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Abstract 

Collaborative robots (cobots) are an emerging technology that are increasingly being 

introduced into organisations. However, research investigating employee attitudes towards, or 

assessment of factors predicting acceptance of cobots is limited. A literature review was 

conducted to identify reliable and parsimonious models of technology acceptance that would 

hold relevance when applied to cobots. Understanding and facilitating employee acceptance 

of such technology is important if the improved productivity, job satisfaction and cost savings 

associated with its implementation are to be achieved. The Technology Readiness Index 

(Parasuraman, 2000) and Technology Acceptance Model (Davis, 1989) were considered most 

appropriate as a starting point to empirically explore cobot acceptance. 

 Keywords: Collaborative robots; cobots; Advanced robotics; Industry 4.0; 

technological change; technological readiness; technology acceptance. 
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Preparing for Industrial Collaborative Robots:  

A Literature Review of Technology Readiness and Acceptance Models 

 The application of technology in work environments can have profound effects for 

individual employees and organisations. The rate and variety of technology introduced to 

workplaces is increasing exponentially and as the Fourth Industrial Revolution expands, 

Ghislieri, Molino and Cortese (2018) recently called for the need to “deepen the 

understanding of the interconnection between workers, organizations and technology” (p.4). 

Several models exist which provide a framework for understanding drivers of, and barriers to, 

an individuals’ readiness for and acceptance of technology. Awareness of key determinants 

can assist organisations in how they prepare employees for, and manage the implementation 

of, new technology. This literature review explores salient models relating to technology 

readiness and acceptance and evaluates their use in the context of an emerging technology, 

collaborative robots.  

The Changing Face of Work 

 Technological advancements, like those achieved over the last 200 to 300 years across 

four industrial revolutions (see Table 1 for a description of each revolution’s contribution), 

have been a catalyst for economic development, increased productivity and improved 

working conditions (Healy, Nicholson & Gahan, 2017; Oesterreich & Teuteberg, 2016). Such 

technological innovations have also fundamentally changed where and how people work.  

For many, employment has transformed from working in a single, fixed location, 

completing manual, repetitive tasks during set, predictable hours to today’s work 

environment requiring more complex problem-solving and featuring telework (working 

remotely) and flexible hours. However, the ability to work anywhere, anytime has been 

associated with significant concerns about declining work-life balance and job satisfaction, in 
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addition to increased burnout (Berg-Beckhoff, Nielsen & Ladekjaer Larsen, 2017; Murray & 

Rostis, 2007). With particular relevance to working in more automated environments, 

prolonged or more frequent periods of independent and isolated work with reduced human 

interaction have also been viewed as a considerable risk to informal learning, organisational 

commitment and employee motivation, mental health and wellbeing (Ghislieri et al., 2018). 

Thus, some suggest that the multitude of digital transformations occurring in organisations 

also require transformation in terms of individual attitudes, ability to cope with technology 

and rules of engagement (Avci & Gulbahar, 2013).  

Table 1 

Timeline of Major Revolutions in Manufacturing 

Industrial Revolution Timeframe Advancements and achievements 

First (Industry 1.0) Circa 1784 Mechanical loom developed in Great Britain, transformed 

communication, transportation and manufacturing 

Second (Industry 2.0) Circa 1870 United States led developments in electricity and the 

telephone. Mass production was bourne 

Third (Industry 3.0) Circa 1970 Development of semi-conductors and Computer Numerical 

Controlled (CNC) automation. Electronics and the Internet 

enabled a digital communications infrastructure 

Fourth (Industry 4.0) Current Physical and virtual worlds are merged through cyber-

physical systems to produce goods and services (data 

driven). Machines and products have endless connectivity 

potential utilising the internet, sensors and micro-

computers to communicate remotely and in real-time (i.e. 

‘Internet of Things’). Possible to create self-optimising 

factories (smart factories). Associated technologies include 

cloud computing, advanced robotics and augmented and 

virtual reality 

Information summarised from: Arnold, Veile and Voigt (2018); Blayone and van Oostveen 

(2019); Kagermann, Wahlster and Helbig (2013); Vaidya, Ambad and Bhosle (2018); and 

Winberg and Ahrén (2018). 
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 Furthermore, proficiency in and ability to cope with technology in the workplace is 

likely to be influenced by competency in both hard skills (IT/technical expertise) and soft 

skills (e.g. communication, ability to work in multi-functional teams, deal with complex 

situations, continuous learning; Ghislieri et al., 2018; Healy et al., 2017; Parry & Battista, 

2019). 

Applications of technology 

Context is everything 

Blut and Wang (2019) recognise the many and varied contexts in which technology is 

used. Technology can be used in personal (home) and professional (work) settings. When 

used in a personal (‘consumer’) context, technology is used for two main purposes: hedonic 

(pleasure-oriented; e.g. virtual reality fashion applications) and utilitarian (productivity-

oriented; e.g. internet banking). In a work setting, the focus is on productivity gains. In either 

setting, use of a technology can be either voluntary (objectives can be achieved without using 

a specific technology) or mandatory (no alternate choice to complete a task or objective). The 

focus of this review is professional settings where eventual use (application of industrial 

collaborative robots is emerging) is expected to be mandatory. However, the extent of usage 

can still vary between individuals in mandatory settings whereby they may decide to “delay, 

obstruct, underutilize, or sabotage a new technology” (Leonard-Barton, 1988, p.604). 

Collaborative robots 

 Collaborative robots (cobots) are an application of advanced robotics (an emerging 

technology of Industry 4.0; Autonomous Manufacturing, 2019) and as the names suggests, 

allow humans and robots to collaborate on tasks where work is performed simultaneously in a 

co-located area (Kolbeinsson, Lagerstedt & Lindblom, 2018). Both the human and robot are 

involved in the achievement of a result or project outcome (Müller-Abdelrazeq, Schӧnefeld, 
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Haberstroh & Hees, 2019) and from this perspective, cobots and humans can be viewed as 

complementary to each other in the workplace with cobots assisting in complex tasks that 

cannot be fully automated (Mobile Automation, 2017).  

 Cobots are a special type of industrial robot and are typically smaller and less 

powerful than their caged robotic predecessors (traditional industrial robots) and for that 

reason are perceived to be safer. Their inbuilt ‘smart’/digital technology (i.e. cameras, lasers, 

sensors) allows them to sense the presence of a human and adjust their movements to avoid 

collisions (Twentyman, 2017). Cobots are typically used to perform hazardous, sensitive or 

mundane aspects of tasks (e.g. welding and painting) allowing humans to concentrate on 

more knowledge-intensive, value-add (revenue generating) activities such as monitoring 

production efficiencies (TÜV Rheinland, 2017), creating new tasks and responsibilities 

(Ghazizadeh, Lee & Boyle, 2012). Therefore, the introduction of cobots to a work 

environment has the potential to reduce injuries (including repetitive strain injuries; Küpper 

et al., 2019), and increase job satisfaction. However, the impacts of technological change are 

always multi-faceted and rarely exclusively positive (Brougham & Haar, 2017). For example, 

fear of job losses is frequently a concern associated with the implementation of technology 

(Müller-Abdelrazeq et al., 2019; Weiss, Huber, Minichberger & Ikeda, 2016). 

 Presently, about 3% of all industrial robots sold are cobots with this figure projected 

to reach 34% by 2025 (Halle, 2018). Manufacturing is currently the principal market for 

industrial cobots although their uptake is increasing in a number of sectors from construction 

and agriculture to medical, health care and defence (Maull, Brewer & Maull, 2019). 

Therefore, working with cobots is an ever-increasing prospect, particularly for younger 

generations and those currently transitioning to the workforce. 
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The value of understanding attitudes to and acceptance of technology 

For a range of stakeholders (including technology developers and managers in 

organisations), acceptance and use of a system are important indicators of success when new 

technology is implemented (Hwang, Al-Arabiat & Shin, 2016). For mandatory settings, in 

particular, employee satisfaction with the new technology is critical to prevent rejection and 

minimise absenteeism and turnover (Yousafzai, Foxall & Pallister, 2007a). After all, the 

anticipated benefits of technology implementation, such as improved efficiency and task 

performance (Hsiao & Yang, 2011), will not be fully realised if user acceptance is poor and 

usage is sub-optimal (undermining the cost-benefit proposition of technology investment). 

Therefore, understanding the factors that influence people’s acceptance and usage of 

technology will aid how it is developed (Taherdoost, 2018; e.g. system requirements), 

promoted (e.g. communication strategy) and implemented (e.g. tailoring of support and 

training). The manufacturing industry has long been aware that the characteristics of a 

specific technology are not solely responsible for why employees accept or reject new 

technology (Manufacturing Studies Board, 1986; as cited in Slem, Levi & Young, 1995). 

Technology acceptance models and frameworks 

Terminology 

‘Technology acceptance’ is related to, and sometimes used broadly to encapsulate 

technology readiness and technology adoption. Parasuraman (2000) defines technology 

readiness as “people’s propensity to embrace and use new technologies for accomplishing 

goals in home life and at work” (p.308). It is an individual’s predisposition to use new 

technologies. In general terms, technology acceptance can be defined as a positive decision to 

use an innovation (Taherdoost, 2018), an observable willingness to use technology (Avci & 

Gulbahar, 2013). Whereas technology adoption “is not only the choice to accept an 
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innovation but also the extent to which that innovation is integrated into the appropriate 

context” (Straub, 2009, p.626).  

Often, use of these terms seems to be distinguished by the degree of specificity of the 

technology investigated and the length of exposure to/stage of implementation of the 

technology. For example, Lin, Shih and Sher (2007) highlight that technological readiness 

and acceptance are interrelated but the former relates more to an individual’s general 

technology beliefs and the latter to an individual’s beliefs of a specific system or technology. 

Ghazizadeh and colleagues (2012) continue in this vein noting that “…adoption and 

acceptance have similar meanings but adoption has a slightly broader connotation. Adoption 

goes beyond acceptance to address patterns of reliance and dependence” (p.40). Given the 

‘emerging status’ of cobots into the workplace, models of adoption are considered to be 

outside the scope of this review. 

Models and Frameworks 

The following models have been identified as offering valid and widely utilised 

frameworks to assess individual technology readiness and acceptance. In order to minimise 

employee resistance to a new technology, Venkatesh and Bala (2008) encouraged 

organisations to proactively manage employee perceptions of a new technology and engage 

in pre-implementation interventions to ensure employee expectations of the technology (and 

its impact on their work performance) are realistic. Evaluating workforce readiness for and 

expectations of a new technology prior to any implementation decision is likely to be 

valuable in shaping the nature and timelines of any subsequent pre-implementation 

interventions (Renjen, 2019). 

