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We extend previous work concerning rest-frame partial-wave mixing in Hamiltonian effective field
theory to both elongated and moving systems, where two particles are in a periodic elongated cube or have
nonzero total momentum, respectively. We also consider the combination of the two systems when
directions of the elongation and the moving momentum are aligned. This extension should also be
applicable in any Hamiltonian formalism. As a demonstration, we analyze lattice QCD results for the
spectrum of an isospin-2 ππ scattering system and determine the s, d, and g partial-wave scattering
information. The inclusion of lattice simulation results from moving frames significantly improves the
uncertainty in the scattering information.
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I. INTRODUCTION

Lattice simulations of relativistic quantum-field theories
are performed in a Euclidean four-dimensional finite
volume. Scattering states are contained in the finite box
with discretized energy levels. Understanding the relation-
ship between these finite-volume energy levels and exper-
imental scattering observables such as the phase shift and
inelasticity is of significance. For the case of elastic two-
body scattering in the rest frame, Lüscher [1–3] found a
model-independent formula which is now known as
Lüscher’s formula.
An equivalent approach is provided in Hamiltonian

effective field theory (HEFT) [4–12], a Hamiltonian exten-
sion of chiral effective field theory. In the standard
approach, a Hamiltonian which respects the constraints
of chiral effective field theory is fit to the finite-volume
energy spectrum of lattice field theory and the infinite-
volume scattering observables are obtained from the con-
strained Hamiltonian. The approach bridges finite-volume
lattice field theory and experimental observables while
providing insight into the composition of the scattering
states in terms of noninteracting multiparticle basis states.

Different partial waves are mixed in the finite volume as
a result of broken spherical symmetry. This mixing
complicates the construction of the Hamiltonian matrix.
For example, its incorporation significantly increases the
dimension of the matrix. A recent work [12] established a
formalism for disentangling partial-wave mixing and max-
imally reducing the dimension of the Hamiltonian matrix in
the finite volume via an optimal set of rest-frame basis
states. In this work, we will generalize this formalism to
both elongated and moving systems with nontrivial total
momentum. We will also consider the combination of these
two systems when the direction of elongation and that of
the moving momentum are aligned.
The Lüscher formula has already been extended and

applied to the case of rectangular cuboid boxes [13–23].
This work will first consider a more general case where
the box is allowed to be a general parallelepiped, as
illustrated in Fig. 1. We then focus on a special class of
the parallelepiped termed an elongated cube.
The Lüscher formula has also been extended to moving

systems [25–30]. To realize the extension in a Hamiltonian
formalism, one needs a Hamiltonian making contact with
both the infinite-volume scattering observables parame-
trized in the rest frame and the finite-volume spectrum in
the moving frame. This can be achieved within the formal-
ism proposed in Refs. [31,32]. In that formalism, different
forms of the moving-frame Lüscher formula are unified as
different momentum transformations. Furthermore it leads
to a newmomentum transformation which is not only useful
in the Hamiltonian formalism, but can also be used in the
finite-volume three-particle quantization condition [33].
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FIG. 1. Special cases of the parallelepiped (taken from Ref. [24] with slight modifications). The elongated cubes discussed in this work
are labeled with the elongated vector dη.
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The symmetry in a moving frame is quite compatible
with a cube elongated in the same direction as the nonzero
total momentum. This case will be termed the elongated
moving system, and disentangling partial-wave mixing in
the elongated moving system is the main concern of this
work. We will also demonstrate how the formalism works
by analyzing lattice QCD results from Ref. [34] for the
spectrum of an isospin-2 ππ scattering system. As also
noted in Ref. [12], the discussion in this work should
apply not only in HEFT, but also in any Hamiltonian
formalism, e.g., the harmonic oscillator basis effective
theory [35–37].
There are also many other extensions of the Lüscher

formula, including the multichannel case [38–43], nonzero
spins [44–47], twisted-boundary conditions [48–51] and
the multibody case [33,52–71]. With the exception of the
many-body case, these extensions should be easily realized
in the Hamiltonian formalism using the results of Ref. [12]
and this paper. In addition, there have also been studies
concerning finite-spacing effects in the Hamiltonian for-
malism, e.g., Ref. [72].
This paper is organized as follows. In Sec. II, the finite-

volume Hamiltonian in the elongated moving system is
established. Section III accommodates partial-wave mixing
in the elongated moving system using the formalism
developed in Ref. [12]. Section IV demonstrates how this
formalism works by analyzing lattice QCD results for
isospin-2 ππ scattering [34]. Finally, the results are sum-
marized in Sec. V.

II. HAMILTONIAN IN ELONGATED MOVING
FINITE VOLUME

A. Parallelepiped and elongated cube

Normally, the system under consideration in lattice field
theory simulations is a periodic cube. However, there are
good reasons to also consider asymmetric boxes, where
longer dimensions provide access to smaller nontrivial
momenta [73]. For example, Ref. [13] studied a rectangular
cuboid (including the square cuboid as a special case). In
general, the box can be a parallelepiped as shown in Fig. 1.
If we choose one of the vertices of the parallelepiped as

the origin, the parallelepiped can be specified by the three
vectors a, b, c corresponding to the edges connected to the
origin. The three vectors specify a matrix

M ¼

2
64
a1 b1 c1
a2 b2 c2
a3 b3 c3

3
75; ð1Þ

which sends the three unit vectors of the coordinate axes to
a, b, and c respectively, where the subscripts denote
the coordinate components of the vectors. To restrict the
range of x� within the parallelepiped, one can define x� via
x�i ¼

P
j Mijxj and constrain x within the unit cube.

Correspondingly, when imposing the periodic boundary
condition, the momentum k� should be discretized as

k�i ¼
X
j

M−1
ij

2π

L
nj; nj ∈ Z; ð2Þ

where we replace the unit cube with a cube of edge length
L, as is standard in lattice field theory.
Here, we do not consider all the cases in Fig. 1 since in

most cases the symmetries are broken too much. When we
study moving frames in the following sections, we will find
that the symmetry of a cube elongated in the same direction
as the moving momentum is quite compatible with the
moving effects. So in this paper, we define the elongated
cube as a cube elongated in a specific direction d̂η with a
magnitude η, and we consider three dη as follows:
(a)

dη ¼ ð0; 0; 1Þ; M ¼

2
64
1

1

η

3
75;

corresponding to the square cuboid (already covered in
Ref. [13]), labeled as (a) in Fig. 1.

(b)

dη ¼ ð0; 1; 1Þ; M ¼

2
64
1 0 0

0 ηþ1
2

η−1
2

0 η−1
2

ηþ1
2

3
75;

corresponding to the right rhombic prism, labeled as
(b) in Fig. 1. We note that not all right rhombic prisms

are included in this scenario, since b
a ¼

ffiffiffiffiffiffiffiffi
η2þ1
2

q
and

cos γ ¼ 1−η2
η2þ1

are both determined by η. The general

right rhombic prism corresponds to

M ¼

2
64
ηx 0 0

0 ηþ1
2

η−1
2

0 η−1
2

ηþ1
2

3
75;

which is an elongated cube only when ηx ¼ 1.
(c)

dη ¼ ð1; 1; 1Þ; M ¼

2
664

ηþ2
3

η−1
3

η−1
3

η−1
3

ηþ2
3

η−1
3

η−1
3

η−1
3

ηþ2
3

3
775;

corresponding to the trigonal trapezohedron, labeled
as (c) in Fig. 1.

