cooperative Co-Evolution Framework
15: if i = 1 then . optimise first buoy PTOs by the optimisers
16: First Step
17: for ii in |A| do . Calculate contribution
18: 〈I(Aii ,Si ),Energy〉=optimise (SiPTOs ,Aii)

19: U(Aii ,Si )=(Û(Aii ,Si ) + I(Aii ,Si ) ) / 2 . Accumulate contribution
20: end for
21: Si+1PTOs

= SiPTOs

22: end if
23: BestIndex = Max (U(Aii ,Si ) → 1 ≤ ii ≤ |A|)
24: for i in [2, .., N ] do bestEnergy = 0;

25: Second Step: Symmetric Sampling
26: for j in [1, .., iters] do
27: (Samplej , energyj )=SymmetricSample(anglej ,S(i−1))

28: if Samplej is feasible & energyj > bestEnergy then
29: tPos = Samplej bestEnergy = energyj bestAngle = j . Temporary position
30: end if
31: end for
32: (Es1, Es2)=SymmetricSample(bestAngle ± 15 ,S(i−1))

33: (S(i), energy)=FindbestS(tPos, Es1, Es2)

34: Third Step: PTO settings Optimisation by CCEA
35: 〈I(ABestIndex ,Si ),Energy〉=optimise (SiPTOs ,ABestIndex )

36: U(ABestIndex ,Si )=(Û(ABestIndex ,Si ) + I(ABestIndex ,Si ) ) / 2
37: BestIndex = Max (U(Aii ,Si ) → 1 ≤ ii ≤ |A|)
38: Si+1PTOs

= SiPTOs

39: Fourth Step: Position Optimisation by Nelder-Mead
40: (Si,Energy)=Nelder-Mead(SiPosition

)

41: end for
42: Final Step: BackTracking Optimisation
43: 〈S,Energy〉=BackTracking (S,ABestIndex )

44: end procedure
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3.2.9.1 Hybrid Cooperative Co-evolution algorithm (HCCA)

One of the most effective strategies for solving the large-scale optimisation problems is

Cooperative Co-evolution (CC) framework [176]. In CC, the general idea is dividing the

decision variables into some components (decomposition) and employing one or more

optimisers in a round-robin fashion (in biased or unbiased mode) for optimising the sub-

problems. In this paper, as a combination of WECs placements and PTOs settings forms

a large number of decision variables (N × 102) with a complex search space, we propose

a new hybrid Cooperative Co-evolution (HCCA) method. The steps of the proposed

hybrid algorithm are described in more details as follows.

Decomposition: In the decomposition phase, we apply a knowledge-based approach

according to the significant WECs hydrodynamic rule [177]. The rule is that both PTO

parameters (damping coefficient (dPTO) and spring stiffness (kPTO)) of each converter

should be optimised together. Therefore, the problem is decomposed into two sub-

problems for each WEC, including PTO settings (〈Bi
k1
, ..., Bi

k50
, Bi

d1
, ..., Bi

d50
〉, 100D) and

position (〈xi, yi〉, 2D).

Optimisation: The HCCA optimisation phase is comprised of optimisation phases

for the two-parameter groups listed above. For the buoy position parameter-group,

the hybrid systematic neighbourhood search from (SLS-NM) [138] is applied by first

uniformly sampling in search sectors whose boundaries are informed by an initial 2-

buoy power landscape analysis. After this, a Nelder-Mead search is used to improve the

best-sampled positions.

In the symmetric local search (SLS) method, the angle interval (angle) is selected to

trade-off between the number of neighbourhood samples and the computational cost of

their evaluation. A similar trade-off was explored for setting the parameters representing

the number of allowed evaluations and the step size (σ) of the Nelder-Mead phases of

the search.

In the second group of the optimisation, we propose a Cooperative Co-evolution idea

for adjusting the PTOs settings that is a large-scale optimisation problem (N × 100).

This CC framework is composed of three modern and efficient optimisers, SLPSO [155],

SaNSDE [156] and the new proposed adaptive grey wolf optimiser (AGWO). The SLPSO

is a competitive optimiser [166] for working in the context of CC because 1) it is com-

putationally efficient, 2) needs no complicated fine-tuning of the control parameters, 3)

has a high exploitation ability and convergence speed, and 4) has shown to perform

well on other high-dimensional optimisation problems. However, converging to a local
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optimum can be a problem encountered with SLPSO. Consequently, for developing the

CC framework, combine this with another optimiser with a high capability of the explo-

ration. The SaNSDE optimiser has considerable capacity for exploration and has been

broadly applied in the CC domain [166]. The third optimiser used here in CC framework

is AGWO which is the new GWO variant described earlier. During optimisation these

three optimisers share the same population and and solve the components collaboratively.

The pseudo-code of the proposed HCCA algorithm for solving the WEC optimisation

problem is shown in Algorithm 3.7.

Backtracking: After initial placement and PTO optimisation by the CC framework

above a customised backtracking optimisation algorithm (BOA) refines both buoy posi-

tions and PTO parameters. For positions, the buoys with the lowest power output are

selected and then Nelder-Mead (NM) is applied for optimising the positions one at a

time. For PTO parameters, an optimiser is selected as the best prior optimiser perfor-

mance during the first search phase. The selected optimiser is then used to tune all of

the PTOs settings of the layout in all-at-once global search.

The pseudo-code of the backtracking approach is given in Algorithm 3.8. Figure 3.15

provides a graphical view of the proposed hybrid optimisation framework. In the first

cycle, after placing the first buoy in a predefined location (recommended by [138]), the

three optimisers (A) are employed to resolve PTOs settings (SjPTOs). Each optimiser is

given the same computational budget.

Next, each optimiser’s contribution is computed as a fitness improvement (I(Ai,Sj)):

I(Ai,SjPTOs ) =
f(ŚjPTOs)− f(SjPTOs)

f(ŚjPTOs)
i ∈ {1 ≤ i ≤ |A|}, j ∈ {1 ≤ j ≤ N} (3.20)

where f(ŚjPTOs) and f(SjPTOs) show the power of the layout obtained before and after em-

ploying ith optimiser in one cycle. The fitness improvement is a measure of the optimiser’s

ability to adjust the jth buoys PTOs settings. For updating the fitness improvement for

each optimiser during the whole optimisation process, an accumulated contribution vari-

able is used [166]. This performance tracking is encoded in Equation 3.21.

U(Ai,SjPTOs ) =
Ú(Ai,SjPTOs ) + I(Ai,SjPTOs )

2
(3.21)

where Ú(Ai,SjPTOs ) tracks each optimiser’s (Ai) accumulated contributions. In the first cy-

cle, the Ú(Ai,SjPTOs ) is initialised to 0. The accumulated contribution U(Ai,SjPTOs ) is the aver-

age of all fitness profits for each optimiser from previous cycles. In the next iteration, the
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NO. Name Chaotic Map Range
1 Chebyshev xi+1 = cos(icos−1(xi)) (-1,1)
2 Circle xi+1 = mod(xi + b− ( a

2π )sin(2πxi), 1), a = 0.5 and b = 0.2 (0,1)

3 Gauss/mouse xi+1 =

{
1 xi = 0

1
mod(xi,1) otherwise

(0,1)

4 Iterative xi+1 = sin(aπxi ), a = 0.7 (-1,1)
5 Logistic xi+1 = axi(1− xi), a = 4 (0,1)

6 Piecewise xi+1 =


xi
P 0 ≤ xi < P
xi−P
0.5−P P ≤ xi < 0.5
1−P−xi
0.5−P 0.5 ≤ xi < 1− P

1−xi
P 1− P ≤ xi < 1

, P = 0.4 (0,1)

7 Sine xi+1 = a
4sin(πxi), a = 4 (0,1)

8 Singer xi+1 = µ(7.86xi − 23.31x2
i + 28.75x3

i − 13.302875x4
i ) , µ = 1.07 (0,1)

9 Sinusoidal xi+1 = ax2
i sin(πxi) , a = 2.3 (0,1)

10 Tent xi+1 =

{
xi
0.7 xi < 0.7
10
3 (1− xi) xi ≥ 0.7

(0,1)

Table 3.7: The applied chaotic maps from [17].

3.2.10.1 Landscape analysis

3.2.10.1.1 PTOs settings analysis

In recent work [138], the impact of PTO parameter optimisation where these control

parameters are kept the same for all wave frequencies for each buoy, was investigated

and presented. This work found that tuning the PTOs parameters can be effective in

optimising the total absorbed power of WECs (CETO model) in both Perth and Sydney

wave climates by 4.48% and 2.42%, respectively. Figure 3.18 illustrates the PTO power

landscape of one buoy with a simple grid search for tuning the damping-spring variables,

where settings are kept the same for all wave frequencies.

Figure 3.18: PTOs settings power landscape analysis of four real wave scenarios
(Adelaide(a,e), Sydney(b,f), Tasmania (c,g) and Perth (d,h)) for one buoy layout. We
assume the most straightforward experiment of PTOs settings with the same value for
all 50 wave frequencies. The spring-damping PTO configuration step size is 2500. Note
that the real PTOs configurations search space is multi-modal and different values can

be assigned to each wave frequency.
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However, in the real sea states, WECs control parameters (PTOs) should be tuned for

each wave frequency. By tuning these parameters independently for each buoy, it is

possible to extract more power. We allow the PTO settings for all frequencies to be

used for all proposed optimisation methods in this paper. For visualising the potential

impact of PTO parameter optimisation for each wave frequency, we conduct a simple

experiment. Since the dimensionality of this problem is high (2×50 for a single buoy), we

divide the 50 frequencies into 10 groups. Each group includes five sequential frequencies,

and we constrain them to have the same PTOs parameters. The 45 wave frequencies in

each group are assigned the manufacturer’s PTOs defaults (k = 407510 and d = 97412)

[1]. Figure 3.19 shows the modified PTOs optimisation power landscape of 10 groups

for one buoy in Perth wave model; for mixing all ten surfaces at one 3D figure, we use

a normalised version of all landscapes (left figure) as a multi-layer 3D plot. We can see

that this simplified search space of just one buoy’s PTO configuration is multi-modal and

complex to search1. It is also of note that, even in this constrained search environment,

there is a 3-fold improvement in extracted energy compared to previous studies [1, 138].

Moreover, to provide an alternative visualisation of this experiment, a 4D power land-

scape is plotted. Figure 3.20 presents a trade-off of damping (dPTO), spring (kPTO),

wave frequency and absorbed power. We can see that a specific range of frequencies

with tuned values of PTO settings can produce more power. Note however the figure

is plotted for one fixed buoy without the complex details of hydrodynamic interactions

between buoys in the wave farm. A-priori, it is expected that introducing more buoys

will produce interactions that will increase the complexity of this landscape further.

3.2.10.1.2 Position analysis

For evaluating the position sensitivity of the best-found 16-buoy arrangement in four real

wave models, a practical experiment is done. In the first step, we perturb each generator’s

position by a random variable with a normal distribution (µ = (xi, yi) and σ = 1m) 100

times. Secondly, we perturb all buoys position by this strategy. Figure 3.21 demonstrates

the results of both perturbation experiments and the best 16-buoy layout power. We can

see that this practical analysis is able to improve the total power output of Adelaide wave

site by 0.04%. This minor improvement shows that the proposed optimisation method

(HCCA) can converge very close to a local optimum within the limited computational

budget.
1Because this diagram is a low-dimensional projection from a higher-dimensional landscape it cannot

be automatically assumed that the higher-dimensional landscape for PTO optimisation at least, is also
multi-modal. Note that previous work has shown that the buoy-positioning landscape is multi-modal,
but exploring the multi-modality or otherwise of the entire higher-dimensional search landscape for PTO
settings is future work.
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Figure 3.19: The simplified power landscape of one buoy where PTO parameters
are evaluated in ten sequential five-wave frequency groups. Figure (a) demonstrates
the PTO (damping-spring parameters) power landscape of one buoy when we assume
k and d parameters for f1, f2, ..., f5 are the same and other 45 wave frequencies are
set by the predefined value (dPTO = 97412, kPTO = 407510). Other figures follow
the same pattern for instance Figure (b) represents the performance of a simple grid
search (Step = 10000) for plotting the power landscape of f6, f7, ..., f10 of tuned PTO
parameters. In the left side, Figure (k) shows a normalised overlapping of the surfaces
of all ten landscapes in one graph for depicting the complexity level of the search space.

For the other three wave scenarios (Sydney, Tasmania, and Perth), the position analysis

experiments cannot find a better configuration than the HCCA optimisation results. The

perturbation loss, respectively, for the best 16-buoy layouts power in Sydney, Tasmania

and Perth wave farms are 0.67%, 0.49% and 0.12% on average. According to the results,

the power outputs for the best-found layouts are relatively insensitive to small pertur-

bations in buoy position – this is a good outcome in that small errors in buoy placement

in a real environment are unlikely to have a major impact on power output.

3.2.10.2 optimisation Experiments

In this part, we summarise the experimental results from optimising the layout and

PTO parameters of 4-buoy arrays and then 16-buoy arrays. The 16-buoy experiments

are expected to be more challenging due to the larger number of parameters and a much

larger number of buoy interactions.
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approaches in four real wave scenarios. The parameter settings for these meta-heuristic

variants are summarised in Table 3.4. The computational budget is three days on 12

CPU cores in parallel.

Figure 3.23 presents the box-and-whiskers plot for the best-found 4-buoy configurations

which produce the maximum power output for each run for 16 search heuristics for

four real wave models. It can be seen that the performance of cooperative co-evolution

strategies (CCOS, SLPSOII and SaNSDEII and the new hybrid method are considerably

better than other applied meta-heuristic algorithms. The next best performances are

exhibited by both SLS-NM and SLS-NM-B; however, the average absorbed power by

these methods is less than the CC and HCCA approaches by 25%.

Looking more closely at Table 3.10, we can observe the highest absorbed power of 4-

buoy layouts are found by SLPSOII , CCOS and HCCA, respectively. These optimisation

results are closely followed by the SaNSDEII algorithm. These competitive performances

are supported by the statistical test results, ranked using the non-parametric Friedman

test, shown in Table 3.8. It is noteworthy that among the five optimisation methods

in the all-at-once strategy, the GWO and AGWO performances are substantially better

than the others.

Viewing the convergence curves (Figure 3.24) from this experiment (4-buoy) in four real

wave models, it is clear that the HCCA framework converges faster for the 4-buoy layout

than other search methods. Furthermore, HCCA improves beyond the power outputs

achieved by other methods when it has consumed just 20% of its 3-day computational

budget.

3.2.10.2.2 16-buoy layout results

As evaluating one 16-buoy layout is ten times more expensive than a 4-buoy layout,

optimising such large wave farms is a challenging problem. According to the statistical

results of Table 3.9, we see that the average 16-buoy layouts power output which are

found by HCCA is increased substantially to 80% more than previous research outcomes

(SLS-NM-B [138]) in all wave scenarios.

Table 3.8 presents the average rank of all heuristic methods for 16-buoy experiments,

that HCCA, SLS-NM-B and SLS-NM have the highest rank, respectively.

The best-found 16-buoy layouts power output for each run of all heuristic methods are

plotted as a box plot by Figure 3.22. Figure 3.22 shows that HCCA performs much better

than other optimisation algorithms, as mentioned before. After SLS-NM and SLS-NM-

B, The efficiency of the AGWO-NM, AGWO and GWO are competitive compared with
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other cooperative and generic EAs. The primary reason is derived from the robust

exploitation and exploration capability of GWO for PTO parameter optimisation and

having good performance for high-dimensional problems. It is noteworthy that the CC

frameworks (CCOS, SLPSOII and SaNSDEII) are not shown to be highly effective.

This may be because the CC framework is not equipped with the systematic position

optimisation mechanism (SLS) used by some of the one-at-a-time placement algorithms.

Figure 3.25 illustrates the convergence rate of the proposed methods experiments during

the three-day runtime budget for 16-buoy layouts. As we can see, GWO and their

modified versions rapidly converge to effective configurations; however, they could not

keep this upward trend and converge toward locally optimal settings. HCCA, clearly, has

the fastest convergence speed in the four-wave models. SLS-NM-B is able to converge

to a reasonable configuration, but it does not outperform HCCA because of the low

efficiency of Nelder-Mean optimising the large-scale PTO parameter part of the problem.

Another important observation is that the CC approaches seem to suffer from premature

convergence. In addition, they also appear to be not fast enough for such expensive

optimisation problems which allow just a few thousand full evaluations (3 × 103). The

best 16-buoy layouts of the nominated five methods among all heuristics can be shown in

Figure 3.17, including HCCA, CMA-ES, AGWO-NM, SLPSOII and LS-NM in four real

wave scenarios. In terms of position optimisation, it is clearly observed that HCCA is able

to adjust the position of each generator successfully, which leads to a distinctive pattern

of one or more rows, roughly aligned with the norm of the dominant wave direction,

for placing the 16 buoys. This pattern is associated with a fast position optimisation

mechanism of SLS-NM [138] that plays the role of one component in HCCA. In contrast

to this, the other best layouts do not seem to exhibit any obvious structure.