 Assessing impacts of technological change. Many decades ago, Slem, Levi and 

Young (1986; as cited in Slem et al., 1995) suggested that the degree of employee 
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cooperation or resistance an organisation faces when technological change is implemented is 

a result of their beliefs about the impact of the technology and how the technological change 

is managed. In a study investigating the impact of computer-integrated manufacturing on 

employees from electronic manufacturing facilities, Levi, Slem and Young (1992; as cited in 

Slem et al., 1995) proposed a model of factors influencing an individual’s attitudes towards 

the impact of technological change (see Figure 1). Employees can perceive positive impacts 

from technological change such as personal benefit (e.g. improved skills and career) and job 

improvement (e.g. more control, more challenging work), and negative impacts, such as 

personal insecurity (e.g. concern over future work) and job stress (e.g. overload, damaged co-

worker relationships). The greater the perceived personal benefit and job improvement, the 

more likely employees are to cooperate and facilitate the technological change (Slem et al., 

1995). How the technological change process is managed was found to be one of the main 

factors determining perceptions (Levi et al., 1992; as cited by Slem et al., 1995). 

 

Figure 1. Model of the impacts of technological change (reproduced from Slem et al., (1995)). 

 

 Technology Readiness Index.  Originally developed to explore customer/consumer 

reactions to technology implemented by businesses, the Technology Readiness Index (TRI) 
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measures an individual’s general beliefs about technology (Parasuraman, 2000; TRI items 

have also recently been reviewed (reduced) and updated to ensure that the language reflects 

modern technology experiences, see Parasuraman & Colby, 2015 for a comparison). A 

person’s overall score, considered to be on a continuum from strongly positive to strongly 

negative, comprises four components: Optimism, Innovativeness, Discomfort and Insecurity 

(definitions are provided in Table 2). Optimism and Innovativeness are deemed to be 

motivators of technology use (increasing readiness) whereas Discomfort and Insecurity are 

likely to inhibit technology use (decrease readiness). Thus, the Index recognises that 

individuals can have both positive and negative beliefs about technology. In a recent meta-

analysis employing structural equation modelling of data from 163 articles, Blut and Wang 

(2019) recommended that technology readiness is best conceptualised as two-dimensional 

(motivators and inhibitors) rather than as one (overall score) or four-dimensional, concluding 

this offers a “parsimonious yet comprehensive” way to measure technology readiness (p.2). 

Table 2 

Components of the Technology Readiness Index (TRI) 

TRI dimension Definition 

Optimism Tendency to have a positive view of technology and believe that 

technology offers people increased control, flexibility and efficiency 

Innovativeness Tendency to be a technology pioneer and thought leader 

Discomfort Tendency to perceive a lack of control over technology and feel 

overwhelmed by it 

Insecurity Tendency to distrust technology, sceptical about its reliability/ability 

to work properly 

Based on Parasuraman (2000). 

The TRI has been shown to successfully differentiate between technology usage 

intentions of consumers (Parasuraman, 2000). Moreover, Blut and Wang (2019) discussed 

that technological readiness has been positively associated with adoption rates of a range of 
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technology services across both work and home settings (e.g. internet banking, mobile 

technologies, social robots, self-checkout terminals, remote services, online taxation systems, 

and cloud computing). However, the author has found limited application of the TRI in 

mandatory, employee settings. One exception was a study conducted by Chang and Kannan 

(2006) examining the readiness of 204 US government employees for wireless technology. 

They found a medium-sized correlation (.47) between overall TRI scores and support 

for/willingness to use wireless technology in the workplace. 

When technology readiness is investigated, it is often done in combination with 

models of technology acceptance (Erdoĝmuş & Esen, 2011; Lin et al., 2007; Walczuch, 

Lemmink & Streukens, 2007; Pires, da Costa Filho & da Cunha, 2011). Further to this point, 

findings from Blut and Wang’s meta-analysis (2019) suggest that TRI ‘motivators’ and 

‘inhibitors’ indirectly predict intentions to use technology and actual technology usage, 

exerting their influence through perceived ease of use and perceived usefulness – two core 

constructs of the technology acceptance model. In a consumer setting, technological 

readiness was shown to primarily influence PEOU (Lin et al., 2007). However, again in a 

consumer context, Pires et al. (2011) found the TRI constructs to explain only a small amount 

of additional variation (3%) in intention to use a technology beyond that explained by core 

TAM constructs. 

 Technology Acceptance Model. The field of information system research has long 

pursued the identification of determinants of user acceptance and usage of technology (King 

& He, 2006) and has proposed several models and frameworks over the last 50 years. 

Technology acceptance models have largely evolved from social psychology’s Theory of 

Reasoned Action (Fishbein & Ajzen, 1975; as cited in Ma & Liu, 2004), which has been used 

to explain a range of behaviours (Venkatesh, Morris, Davis & Davis, 2003). The Theory of 

Reasoned Action suggests that how an individual feels about performing a behaviour (attitude 
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toward behaviour), in combination with perceptions of whether people salient to the person 

believe s/he should perform that behaviour (subject norm), will determine a person’s actual 

behaviour (Fishbein & Ajzen, 1975; as cited in Ma & Liu, 2004). Essentially, the Theory of 

Reasoned Action states that beliefs influence attitudes which lead to intentions and therefore 

generate behaviour (Ma & Liu, 2004). 

Drawing on this theory, Davis (1989) empirically tested a model (known as the 

Technology Acceptance Model; TAM) to predict information technology acceptance and 

usage in work settings (Hsiao & Yang, 2011; Lin et al., 2007; Venkatesh et al., 2003). TAM 

proposes that perceived usefulness (PU) of a system/technology and perceived ease of use 

(PEOU) of a system/technology mediate the relationship between systems characteristics (i.e. 

external factors) and likelihood of system use (Legris, Ingham & Collerette, 2003). PU an 

PEOU are antecedents of attitude towards using technology, which in turn predict 

behavioural intention (BI) to use technology which then predicts actual system use (Davis, 

Bagozzi & Warshaw, 1989; see Figure 2). ‘Attitudes’ toward technology refer to a mental 

state of preparation for action (Müller-Abdelrazeq et al., 2019) and reflect the strength of 

one's feelings of favourableness or unfavourableness toward the technology (Moon & Kim, 

2001). 

 

Figure 2. Technology Acceptance Model (TAM; Reproduced from Davis et al., 1989) 
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Davis (1989) defines PU as “the degree to which a person believes that using a 

particular system would enhance his/her job performance” (p.320) and PEOU as “the degree 

to which a person believes that using a particular system would be free of effort” (p.320). The 

greater the PU of a technology, the more likely the user is to believe a positive use-

performance relationship will ensue and the easier a technology or application is to use, the 

more readily it will be accepted (Davis, 1989).  

TAM has been used to assess user acceptance of various technology in a variety of 

industries including business, education, healthcare and construction (Liu, Lu & Niu, 2018). 

The model has consistently explained the variability in intentions to use technology and 

actual use behaviour (Ghazizadeh et al., 2012). As such, it is considered one of the most 

robust and parsimonious models of technology acceptance (Hsiao & Yang, 2011; Legris et 

al., 2003; Venkatesh & Davis, 2000). 

Meta-analyses by King and He (2006) and Ma and Liu (2004) have shown that the 

strongest, significant relationship between these constructs is between PU and BI and 

between PU and PEOU, although there was less overall consistency in the nature of the latter 

relationship. A weaker, and at times insignificant relationship, was found between PEUO and 

BI (King & He, 2006; Ma & Liu, 2004). However, some recognise that in mandatory settings, 

PEOU is a stronger predictor of acceptance compared with PU (Adamson and Shine 2003; 

Brown et al. 2002). In addition, several researchers argue that when evaluating technology 

acceptance in mandatory settings, the attitude construct takes on heightened significance 

(Brown, Massey, Montoya-Weiss & Burkman, 2002; Yousafzai et al., 2007a). However, 

Horton, Buck, Waterson and Clegg (2001) questioned the validity of how an attitude may be 

‘calculated’ and argued for retaining the simplest model possible (i.e. PU, PEOU, BI and 

actual usage). Furthermore, Turner, Kitchenham, Brereton, Charters and Budgen (2010) 

established from their systematic literature review of 79 empirical studies of TAM, that 



PREPARING FOR INDUSTRIAL COLLABORATIVE ROBOTS                                       14 
 

researchers do not typically include actual usage measures. However, when they do, the 

strength and significance of the relationships between PU and PEOU with actual usage is less 

consistent than the correlation between BI and actual usage. Turner et al. (2010) concluded 

that PU and PEOU are not necessarily reliable indicators of actual usage and as such, results 

from studies must be interpreted cautiously and within the context of the specific technology 

and population sampled. 

 Results from a meta-analysis conducted by Legris and colleagues (2003) reviewing 22 

studies revealed that TAM tends to explain approximately 40% of system use. Needless to 

say, there have been many derivatives and proposed extensions of the original TAM in order 

to improve its predictability of actual usage as well as provide more concrete mechanisms 

through which usage can be influenced. The more prominent of these models (approximately 

eight) have been articulated and reviewed extensively by numerous researchers (Chen, Li & 

Li, 2011; Lai, 2017; Lee, Kozar & Larsen, 2003; Marangunić & Granić, 2015; Taherdoost, 

2018; Venkatesh et al., 2003) and for that reason are not repeated here. However, in short, 

they add a range of personal and social factors as determinants of PU and/or PEOU.  

 In their meta-analysis of TAM from 88 studies, King and He (2006) concluded that 

PU, PEOU and BI can be considered the ‘core’ TAM constructs and that a broader structure 

has evolved by applying one or more of four types of modifications: inclusion of external 

factors (e.g. situational involvement, prior usage or experience, personal computer self-

efficacy); incorporating factors from other theories (e.g. subjective norm, expectation, task-

technology fit, risk and trust); including contextual factors/potential moderators (e.g. gender, 

culture, technology characteristics); and inclusion of consequence measures (e.g. attitude, 

actual usage). 
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 Moreover, in a meta-analysis of 145 publications, Yousafzai, Foxall and Pallister 

(2007b) identified more than 70 external variables that had been included in models of 

technology acceptance. They categorised these into organisational characteristics (e.g. 

support and training), system characteristics (e.g. reliability and accuracy, response time), 

users’ personal characteristics (e.g. age, awareness, personality, self-efficacy) and other (e.g. 

cultural affinity, subjective norms, task characteristics). Four moderating factors were also 

found across the studies: subject type (student versus professional); method type 

(experimental versus survey); measurement of usage (subjective/self-report versus objective); 

and type of technology tested (communication systems (e.g. email), general-purpose systems 

(e.g. e-commerce), office systems (e.g. word processor), and business systems (e.g. 