We note that the overall factors of dη are not important,
and are taken as presented for further convenience. In the
elongated cube, the momentum is discretized as
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k� ¼ 2π

L

�
n⊥ þ 1

η
nk

�
; n ∈ Z3; ð3Þ

where the ⊥ and k components of a vector are defined
through

nk ≔
n · dη

jdηj2
dη; n⊥ ≔ n − nk: ð4Þ

To be more concrete, for an infinite-volume Hamiltonian

H ¼
Z

d3k�

ð2πÞ3 hðk
�Þjk�ihk�j

þ
Z

d3k0�

ð2πÞ3
d3k�

ð2πÞ3 Vðk
0�;k�Þjk0�ihk�j; ð5Þ

where h and V denote the kinetic and potential energy
respectively, and the state jk�i is normalized as

hk0�jk�i ¼ ð2πÞ3δ3ðk0� − k�Þ; ð6Þ

to put it in an elongated cube, we need the discretization

Z
d3k�

ð2πÞ3 → η−1L−3
X

k�¼2π
L ðn⊥þ1

ηnkÞ;n∈Z3

; ð7Þ

and

jk�i → η
1
2L

3
2jni ð8Þ

so that the basis jni is orthonormal

hn0jni ¼ δn0n: ð9Þ

Finally, the Hamiltonian in a finite elongated cube is

HL ¼
X
n

hðk�ðnÞÞjnihnj

þ
X
n0;n

η−1L−3Vðk�ðn0Þ;k�ðnÞÞjn0ihnj: ð10Þ

We note the Hamiltonian Eq. (10) applies to any elongated
cubes, including those of the three scenarios (a), (b) and
(c) introduced above Eq. (3).
We also note that the box studied in Ref. [13] corre-

sponds to

M ¼

2
64
η1

η2

η3

3
75; ð11Þ

where an overall factor can be absorbed into L. This box
corresponds to the rectangular cuboid, which is not

completely equivalent to the elongated cube, since it needs
elongation in more than one direction. However in some
cases, η1 ¼ η2 ¼ 1 for instance, the box is an elongated
cube with dη ¼ ð0; 0; 1Þ.

B. Moving system

Since the infinite-volume potential and scattering observ-
ables are most easily parametrized in the rest frame, we need
a Hamiltonian that can produce the moving-frame spectrum
while still written in terms of the rest-frame potential.
As suggested in Refs. [31,32], one can introduce a

momentum transformation k� → k to the infinite-volume
Hamiltonian

H ¼
Z

d3k�

ð2πÞ3 hðk
�Þjk�ihk�j

þ
Z

d3k0�

ð2πÞ3
d3k�

ð2πÞ3 Vðk
0�;k�Þjk0�ihk�j

¼
Z

d3k
ð2πÞ3 J ðkÞhðk�ðkÞÞjk�ðkÞihk�ðkÞj

þ
Z

d3k0

ð2πÞ3 J ðk0Þ d3k
ð2πÞ3 J ðkÞVðk�ðk0Þ;k�ðkÞÞ

× jk�ðk0Þihk�ðkÞj; ð12Þ

where J denotes the Jacobian of the transformation. Then
one can define

jki ≔ J
1
2ðkÞjk�ðkÞi; ð13Þ

such that

hk0jki¼J ðkÞð2πÞ3δ3ðk0�−k�Þ ¼ ð2πÞ3δ3ðk0−kÞ; ð14Þ

and the infinite-volume Hamiltonian will be

H¼
Z

d3k
ð2πÞ3hðk

�ðkÞÞjkihkj

þ
Z

d3k0

ð2πÞ3
d3k
ð2πÞ3 ½J

1
2ðk0ÞVðk�ðk0Þ;k�ðkÞÞJ 1

2ðkÞ�jk0ihkj:

ð15Þ

Now if one discretizes k instead of k�, one gets a different
finite-volume Hamiltonian

HL ¼
X
n

hðk�ðnÞÞjnihnj

þ
X
n0;n

L−3Ṽðkðn0Þ;kðnÞÞjn0ihnj

Ṽðk0;kÞ¼ ½J 1
2ðk0ÞVðk0�;k�ÞJ 1

2ðkÞ�; k¼ 2π

L
n: ð16Þ
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Reference [31] proposed a number of general momen-
tum transformations for the moving system, and proved
that those transformations can keep the relationship
between the infinite-volume phase shifts and finite-volume
spectrum up to exponentially suppressed corrections. That
paper also studied three typical transformations. While
two of the three have been used in many previous works
[25–27], they introduce additional energy dependence. The
third one (labeled as scheme C in Ref. [31]) does not have
such problems and hence is suitable here. It reads

k� ¼ k⊥ þ γ

�
kk −

ω1ðkÞ
ω1ðkÞ þ ω2ðP − kÞP

�
;

γ ¼ ω1ðkÞ þ ω2ðP − kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω1ðkÞ þ ω2ðP − kÞÞ2 − P2

p ; ð17Þ

where ωiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
and P is the total momentum of

the moving system, and the corresponding Jacobian is

J ðkÞ ¼ ω1ðkÞ þ ω2ðP − kÞ
ω1ðkÞω2ðP − kÞ

�
ω1ðk�Þ þ ω2ðk�Þ
ω1ðk�Þω2ðk�Þ : ð18Þ

In the finite cube, the total momentum can only take
discrete values as P ¼ 2π

L dγ with dγ an integer vector.

C. Elongated moving system

Both the elongated and moving systems have smaller
finite-volume symmetry groups than the rest-frame cube,
and combining them will normally give a much smaller
one. However, if the elongated direction and the moving
direction are the same, their combination will not see a
large reduction in symmetry. We will call this combination
the elongated moving system. The corresponding finite-
volume Hamiltonian is obtained by combining Eqs. (10)
and (16), which reads

HL ¼
X
n

hðk�ðnÞÞjnihnj

þ
X
n0;n

η−1L−3Ṽðkðn0Þ;kðnÞÞjn0ihnj

Ṽðk0;kÞ ¼ J
1
2ðk0ÞVðk0�;k�ÞJ 1

2ðkÞ;

k ¼ 2π

L

�
n⊥ þ 1

η
nk

�
; ð19Þ

where the momentum transformation k� → k and the
corresponding Jacobian is the same as Eqs. (17) and
(18) for the moving system, except that the total momentum
P should now be

P ¼ 1

η

2π

L
dγ; ð20Þ

noting either dη ¼ dγ or η ¼ 1 for P ≠ 0 in this “elongated
moving system.”
Now Eqs. (17)–(20) are all the ingredients needed to

write down the elongated moving Hamiltonian. The eigen-
values of this Hamiltonian are rest-frame energies E�

n
related to moving-frame energies En via

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
n þ P2

q
: ð21Þ

Since the kinetic energy hðk�Þ depends only on the
length of k�, one can separate the kinetic term as

