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space of Aharanov-Bohm fluxes, which is quantized, thus giving a connection to the Integer
Quantum Hall effect (IQHE) [31, 2, @]. The second part is a complete derivative, therefore
it does not affect charge transport, however it does affect the conductance ag.a fluctuation
term. These results were extended by Prieto [29], who computed the transport ceeffic¢ients
associated to the eigensections of low lying eigenvalues of the Schrodinger operator. In our
previous work [25], we calculated the transport coefficients associatedsto the eigensections
of low lying eigenvalues for any compact complex 2D orbifold where the magnetic field B is
a large fraction.

The goal of this paper is to remove the topological constraifits en the magnetic field
(rationality) in these earlier works [3, 29, P4 in the literaturel Todchieve this, we instead
study the conductance and charge transport on the universalhomology orbi-covering space
Z of 2D orbifolds in a strong magnetic field. It turns out that there is a projective unitary
action of Z* on L?(Z), known as magnetic translations, which commutes with the self-adjoint

h? R
H=— (V" h
2m (VAVA+6),

Hamiltonian

where V4 = d+iA is a connection on the trivialline Fuieon Z with curvature (Va)? =iB,
and R is the constant scalar curvature of Z,in a hyperbolic metric. We also assume that the
magnetic field B is a constant multiple of thehvolume form 6 dvol, for some large value of
6 € R. In this paper, we do not consider an electrie’potential, which has to be real valued as
we want the Hamiltonian to be self-adjointpand therefore it will not be compatible with the
holomorphic structure that we wish touse. Hence ours is a toy model for the (fractional)
quantum Hall effect and more generally a method for producing fractional quantum numbers.
Since Z is a noncompact Riem@nnisurface, the Hamiltonian H acting on L?(Z) typically
has continuous spectrum. However, we 'show in Theorem P that there are finitely many
eigenvalues {1, . .. fiym—1}.0f thesHamiltonian H that are isolated in the spectrum of H and
which are near zero. Let {Ejg, j& 1,...m — 1} denote the corresponding eigenspaces. In
Theorem P11 we show. that these eigenspaces consist of holomorphic sections and compute the
rank r; = dim¢ . ‘Let{P;, j = 1,...m — 1} denote the respective orthogonal projections
P; : L*(Z) — E,f andilet # denote the von Neumann trace. Then by [23], E,, has a 0-
operator V = Pj(@)"7, where P; € M(r;, Ap) and Ay is a complex noncommutative torus in
dimension 2g4 generated by the magnetic translations. An open question is whether there
is a connection on £, such that V2 =0 that is V is a flat O operator in the sense of [23],
which is kmewn to be true in the commutative case as shown in [29]. We remark that the
Hamiltonian H{can be interpreted as a family of Hamiltonians parametrised by Ay which
can bewviewed as the noncommutative analog of the Jacobian variety of X.

Hyperbolic 2D surfaces are typically prohibited experimentally as they cannot be isomet-
rically embedded in three dimensional Euclidean space [[[4]. A recent striking development
in [16] indisputably shows that lattices of certain resonators can be used to produce artificial

photonic materials in an effectively curved space, including the 2D hyperbolic plane. In
2

Page 2 of 19



Page 3 of 19

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-115344.R1

particular, they conducted numerical tight-binding simulations of hyperbolic analogsiof the
Kagome lattice and demonstrated that they display a flat band, similar to that/of their Eu-
clidean counterpart. The authors of [I6] also constructed a proof-of-principle,experimental
device which realizes a finite section of non-interacting heptagon-kagome lattice.

We mention alternate approaches to (fractional) quantum numbers on hyperbolic gpace.
These approaches are for smooth surfaces [8, [, 9], for orbifolds [I7, A8, 19] forsthe bulk-
boundary correspondence [24] and for orbifold symmetric products [2@]. These papers use
operator algebras and noncommutative geometry methods, in contrast tohe holomorphic
geometry methods used in this paper. For a recent analysis ofsthe IQHE; see [I5], where
the generating functional, the adiabatic curvature and the adiabatie®phase for the IQHE are
studied on a compact Riemann surface with integral magnetic field, but using holomorphic
methods inspired by [3].

Acknowledgements. VM thanks the Australian Research Council for support via the
Australian Laureate Fellowship FLL170100020. He gave a talk partly based on this paper at
the conference, Topological Phases of Interacting-Quantum Systems, BIRS, Oaxaca, Mexico,
June 2-7, 2019. GW would also like to thank the University of Adelaide for their hospitality
during the development of this paper. His visit was funded by FL170100020.

1. PRELIMINARIES

1.1. The maximal abelian cover. Let Xthe a compact Riemann surface of genus g with
a hyperbolic metric. The first homology is,the abelianisation of G := m(X)

H,(X) =G/[G,dG].

Let p: Z — X be the maximal abelian ¢over with m(Z) = [G, G]. For any = € X, we have
p~l(x) 2 H{(X), and so the commutator subgroup has infinite index.