Manufacturing Resources Planning (MRP)). However, Yousafzai et al. (2007b) did not 

evaluate which measures were most commonly used or effective. In contrast, Lee and 

colleagues (2003) provided an overview of these relationships from a meta-analysis of more 

than 100 studies and indicated system quality, training, compatibility, computer anxiety, self-

efficacy, enjoyment, computing support, and experience were the most frequently introduced 

variables. Of these, enjoyment, quality, management support and experience appeared to be 

among the most consistent in influencing PU, PEOU, or BI.  

 Venkatesh and colleagues (2003) acknowledged there was significant overlap in 

constructs between various TAM modifications and extensions and subsequently proposed 

the Unified Theory of Acceptance and Use of Technology (UTAUT). As shown in Figure 3, 

this model proposes four independent constructs that directly determine intentions to use 

technology: performance expectancy (incorporating the PU construct from TAM (Davis, 

1989), among other constructs); effort expectancy (incorporating the PEOU construct from 

TAM (Davis, 1989), among other constructs); social influence; and facilitating conditions 

(Venkatesh et al., 2003) and four moderators of these relationships (experience, 
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voluntariness, gender and age). Venkatesh and colleagues (2003) found this model to 

outperform previous TAM iterations, explaining 70% of variance in intentions to use 

technology. However, in a meta-analysis of 27 studies that utilised the UTAUT model, 

Dwivedi, Rana, Chen and Williams (2011) found that multiple technology acceptance 

theories are typically used in conjunction with each other in a single study (TAM being the 

most frequently used theory alongside UTAUT). Thus, they recommended that future studies 

employ streamlined models as much as possible in order to avoid repetition and redundancy 

in constructs. 

 

Figure 3. The UTAUT model (Reproduced from Venkatesh et al’s (2003)) 

 

Current knowledge about readiness for and acceptance of collaborative robots 

 Research investigating employee attitudes towards, or assessment of factors 

predicting acceptance of, industrial collaborative robots (cobots) is limited. A study 

conducted by Elprama, El Makrini, Vanderborght and Jacobs (2016) with car factory workers 

is one exception. Their quantitative, repeated measures pilot study used the ‘Almere’ model 
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(a variant of the UTAUT model developed to assess the acceptance of social robots by older 

adults) as a framework to investigate the impact of cobot social cues (i.e. the degree of 

anthropometric features such as eyes and arms, like a human) on acceptance. In this study 

participants completed a task with a specific type of cobot (‘Baxter’). Elprama and colleagues 

(2016) found that the greater the social cues provided by the cobot (e.g. head move toward 

the object it was manipulating, nodding to understand a gesture), the greater the perceived 

enjoyment of employees and intention to work with them. Studies evaluating the influence of 

a specific ‘system’ or technological feature of cobots on user acceptance appear to be the 

norm (e.g. Maurtua, Ibarguren, Kidal, Susperregi & Sierra, 2017) and are often qualitative 

(e.g. Sauppé & Mutlu, 2015). 

 A more holistic approach has been taken by studies exploring user attitudes towards 

and acceptance of industrial robots generally. For example, a more recent study by Elprama 

and colleagues (Elprama, Jewell, Jacobs, El Makrini & Vanderborght, 2017) involved 

interviews with eight factory workers regarding their perceptions of working with industrial 

robots. Although not specific to cobots, perceived disadvantages of robot implementation 

included concerns about job losses and decreased contact with colleagues whilst the main 

perceived advantage was reduced mental and physical workload. Henderson (2015) 

conducted a mixed-method study exploring the extent of industrial robot acceptance of 37 

employees in an American manufacturing facility. She applied the core constructs of the 

technology acceptance model (PU, PEOU and BI) as her framework and her findings 

supported that manufacturing personnel will be accepting of industrial robots if perceived to 

be useful and easy to use (however analyses were limited due to the small sample size). 
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Henderson (2015) also examined the influence of workplace culture on receptiveness to 

technological change and concluded that personnel being given the opportunity to work in 

teams was positively associated with acceptance of technological change. Further, open 

communication between management and personnel was shown to be a key factor for 

personnel to accept technological change, producing increased feelings of organisational 

support. 

 Finally, research conducted by Brӧhl, Nelles, Brandl, Mertens and Schlick (2016) 

appears to have provided the largest sample (n=322) and most comprehensive assessment of 

employee attitudes towards industrial robots currently published, integrating factors of the 

core TAM (i.e. PU, PEOU and BI) and UTAUT (e.g. subjective norm, job relevance, output 

quality) frameworks. Moreover, they evaluated attitudes towards two different modes of 

industrial robots – passive (e.g. robot holds a component so that the human can work on that 

component) and active (e.g. robot handing over heavy components) and surveyed employees 

from German production companies who were yet to implement and who had already 

implemented robots. Their preliminary published results involved correlational analyses only 

and found medium to high correlations between PU, PEOU, BI and use behaviour suggesting 

the core constructs of TAM are “transferable to the domain of human-robot interaction” 

(p.102). No significant difference in attitudes between passive and active robot-mode 

scenarios was found and no comparison was made between attitudes of employees who 

currently worked with robots and those who did not (although this was planned for future 

analyses which do not appear to have been published to date). 
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Discussion and Conclusion 

Numerous models exist to evaluate individuals’ acceptance of technology. Davis and 

colleagues’ (1989) core constructs from the Technology Acceptance Model (TAM) 

(perceived usefulness (PU) and perceived ease of use (PEOU) as antecedents of behavioural 

intention (BI) to use a technology) have received widespread support as a simple and reliable 

model to indicate the extent of a technology’s acceptance and the likelihood of individuals 

making optimal use of it. Evidence suggests that PEOU is a stronger determinant of BI to use 

technology in mandatory, professional settings (Adamson & Shine 2003; Brown et al. 2002). 

Thus, understanding which external variables are likely to influence PEOU, in particular, will 

assist organisations in developing interventions to maximise acceptance of new technology. 

Lee et al.’s (2003) review suggested that prior experience of the new (or similar) technology 

(i.e. individual characteristics) and managerial support for the new technology (i.e. 

organisational characteristics) were most consistently associated with greater PEOU. Thus, 

inclusion of these aspects seems vital when investigating technology acceptance in 

organisations. 

Venkatesh and Bala (2008) called for a greater need to investigate technology 

acceptance of employees at pre-implementation stages (i.e. stages leading to the actual roll-

out of a system). Acquiring an early understanding of employee perceptions and expectations 

of an impending technology should maximise their acceptance of the technology through the 

opportunity for the organisation to align expectations with likely realities. Uncovering 

perceptions and expectations requires assessment of employees’ readiness for technology and 

their perceptions of likely impacts of technological change. Although predominantly used in 

consumer rather than professional settings, the Technology Readiness Index (TRI; 

Parasuraman, 2000) is often used in combination with TAM to ascertain the degree to which 

‘inhibitors’ and ‘motivators’ of technology readiness influence intended use (e.g. Pires et al., 
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2011; Lin et al., 2007; Walczuch et al., 2007). However, there is a lack of clarity as to what 

additional explanatory power technological readiness offers above and beyond TAM 

constructs. This aspect would benefit from further exploration in professional settings.  

Industrial collaborative robots (cobots) are an emerging technology of the 21st 

Century and accordingly, there appears to be a narrow evidence-base relating to employee 

attitudes towards and acceptance of this technology. The few studies undertaken typically 

pertain to a specific make of cobot and involve a small participant sample. At the time of this 

review no (or few) published studies examining acceptance of industrial cobots in the 

Australian context could be identified. However, the growing value and importance of 

organisational capability to implement, accept and work with cobots is apparent by the recent 

release of a ‘Robotics Roadmap for Australia’ (Australian Centre for Robotic Vision, 2018) 

which includes a case study of cobot implementation at Boeing Australia. A recommendation 

from the Roadmap was to improve awareness in industry, government and the wider 

community of the benefits of robotics technologies. Therefore, there is a growing need for 

research addressing workforce readiness and acceptance of cobots prior to their 

implementation in a range of industrial settings and workforce types. Quantitative, survey-

based research involving elements of TRI and TAM frameworks seems a sensible starting 

point to build knowledge in this area and develop organisational interventions to better 

prepare employees for the future of work.  
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Cobot colleagues: Determinants of apprentice willingness to work with collaborative robots 

(cobots). An evaluation of a pre-implementation model of technology acceptance 

 

Abstract 

Collaborative robots (cobots) are likely to be an increasing feature of workplaces in the 

future. However, few pre-implementation quantitative studies have been conducted that 

investigate the antecedents of employee cobot acceptance across different industries. 

Identifying significant antecedents of cobot acceptance is important if organisations are to 

achieve the improved productivity and cost savings associated with such technology 

implementation. The Technology Acceptance Model (Davis, 1989) provides a robust 

framework to assess determinants of technology acceptance. Using self-report survey data of 

92 apprentices, ordinal regression demonstrated perceived ease of cobot use had the strongest 

influence on cobot acceptance (behavioural intention to work with cobots in the future), fully 

mediating the effect of perceived usefulness of cobots on acceptance. In addition, affinity for 

smart technology was a significant predictor of perceived ease of cobot use (and perceived 

usefulness of cobots). The relevance of these findings for early career employees and 

organisations is discussed. 

 

Keywords: collaborative robots; technology acceptance; affinity for technology; workplace 

culture; apprentices 

 



INTRODUCTION 

The fourth industrial revolution (Industry 4.0) is upon us, where machines and 

products have endless connectivity potential utilising the internet, sensors and micro-

computers to communicate remotely and in real-time (Arnold, Veile & Voigt, 2018). 