Algorithm 3.8 Backtracking Search Algorithm (BSA)
1: procedure BSA (S,A )
2: Initialisation
3: energy = ([E1, E2, . . . , EN ]) = Eval(S) . Evaluate layout
4: Nw = round(N/4) . Buoy number need to be improved
5: 〈WIndex 〉=FindWorst(energy , Nw) . Find worst buoys power
6: for i in [1, .., Nw] do
7: Position optimisation
8: (SPosition

WIndex(i), energyWIndex(i))=Nelder-Mead(SPosition
WIndex(i))

9: end for
10: PTO global optimisation
11: (SPTOs , energy)=optimise(SPTOs ,ABestIndex )
12: return S, energy . Final Layout
13: end procedure
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4.1 Design optimisation of a multi-mode wave energy con-

verter

4.1.1 Synopsis

The hydrodynamic characteristics of the Wave Energy Converters and their potential

absorbed power are strongly associated with the geometric parameters like shape and

dimensions. With this in mind, we use this chapter to propose a hybrid evolutionary

algorithm. This algorithm combines self-adaptive differential evolution and the Nelder-

Mead (NM) simplex method in order to maximise the total power output of a cylinder-

shaped converter and minimise the levelised cost of energy. We assess the performance of

the hybrid EA and compare it to that of six more popular optimisation methods. Results

of our experiments indicate that this approach converges faster than other algorithms

to a near-optimum design.
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Chapter 5

An Evolutionary Deep Learning

Method for Short-term Wind Speed

Prediction: A Case Study of the

Lillgrund Offshore Wind Farm

5.1 Synopsis

The article in the chapter demonstrates a hybrid neuro-evolutionary algorithm for short-

term wind speed forecasting. This algorithm uses a long short-term memory (LSTM)

neural network model plus a popular evolutionary search algorithm, (covariance matrix

adaptation evolution strategy (CMA-ES)), to tune the hyper-parameters. The hybrid

method is trained on data gathered from an offshore wind turbine in the Baltic Sea. We

consider two forecasting horizons (ten-minutes and one-hour ahead), in the experiments.

The experimental results show that the proposed method is superior to five other machine

learning models, as measured by five performance criteria.

Reference

[9] Neshat, M., Nezhad, M. M., Abbasnejad, E., Tjernberg, L. B., Garcia, D. A., Alexan-

der, B., & Wagner, M. (2020). An Evolutionary Deep Learning Method for Short-term

Wind Speed Prediction: A Case Study of the Lillgrund Offshore Wind Farm. arXiv

preprint arXiv:2002.09106. Accepted for publication by The 1st Asia Pacific Conference

on Sustainable Development of Energy, Water and Environment Systems – SDEWES

Conference.
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5.2 Abstract

Accurate short-term wind speed forecasting is essential for large-scale integration of

wind power generation. However, the seasonal and stochastic characteristics of wind

speed make forecasting a challenging task. This study adopts a new hybrid evolutionary

approach that utilises a popular evolutionary search algorithm, CMA-ES, to tune the

hyper-parameters of two long short-term memory (LSTM) neural network models for

wind prediction.

The proposed hybrid approach is trained on data gathered from an offshore wind turbine

installed in a Swedish wind farm located in the Baltic Sea. Two forecasting horizons,

including ten-minutes-ahead (absolute short term) and one-hour ahead (short term),

are considered in our experiments. Our experimental results indicate that the new ap-

proach is superior to five other applied machine learning models, i.e., polynomial neural

network (PNN), feed-forward neural network (FNN), nonlinear autoregressive neural net-

work (NAR) and adaptive neuro-fuzzy inference system (ANFIS), as measured by five

performance criteria.

5.3 Introduction

Concerning for global warming and environmental pollution trajectories have motivated

intensive efforts to replace fossil fuels [201]. One of the most important clean energy

sources is wind. Wind energy has key advantages over technological maturity, cost and

life-cycle greenhouse gas emissions [202]. However, wind is a variable resource, so accurate

wind power forecasts are crucial in reducing the incidence of costly curtailments, and in

protecting system integrity and worker safety [203]. Obtaining an accurate local wind

speed prediction can be difficult. This is because nature of wind speed is stochastic,

intermittent and non-stationary, all of which characteristics can defeat simple models

[48].

In this paper, we propose a hybrid evolutionary deep forecasting model, combining a

recurrent deep learning model (LSTM network) [204], coupled with the CMA-ES algo-

rithm [205], (CMAES-LSTM) for predicting short-term wind speed with high accuracy.

As there is no straightforward theory governing the design of an LSTM network for a

given problem [47], we tune model structure and hyper-parameters using a combination

of grid search and CMA-ES. We demonstrate the performance of the proposed hybrid

(CMAES-LSTM) model using a real case study based on data collected from the Lill-

grund offshore wind farm to predict wind speeds ten-minutes-ahead and one hour ahead.
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The proposed method is compared with the FNN model, ANFIS model, PNN model,

NAR model and a static LSTM model. Statistical analyses show that the proposed

adaptive method exhibits better performance than these current (static) models.

The remainder this article is structured as follows. The following section briefly surveys

related work in the field of predictive wind models. Section 6.7 presents current method-

ologies, theories and our proposed hybrid evolutionary deep learning (CMAES-LSTM)

model. Section 6.6.1 exhibits the performance indices which are applied to evaluate the

introduced models. After this, Section 5.8 provides a brief description of the offshore

wind farm which is the focus of this paper. Section 5.9 describes and analyses our exper-

imental results. Lastly, we provide a summary and outline future work in Section 5.10.

5.4 Related Work

Today, wind turbine generators (WTGs) are installed in onshore, nearshore and offshore

areas worldwide [206–209]. Sweden is one of the leading countries harnessing offshore

wind power due to its geographical location, its access to shallow seas and its exposure to

the strong North winds on the Baltic Sea. ‘Wind energy’ refers to variable wind resources

that are influenced by several factors including the location of the turbines (on-, near-,

offshore); turbine height; seasons, meso-scale and diurnal variations; and climate change.

All of these can affect the stable operation of the power grid [210]. Numerous studies

have shown how these factors can impact on the reliability of wind energy [211].

Short-term predictive models of wind speed based on historical data have been developed

using autoregressive moving average models [212], autoregressive integrated moving av-

erage models [213]. Related work by Gani et. al. [214] has combined non-linear models

with support vector machines. Wind forecast methodologies using ANNs include Elman

neural networks [215], polynomial neural networks (PNN) [216], feed-forward neural net-

works (FNN) [217] and long short-term memory Network (LSTM)[47], hybrid artificial

neural network [218].

Recently deep-learning ANNs solutions for wind forecasting have proven popular. Hu

et al. [219] used transfer learning to form short term prediction. Wang et al. [220]

introduced a new wind speed forecasting approach using a deep belief network (DBN)

based on the deterministic and probabilistic variables. Liu used recurrent deep learning

models that were based on LSTM network to forecast wind speed in different time-scales

[221, 222]. Chen et al. [223] recommended an ensemble of six different LSTM network

configurations for wind speed forecasting, with both ten-min and one-hour interval. More

broadly, hybrid nonlinear forecasting models have been explored for the prediction of
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wind energy generation, solar energy forecasting and energy market forecasting [224–

229].

The work in this paper differs from previous work on wind prediction in that it uses

global heuristic search methods to optimise both network structure and tune hyper-

parameters. Our approach customises known methodologies from neuro-evolution [230]

to improve the performance of predictive wind models.

5.5 Methodology

In this section, we introduce the proposed methodologies and related concepts, including

LSTM network, the CMA-ES algorithm and the combination of LSTM network and the

CMA-ES algorithm.

5.5.1 Long short-term memory network (LSTM)

An LSTM is a type of recurrent neural network (RNN) which has the capacity to model

time series data with different long-term and short-term dependencies [204]. The core of

the LSTM network is the memory cell, which refers to the hidden layers in which neurons

are traditionally located. LSTM is equipped with three gates (input, output and ’forget’

gates), and is therefore able to add or remove information to the cell state. In order to

calculate the estimated outputs and update the state of the cell, the following equations

can be used:

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (5.1)

it = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (5.2)

ct = f � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (5.3)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (5.4)

mt = ot � h(ct) (5.5)

yt = Wymmt + by (5.6)

where xt is the input and yt is the output; it, ot and ft indicate the input gate, out-

put gate and forget gate respectively. The activation vectors of each cell are shown by

ct, while mt denotes the activation vectors for any memory block. σ, g and h express

the activation function of the gate, input and output (the logistic sigmoid and tanh

function are assigned). Lastly, � (Hadamard product) indicates the element-wise mul-

tiplication between two vectors. Furthermore, bi, bf ,bc, bo are the corresponding bias
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vectors. Wox,Wom, Woc, Wix, Wim, Wic, Wfx, Wfm, Wfc, Wcx, Wcm, and Wym are the

corresponding weight coefficients.

5.5.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The CMA-ES [205] search process for an n-dimensional problem works by adapting an

n×n covariance-matrix C. This matrix defines the shape and orientation of a Gaussian

distribution in the search space and a vector x that describes the location of the centre of

the distribution. The search is conducted by sampling this distribution for a population of

µ individual solutions. These solutions are then evaluated and the relative performance of

these solutions is used to update both C and x. This process of sampling and adaptation

continues until the search converges or a fixed number of iterations has expired.

CMA-ES relies on three principal operations, which are selection, mutation, and recom-

bination. Recombination and mutation are employed for exploration of the search space

and to create genetic variations, whereas the operator of selection is used for exploit-

ing and converging on an optimal solution. The mutation operator plays a significant

role in CMA-ES, which utilises a multivariate Gaussian distribution. For a thorough

explanation of the different selection operators, we refer the interested reader to [88].

CMA-ES can explore and exploit search spaces due to its self-adaptive mechanism for

setting the vector of mutation step sizes (σ) instead of adopting only one global muta-

tion step size. Self-adaptation can also improve convergence speed [205]. The covariance

matrix is computed based on the differences in the mean values of two progressive genera-

tions. In which case, it expects that the current population includes sufficient information

to estimate the correlations. After calculating the covariance matrix, the rotation matrix

will derive from the covariance matrix with regard to expanding the distribution of the

multivariate Gaussian in the estimated direction of the global optimum. This can be

accomplished by conducting an eigen-decomposition of the covariance matrix to receive

an orthogonal basis for the matrix [231].

5.6 Adaptive Tuning Process

One of the primary challenges in designing an ANN is setting appropriate values for the

hyper-parameters such as the number of the hidden layers, number of neurons in each

layer, batch size, learning rate and optimiser type [47]. Tuning the hyper-parameters

plays a significant role in improving the performance of the DNN with respect to problem

domain. In the domain of wind forecasting, Chen [223] has noted that the forecasting
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accuracy of LSTM networks is influenced by structural parameters. There are three

main techniques for tuning hyper-parameters. These are 1) manual trial and error,

which is costly and cannot be practised adequately, 2) systematic grid search, and 3)

meta-heuristic search. In this paper, we compare the performance of both grid search

and the meta-heuristic approach (CMAES-LSTM) in tuning LSTM networks for wind

forecasting.

In the grid search method, we assign a fixed value for the optimiser type (’adam’) [234],

the number of LSTM hidden layers and also the number of neurons. These values are

listed in Table 6.1. The grid search process determines the batch size and learning rate

can fall within ranges of (10−5 ≤ LR ≤ 10−1, and 8 ≤ BS ≤ 1024). For the search using

CMA-ES we apply all of the listed hyper-parameters of the LSTM networks listed in

the corresponding section of Table 6.1. In order to avoid a situation in which the search

simply on complex network designs that take too long to train, we add a penalty term

for model training time to the fitness function f . We frame the optimisation process as

follows:

Argmin→ f = fitness(Nh1 , Nh2 , ..., NhD , Nn1h1 , Nn2h2 , ...NnDhD , LR, BS , Op),

Subject− to :

LNh ≤ Nh ≤ UNh,

LNn ≤ Nn ≤ UNn,

10−5 ≤ LR ≤ 10−1,

8 ≤ BS ≤ 1024.

(5.7)

where Nhi , {i = 1, . . . , D} is the number of hidden layers for the i−th LSTM network and

Nni,hj , {j = 1, . . . , Dl} is the number of neurons in the ith hidden layer of this network.

The lower and upper bounds of Nh are shown by LNh and UNh , while LNn and UNn

are the lower and upper bounds of neuron number. The final fitness function is as follows:

f = f1 + ωf2

f1 = RMSE =

√√√√ 1

N

N∑
i=1

(fp(i)− fo(i))2
(5.8)

f2 =

Trruntime − ρ, if(Trruntime > ρ)

0, otherwise
(5.9)

where RMSE is the root mean square error of the test samples; ρ is the threshold of

training runtime by 600(s). ω is the weight coefficient which is used to penalise long

training times. In this work we set ω to 10−3, because the range of RMSE is between 0.5
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Table 5.1: Summary of the predictive models tested in this paper.

Models Descriptions
LSTM [47] + grid search Long Short-term memory Network:

• LSTM hyper-parameters

– miniBatchSize=512

– LearningRate= 10−3

– numHiddenUnits1 = 125;

– numHiddenUnits2 = 100;

– Epochs = 100

– Optimiser= ’adam’

ANFIS [232] Adaptive neuro-fuzzy inference system:

• OptMethod= Backpropagation

• Training settings

– Epochs=100;

– ErrorGoal=0;

– InitialStepSize=0.01;

– StepSizeDecrease=0.9;

– StepSizeIncrease=1.1;

• FIS features

– mf number=5;

– mf type=’gaussmf’;

PNN [216] Polynomial neural network:

• PNN parameters

– MaxNeurons=20

– MaxLayers= 5

– SelectionPressure= 0.2;

– TrainRatio= 0.8;

FNN [217] Feed-forward neural network

• FNN settings

– hiddenSizes= 100

– hiddenLayers= 2

– trainFcn= ’trainlm’;

NAR [233] Nonlinear autoregressive neural network (is similar to FNN
settings)

CMAES-LSTM

• CMAES-LSTM hyper-parameters (Best con-
figuration)

– miniBatchSize=655

– LearningRate=10−3

– numHiddenUnits1=177 ;

– numHiddenUnits2=151 ;

– Epochs = 100

– Optimiser= ’adam’

– PopulationSize=12

– MaxEvaluation =1000
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Figure 5.2: Location of the Lillgrund offshore wind power plant [14].

MAPE =
1

N

N∑
i=1

(fp(i)− fo(i))
fo(i)

× 100% (5.12)

R =
1
N

∑N
i=1(fp(i)− fp)(fo(i)− fo)√

1
N

∑N
i=1(fp(i)− fp)2 ×

√
1
N

∑N
i=1(fo(i)− fo)2

(5.13)

where fp(i) and fo(i) signify the predicted and observed wind speed values at the ith

data point. The total number of observed data points in N . In addition, fp and fo

are the average of the projected and observed consequences, respectively. In order to

improve the performance of the predicted model, MSE, RMSE, MAE and MAPE should

be minimised, while R needs to be maximised.

5.8 Case Study

In this paper, we use the original wind speed data gathered from a large offshore wind

farm called Lillgrund [14] , which is situated in a shallow area of Oresund, located 7 km

off the coast of Sweden and 7 km south from the Oresund Bridge connecting Sweden
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Figure 5.3: Lillgrund offshore wind farm in Baltic Sea and the wind turbine position
is showed with red cycle which is applied for collecting the real wind speed data [14].

and Denmark (see Figure 5.2). The mean wind speed is around 8.5 m/s at hub height.

This wind, together with the low water depth of 4 to 8 (m), makes the installation of

wind turbines economically feasible. The Lillgrund offshore wind farm consists of 48

wind turbines, each rated at 2.3 (MW), resulting in a total wind power plant potential

of 110 (MW) [238]. A SCADA collects wind power plant information at a 10-minute

interval [239]. The wind power system also includes an offshore substation, an onshore

substation and a 130 (kV) sea and land cable which connects offshore substation to the

shore.

The wind speed data collected from the Lillgrund wind farm (D3 wind turbine position

can be seen in Figure 5.3) consists of the period from July 2018 to July 2019 at a

ten-minute resolution. Figures 5.4 and 5.5 show the distribution and frequency of the

recorded wind speed in Lillgrund Wind farm during these 12 months. The distribution

and frequency of the wind speed is strongly anisotropic [240].

Figure 5.6 shows that the predominant wind direction is south-west, and a secondary

prevailing direction is south-east. However, there are also occasional North-west winds

and sporadic north-east storms. We use two horizons to predict wind speeds: ten minutes

and one hour. The wind speed data are randomly divided into three sets using blocks of

indices. 80% of the data is used as the training set, and the other 20% is allocated to

the test (10%) and validation (10%) sets. We also apply k-fold cross-validation in order

to train the LSTM network to predict the time series data.
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Figure 5.4: The distribution and frequency of the wind speed data in Lillgrund Wind
coastal site per 12 months.

0 5 10 15 20 25 30

Wind Speed

0

200

400

600

800

1000

1200

1400

1600

S
a
m

p
le

 n
u

m
b

e
r

Figure 5.5: Total distribution and frequency of the wind speed in Lillgrund Wind
coastal site .

5.9 Experiments and analysis

To assess the performance of the proposed CMAES-LSTM hybrid model, we compare

its performance with that of four well-known conventional forecasting techniques: FNN,

ANFIS, PNN, NAR and one DNN forecasting model (the grid-search tuned LSTM net-

work).



