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During tunnel excavation in high stressed and weak rock masses, excessive deformation is often 

encountered characterized by squeezing. The squeezing phenomenon is referred to as the large time-

dependent convergence which occurs during excavation and continues over time, essentially associated 

with the creep mechanism. This time-dependent behavior is usually not identified at the feasibility stage 

of tunnel development. Consequently, leads to high cost in rock reinforcement and support installation 

as well as time-consuming and unsafe rehabilitation to keep tunnels in operation. Prediction of the time-

dependent deformation associated with squeezing at an early stage is of great significance for stable 

tunnel excavation and design. The depiction of this tunnel response requires analytical and numerical 

techniques, in numerical techniques, it is made possible by employing constitutive models. However, 

literature outlines the limitations of these conventional constitutive models in estimating time-dependent 

deformation in squeezing ground. Hence, this study makes three major contributions to the understanding 

of the 3-phase creep mechanism and presentation of efficient tools for its description.  

The first major contribution is the derivation and presentation of the closed-form analytical solutions which 

can estimate the confining stress-dependent and time-dependent response of tunnels excavated in 
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squeezing ground. These solutions address the deficiencies encountered when employing the 

conventional analytical solution in the realistic estimation of the ground reaction attributed to squeezing. 

The second major contribution is the presentation of a fractional-order derivative viscoelastic viscoplastic 

(FDVP) constitutive model capable of estimating delayed deformations characterized by squeezing. Its 

equations are derived as an extension to the Burgers model and adjusted Perzyna overstress function 

with an associated viscoplastic flow rule. It addresses the deficiencies experienced by the conventional 

integer-order derivative constitutive models in describing the power-law mechanism of materials. The 

model is calibrated using experimental data obtained from literature and verified by monitored tunnel 

convergence data. Thereafter, implemented in a finite volume numerical code to simulate the time-

dependent tunnel response. 

The third major contribution is the presentation of an elasto-viscoplastic with isotropic damage (EVPD) 

constitutive model that explicitly describes the 3-phase creep mechanism. This model is an enhancement 

of the FDVP constitutive equations considering the isotropic damage effect characterized by the 

accelerated creep phase. Its derived constitutive equations are based on fractal-order derivatives 

obtained by applying scaling transformations on integer-order derivatives. These derived constitutive 

equations are also calibrated using literature attained experimental data and numerically implemented in 

a finite volume code to simulate the time-dependent response of a tunnel excavated in squeezing ground.  

In this study, these major contributions are presented and elaborated; includes the limitation that they 

address, their derivation, and applicability in the estimation of time-dependent tunnel deformations. 
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Chapter 1. Introduction 

1.1 Research Background 

In this study, an analytical solution and a constitutive model that will consider the time-dependent 

response of tunnels excavated in squeezing ground are presented.  The functionality of these tools is to 

reliably estimate the tunnel convergence associated with squeezing. Intended as preliminary indicators 

of the squeezing potential which can be used for tunnel design and support element strategies. The 

analytical solution will improve the reliable estimation of time-dependent convergence that will aid 

practitioners (engineers) in determining the appropriate tunnel support in squeezing ground. Whereas 

the constitutive model is proposed with the intent of describing the 3-phase creep mechanism associated 

with squeezing and introduce constitutive laws to reproduce this mechanism explicitly, applicable for 

research and practice. Furthermore, reduce the significant extra support investment and the time-

consuming rehabilitation to maintain tunnel serviceability in squeezing ground. Consequently, this will 

lead to an in-depth understanding of the nature and extent of squeezing at the feasibility stage.  

1.2 Research Gaps 

The mechanical behavior or ground reaction of tunnels excavated in squeezing ground is represented by 

constitutive equations which provide the ground stress-strain response. Even though the squeezing 

mechanism is complex, most of the conducted research and engineering design practice considers the 

ground reaction as a linear elastic or perfectly plastic material governed by the Mohr-Coulomb (MC) yield 

criterion. However, estimation of squeezing related deformations using the MC yield criterion is 

characterized by rock mass strength and volumetric behavior after failure. Additionally, the MC yield 

criterion neglects the rock mass stiffness on the confining stress (Intermediate principal stress) 

dependency as such leads to inaccurate tunnel convergence estimations unsafe for tunnel design. 

Hence, the widely employed MC yield criterion governed analytical solutions lead to uncertainties in 

estimating actual tunnel convergence. These uncertainties are related to the correlation between the 
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pressure which acts on the internal tunnel boundary and the convergence. In that the lower the pressure 

the larger the tunnel convergence, an important aspect to consider during excavation and support design. 