X
n

hðk�Þjnihnj ¼
X
en

hðk�Þ
X
ên

jnihnj; ð22Þ

so that k� depends only on en (and
P

ên is simply defined to
sum over all the n with the same en). In other words, en
denotes a degenerate shell of the basis-state Hamiltonian,
H0, describing the energies of the noninteracting states.
Note, there can be several values for en related to vectors n,
dη and dγ all providing the same degenerate value for hðk�Þ.
It is interesting to consider how the elongated moving

system reduces to more simple cases for certain values of
dη, η and dγ . When the masses of the two particles are the
same, we also have

n → dγ − n ⇒ k� → −k� ⇒ hðk�Þ invariant: ð23Þ

Thus our discussion for the degenerate shells splits into
four cases as listed in Table I. There we introduce an
elongated moving vector d ≠ 0, since either we can set
dη ¼ dγ or choose one of the two vectors to vanish. In
Table I, case A refers to the standard unelongated and rest-
frame system. en can be simply chosen as n2. Case B refers
to the elongated or unelongated moving-frame system with
two particles of different mass. As suggested by Eq. (17),
hðk�Þ now depends on n2, ðd − nÞ2, n2

k, and n2⊥. Because
both n2

k and n2⊥ can be reexpressed in terms of n2 and

ðd − nÞ2, en can be chosen as ðn2; ðd − nÞ2Þ, or ðn2;n · dÞ
equivalently. Case C1 refers to the elongated rest-frame
system. hðk�Þ now depends on n2, n2

k ∝ jn · dj2, and

n2⊥ ¼ n2 − n2
k. Thus en can be chosen as ðn2; jn · djÞ.

Case C2 refers to the elongated or unelongated moving-

TABLE I. Four different cases for the degenerate shells. The
fn2; ðd − nÞ2g in the C2 row is an unordered pair.

Case dη η dγ m1 ¼ m2? en

A any ¼1 0 Any n2

B d ≠ 0 Any d ≠ 0 No ðn2;ðd−nÞ2Þ or ðn2;n · dÞ
C1 d ≠ 0 ≠1 0 Any ðn2; jn · djÞ
C2 d ≠ 0 Any d ≠ 0 Yes fn2; ðd − nÞ2g
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frame system with two particles of the same mass. In
contrast to case B, n and d − n are on the same shell as
indicated by Eq. (23). As ðn2; ðd − nÞ2Þ and ððd − nÞ2;n2Þ
denote the same shell, en can be chosen as an unordered
pair fn2; ðd − nÞ2g.

III. PARTIAL-WAVE MIXING IN AN
ELONGATED MOVING SYSTEM

Spherical symmetry allows the following partial-wave
expansion:

Vðk0�;k�Þ ¼
X
l

vlðk0�; k�Þ
X
m

Ylmðk̂0�ÞY�
lmðk̂�Þ; ð24Þ

where Ylmðk̂�Þ are the usual spherical harmonics, as shown
in Eq. (B1), and its variables are the direction angles
ðθ�;ϕ�Þ of the vector k�. Different partial waves are
decoupled under this potential in the infinite volume. In
the finite volume, partial wave numbers ðl; mÞ are no longer
good quantum numbers, and the partial wave potentials vl
with different l are coupled together in the determination of
finite-volume spectra. This phenomena, called partial-wave
mixing, complicates the structure of the Hamiltonian
Eq. (19). In the standard case (case A in Table I),
Ref. [12] proposed a method that provides an optimal
set of basis states maximally reducing the dimension of the
Hamiltonian. In this section, we will generalize that method
to more general cases.
The spherical symmetry group SO(3) is broken into one

of its subgroupsG in the finite volume. In the standard case
A, G is the octahedral group O. In other cases in Table I, G
is smaller, and turns out to be also a subgroup of a two-
dimensional rotation group O(2) [or Oð2Þ × C2 in case C],
where the rotation axis of this O(2) should be the same as
the elongated moving vector d. This prefers the partial
wave expansion Eq. (24) expanded in a coordinate
system different from that of the discretized momentum.
Appendix A discusses how the coordinate system is chosen
(results are summarized in Table XIV).
In general cases, we expect the finite-volume potential in

Eq. (19) can be put in a similar form as Eq. (24) as follows:

Ṽðk0;kÞ ¼
X
Γ∞

ṽΓ∞
ðe0n; enÞ

X
α∞

uΓ∞;α∞ðn0Þu�Γ∞;α∞
ðnÞ; ð25Þ

where α∞ denotes the index of the vector of the irreducible
representation Γ∞ of the group G∞, and the definitions for
uΓ∞;α∞ and ṽΓ∞

are summarized in Table II. In the Table, we
also have

Sm ¼
�þ m ≥ 0

− m < 0
;

X
lP

¼
�
sum over evens P ¼ þ
sum over odds P ¼ −;

ð26Þ

and SPðm; θ�Þ is defined via

Plmðcos θ�Þ ¼
�
Sþðm; θ�ÞPlmðj cos θ�jÞ l is even

S−ðm; θ�ÞPlmðj cos θ�jÞ l is odd;
ð27Þ

which gives

Sþðm; θ�Þ ¼
�þ1 cos θ� ≥ 0

ð−1Þm cos θ� < 0;

S−ðm; θ�Þ ¼
�þ1 cos θ� ≥ 0

ð−1Þmþ1 cos θ� < 0.
ð28Þ

In the standard case, Eq. (25) becomes the same as
Eq. (24). In case B, we now take O(2) as G∞, and the
α∞-independence of ṽΓ∞

comes from the invariance of

ðl −mÞ!
ðlþmÞ!Plmðcos θ0�ÞPlmðcos θ�Þ ð29Þ

underm → −m. In case C,G∞ is now Oð2Þ × C2, where the
C2 symmetry comes from k → P − k, i.e., exchanging the
momenta of the two equal-mass particles, and is different
from the parity symmetry in the usual sense. In the latter
case, one is concerned with k → −k and P → −P. It is now
j cos θ�j instead of cos θ� independent of ên.
In what follows, we will show how to construct the

optimal set of basis states maximally reducing the dimen-
sion of the finite-volume Hamiltonian in general cases. The
formalism is basically the same as that in Ref. [12], except
with a different language introduced above.

TABLE II. Some definitions for different cases. α∞ denotes the index of the vector of the irreducible representation Γ∞ of the
group G∞.

Case A B C1 or C2

G∞ O(3) O(2) Oð2Þ × C2

ðΓ∞; α∞Þ ðlP ; mÞ ðjmj; SmÞ ðjmjP ; SmÞ
ṽΓ∞

vl J
1
2ðk0ÞJ 1

2ðkÞPl vl
2lþ1
4π

ðl−mÞ!
ðlþmÞ! J

1
2ðk0ÞJ 1

2ðkÞPlP vl
2lþ1
4π

ðl−mÞ!
ðlþmÞ!