Chapter 5 An Evolutionary Deep Learning Method for Short-term Wind Speed
Prediction: A Case Study of the Lillgrund Offshore Wind Farm Page 206

Figure 5.6: Wind rose: the speed and directional distribution of wind for the Lillgrund
Wind coastal site. The dataset for generating this graph was obtained from [14]

In the first step of this study, a grid search algorithm is used to explore the search space

of the hyper-parameters’ impact on LSTM Network performance. Conventionally, hyper-

parameters tuning is performed by hand and requires skilled practitioners [241]. Here

the grid search is limited to tuning learning rate and batch size. Other parameters are

fixed, chso as to allow the search be completed in reasonable time.

Table 6.1 shows the final hyper-parameters of the models. We repeat each experiment

ten times in order to allow for a reasonable sampling of each method’s performance.

Figure 5.7 demonstrates the forecasting results of tuning both the batch size and learning

rate in LSTM model performance for the two time-interval prediction datasets. Accord-

ing to the observations, the minimum learning error occurs where the learning rate is

between 10−4 and 10−2. The optimal size of batches is highly dependent on the selected

learning rate values.

Figure 5.8 shows the correlation between the original wind speed data with predicted

data for the ten-minute and one-hour forecast period.

The average errors of the testing model obtained by the best configuration of the grid-

search-tuned LSTM model are shown in Figure 5.8.
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One of the best forecasting models is the adaptive neuro-fuzzy inference system (ANFIS)

[232]. In order to model the wind speed using proper membership functions, five Gaussian

membership functions are defined to cover whole range of the wind speed dataset (Figure

5.9). The performance of ANFIS is represented in Figure 5.10. We can see that the

ANFIS estimation results are competitive. Figure 5.11 shows the results of the four

performance indices applied in this work for short-term wind speed forecasting (ten-

minute ahead) received by five other models and the proposed hybrid model. Concerning

this experiment, the hybrid evolutionary model can outperform its five competitors for

short-term wind speed forecasting with the minimum RMSE value of 0.695(m/s), MAE

as 0.495(m/s), and MAPE as 8.2% as well as a top R rate of 98.7.

Tables 5.2 and 5.3 summarise the statistical forecasting results for ten-minute and one-

hour intervals. For both time intervals, our CMAES-LSTM can accomplish better fore-

casting outcomes than other applied models in this experiment.

In addition, in Figure 5.12 can be seen that CMAES-LSTM is the most competitive model

based on the Friedman statistic test with p-values lower than 0.0001, which signifies that

the proposed forecasting method considerably performs better than other models. To

evaluate the impact of the penalty factor on the Hybrid forecasting model performance,

Figure 5.13 shows the comparison convergence of the hyper-parameters tuning process

within (WR) and without (R) applying the penalty factor of the training runtime. In-

terestingly, both cases are converged to the same learning rate at 10−3. however, the

optimisation results are different for the other parameters. It is noted that the whole al-

located budget for both cases is the same, but the performance of CMAES-LSTM model

with a training runtime penalty is superior to than another strategy.

5.10 Conclusions

Wind speed forecasting plays an essential role in the wind energy industry. In this paper,

we introduce a hybrid evolutionary deep learning approach (CMAES-LSTM) to acquire

highly accurate, more stationary wind speed forecasting results. For the purpose of

tuning the LSTM network hyper-parameters, we propose two different techniques; a grid

search and a well-known evolutionary method (CMA-ES). We evaluated the effectiveness

of our approach using data from the Lillgrund offshore wind farm and time horizons of

ten-minute and one-hour respectively.

Our experiments showed that our approach outperformed others using five performance

indices, and that the performance difference is statistically significant.
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Table 5.2: Performance indices of forecasting outcomes achieved by different models
on case ten-minute ahead.

MSE(m/s) RMSE(m/s) MAE(m/s) MAPE(%) R
Model Train Test Train Test Train Test Train Test Train Test

Mean 6.60E-01 6.64E-01 8.13E-01 8.15E-01 5.69E-01 5.69E-01 9.19E+00 9.17E+00 9.81E-01 9.81E-01
ANFIS Min 6.53E-01 6.43E-01 8.08E-01 8.02E-01 5.66E-01 5.61E-01 9.12E+00 8.99E+00 9.80E-01 9.80E-01

Max 6.71E-01 6.96E-01 8.19E-01 8.34E-01 5.75E-01 5.82E-01 9.27E+00 9.42E+00 9.81E-01 9.81E-01
Std 4.58E-03 1.55E-02 2.82E-03 9.47E-03 2.49E-03 7.07E-03 4.83E-02 1.39E-01 1.99E-04 3.23E-04
Mean 1.06E+00 1.06E+00 1.03E+00 1.03E+00 7.25E-01 7.24E-01 1.25E+01 1.25E+01 9.67E-01 9.67E-01

PNN Min 1.05E+00 1.02E+00 1.03E+00 1.01E+00 7.22E-01 7.19E-01 1.24E+01 1.23E+01 9.66E-01 9.66E-01
Max 1.08E+00 1.08E+00 1.04E+00 1.04E+00 7.28E-01 7.32E-01 1.26E+01 1.29E+01 9.69E-01 9.70E-01
Std 7.64E-03 1.78E-02 3.70E-03 8.70E-03 2.04E-03 4.69E-03 7.40E-02 2.22E-01 2.40E-03 3.10E-03
Mean 9.73E-01 9.56E-01 9.78E-01 9.68E-01 7.24E-01 7.19E-01 1.22E+01 1.22E+01 9.76E-01 9.77E-01

FFNN Min 6.26E-01 6.28E-01 7.91E-01 7.92E-01 5.61E-01 5.61E-01 9.11E+00 9.22E+00 9.68E-01 9.68E-01
Max 1.25E+00 1.24E+00 1.12E+00 1.11E+00 8.56E-01 8.53E-01 1.45E+01 1.44E+01 9.81E-01 9.82E-01
Std 2.77E-01 2.84E-01 1.38E-01 1.42E-01 1.32E-01 1.34E-01 2.30E+00 2.24E+00 5.04E-03 4.84E-03
Mean 8.69E-01 8.69E-01 9.32E-01 9.32E-01 6.27E-01 6.28E-01 9.57E+00 9.51E+00 9.73E-01 9.73E-01

NAR Min 8.56E-01 8.47E-01 9.25E-01 9.20E-01 6.24E-01 6.21E-01 9.54E+00 9.30E+00 9.73E-01 9.72E-01
Max 8.78E-01 8.87E-01 9.37E-01 9.42E-01 6.29E-01 6.32E-01 9.61E+00 9.60E+00 9.74E-01 9.74E-01
Std 8.83E-03 1.87E-02 4.73E-03 9.98E-03 2.65E-03 4.44E-03 3.66E-02 8.70E-02 3.39E-04 5.43E-04
Mean 5.64E-01 5.60E-01 7.51E-01 7.48E-01 5.23E-01 5.24E-01 8.65E+00 8.66E+00 9.83E-01 9.83E-01

LSTM Min 5.55E-01 5.31E-01 7.45E-01 7.29E-01 5.19E-01 5.13E-01 8.50E+00 8.46E+00 9.83E-01 9.82E-01
Max 5.70E-01 5.76E-01 7.55E-01 7.59E-01 5.26E-01 5.29E-01 8.74E+00 8.77E+00 9.83E-01 9.83E-01
Std 5.35E-03 1.61E-02 3.56E-03 1.08E-02 2.64E-03 5.60E-03 8.93E-02 1.10E-01 1.42E-04 5.48E-04
Mean 5.59E-01 5.00E-01 7.61E-01 7.27E-01 5.20E-01 5.07E-01 8.70E+00 8.57E+00 9.83E-01 9.85E-01

CMAES-LSTM Min 5.46E-01 4.83E-01 7.39E-01 7.19E-01 5.12E-01 4.95E-01 8.58E+00 8.20E+00 9.83E-01 9.84E-01
Max 5.65E-01 5.22E-01 7.52E-01 7.30E-01 5.25E-01 5.16E-01 8.76E+00 8.71E+00 9.84E-01 9.87E-01
Std 4.45E-03 1.41E-02 3.56E-03 1.28E-02 3.64E-03 7.60E-03 5.93E-02 1.60E-01 4.42E-04 2.48E-04

Table 5.3: Performance indices of forecasting outcomes achieved by different models
on the case of one-hour ahead.

MSE(m/s) RMSE(m/s) MAE(m/s) MAPE(%) R
Model Train Test Train Test Train Test Train Test Train Test
ANFIS Mean 2.60E+00 2.59E+00 1.61E+00 1.61E+00 1.16E+00 1.16E+00 2.05E+01 2.05E+01 9.19E-01 9.19E-01

Min 2.58E+00 2.49E+00 1.61E+00 1.58E+00 1.16E+00 1.15E+00 2.04E+01 2.02E+01 9.18E-01 9.16E-01
Max 2.62E+00 2.66E+00 1.62E+00 1.63E+00 1.17E+00 1.17E+00 2.06E+01 2.08E+01 9.20E-01 9.21E-01
Std 1.55E-02 6.62E-02 4.80E-03 2.05E-02 2.54E-03 1.09E-02 7.18E-02 2.59E-01 4.99E-04 1.94E-03

PNN Mean 3.93E+00 3.91E+00 1.98E+00 1.98E+00 1.48E+00 1.48E+00 3.01E+01 3.03E+01 8.73E-01 8.73E-01
Min 3.90E+00 3.85E+00 1.97E+00 1.96E+00 1.48E+00 1.47E+00 2.98E+01 2.97E+01 8.70E-01 8.72E-01
Max 3.95E+00 3.96E+00 1.99E+00 1.99E+00 1.49E+00 1.49E+00 3.03E+01 3.06E+01 8.75E-01 8.74E-01
Std 2.02E-02 4.72E-02 5.10E-03 1.19E-02 3.63E-03 8.71E-03 1.52E-01 3.80E-01 1.90E-03 9.00E-04

FFNN Mean 3.39E+00 3.41E+00 1.82E+00 1.82E+00 1.36E+00 1.36E+00 2.61E+01 2.62E+01 9.15E-01 8.95E-01
Min 2.65E+00 2.59E+00 1.63E+00 1.61E+00 1.17E+00 1.14E+00 2.04E+01 1.97E+01 9.05E-01 8.95E-01
Max 4.65E+00 4.66E+00 2.12E+00 2.12E+00 1.61E+00 1.62E+00 3.20E+01 3.24E+01 9.20E-01 8.99E-01
Std 1.26E+00 1.26E+00 2.97E-01 2.96E-01 2.56E-01 2.59E-01 5.99E+00 6.22E+00 5.03E-03 4.70E-03

NAR Mean 3.55E+00 3.57E+00 1.88E+00 1.89E+00 1.44E+00 1.44E+00 3.49E+01 3.59E+01 8.95E-01 8.95E-01
Min 3.49E+00 3.46E+00 1.87E+00 1.86E+00 1.43E+00 1.41E+00 3.46E+01 3.46E+01 8.95E-01 8.93E-01
Max 3.59E+00 3.65E+00 1.90E+00 1.91E+00 1.45E+00 1.46E+00 3.52E+01 3.67E+01 8.96E-01 8.97E-01
Std 3.83E-02 8.08E-02 1.01E-02 2.14E-02 8.42E-03 1.89E-02 2.20E-01 8.66E-01 5.59E-04 1.49E-03

LSTM Mean 2.50E+00 2.49E+00 1.58E+00 1.58E+00 1.15E+00 1.15E+00 2.27E+01 2.23E+01 9.21E-01 9.22E-01
Min 2.47E+00 2.43E+00 1.57E+00 1.56E+00 1.15E+00 1.14E+00 2.23E+01 2.15E+01 9.20E-01 9.18E-01
Max 2.52E+00 2.54E+00 1.59E+00 1.59E+00 1.15E+00 1.16E+00 2.29E+01 2.28E+01 9.22E-01 9.24E-01
Std 1.80E-02 5.18E-02 5.68E-03 1.64E-02 4.23E-03 1.05E-02 2.50E-01 5.43E-01 5.70E-04 2.29E-03

CMAES-LSTM Mean 2.46E+00 2.46E+00 1.57E+00 1.57E+00 1.14E+00 1.14E+00 2.15E+01 2.18E+01 9.30E-01 9.28E-01
Min 2.44E+00 2.40E+00 1.56E+00 1.55E+00 1.14E+00 1.13E+00 2.11E+01 2.13E+01 9.30E-01 9.25E-01
Max 2.48E+00 2.51E+00 1.57E+00 1.58E+00 1.14E+00 1.15E+00 2.18E+01 2.22E+01 9.31E-01 9.31E-01
Std 1.59E-02 5.49E-02 5.02E-03 1.74E-02 3.92E-03 9.00E-03 3.65E-01 4.19E-01 6.42E-04 2.63E-03
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Figure 5.10: The wind speed forecasting results achieved by ANFIS network with the
best tuned hyper-parameters on ten-minute ahead
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Chapter 6

Hybrid Neuro-Evolutionary Method

for Predicting Wind Turbine Power

Output

6.1 Synopsis

Designing a reliable and accurate wind turbine power forecasting model is challenging

because of complex local wind environments, non-linear responses of wind turbines and

chaotic behaviours of wind speed. This paper proposes the potential of combined recur-

rent neural networks and Evolutionary Algorithms (EA) as a hyper-parameter optimiser

for accurate forecasting of the power output in wind-turbine farms. The historical data

in the supervisory control and data acquisition (SCADA) systems is applied as input to

predict the power output from an onshore wind farm in Sweden. Moreover, we propose a

hybrid outlier detection method including k-means clustering and an autoencoder. The

comparison results indicate that removing the outliers form the original data using the

proposed method improves the modeling results. We then complete comprehensive ex-

periments and compared our proposed approach with five hybrid models. According to

experimental results, the proposed model outperforms its counterparts in terms of four

performance criteria.

Reference

[10] Neshat, M., Nezhad, M.M., Abbasnejad, E., Groppi, D., Heydari, A., Tjernberg,

L.B., Garcia, D.A., Alexander, B. and Wagner, M., 2020. Hybrid Neuro-Evolutionary

Method for Predicting Wind Turbine Power Output. Accepted for publication by 4th

SEE Conference on Sustainable Development of Energy, Water and Environment Sys-

tems.
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6.2 Abstract

Reliable wind turbine power prediction is imperative to the planning, scheduling and

control of wind energy farms for the purpose of stable power production. In recent years,

Machine Learning (ML) methods have been successfully applied in a wide range of do-

mains, including renewable energy. However, due to the challenging nature of power

prediction in wind farms, the accuracy of current models falls far short of that required

by industry. In this paper, we deploy a composite ML approach–namely a hybrid neuro-

evolutionary algorithm–for accurate forecasting of the power output in wind-turbine

farms. We use historical data from supervisory control and data acquisition (SCADA)

systems as input to estimate the power output from an onshore wind farm in Sweden. At

the beginning stage, the k-means clustering method and an autoencoder are employed

to detect and filter noise in the SCADA measurements. Next, based on prior knowl-

edge that the underlying wind patterns are highly non-linear and diverse, we combine

a self-adaptive differential evolution (SaDE) algorithm as a hyper-parameter optimizer,

and a recurrent neural network (RNN) called Long Short-term memory (LSTM). This

allows us to model the power curve of a wind turbine in a farm. Two short time fore-

casting horizons, including ten minutes ahead and one hour ahead, are considered in our

experiments. We show that our approach outperforms its counterparts.

6.3 Introduction

Renewable wind energy an established but fast-growing technology for the sustainable

production of energy at scale. With falling costs and large-scale production of generators,

the deployment of wind energy is accelerating. For example, gross installations of onshore

and offshore wind farm in the EU were 0.3 GW in 2008, and increased to 3.2 GW in

2017 [242]. With such large increases in the deployment of wind energy forecasting of the

power output of installed wind turbines is becoming vitally important. However, as local

wind environments in wind farms are complex, and as the responses of wind turbines

is non-linear and dependent on the condition of the turbine, wind power forecasting

is a challenging problem [243]. Wind power forecasting is fundamental to the effective

integration of wind farms into the power grid. For a single turbine, the following equation

describes power output: P .

P =
1

2
ρπR2Cpu

3 (6.1)

The terms ρ, R and u refer to the density of air, the rotor radius and the wind speed

respectively. Meanwhile, Cp is the power coefficient the proportion of available power the
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turbine is able to extract. The theoretical estimation of wind turbine power is depicted

by Equation 6.1. This equation describes a smooth s-shaped power curve that resembles

a logistic function with wind on the x-axis.

However, because of the variable nature of wind and complex dynamics within and

between turbines, the real power output of individual wind turbines is not precisely

described by this curve [244, 245]. A more realistic alternative model for each wind

turbine in a farm can be derived by fitting observations to field data [243].

On top of the task of modelling wind turbine power in response to current wind condi-

tions, managers of wind farms also need to forecast future power output based on current

conditions. Recent work has used complex data-driven models such as artificial neural

networks (ANNs) to forecast turbine output with some degree of accuracy [50–52]. In this

paper we propose an integrated approach that couples self-adaptive differential evolu-

tion with ANNs for accurate short term wind power forecasting. The input features used

in our modeling are current wind speed, current wind direction and (in some models)

current power output. The main contributions of this paper are as follows:

1. a new hybrid Neuro-evolutionary method (SaDE-LSTM) for short-term wind tur-

bine power output forecasting that combines self-adaptive differential evolution

(SaDE) [246] to act on a recurrent deep neural network [139] with two forecasting

horizons of ten-minute and one-hour;

2. An advanced data filtering technique is implemented on the training observa-

tions (from SCADA data) using K-means clustering [247] and autoencoder neural-

networks [248] to detect outliers;

3. A comparison of the performance of the models (using raw and clean SCADA

datasets) is completed, in terms of the models’ ability to assess the impact of the

outlier detection method.