On the other hand, the conventional empirical and analytical tools employed to quantify this tunnel 

convergence are based on circular tunnels in a homogeneous isotropic rock mass condition. They neglect 

the influence of non-circular tunnel geometries, non-hydrostatic stress field, and sequential excavation 

process in a discontinuous, anisotropic, non-linear rock mass condition as well as the time-dependent 

mechanism characterized by squeezing.  

This time-dependent behavior also referred to as squeezing can be described by theoretical and 

numerically implemented constitutive models that are subdivided into phenomenological and 

micromechanics-based. It is fundamentally clear that most researchers have concentrated on the 

phenomenological approach and non-linear stress-strain relationship. Models established on this 

approach neglect the intricate microstructural processes and are a combination of rheological models 

and empirical variables [1]. Lu et al. [2] argued that this time-dependent behavior associated with the 

creep mechanism of a rock mass cannot be explicitly captured by these phenomenological models. Even 

though studies were conducted on this phenomenon on a microscopic scale through laboratory creep 

tests. Most of these studies relied on empirical data and rock testing that does not clearly explain the 

actual rock mass behaviour undergoing the squeezing mechanism.  

Furthermore, the numerical simulation conducted to describe this time-dependent behaviour in weak 

and/or soft rock formations mostly aims at describing it in the short-term. However, tunnels excavated in 

these rock formations experience large deformations over time which leads to critical tunnel instability. 

Thus, time-dependent analysis with the realistic representation of the creep phenomenon in numerical 

models is required for a better understanding of tunnel response in squeezing ground. Also, the time-

dependent strength degradation of the rock mass and the accelerated creep phase initiation associated 

with creep damage should be considered in numerical simulations. The efficient process of these 

simulations requires equations and algorithms provided by constitutive models. However, the 
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conventional constitutive models developed and employed in earlier studies for creep simulation face 

limitations such as the explicit accelerated creep description. Hence, adequate knowledge of the time-

dependent tunnel response in squeezing ground has not been fully explained.  

Therefore, analysis of the time-dependent rock mass behaviour on an infinitesimal scale must be 

conducted to fully understand the squeezing mechanism and this can be achieved by employing 

viscoelasticity-viscoplasticity theory and creep damage mechanics. In this study, we will focus more on 

addressing the limitations associated with the analytical and numerical approach in estimating the tunnel 

time-dependent behavior characterized by creep. 

1.2.1 Analytical approach 

As mentioned earlier, the analytical formulations to date focus more on the phenomenological mechanism 

in circular tunnels and neglect other influencing factors. They are based on assumptions that neglect the 

influence of non-circular tunnel geometries, non-hydrostatic stress field in a rock mass that exhibits 

delayed viscoplastic shear failure responsible for squeezing. The tunnel ground response is dependent 

on the rock mass behaviour, linear for instantaneous reversible elastic behaviour and non-linear for 

irreversible behaviour characterized by elastoplasticity [3–7]. However, the irreversible time-dependent 

behaviour characterized by elasto viscoplasticity is not well-thought-out when employing these analytical 

solutions in squeezing tunnel stability analysis. Hence, they are not tailored for the tunnel ground 

reactions estimation associated with squeezing and its time-dependency. As such they cannot 

realistically predict irreversible viscoplastic strains characterized by delayed deformations responsible for 

the long-term response in squeezing ground. Therefore, an analytical solution able to estimate the time-

dependent ground reaction in squeezing ground will be presented. 
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1.2.2 Numerical approach 

The conventional constitutive models implemented in numerical simulation of squeezing ground assume 

isotropic deformation in a homogeneous rock material and fail to predict the initiation time of the 

accelerated creep. Furthermore, they are based on the integer-order derivative constitutive equations 

which neglect the power-law mechanism experienced by rock and rock masses when subjected to stress. 

As such they are incapable of the explicit accelerated creep description responsible for squeezing. 

Besides, squeezing is characterized by the rock mass discontinuities viscoplastic behaviour which they 

also neglect. Henceforth, understanding of the time-dependent tunnel response in weak heterogeneous 

rock formations with respect to the squeezing mechanism requires further improvement. Therefore, in 

this study viscoplasticity theory based on Perzyn’s overstress function, fractional-order derivatives, 

fractal-order derivatives, and creep damage is applied to develop a time-based constitutive model. The 

model can explicitly capture the accelerated creep phase responsible for the time-dependent behavior 

associated with squeezing. The validation and calibration of this presented constitutive model are based 

on published creep test results.  