×Plmðcos θ0�ÞPlmðcos θ�Þ ×Plmðj cos θ0�jÞPlmðj cos θ�jÞ
uΓ∞;α∞ Ylm eimϕ�

SPðm; θ�Þeimϕ�
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Now one can introduce

jen;Γ∞; α∞i ¼
X
ên

uΓ∞;α∞ðnÞjni ð30Þ

to write VL as

VL¼η−1L−3
X

e0n;en;Γ∞

ṽΓ∞
ðe0n;enÞ

X
α∞

je0n;Γ∞;α∞ihen;Γ∞;α∞j;

ð31Þ
and construct the states jen;Γ∞;Γ; f; αi via linear combi-
nations of jen;Γ∞; α∞i as follows:

jen;Γ∞;Γ; f; αi ¼
X
α∞

½CΓ∞
�α∞;Γ;f;αjen;Γ∞; α∞i; ð32Þ

where Γ, f and α denote the αth vector of the fth
occurrence of the irreducible representation Γ reduced
from the Γ∞, and the coefficients derived from group
theory can be found in Appendix A.
One can then define the inner product matrices for these

states as

½Pen �Γ0
∞;α0∞;Γ∞;α∞ ≔ hen;Γ0

∞; α0∞jen;Γ∞; α∞i; ð33Þ
and

½Pen;Γ;α�Γ0
∞;f0;Γ∞;f

≔ hen;Γ0
∞;Γ; f0; αjen;Γ∞;Γ; f; αi

¼
X
α0∞;α∞

½CΓ0
∞
��α0∞;Γ;f0;α½Pen �Γ0

∞;α0∞;Γ∞;α∞ ½CΓ∞
�α∞;Γ;f;α: ð34Þ

Using these inner product matrices, one can orthonormalize
jen;Γ∞;Γ; f; αi to our final basis jen;Γ; F; αi. The Wigner-
Eckart theorem only permits the following general form for
the VL:

VL ¼ η−1L−3
X

e0n;en;Γ;F0;F

ṽΓ;F0;Fðe0n; enÞ

×
X
α

je0n;Γ; F0; αihen;Γ; F; αj; ð35Þ

which, combined with Eq. (31), leads to

ṽΓ;F0;Fðe0n; enÞ ¼
X
Γ∞

ṽΓ∞
ðe0n; enÞ½GΓ∞;Γ�e0n;F0;en;F;

½GΓ∞;Γ�e0n;F0;en;F ¼
X
f

½MΓ∞;Γ;α��f;e0n;F0 ½MΓ∞;Γ;α�f;en;F; ∀ α;

½MΓ∞;Γ;α�f;en;F ¼ hen;Γ∞;Γ; f; αjen;Γ; F; αi: ð36Þ

There are different methods to orthonormalize
jen;Γ∞;Γ; f; αi. We present the result of the eigenmode-
based method discussed in Ref. [12] as follows:

½MΓ∞;Γ;α�f;en;F ¼
ffiffiffiffiffi
λF

p
XF
Γ∞;f; ð37Þ

where λF and XF
Γ∞;f are the Fth eigenvalue and the ðΓ∞; fÞ-

component of the Fth eigenvector of the matrix Pen;Γ;α
respectively.

IV. EXAMPLE OF ISOSPIN-2 ππ SCATTERING

In this section, following a similar discussion in Sec. IV
of Ref. [12], we apply the formalism developed herein to
analyze lattice QCD results for the isospin-2 ππ scattering
system. This time, the moving-frame data is included in the
analysis.
As in Ref. [12], the lattice QCD results are from Ref. [34]

where an anisotropic action is used. They quote the
anisotropy ξ ¼ as=at ¼ 3.444ð6Þ and the pion mass in
lattice units atmπ ¼ 0.06906ð13Þ. The ππ-channel is also
studied in their other recent works [74–76]. Drawing on the
scale setting provided in Ref. [76], a−1t ¼ 5.662 GeV,mπ is
approximately 391 MeV.
In the analysis performed in Ref. [34], lattice results

above the 4π threshold were not included. Since our
formalism does not include the four-body contributions,
the same cut is employed.

A. The procedures

As in Ref. [12], wework with dimensionless lattice units.
The kinetic energy h is taken as

athðkÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatmπÞ2 þ ðatkÞ2

q
; ð38Þ

and when going to the finite-volume system, we have

atk → atkN ¼ 2π
ffiffiffiffi
N

p

ξL=as
; ð39Þ

where N ¼ n2. Because the isospin is two, only s, d, and g
waves need to be taken into account, as in Ref. [34]. With
the partial-wave expansion of Eq. (24), the partial-wave
potentials are taken to be of a simple separable form:

a−2t vlðp; kÞ ¼
Gl

ðatmπÞ2
flðpÞflðkÞ; ð40Þ

with

flðkÞ ¼
ðdlatkÞl

ð1þ ðdlatkÞ2Þl=2þ2
; ð41Þ

with parameters Gl and dl dimensionless.
The parameters in these potentials were fit to minimize

the χ2 defined by
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χ2 ¼ ½ESep − ELattice�T ½C�−1½ESep − ELattice�; ð42Þ

where ESep − ELattice denotes the vector of the differences
between the spectrum obtained in the separable potential
model and the lattice simulation. The covariance
matrix C denotes the covariances in the lattice spectrum
of Ref. [34].
The spectrum was calculated using the method discussed

in Sec. III. While a momentum cutoff Ncut ¼ 600 was used
in Ref. [12], we found that Ncut ¼ 100 is already enough
for the analysis. Consider a specific level (we choose the
highest one of Aþ

1 in Fig. 2) for example, while the lattice
level is 0.263773(424), the level solved from the
Hamiltonian (using the parameters taken from the rest-
frame fit in Ref. [12]) only shifts around 0.000001 when
Ncut reduces from 600 to 100. Actually, for the lattice size
L ∼ 3 fm used here, 2π

L

ffiffiffiffiffiffiffiffi
Ncut

p
are roughly 10 and 4 GeV

when Ncut ¼ 600 and 100 respectively. So Ncut ¼ 100 is
totally enough here. For studies with larger L, however,
one needs larger Ncut. What is more, we found
jχ2Ncut¼100 − χ2Ncut¼600j < 0.1 in the range of parameters of
interest. On the other hand, the values atmπ ¼ 0.06906ð13Þ
and ξ ¼ as=at ¼ 3.444ð6Þ may bring appreciable uncer-
tainties to our analysis. Here we do not consider
them, because the analysis based on the Lüscher method
implemented in Ref. [34] suggests that they only have a
small effect. The dimensions of the finite-volume
Hamiltonian matrices for Ncut ¼ 100 and 600 are listed
in Table III for each of the irreducible representations
considered. Case B is not included, as we havem1 ¼ m2 in
the current ππ system. It is notable that the analysis of the
moving-frame lattice data corresponds to the C2 case
with η ¼ 1.

B. The results

As in Ref. [12] we set d2 ¼ d4 ¼ dB ¼ 4.78 in
the fitting. The results of the fit are shown in Table IV,
where results of Ref. [12] are also included for comparison.
Using those parameters, we predict the L-dependent
spectrum for both rest and moving frames in
Figs. 2 and 3.

TABLE III. Thedimensions of the finite-volumeHamiltonianmatrices for eachof the irreducible representationsΓ, forNcut ¼ 100 and600.