4. A comparison of the performance of four forecasting models trained to act on

different subsets of SCADA inputs is completed. These sub-sets are wind speed for

model one; wind speed and wind direction for model two; wind-speed and current

power output for model three; and, finally, wind-speed, wind-direction and current

power output for model four.

Figure 6.1 illustrates the models and their inputs;

5. Finally, as there is no a straightforward theory with regard to the design and tune

the hyper-parameters of an LSTM network [47], we tune the model structure and

hyper-parameters using grid search; the Gray Wolf Optimizer [11] (GWO) method;
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correlations between inputs and outputs, and the f-ARIMA method is well adapted for

representing the time series data with long memory characteristics [251].

Another effective technique for forecasting time series data is recurrent neural networks

(RNNs). Olaofe et al. [54] applied RNNs to predict the wind turbine power output one-

day ahead. However, the applied ’tanh’ activation function used in this work leads to

disappearing and exploding gradients, which lead to difficultly in training an accurate

model [256]. Long short-term memory networks (LSTMs) were introduced in [139], partly

to help avoid these issues. LSTMs can learn the correlations that exist in time series

data with some accuracy. In [55], LSTMs were employed for short-term predictions

of wind power. That study showed that LSTMs could outperform traditional ANNs

and support vector machines (SVMs) in terms of prediction accuracy. A combination

of principal component analysis (PCA) and a LSTM forecasting model was proposed

in [56], and compared with back-propagation (BP) neural network and an SVM model.

The study found that the PCA-LSTM framework results produced higher forecasting

accuracy than other methods. Recently, Erick et al. [57] defined a new architecture for

wind power forecasting composed of LSTM blocks replaced the hidden units in the Echo

State Network (ESN). The authors also used quantile regression to produce a robust

estimation of the proposed forecast target. Finally, Yu et al. [58] used an LSTM with an

enhanced forget-gate network model (LSTM-EFG) combined with a Spectral Clustering

method to forecasting wind power. This technique resulted in considerably increased

accuracy.

However, none of above studies used an automated method to tune the hyper-parameters

of their ANN models. Such automatic tuning helps with porting models to a new setting

and makes it possible to more rigorously compare modelling approaches.

One recent work that has used hyper-parameter tuning is that of Qin et al. [59] who used

the Cuckoo Search Optimization (CSO) method to improve performance of a Back Prop-

agation Neural Network (BPNN) by adjusting the connection weights. They reported

that the accuracy of the proposed hybrid model was higher than that of other methods

for predicting the wind speed time series. Shi et al. [60] used the dragonfly algorithm

(DA) to tune RNN hyper-parameters for wind power forecasting.

In another recent work, Peng et al. [61] used Differential Evolution (DE) to optimise

LSTM parameters, and the reported results indicated that the hybrid DE-LSTM model

is able to outperform traditional forecasting models in terms of prediction accuracy. More

recently, Neshat et al. [9] forecasted time series through online hyper-parameter tuning of

an LSTM model using CMA-ES. This work improved on earlier work by systematically

comparing the impact of tuning strategies, model input sets, and data pre-processing on
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Figure 6.2: The Pearson’s linear correlation coefficients between all pairs of the wind
turbine data (SCADA). The correlation plot shows that wind speed, wind direction and

Power are highly correlated.

prediction performance. These comparisons define some of the search landscape in the

parameter space of these algorithms.

6.5 SCADA data description and analysis

The data analysed in this research comes from six turbines of one onshore wind farm in

north-western Europe (Sweden) [257]. For each turbine, 42 months of data are available

from January of 2013 to June of 2016, including 10-minute interval operation data and

a log file. Data on faults and maintenance were also stored. In this paper, we select

and investigate the SCADA data from the sixth turbine in the wind farm. In order to

evaluate and analyse the correlation between power output and other SCADA features,

seven features are chosen including wind speed, wind direction, ambient temperature,

Nacelle temperature, Hydraulic oil temperature and Hydraulic oil pressure. These are

the most recommended SCADA features for power prediction from [50]. Pearson’s linear
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Figure 6.3: a large view of how the wind speed and wind direction are distributed at
the wind farm (Sweden) from 2013 to 2016 (June).

correlation coefficients between all pairs of the wind turbine data features can be seen in

Figure 6.2. The highest correlations are those between Power output and wind speed, as

well as between power output and wind direction. Therefore, we select the wind speed

and wind direction as ANN inputs designate generated power as the network output.

The diagonal in Figure 6.2 shows the distributions of each variable, including power.

These distributions show some outliers, which might pose challenging for modelling. It

is also of note that there are some negative values for produced power; these values are

caused by stationary turbines spinning up.

Figure 6.3 depicts the wind rose for the wind farm. It also shows that the dominant wind

direction is North-west, and a secondary prevailing direction is South-east. However,

there are also occasional West winds.

6.6 Information preprocessing

In data science, outliers are values that differ from regular observations in a dataset.

Figure 6.4 shows the correlation between wind turbine power output and wind speed;

moreover, it represents the correlation between wind turbine power output and wind

direction during the 42 month data collection period. The outliers can be seen clearly

in the scatter plots; they are distributed on the right side of the plot. In this study, we

apply a combination of a K-means method which is one of the well-known Clustering
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Figure 6.4: The correlation between wind turbine power output and wind speed over
the 42 months of data collection.(a) Outliers can be seen clearly in the data. (b) 3D
figure of power curves, wind speed and wind direction. (c) the correlation between wind

speed and direction. (d) power curves and wind direction.

Figure 6.5: Clustering the data into 10 groups by K-means and then detecting and
removing the outliers by an autodecoder NN. The purified data after removing outliers

show by the dark blue region.

Based outlier Detection (CBOD) [258] methods and an autoencoder neural network to

detect and remove the outliers from the SCADA dataset. As previous studies listed

in Section 6.4, wind speed is the primary factor that determines wind power among

the SCADA features. In the data, wind speed is widely distributed; we use the K-

Means clustering algorithm to classify the wind power data into K subclasses. Before

the clustering, due to the significant differences in numerical values of each type of data

which has a great impact on the training of the autoencoder’s latent model, the data is

normalized between zero and one [259]. The normalization used in this paper is described
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in Equation 6.2.

Ẑ =
Z − Zmin

Zmax − Zmin
(6.2)

For this work, the number of the clusters is set to 10 [259] for wind speed and power

output of SCADA data. These clusters indicate the different operation states of the

main subsystems, such as the drive train and the control system [260]. Figure 6.5 shows

ten clusters of data from Turbine 6. It can be observed that the distribution in each

cluster is a horizontal band. Within these bands, outliers are more easily discerned as

being relatively far from the main body of the cluster. In order to remove the outliers

in each cluster, an autoencoder neural network is used that shows better performance

compared with other traditional outliers detection methods [261, 262]. An autoencoder

is a particular type of unsupervised feedforward neural network. This network is trained

to reconstruct output in such a way that it becomes similar to each input. In this

work the autoencoder consists of an input layer and one hidden layer which are fully

connected [263]. For training an autoencoder, the input data are mapped to the hidden

layer where the encoding of input data takes place, which typically comprises fewer nodes

than the input layer and consequently compresses the data. Next, from the hidden

layer, the reconstructed data flows through the output layer, which is re-transformed

in a process called ‘decoding’, and the squared restoration error between the network’s

output and its input is calculated. For detecting the outliers, It is noticed that outliers

have higher reconstruction error than the norm of the dataset. Therefore we remove the

observations which have higher RMSE than the average of all data RMSE. Figure 6.5

presents the outliers detection and removal process, with the dark blue sections showing

the clean data.

6.6.1 Performance criteria of forecasting models

To evaluate and compare the performance of the applied forecasting models, four broad

performance indices are used: the mean square error (MSE), the root mean square error

(RMSE), mean absolute error (MAE), and the Pearson correlation coefficient (R) [237].

The equations for MAE, RMSE and R are described as follows :

MAE =
1

N

N∑
i=1

|fp(i)− fo(i)| (6.3)

RMSE =

√√√√ 1

N

N∑
i=1

(fp(i)− fo(i))2 (6.4)
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R =
1
N

∑N
i=1(fp(i)− fp)(fo(i)− fo)√

1
N

∑N
i=1(fp(i)− fp)2 ×

√
1
N

∑N
i=1(fo(i)− fo)2

(6.5)

where fp(i) and fo(i) denote the predicted and observed SCADA values at the ith data

point. The total number of observed data points is N . The variables fp and fo are the

means of the predicted and perceived power measures, respectively. In order to develop

the effectiveness of the predicted model, MSE, RMSE and MAE should be minimised,

while R should be maximised.

6.7 Methodology

In this section, we introduce the proposed methodologies and related concepts for short-

term wind turbine power output forecasting, including LSTM network details, self-

adaptive differential evolution (SaDE) and the hybrid LSTM network and the SaDE

algorithm.

6.7.1 Long short-term memory deep neural network (LSTM)

The LSTM network [139] is a special kind of recurrent neural network (RNN) with three

thresholds: the input gate, the output gate and the forgetting gate. The unit structure of

the LSTM network can be seen in Figure 6.6. The forgetting gate defines the permissible

rise or drop of the data flow [15] by setting the threshold, which indicates reservation and

forgetting. Considering that an RNN hidden layer has only one state, there are severe

difficulties with gradient fading and gradient explosion. Augmenting the RNN, the LSTM

adds the structure of the cell state, which can recognise the long-term preservation of the

state and emphasises the active memory function of the LSTM network. In the case of

massive wind power time series data, the network can significantly enhance the accuracy

of wind power prediction. In the forward propagation method of the LSTM network, the

output value of the forgetting gate ft can prepare the information trade-off of the unit

state and the functional relationship encoded by Equation 5.1.

ft = σ(wfht−1 + ufxt + bf ) (6.6)

Both it and c̃t are generated by the input gate, which are related to the previous moment.

The expressions are as shown as Equation 6.7 and 6.8.

it = σ(wiht−1 + uixt + bi) (6.7)
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Figure 6.6: The internal structure of LSTM network from [15].

c̃t = tanh(wcht−1 + ucxt + bc) (6.8)

Cell state ct is the transmission centre of the cell state before and later LSTM, which

has the following functional relationship:

ct = ct−1 � ft + it � c̃t (6.9)

The output ht of the output gate derives from two components. The first part is the

output of the previous moment that is the input of the current moment, and the sec-

ond part is information of the current cell state and the particular expression model is

delivered as Equation 6.10 and 6.11.

ot = σ(woht−1 + uoxt + bo) (6.10)

ht = ot � tanh(ct) (6.11)

where both u and w are the weight values; b and σ are the bias values and activation

function respectively, and � is the Hadamard product. For the LSTM network training

settings, the Adam algorithm [234] is employed to optimise the loss function, and Dropout

[264] is used to prevent model overfitting.

6.7.2 Self-adaptive Differential Evolution (SaDE)

SaDE [246] is proposed by Qin et al. to concurrently perform two popular mutation

strategies “DE/rand/1” and “DE/current-to-best/1”. SaDE adjusts the probability that

offspring solutions will be generated using each strategy, depending on the success rates

(improved solutions) in the past Nf generations of the algorithm. The aim of this adap-

tation scheme is to evolve the best mutation strategy as search progresses. This method-

ology is similar to the ideas proposed in [265], where striving heuristics (including diverse
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DE variants, simplex methods and evolution strategies) are adopted simultaneously and

probabilities for offspring generation are adjusted dynamically.

In SaDE, the vectors of the mutation factors are generated independently at each itera-

tion based on a normal distribution (µ = 0.5, σ = 0.3), and trimmed to the interval (0,

2]. This scheme can retain both local (with small Fi values) and global search capability,

so as to create potentially suitable mutation vectors during the evolution process. In

addition, the crossover probabilities are randomly generated based on an independent

normal distribution, with µ = CRm and σ = 0.1. This is in contrast to the Fi and CRi
values, which remain fixed for the last five generations before the next regeneration. The

CRm is initially set to 0.5. in order to tune CR to suitable values, the authors renew

CRm every 25 generations using the best CR values from the last CRm update.

To speed up the SaDE convergence rate, a further local search procedure (quasi-Newton

method) is used on some competent solutions after Ns generations. The benefits of Self-

adaptive parameter control make the SaDE as one of the most successful evolutionary

algorithms, especially in the context of real engineering optimisation problems that have

multi-modal search spaces with many local optima [266].

6.7.3 Hybrid Neuro-Evolutionary Deep Learning method

Multiple parameters can influence the precision and performance of LSTM networks. The

selected hyper-parameters include maximum training number of LSTM (Epoch), hidden

layer size, batch size, initial learning rate and the optimizer type. If the maximum

training number is too small, then it will be difficult for the training data to converge;

if we set the number to a large value, then the training process might overfit. The

hidden layer size can influence the impact of the fitting [61]. Batch size is also an

important hyper-parameter. If batch size is set too low, then the training data will

struggle to converge, resulting in under-fitting. If the batch size is too large, then the

necessary memory will rise significantly. There are also complex interactions between

hyper-parameters. Therefore, a reliable optimisation technique should be utilised to tune

the optimal combination of hyper-parameters, and to balance forecasting performance

and computational efficiency.

There are three main methods for tuning hyper-parameters, including 1) manual trial

and error, 2) systematic grid search, and 3) meta-heuristic approaches. In this paper, we

apply the grid search and meta-heuristic approach, which is a self-adaptive version of DE

(SaDE) that can be used to adjust the optimal configuration of settings for the LSTM.

The performance of this hybrid technique (SaDE-LSTM) is compared with that of grid
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Table 6.1: Summary of the best-found configuration for the predictive models tested
in this paper (ten-minute ahead).

Models Descriptions
ANFIS [232] Adaptive neuro-fuzzy inference system:

• OptMethod= Backpropagation

• Training settings

– ErrorGoal=0;

– InitialStepSize=0.01;

– StepSizeDecrease=0.9;

– StepSizeIncrease=1.1;

• FIS features

– mf number=5;

– mf type=’gaussmf’;

LSTM [47] + grid search Long Short-term memory Network:

• LSTM hyper-parameters

– miniBatchSize=512

– LearningRate= 10−3

– numHiddenUnits1 = 100;

– Optimiser= ’adam’

CMAES-LSTM [9]

• CMAES-LSTM hyper-parameters (Best con-
figuration)

– miniBatchSize=1114

– LearningRate= 10−4

– numHiddenUnits1=201 ;

– numHiddenUnits2=30 ;

– Optimiser= ’adam’

DE-LSTM [61]

• DE-LSTM hyper-parameters (Best configura-
tion)

– miniBatchSize=1155

– LearningRate=2.2× 10−3

– numHiddenUnits1=141 ;

– numHiddenUnits2=42 ;

– Optimiser= ’adam’

GWO-LSTM [4, 267]

• GWO-LSTM hyper-parameters (Best config-
uration)

– miniBatchSize=1598

– LearningRate=0.3× 10−3

– numHiddenUnits1= 150;

– numHiddenUnits2=235 ;

– Optimiser= ’rmsprop’

SaDE-LSTM

• SaDE-LSTM hyper-parameters (Best config-
uration)

– miniBatchSize=727

– LearningRate=5.89× 10−3

– numHiddenUnits1= 184;

– numHiddenUnits2=117 ;

– Optimiser= ’adam’
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search; three hybrid neuro-evolutionary methods: DE-LSTM [61], CMAES-LSTM [9],

GWO-LSTM [4, 267]; and ANFIS [232].

In the grid search method, we evaluate and tune only two hyper-parameters of the LSTM:

the batch size and the learning rate. Other settings assign a fixed value for the optimizer

type, the number of LSTM hidden layers, the hidden layer size, maximum number of

epochs by (’adam’ [234]) one, 100 and 100 respectively. These values are chosen in order

to provide a baseline for the LSTM model evaluation. The ranges of batch size and

learning rate are, respectively, selected from 128 ≤ BS ≤ 2048 and 10−5 ≤ LR ≤ 10−1.

The optimization procedures are as follows:

• Step 1. Data preprocessing. Detecting and removing the outliers, then dividing

the dataset into three subsets: training, validation, and test sets.

• Step 2. Initialization. The following parameters are set: maximum iteration

number of SaDE, population size (NP ), minimum and maximum crossover rate

(CR), mutation rate (F ), and the upper and lower bounds of decision variables,

the iteration numbers for updating the control parameters ( Nf and Ns) are set.

• Step 3. Generating offspring: The offspring solution is generated by the mutation,

crossover, and selection operations, and is iterated until the offspring population is

achieved.

• Step 4. Evaluating the offspring: The fitness values of the offspring population are

computed by applying the proposed hyper-parameters in the LSTM. The fitness is

the root of the mean square error (RMSE) of the validation set; other performance

indices are also computed and recorded. The RMSE should be minimized, and the

corresponding individual is the current best solution that achieves this.

• Step 5. Updating the SaDE control parameters through the historical optimisation

process.

• Step 6. Stopping criteria: if the maximum iteration is achieved, then SaDE

is terminated and the optimum configuration is taken; otherwise, the procedure

returns to Step 3.