In summary, the presented thesis improves the understanding of the appropriate tool employment for 

squeezing assessment and provide solutions that better represent the actual tunnel convergence in 

squeezing ground. This contribution to the understanding and realistic estimation of the squeezing 

mechanism will require addressing specific limitations of the conventional analytical and numerical tools: 

 failure of the analytical solutions to estimate the time-dependent response of tunnels excavated in 

squeezing ground. 

 failure of the constitutive models to explicitly estimate the accelerated creep phase and account for 

irrecoverable viscoplastic strains responsible for delayed deformations in squeezing ground. 

Hence, in this thesis, the above limitations will be addressed by satisfying the aims listed in the proceeding 

section. 
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1.3 Research Aims and Objectives  

The overall aim of this research is to develop an improved analytical solution and a constitutive model 

that will consider the time-dependent response of tunnels excavated in squeezing ground. In order to 

fulfill this, two research aims have been developed and listed below: 

Aim 1: Improve the conventional analytical tools by presenting a closed-form analytical solution that will 

estimate delayed (time-dependent) convergence within non-circular tunnels excavated in squeezing 

ground. The following are the steps to achieve this first aim: 

(1) To conduct a comparative analysis and identify the limitations of conventional analytical 

solutions.  

(2) To formulate a closed-form analytical solution that will account for the confining stress effect and 

non-circular tunnel geometries on ground reaction. 

(3) To formulate a closed-form analytical solution based on fractional-order derivatives that will 

consider the time-dependent ground reaction. 

(4) To verify and implement the derived closed-form analytical solutions, estimate the tunnel ground 

reaction and appropriate support capacity in squeezing ground. 

Aim 2: Derive and implement a time-dependent constitutive model for the explicit description of delayed 

deformations responsible for squeezing. The following are the steps to achieve this second aim: 

(1) To derive constitutive equations to describe the power-law mechanism experienced by rocks and 

rock masses subjected to stress.  

(2) To build a constitutive model based on the fractional-order and fractal-order derived constitutive 

equations. 

(3) To calibrate and verify the derived constitutive equations using attained experimental data from 

literature and monitored tunnel convergence data. 



6 
 

(4) To implement the constitutive model in a finite volume numerical code, analyse a large scale 

tunnel layout and propose support structures required in squeezing ground.  
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1.4 Thesis outline 

This thesis is organized into four (4) parts which consist of 7 chapters to achieve the aims stated above, 

this outline includes: 

Part 1 of this study (Chapter 2), is an introduction that consists of a description of squeezing related 

deformations and their association with creep as well as limitations of the conventional techniques.  

 The first section of Chapter 2 describes the time-dependent behaviour characterized by squeezing 

and its association with the 3-phase creep mechanism. It also outlines the major failure modes 

attributed to the time-dependent tunnel response experienced in squeezing ground.  

 

 The second section of Chapter 2 discusses a comprehensive review centered on the analysis of the 

large deformation phenomenon observed in tunnels excavated in squeezing ground conditions. 

Evaluation of the conventional closed-form analytical solutions employed in the quantification of 

tunnel convergence associated with squeezing. It further evaluates these analytical tool's efficiency 

in ground response estimation and ground response-support interaction. Including their limitation 

when employed to estimate this time-dependent tunnel response.  

 

 The third section of Chapter 2 is composed of a detailed review of the creep constitutive models 

proposed in the last 20 years and their theoretical framework. It also emphasizes the main 

assumption, limitations, and improvements that have been introduced for the time-dependent 

description of geomaterials. Most importantly focus on the creep constitutive models that have been 

employed successfully to simulate tunnels excavated in severe squeezing ground i.e. CVISC, 

SHELVIP, VIPLA, and Burgers constitutive models. Additionally, it acknowledges the use and 

limitation of this range of creep constitutive models. Further on, sums up a detailed review of 

viscoelastic viscoplastic theory, creep damage, and numerical modelling.  
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Part 2 studies the closed-form analytical solution derivation and implementation to estimate the ground 

reaction of tunnels excavated in squeezing ground. This part consists of Chapters 3 & 4 which outlines 

the derivation and verification of elastoplastic and elasto-viscoplastic closed-form solutions. 