Case: d Γ Ncut ¼ 100 Ncut ¼ 600

A: (0,0,0) ðAþ
1 ; A

þ
2 ; E

þ; Tþ
1 ; T

þ
2 Þ (129, 0, 145, 75, 144) (923, 0, 965, 488, 963)

C1: (0, 0, 1) ðAþ
1 ; A

þ
2 ; B

þ
1 ; B

þ
2 ; E

þÞ (357, 202, 271, 249, 448) (4357, 3004, 3354, 3254, 6222)
C1: (0, 1, 1) ðAþ

1 ; A
þ
2 ; B

þ
1 ; B

þ
2 Þ (624, 467, 465, 487) (8122, 6806, 6802, 6923)

C1: (1, 1, 1) ðAþ
1 ; A

þ
2 ; E

þÞ (409, 239, 652) (5320, 3504, 8879)
C2: (0, 0, 1) ðAþ

1 ; A
þ
2 ; B

þ
1 ; B

þ
2 ; E

þÞ (308, 173, 234, 214, 448) (4102, 2826, 3158, 3064, 6222)
C2: (0, 1, 1) ðAþ

1 ; A
þ
2 ; B

þ
1 ; B

þ
2 Þ (558, 420, 417, 433) (7772, 6516, 6518, 6625)

C2: (1, 1, 1) ðAþ
1 ; A

þ
2 ; E

þÞ (354, 215, 564) (5035, 3360, 8381)

FIG. 2. Rest-frame finite-volume spectrum fit of the separable
potentialmodel to the latticeQCDresults ofRef. [34] for isospin-2ππ
scattering. Red dashed (rest-only fit) and blue solid (rest and moving
fit) curves illustrate the energies resolved in the separable potential
model as the fit parameters of Table IVare optimized to fit the lattice
QCDresults (redpoints in this figureandbluepoints inFig.3).Results
of the rest-only and rest andmoving fits are almost indistinguishable.
Green dotted curves illustrate the noninteracting pion-pair energies.
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FIG. 3. As in Fig. 2 for moving-frame finite-volume spectrum.

TABLE IV. Parameters minimizing Eq. (42) with rest-frame data only and both rest- and moving-frame data. Both data are from
Ref. [34] and the fitting results of rest-frame data are taken from Ref. [12]. Covariances for parameters are described by the Hessians
listed in Eqs. (44) and (45).

l ¼ 0 l ¼ 2 l ¼ 4

Data used χ2=Ndof G0 d0 G2 d2 G4 d4

Rest only 10.5=ð11 − 4Þ 67.8(3.4) 4.57(0.28) 90.6(28.3) dB 340.(307.) dB
Rest and moving 115.9=ð49 − 4Þ 67.2(2.3) 4.59(0.18) 68.1(16.4) dB 257.(173.) dB
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Our covariance for parameters λi is defined as ½H=2�−1,
where H is the Hessian of χ2, the matrix of second-order
partial derivatives over parameters

½H�i;j ¼
∂2χ2

∂λi∂λj : ð43Þ

As two dl are fixed, we only have four parameters and the
final covariance returned by MINUIT 2 (ordered as G0, d0,
G2, G4) is

½H=2�−1 ¼

2
6664
5.28 0.321 21.1 47.3

0.321 0.0323 0.839 3.78

21.1 0.839 269. 716.

47.3 3.78 716. 2.99× 104

3
7775: ð44Þ

For comparison, we also list the covariance obtained in
Ref. [12] for the fitting of rest-frame data:

½HRest=2�−1¼

2
6664
11.4 0.674 58.4 −197.
0.674 0.0773 1.53 −9.61
58.4 1.53 802. −1.28×103

−197. −9.61 −1.28×103 9.45×104

3
7775:

ð45Þ

As the different values of l are decoupling in solving for the
phase shifts, the values underlined in Eqs. (44) and (45) are
used in calculating the errors in the phase shifts.
In Table IV, one may be concerned with the increase of

χ2=Ndof after including the moving frame data. However,
the fitting based on the Lüscher method implemented in
Ref. [34] gives χ2=Ndof ¼ 116=ð49 − 3Þ (they did not
include the g-wave), quite close to ours. As shown in
Fig. 4, the inclusion of moving frame lattice QCD results
induces small variations in the phase shifts within the 1σ
uncertainties of the predictions from the rest-frame data
alone. However, the use of moving-frame data reduces the
uncertainties in the HEFT phase shifts significantly.
Moreover, the constraints provided by several lattice
QCD energy levels on a small number of parameters
characterizing the spectrum lead to results that are relatively
precise in comparison to the Lüscher method. Still the
results from the two approaches are generally consistent
with only one outlier arising from the Lüscher method.
We also examine the differences in the finite-volume

spectra associated with the elongation of the lattice
volume versus the nonzero total momentum of the two-
particle system. Our consideration aims to understand
how elongation and nonzero total momentum differ in the
spectrum. One may find for the pure elongated and the
pure moving systems that 1

η and γ play a similar role.

Noting that γ depends on the momentum k and the total
momentum P, to make a comparison we set η ¼ 1

γ ≈ 0.868
with γ taking the value on k ¼ 0, d ¼ ð0; 0; 1Þ and
L=as ¼ 20. We predict the L-dependent spectrum for
the corresponding elongated, moving and elongated mov-
ing systems in Fig. 5. These three systems provide quite
different spectra. Thus the consideration of elongated,
moving, and elongated-moving systems are useful for
generating more data within a certain range of lat-
tice sizes.

FIG. 4. Phase shift curves predicted by the HEFT separable
potential model for s (top), d (middle) and g (bottom) partial
waves are compared with points determined via Lüscher’s
method in Ref. [34]. Red dashed (blue solid) curves illustrate
the central values of the phase shifts obtained from rest-frame
data only (both rest- and moving-frame data). The colored
shading describes the associated 1σ uncertainties. The red circle
(blue triangle) points from Ref. [34] illustrate the phase shifts that
can be extracted from the finite-volume spectrum of Figs. 2 and 3
using Lüscher’s method.
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V. SUMMARY

In this work, we have extended HEFT to accommodate
both an elongated finite volume and systems with nonzero
total momentum. We also consider their combination when
the directions of the elongation and the total momentum are
aligned. To calculate the finite-volume energy levels,
we first constructed the elongated-moving Hamiltonian

Eqs. (17)–(20) via the potential parametrized in the rest
frame. The spectrum solved from the Hamiltonian can
approximate the real spectrum of the elongated moving
system up to exponentially suppressed corrections. The
elongation was handled in the usual way, and the moving
effects were realized via a momentum transformation
proposed in Ref. [31].

FIG. 5. As in Fig. 2 for elongated, moving and elongated moving systems with η ≈ 0.868 and d ¼ ð0; 0; 1Þ.
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We then applied the formalism proposed in Ref. [12] to
disentangle the partial-wave mixing in the elongated
moving Hamiltonian. This formalism maximally reduces
the dimension of the Hamiltonian matrix. Different from
the rest frame, the elongated moving system has an addi-
tional characteristic direction, which prefers the partial-
wave expansion expanded in a specific coordinate system.
Next, an example of isospin-2 ππ scattering was used to

demonstrate how this formalism works. The use of moving-
frame data induced small corrections in the phase shifts
within the 1σ bounds of the rest-frame predictions. However
the consideration ofmoving-frame lattice results significantly
reduced the uncertainty in the phase-shift predictions.
The consistency between analyses from the rest-frame
Hamiltonian formalism implemented in Ref. [12] and the
Lüscher method implemented in Ref. [34] is maintained by
themoving-frameHamiltonian formalism implemented here.
Finally, we examined differences between the effects of

elongation and nonzero total momentum. The spectra
obtained from the elongated, moving and elongated mov-
ing systems are quite different, and provide additional
avenues for generating more lattice QCD results within a
certain range of lattice size. On the current status of lattice
simulations, L is roughly in the range 2–6 fm.
This work has largely accomplished the outlook of