The fitness function of the optimisation process is defined as follows:
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Argmin→ f = fitness(Nh1 , Nh2 , ..., NhD , Nn1h1 , Nn2h2 , ...NnDhD , LR, BS , Op),

Subject− to :

LNh ≤ Nh ≤ UNh,

LNn ≤ Nn ≤ UNn,

10−5 ≤ LR ≤ 10−1,

128 ≤ BS ≤ 2048

1 ≤ Op ≤ 3.

(6.12)

where Nhi , {i = 1, . . . , D} is the number of hidden layers for the i−th LSTM network and

Nni,hj , {j = 1, . . . , Dl} is the number of neurons in the ith hidden layer of this network.

The lower and upper bounds of Nh are presented by LNh and UNh , while LNn and UNn

are the lower and upper bounds of neuron number. The Op is the selected optimizer for

optimising the LSTM weights (’sqdm’ [268], ’adam’ [234], ’rmsprop’ [269]).

6.8 Experimentation design

In the first step of the forecasting power output of the wind turbine, we proposed four

DNN models with different inputs and the same output. The main aim of proposing

these forecasting models is to analyse the impact of three SCADA features, wind speed,

wind direction and the currently generated power on the predicting accuracy of the

power output both ten-minute and one-hour ahead. In the second step, we compare

the performance of the proposed models before and after removing the outliers from the

SCADA dataset to illustrate the effectiveness of the outlier detection technique (K-means

+ Autoencoder). Finally, the proposed hybrid model (SaDE-LSTM) is compared with

some of the state-of-the-art forecasting frameworks.

To evaluate the performance of four models using raw SCADA data which are randomly

categorised into three training (80%), testing (10%) and validating (10%) sets, the LSTM

deep network is used. This network is composed of one sequence input layer, one LSTM

layer, fully-connected layer and a regression layer. A grid search method is used to tune

the hyper-parameters, batch size and learning rate. Figure 6.7 presents the performance

of LSTM framework with a tuned batch size and learning rate parameters for three

forecasting models in the interval of ten-minute. The best performance of model 1 (one

input) is obtained where the values of batch size are greater than 512 and learning rate

placed between the range of 10−2 and 10−4. The forecasting behaviours of both models

2 and 3 are similar, and the best accuracy occurs for batch sizes greater than 256 and a

learning rate between 10−3 and 10−5.
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Figure 6.10: A comparison of the LSTM network Hyper-parameter tuning perfor-
mance training on the raw SCADA data (R) and training after removing the outliers
(C) for ten-minute ahead forecasting (Layer number=1, neuron number=100, Opti-
miser=’Adam’) .(a) the RMSE test-set with one input (wind speed) (b) the RMSE

test-set with two inputs (wind speed and current power).

three inputs, including wind speed, wind direction and the current power output of the

wind turbine found a configuration with the minimum validation error. However, model

3 outperforms other models on average. According to the statistical results, model 3

with two inputs (wind speed and the current produced power) perform better than other

models. Therefore, we then applied this model to developing hybrid neuro-evolutionary

methods. To evaluate the performance of the proposed hybrid model, we compare five

different forecasting methods, including the best LSTM model which is tuned by the grid

search, an adaptive neuro-fuzzy inference system (ANFIS) (its hyper-parameters are as-

signed based on the study in [232]), and three new hybrid neuro-evolutionary methods

(CMAES-LSTM [9], DE-LSTM [61] and GWO-LSTM [4, 267]). Table 6.2 and Table

6.3 summarise the outcomes of the performance indices produced to determine the op-

timal structure and hyper-parameters of the applied forecasters. It is evident that the

SaDE-LSTM hybrid model outperforms other hybrid models and provides more accu-

rate forecasting results. Table 6.1 reports the best-found configurations of the proposed

forecasting model and other compared models.

In addition, The actual and forecasting values generated by the hybrid models and the

LSTM networks for the one-hour ahead forecasting are shown in Figure 6.14. In the
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Table 6.2: Performance indices of forecasting wind turbine power output achieved by
different models for ten-minutes ahead.

MSE RMSE MAE R
Model Train Test Train Test Train Test Train Test
ANFIS Mean 6.981E-03 6.949E-03 8.324E-02 8.343E-02 5.287E-02 5.282E-02 9.615E-01 9.618E-01

Min 5.657E-03 5.725E-03 7.566E-02 7.521E-02 4.795E-02 4.809E-02 9.593E-01 9.584E-01
Max 7.648E-03 7.673E-03 8.760E-02 8.745E-02 5.546E-02 5.544E-02 9.665E-01 9.664E-01
Std 7.860E-04 7.614E-04 4.662E-03 4.834E-03 2.999E-03 2.979E-03 2.825E-03 2.858E-03

LSTM-grid Mean 1.427E-03 1.407E-03 3.778E-02 3.751E-02 2.834E-02 2.819E-02 9.826E-01 9.829E-01
Min 1.411E-03 1.382E-03 3.756E-02 3.718E-02 2.822E-02 2.804E-02 9.826E-01 9.826E-01
Max 1.452E-03 1.450E-03 3.810E-02 3.808E-02 2.867E-02 2.836E-02 9.827E-01 9.830E-01
Std 1.520E-04 2.552E-04 1.233E-02 1.598E-02 1.908E-03 1.216E-04 4.968E-05 1.606E-04

CMAES-LSTM Mean 1.236E-03 1.193E-03 3.515E-02 3.454E-02 2.643E-02 2.615E-02 9.926E-01 9.928E-01
Min 1.227E-03 1.171E-03 3.503E-02 3.422E-02 2.631E-02 2.594E-02 9.926E-01 9.927E-01
Max 1.256E-03 1.206E-03 3.544E-02 3.473E-02 2.679E-02 2.638E-02 9.927E-01 9.930E-01
Std 7.280E-06 1.161E-05 1.033E-04 1.682E-04 1.206E-04 1.393E-04 2.597E-05 9.001E-05

DE-LSTM Mean 1.241E-03 1.163E-03 3.522E-02 3.411E-02 2.648E-02 2.583E-02 9.926E-01 9.930E-01
Min 1.235E-03 1.159E-03 3.515E-02 3.404E-02 2.639E-02 2.569E-02 9.925E-01 9.929E-01
Max 1.248E-03 1.180E-03 3.533E-02 3.436E-02 2.667E-02 2.609E-02 9.926E-01 9.932E-01
Std 4.002E-06 5.727E-06 5.680E-05 8.376E-05 7.153E-05 1.087E-04 2.693E-05 6.738E-05

GWO-LSTM Mean 1.586E-03 1.495E-03 3.983E-02 3.866E-02 2.944E-02 2.830E-02 9.912E-01 9.911E-01
Min 1.404E-03 1.403E-03 3.747E-02 3.745E-02 2.932E-02 2.815E-02 9.909E-01 9.904E-01
Max 1.631E-03 1.549E-03 4.038E-02 3.936E-02 2.977E-02 2.847E-02 9.913E-01 9.914E-01
Std 2.198E-03 1.154E-03 4.688E-02 3.397E-02 1.908E-03 1.216E-04 1.309E-04 3.870E-04

SaDE-LSTM Mean 1.167E-03 1.133E-03 3.414E-02 3.365E-02 2.542E-02 2.504E-02 9.931E-01 9.935E-01
Min 1.006E-03 1.016E-03 3.171E-02 3.187E-02 2.320E-02 2.299E-02 9.928E-01 9.930E-01
Max 1.244E-03 1.210E-03 3.528E-02 3.478E-02 2.650E-02 2.649E-02 9.936E-01 9.941E-01
Std 8.014E-05 6.429E-05 1.192E-03 9.620E-04 8.965E-04 8.936E-04 2.257E-04 4.043E-04

Table 6.3: Performance indices of forecasting wind turbine power output achieved by
different models for one-hour ahead.

MSE RMSE MAE R
Model Train Test Train Test Train Test Train Test
ANFIS Mean 6.875E-03 6.789E-03 8.284E-02 8.229E-02 5.319E-02 5.289E-02 9.608E-01 9.610E-01

Min 6.208E-03 6.013E-03 7.879E-02 7.754E-02 5.071E-02 4.986E-02 9.585E-01 9.575E-01
Max 7.617E-03 7.905E-03 8.728E-02 8.891E-02 5.620E-02 5.711E-02 9.634E-01 9.636E-01
Std 6.226E-04 7.344E-04 3.758E-03 4.421E-03 2.348E-03 2.851E-03 2.318E-03 2.314E-03

LSTM-grid Mean 1.906E-03 1.909E-03 4.366E-02 2.089E-01 3.046E-02 3.053E-02 9.903E-01 9.905E-01
Min 1.880E-03 1.827E-03 4.336E-02 2.082E-01 3.036E-02 3.024E-02 9.902E-01 9.899E-01
Max 1.923E-03 2.004E-03 4.386E-02 2.094E-01 3.055E-02 3.083E-02 9.905E-01 9.909E-01
Std 1.968E-05 8.082E-05 2.458E-04 1.004E-03 6.857E-05 2.415E-04 1.238E-04 4.684E-04

CMAES-LSTM Mean 1.634E-03 1.547E-03 4.042E-02 3.933E-02 3.061E-02 3.033E-02 9.902E-01 9.907E-01
Min 1.608E-03 1.520E-03 4.010E-02 3.898E-02 3.041E-02 3.000E-02 9.901E-01 9.905E-01
Max 1.652E-03 1.589E-03 4.065E-02 3.987E-02 3.084E-02 3.066E-02 9.903E-01 9.910E-01
Std 1.208E-05 2.141E-05 1.495E-04 2.717E-04 1.180E-04 1.854E-04 6.810E-05 1.496E-04

DE-LSTM Mean 1.645E-03 1.483E-03 4.056E-02 3.851E-02 3.064E-02 3.005E-02 9.901E-01 9.911E-01
Min 1.636E-03 1.467E-03 4.045E-02 3.830E-02 3.050E-02 2.963E-02 9.901E-01 9.909E-01
Max 1.655E-03 1.519E-03 4.068E-02 3.897E-02 3.085E-02 3.026E-02 9.902E-01 9.913E-01
Std 6.622E-06 1.504E-05 8.163E-05 1.948E-04 1.043E-04 1.679E-04 3.803E-05 1.328E-04

GWO-LSTM Mean 1.981E-03 1.999E-03 4.451E-02 4.471E-02 3.050E-02 3.053E-02 9.887E-01 9.887E-01
Min 1.870E-03 1.887E-03 4.324E-02 4.344E-02 3.037E-02 3.034E-02 9.882E-01 9.882E-01
Max 1.202E-03 1.904E-03 3.467E-02 4.364E-02 3.055E-02 3.097E-02 9.890E-01 9.894E-01
Std 2.675E-05 2.082E-05 5.172E-03 4.563E-03 6.857E-05 4.415E-04 2.948E-04 4.635E-04

SaDE-LSTM Mean 1.431E-03 1.413E-03 3.779E-02 3.755E-02 2.884E-02 2.833E-02 9.919E-01 9.921E-01
Min 1.242E-03 1.237E-03 3.525E-02 3.517E-02 2.761E-02 2.757E-02 9.911E-01 9.912E-01
Max 1.636E-03 1.632E-03 4.045E-02 4.040E-02 2.968E-02 2.896E-02 9.932E-01 9.931E-01
Std 1.457E-04 1.394E-04 1.923E-03 1.850E-03 6.034E-04 4.214E-04 6.733E-04 6.051E-04
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Chapter 7

Covariance Matrix Adaptation

Greedy Search Applied to Water

Distribution System optimisation

7.1 Synopsis

The article in this chapter proposes a new hybrid meta-heuristic framework for min-

imising the design cost of the real Water distribution systems (WDSs). The WDSs

optimisation problem is challenging because of its non-linear nature, the large number

of pipes, its use of discrete pipe sizes, its reliance on a multi-modal search space and

dynamic constraints. In order to tackle these challenges, we design a hybrid optimisa-

tion method consisting of three parts. This method includes a self-adaptive EA called

CMA-ES, a new upward greedy search algorithm for amending violations of the nodal

pressure head constraints and a downward greedy search designed to decrease pipe sizes

that might be larger than needed. The performance of the proposed hybrid framework

is evaluated on five WDS cases studies of varying size and compared with other heuristic

methods. The results show that our proposed method performs best overall in terms of

computational efficiency and has a competitive ability to find near-optimal solutions.

Reference

[8] Neshat, M., Alexander, B., & Simpson, A. (2019). Covariance Matrix Adaptation

Greedy Search Applied to Water Distribution System optimisation. arXiv preprint

arXiv:1909.04846. Submitted for publication to Engineering Applications of Artificial

Intelligence – journal. on [5 April 2020].
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7.2 Abstract

Water distribution system design is a challenging optimisation problem with a high num-

ber of search dimensions and constraints. As a result, Evolutionary Algorithms (EAs)

have been widely applied to optimise WDS to minimise the cost subject whilst meeting

pressure constraints. This paper proposes a new hybrid evolutionary framework that

consists of three distinct phases. The first phase applied the Covariance Matrix Adapta-

tion Evolutionary Strategy (CMA-ES), a robust adaptive meta-heuristic for continuous

optimisation. This is followed by an upward-greedy search phase to remove pressure

violations. Finally, a downward greedy search phase is used to reduce oversized pipes.

To assess the effectiveness of the hybrid method, it has been applied to five well-known

WDSs case studies. The results reveal that the new framework outperforms CMA-ES

by itself and other previously applied heuristics on most benchmarks in terms of both

optimisation speed and network cost.

7.3 Introduction

Water distribution systems (WDSs) are expensive to construct [63] and difficult to modify

once in place. Careful design of WDS systems can lead to significant cost savings. As

a consequence, optimisation of WDS design is a long-standing topic for research. WDS

design can be framed as an optimisation problem of searching for an assignment of

pipe diameters in the WDS that minimises the cost of construction subject to given

constraints in the pressure head at each node in the system. This optimisation problem

is challenging because relationships between individual pipe sizes and pressure at nodes

are non-linear. In addition, the search landscape, for non-trivial systems is multi-modal

with many local minima in the cost-function. Moreover, problem constraints are quite

complex, with detailed requirements for pressures head and, commonly, restricts pipe

sizes to discrete values.

During the last two decades, a wide variety of Evolutionary Algorithms (EAs) have

been successfully applied to the problem of optimising the design of WDSs. EAs offer

flexibility in their design parameters and work robustly in multi-modal, nonlinear and

non-convex fitness spaces compared with traditional optimisation methods such as lin-

ear programming [270] and nonlinear programming [271]. In early work with EAs good

results have been achieved by standard genetic algorithms (GA) [68, 272, 273]. Later

work [274] modified a standard GAs with an additional heuristic-based, local represen-

tative cellular automata method to present a proper initial population for GA runs.
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Another relative study developed a generic GA with an added heuristic selection phase

(the Prescreened Heuristic Sampling Method (PHSM)) for initializing the population of

the GA [275]; Other EAs applied include Ant Colony optimisation (ACO)[77, 276] and

modified versions of ACO including the Max-Min Ant Systems [79, 80] and adaptive-

convergence-trajectory ACO [277]. Other heuristic approaches have included, Simulated

Annealing (SA) [70], Scatter Search [278], the Shuffled Frog Leaping algorithm [74],

standard Particle Swarm optimisation (PSO) and its adaptive versions [76, 279, 280];

and also heuristics embedding Differential Evolution (DE) [83, 85, 281]. Still other ap-

proaches have combined heuristics including: DE and linear-programming [282]; DE and

non-linear-programming [16]; and PSO and DE [283].

The best-performing frameworks described above, are quite varied in approach. Zheng

et. al.[281] obtained good performance on the moderately sized Hanoi benchmark using

standard Differential-Evolution (SDE). Sedkai et al. [283] obtained slightly better re-

sults on the Hanoi and NYTP benchmarks by interleaving Particle Swarm optimisation

and DE (PSO-DE). In this work the addition of PSO appears to enhance global search

capabilities.

Zheng et al. [16, 282] obtained strong results by partitioning the WDS network topology

into trees, which do not contain loops, and the core, which does contain loops. Trees

are relatively easy to optimise through convex search operations such as binary linear

programming (BLP)[282] and non-linear-programming (NLP)[16]. In both approaches

the optimisation of the looped network core is solved using DE. The resulting algorithms

BLP-DE and NLP-DE benefit from the smaller problem size provided by problem de-

composition and exhibit best-so-far performance on the Hanoi and Balerma (BN) [284]

benchmarks.

Good performance on existing benchmarks was also obtained through the use of adaptive

search algorithms. Adaptive algorithms contain logic to adjust search hyper-parameters

in response to fitness distributions obtained during search. Tolson et al. [285] developed

the Hybrid Discrete Dynamically Dimensioned search algorithm (HD-DDS) which spe-

cialised the adaptive DDS algorithm [286] to the problem WDS design. Later Zheng et.

al. [85] developed a self-adaptive differential evolution (SADE) algorithm which adjusted

DE hyper-parameters in response to search progress. Both of these frameworks obtained

results comparable to the best frameworks on their tested benchmarks.

While the published frameworks to date have used a wide variety of popular meta-

heuristic search frameworks there is currently no work that applies one of the most

effective stochastic optimisers: CMA-ES [205] to the problem designing a WDS network.
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Table 7.1: Software availability

Name of the Software: WDSOP
Version: 1.00
Available from: https://github.com/a1708192/WDSOP
Language: Matlab
Supported System: Windows, MacOS, Linux, Unix
Year first available: 2019

CMA-ES is a self-adaptive, global search algorithm designed for searching spaces con-

sisting of many continuous variables. CMA-ES is one of the fastest and versatile meta-

heuristic search algorithms. Variants of CMA-ES often lead black-box optimisation

competitions and also it has been shown to perform well in noisy, non-convex and non-

separable search spaces [287].