A theorem of Griffiths [[3,4.2] shows that the commutator subgroup [G, G| is then a free
group. The homology'H,(Z),isthen the corresponding free abelian group, and hence the
cohomology with coéfficients in any ring R is the dual H'(Z, R) & Hom(H,(Z), R). Putman
27, Lem. A.1] shows that the generators of the commutator subgroup can be realised
geometrically asloops on the surface that bound a one-holed torus.

The infinite cover p=*Z — X defined above is induced from the Abel-Jacobi inclusion
X — J(X) anddthe universal cover of the Jacobian

- —~—

7 — J(X)

(1.1) l |s
X —— J(X)

To see this, let ¢ : Z/ — X be the covering of X induced from the universal cover of the

Jacobian. Note that Z’ is connected. Then choose x € X and note that the action of
3
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H(X) > H(J(X)) 2 rx(J(X)) on p~'(z) = H{(X) = ¢ () is the same for bethnZ and

Z'. Therefore the two coverings are isomorphic.

1.2. Magnetic translations. The Abel-Jacobi inclusion ¢ : X — J(X)), inducesian isomor-
phism * : HY(J(X),R) & H'(X,R), and the induced map ¢* : H*(J(X), R)— H*X,R) is
surjective. In fact, if the magnetic field is B = w, where w is the Kéhler 2-form on X and
0 € R, then one has,

Bl =l = | L ox| € IR

where [Ox] € H"(J(X),R) is the Theta divisor. ~
Let B = g O xbe the closed (1,1)-form on the Jacobian .J(X)aThen B = ¢* B’ is a closed

—_—~ e/~

2-form on J(X). Since J(X) is contractible, HQ(J/(VX),R) = {0} s0that B’ = dA’ for some

1-form A" on J(X).

Now 0 = y*(B') — B' = d(y*A’ — A’), so that v* A’ £ Ahkis akelésed 1-form on J/(\)?) for all
vel'= H(X,Z)= H(J(X),Z). Since Jf(\)?) is contractible; Hl(m,R) = {0}, so that
v A — A" = dg¢l, where ¢/ is a smooth function of j(\X/) normalised by ¢/ (i(xo)) = 0 for all
~v € I' and for some x(y € Z. 4
Define A := *A" € QY(Z) and ¢, := & !, and (note that B = p*B = dA. Moreover, o
satisfies the identity

(1'2) ¢W2 (ZL‘) + ¢71 (72 ’ [E) - ¢V1+W2 (ZL‘) = ¢71 (’72 ’ l’o)
for all z € Z and 71,7, € I'. Now define.o : I'xT' — U(1) by
(1.3) 0 (71,72) % €m0,

Then the above identity () Shows that o satisfies the cocycle condition

(1.4) a(71,72)0 (aeyas) = o (71,72 +93)0(V2,73), 1572, 73 € T
For each v € T', define operators on L*(Z) by

U, f(z) = f(v ')

8, £(x) = €40 f(z).
Then the abovelidentities imply that 7, := U, o S, satisfies 7., T, = o(71,72)T51+,, and
hence definesé@ twistéd=ér projective action of I' on L?*(Z).

1.3. The magnetic Schrodinger operator. Let V4 = d + iA be a connection on the
trivial line bundle on Z. Then the curvature of V4 is (V4)? = iB. Consider the magnetic
Schrodinger operator

. R
(15) H = o (VAVA + E) ;

where R'is the constant scalar curvature of Z. Then U,V = V,-1,4U, and S,V 1,4 =

NV aSyyso0 that T, H = HT, for all y € I.
4
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Notice that H is bounded below, so the spectral projection
Py = X(—oon)(H) € W*(T',0) ® B(L*(5)),

where JF is a connected fundamental domain for the action of I on Z, B(L?(F)) denoteés the
bounded operators on the Hilbert space L?(F), and W*(T', o) denotes the g=twisted group
von Neumann algebra of I' generated by the magnetic translations acting on (*(T).

If however A is in a spectral gap of H, then it is a standard result«(ef. {6, Thm. 1]) that
the spectral projection belongs to the much smaller algebra,

Py = X(—so)(H) = f(H) € C*(T,0) @ K(@*(F))

where X(L?(F)) denotes the compact operators on the Hilbert space/L?(F), and C*(T, o)
denotes the o-twisted group C*-algebra of I' and f is a holomerphic function defined in a
neighbourhood of (—oo, A]. When B is a constant multipleéi.d vol, of the hyperbolic volume,
which is the case that we will focus on in this paper then, C*(I;0) is the noncommutative
torus Ay in dimension 2g.

- 4
1.4. The noncommutative torus. Here we recall the definition of the higher dimensional

noncommutative torus, its complex strueture and Kstheory, and the range of the trace and
also the 2-trace on K-theory. Let p = 2g and ©'be a (p x p) skew-symmetric matrix. Then

o(7,7") = exp (27”/—1 > @m%@) W where v =(y,..,%),7 = (V) €27

j<k
is a U(1)-valued group 2-cocycle on ZP. Let C(ZP, o) denote the twisted group algebra, that
is for functions f1, fo: : ZP —C of finite support, the twisted convolution product is

k= D A f(r)o(n )

Then C(ZP,0) acts®en boundedfoperators on ¢*(ZP) by the formula above. The operator
norm closure C(Z?, o) isidefined to be the noncommutative torus Ag or the twisted group
C*-algebra C*(ZF, o).