Ref. [12] for the generalization of the Hamiltonian for-
malism. More applications to two-body channels with data
from elongated and moving systems are planned.
Furthermore, as mentioned in Ref. [12], the moving-frame
formalism developed here is necessary for a three-body
formalism, since two of the three particles can have a
nonvanishing total momentum. In the three-body case, a
direct Hamiltonian fit should be formally simpler than the
three-body Lüscher formalism. Of course, one of the
remaining challenges is the significant increase in the
dimension of the resultant Hamiltonian matrix.
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APPENDIX A: SYMMETRY GROUPS RELEVANT
TO FINITE VOLUME

In the infinite volume, with the symmetry group G∞ and
its irreducible representations (irreps) Γ∞, one can label the

quantum state vectors as jΓ∞; α∞i, where α∞ is the index
for the vectors in the irrep Γ∞. For example, if we consider
G∞ ¼ SOð3Þ, then jΓ∞; α∞i will be jl; mi. In the finite
volume, the symmetry group G∞ reduces into one of its
subgroups G, and the vectors for an irrep Γ are now labeled
as jΓ;αi.
According to the restricted representation, the infinite-

volume vectors jΓ∞; α∞i also behave as the vectors
belonging to the representations of G, hence, they can
be combined to obtain the vectors belonging to the irrep Γ
as follows:

jΓ; f; αi ¼
X
α∞

½CΓ∞
�α∞;Γ;f;αjΓ∞; α∞i; ðA1Þ

where f is introduced since a specific Γ can be obtained
more than once from the reduction of a single Γ∞. CΓ∞

is
the unitary coefficient matrix. The purpose of this section is
to provide some frequently used CΓ∞

. The results are
summarized in Tables VI to XIII.
Roughly speaking, bosons and fermions can be classified

by the single-valued and double-valued irreps of the group
O(3) respectively. The group O(3) is isomorphic to
SOð3Þ × C2 where the C2 is generated by the parity
inversion. The relation can be formally written as

½Oð3Þ�¼ ½SOð3Þ�×

8>><
>>:
2
64
1

1

1

3
75;

2
64
−1

−1
−1

3
75
9>>=
>>;: ðA2Þ

In the elongated moving system, one also cares about the
group Oð2Þ × C2. It can be formally written as

�
Oð2Þ

1

�
×

8>><
>>:
2
64
1

1

1

3
75;

2
64
−1

−1
−1

3
75
9>>=
>>;: ðA3Þ

The group O(2) is isomorphic to the semidirect product
SOð2Þ ⋊ C2 formally written as

�
Oð2Þ

1

�
¼
�
SOð2Þ

1

�
⋊

8>><
>>:
2
64
1

1

1

3
75;

2
64
1

−1
1

3
75
9>>=
>>;;

ðA4Þ
where the C2 is generated by the reflection rather than the
parity inversion.
Since the irreps of direct-product groups can be con-

structed as the tensor products of the irreps of the two
original groups, we will focus on the groups without the
parity inversion in the following discussions, that are,
SO(3) and O(2). Although the irreps of SO(3) and O(2)
are both labeled as integers and half-integers, they have
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different dimensions. For SO(3), α∞ takes −Γ∞;
−Γ∞ þ 1;…;Γ∞, so the dimension will be 2Γ∞ þ 1. For
O(2), α∞ can only take þ when Γ∞ ¼ 0, and can take both
þ and − in other cases.
In the finite volume, SO(3) will reduce into the octahe-

dral group O, and O(2) will reduce into dihedral groups
whose orders will depend on the direction of the elongated
moving vector d. Groups and their irreps are summarized in
Table V, where A, B and K are labels for one-dimensional
irreps, E and G for two dimensional, T for three dimen-
sional, and H for four dimensional.

For SO(3), those CΓ∞
are provided in many papers, e.g.,

Table A.2 (for bosons) and Table A.4 (for fermions) of
Ref. [77]. Here we cite their results in Tables VI and VII.
For O(2), we take the case d ¼ ð0; 0; 1Þ for example. The

rotations of angles 0; π
2
; π and 3π

2
in the SO(2) and the

reflection in C2 will survive, then the resulting group Dih4
can be formally written as C4 ⋊ C2. So Dih4 can be
generated by the π

2
rotation element Rπ

2
and the reflection

element R, whose representation matrices can be chosen
to be

RΓ∞¼0
π
2

¼ ½ 1 �; RΓ∞≠0
π
2

¼
�
eiΓ∞

π
2 0

0 e−iΓ∞
π
2

�
;

RΓ∞¼0 ¼ ½ 1 �; RΓ∞≠0 ¼
�
0 1

1 0

�
; ðA5Þ

TABLE V. Groups and irreps.

G∞ Γ∞ (boson) Γ∞ (fermion) d G Γ (boson) Γ (fermion)

SO(3) 0; 1; 2;… 1
2
; 3
2
; 5
2
;… (0, 0, 0) O A1; A2; E; T1; T2 G1; G2; H

O(2) 0; 1; 2;… 1
2
; 3
2
; 5
2
;… (0, 0, 1) Dih4 A1; A2; B1; B2; E G1, G2

(0, 1, 1) Dih2 A1, A2, B1, B2 G
(1, 1, 1) Dih3 A1; A2; E K1; K2; G

TABLE VI. CΓ∞
for bosonic irreps of SO(3) taken from

Table A.2 of Ref. [77].

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
0 A1 1 j0; 0i
1 T1 1 1ffiffi

2
p ðj1;−1i − j1; 1iÞ

2 iffiffi
2

p ðj1;−1i þ j1; 1iÞ
3 j1; 0i

2 E 1 j2; 0i
2 1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

T2 1 − 1ffiffi
2

p ðj2;−1i þ j2; 1iÞ
2 iffiffi

2
p ðj2;−1i − j2; 1iÞ

3 − 1ffiffi
2

p ðj2;−2i − j2; 2iÞ
3 A2 1 1ffiffi

2
p ðj3;−2i − j3; 2iÞ

T1 1
ffiffi
5

p
4
ðj3;−3i − j3; 3iÞ −

ffiffi
3

p
4
ðj3;−1i − j3; 1iÞ

2 −i
ffiffi
5

p
4

ðj3;−3i þ j3; 3iÞ − i
ffiffi
3

p
4
ðj3;−1i þ j3; 1iÞ

3 j3; 0i
T2 1 −

ffiffi
3

p
4
ðj3;−3i − j3; 3iÞ −

ffiffi
5

p
4
ðj3;−1i − j3; 1iÞ

2 −i
ffiffi
3

p
4

ðj3;−3i þ j3; 3iÞ þ i
ffiffi
5

p
4
ðj3;−1i þ j3; 1iÞ

3 1ffiffi
2

p ðj3;−2i þ j3; 2iÞ
4 A1 1

ffiffiffiffi
30

p
12

ðj4;−4i þ j4; 4iÞ þ
ffiffiffiffi
21

p
6
j4; 0i

E 1 −
ffiffiffiffi
42

p
12

ðj4;−4i þ j4; 4iÞ þ
ffiffiffiffi
15

p
6
j4; 0i

2 − 1ffiffi
2

p ðj4;−2i þ j4; 2iÞ
T1 1 − 1

4
ðj4;−3i þ j4; 3iÞ −

ffiffi
7

p
4
ðj4;−1i þ j4; 1iÞ

2 i
4
ðj4;−3i − j4; 3iÞ − i

ffiffi
7

p
4
ðj4;−1i − j4; 1iÞ

3 1ffiffi
2

p ðj4;−4i − j4; 4iÞ
T2 1

ffiffi
7

p
4
ðj4;−3i þ j4; 3iÞ − 1

4
ðj4;−1i þ j4; 1iÞ

2 i
ffiffi
7

p
4
ðj4;−3i − j4; 3iÞ þ i

4
ðj4;−1i − j4; 1iÞ

3 1ffiffi
2

p ðj4;−2i − j4; 2iÞ

TABLE VII. CΓ∞
for fermionic irreps of SO(3) taken from

Table A.4 of Ref. [77].