 Chapter 3 firstly details a conducted comparative investigation between the conventional analytical 

solutions developed for elastic and elasto-plastic ground reaction with the numerical solution. It 

relates the performance of employing analytical solutions with the numerical models for a chosen 

rock mass condition. Furthermore, verification of these analytical solutions is undertaken, and 

limitations are identified. Then a closed-form analytical solution for the elasto plastic ground reaction 

estimation is derived and proposed which addresses some of these limitations.  

 

 Chapter 4 presents an improvement in the analytical solution’s estimation of the time-dependent 

ground reaction characterized by the 3-phase creep mechanism. This enhancement is achieved by 

integrating the viscoplastic constitutive equation in a closed-form analytical solution. This solution 

based on fractional-order derivatives is further implemented in the convergence confinement 

methods (CCMs) and employed to estimate the time-dependent deformations. Hence, addresses the 

limitation of the CCMs in estimating delayed deformation characterized by the accelerated creep 

responsible for squeezing. It is further employed to quantify convergence and determine the 

appropriate support stiffness required for tunnel stability in squeezing ground.  

 

Part 3, of this study, comprises Chapters 5 and 6, which involves the development of the creep 

constitutive models that consider the time-dependent behavior of geomaterials. This is achieved by 

employing the Perzyna viscoplastic theory, fractional-order derivative theory, fractal-order derivative 

theory and creep damage mechanics.  
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 Chapter 5 contains the development of the fractional-order derivative elastic-viscoplastic constitutive 

model neglecting damage as such does not explicitly capture the accelerated creep stage. Further 

on, it discusses the model validation with existing experimental data and verification using robust 

fitting of the monitored tunnel convergence data. The developed constitutive model is further 

implemented in a finite volume numerical code for potential tunnel squeezing mechanism simulation.  

 

 Chapter 6 includes the development of an elastic-viscoplastic viscodamage constitutive model that 

considers isotropic damage for the explicit description of the accelerated creep phase. Validation, 

verification, and applicability of the constitutive model involve the creep parameter calibration with 

published experimental data and its numerical implementation through a user-defined subroutine 

written in object-oriented C++.  

 

Part 4 consists of Chapter 7; it discusses the applicability of the proposed analytical solution in the 

estimation of the Nchanga Underground (NUG) tunnel convergence.  

 Chapter 7 describes the tunnel convergence and support estimation in the NUG squeezing ground 

using the proposed analytical solution. This chapter further elaborates on the support design concept 

approved to accommodate large deformations that are expected to occur in squeezing ground. 

Additionally, the solution estimates ground support and reinforcement capacity, in terms of stiffness 

to restraining squeezing (resistance principle) or accepting a certain amount of deformation to avert 

the development of excessive squeezing (yielding principle). 

 

Finally, the Conclusion (Chapter 8) summarizes the major findings, contributions, and limitations of the 

study as well as suggestions for further research.



10 
 

Chapter 2. Literature review on squeezing mechanism and its estimation 

Tunnel deformations due to squeezing ground conditions usually pose a significant challenge in the 

support structure set up, maintenance, and safety. Squeezing is generally described as a time-dependent 

cross-section area reduction of a tunnel as a result of induced stress and relatively weak surrounding 

rock mass parameters [8]. Squeezing can lead to large displacements such as floor heave and wall 

extrusion around tunnels essentially associated with the rock mass creep behavior [9], illustrated in Figure 

2-1.  

 
 

 

 
 
 
 
 
 
 
 

 

 

 
Squeezing ground conditions has been a major challenge in tunnelling for civil and mining in weak rock 

mass relative to the induced stress field. It is usually not identified and predicted with the element of time 

at an early stage of tunnel operation [10]. Tunnelling under severe squeezing ground conditions is 

frequently associated with excessive rehabilitation, rock reinforcement, and support element failure 

(Figure 2-1a). Depending on the severity of the squeezing mechanism, significant investment in extra 

rock reinforcement and support installation and time-consuming rehabilitation is required to maintain the 

serviceability of tunnels [8,11,12]. When a tunnel is excavated in a high stressed rock mass a new stress 

redistribution occurs around the tunnel. The stress redistribution around the tunnel can lead to an 

increase in the magnitude of the deviatoric stresses, the increase of these deviatoric stresses induces 

Figure 2-1. Squeezing in a tunnel at the NUG: (a) Crown sagging and (b) Floor heaving 
(Photos taken by the author). 
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squeezing. Therefore, the study of this stress redistribution phenomenon is essential in the understanding 

of tunnel stability in squeezing ground.  