There is an abstract definition of Ag that is useful to recall. The noncommutative torus
Ag is the universal C*=algebra with p unitary generators U;, 1 < j < p, subject to the basic
commutation relation

U;Uy, = e*™ ik U U;.
This algebra carries a gauge action of the torus T? via
t- (Ulm...Ugd) :t’fl-utgd fbl...Ugd, t=(ty, -+ ,tq) € TP,
There are‘associated infinitesimal generators d,, which are *-derivations, defined by

(5]<Uk) = ZWZ(SJkUk
5
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The algebra Ag also carries a canonical tracial state 7 invariant under the gauge action,
sending 1 to 1 and sending a monomial U™ ---U}” to 0 unless all of the n; fanigh, Be-
cause of the commutation relation, any element of Ag has a canonical (formal) expansion
in terms of the monomials U™ --- U,”. Since every element of Ag has‘d unique expréssion

.
Yoaz UM ---U,", so

T <ZaﬁUT’1---UgP> = aj

The smooth noncommutative torus Ag consists of all elements > az; U - - - Uy? such that the
coefficients a7 form a rapidly decreasing sequence in §(ZP). It is also_thessmooth vectors for
the gauge action of T? on Ag. It follows that Ag is the domain'‘of the (powers of) derivations
5;? that are the infinitesmal generators of the gauge action. There,is'a natural continuous
cyclic 2-cocycle 7. on Ag. Let fy, f1, fo € Ag. Then

g9

(1.6) 7e(fo, fr f2) = Y T (fo(0i(f1)6ig(f8) — Wi (F1)6:(f2)))-

i=1
where c is the area 2-cocycle on ZP corresponding torthe symplectic form.

The inclusion Ag < Ag is known to induce an isom%rphism in K-theory, K,(Ag) =
K.(Ag). The range of the trace on K-théory has been computed [5, I1]:

(1.7) T(Ko(Ae)) = Z+ > WPf(0,)Z + Pf(O)Z,
0<|I|<p
where I runs over subsets of {1,... p} withtan even number of elements, and ©; denotes

the skew-symmetric submatrix of © = (Oy;),with 4, j € I. The formula (see section 1 in [22])

-dzt®d:p Z Pt @]

is key to this computation,tegether with the twisted L*-index theorem [21].

We can also compute the rangeof a certain higher trace on K-theory. Let ©x denote the
theta divisor. In real coordinates, Oy = > 7_, dx; A dxiyy. Let ¢ be the group cocycle that
corresponds to ©y. Then setting I; = {i,7 + g} one has

(1.8) 7.(Ko(As)) Z > Pi(ON©,)Z

=1 I;CI
where I rung over subsets of {1,...,p} with an even number of elements, and ©\;, denotes
the skew-symmetric submatrix of © = (©;;) with ¢,5 € I\ I;. The method of proof again
uses [B, 18] and ean be deduced from Corollary 5.7.2 in [26].

1.5. Nencommutative complex torus and holomorphic vector bundles. The follow-
ing is recalled from [23]. Define a tangent space of Ag to be the (commutative) Lie algebra
g =span (dy,- -+ ,09,). A complex structure on Ag and Ag is a choice of an endomorphism

antihol

J of g satisfying J2 = —1. It thus defines an isomorphism gc = g™ @ g as a direct sum

of helomorphic and antiholomorphic tangent spaces, namely the +i-eigenspaces of J. There
6
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is a similar splitting of the complexified cotangent space gi.. The pair (A, J) will'bexcalled
a noncommutative complex torus of complex dimension n.
A wvector bundle E over Ag will mean a finitely generated projective (right) module. A

holomorphic vector bundle E will mean such a bundle equipped with a holomorphic.connec-
antihol)>|<

tion V, meaning a map £ — F ® (g satisfying the Leibniz rule

(19) Vs (e ) = Vo, () -0+ ¢ 3j(a).
Note that any vector bundle of rank r can be equipped with a holomorphic connection simply
by writing E = p(Ag)" for some projection p, and then defining V- =p(0)%

More interesting are flat holomorphic connections, which gatisfy"the flatness condition
(V)2 = 0. It is not the case that every vector bundle has a flat helomotphic connection.

2. SUMMARY OF RESULTS

This section contains the main results of the paper.

Theorem 2.1. Let H be the magnetic Schridingéroperator of (I3).
(1) Let m > 0 be the largest integer such that 6 — m(§g —2)>0. If \ = p, for some
integer q such that 0 < q¢ < m, where
fg = (2¢ + 1)0= (gt 1)(29 — 2),

then X = g 1s an isolated pointiimythe spectrum of H. It follows that the spectral
projection Py € Ay @ K(L*(F)).

(2) The eigenspace Ex = Im{Py)for X as above, consists of holomorphic sections.