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
1
2

G1 1 j 1
2
; 1
2
i

2 j1
2
;− 1

2
i

3
2

H 1 j 3
2
; 3
2
i

2 j 3
2
; 1
2
i

3 j3
2
;− 1

2
i

4 j3
2
;− 3

2
i

5
2

G2 1
ffiffiffiffi
30

p
6
j5
2
;− 3

2
i −

ffiffi
6

p
6
j 5
2
; 5
2
i

2 −
ffiffi
6

p
6
j5
2
;− 5

2
i þ

ffiffiffiffi
30

p
6
j 5
2
; 3
2
i

H 1 −
ffiffiffiffi
30

p
6
j5
2
;− 5

2
i −

ffiffi
6

p
6
j 5
2
; 3
2
i

2 j 5
2
; 1
2
i

3 −j5
2
;− 1

2
i

4
ffiffi
6

p
6
j5
2
;− 3

2
i þ

ffiffiffiffi
30

p
6
j 5
2
; 5
2
i

7
2

G1 1
ffiffiffiffi
15

p
6
j7
2
;− 7

2
i þ

ffiffiffiffi
21

p
6
j 7
2
; 1
2
i

2 −
ffiffiffiffi
21

p
6
j7
2
;− 1

2
i −

ffiffiffiffi
15

p
6
j 7
2
; 7
2
i

G2 1 − 1
2
j7
2
;− 3

2
i þ

ffiffi
3

p
2
j 7
2
; 5
2
i

2 −
ffiffi
3

p
2
j7
2
;− 5

2
i þ 1

2
j 7
2
; 3
2
i

H 1 1
2
j7
2
;− 5

2
i þ

ffiffi
3

p
2
j 7
2
; 3
2
i

2
ffiffiffiffi
21

p
6
j7
2
;− 7

2
i −

ffiffiffiffi
15

p
6
j 7
2
; 1
2
i

3 −
ffiffiffiffi
15

p
6
j7
2
;− 1

2
i þ

ffiffiffiffi
21

p
6
j 7
2
; 7
2
i

4
ffiffi
3

p
2
j7
2
;− 3

2
i þ 1

2
j 7
2
; 5
2
i
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where we represent jΓ∞ ≠ 0;�i as follows:

jΓ∞ ≠ 0;−i ∼
�
1

0

�
; jΓ∞ ≠ 0;þi ∼

�
0

1

�
: ðA6Þ

Note when Γ∞ ≠ 0, since Γ∞ and Γ∞ þ 4 share the same
representation matrices as indicated in Eq. (A5), one will
have CΓ∞

¼ CΓ∞þ4. In fact, for d ¼ ð0; 1; 1Þ, it will be
CΓ∞

¼ CΓ∞þ2, and for d ¼ ð1; 1; 1Þ, it will be
CΓ∞

¼ CΓ∞þ3. Because those irreps are only one or two
dimensional, it is easy to find out those CΓ∞

. We also note
that since there is still the freedom to choose the repre-
sentation matrices of the finite-volume irreps, those CΓ∞

are
not unique. The results for our choice are summarized in
Tables VIII to XIII.

1. States in elongated moving system

In the elongated moving system, one will deal with the
states

TABLE VIII. CΓ∞
for bosonic irreps of O(2) when

d ¼ ð0; 0; 1Þ, and CΓ∞
¼ CΓ∞þ4 for Γ∞ ≠ 0.

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
0 A1 1 j0;þi
1 E 1 j1;−i

2 j1;þi
2 B1 1 1ffiffi

2
p ðj2;−i þ j2;þiÞ

B2 1 1ffiffi
2

p ðj2;−i − j2;þiÞ
3 E 1 j3;þi

2 j3;−i
4 A1 1 1ffiffi

2
p ðj4;−i þ j4;þiÞ

A2 1 1ffiffi
2

p ðj4;−i − j4;þiÞ

TABLE IX. CΓ∞
for fermionic irreps of O(2) when

d ¼ ð0; 0; 1Þ, and CΓ∞
¼ CΓ∞þ4 for Γ∞ ≠ 0.

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
1
2

G1 1 j 1
2
;−i

2 j 1
2
;þi

3
2

G2 1 j 3
2
;−i

2 j 3
2
;þi

5
2

G2 1 j 5
2
;þi

2 j 5
2
;−i

7
2

G1 1 j 7
2
;þi

2 j 7
2
;−i

TABLE X. CΓ∞
for bosonic irreps of O(2) when d ¼ ð0; 1; 1Þ,

and CΓ∞
¼ CΓ∞þ2 for Γ∞ ≠ 0.

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
0 A1 1 j0;þi
1 B1 1 1ffiffi

2
p ðj1;−i þ j1;þiÞ

B2 1 1ffiffi
2

p ðj1;−i − j1;þiÞ
2 A1 1 1ffiffi

2
p ðj2;−i þ j2;þiÞ

A2 1 1ffiffi
2

p ðj2;−i − j2;þiÞ

TABLE XI. CΓ∞
for fermionic irreps of O(2) when

d ¼ ð0; 1; 1Þ, and CΓ∞
¼ CΓ∞þ2 for Γ∞ ≠ 0.

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
1
2

G 1 j 1
2
;−i

2 j 1
2
;þi

3
2

G 1 j 3
2
;þi

2 j 3
2
;−i

TABLE XII. CΓ∞
for bosonic irreps of O(2) when d ¼ ð1; 1; 1Þ,

and CΓ∞
¼ CΓ∞þ3 for Γ∞ ≠ 0.

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
0 A1 1 j0;þi
1 E 1 j1;−i

2 j1;þi
2 E 1 j2;þi

2 j2;−i
3 A1 1 1ffiffi

2
p ðj3;−i þ j3;þiÞ

A2 1 1ffiffi
2

p ðj3;−i − j3;þiÞ

TABLE XIII. CΓ∞
for fermionic irreps of O(2) when

d ¼ ð1; 1; 1Þ, and CΓ∞
¼ CΓ∞þ3 for Γ∞ ≠ 0.