Within the field of water management CMA-ES has been applied a diverse range of set-

tings. Burger and Bayer et. al. [288, 289] applied CMA-ES to the problem of optimising

ground water remediation and extraction. Belaqziz et al. [290] used CMA-ES to improve

pumping schedules in an irrigation project. This approach was improved by Ikudayisi et

al. [291] to take account of plant water-stress levels in the objective function. Similarly,

Grundmann et al. [292] used CMA-ES to optimise a groundwater irrigation system for

both profit and sustainability. More recently, Romero et al. [293] applied CMA-ES to

optimising the location of leak-detecting sensors in a WDS network. Maier et al. [294]

used CMA-ES to calibrate model parameters for vertical water flows in wetlands used

for water cleaning.

However, to date, there has been no published work applying CMA-ES to the problem

of optimising pipe diameters. This paper addresses this gap by deploying CMA-ES in

pure and hybrid form to a range of small and large scale WDS benchmark networks and

performing a systematic comparison with previous results. The hybrid search methods

combine CMA-ES with novel greedy search heuristics for refining solutions found by

CMA-ES. We show that CMA-ES, when combined with greedy search has performance

comparable to the current best search heuristics in terms of execution time and network

costs. This work also, for the first time explores, as a baseline, the performance of simple

randomised local search (RLS), and a 1+1 Evolutionary Algorithm (1+1 EA).

The software code used to produce the results in this paper, called WDSOP, has been

made available. Details of the distribution used to produce the results in this paper are

shown in Table 7.1. WDSOP is written in the MATLAB programming language and has

an, easily extensible, modular design. WDSOP is set up to run on the five benchmark

networks considered in this paper.
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The primary inputs for running the framework are the water distribution network name

and the selected optimisation method. Other control parameters are selected based on

the optimisation process.

The organization of the rest of this paper is as follows. Section 2 outlines our method-

ologies. Section 3 presents the details of the case studies used in this research. The

experimental results are presented and analysed in section 4. Finally, section 5 presents

our conclusions and directions for future work.

7.4 Methodology

This section outlines the search algorithms used in this work.

7.4.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

CMA-ES is a high-performance adaptive heuristic search meta-heuristic designed to

search continuous, multi-dimensional search spaces. CMA-ES is a highly-refined variant

of Evolutionary-Strategies (ES) [88]. Evolutionary Strategies are evolutionary search

meta-heuristics that rely solely on mutation operators to change individuals in their

populations. CMA-ES searches for solutions in a continuous n dimensional space by

cyclically updating a population of m individual n-dimensional solution vectors. In each

cycle (generation): g these vectors are randomly sampled from an n-dimensional Gaus-

sian distribution N (m(g),C(g)) where m(g) is the current mean of the distribution and

C(g) ∈ Rn×n is the covariance matrix describing the current shape and orientation of the

sampling distribution. The distribution defined by m(g) and C(g) biases the sampling

process towards a particular region of the search space. After a population of m sampled

solutions is made they are evaluated according to a fitness function f ∈ Rn → R and the

distribution of solutions’ fitness within the search space is used to update m and C for

generation g + 1’s round of sampling [231].

This action of adaptively biasing the location, shape and orientation of sampling process

allows search to proceed to where it is currently most productive. CMA-ES also has

built-in mechanisms that enlarge the search space if the search stagnates quickly, thus

providing some capability to search multi-modal spaces. The initial value of m(1) is set

by the user and C(1) = σ2I where σ is a starting standard deviation for the sampling

distribution, also provided by the user. Note that a small value for σ, relative to the

solution space, will lead to fast convergence while a large value for σ will favour a more

thorough global search – at the cost of speed of convergence.
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In this work we favour exploration at first so σ is set to be half the range of possible

pipe sizes. The starting vector m(1) is a vector consisting of randomly generated pipe

diameters within the range of valid pipe diameters for the problem. CMA-ES can be

configured to abide by given constraints on m in this work we constrain L ≥ mi ≥ U

where L is the minimum (lower-bound) allowable pipe diameter for the given design

problem and U is the maximum (upper-bound) pipe diameter allowable for the design

problem. As previously mentioned, CMA-ES is a continuous optimisation framework and

we use it directly for our experiments for continuous pipe sizing. However, most network

design problems select pipe diameters from a set of discrete of sizes. For the design of

the core elements of large diameter networks this set usually contains pipe diameter at

300mm intervals starting from zero. In this work, for discrete design problems we round

pipe-diameters up to the nearest available discrete diameter.

7.4.2 Greedy Search

The pipe diameters produced by rounding the results of CMA-ES search are not guaran-

teed to deliver the required minimum allowable pressure heads for each problem. More-

over, in some cases, there is scope in the CMA-ES solutions for reduction in the sizes

of some pipes. To address these issues we propose a greedy search solution that follows

the application of the CMA-ES search described in section 7.4.1 above. The first stage

of the greedy search solution is an upward greedy search (GSU ) algorithm to round up

pipe diameters to produce a feasible solution. This is followed by an analogous down-

ward greedy search stage (GSD) that, where feasible, rounds down pipe diameters. The

combined hybrid search, is called CMAES-GSU -GSD.

The upward greedy search works by speculatively incrementing the diameter of each

pipe in the network in turn and checking its impact on both pressure violation and cost.

The pipe whose upward increase of diameter size reduces the pressure violation per-unit

cost is selected to be enlarged by one discrete size. The GSU enhances the infeasibility

amount of the CMA-ES achieved solutions and pushes up the infeasible layouts toward

the feasible area by increasing the discrete size of pipe diameters based on a greedy

selection of those solutions with the largest reduction in the sum of pressure violations

for the least cost. The maximisation problem can be stated mathematically as:

Argmax→ f(Θ) = (

∑M
i=14PVi∑N

j=14PipeCostj
)

∀i = {1, ...,M}/j = {1, ..., N}

Subject− to : 4PVi ≤ 0,4PipeCostj ≥ 0

(7.1)
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Algorithm 7.1 Upward Greedy Search (Fixing up the nodal pressure head violations)
1: procedure The Upward Greedy Search
2: Initialization
3: Initialize τ . initialize Pressure head constraint
4: Layoutiter=Pipe-Network . Read Network data
5: NodalPressure=Eval(Layoutiter ) . Evaluate Network by EPANET
6: N = Size(Layoutiter) and M = Size(NodalPressure)
7: SumPV =

∑M
i=1(|τ −NodaliPressure|) ∀ NodaliPressure < τ . Calculate sum of

the nodal pressure violation
8: while SumPV > 0 do
9: NetP ipe = Layoutiter

10: while i ≤ N do
11: Increase the ithPipe diameter of the Netpipeiter based on the possible

diameters
12: NodalPressure=Eval(Netpipeiter )
13: Update SumPV

14: Improvementirate =
∑M
i=14PVi∑N

i=14PipeCosti
15: end while
16: Layoutiter=Max(Improvementrate) . Choose the best design based on

Improvement rate
17: end while
18: end procedure

where a layout Θ can be defined as a set of sequential pipe diameters, so that Θ =

{D1, D2, ..., DN} where N is the number of pipes and M is the number of network nodes.

f(Θ) describes the feasibility of the network function, which should be maximised by

the GSU . This greedy heuristic search method is able to guarantee to produce a feasible

design based on the constraints, and also it will yield the locally optimal design in a

reasonable runtime. The procedure of the GSU is shown in the Algorithm 7.1.

Despite all positive points of GSU , sometimes its proposed solutions require improve-

ments because of the greedy selection behaviours without looking at the future or past

situations. Therefore, the third phase is proposed to reduce the extra cost of the some

of the obtained solutions. This part is made up of another Greedy Search idea.

The idea of the hybrid framework third part is a Downward Greedy Search

(GSD)(Algorithm 7.2). The main purpose of the GSD is smoothing the pipe cost with

respect to the constraints by decreasing the diameter of the pipes one by one. In other

words, GSD is looking for improvements that give us the least reduction in pressure

violations for the most significant reduction in the pipe cost. The purpose is maximising





Chapter 7 Covariance Matrix Adaptation Greedy Search Applied to Water Distribution
System optimisation Page 247

Algorithm 7.2 Downward Greedy Search (minimising the network cost )

1: procedure The Downward Greedy Search (GSD)
2: Initialization
3: Initialize τ . initialize Pressure head constraint
4: NetP ipeiter=Pipe-Network . Read Network data
5: NodalPressure=Eval(NetPipeiter ) . Evaluate Network by EPANET
6: N = Size(NetP ipeiter) and M = Size(NodalPressure)
7: SumPV =

∑M
i=1(|τ −NodaliPressure|) ∀ NodaliPressure < τ . Calculate sum of

the nodal pressure violation
8: while SumPV ≥ 0 do
9: while i ≤ N do

10: Decrease the ithPipe diameter of the Netpipeiter based on the possible
diameters

11: NodalPressure=Eval(Netpipeiter )
12: Update SumPV

13: if SumPV = 0 then
14: Add the NetP ipeiter to feasible solution set
15: Improvementirate =

∑N
i=14PipeCosti∑M

i=14PVi
16: end if
17: end while
18: NetP ipeiter=Max(Improvementrate) . Select the best feasible solution
19: end while
20: return NetP ipeiter
21: end procedure

7.4.3 Randomized Local Search(RLS) and 1+1EA

Randomized Local Search (RLS) is the simplest single-based solution EAs. According

to the practical results, sometimes applying the simple EAs can be more efficient than

complicated approaches and also RLS can be a proper choice when the fitness function

is a combinatorial optimisation problem [295]. RLS begins with a candidate solution

(x) and provides in each iteration a new solution (y) by flipping one chosen variable

of x randomly. In the standard version of RLS, the mutation is done by a uniform

distribution which leads to a non-curved and noisy local search, but we prefer to use a

normally distributed mutation. The advantage of RLS is that in each iteration, just one

pipe size of the network is changed. This attribute leads to approaching a near-optimal

solution step by step; however, it can be so costly for a large-scale network. In the

following, the pseudo-code of RLS can be seen by the Algorithm 7.4 where UB and LB

are the upper and lower bound of the variable, and also n is the number of variables.

Undoubtedly, after RLS, the most simple evolutionary algorithm is (1+1)EA because

there is just one solution in each iteration and a standard bit mutation applies for pro-

viding a new solution with mutation probability 1
N that N is the number of variables.

Its benefits include simplicity and performance which makes (1+1)EA one of the most
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Algorithm 7.3 CMAES-GSU -GSD
1: procedure The CMAES-GSU -GSD
2: Initialization
3: Initialize the CMA-ES Parameters
4: λ . Offspring population size
5: µ . Parent population size (floor(λ/2))
6: σstart . Initial standard deviation(0.5× (UB − LB))
7: cc . Covariance learning rate
8: while FunctionTolerance ≤ ξ do
9: Update the Covariance Matrix C(g+1)

10: Update the mutation step size σg

11: Generate sample population for next generation (g+1)
12: x

(g+1)
k ∼ N (m(g), (σ(g))2C(g))∀k = 1, ..., λ

13: if (x(g+1)
k is not feasible) then

14: Impose the penalty
15: end if
16: Update the mean for next generation (g+1)
17: Update best ever solution (BestSolution)
18: PossibleSolution=round(BestSolution) . Convert continuous design to possible

pipe size
19: SumPV=Sum-Violation(PossibleSolution) . Compute sum of the nodal

pressure violation
20: if (f (PossibleSolution) < φ & SumPV > 0)) then
21: Apply the Upward Greedy Search (GSU ) . Fix the violation of nodal

pressure heads
22: end if
23: end while
24: Apply the Downward Greedy Search(GSD)
25: end procedure

Algorithm 7.4 Randomized Local Search
1: procedure The RLS
2: Initialization
3: LB=Min(Diameters);UB= Max(Diameters)
4: Xiter ∈ {LB,UB}N uniformly at random . Generate first feasible design
5: while Stopping Criteria do
6: Mutation
7: Create Yiter = Xiter independently for each i ∈ {1, 2, ..., N}
8: Yiter = N(µ, σ = 0.5 ∗ (UB − LB)) . Mutate one random variable of Yiterby

normally distributed random
9: Selection

10: if (f(Yiter) ≤ f(Xiter)) then
11: Xiter+1 = Yiter
12: else
13: Xiter+1 = Xiter

14: end if
15: end while
16: end procedure
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attractive EAs which can often be generalized and extended to more complex EAs. As

the performance of (1+1)EA can be better than complex EAs like CMA-ES in some

cases [1]. in this investigation, a fine-tuned mutation step size of (1+1)EA version is im-

plemented for optimising WDSs and for analyzing its pros and cons. Besides, since there

is the probability that in one mutation, none of the variables is mutated, a substitute

mutation strategy is considered, which is flipping the size of one pipe randomly at least.

The pseudo-code of (1+1)EA is presented in Algorithm 7.5.

Algorithm 7.5 (1+1)EA

1: procedure The (1+1)EA
2: Initialization
3: LB=Min(Diameters);UB= Max(Diameters)
4: Xiter ∈ {LB,UB}N uniformly at random . Generate first feasible design
5: while Stopping Criteria do
6: Mutation
7: Create Yiter = Xiter independently for each i ∈ {1, 2, ..., N}
8: Mutate each variable of Yiter(i) with probability 1

N (Normal random distribu-
tion: σ = C)

9: if Mutation Number= 0 then
10: Mutate one variable of Yiter randomly
11: end if
12: Selection
13: if (f(Yiter) ≤ f(Xiter)) then
14: Xiter+1 = Yiter
15: else
16: Xiter+1 = Xiter

17: end if
18: end while
19: end procedure

7.5 WDS design formulation and constraints

In this research, the main optimisation objective is minimising the cost of the pipes of

the WDS network whilst satisfying given pressure constraints. The WDSs optimisation

problem is a combinatorial optimisation problem which can be defined as searching for the

best network design parameters, whilst minimising costs and being subject to constraints

such as minimum nodal pressure.

The optimisation problem is defined mathematically as:

Argmin→ Cpipe(Θ) =

N∑
i=1

(ci ×Di)× Li (7.3)
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Subject− to :

(1) : Hj ≥ Hmin
j , ∀ j = 1, ...,M

(2) : Dk ∈ {D}, ∀ k ∈ N
where Cpipe is the primary fitness function including the layout cost and also Li and Di

are the ithpipe length and diameter respectively; ci is the cost per unit length of pipe in

the network. The above cost function is constrained to the following.

Firstly, it is the minimum nodal pressure head constraint that should be imposed for all

nodes of the network. The Hj indicates the pressure head level for the jth node, and

the minimum needed jth nodal pressure head based on the demand pattern is shown as

Hmin
j . If this constraint is not satisfied the sum of nodal head pressure violation will be

computed (Equation 7.4).

SumPV =

0 if(Hj ≥ Hmin
j )∑M

j=1(Hmin
j −Hj) otherwise

(7.4)

The second constraint is the possibility of the discrete pipe sizes, which are usually

defined commercially. Thus, if the diameter of pipes is not included from the discrete

sizes set, the fitness function must be penalized by the Equation 7.5 where Dk is the

diameter of pipe i that is chosen from a deterministic set (D).

SumDV =

N∑
i=1



0 Di = Da||Db

1 Di = (Da +Db)/2

Di−Da
((Da+Db)/2)−Da Di < (Da +Db)/2

Db−Di
Db−((Da+Db)/2) Di > (Da +Db)/2

(7.5)

where both Da and Db are sequential possible (standard) pipe diameters (Da < Db) and

Di is the size of pipe i which is determined from a set of possible diameters or considered

as a continuous values. When the sum of the pressure head violation is not equal to zero,

the constrained model is transformed into an unconstrained one by inserting the sum of

constraint violations value into the fitness function as a penalty.

Optimal design and rehabilitation of a water distribution network is a constrained nonlin-

ear optimization problem. A penalty function is usually applied to modify a constrained

into a nonconstrained optimization problem within the framework. However, the penalty

function requires tuning the penalty factor. Mainly due to its simplicity and ease of im-

plementation, it is a common technique for dealing with the constraints. There are many

different constraint handling approaches like Repair approaches, Separatist approaches

(These approaches do not combine objective function and constraints, but handle them
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separately) and Hybrid approaches. While all computations of the hydraulic simulation

are done via EPANET 2.0. Consequently, the total cost is acknowledged as the sum of

the pipe cost, a penalty cost of pressure head violation and the violation of discrete pipe

diameters represented as:

CPV (Θ) = (Pf × SumPV )

CDV (Θ) = (PD × SumDV )

minimise→ Ct(Θ) = Cpipe(Θ) + CPV (Θ) + CDV (Θ)

(7.6)

where Ct is the total cost of the penalized or non-penalized fitness function cost, and

also both Pf and PD are the penalty factors. For instance, Algorithm 7.6 shows how the

penalty of the continuous pipe diameters is computed for the NYTP and NYTP2 case

studies.