(3) The von Neumann.dimension/ of Ey, dim.(E)), is equal to 7(Py), where 7 : Ag ®
K(L*(F)) — C isfthe yon Neumann trace. Then E,, is infinite dimensional since we
show that

dim,(E,,) = (2¢+1)(1 —g) +6 >0,
and so the von Neumann dimension dim,(E,,) of the spectral subspace grows linearly
with q.
(4) Let X =41,. The Chern number of Ey is
(21) TQ(PA,P)UP)\) :T(P)\dPAdPA) :29

Inparticular, it is an integer and it is independent of q. In the case of an orbifold
given as a quotient X = X'/T" of a smooth Riemann surface X' by a finite group T,
the; Chern number is a rational number
2
(2.2) 29 =2+ #(R/T) +
7

—n
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where R is the ramification divisor of the ramified cover X' — X. Here we use the
well known fact that the noncommutative torus C*(I', o) comes with a canonical.cyelic

2-cocycle,
g9

o(fo. i fo) = > T(fo0i f10540f2 — Ojgf10f2))
j=1
for fi € C(I',0). This is derived to be the conductance 2-cocycle g in Corollary 5,
8], see also page 73 in [I8].

The subsequent sections contain the proof of these results. Parts ([Qand (2) follow from
Theorem B2, part (B) is proved in Lemma B4 and the results of part (@) are contained in
() and (B2).

3. DISCRETE VALUES OF THE SPECTRUM OF THE.LAPLACIAN ON THE MAXIMAL
ABELIAN COVER

The main result of this section is Theorem B2, _proving the first two parts of Theorem 2.

Let € — X be a complex line bundle. Singe Z ds améncompact surface then the pull-
back & is topologically trivial, and any holomorphic structure on € is also trivial (see for
example [12, Thm. 30.4]), however & admitg.many different gauge-equivalent structures as
a holomorphic bundle, or equivalently as a‘Hermitian bundle with a unitary connection. In
order to normalise the eigenvalues/ofithe Laplacian, we will fix a metric on X of constant
Gauss curvature x(X) so that vol(X)i= 27, and use the pullback metric on the maximal
abelian cover Z — X. Fix a Hermitian metric on & and a Hermitian connection V? and let
0 =i % Fgo € R be the curvature, which we assume from now on to be constant. In general
6 can be any real number; in the special.case that V? is the pullback of a constant curvature
connection on a line bundle.€ N X, then the Chern-Weil formula deg(€) = 5= [, *Fgo = 0
shows that 6 = deg(€) € Z.

Elliptic regularity shows\that the eigensections of (V?)*V? are smooth. In the following,
we will use the Sobolewsspace H%(Z, &) C L*(Z, &) as the domain of the Laplacian, on which
(V9)*V? is self-adjeifity, and,continuous as an operator H*(Z, &) — L*(Z, &).

The main result of this section is Theorem B, which shows that the low-lying eigenvalues
of the Laplacian(V%)*V% are the discrete values given by (84), and that the corresponding
eigensections aredmages,of holomorphic sections of the associated bundle K79 ® & given by

Decoriposing. V¥ into (0,1) and (1, 0) parts induces operators 9V’ and 8Y°, which satisfy
the following identities for the Laplacian and the curvature

(34) (VOV?! = Ab+ AY, ix Fgo = A — AL
Conibining these shows that
(3.2) (VO)'V? = 2A% +i % Fgo = 2A% + 0,

8
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and so the eigensections of (V?)*V? with eigenvalue u correspond exactly to eigensections
of A% with eigenvalue %(u — 0). The first consequence of this is that p > 6 since A% is
non-negative. Secondly, we see that the sections in the kernel of A% (corresponding to the
holomorphic sections of €) are eigensections of (V?)*V? with eigenvalue’d.

The basic example of such a connection on a trivial bundle with trivial metric on €9 is

_ 1 1
V' =9+ Jidz, V' =0 — Jizdz,

where we use the shorthand zdz := Zizl 2,dZy, Zdz = Zizl Zrdz,. Onelean easily check
that e~ 3" is in ker @¥° and therefore is an eigenfunction of (V?)*V? with eigenvalue 6.
Since the inclusion Z < C9 induced from the Abel-Jacobi map is a hoBmorphic embedding,

then the restriction of e~ 7%l

to Z C €9 is also in ker §V’4and therefore an eigenfunction
of the Laplacian.

Therefore the lowest eigenvalue of (V?)*V? is determitied by the curvature 6, and the
corresponding eigensections are determined by the holoemorphie sections of €. The next
theorem extends this result to show that the highier eigenvalues of (V?)*V? also have an
explicit description. Most importantly, they are’discrete in the interval [0, u,,), where m
and ju,,, are defined below. For compact surfaces, this result is due to Prieto in [30], and the
proof below involves extending these techmniques to .apply to the noncompact infinite genus
surface Z.