Γ∞ Γ α
P

α∞
½CΓ∞

�α∞;Γ;f≡1;αjΓ∞; α∞i
1
2

G 1 j 1
2
;−i

2 j 1
2
;þi

3
2

K1 1 1ffiffi
2

p ðj 3
2
;−i þ j 3

2
;þiÞ

K2 1 1ffiffi
2

p ðj 3
2
;−i − j 3

2
;þiÞ

5
2

G 1 j 5
2
;þi

2 j 5
2
;−i
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jen;Γ∞; α∞i ≔
X
ên

eimϕjni; ðA7Þ

where en denotes ðn2;n · dÞ, and P
ên means summing

over all the states with the same en, and ðΓ∞; α∞Þ will be
ðjmj; signðmÞÞ [we define signð0Þ ¼ þ], and the angle ϕ
depends on the choice of the axes labeled as ðx̃; ỹ; z̃Þ,
which can differ from the finite-volume box’s axes
ðx; y; zÞ. The purpose of this section is to find out some
suitable choices for ðx̃; ỹ; z̃Þ so that the representation
matrices of the symmetry group are consistent with
Eq. (A5) (and its counterparts for other d) and hence the
CΓ∞

provided before can be used. The results are summa-
rized in Table XIV.
We take the case d ¼ ð0; 0; 1Þ for example as before.

One can first choose z̃ to be the normalized elongated
moving vector d=jdj, and also chooses the rotation axis of
Rϕ0

in the SO(2) to be z̃, then only rotations of angles
0; π

2
; π and 3π

2
will always send an integer vector to another

integer vector as expected. So one has

Rϕ0
jen;Γ∞; α∞i ¼ e−imϕ0 jen;Γ∞; α∞i ðA8Þ

for ϕ0 to be 0; π
2
; π or 3π

2
, which is consistent with Eq. (A5).

One then chooses the reversion axis of R in the C2 to be x̃,
so R will send n to n − 2ðn · ỹÞỹ. If ỹ is chosen to make
2ðn · ỹÞỹ an integer vector for any integer vector n, one will
have (for Γ∞ ≠ 0)

Rjen;Γ∞; α∞i ¼ jen;Γ∞;−α∞i; ðA9Þ

which is consistent with Eq. (A5). Our choices for ðx̃; ỹ; z̃Þ
are summarized in Table XIV.

APPENDIX B: SOLVING FOR THE P MATRIX

1. Rest-frame P matrix

With the usual definition of the spherical harmonics,

Ylmðn̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Plmðcos θÞeimϕ;

PlmðxÞ ¼
ð−1Þm
2ll!

ð1 − x2Þm=2 dlþm

dxlþm ðx2 − 1Þl ðB1Þ

and the definition of P matrix given in Ref. [12], the rest-
frame P matrix will be

½Pn2 �l0;m0;l;m ¼ 4π
X
n̂

Y�
l0m0 ðn̂ÞYlmðn̂Þ

¼ cl0;m0;l;m

X
nz

Pl0m0 ðcos θÞPlmðcos θÞ

×
X
nx;ny

e−iðm0−mÞϕ; ðB2Þ

where

cl0;m0;l;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ1Þ ðl

0−m0Þ!
ðl0 þm0Þ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ ðl−mÞ!

ðlþmÞ!

s
: ðB3Þ

When n ¼ ð0; 0; 0Þ, the direction angles are ill defined, and
we can set Ylm ¼ δl0ffiffiffiffi

4π
p .

There are many useful properties of the P matrix listed as
follows:

(i) ½Pn2 �l0;m0;l;m is real because of the symmetry under
ϕ → −ϕ.

(ii) ½Pn2 �l0;m0;l;m ¼ 0 when l0 þ l is odd because of the
symmetry under n → −n.

(iii) ½Pn2 �l0;m0;l;m ¼ 0 when m0 þm is odd because of the
symmetry under ϕ → ϕþ π.

(iv) ½Pn2 �l0;m0;l;m ¼ 0 when jm0 −mj ¼ 2 because of the
symmetry under ϕ → ϕþ π

2
.

The result of the summation

X
nx;ny

e−iðm0−mÞϕ ðB4Þ

depends on ðn2; nzÞ. One need not calculate it for all
ðn2; nzÞ by noting the map n → �nþ ð0; 0; jÞ with any
integer j. In fact, the summation Eq. (B4) is related to the P
matrix PB

en with d ¼ ð0; 0; 1Þ discussed in Appendix B 2.

2. P matrix of the elongated moving system

From Eq. (33), the P matrix for the case B in Table II is

½PB
en �jm0j;S0m;jmj;Sm ¼

X
ên

e−iðm0−mÞϕ�
; ðB5Þ

where it does not matter how to redefine the ill-defined ϕ�

when n2 ¼ nk2, because either m ¼ m0 ¼ 0 then Eq. (B5)
is ϕ�-independent, or one of m and m0 is nonzero then Pl0m0

or Plm in Table II and Eq. (B2) vanishes.
To solve for it, it is worth noting that the map n →

nþ jd with jd any integer vector will tell us

PB
ðn2;n·dÞ ¼ PB

ðn2þ2jn·dþj2d2;þn·dþjd2Þ; ðB6Þ

and the map n → −nþ jd will tell us

TABLE XIV. ðx̃; ỹ; z̃Þ for different d.
d x̃ ỹ z̃

(0, 0, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)
(0, 1, 1) (1, 0, 0) 1ffiffi

2
p ð0; 1;−1Þ 1ffiffi

2
p ð0; 1; 1Þ

(1, 1, 1) 1ffiffi
6

p ð2;−1;−1Þ 1ffiffi
2

p ð0; 1;−1Þ 1ffiffi
3

p ð1; 1; 1Þ
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PB
ðn2;n·dÞ ¼ ð−1Þm0−mPB

ðn2−2jn·dþj2d2;−n·dþjd2Þ: ðB7Þ

With the coordinate axes ðx̃; ỹ; z̃Þ of spherical harmonics
taking the values in Table XIV, there are many useful
properties of PB

ðn2;n·dÞ listed as follows:

(i) PB
ðn2;n·dÞ is real because of the symmetry under

ϕ → −ϕ, which holds for all the d presented in
Table XIV.

(ii) ½PB
ðn2;n·dÞ�jm0j;S0m;jmj;Sm ¼ 0 when m0 þm is odd be-

cause of the symmetry under ϕ → ϕþ π, which
holds for d ¼ ð0; 0; 1Þ; ð0; 1; 1Þ.

(iii) ½PB
ðn2;n·dÞ�jm0j;S0m;jmj;Sm ¼0 when jm0 −mj ¼ 2 because

of the symmetry under ϕ → ϕþ π
2
, which holds only

for d ¼ ð0; 0; 1Þ.
For the case C (C1 or C2), the map n → dγ − n will

tell us

½PC
en �jm0j�;S0m;jmj∓;Sm ¼ 0; ðB8Þ

and

½PC
ðn2;fn·d;ðdγ−nÞ·dgÞ�jm0j�;S0m;jmj�;Sm

¼

8>>>>><
>>>>>:

2½PB
ðn2;n·dÞ�jm0j;S0m;jmj;Sm n · d > d2γ

2

½PB
ðn2;n·dÞ�jm0j;S0m;jmj;Sm n · d ¼ d2γ

2

2ð−1Þm0−m½PB
ðn2;n·dÞ�jm0j;S0m;jmj;Sm n · d < d2γ

2
;

ðB9Þ

where we have used that cos θ� has the same sign with

n · d − d2γ
2
in case C. We also emphasize that PC1 ≠ PC2

since dγ ¼ 0 in case C1 while dγ ¼ d in case C2.
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