Algorithm 7.6 Handling constraint violations for continuous pipe diameters of NYTP
procedure The Penalty function

if rem(Di, 12) 6= 0 then
if Di > 36 then

SumDV =
∑N

i=1


0 Di = Da||Db

1 Di = (Da +Db)/2
Di−Da

((Da+Db)/2)−Da Di < (Da +Db)/2
Db−Di

Db−((Da+Db)/2) Di > (Da +Db)/2

else

SumDV =
∑N

i=1


0 Di = 0|Di = 36
Di
18 ∗ 3 Di < 18

3 Di = 18
36−Di

18 ∗ 3 Di > 18
end if

end if
end procedure

7.6 Case Studies Results and Discussions

For evaluating the proposed hybrid framework effectiveness, five well-known WDS case

studies have been considered including the New York Tunnels Problem (NYTP) [67], the

Doubled New York Tunnels Problem (NYTP2) [78], 50NYTP [296], the Hanoi Problem

(HP) [271] moreover, one large-scale network called the Balerma Network (BN) [284].

The details of the case studies can be seen in Table 7.2.
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Table 7.2: The characteristics of Case Studies Summery

WDS No. of Decision
Variables

No. of op-
tions

No. of
Nodes

Search Space
Size

NYTP 21 16 20 1.934× 1025

HP 34 6 32 2.865× 1026

NYTP2 42 16 20 3.741× 1050

BN 454 10 447 10454

NYTP50 1050 16 1000 2.12× 101264

7.6.1 Case Study 1: New York Tunnel problem (NYTP)

The NYTP layout is a fundamental benchmark of the water distribution system problem

which is inspired by the real New York water network. The number of existing tunnels is

21 with 20 nodes supported by a fixed-head reservoir. The detailed information of NYTP

provided by Dandy et al. [67] such as the cost of pipes, the nodal demand pattern and the

pressure head constraints. The principal purpose is minimising the total pipe cost of the

new installed parallel pipes, to reinforce the existing pipes. Meanwhile, the constraints

should be met (minimum nodal pressure head).

In the NYTP, pipes diameter size can be allocated among 15 actual different sizes plus a

zero size. Therefore, the search space size is 1621. However, in this research, a continuous

search space is considered as well. The benchmark networks have been optimised using

different granularities of search space including continuous, discrete (interval=1 inch)

and commercially available (interval= 12 inches) pipe sizes. With regard to assessing the

ability of the proposed CMAES-GSU -GSD algorithm to achieve an appropriate balance

between exploration and exploitation in the decision space a range of population sizes, as

specified by the maximum iteration number, are considered for each case study network

such as λ =10, 20, 50, 100, 200 and 400. Since the CMA-ES is a self-adaptive method,

all control parameters have been adjusted during the optimisation process except σ. The

σ value is initialized by the half of the decision variables length. Thus, the CMA-ES is

started with the ability to explore the search space.

In the first step of the proposed hybrid framework, the CMA-ES efficiency is evaluated by

three kinds of decision variables: continuous, discrete and possible. Where the continuous

pipe sizes are used, the only nodal pressure head constraint should be satisfied, so the

penalty factor (PF ) for NYTP is 107. Moreover, a severe penalty factor is imposed

too, which can be seen in the Algorithm 7.7. According to the achieved results, the

performance of the severe PF is not competitive.

The best feasible configuration of the NYTP cost which is obtained by continuous CMA-

ES is $38.00 million based on the nodal pressure head constraint by different population
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sizes (The best-known NYTP cost is $38.64 million [297]). Thus, CMA-ES can over-

come all previous optimisation methods when continuous pipe sizes are considered. The

proposed new feasible continuous designs of NYTP are shown in Table 7.3 and also a

comprehensive review comparison of the previous best NYTP layouts including some in-

feasible networks after evaluating the nodal pressure head constraints are listed in Table

7.10.

In EAs, the convergence rate is another significant evolutionary parameter to reflect

how fast the EA converges to the optimal solutions per generation. In this way, Figure

7.6 represents the average convergence rate of the proposed methods by 30 independent

runs. We can see the CMA-ES with small population sizes has converged faster compared

with the large population sizes. However, this configuration of search often prematurely

converges to a local optimum.

Algorithm 7.7 Penalizing the pressure violations
procedure The Penalty function for handling the pressure viola-
tions(PV)

if
∑i=N

i=1 PV(i) > 0 then
Penalty(PV ) = 105 + (104 ∗

∑i=N
i=1 PV(i))

4

end if
end procedure

When the discrete interval is 1 inch in the discrete pipe size scenario, the performance of

CMA-ES is better than the rounded (possible) pipe size. Figure 7.3 shows the comparison

of the three strategies and the impact of large population sizes. As the CMA-ES is able

to discover very low cost designs when the pipe sizes are discrete or rounded (possible),

but they are not feasible in terms of nodal head constraints, the Upward Greedy search

is applied to repair the designs.

For saving the computational budgets of the CMA-ES, the termination criterion is con-

figured as a function tolerance value (ξ) at 1/105 × Ct(Θ). The GSU will be begun if

the network cost of the rounded pipes is less than φ (well-known or estimated network

cost). The efficiency of GSU is independently tested by the initialization of zero pipe

sizes. The GSU is a super fast search method and can find an NYTP layout at $42.36

millions in just 714 evaluations (Figure 7.2). Substantially, the GSU is able to repair the

violation of nodal pressure head by increasing some of the pipe sizes. This combination

of CMA-ES and GSU leads to a robust and powerful framework that finding the optimal

feasible solutions are guaranteed by the termination conditions of the greedy algorithm.

The best results occurred when the CMAES-GSU population size is 400 in these runs

the best-known NYTP solution is reached 100% of the time. Figure 7.2 shows that the

strong penalty factor does not let to keep good infeasible designs with a few violation in

the population and it results in decreasing the diversity of the population in the initial
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iterations and converging to a local optimum. Table 7.4 illustrates how CMAES-GSU
explores and finds the feasible NYTP designs with possible pipe diameter sizes compared

with the CMA-ES.

The configuration using CMAES-GSU with λ = 20 exhibited the fastest average speed of

convergence to the best-known solutions at 5500 evaluations. However, this configuration

only reached the best-known solution 43% of the time. The first configuration which

reached the optimum layout 100% was CMAES-GSU with λ = 400 and for this the

average number of evaluations was 22000.

Furthermore, where the population sizes are 10, 20, 50 and 100, the maximum admissible

number of evaluations for NYTP, NYTP2 and HP case studies is 105, and for larger

population sizes, that number increases to 2× 105. In Table 7.5 it can be seen that the

large population CMA variants require substantially more evaluations than SADE to find

the best WEN design because the performance of standard, adaptive and self-adaptive

versions of DE is better than the standard of CMA-ES in this case study. However, our

proposed hybrid method outperforms other applied methods in Table 7.5. Meanwhile,

there is a direct relationship between the convergence rate and the population size in

population-based optimisation methods.

Both fine-tuned simple EAs have been assessed to minimise the cost of NYTP by four

various mutation step sizes including σ = 0.1, 0.25, 0.5×length(decision−variables) and
a linear mutation step size which is decreased linearly. The best cost of the RLS found

solutions is $39.43 million with a linear σ and for the (1+1)EA is $38.88 million when σ

is equal to 0.5. Both methods are not able to find the best-known solution of NYTP, and

it shows the significant complexity of the problem (Figure 7.6 ). The summary of the

detailed outcomes of NYTP case study can be presented in Table 7.5. For carrying out a

comprehensive analysis of the proposed hybrid framework and both RLS and (1+1)EA

effectiveness, the box plots of the NYTP results are shown with continuous decision

variables (Figure 7.8) as well as with the discrete (interval=1(inch)) pipe sizes (Figure

7.7) .

7.6.2 Case Study 2: Doubled New York Tunnel problem (NYTP2)

The NYTP2 consists of two independent NYTP problems hydraulically connected to

one reservoir. The number of decision variables is 42, and the design options number are

identical to the single NYTP. The best-known design cost is $77.276 million. The best-

found result for NYTP2 was reported for a Self-Adaptive DE (SADE [85]). The SADE

success rate for finding the best-known solution is 90% of the time, and the average

number of evaluations is 33,810.
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Table 7.5: Summary of the proposed methods and other EAs assessed as applied to
the NYTP,*CMA-ES results are feasible in terms of pipe sizes and nodal pressure head.

Algorithm Number
of runs

Best
solution
($ M)

Success rate
(%) (Global
Optimum)

Average
Cost ($
M)

Average
evaluations
to discover
the first best
solution

Maximum
number
of evalua-
tions

SDE
[281] 100 38.64 97% 38.65 1.29× 104 2.0× 105

DDE
[281] 100 38.64 93% 38.66 1.32× 104 2.0× 105

SADE
[85] 50 38.64 92% 38.64 0.66× 104 NA

GHEST
[298] 60 38.64 92% 38.64 1.15× 104 NA

HD-DDS
[285] 50 38.64 86% 38.64 4.70× 104 0.5× 105

DE
[83] 300 38.64 71% NA 0.55× 104 1.0× 105

Scatter Search
[278] 100 38.64 65% NA 5.76× 104 NA

MMAS
[79] 20 38.64 60% 38.64 3.07× 104 0.5× 105

CGA
[281] 100 38.64 50% 39.04 4.43× 104 2.0× 105

SGA
[281] 100 38.64 45% 39.25 5.48× 104 2.0× 105

PSO
[76] 2000 38.64 30% NA NA 1.0× 105

CMA-ES*
λ = 10 38.64 6.7% 40.56 0.63× 104 1.0× 105

λ = 20 38.64 3.3% 41.97 0.54× 104 1.0× 105

λ = 50 30 38.64 3.3% 45.79 0.72× 104 1.0× 105

λ = 100 38.64 6.7% 43.80 1.01× 104 1.0× 105

λ = 200 38.64 13.3% 42.92 1.8× 104 2.0× 105

λ = 400 38.64 27.0% 40.53 2.1× 104 2.0× 105

CMAES-GSU
λ = 10 38.64 33.3% 39.44 0.64× 104 1.0× 105

λ = 20 38.64 43.3% 39.15 0.55× 104 1.0× 105

λ = 50 30 38.64 40.0% 39.80 0.73× 104 1.0× 105

λ = 100 38.64 53.3% 39.27 1.1× 104 1.0× 105

λ = 200 38.64 83.3% 38.85 1.9× 104 2.0× 105

λ = 400 38.64 100% 38.64 2.2× 104 2.0× 105

CMAES-GSU -
GSD
λ = 10 38.64 36.6% 39.30 0.65× 104 1.0× 105

λ = 20 38.64 43.3% 39.10 0.61× 104 1.0× 105

λ = 50 30 38.64 43.3% 39.49 0.74× 104 1.0× 105

λ = 100 38.64 56.7% 39.19 1.2× 104 1.0× 105

λ = 200 38.64 86.7% 38.80 2.0× 104 2.0× 105

λ = 400 38.64 100% 38.64 2.3× 104 2.0× 105

RLS
σ = 0.1 53.42 0.0% 61.32 1.44× 104 1.0× 105

σ = 0.25 30 39.93 0.0% 56.26 7.58× 104 1.0× 105

σ = 0.5 39.52 0.0% 55.99 1.50× 104 1.0× 105

σ = Linear 39.43 0.0% 57.49 8.50× 104 1.0× 105

1+1EA
σ = 0.1 44.04 0.0% 50.93 9.10× 104 1.0× 105

σ = 0.25 30 39.74 0.0% 49.76 6.89× 104 1.0× 105

σ = 0.5 38.88 0.0% 49.76 5.86× 104 1.0× 105

σ = Linear 39.47 0.0% 47.31 5.96× 104 1.0× 105
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Table 7.6: Summary of the proposed methods and other EAs evaluated to the DNYTP
(NYTP2)

Algorithm Number
of runs

Best
solu-
tion ($
M)

Success rate
(%) ( Best
Solution)
Found

Average
Cost
($ M)

Average
evaluations
to discover
the first best
solution

Maximum
number
of
evaluations

SADE
[85] 50 77.28 90% 77.28 0.34× 105 NA

HD-DDS
[285] 20 77.28 85% 77.28 3.10× 105 3.1× 105

DE
[85] 50 77.28 86% 77.28 0.70× 105 1.0× 105

MMAS
[79] 20 77.28 5% 78.20 2.38× 105 3.0× 105

CMA-ES
λ = 10 78.04 0.0% 84.17 0.18× 105 1.0× 105

λ = 20 81.15 0.0% 85.11 0.19× 105 1.0× 105

λ = 50 30 81.73 0.0% 89.23 0.23× 105 1.0× 105

λ = 100 77.28 3.33% 93.05 0.32× 105 1.0× 105

λ = 200 77.28 3.33% 96.45 0.48× 105 2.0× 105

λ = 400 77.28 3.33% 93.44 0.71× 105 2.0× 105

λ = 600 77.28 3.33% 86.11 0.92× 105 2.0× 105

λ = 800 79.74 0.0% 85.87 0.98× 105 2.0× 105

λ = 1000 77.28 6.66% 80.20 1.01× 105 2.0× 105

CMAES-GSU
λ = 10 77.45 0.0% 79.76 0.19× 105 1.0× 105

λ = 20 77.28 13.33% 80.05 0.20× 105 1.0× 105

λ = 50 30 77.28 13.33% 79.53 0.24× 105 1.0× 105

λ = 100 77.28 13.33% 79.50 0.33× 105 1.0× 105

λ = 200 77.28 23.33% 79.48 0.49× 105 2.0× 105

λ = 400 77.28 33.33% 78.93 0.72× 105 2.0× 105

λ = 600 77.28 70.00% 77.82 0.93× 105 2.0× 105

λ = 800 77.28 90.00% 77.45 0.99× 105 2.0× 105

λ = 1000 77.28 100% 77.28 1.03× 105 2.0× 105

CMAES-GSU -GSD
λ = 10 77.45 0.0% 79.56 0.20× 105 1.0× 105

λ = 20 77.28 16.67% 79.77 0.21× 105 1.0× 105

λ = 50 30 77.28 13.33% 79.18 0.25× 105 1.0× 105

λ = 100 77.28 13.33% 79.28 0.34× 105 1.0× 105

λ = 200 77.28 23.33% 79.20 0.50× 105 2.0× 105

λ = 400 77.28 36.66% 78.56 0.73× 105 2.0× 105

λ = 600 77.28 73.33% 77.71 0.94× 105 2.0× 105

λ = 800 77.28 90.00% 77.44 1.01× 105 2.0× 105

λ = 1000 77.28 100% 77.28 1.04× 105 2.0× 105

RLS
σ = 0.1 106.92 0.0% 122.64 0.26× 105 1.5× 105

σ = 0.25 30 79.87 0.0% 112.53 0.13× 105 1.5× 105

σ = 0.5 77.69 0.0% 111.99 0.29× 105 1.5× 105

σ = Linear 78.87 0.0% 114.98 1.5× 105 1.5× 105

1+1EA
σ = 0.1 88.09 0.0% 101.88 1.46× 105 1.5× 105

σ = 0.25 30 79.48 0.0% 99.53 1.17× 105 1.5× 105

σ = 0.5 79.49 0.0% 98.40 1.11× 105 1.5× 105

σ = Linear 79.38 0.0% 94.63 1.01× 105 1.5× 105
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Table 7.7: Summary of the proposed methods and other EAs evaluated to the 50 ×
NY TP (NYTP50), the best-known =$1932(M).( * shows the designs are continuous
and the average pressure violation per each NYTP is 0.09, 0.15 and 0.2 where λ =

200, 500 and 1000)respectively.

Algorithm Number
of runs

Best
solu-
tion ($
M)

Success rate
(%) ( Best
solution
found)

Average
Cost ($
M)

Average
evaluations
to discover
the first best
solution

Maximum
num-
ber of
evaluations

GA
[296] 100 2238 0.0% 2321 NA 40.0× 106

CMAES-GSU
λ = 200 10 2033 0.0% 2037 0.436× 106 1.0× 106

λ = 500 10 2026 0.0% 2037 0.752× 106 1.0× 106

λ = 1000 10 2068 0.0% 2090 0.942× 106 1.0× 106

CMAES-GSU -
GSD
λ = 200 10 2030 0.0% 2033 0.485× 106 1.0× 106

λ = 500 10 2022 0.0% 2030 0.771× 106 1.0× 106

λ = 1000 10 2055 0.0% 2069 0.981× 106 1.0× 106

7.6.4 Case Study 4: Hanoi (HP)

The Hanoi Network (HP) is made up of 34 pipes, 32 nodes, and three loops. A gravity-

fed system has been designed which is fed from a single fixed tank and is produced to

fulfil assigned water demands at the necessary minimum allowable pressures. Six possible

sizes of the industrial pipe diameters are assigned for this network. And also the cost

of ith pipe with diameter Di and particular length Li can be computed by the formula

(Cpipei = 1.1 × D1.5
i × Li) where the pipe diameter is in inches, and the pipe length is

in meters. The Hazen-Williams coefficient is deterministic at 130 for total pipes. All

required data can be obtained from the reference [271]. The best-found feasible solution,

to-date, for the optimisation of the Hanoi network cost is $6.081 million; it is referred

to the literature. The Hanoi Problem has been taken into account as three different

aspects of optimisation problem such as a continuous [271], split-pipe [271], and discrete

pipes [68, 70, 272]. Some of the best achieved HP layouts, which are introduced by the

authors are listed in Table 7.11. It can be seen; where the pipe diameters are considered

as continuous, the best performance is allocated to the CMA-ES which is able to find

the cheapest feasible continuous solution by $5.959 million. On the other hand, most of

the researchers have been focused on the discrete pipe sizes recently, so in Table 7.8, the

discrete results are reported only. Since Hanoi search space is super noisy with many

local optima in the discrete search space, CMA-ES trapped into one of them and can

not escape.