Associated technologies include cloud computing, advanced robotics and augmented and 

virtual reality (Autonomous Manufacturing, 2019). Collaborative robots (cobots) are an 

application of advanced robotics and as the names suggests, allow humans and robots to 

collaborate on tasks where work is performed simultaneously in a co-located area 

(Kolbeinsson, Lagerstedt & Lindblom, 2018). Both the human and robot are involved in the 

achievement of a result or project outcome (Müller-Abdelrazeq, Schӧnefeld, Haberstroh & 

Hees, 2019) and from this perspective, cobots and humans can be viewed as complementary 

to each other in the workplace with cobots assisting in complex tasks that cannot be fully 

automated (Mobile Automation, 2017). The introduction of cobots in the workplace is likely 

to change the nature of work by reducing mundane and repetitive work (e.g. welding and 

painting) and preventing fatigue and injury (e.g. tightening screws on vehicles that are 

difficult to reach; Küpper et al., 2019) as well as increasing job satisfaction through more 

knowledge-intensive, value-add (revenue generating) activities such as monitoring 

production efficiencies and by creating new tasks and responsibilities (Ghazizadeh, Lee & 

Boyle, 2012; Küpper et al., 2019). However, the introduction of cobots may also decrease 

contact with colleagues (Elprama, Jewell, Jacobs, Makrini & Vanderborght, 2017), 

potentially inhibiting informal learning, organisational commitment and employee 

motivation, mental health and wellbeing (Ghislieri, Molino & Cortese, 2018).  

Cobots are a special type of industrial robot and are typically smaller and less 

powerful than their caged predecessors (traditional industrial robots) and for that reason are 

perceived to be safer. In addition, they have inbuilt ‘smart’ (digital) technology (i.e. cameras, 



lasers, sensors) that allow them to sense the presence of a human and adjust their movement 

to avoid collisions (Twentyman, 2017). Presently, about 3% of all industrial robots sold are 

cobots with this figure projected to reach 34% by 2025 (Halle, 2018). Today, cobot 

implementation costs are typically lower than industrial robots due to the reduced 

infrastructure requirements (Mason, 2019). Manufacturing is currently the principal market 

for industrial cobots although their uptake is increasing in a number of sectors from 

construction and agriculture to medical, health care and defence (Maull, Brewer & Maull, 

2019). Therefore, working with cobots is an ever-increasing prospect, particularly for 

younger generations and those currently transitioning to the workforce, such as apprentices.  

When technology is implemented in the workplace (professional settings) the purpose 

is utilitarian where the focus is on productivity gains and use of the technology tends to be 

mandatory (no alternate choice to complete a task or objective; Blut & Wang, 2019). 

However, the extent of usage can still vary between individuals in mandatory settings as they 

may decide to “delay, obstruct, underutilise, or sabotage a new technology” (Leonard-Barton, 

1988, p.604). Understanding how to facilitate employee acceptance and use of technology is 

important for organisations if the anticipated benefits of technology implementation, such as 

improved efficiency and task performance, are to be realised (Hsiao & Yang, 2011; Turja & 

Oksanen, 2019). Successful implementation of technology should result in employee job 

satisfaction with minimal absenteeism and turnover (Yousafzai, Foxall & Pallister, 2007a), as 

well as significant savings for the organisation (Küpper et al., 2019). 

In order to minimise employee resistance to a new technology, Venkatesh and Bala 

(2008) encouraged organisations to proactively manage employee perceptions of a new 

technology and engage in pre-implementation interventions (e.g. information sharing, 

previewing technology/systems, explaining how will assist with job performance) to ensure 

employee expectations of the technology are realistic. Poor preparation in organisations prior 



to the introduction of new technology can result in slowed technological implementation and 

increased costs (Deloitte, 2018). Evaluating the likely acceptance of a workforce to a new 

technology prior to implementation should provide insight about how best to introduce it, 

what further preparation is required and may help prioritise technology investments. Research 

suggests that organisational leaders who obtain such data-driven insights are nearly twice as 

likely to be “ready to lead their organisations in capitalising on the opportunities associated 

with Industry 4.0…to be concerned about the ethical use of new technology, and to train their 

current employees to access the skills required…” (Renjen, 2019, para. 9). 

A recent Australian workforce development needs survey identified technicians and 

trade workers (e.g. electricians, carpenters, mechanics) as occupations in greatest need of 

training and development (Australian Industry Group, 2016). Construction, manufacturing 

and automotive are among the principal industries employing technicians and trade workers 

(Australian Government Department of Employment, Skills, Small and Family Business, 

n.d.). Employers of these occupations are more likely to develop links with the vocational 

education and training (VET) sector than with the school or higher education sectors. 

However, employers have reported higher levels of dissatisfaction with VET graduate 

problem solving, initiative and enterprise skills and with their knowledge about their chosen 

career than they do for higher education graduates (Australian Industry Group, 2016). Having 

a realistic understanding and expectation about a career is an important factor in determining 

long-term employability and job satisfaction (Čiarnienė, Kumpikaitė & Vienažindienė, 2010). 

It is important that VET students are cognizant that advances in technology feature as both an 

opportunity and threat in the job market (Addams & Allred, 2013). Therefore, successful 

career planning and workplace integration requires regular analysis of personal strengths and 

weaknesses as well as review of the opportunities and threats existing in the external job 

market (SWOT analysis; Addams & Allred, 2013). 



The purpose of this study is to (1) quantify apprentice willingness to work with cobots 

in the future; and (2) identify factors that promote apprentice (early career employee) 

acceptance of cobots. How employee acceptance will be evaluated will now be discussed. 

LITERATURE REVIEW 

Research investigating cobots typically sits within the field of industrial human-robot 

collaboration where the focus is largely on improving user safety (Robala-Gόmez et al., 

2017; Villani, Pini, Leali & Secchi, 2018; Vysocky & Novack, 2016). Research investigating 

employee attitudes towards, or assessment of factors predicting acceptance of cobots in the 

workplace is limited, particularly within an Australian context. Published studies examining 

cobot acceptance tend to evaluate the influence of a specific ‘system’ or technological feature 

of cobots on user trust and acceptance (such as comparing interaction mechanisms, for 

example, pointing gesture and manual guidance; Maurtua, Ibarguren, Kidal, Susperregi & 

Sierra, 2017) and evaluation is often qualitative (e.g. Charalambous, Fletcher & Webb, 2015; 

Sauppé & Mutlu, 2015). As a result, to inform selection of an appropriate framework for 

assessing employee acceptance of cobots, it was necessary to examine studies evaluating 

acceptance of a range of technologies across different settings, including service industries 

and learning and consumer (personal use) environments. 

The Technology Acceptance Model (TAM; Davis, 1989) has been utilised to assess 

user acceptance of various technologies in a variety of organisations and industries (e.g. e-

shopping; Ha & Stoel, 2009), education (e.g. e-learning management systems; Alharbi & 

Drew, 2014), healthcare (e.g. bar code medication administration; Song, Park & Oh, 2015) 

and construction (e.g. wearable technologies such as GPS and physiological sensors; Choi, 

Hwang & Lee, 2017). The model has consistently explained the variability in intentions to 

use technology and actual use behaviour (Ghazizadeh et al., 2012). As such, it is considered 



one of the most robust, flexible and parsimonious models of technology acceptance (Alomary 

& Woollard, 2015; Hsiao & Yang, 2011; Legris, Ingham & Collerette, 2003; Venkatesh & 

Davis, 2000).  

Like most models of technology acceptance, TAM is grounded in social psychology’s 

Theory of Reasoned Action (Fishbein & Ajzen, 1975; as cited in Ma & Liu, 2004) which in 

essence, states that beliefs influence attitudes which lead to intentions and therefore generate 

behaviours (Ma & Liu, 2004). In their meta-analysis of TAM from 88 studies, King and He 

(2006) concluded that perceived usefulness, perceived ease of use and behavioural intention 

to use a technology can be considered the ‘core’ constructs of TAM. Davis (1989) defines 

perceived usefulness as “the degree to which a person believes that using a particular system 

would enhance his/her job performance” (p.320) and perceived ease of use as “the degree to 

which a person believes that using a particular system would be free of effort” (p.320). The 

greater the perceived usefulness of a technology, the more likely the user is to believe a 

positive use-performance relationship will ensue and the easier a technology or application is 

to use, the more readily it will be accepted (Davis, 1989). In a study exploring robot 

acceptance of 322 production company workers, Brӧhl, Nelles, Brandl, Mertens and Schlick 

(2016) found significant correlations of medium to large effect size between these constructs 

and concluded this core TAM “is transferrable to the domain of human-robot interaction” 

(p.102). Thus, based on the evidence reviewed, the core TAM forms the foundation of the 

preliminary model of cobot acceptance tested in the current study. 

Meta-analyses by King and He (2006) and Ma and Liu (2004) have shown that the 

strongest, significant relationship between these constructs is between perceived usefulness 

and behavioural intention and between perceived usefulness and perceived ease of use, 

although there was less overall consistency in the nature of the latter relationship. A weaker, 

and at times insignificant relationship, was found between perceived ease of technology use 



and behavioural intention to use it (King & He, 2006; Ma & Liu, 2004). However, some 

recognise that in mandatory (professional) settings, perceived ease of use is a stronger 

predictor of acceptance compared with perceived usefulness (Adamson & Shine 2003; 

Brown, Massey, Montoya-Weiss & Burkman, 2002). In addition, when prior user experience 

with the technology or system of interest is minimal, perceived ease of use has been shown to 

have a stronger influence on behavioural intention than does perceived usefulness 

(Castañeda, Muñoz-Leiva & Luque, 2007; Davis, Bagozzi & Warshaw, 1989; Szajna 1996). 

Thus, perceived ease of cobot use is anticipated to be a more salient construct in the current 

study due to cobots being an emerging technology and apprentices having had less 

opportunity for contact (prior experience) due to working in an industrial environment for a 

relatively short period.  

Results from a meta-analysis conducted by Legris and colleagues (2003) reviewing 22 

studies revealed that TAM tends to explain approximately 40% of system use. There have 

been many derivatives and proposed extensions of the original/core TAM in order to improve 

its predictability of actual usage as well as provide more concrete mechanisms through which 

usage can be influenced. Upwards of 70 different variables external to the core TAM have 

been empirically studied (Yousafzai, Foxall & Pallister, 2007b). Yousafzai and colleagues 

(2007b) categorised these into organisational characteristics (e.g. support and training), 

system characteristics (e.g. reliability and accuracy, response time), user’s 

personal/individual characteristics (e.g. age, awareness, personality, self-efficacy) and other 

(e.g. cultural affinity, subjective norms, task characteristics). Any additional core variables 

included in the current model need to hold relevance across the numerous industries in which 

apprentices work and reflect the context that many organisations are yet to implement cobots 

(making assessment of task and system characteristics difficult). 