First, we set some notation. Let T" be the tangent bundle of Z, which we assumed to have
constant Gauss curvature y(X). The bundle T also has a canonical holomorphic structure
and Hermitian metric induced from that,of Z, and the dual is identified with the canonical
bundle K, which then has an‘induced conneetion. Define

Vo= v gV

to be the connection on & @ Kq\for any q € Z, and decompose into (1,0) and (0, 1) parts to
define the associated operators

V= QY& RKY) - QY€ @ K9) =~ 00(& @ KT
M (E @ KY) = QM (E@ K9) 2 Q& @ K77V).
Remark 3.1. In analogy with (Bl), note that the Laplacians satisfy the identity
(3.3) 7 % Fve,q = Aae,q — Age,q.
In particular,\if'@ — g(2g —2) > 0, then oviTT Qo(é ® K1) — Qo(é ® K~91) is injective,
since Ago—q = 0=1q(29 — 2) + Azo,—4 is strictly positive.

We.then have two sequences of homomorphisms given by composing these operators as ¢
ingreases or. decreases

ave,lI71 8v0,q 8V0’q+1
A& ® K1) PERKY) T Q& @ KU T Q0(E @ Kt?)
5v9,q gv9,q+1 5v0,q+2
9
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Theorem 3.2. Fiz a metric on Z with constant Gauss curvature x(X) = 2 — 2g, @and,let m
be the largest integer such that 0 — m(2g — 2) > 0. For each integer 0 < q < my define

(3.4) pg = (2 +1)0 — q(q¢ + 1)(29 — 2).

Then the spectrum of the Laplacian in the interval [0, p,,) consists of the diSerete eigenvalues

fq for each ¢ = 0,...,m — 1. For each such eigenvalue p,, the corresponding space of
eigensections E,,, is equal to

(3.5) E,, =0V "0 00V (ker 0V *) C Q°(€).

. Ao, — . .
In particular, E,, and ker OV are isomorphic as Ay modules: o

Remark 3.3. These are exactly the same as the eigenvalues,in the discrete spectrum of the
Laplacian on H? computed by Comtet and Houston [10] (in (B2)4Z has Gauss curvature
—- = x(X)). This is a nontrivial observation, since thefeover H* =5 Z has structure group
the infinitely generated free group m(Z) = [m(X), 7 (X)], and.so the L? spectrum on Z is
not necessarily contained in the L? spectrum on HZ.

The proof of this theorem is contained in Propesitions,.B@ and B below. Before proving
these propositions we first need some basic results about thé Laplacian on Z. In the following,
the closure will always be taken in the Sobolev space HZ(Z, é), which we use for the domain
of the Laplacian.

Lemma 3.4. For each q, the space_of sections is @ direct sum

(3.6) 0°(& ® K% 2 kepdY " @ im oV

The next result describes how. the curvature measures the failure of the operators gyi Ty

and V""" to commute with the associated Laplacians. The proof is a local calculation as
carried out in [30, Prop. 10], and so it also applies to the maximal abelian cover Z.

Lemma 3.5. In the following diagram

_Vevq“rl

QR @ &) — QUK1® &)

lAg,q-&-l lAg,q
~  ayufetl ~
QR &) & (K@ &)

we have

0 Avo,q+1 Avo,a+1 0 1 .avo.at+l
(3.7) NpTe @Y™ — V" o AYTT =~V % Fyegn.

Equivalently, therabove diagram commutes up to a factor of —idV" " % Fgoqi1. Similarly,
in the following diagram

~ 0,—(q+1) ~
QK@) @ EYT 5 QK1 &)

0,—(q+1) 0,—q
|5 |5

v97*(‘1+1)

QUKD @ &Y —— QK1 &)
10
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we have

0,— 0,—(q+1) 0,~(q+1) 6,—(g+1 . VO —(a+1)
(3.8) AL 09V — v o AT = gV * Fgo, ().

Equivalently, the above diagram commutes up to a factor of +ioV" T Fgo,— g

3.1. An expression for the eigensections. Recall the definition of m asthe largest integer
such that K™ ® € has positive curvature, or equivalently such that § =m(2g — 2) > 0.
The first proposition constructs eigensections of the Laplacian with given eigenvalues.

Proposition 3.6. For all 0 < g < m, the sections in
(3.9) OV o0V (ker V") C QU(E)

are eigensections of (V?)*V? with eigenvalue
fg = (2¢ +1)0 — q(q + 1)(2g —2).
Proof. Let s_, € kerdV" ™" € Q€@ K9), and let = 9V "©---00Y" *s_,. Then Lemma
B4 implies that
A%S = A%(ave'71 0--:0 8v6’7q8_q) = oY flo A%_’ 0V P00V g
+ 0V6’_1(i * Fve,q)ﬁve’_z 0 00V MgTa
= 5¥% o Ag’fl 0V o0V g

+ (0 — (29 - 2))s,

(3.10)

since the curvature i Figo.—1 ofsthe connection on €@ K~ is constant and equal to 6 —(2g—2).
Repeatedly applying Lemma B3 shows that
(3.11)

q

A" o0 ) 2O o 07 o AYs (Z(e — (29 — 2))) s

oot 12 =2)

since s_, is holomorphic'by assumption. Therefore (82) shows that
(VO ls= 2A0s +i % Fyes = (2 +1)0 — qlg + 1)(29 — 2)) s.