The majority of case studies in squeezing ground conditions to date are based on circular tunnels in the 

weak rock, for instance, [13–20]. These researchers analyzed the squeezing mechanism in several 

tunnels and concluded that squeezing is the visco-plastic behaviour of rocks that can be predicted based 

on constitutive modelling and numerical analyses. According to their findings, the prediction of squeezing 

ground behaviour is based on rock mass strength and in situ state of stress. In deep underground tunnels, 

a few squeezing occurrences have been recorded as the mines continue to dig deeper. An example is 

the Blackwater mine of New Zealand which experienced severe squeezing behaviour in the 1940s [21]. 

In Australia, the Henty mine reported by [12], the Wattle Dam Gold Mine reported by Marlow and Mikula 

[22], the Perseverance mine in Kalgoorlie reported by Struthers et al. [23], and Rio Tinto's Argyle Diamond 

mine reported by Fernandez et al. [24] among others, report various cases of severe squeezing ground 

conditions. The Canadian Lapa and La Rhonde mines’ squeezing ground conditions have been 

discussed by Mercier‐Langevin and Hadjigeorgiou [25], Mercier-Langevin and Wilson [26], Karampinos, 

and Hadjigeorgiou [11] and  Hadjigeorgiou [29]. The South African experience with squeezing is also 

described by Malan [30,31]. A further report was done in Zambia by Kabwe [33]. In this case, the Nchanga 

mine experienced severe squeezing conditions which led to the collapse and closure of most tunnels. 

The majority of tools used for the estimation of tunnel convergence due to squeezing are based on 

empirical and analytical formulations for circular tunnels in weak rocks [34]. This assumes that the rock 

mass behaves in a nearly isotropic manner, with this in mind the aim of this study is to develop a model 

capable of predicting squeezing potential before tunnelling. The model will take into account the time-

dependent and anisotropic response of the heterogeneous rock mass as well as the influence of 

rheological properties of discontinuities and tunnel geometry in squeezing ground. The model is intended 

as an initial indicator of the squeezing potential and will potentially be used for the development and 

design of different support element strategies for tunnels. In this section, the description of squeezing as 
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a time-dependent mechanism associated with creep, conventional tools (empirical, analytical, and 

constitutive models) employed for tunnel convergence quantification in squeezing ground are discussed 

and their limitations outlined. 

2.1 Squeezing mechanism 

Tunnelling in the weak rock mass is often associated with swelling and/or squeezing which are time-

dependent rock behaviours. These time-dependent rock mass responses are completely different but 

display the same large time-dependent tunnel convergence during and after excavation. The only 

difference between them is the aspect of material ground volume increment due to the other physical-

chemical mechanism and most importantly water absorption. Squeezing is a time-dependent mechanism 

with the plastic flow (creep) of rock masses subjected to stress exceeding the shear stress limit. In 

actuality the definition of squeezing is associated with: non-linear time-dependent behavior, large support 

load, and or tunnel convergence and damage due to high-stress concentrations [9,35]. The definition of 

squeezing however has different versions in literature: for instance, Terzaghi [36] suggests that 

“squeezing is an advancement of the rock mass into the tunnel without a substantial volume increment 

before this is a high fraction of infinitesimal and sub infinitesimal particles of mica”. A more general 

description of the phenomenological and mechanical aspects of both swelling and squeezing is provided 

by Gioda and Cividini [17]. They state that swelling is the time-dependent deformation with an increment 

in volume change due to an increase in water content and a reduction in volumetric effective stress 

whereas squeezing is an inward movement of the tunnel perimeter initiated by shear stress. Therefore, 

it can be generally accepted that squeezing is influenced by shear stress acting on the rock mass. A 

better definition of squeezing is to relate creep initiated by exceeding the shear stress limit and the 

deformation. This is clarified by Barla [9], defining squeezing as the time-dependent deformation around 

the tunnel boundary related to creep initiated by exceeding certain shear stress. The concentration of 

these shear stresses in the locality of the tunnel is usually characterized by limited volume changes [17].  
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Hence, Gioda and Cividini [17] define the squeezing phenomenon as the slow ground advancement to a 

tunnel’s opening driven in soft squeezing rock without detectable fracturing or volume change. They 

further describe squeezing behaviour to be more prominent in tunnels driven in soft clay material at 

shallow depth. While in tunnels excavated in stiff clay and soft rock at greater depths, squeezing is 

displayed with a combination of raveling which is the constant inward deformation of the rock coupled 

with the separation of blocks from the tunnel roof and walls. Sterpi and Gioda [37] claim that the stress 

redistribution induced during tunnelling leads to the increase of deviatoric stresses around tunnels which 

further initiate squeezing an almost verbatim recapitulation of Barla's [9] definition of squeezing and this 

claim is further clarified by Malan [31]. Additionally, Malan [31] states that the occurrence of these 

stresses leads to non-revisable deviatoric creep strains which develop over time either at a constant or 

an increased rate referred to as the three creep stages and this constitutes the squeezing mechanism 