Individual characteristics 

Technological affinity is among the most frequently assessed user characteristics 

when investigating human-computer interaction (Haase, Krippl, Ferchow, Otto & Frommer, 

2016). Affinity for technology has been described as “a user’s propensity to naturally interact 

with technical systems (i.e. be attracted to technology interaction)” (Franke, Attig & Wessel, 

2017, p.1) and can be considered “a key personal resource for successful technology 

interaction” (Franke et al., 2017, p.1). The term affinity for technology is used by some 

researchers (Brӧhl et al., 2016; Edison & Geissler, 2003; Franke et al., 2017; Lotz, Himmel & 

Ziefle, 2019) although it is not dissimilar to other concepts such as technology-related self-

efficacy (Vestakesh & Bala, 2008) and innovativeness – a personality trait reflecting a 

tendency to be the first to use a new technology (Walczuch, Lemmink & Streukens, 2007), or 

be a technology pioneer (Parasuraman, 2000). Technology-related self-efficacy (Brown et al., 

2002; Noh, Mustafa & Ahmed, 2014) and personal innovativeness (Walczuch et al., 2007) 

have been found to predict perceived ease of use of web-based technologies in learning 

environments and of various software applications in a financial service provider, 

respectively. Lu, Yao and Yu (2005) demonstrated a significant, positive relationship 

between personal innovativeness and perceived usefulness as well as with perceived ease of 

use (although the association was greater for perceived ease of use) in the adoption of 

wireless internet services in non-work settings. The current study focuses on affinity for 

smart technologies in view of their use in cobots (e.g. sensors, interoperability with the 

internet/other systems). 

Organisational characteristics 

In a meta-analysis of more than 100 studies, Lee, Kozar and Larsen (2003) showed 

that management support was among the most consistent factors influencing either perceived 



usefulness, perceived ease of use or behavioural intention to use a system or technology. Key 

components of management support, as described by Igbaria, Zinatelli, Cragg and Cavaye 

(1997), include ensuring sufficient allocation of resources and acting as a change agent to 

create a more conducive environment for information system success. Igbaria and colleagues 

(1997) stated that lack of management support is a “critical barrier to the effective utilisation 

of information technology” (p.285). In a review by Lunenburg (2010), common 

characteristics associated with effective change agents include empathy (leading to improved 

communication and understanding), linkage (degree of participation in collaborative 

activities) and proximity (degree of physical and psychological closeness of change agent and 

organisation members). Considering the pre-implementation context of the current study, a 

broader concept drawing on aspects of management support was required. 

A human relations or people orientation culture (showing care and respect, 

communicating and fostering collaboration among employees) is one of four different kinds 

of organisational culture proposed in Quinn and Rohrbaugh’s (1981) Competing Values 

Framework (a widely used model of organisational culture; Boedker et al., 2011). People-

oriented cultures have been linked to a range of benefits, including increased workplace 

safety and reduced injury rates (Amick et al., 2000). In addition, people-oriented leadership 

behaviours (e.g. showing individualised support) have been found to be positively associated 

with employee engagement (Podsakoff, MacKenzie & Bommer,1996). When employees are 

engaged, they are more likely to expend discretionary effort to help their employer succeed 

(Markos & Sridevi, 2010). Furthermore, Cresswell, Bates and Sheikh (2013) found teamwork 

and communication to be among key organisational factors associated with effective 

implementation of large-scale health information technology. Taken together, this study 

offers people-oriented workplace culture as a relevant organisational characteristic. 

 



Research Hypotheses 

The model of cobot acceptance proposed in the current study (see Figure 1) involves 

two parts and evaluation phases. One, to replicate and confirm the relationship between core 

TAM constructs in a mandatory, low user experience environment. Three hypotheses are 

proposed in relation to this: 

Hypothesis 1 (HI): Apprentices’ perceptions of cobot usefulness will be positively associated 

with their willingness to work with them in the future (behavioural intention).  

Hypothesis 2 (H2): Apprentices’ perceptions of ease of cobot use will be positively 

associated with their willingness to work with them in the future. Moreover, this association 

will be stronger than that between perceived cobot usefulness and intention to work with 

them in the future. 

Hypothesis 3 (H3): Apprentices’ perceptions of ease of cobot use will be positively 

associated with their perceptions of cobot usefulness.  

Two, to determine the ability of individual and organisational characteristics to 

influence cobot acceptance. Four hypotheses are postulated with respect to this: 

Hypothesis 4 (H4): Apprentices’ affinity for smart technology will be positively 

associated with perceptions of cobot usefulness. 

Hypothesis 5 (H5): Apprentices’ affinity for smart technology will be positively 

associated with perceived ease of cobot use. 

Hypothesis 6 (H6): People-oriented workplace culture will be positively associated 

with apprentices’ perceptions of cobot usefulness. 

Hypothesis 7 (H7): People-oriented workplace culture will be positively associated 

with apprentices’ perceptions of ease of cobot use. 



METHOD 

Research context 

Perceptions and acceptance of robotics/cobots by South Australian workers is 

particularly relevant as the state has been identified as the “most vulnerable” state or territory 

in Australia to a “robot rollout” (Oxford Economics, 2019, p.33). “The state is Australia’s 

most manufacturing intensive but has the slowest-growing economy and low levels of 

manufacturing” (Oxford Economics, 2019, p.33). Identifying mechanisms to improve 

workforce acceptance and usage of robotic technology is therefore of ongoing importance. 

Procedure 

The present study analysed data gathered from an online survey exploring apprentice 

attitudes towards emerging technology (collaborative robots), safety and job satisfaction. The 

data set was collected for a South Australian State Government-funded (SafeWork SA) 

project on improving the health and wellbeing of young workers. Apprentices aged 18 years 

and over and undertaking an apprenticeship/traineeship in building, construction, mining, 

engineering or automotive through TAFE SA (a vocational education and training (VET) 

provider) were eligible to participate in the survey. TAFE SA lecturing staff within these 

courses distributed 1,700 information sheets in classes. Fifteen promotional posters were also 

displayed in student common areas (e.g. cafeteria) across campuses. A link to the survey was 

also posted on TAFE SA’s official Facebook page. A financial incentive (a prize draw to win 

one of six $50 e-gift cards) was offered as a means of increasing response rate. Financial 

incentives are frequently used in research seeking VET student participation (NCVER, 2018). 

One hundred and thirty-six students responded to the survey (representing a response rate of 

approximately 8%).  



To minimise survey drop-out rates, the survey was kept as brief as possible and an 

‘unsure’ response option was available for most questions. ‘Unsure’ response options were 

subsequently recoded as missing data. The criteria for inclusion in the secondary data set 

were completion of the core TAM measures: willingness to work with cobots in the future 

(behavioural intention), perceived ease of cobot use and perceived usefulness of cobots 

(n=92; see Measures section for more information). 

A Mann-Whitney test indicated that age was not significantly different for 

respondents retained in the data set (Mdn = 22 years) compared to those who were excluded 

(Mdn = 21 years), U=1729.0, p>.05, r=.12. Similarly, affinity for smart technology 

(described in the Measures section below) was not significantly different for respondents 

retained in the data set (Mdn = 3.56) compared to those excluded (Mdn= 3.67), U=1094.0, 

p>.05, r=.03. No significant interaction was found comparing the frequency of men (34%) 

and women (11%; p>.05, Fisher’s Exact Test) excluded. In addition, no significant 

interaction was found in this cohort comparing the frequency of those who had heard of 

cobots previously (13%) and those who had not (23%; p>.05, Fisher’s Exact Test).  

All questions were asked in the same survey at the same time, creating the potential 

for common method variance (i.e. where variance in responses is due to the measurement 

method rather than the constructs assessed; Brougham & Harr, 2018; Podsakoff, MacKenzie, 

Lee & Podsakoff, 2003; Podsakoff & Organ, 1986). The administration method of the survey 

mitigated this risk to some extent (i.e. provided anonymity and confidentiality to minimise 

social desirability bias; Chang, van Witteloostuijn & Eden, 2010) and the results of a 

statistical procedure often used to evaluate the presence of common method variance 

(Hartman’s One Factor Test; Brougham & Harr, 2018; Podsakoff et al., 2003; Chang et al., 

2010) suggested it was not a strong influence on the current data (i.e. unrotated factor 



analysis resulted in seven factors, with the largest accounting for less than 30% of the overall 

variance; Brougham & Harr, 2018; Podsakoff & Organ, 1986). 

Sample 

On average, respondents were 24.0 years old (SD = 6.38 years; median = 21.5 years; 

age range 18 to 47 years), male (90.2%), born in Australia (94.4%) and spoke English as their 

first language (96.7%). Respondents were typically undertaking a Certificate III course 

(93.5%) at a metropolitan TAFE SA campus (87.8%) studying apprenticeships in electrical 

and renewable energy (41.3%), plumbing and water operations (20.7%) and automotive 

(14.1%). Respondents were most likely to be completing their apprenticeship with small and 

medium enterprises (SMEs; 80.0%). SMEs refer to businesses employing less than 200 

employees (Australian Bureau of Statistics, 2002) and comprise 99.7% of businesses in 

Australia and employ 70% of the workforce (SME Connect, 2019). Respondents were at 

varying stages of completing their apprenticeship with most having commenced their course 

in 2018 (40.2%), 2017 (28.3%) or 2016 (18.5%).  

Awareness of cobots was low, with a minority of respondents (15%) indicating they 

had heard of cobots prior to the survey. Even fewer respondents were aware of cobots being 

used in industries relevant to their apprenticeship (6.5%), had seen cobots used in a 

workplace relevant to their apprenticeship (4.3%) or worked with a cobot in a workplace 

relevant to their apprenticeship (2.2%). 

Measures 

All measures were self-report and adapted for use in the original project. Consistent 

with the scale validation approach recommended by Squires, Estabrooks, Newburn-Cook and 

Gierl (2011; based on educational and psychological testing in healthcare), original scale 

development was guided by two key principles: brevity (to enable scales to form part of a 



broader assessment without burdening the participant) and generality (to apply to a wide 

range of settings, industries and organisations). Assessment of scale homogeneity was 

conducted by review of item-total statistics. The removal of scale items was based on any one 

of the following criteria being met (informed by Nunnally & Berstein, 1994): (1) the item 

correlated with the total scale score below 0.30; (2) removal of the item would cause a 

substantial gain (10% or more) in the scale Cronbach’s alpha; and, (3) the scale items were 

highly correlated with each other (r > .80). Note, any negative scale items were reversed prior 

to this assessment such that higher scores reflect a more positive outcome. 