The statement 6f (BM) on'the closure of this space of sections in H?*(Z, &) follows by tak-
ing sequeénces of'such sections and noting that the Laplacian is continuous as an operator
H?*(Z,8) — L*(Z,¢). O

3.2. Spectral gaps around the low-lying eigenvalues. In this section we show that the
eigensections of Proposition BM are the only eigensections with eigenvalue bounded above by
tm = (2m +1)0 —m(m + 1)(2g — 2). As a consequence, we see that in the interval [0, 1),

the spectrum is discrete and consists of eigenvalues g, .. ., thm_1-
11
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Proposition 3.7. In the interval [0, ju,,), the spectrum of the Laplacian (V°)*V% takes the
discrete values pg = (2g+1)0 — q(¢+1)(2g — 2) for each ¢ =0,...,m — 1, andithe spaceof
etgensections is

E,, =0V" 000V (ker 0V ") C Q°(&).
This defines an isomorphism of Ag-modules E, = H*(E @ K~9),

Proof. From (B32) it follows directly that s € ker V' implies that (V) Ves.—= 0s = 5.
We have ker V' = ker(dV"")* = coker V"', and so there is a direct sum decomposition

0°(&) 2 ker 0¥’ @ im v .

~

First consider the case where s € im V""" (we will generalise tliis to & € im OV’ " below).
Write s = V" 't. We can make this choice unique by choosingyt & (ker 8V9’71)L, although
this is not necessary in the following proof. Equation (B@) shows that

Abs =N500%" 't =i0"" " % Foo it + 8% o ATt € im v

V9’71

Since the curvature i * Fyo—1 is constant, then iOY '  Foo 1t = (i % Fgo1)0 t =
(1 % Fge,—1)s, and so R
(3.12) (V) Vs = 2A%s +i % Fgos= (2i % Fgo.1 41 % Fyo)s + 207" o A%’flt.

If t € ker 5V€'71, then the remaining term vanishes and we obtain
(3.13) (V) Vs = 2A%suh i * Foas = (2i + Fgo,1 + i * Fo)s,

which gives us the bound that we wantysince ¢ % Fyge,-1 = 6 — (29 — 2) is positive.
If t € (ker V" )L, then weswant to show that the final term in (BI2) is non-negative.
Take the L? inner product of hothisides of (BT2) with s = V"'t to obtain

(3.14) (V) Vs, s) = <Q* Foir1 +ix Fge)s, s) + 2 <0V‘H o A%t aV“t> .
The final term is
0,—1 0,1 6,—1 6,—1 0,—1
(077" o M, ) = (MG o A) M)

— <(Ag’_1 +1x Fve,—1> o Ag’_lt, t> from (B7)

0,1, A0~ , 0,—

Since i* Fge—n >0 and A%’fl is non-negative, then this final term from (B74) is non-negative.
Therefores(B14), becomes

<(V9)*V95’ 5> > ((2i % Fgo,—1 +i* Fgo)s, s)

= (20 % Fye—1 + 1% Fyo) (s, 5)

((VO)*Vis,s)
(s,)

and'sosthere is a gap in the spectrum at 6 = i x Fye, since 2¢ * Fge,—1 > 0.
12
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Now consider a general s € imdV*™" and write s = lim, . s, for a sequence {s,} C
im 0V" ™" such that 1(V?)*V?s,]| is bounded and ||sn||2 = ||5H2 As before, write g, = Y.,

for each n and apply the same argument as above to show that

VH*Vls,, s, VH*Vis,, s,
<( )<5 3) > — <( <)5 . > > > 20 % Fgo,—1 + 1 ¥ Fs0.

Therefore, since the operator (V?)*V? is continuous and H(Ve)*Vean\is bounded, then

v@ *v& 7 V9 *VG ns Sn
%: o . )(s sf on) > 20 % Fgo et 1% Fyo.

. T Avo.—1 V9 vOs,s . . .
In summary, if s € im 9V ™", then % > 24% Fge,—1 + 1 % Fye, and so the eigenvalues

of (V?)*V? on im @V~ are bounded below by 2i ¥ Fgaet’ + i * Fge. Since 2i x Fgo 1 > 0
then there is a spectral gap at the lowestaeigenvalue i % Fyo.

Continuing inductively, suppose that s €imaV” " o---0dV* . Again, we can decompose
Q& @ K9) = imdv" " @& coker 9V Y Given any ¢ € Q& ® K9), there exists
a sequence {t,} C im OV ofeokerdV " such that lim, .. t, = t. Write t, =
OV, + v, with u, € Q9(& ® K~@Y) and v, € coker 8V " =~ ker 6V 7.

The same argument as before shows that

0,—1 6,—q 6,—1 6,—q 0.—
A%(av o--00Y ) =0Y o---00V o Ay vy,

q
+ (Z(& — (29 — 2))) V" o 00V M,

(=1

— <q0 SICE 1)2(29 — 2)> V' o0V My,

Y

and therefore 9Y" ' © <0 V" v, is an eigensection of (V?)*V? = 2A% + i x Fgo with

eigenvalues2 (q@ — w> +60=(2¢+1)0—q(qg+1)(2g —2).