(Figure 2-2). The real particularity of squeezing phenomena is the time-dependent aspect of the rock 

mass behaviour. As such the process considers this aspect and is associated with creep the prime driver 

of this mechanism. The rock mass under these creep conditions undergoes a time-dependent 

deformation which is critical in the assessment of the long-term stability of tunnels and directly related to 

the stand-up time of unsupported tunnels [38–41].  

 

 

 

 

 

 

 

 

 

 

 Figure 2-2. The characteristic curve of creep behaviour 
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The definition of the squeezing mechanism adopted within this study is one asserted by Barla [9] and 

Jimenez et al [35]. Identifying the driving mechanism associated with squeezing is important in 

determining the squeezing potential of underground tunnels. The general description of the three (3) 

major driving mechanism or failure modes associated with squeezing has been presented in the literature.  

These modes are a complete shearing failure that occurs within continuous ductile rock mass with widely 

spaced discontinuities, buckling failure occurs in thinly layered (thinly bedded sedimentary) rock masses 

and shearing and sliding occurs within thickly bedded sedimentary rock masses associated with sliding 

along bedding planes and intact rock shearing [13]. Figure 2-3 illustrates a schematic representation of 

the complete shear and buckling failure mechanisms.  

 

 

 

 

 

 

 
The squeezing mechanism depending on the above-mentioned modes can be either isotropic or 

anisotropic and we focus on shearing failure mode which is an isotropic squeezing mechanism.  

 

 

Figure 2-3. Squeezing failure: (a) Isotropic squeezing and (b) Anistropic squeezing  
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2.2 Empirical, Analytical and Numerical techniques for squeezing 

prediction 

2.2.1 Empirical methods 

The main method used in the evaluation of tunnel vulnerability to the squeezing mechanism is an 

empirical analysis of circular tunnelling in weak rock and classification [13,19].  For instance, Jethwa et 

al [42] looked at squeezing quantification in terms of competency factor in their empirical approach which 

they defined as the ratio of the uniaxial compressive strength ���  of the rock mass to the overburden 

stress (Equation (2-1)). 

 �� =
���

��
  (2-1) 

 
Where: �� is the competency factor, ��� is the uniaxial compressive strength (MPa),  � is the unit weight 

of the rock mass (kN/m3) and ℎ is the overburden height or depth (m). It was concluded that if ��> 2.0 

then squeezing will not occur. However, considering the effects of joints and fractures the relation was 

not accurate and thus it was redefined by incorporating the RMi proposed by Palmström [43];  

 

 �� =
����.���� ���

��
              � = 0.37����.�  (2-2) 

 
Where: �� is the competency factor, �� is the joint condition factor, a combined measure for the joint 

size, joint roughness and joint alteration, �� is the block volume (m3) and ��  is the tangential stress 

(MPa). It can be deduced from the above formulation that the identification of potential squeezing 

occurrences is greatly influenced by the presence of rock structural features that most empirical 

formulations fail to consider. Aydan et al. [13] transformed Jethwa et al [42] competency factor idea into 

a concept based on the stress-strain relationship. The proposed levels to quantify squeezing are based 

on the tangential strain and elastic strain illustrated in Table 2-1. Their approach assumes hydrostatic 
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stress acting uniformly on the perimeter of a circular tunnel and only considers instantaneous squeezing. 

In addition to the competency factor idea, Singh et al [44] suggests that squeezing potential can be 

determined from the magnitude of the maximum tangential stress ��  acting on the boundary of a circular 

tunnel through their empirical analysis (Equation (2-3)). Further deduced that at failure the maximum ��  

is related to the uniaxial compressive strength ���  of the rock mass and the depth of the excavation. 

They formulated the relation between the uniaxial compressive strength of a rock mass and the 

Tunnelling Index (�) proposed by Barton et al. [45] (Equation (2-4)) and they suggest that the depth to 

anticipate squeezing conditions is greater than � (Equation (2-5)). 