Core TAM variables 

Prior to the items asking about cobots, the following definition (developed from 

Nichols, 2017) was provided, “cobots are a new generation of robots, not enclosed by any 

type of fencing or cage that are designed to work alongside humans and to interact and 

collaborate with their users, responding quickly to what’s going on around them”.  

Behavioural intention to work with cobots (the primary outcome/dependent variable 

of the model) was measured with a single item (“I would be willing to work with cobots in 

the future”) coded 1 = ‘strongly disagree’ to 5 = ‘strongly agree’. Perceived ease of cobot use 

was also measured by a single item (“I think cobots will be easy to work with”) coded 1 = 

‘strongly disagree’ to 5 = ‘strongly agree’. No internal consistency assessments of reliability 

are possible for these single-item scales. These measures have been operationalised by a 

single item previously (Brӧhl et al., 2016; Turja & Oksanen, 2019; Turner, Kitchenham, 

Brereton, Charters & Budgen, 2010). 

Perceived usefulness of cobots was operationalised by 16 items (coded 1 = ‘strongly 

disagree’ to 5 = ‘strongly agree’) which were adapted from Slem, Levi and Young’s (1995) 

36-item Technological Change Survey. The perceived usefulness of cobots scale was 



designed to assess beliefs about the influence of cobots on five dimensions: job improvement 

(four items), job stress (two items), personal benefit (two items), personal insecurity (two 

items) and safety and wellbeing (six items). Slem et al.’s (1995) survey did not include any 

safety and wellbeing items. These items were added due to the safety benefits associated with 

cobots (Twentyman, 2017) and growing concern over how technology may shape workplace 

interactions (Ghislieri et al., 2018). 

Examination of the internal consistency of the perceived usefulness of cobots scale 

indicated there was no redundancy in items (i.e. no inter-item correlations exceeded .80) 

although six items were removed because of low item-total correlations (i.e. <.30) or their 

removal resulted in a substantial gain in the alpha reliability coefficient. Therefore, 10 items 

were retained and entered into principal components analysis. The factorability of the 10 

perceived usefulness items was examined using several well-recognised criteria (Pedhazur & 

Pedhazur-Schmelkin, 1991). Firstly, it was observed that all items correlated at least .3 with 

at least one other item, suggesting factorability. Secondly, the Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy was .85, above the recommended minimum value of .60 

(Tabachnick & Fidell, 1996) and Bartlett’s test of sphericity was significant (χ2 (45) = 477.6, 

p<.001). The communalities were all above .3, further confirming that each item shared some 

common variance with other items. Given these overall indicators, the data were deemed to 

be suitable for principal components analysis. 

From the principal components analysis, two factors were extracted from the scale 

items, the first accounting for 53.0% of variance and covariance in the items (eigenvalue = 

5.30), the second accounting for 10.8% of variance (eigenvalue = 1.08). However, visual 

inspection of the scree plot and parallel analysis (Patil, Singh, Mishra & Donavan, 2017) 

supported the extraction of one factor. Thus, it was concluded that the perceived usefulness of 

cobots scale in this context has good reliability and is best considered as unidimensional (see 



Table 1). The mean of the 10 items was therefore computed and for interpretability and 

consistency with the other core TAM variables, rounded and categorised into ‘strongly 

disagree’ (included value range: 1.00 to 1.49), ‘disagree’ (included value range:1.50 to 2.49), 

‘neither agree nor disagree’ (included value range: 2.50 to 3.49), ‘agree’ (included value 

range: 3.50 to 4.49) and ‘strongly agree’ (included value range: 4.50 to 5.00). 

Additional TAM variables 

Affinity for smart technology was included as an individual characteristic. Smart 

technology was described in the survey as “electronic devices which are connected through 

the internet (often wireless) to other devices or networks and can operate interactively, e.g. 

computers, ipads, mobile phones, apps, software, robots” (developed from IGI Global, n.d).  

Affinity for smart technology was operationalised by 10 items adapted from Brӧhl et 

al.’s (2016) survey and Parasuraman’s Technology Readiness Index (Parasuraman, 2000; 

Parasuraman & Colby, 2015). The included items were most aligned with Parasuraman’s 

‘Innovativeness’ factor, a demonstrated motivator of technology use (Parasuraman, 2000) and 

predictor of perceived ease of technology use (Walczuch et al., 2007). Examination of the 

internal consistency of the affinity for smart technology scale indicated there was no 

redundancy in items although one item was removed because of low item-total correlations. 

Therefore, nine items were retained and entered into principal components analysis. 

Suitability for principal component analysis was indicated by: all items correlated at least .3 

with at least one other item; the KMO measure of sampling adequacy was .87; Bartlett’s test 

of sphericity was significant (χ2 (36) = 358.0, p<.001); and all communalities were above .3. 

From the principal components analysis, one factor was extracted from the scale items 

accounting for 52.3% of variance and covariance in the items (eigenvalue = 4.71). This is 

consistent with the theoretical basis of the scale development. The affinity for smart 



technology scale is unidimensional and has good reliability (see Table 2). Moreover, the 

nine-item reliability coefficient is comparable to the reliability reported for the 

Innovativeness dimension of the Technology Readiness Index (Parasuraman & Colby, 2015). 

The mean of the nine items was computed for use as a continuous predictor variable. 

People-oriented workplace culture (operationalised by nine items coded 1= ‘strongly 

disagree’ to 5 = ‘strongly agree’) was included as an organisational characteristic. The items 

were designed to reflect themes such as effective communication, trust and teamwork. 

Examination of the internal consistency of the people-oriented workplace culture scale 

indicated there was no redundancy in items and nor were there low item-total correlations. 

Deletion of any item would not make a substantial change to the alpha reliability coefficient. 

Therefore, all nine items were retained and entered into principal components analysis. 

Suitability for principal components analysis was indicated by: all items correlated at least .3 

with at least one other item; the KMO measure of sampling adequacy was .89; Bartlett’s test 

of sphericity was significant (χ2 (36) = 475.4, p<.001); and the communalities were all above 

.3. 

From the principal components analysis, two factors were extracted from the scale 

items, the first accounting for 57.5% of variance and covariance in the items (eigenvalue = 

5.17), the second accounting for 12.6% of variance (eigenvalue = 1.13). However, visual 

inspection of the scree plot and parallel analysis supported the extraction of one factor. Thus, 

it was concluded that people-oriented workplace culture is best represented as a single 

measure and has good reliability (see Table 3). The mean of the nine items was therefore 

computed for use as a continuous predictor variable. 

 

 



Analysis 

Structural equation modelling is a preferred analytical technique in non-experimental 

research designs to evaluate the fit of data to a proposed theoretical model (Mancha & Leung, 

2010). Structural equation modelling is valued because it provides a comprehensive 

approach, allowing for the examination of multiple relationships across multiple variables 

without compromising statistical power and while accounting for measurement errors (de 

Boer & Ȧstrӧm, 2017; Mancha & Leung, 2010). Recommendations about adequate sample 

sizes for structural equation modelling vary considerably (Wolf, Harrington, Clark & Miller, 

2013), including a widely accepted rule of thumb of 10 observations per indicator variable 

(Nunnally, 1967) to a general minimum estimate of 200 (Mancha & Leung, 2010). Overall, 

the literature suggests the sample size of the current dataset is insufficient for structural 

equation modelling. Instead, ordinal regression (using an ordered logit model) was conducted 

in SPSS (Version 25.0) to determine the predictive value of variables within each part of the 

proposed model of cobot acceptance. None of the regression models conducted violated the 

assumption of proportional odds (test of parallel lines, p>.05). 

Due to the categorical nature of most variables and non-normal distributions, non-

parametric descriptive statistics were conducted. Response options in ordinal variables were 

collapsed as much as possible whilst retaining meaningfulness (i.e. combining ‘disagree’ and 

‘strongly disagree’) to minimise the proportion of cells with expected cell counts less than 5. 

RESULTS 

Core TAM Variables 

Descriptive Statistics 

On average, apprentices were ambivalent about the usefulness (M=3.20, SD=0.59), 

ease of use (M=3.10, SD=0.91) and acceptance of (future willingness to work with) cobots 



(M=3.40, SD=0.94), evidenced by means around the scales’ midpoint where 3.00 represents 

‘neither agree nor disagree’. More specifically, 63.0% of apprentices neither agreed nor 

disagreed that cobots would be useful/improve job performance (compared to 28.3% who 

agreed or strongly agreed cobots would be useful and 8.7% who disagreed or strongly 

disagreed) and 45.7% of apprentices neither agreed nor disagreed that cobots would be easy 

or effortless to use (compared to 33.7% who agreed or strongly agreed cobots would be easy 

to use and 20.7% who disagreed or strongly disagreed). However, apprentices were in fact 

most likely to be accepting of/willing to work with cobots in the future (53.3% agreed or 

strongly agreed, compared to 34.8% who neither agreed nor disagreed and 11.9% who 

disagreed or strongly disagreed).  

Figure 2 shows apprentices’ perceptions of cobot usefulness had a positive 

relationship of medium effect size (rs = .30 to .49; Cohen, 1988) with their intention to work 

with cobots, supporting hypothesis 1. This relationship was confirmed (Fisher’s Exact Test, 

p<.05) and is illustrated in Table 4; 69.2% of apprentices who considered cobots to be useful 

indicated they would be willing to work with them in the future, compared to 50.0% of 

apprentices who were ambivalent about their usefulness and 25.0% of apprentices who 

indicated cobots were not useful. 

Apprentices’ perceptions of ease of cobot use also had a positive relationship with 

their intention to work with cobots (see Figure 2) and this was of greater magnitude (although 

still of medium effect size) than the relationship between perceived usefulness and intention 

to work with cobots, supporting hypothesis 2. This relationship was confirmed (Fisher’s 

Exact Test, p<.01) and also shown in Table 4; 77.4% of apprentices who rated cobots as easy 

to use were willing to work with them in the future compared to 47.6% of apprentices who 

were ambivalent about the effort required to use them and 26.3% of apprentices who rated 

cobots as difficult to use. 