Now considef’s, = V" o 0 V" "y, Again, the same argument as above shows
that
g+1
(3.15) Abs, =% 000" AN Wy 1N (0 — 0(29 - 2)) s
=1
13
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It remains to show that the inner product of the first term with s, = V" o+ -0V a,
is non-negative. To see this, write

0,—1 0,—(q+1) A 0.— 1 0,—1 0,—(q+1)
<8V 00V TN GVt o gv un>

o
6,1 0,1 0,~(a+1) , 0,—(q+1 6,2 8, (741
:<(8V YoV " o0 A" @), 9% 7 6. 00N, Un>
0.—1 Ao, —2 0,—(a+1) » 0,—(q+1 0,—2 0,~(q1)
:<A87 ov 009V Ag ((H-)umav 0. 0¥ Un>
: 0.1 6,2 0,~(a+1) , 0,—(q+1 6,22 0, (a+1)
:<(2*FV9,—1 —|—A5’ >8V o090V Ag (a+ )un,ﬁv o---00Y un>

Qi

~
. 0,—2 0,—(a+1)  0,— 1 6,+2 0,—(q+1)
- (Z*Fvg,fl)@v 0.0V I AL, VIR o d oY un>

—(g+1 0,—1 Av9 72 0,—(q+1)
(g+ )UmAg oV o6--09Y Un>

QU >

+ <av9,72 0.0 avev*@l“rl)A
In the final expression above, the first term is a positive.multiple/of

6,—2 0,—(a+1) , 6,—(q+1 6,-2 0,—(q+1)
<8V o0---09V A @)y 9V 6. e Y un>

In order to evaluate the second term, we can use Lemma BEEi and the same process as in the

proof of Proposition B8 to write

—1 0,—2 0,—(q+1) 0,—2 0,—(q+1) , 6,— 1
A% aV o___oav unzav o._‘oav Aé (Q-‘r)un

+C - V" 6.0 8V9’7(q+1)un,
where C' is a positive constant. Therefore wetobtain a positive multiple of

0,-2 0,—(q+1) | 0,— 1 0,-2 0,—(q+1)
<8V O_‘_oav Aé? (Q+ )U,n,av o...oaV un>

v —(a+1) A 0,—(q+1)
0 Al

0,—(a+1) A 0,—(g+1 0,—2
wo OV T Al (q+ )umav o -

plus the non-negative term <8V9’72 o 5

Now repeat the same progess on the term

6,—2 0,=(g+1) , 0,—(q+1 0,-2 6,—(q+1)
<8V Y 4 A’ (q )umav 0i0d¥ un>

Continuing inductivelyyat the'end of the process we obtain non-negative terms plus a positive
multiple of the non-negative ferm <Ag’7(q+1)un, un> Substituting this into (B3H), we see

that
q+1

<A%Sn, Sn) > Z (0 —20(29 —2)) (Sn, Sn) -
=1

By takingrsequences as before, this inequality is preserved in the limit, and therefore it
applies/to sectiéns in the closure. Since § — m(2g — 2) > 0 by assumption, then the final
term.in this sum is strictly positive if ¢ < m — 1, and so there is a gap in the spectrum of
A% at the eigenvalue Y 7_, (0 — ((2g — 2)). By (B2) there is then a gap in the spectrum of
(V9):V? at the eigenvalue 1, when ¢ < m — 1.

Finally, since V"™ commutes with T, for all ¢ by the results of Section I3 and it is

injective for all / < m by Remark BT, then this OV o 08V defines an isomorphism
14
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of Ap modules

HEQK ) >E, =" o0--00"" " (kerdv" ").

4. AN INDEX THEOREM

In the previous notation, let V% be the unitary connection on thétrivialiline bundle on
Z, whose curvature is equal to iB = i0&. Consider the Dolbeault operator 0 on X , and
lift it to 0 on Z, which is invariant under the group of deck transfqmations 7% for the
abelian cover Z — X. Let & — X be a holomorphic vector bundlé’'over X, and V¢ a (0,1)
connection on &. Let & denote the lift of € to Z, and V¢ the'lift of Vé40 Z. Then as before,
one checks that the operator d @ V¢ ® V? is invariant under the projective action of Z2 as
in the previous section. Here

(4.1) 00 VE@ V! O0(Z,8) S 4, €)

where Q%(Z, €), 7 = 0,1 denotes the space of Square in‘%egrable differential j-forms on 7
with coefficients in €.
Define

RO(VE ® V%) = dim, (ker;2(0 ® VE ® V7).
By L*-Serre duality,
hH(VE @ V) = BO(VE K @) = dim, (ker2(0 @ VEEK @ V9)).

where 7 denotes the von Neumann trace or dimension. Elliptic regularity ensures that these
numbers are finite.

The goal of this section is toyprove the following result.
N

Theorem 4.1 (L?-Riemann-Roch for projective actions). The L? index of the induced con-
nection 0 @ VE ' @uVe is
43 index; 200,V ® V) = BO(VE @ V?) — h1(VE @ V)

' — deg(&) + rk(&)0 + (1 — g)rk(&)

In the case where € =55 is a power of the canonical bundle on X, then
(1) the L? index is
R(VE @V - (VE " @V =(2¢+1)(1-g)+06.
(2) (wanishing) If 6 > 2g — 2, then h(V?) =0, so that h°(V?) =1 —g+ 6.