 
�� = 2�� 

 

(2-3) 

 ��� = 0.7��� �⁄  

 

(2-4) 

  � = 350 �� �⁄  (2-5) 

Where: � is the unit weight of the rock mass (kN/m3). The relation is biased to circular tunnels as the 

magnitude of the tangential stress acting on a circular tunnel is different from that acting on a non-circular 

shaped tunnel. In a non-circular shaped tunnel, ��  acting on the boundary of the roof and walls is given 

by;  

 �� = (�� − 1)��  (roof)                                                        (2-6) 

 
  �� = (� − �)��    (wall)                                                         (2-7) 

 

  � =
��

��
�  (2-8) 

Where: A and B are factors of the excavation geometry [46], k is the stress ratio, �� is the horizontal 

stress (MPa) and �� is the vertical stress (MPa). It can be deduced from Hoek & Brown, [46] that the 

magnitude of the ��  acting on the roof will be higher than on the walls in a non-circular shaped tunnel. 

Hence, Singh et al [44] empirical formulation cannot determine the squeezing potential in non-circular 
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shaped tunnels accurately. It shows from Singh et al [44] interpretation of the influence of ��  on 

squeezing and Hoek and Brown [46] shape factor function, that geometry affects the tunnel convergence 

due to squeezing which most researchers neglect. The equation (2-5) for the prediction of squeezing 

potential is based on the Q-value, given the difficulties in estimating the Stress Reduction Factor (SRF), 

the empirical relation does not consider the actual geometrical features of discontinuities essential in 

squeezing prediction. Goel et al. [47] improved on this by eliminating the influence of SRF on Q and 

defined the rock mass number (�) defined as stress-free Q (SRF = 1) in the relation given by; 

 � =
��� ����

����
  (2-9) 

 

  � = (275 ��.��)��� (2-10) 

 
Where; RQD is the rock quality designation, �� is the joint set number,  ��  is the joint roughness number, 

 �� is the joint alteration number, �� is the joint water reduction factor, � is the depth at which squeezing 

takes place (m) and � is the circular tunnel diameter (m). The approach seems to be a suitable empirical 

tool to address the stress situation by incorporating the overburden depth and tunnel dimension. 

However, the limitation of this approach is that it does not consider the influence of tunnel geometry. A 

recap on Jethwa et al. [42] competency factor idea,  Hoek [19] used tunnel strain to define squeezing as 

suggested by Aydan et al. [13] and presents several levels of squeezing quantification based on strain 

induced by an unsupported tunnel in a rock mass with different values of the rock mass strength to 

hydrostatic pressure (Table 2-1). Their approach is also based on circular tunnels in an isotropic rock 

mass with a hydrostatic stress field seldom as simple as assumed.  Quantification of squeezing potential 

suggested by Jethwa et al. [42] and Singh et al [44] was based on the comparison of the rock mass 

strength and induced stress. A slightly modified concept suggested by Aydan et al. [13] and  Hoek [19] 

presented a comparison between the axial stress-strain response of laboratory rock samples and the 

tangential stress-strain response of rock around tunnels. Aydan et al. [13] and Hoek [19] modified the 

concept and made it easy to quantify the deformations due to squeezing because it relied directly on 
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strain increment. The quantification based on  Hoek [19] defines a critical strain limit taken as 1%, above 

which support problems are most likely to occur due to squeezing. However, Singh et al. [20] observed 

that some tunnels which experienced strains as high as 4% did not display stability problems. They 

suggest critical strain not to be taken as 1% as it is entirely dependent on the intact rock material and 

joint rock mass properties and derived a correlation for critical strain in terms of the intact rock properties 

and modulus of deformation, represented as the squeezing index (SI) (Equation (2-11)). 

 �� =  
��

����
  (2-11) 

 
Where: �� is the radial closure (m), � is the tunnel opening radius (m) and ��� is the critical strain. The 

critical strain in Equation (2-11) is defined as a measure of tangential strain at the boundary of the tunnel. 

According to Hoek and Brown [46], the tangential strain will be different at diverse points on the tunnel 

boundary. Hence, tunnel geometry affects the measure of the tangential strain. However, Singh et al.  

[20] neglected this and assumed the tunnel to be circular with radius (�). The squeezing quantification 

levels based on many empirical approaches [13,19,20] are illustrated in Table 2-1 with the first three 

representing civil tunnels and the other mine tunnels.
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Table 2-1. Classification for squeezing potential in tunnels [8]. 