There was a strong, positive relationship between apprentices’ perceptions of ease of 

cobot use and cobot usefulness, supporting Hypothesis 3. This relationship was confirmed 

(Fisher’s Exact Test, p<.001) and is shown in Table 5; 61.3% of apprentices who believed 

cobots are easy to use rated them as useful compared to 14.3% of those who were ambivalent 

about their ease of use and 5% of those who reported cobots to be difficult to use.  

The positive associations demonstrated between the core TAM constructs support the 

utility of the TAM in an early (pre-implementation) cobot acceptance context. The relative 

contributions of perceived usefulness and perceived ease of use at predicting cobot 

acceptance was determined through ordinal regression.  

Ordinal regression 

As shown in Table 6, there was a statistically significant association between 

perceived cobot usefulness and intention to work with cobots (p<.05), between perceived 

ease of cobot use and perceived cobot usefulness (p<.01), and between perceived ease of 

cobot use and intention to work with cobots (p<.01). This confirmed zero-order relationships 

among the variables and that mediation was likely; Baron & Kenny, 1986). As reflected in 

Step 4 of Table 6, perceived ease of cobot use remained a significant predictor of willingness 

to work with cobots after controlling for perceived cobot usefulness. Perceived cobot 

usefulness was no longer a significant predictor of cobot acceptance when adjusting for 

perceived ease of cobot use. These findings support a full mediation model (Baron & Kenny, 

1986) where perceived ease of cobot use is a fundamental driver of early cobot acceptance in 

a mandatory, low prior experience environment. Moreover, the odds of being willing to work 

with cobots in the future (agree and strongly agree) for those who viewed working with 

cobots to be easy (agree and strongly agree) was 6.6 times greater than for those who viewed 



working with cobots to be difficult (disagree and strongly disagree; Odds Ratio (OR) = 6.62, 

95% confidence interval (CI): 1.25, 35.97).  

Additional TAM variables 

On average, respondents were not lacking affinity for smart technology (M=3.50, 

SD=0.64) and tended to report experiencing a people-oriented workplace culture (M=3.70, 

SD=0.74), evidenced by means approaching 4.00 which represents ‘agree’ on the constructs’ 

scales. Affinity for smart technology correlated significantly with perceived cobot usefulness; 

they had a moderately-sized, positive association such that greater affinity for smart 

technology was related to greater perceived cobot usefulness (see Figure 2), supporting 

hypothesis 4. A Kruskal-Wallis H test confirmed this relationship by showing a statistically 

significant difference in affinity for smart technology between the different cobot usefulness 

groups, H(2) = 8.79, p <.05, with a mean rank affinity score of 26.94 for “not useful” 

(disagree and strongly disagree), 44.44 for “ambivalent” (neither agree nor disagree) and 

57.12 for “useful” (agree and strongly agree). Post hoc tests of pairwise comparisons 

indicated the only significant difference in affinity for smart technology scores was between 

the “not useful” and “useful” groups (p<.05; also see Table 7 for descriptive statistics).  

Perceived ease of cobot use also had a significant positive relationship of medium 

effect size with affinity for smart technology (see Figure 2) where greater affinity was 

associated with greater perceived ease of cobots, supporting hypothesis 5. A Kruskal-Wallis 

H test showed a statistically significant difference in affinity for smart technology scores 

between the different ease of use groups, H(2) = 9.18, p <.05, with a mean rank affinity score 

of 31.87 for “difficult” to use (disagree and strongly disagree), 46.56 for “ambivalent” 

(neither agree nor disagree) and 55.39 for “easy” to use (agree and strongly agree). Post hoc 

tests of pairwise comparisons showed the only significant difference in affinity scores was 

between the “difficult” and “easy” groups (p<.01; also see Table 8 for descriptive statistics). 



Together, these findings suggest that affinity for smart technology is an important individual 

characteristic facilitating cobot acceptance in apprentices. 

A people-oriented workplace culture was not significantly associated with 

apprentices’ perceptions of cobot usefulness (see Figure 2) and therefore hypothesis 6 was 

not supported. In contrast, a small but significant positive correlation existed between people-

oriented workplace culture and perceived ease of cobot use (see Figure 2). This supports 

hypothesis 7. However, a Kruskal-Wallis H test did not show a statistically significant 

difference in people-oriented workplace culture scores between ease of use groups (H(2) = 

3.32, p >.05; also see Table 8) suggesting this result may be spurious. Overall, these findings 

suggest that this organisational characteristic may be less relevant to facilitating cobot 

acceptance in apprentices. Logistic regression was conducted to further clarity the 

relationship of additional TAM variables to those of the core TAM. 

Ordinal regression 

There was a statistically significant association between perceived cobot usefulness 

and affinity for smart technology (p<.01; see Table 9). For every one unit increase in affinity 

for smart technology, the odds of perceiving cobots as useful (agree and strongly agree) 

tripled (OR=2.98, 95% CI: 1.35, 6.54). Table 9 shows there was a statistically significant 

association between perceived ease of cobot use and affinity for smart technology, adjusting 

for people-oriented workplace culture (p<.05) whereas there was no statistically significant 

association between perceived ease of cobot use and people-oriented workplace culture, 

adjusting for affinity for smart technology (p>.05). For every one unit increase in affinity for 

smart technology, the odds of perceiving cobots to be easy to use (agree and strongly agree) 

increased by 2.5 times (OR=2.50, 95% CI: 1.17, 5.34). This result indicates that people-

oriented workplace culture is not a salient factor influencing cobot acceptance in apprentices. 



Affinity for smart technology and people-oriented workplace culture did not have significant 

direct effects on behavioural intention to work with cobots, controlling for each other (see 

Table 9). This result reinforces the value of incorporating the core TAM constructs rather 

than solely assessing affinity for smart technology and willingness to work with cobots. 

DISCUSSION 

The present study sought to establish the likelihood of collaborative robot (cobot) 

acceptance in early career workers (apprentices) in South Australia and identify the factors 

that may influence their intentions to work with cobots in the future. The results indicated 

low awareness of and exposure to cobots which is not unexpected given advanced robotics is 

an emerging technology. Despite limited awareness of cobots, the results also showed that 

more than half of apprentices who responded were willing to work with them in the future. 

This is a positive outcome that may encourage manufacturing, construction, automotive and 

agricultural organisations, for example, to consider cobot implementation. At the time of the 

study, rates of cobot awareness and/or acceptance in other employee groups (in Australia or 

internationally), had not been examined. The nearest comparator available related to 

European Union citizens’ attitudes toward robots in which a public survey reported 6% of 

citizens had experience using robots at work and that 48% were “relatively comfortable about 

the idea of a robot assisting them at work” (Special Eurobarometer 382, p.5). Overall the 

findings of the current study align with those of European Union citizens. 

This study utilised core constructs from Davis’s (1989) Technology Acceptance 

Model (TAM) which offer a parsimonious framework for this study’s pre-implementation, 

low cobot awareness context. The significant, moderate to large correlations found between 

perceived ease of cobot use, perceived usefulness of cobots and willingness to work with 

cobots in the future (behavioural intention) are consistent with Brӧhl et al.’s (2016) findings 



and support their conclusion that the original TAM model is appropriate for studies of 

human-robot interactions. In addition, the results of this study demonstrated that perceived 

ease of cobot use had a direct effect on behavioural intention, fully mediating the effects of 

perceived usefulness of cobots on intention to work with them. This finding suggests that in a 

professional setting, it doesn’t matter how useful an organisation or stakeholder claims a new 

technology to be, if employees find it difficult to use, acceptance is likely to be limited. This 

outcome is consistent with previous studies of technology acceptance in mandatory 

(Adamson & Shine 2003; Brown et al. 2002) and low prior experience environments 

(Castaneda et al., 2007; Davis et al. 1989; Szajna 1996). All hypotheses associated with the 

core TAM constructs were supported and corroborate the flexibility and robustness of TAM 

across a variety of technology and user settings. 

Regarding the additional TAM variables explored in this study, affinity for smart 

technology was found to positively influence both perceived ease of cobot use and perceived 

cobot usefulness. This finding is (in part) in contrast to the results of Brӧhl and colleagues 

(2016) who examined the relationship between technological affinity and perceived ease of 

robot use in production workers and found a negative association (although they did not 

distinguish between workers with/without prior experience with robots). They reasoned their 

finding may be a result of those with greater affinity being more informed about technology 

and subsequently having more prejudices about it. However, they did not evaluate the 

relationship between technological affinity and perceived usefulness which may have offset a 

more critical evaluation of ease of technology use. Regardless, it is possible that there is a 

threshold at which affinity for technology may increase perceptions of the effort required to 

use a technology (and reduce perceptions of its usefulness) and negate intentions to use it. 

Further exploration is warranted to identify the parameters of a possible threshold, requiring a 



more diverse sample, both in terms of prior experience with cobots, age and field of 

apprenticeship. 

In the current study, a people-oriented workplace culture was postulated to have a 

positive relationship with apprentice perceptions of cobot usefulness and ease of use via 

increased communication, teamwork and employee engagement. However, these 

relationships were not supported. The absence of a significant relationship between these 

measures is likely to be multifactorial and include a lack of insight from apprentices (early 

career workers) as to what a people-oriented workplace culture looks like (i.e. not have 

alternate points of reference leading to inflated ratings) and the use of a composite, non-

validated scale (i.e. items are not sufficiently specific about organisational practices or 

comprehensive in topic to identify relevant differences). Broader examination of Quinn and 

Rohrbaugh’s (1981) competing values framework may provide a more sound basis for 

exploring the role of workplace culture in cobot acceptance. For example, using this 

framework, Ruppel and Harrington (2001) found both “an atmosphere of trust and concern 

for other people (ethical culture) and flexibility and innovation (developmental culture)” 

facilitated intranet implementation (p.37). 

None of the additional TAM variables assessed had direct effects on behavioural 

intention to work with cobots, supporting Legris et al.’s (2003) findings that additional 

variables are fully mediated by perceived ease of use (and perceived usefulness in their case). 

These findings highlight that perceived ease of use, and subsequently behavioural intention to 

work with cobots, can be influenced by non-technical/system factors, augmenting the 

opportunities available to promote and grow cobot acceptance in employees prior to cobot 

implementation.  