According to the previous optimisation results of case studies (NYTP, NYTP2 and

NYTP50), the efficiency of the CMA-ES with the continuous decision variables is better

than discrete. A comparison of CMA-ES effectiveness with discrete pipe sizes can be

illustrated in Figure 7.4 by diverse population sizes for minimising the pipe cost of HP.
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Table 7.8: Summary of the proposed methods and other EAs evaluated to the Hanoi
network (all networks satisfy the pressure constraint)

Algorithm Number
of runs

Best
solution
($ M)

Success rate
(%)

Average Cost
($ M)

Average
evaluations
to discover
the first best
solution

Maximum
number
of eval-
uations

BLP-DE
[282] 100 6.081 98% 6.085 3.31× 104 0.4× 105

NLP-DE
[282] 100 6.081 97% 6.082 3.46× 104 0.8× 105

SDE
[281] 100 6.081 92% NA 7.72× 104 5.0× 105

SADE
[85] 50 6.081 84% 6.090 6.05× 104 2.0× 105

DE
[83] 300 6.081 80% NA 4.87× 104 1.0× 105

DDE
[281] 100 6.081 80% NA 6.37× 104 5.0× 105

Scatter Search
[278] 100 6.081 64% NA 4.31× 104 NA

GHEST
[298] 60 6.081 38% 6.175 5.01× 104 NA

GENOME
[284] 10 6.081 10% 6.248 NA 1.5× 105

HD-DDS
[285] 50 6.081 8% 6.252 10.00× 104 1.0× 105

PSO
[76] 2000 6.081 5% 6.310 NA 0.8× 105

CGA
[281] 100 6.109 0.0% 6.274 32.12× 104 5.0× 105

SGA
[281] 100 6.112 0.0% 6.287 3.85× 104 5.0× 105

MMAS
[79] 20 6.134 0.0% 6.386 8.50× 104 1.0× 105

CMA-ES
λ = 10 7.371 0.0% 7.573 0.73× 104 1.0× 105

λ = 20 6.840 0.0% 6.950 0.72× 104 1.0× 105

λ = 50 6.733 0.0% 6.931 0.96× 104 1.0× 105

λ = 100 6.494 0.0% 6.695 1.41× 104 1.0× 105

λ = 200 30 6.281 0.0% 6.295 2.28× 104 2.0× 105

λ = 400 6.220 0.0% 6.319 4.70× 104 2.0× 105

λ = 600 6.227 0.0% 6.287 8.05× 104 2.0× 105

λ = 800 6.290 0.0% 6.315 1.01× 105 2.0× 105

λ = 1000 6.210 0.0% 6.279 1.39× 105 2.0× 105

λ = 1200 6.129 0.0% 6.294 1.6× 105 2.0× 105

CMAES-GSU
λ = 10 6.094 0.0% 6.293 0.80× 104 1.0× 105

λ = 20 6.224 0.0% 6.296 0.79× 104 1.0× 105

λ = 50 6.199 0.0% 6.276 1.05× 104 1.0× 105

λ = 100 6.093 0.0% 6.250 1.48× 104 1.0× 105

λ = 200 30 6.196 0.0% 6.247 2.47× 104 2.0× 105

λ = 400 6.081 6.67% 6.219 4.81× 104 2.0× 105

λ = 600 6.081 10.00% 6.156 8.16× 104 2.0× 105

λ = 800 6.081 13.33% 6.149 1.05× 105 2.0× 105

λ = 1000 6.081 36.67% 6.112 1.42× 105 2.0× 105

λ = 1200 6.081 33.33% 6.118 1.71× 105 2.0× 105

CMAES-GSU -GSD
λ = 10 6.081 6.67% 6.272 0.83× 104 1.0× 105

λ = 20 6.224 0.0% 6.282 0.81× 104 1.0× 105

λ = 50 6.192 0.0% 6.265 1.12× 104 1.0× 105

λ = 100 6.081 3.33% 6.241 1.53× 104 1.0× 105

λ = 200 30 6.192 0.0% 6.237 2.50× 104 2.0× 105

λ = 400 6.081 16.67% 6.207 4.91× 104 2.0× 105

λ = 600 6.081 43.33% 6.150 8.28× 104 2.0× 105

λ = 800 6.081 53.33% 6.142 1.07× 105 2.0× 105

λ = 1000 6.081 83.33% 6.106 1.48× 105 2.0× 105

λ = 1200 6.081 80.00% 6.110 1.82× 105 2.0× 105

RLS
σ = 0.1 6.128 0.0% 8.355 7.45× 104 1.0× 105

σ = 0.25 30 6.170 0.0% 7.123 4.82× 104 1.0× 105

σ = 0.5 6.143 0.0% 7.863 6.71× 104 1.0× 105

σ = Linear 6.136 0.0% 8.286 6.12× 104 1.0× 105

1+1EA
σ = 0.1 6.134 0.0% 9.39 8.55× 104 1.0× 105

σ = 0.25 30 6.115 0.0% 9.184 8.88× 104 1.0× 105

σ = 0.5 6.202 0.0% 9.167 8.83× 104 1.0× 105

σ = Linear 6.170 0.0% 9.045 9.84× 104 1.0× 105
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Table 7.9: Summary of the proposed methods and other EAs evaluated to the Balerma
network (BN).

Algorithm Number
of runs

Best solution
(eM)

Average Cost
(eM)

Average
evaluations
to discover
the first best
solutions

Maximum
number
of
evaluations

NLP-DE2
[16] 10 1.923 1.927 1.428× 106 2.0× 106

HD-DDS-1
[285] 1 1.941 NA 30.00× 106 30.0× 106

NLP-DE1
[16] 10 1.956 1.957 4.12× 103 1.0× 106

HD-DDS-2
[285] 10 1.956 NA 30.00× 106 10.0× 106

DE3
[16] 10 1.982 1.986 9.21× 106 10.0× 106

SADE
[85] 10 1.983 1.995 1.20× 106 1.3× 106

CSHS
[299] 10 1.988 2.031 3.00× 106 5.0× 106

DE
[85] 10 1.998 2.031 2.30× 106 2.4× 106

GHEST
[298] 10 2.002 2.055 0.25× 106 10.0× 106

HS
[276] NA 2.018 NA 10.00× 106 10.0× 106

CS
[299] 10 2.036 2.079 4.50× 106 5.0× 106

GAs
[275] 10 2.061 NA NA 2.00× 106

GENOME
[284] 10 2.302 2.334 10.00× 106 10.0× 106

CMA-ES(Continuous) 10
λ = 200 1.895 1.900 0.84× 106 2× 106

λ = 500 1.899 1.906 0.98× 106 2× 106

CMA-ES (Discrete) 10
λ = 200 1.974 1.990 0.56× 106 2× 106

λ = 500 1.961 1.971 0.69× 106 2× 106

CMAES-GSU 10
λ = 200 1.936 1.943 0.86× 106 2× 106

λ = 500 1.937 1.942 1.10× 106 2× 106

CMAES-GSU -GSD 10
λ = 200 1.9245 1.9259 0.89× 106 2× 106

λ = 500 1.9243 1.9249 1.15× 106 2× 106

7.6.5 Case Study 5: Balerma (BN)

The fifth case study is the Balerma Network (BN), which is an irrigation WDS established

in the province of Almeria (Spain) [284]. Its components are four reservoirs, 454 pipes,

eight loops and 443 demand nodes. There are 10 allowable PVC commercial pipes

diameter sizes 125 to 600 mm. Therefore, the search space is 10454, which is considerably

larger than the previous three case studies in this paper, and it is categorized as a large-

scale optimisation problem. The minimum required nodal pressure is 20 m. Pipe costs

and other details are given in the reference [284].

The current best layout of the BN, which is found by Zheng et al. is at e1.923 million.

This functional design is achieved by a combination of the DE and nonlinear program-

ming (NLP-DE). As demonstrated by the results from the Table 7.9, the average perfor-

mance of the proposed hybrid framework is clearly better than all previous methods in

terms of quality, efficiency and the convergence rate, mainly where CMA-ES is applied

by the continuous decision variables. The best solution cost of the continuous CMA-ES
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found here is e1.895 million (λ = 500). The main objective of the study is evaluating

the performance of the hybrid framework with discrete pipe sizes (commercial), so the

discrete results of CMAES-GSU and CMAES-GSU -GSD are reported in the Table 7.9

too.

According to the results of Table 7.9, the CMA-ES (continuous) produces the lowest cost

design. Additionally, the CMA-ES variants rank highly for the discrete design problem,

with the CMAES-GSU -GSD (λ = 500) producing a network that cost only 0.01% more

than the best solution to date.

Moreover, the saving rate of computational cost is 60%. This feature illustrates the ability

of exploitation of both CMAES-GSU and CMAES-GSU -GSD methods and indicates

that the proposed optimisation framework is able to locate reasonable quality solutions

with substantially developed computational effectiveness when faced with the large-scale

WDS. It is noted that (Table 7.9), in terms of the success rate, the proposed hybrid

framework does not outperform the NLP-DE2.

According to the experimental results in Table 7.9, it can be seen that the proposed

hybrid method achievements achieve overall lower cost BN layouts compared to the

previous methods with less computational budgets. Meanwhile, in terms of convergence

speed, the discrete CMA-ES is highest ranked when the average evaluation number is

just 0.56 × 106 and the best solution cost (near-optimum) is with a value of e1.961

million.

The CMAES-GSU converged slightly slower than the discrete CMA-ES, but the quality of

their outcomes is better and feasible (possible pipe sizes) as seen in Figure 7.10. Finally,

the third part of the hybrid framework is evaluated for analyzing its impact on improving

the results of the previous step (CMAES-GSU ). Where the dimension of the problem

(BN) is high that leads to high value for branching factor of the tree structure of search

space, it is recommended that applying the Downward Greedy Search (GSD) is efficient

because of its computational complexity and memory usage. One of the most important

advantages of the GSD is reducing the cost of BN layout by 0.6% and 0.68% (λ=200,

500) respectively on average while spending slightly more in terms of the computational

budgets.

For comparing the robustness of the hybrid framework convergence rate for the large-

scale Balerma network with the best previous methods, Figure 7.10 is provided. Except

for the performance of discrete the CMA-ES, all three parts of the proposed method

performed well. The best cost of the BN design that is found by the third step of the

hybrid framework is e1.9243 million.



Chapter 7 Covariance Matrix Adaptation Greedy Search Applied to Water Distribution
System optimisation Page 269

7.7 Conclusion

The WDS design problem is extremely computationally demanding. This optimisation

problem belongs to a set of inherently intractable problems referred to as NP-complete

problems with nonlinear constraints. This work proposes a new hybrid optimisation

framework for WDSs design problems. The optimisation process of the new framework

is divided into three phases:

1. Applying a the robust and self-adaptive EA called CMA-ES with different pipe diam-

eter size granularities.

2. Carrying out a new Upward Greedy Search (GSU ) algorithm for repairing violations

of the nodal pressure head constraints that are being optimised; and

3. Carrying out a new Downward Greedy Search (GSD) to reduce pipe sizes that might

be larger than required.

According to the optimisation results, it can be shown that the proposed new combined

framework has faster convergence characteristics for the large-scale network. For both

the NYTP and NYTP2 case studies, the hybrid approach is able to reliably find the

best known discrete feasible designs costing $38.64 and $77.28 million. In addition, the

the proposed method also finds the best known solution to the HP case study. In all

benchmark networks the performance of the hybrid CMAES-GSU -GSD method is better

than the standard CMA-ES in terms of the quality of discovered solutions.

For the BN case study, the proposed new framework produces solutions with a better

average cost than the previously best published frameworks. The best-found solution

from CMAES-GSU -GSD is within 0.01% of the cost of the best-published result – whilst

being a quite different network design. Moreover, this framework produces solutions of

consistently low cost – indicating that this framework is robust for this problem.

Future improvements to this work can include: focusing the greedy search processes on

a sub-set of pipes most likely to improve network performance and cost; analysing the

features of the diverse range of good solutions found in the larger network problems

to look for features that might be used to inform smart search strategies and; finally,

extend this work to more complex WDS designs including pumps and other network

components.
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Chapter 8

summary

In this thesis, we have contributed new insights into real-world optimisation problems

for various kinds of bio-inspired methods. Several new heuristic algorithms are proposed

to solve problems associated with wave energy farm, wind farm and water distribution

networks in Part I, Part II and Part III, respectively. We faced various challenges in

attempting to solve the aforementioned real-world problems. These challenges related

to the large number of decision variables, the multi-factorial nature of real problems,

a complex and multi-model search spaces, the computational expense of the evaluation

process (in some cases taking three hours per evaluation), several complex constraints

and the difficulty of modelling dynamic systems. The performance of a large number of

bio-inspired algorithms is evaluated and compared with that of our proposed algorithms.

This allows us to make a systematic comparison demonstrating the quality and the

convergence speed of these new heuristics.

In Part I, we design and propose several fast and effective single-objective optimisa-

tion frameworks. These frameworks are designed to improve the total absorbed power

output of wave farms consisting of an array of fully submerged three-tether buoys (the

CETO 6 [46] system which is currently under development by Carnegie Clean Energy)

with small (4-buoy), large (16-buoy) and very large (50 and 100-buoy) farm sizes in real

wave scenarios. In the context of WEC optimisation, we find that if the number of WECs

is low (e.g., 4 buoys), the performance of population-based global optimisation methods

can be competitive. However, in larger wave farms, we need smarter search techniques

and surrogate model optimization methods. Generally, experimental results show that

individual-based optimisation methods outperform population-based methods in terms

of optimising the position of the large wave farm. Another important observation is that

when other factors relating to WEC optimisation are involved (such as power take-off
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settings, geometric configurations and levelised cost of energy), individual-based optimi-

sation methods require more advances and hybridisation. This is because such factors

make the search space highly complex. Therefore, we investigate and suggest various

hybrid ideas of local search (Section 2.1), including a partial evaluation technique (Sec-

tion 2.1), custom evolutionary algorithms (Section 2.1, Section 2.2 and Chapter 4), neuro

and surrogate-evolutionary methods (Section 2.3), alternative (Section 3.1) and cooper-

ative co-evolutionary (Section 3.2) approaches to speed up and develop the optimisation

process of large wave energy farms with multi-factor parameters. In future, we aim to

investigate the potential benefits, or disadvantages, of moving to a fully bi-objective and

multi-objective variant formulation of this problem. As well as considering the total pro-

duced power, it is important to bear in mind, the required area, the cable/pipe length

required to connect all WECs and the total cost of WECs in the context of optimising

wave farms. Moreover, one of the best future plans can be considering the robustness

of the best-found configurations, which are achieved based on the simulator, in the real

sea site by the renewable energy companies. Another valuable plan that can be consid-

ered in the future is focusing on developing the adaptive and self-adaptive optimisation

frameworks in the field of renewable energy which are able to adjust the setting of control

parameters based on the various situations of the optimisation process. In Part II of this

thesis, we investigate the use of Deep neural networks to model wind speed (Chapter 5)

and power (Chapter 6) in an offshore and onshore wave farm. However, the seasonal and

stochastic characteristics of wind speed make forecasting a challenging task. The initial

observation is that recurrent neural networks (RNN) like LSTM outperform other ma-

chine learning techniques. Moreover, we find that hyper-parameters play a pivotal role

in RNN performance. Hence, we evaluate and compare two tuning techniques, including

grid search and evolutionary algorithms. Our experimental results show that evolution-

ary algorithms can propose more efficient hyper-parameters set than grid search. These

proposed hybrid forecasting models outperform others using different performance in-

dices, and the performance difference is statistically significant. Our future plan is to

develop the proposed hybrid model by using a decomposition approach, in order to di-

vide the time series wind data into some sub-groups holding more interrelated features

than whole wind data as one group. Next, each sub-group is employed by one inde-

pendent hybrid method to learn the nonlinear model of wind speed. Another later plan

can be further investigations to compare the effectiveness of divers hybrid evolutionary

algorithms and deep learning model based on the nonlinear combined mechanism.

In Part III, we provided new insights into the Water Distribution Systems (WDS) op-

timisation problem (Chapter 7). The WDS design problem is notably computationally

challenging in regard to an assortment of essentially intractable problems associated with

NP-complete problems relating to nonlinear pressure head constraints. In order to deal
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with these challenges, we propose a new hybrid optimisation framework for WDSs design

problems. This framework consists of a robust and self-adaptive EA called CMA-ES with

different pipe diameter size granularities, with a new upward greedy search algorithm

for repairing violations of the nodal pressure head constraints, and a new downward

greedy search to decrease pipe sizes that might be larger than expected. This will serve

to reduce extra costs. The optimisation results show that the proposed new combined

framework has faster convergence characteristics than previously proposed methods. It

also presents solutions with a better average cost than those achieved using standard

CMA-ES and the previous best-available frameworks for the large-scale network. More-

over, in small networks, our framework can reliably find the best-known discrete feasible

designs, and produces consistently low-cost solutions – indicating that the framework is

robust for the small networks. The proposed future developments include (a) focusing

the improved greedy search techniques on a sub-set of pipes which are most likely to

enhance network performance and cost; (b) analysing the features of the diverse range of

reasonable designs found in the larger network problems to consider features that might

be adopted to inform smart search strategies and (c) extending the proposed method to

more complex WDS designs including pumps and other network components.
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