Proof. Note that since Z is a Riemann surface, then (Z) is a complex, and by the higher
twistedpindex theorem in [IX], the index is

IndexAg(é @ Vi V) = [ker(é @ VEe V) - coker(é ® Ve @ V)] € Ky(Ao).
15
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As in the index for a family of elliptic operators, in general neither coker(5 ® Vg %
nor ker(é ® V¢ ® V?) are finite projective modules, however under a vanishing condition
Coker(é ® V¢ @ V) = 0, then ker(é ® V& ® V) is a finite projective mo@ule, which is
therefore a holomorphic vector bundle in terminology of subsection 4.

Then by the twisted index theorem [Z1], one has

= = 1
T <IndeXA9(8 ®VE® VG)) =5 /X Todd(Qx) trexp(Q°) exp(Hw)

! [0+ L ) (€) Hr(98)) (1 )

T or 2 =N
= deg(c‘Z) +rk(€)8 + (1 =g)rk(E).
On the other hand,
T <IndexA9(5 ®VE® V9)> = (Ve @ Ve bt (V¢ @ V?),
which completes the proof of (E22).
Now let € = K¢ be the holomorphic line bundles We conclude from (B22) that
o »
(4.3) RVE"@ V) = (—qdeg(Kx)+0) 14 g=12¢+1)(1 —g) +6 > 0.
If ¢ > 0 is such that (¢ + 1)(2g — 2) — 0'< Oy.then (&) implies that KO(VE"" @ V-0) =
Using L? Serre duality we conclude that
(4.4) W(VE @ V=r(VE" @ V) =0.
U

Theorem B2 shows that ker 44 (8 ® Ve ® V) = E,,, the p,-th eigenspace of the magnetic
Laplacian. Using Theorem Bl and the terminology in subsection I3, we have the following
result on the dimension of these eigenspaces, which proves part (B) of Theorem 2.

Lemma 4.2. Let E,, be'the'pi,-th eigenspace of the magnetic Laplacian. Then

(1) E,, is a holomorphic véetor bundle over Ag @ K(L*(F)), and
(2) The von Newmann diension is dim (£, ) = (2¢+1)(1 —g) +0 > 0.

5.. CHERN NUMBER OF Euq VIA A HIGHER INDEX THEOREM

Our goal is to calculatethe Chern number of the spectral subspace E,, as a finite projective
Ag-modulepwhich will complete the proof of the final part of Theorem EZ. We do this by
using the higher twisted index theorem [I8, Thm. 2.2]. The argument goes as follows. Let
¢ be_the group’ cocycle on Z* corresponding to the symplectic 2-form, and let 7, be the
corresponding continuous 2-cocycle from (ICH). Applying the higher twisted index theorem
and simplifying, we see that

Tc(indeXAe(é VE' ® V%) = / o(c)
16 *
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By the vanishing theorem (24), we deduce that if @ > (j+1)(2¢g—2) then ker 4, (5®VK_j®V9)
is a finite projective Ay module, and

rolker s, (0 V57 @ V7)) = /X o(c)

Now ¢(c) is easily seen to be the Bergman volume form on X, and [ é(c) = 2gif X is a
genus ¢ Riemann surface. Finally, we will prove in Theorem B that,

kers, (0 © VE @ V) ~ B,

as Ap modules, therefore we conclude that if X is a genus g Riemann®urface, then the Chern
number of £, is

(5.1) ro(E,,) = / o(c) = 20

which proves (21).

We can extend the above calculations to the casesof @ “good” orbifold given by a quotient
X = X'/T as follows. Let ¢’ be the genus off X’ andulet p : X’ — X be the associated
ramified cover. Since ¢(c) pulls back to the Bergman volume form on X', then

2g'
Jo@ = g = 1

Let n, = |I'y| be the order of the isotropy group at each point y € X', let R = {y € X' :
n, > 1} be the ramification divisor, andilet n = |R| be the total number of ramification
points in X’. The Riemann-Hurwitz theorem shows that

2¢/=2=[0@g—2)+ Y (n,— 1)

N yeX’
2q' 2 1
& =202+ =+ > (n,—1)
I DRENP2
1 2—n
=29 -2+ — Ny + ——=—.
NPKAT

The term ﬁ >
of points initheorbit [~ 4 is equal to % Therefore ﬁ >

Jer Mygpcan be further simplified by noting that for each y € R, the number

ny is equal to the number of

YyeER
[-orbits inR, whicli we denote by #(R/T"). In conclusion, we have proved that
2—n
/¢ _29_2+#<R/F) ’F|

By Theorem B, we know that there is an isomorphism of Ay modules kery4, (5@ VER V) =
E,,, the p,-th eigenspace of the magnetic Laplacian. All of the above is summarised in the

following lemma, which proves (22) and thus concludes the proof of Theorem P
17
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Lemma 5.1. The Chern class of the ji,-th eigenspace of the magnetic Laplacian 4s

(5.2) 7e(E,,) =29 — 2+ #(R/T) +

1]

8]

[20]

21

[22]

2—n
IT|
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