 



Implications 

The present study has several implications for early career employees and SMEs, in 

particular. Individuals with greater affinity for technology are well-placed to accept the 

introduction of new technologies in the workplace, typically finding them easier to use than 

those less inclined to gravitate to technology. Thus, assessment of affinity for smart 

technology (or similar constructs) should be a key element of the employee selection and 

professional development processes. When employees understand their natural preferences 

and interests they can engage in informed career planning and develop more realistic 

expectations of their career (leading to greater job satisfaction; Čiarnienė et al., 2010). When 

organisations understand their workforce’s propensity to engage with technology, they can 

more accurately determine implementation timelines (e.g. more gradual and with reduced 

functionality for teams with lower affinity for technology) and target training and support. In 

addition, such knowledge can assist with optimising the allocation of individuals to teams to 

ensure an appropriate ‘affinity’ mix. Forms of training and support could extend to the 

pairing of employees (e.g. mentoring, buddying) with diverging degrees of affinity for smart 

technology. When technology implementation does occur, employees with greater affinity for 

technology are likely to form crucial ‘process champions’ (a knowledgeable person who 

understands the technology and its benefits; Charalambous et al., 2015) who can increase the 

likelihood of successful implementation through knowledge exchange, support and 

encouragement (Charalambous et al., 2015; Scannell, Calantone & Melnyk, 2012). 

Limitations 

This study has four principal limitations which need to be considered when 

interpreting the findings. Firstly, given the low response rate, the sample may not be 

representative of apprentices. Survey respondents are often known to have different 



characteristics from non-respondents (Lee & Polidano, 2010). In this instance, respondents to 

the survey are likely to be more interested in cobots and thus have greater affinity for 

technology than non-respondents. Consequently, the degree of willingness to work with 

cobots may be overestimated. The strength of the relationships between study measures may 

change in a more representative sample.  

Secondly, both independent and dependent measures were self-report which can 

increase the risk of common method variance such that “self-report data can create false 

correlations if the respondents have a propensity to provide consistent answers to survey 

questions that are otherwise not related” (Chang, van Witteloostuijn & Eden, 2010. p.178). 

To avoid this type of measurement error, future research on technology acceptance should 

aim to: collect data from different sources, including more objective data (e.g. from co-

workers, independent observations) or collect data from different points in time; measure the 

dependent variable in more than one way; use different response anchors for different 

constructs; and randomise the order of questions (Chang et al., 2010). Common method 

variance is one reason attributed to why behavioural intention to use technology has a weaker 

association with objective measures (e.g. data from computer/device) of actual use compared 

to self-reported usage (Straub, Limayem & Karahanna-Evaristo, 1995; Szajna, 1996). 

Thirdly, despite demonstrating good internal consistency, the scales used have not been 

validated with other measures. Tao (2009) proposes conducting qualitative interviews to test 

the face and content validity of adapted questionnaires. This process has been conducted by 

Brӧhl et al. (2016) in their investigation of human-robot cooperation in production systems 

and by Henderson (2015) in her examination of workplace culture on the acceptance of 

industrial robots in the manufacturing industry. Thus, focus groups with apprentices and 

SMEs may help inform future scale development of the constructs included here. 



Lastly, involvement of a larger sample would be beneficial so that structural equation 

modelling could be utilised to simultaneously evaluate the relationships between all cobot 

acceptance model constructs as a whole, rather than in two parts, further clarifying and 

accounting for any interaction effects. 

Conclusion 

Employee acceptance of technology implementation is important in terms of 

organisational productivity and profitability as well as individual job satisfaction and 

wellbeing. As applications of Industry 4.0 technologies, such as collaborative robots, 

continue to grow so too does the need for organisations to be prepared for how their 

workforce may respond. The findings from the current study suggest that understanding and 

fostering employee technical attributes such as affinity for technology can facilitate early 

acceptance of cobots. More research is required to develop specific interventions that can best 

utilise and build this personal characteristic and support employees to thrive in an 

increasingly technological work environment. 
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Figure 1: Proposed study model of cobot technology acceptance (willingness to work with cobots) 

 

Table 1: Perceived usefulness of cobots item characteristics (n=881) 

Scale item: I think cobots will… Corrected Item-

total Correlation 

Factor 

loading 

Give me more control about how I do my work .68 .75 

Increase my skills .64 .71 

Improve my career progression .73 .80 

Improve workplace safety .60 .69 

Improve the quality of my work .75 .82 

Prevent injuries .67 .75 

Make my work more interesting .54 .61 

Reduce my fatigue on the job .51 .59 

Prolong my career in this industry .75 .81 

Decrease workplace conflict .63 .71 

Eigenvalue 5.30 

Percentage variance 53.0 

Cronbach’s α 0.90 
1Listwise deletion resulted in the removal of four cases. 

Table 2: Affinity for smart technology item characteristics (n=901) 

Scale item: In general… Corrected Item-

total Correlation 

Factor 

loading 

I enjoy using smart technologies .76 .83 

I trust smart technologies .71 .80 

I am confident using smart technologies .64 .71 

When needing information, I turn to smart technologies before other 

sources (e.g. talking to someone) 

.52 .60 

Other people come to you for advice on new technologies .65 .74 

It is important to me to have the most current technologies available .65 .73 

Smart technologies improve the quality of my life .66 .75 

I know how to troubleshoot problems when smart technologies fail .47 .57 

I believe smart technologies are reliable .66 .74 

Eigenvalue 4.71 

Percentage variance 52.3 

Cronbach’s α (9-item) .88 
1Listwise deletion resulted in the removal of two cases. 



Table 3: People-oriented workplace culture item characteristics (n=901) 

Scale item: In general… Corrected Item-

total Correlation 

Factor 

loading 

Communication between managers and staff usually works well .80 .85 

Communication within our work team usually works well .69 .77 

There is a good level of trust between managers and staff .80 .86 

There is a good level of trust within our work team .68 .76 

Employees can raise work-related concerns with their manager .82 .87 

It is unusual to experience bullying or harassment .75 .81 

There is a lot of conflict in my workplace .36 .44 

Management emphasise the importance of teamwork .70 .78 

I have received training to be able to work in a team .44 .56 

Eigenvalue 5.17 

Percentage variance 57.5 

Cronbach’s α .90 
1Listwise deletion resulted in the removal of two cases. 

  

Figure 2: Cobot acceptance model with correlation coefficients (Spearman’s Rho) as strength of associations, 

*p<.05, **p<.01. 

 

Table 4: Relationship between ordinal independent (predictor) and ordinal dependent (outcome) measures of the 

core TAM. 

 

Willing to work with cobots in the future (behavioural intention) 

“Unwilling” 

(Strongly Disagree/ 

Disagree; n=11) 

“Ambivalent” 

(Neither agree nor 

disagree; n=32) 

“Willing” 

(Strongly agree/ 

Agree; n=49) 

Perceived usefulness of cobots  N (%) N (%) N (%) 

   “Not useful” (Strongly disagree/Disagree) 4 (50.0) 2 (25.0) 2 (25.0) 

   “Ambivalent” (Neither agree nor disagree) 6 (10.3) 23 (39.7) 29 (50.0) 

   “Useful” (Strongly agree/Agree) 1 (3.8) 7 (26.9) 18 (69.2) 

Perceived ease of cobot use N (%) N (%) N (%) 

   “Difficult (Strongly disagree/Disagree) 7 (36.8)  7(36.8) 5 (26.3) 

   “Ambivalent” (Neither agree nor disagree) 4 (9.5) 18 (42.9) 20 (47.6) 

   “Easy” (Strongly agree/Agree) 0 (0.0) 7 (22.6) 24 (77.4) 

 



Table 5: Relationship between perceived cobot usefulness and ease of use in apprentices 

 

Perceived usefulness of cobots 

“Not useful” 

(Strongly disagree/ 

Disagree; n=8) 

“Ambivalent”  

(Neither agree nor 

disagree; n=58) 

“Useful” 

(Strongly agree/ 

Agree; n=26) 

Perceived ease of cobot use N (%) N (%) N (%) 

   “Difficult (Strongly disagree/Disagree) 7 (36.8) 11 (57.9) 1 (5.3) 

   “Ambivalent” (Neither agree nor disagree) 1 (2.4) 35 (83.3) 6 (14.3) 

   “Easy” (Strongly agree/Agree) 0 (0.0) 12 (38.7) 19 (61.3%) 

 

Table 6: Test of model effects summary for core TAM ordinal regressions 

Sequence 

order 

Dependent 

variable 

Independent 

variable 

Chi-square (df) p value 

1 BIC PUC 9.31 (2) .010 

2 PEOUC PUC 28.89 (2) .000 

3 BIC PEOUC 16.76 (2) .000 

4 BIC PUC   .79 (2) .673 

  PEOUC 8.66 (2) .013 

  PUC*PEOUC 1.92 (3) .589 

BIC = Behavioural intention (willingness to work with cobots in the future); PUC = Perceived usefulness of 

cobots; PEOUC = Perceived ease of cobot use. 

 

Table 7: Relationship between perceived usefulness of cobots and proposed antecedents 

 

Perceived usefulness of cobots 

“Not useful” 

(Strongly disagree/ 

Disagree; n=8) 

“Ambivalent”  

(Neither agree nor 

disagree; n=58) 

“Useful” 

(Strongly agree/ 

Agree; n=26) 

Affinity for smart technology (Median)* 2.89 3.50 3.89 

People-oriented workplace culture (Median)* 3.67 3.67 4.00 

*Note: 1 = Strongly disagree, 2 = Disagree, 3= Neither agree nor disagree, 4 = Agree, 5 = Strongly agree 

 

Table 8: Relationship between perceived ease of cobot use and proposed antecedents 

 

Perceived ease of cobot use 

“Difficult” 

(Strongly disagree/ 

Disagree; n=19) 

“Ambivalent” 

 (Neither agree nor 

disagree; n=42) 

“Easy” 

(Strongly agree/ 

Agree; n=31) 

Affinity for smart technology (Median)* 3.22 3.56 3.78 

People-oriented workplace culture (Median)* 3.50 3.78 4.00 

*Note: 1 = Strongly disagree, 2 = Disagree, 3= Neither agree nor disagree, 4 = Agree, 5 = Strongly agree 

 

  



Table 9: Test of model effects summary for additional TAM ordinal regressions 

Dependent 

variable 

Independent 

variable 

Chi-square (df) p value 

PUC AFTS 7.37 (1) .007 

PEOUC AFTS 6.98 (1) .008 

 WC 2.91 (1) .088 

BIC AFTS 3.26 (1) .071 

 WC   .24 (1) .623 

PUC = Perceived usefulness of cobots; AFTS = Affinity for smart technology; PEOUC = Perceived ease of cobot 

use; WC = People-oriented workplace culture; BIC = Behavioural intention (willingness to work with cobots in 

the future). 

 