 Aydan et al., [13] Hoek [19]  Singh et al., [20] Roache [12] 

 Squeezing level Tunnel strain Squeezing 

level 

SI Squeezing 

level 

Tunnel strain Squeezing 

level 

Tunnel strain 

1 Few support 

problems 

�� < 1% No 

squeezing 

�� < 1.0 No 

squeezing 

��
� ��

�⁄ ≤ 1.0 Few 

support 

problems 

�� < 2% 

2 Minor squeezing 

problems 

1% < �� < 2.5% Light 

squeezing 

1.0 < �� ≤ 2.0 Light 

squeezing 

1.0 ��
� ��

�⁄ ≤ 2.0 Light 

squeezing 

2% < �� < 5% 

3 Severe 

squeezing 

problems 

2.5% < �� < 5% Fair 

squeezing 

2.0 < �� ≤ 3.0 Fair 

squeezing 

 2.0 < ��
� ��

�⁄ ≤ 3.0 Fair 

squeezing 

5% < �� < 10% 

4 Very severe 

squeezing 

problems 

5% < �� < 10% Heavy 

squeezing 

3.0 < �� ≤ 5.0 Heavy 

squeezing 

3.0 < ��
� ��

�⁄ ≤ 5.0 Stripping 

zone 

10% < �� < 20% 

5 Extreme 

squeezing 

problems 

�� >10% Very heavy 

squeezing 

5.0 < �� Very heavy 

squeezing 

��
� ��  

� >⁄ 5.0 Post 

Striping 

Zone 

20% < �� < 40% 
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2.2.2 Analytical methods 

As mentioned earlier in Section 1.2, tunnel stability is dependent on the ability of the surrounding rock 

mass to undergo failure. Hence, this requires an adequate description of failure which is governed by 

failure criteria such as the simplest and widely employed MC yield criterion, among others. The MC yield 

criterion assumes the major principal stress (��) as a linear function of only the minor principal stress 

(��) neglecting the intermediate principal stress (��) which is consistent with most triaxial tests (�� >

�� = ��). However, the stress state (�� > �� = ��) does not depict the actual Earth’s state of stress 

which is three-dimensional (3D) (�� ≥ �� ≥ ��). Even though, in excavation stability analysis, it is 

assumed that �� = ��, the stress state close to tunnels and boreholes is usually in 3D [48]. Researchers 

[49–51] conducted true triaxial tests that represented the realistic 3D state of stress and concluded that 

�� affects almost all aspects of rock failure. Hence, the employment of the MC, Hoek Brown (HB), and 

other two-dimensional (2D) failure criterion which neglects the effect of �� are inappropriate for rock 

failure description in most cases. This brings back to the issue of employing analytical solutions that are 

governed by failure criteria that consider the effect of ��. However, conventional analytical solutions 

employed to quantify tunnel convergence due to squeezing are based on the CCM assumptions and 

most are governed by failure criteria that ignore the influence of ��. Their formulations are established 

on the initial hole-in-a-plate solution originally developed by Kirsch [52]. Since then several formulations 

have been modified and presented by Panet and Guenot [53], Duncan Fama [54] Carranza-Torres, and 

Fairhurst [4], Lee and Pietruszczak [55], Barbosa [57], and  Vrakas and Anagnostou [7] among others. 

These solutions consider the ground reaction to the advancing tunnel face by a three-step analysis: (1) 

the Ground Reaction Curve (GRC) which relates in-situ stress to tunnel convergence; (2) the Support 

Reaction Curve (SRC) which relates deformation of the support pressure to the convergence; and (3) the 

Longitudinal Displacement Profile (LDP) which relates tunnel displacement to the position of the tunnel 

face.  
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Also, Bonini et al [58], Karampinos et al [28], Vlachopoulos and Diederichs [59] and others elaborate on 

the inaccuracies associated with the CCM approach, the commonly applied CCM does not estimate the 

time-dependent ground response associated with creep mechanism. The incapability of the CCM to deal 

with time-dependent ground reaction is explained by Paraskevopoulou & Diederichs [60] and Oke et al. 

[61]. As pointed out earlier, the analytical solutions discussed above are based on these assumptions as 

such cannot realistically quantify the squeezing potential in non-circular tunnels and its time-dependent 

behavior as well as account for the strengthening effect of ��.  

 

2.2.3 Numerical methods  

2.2.3.1 Rheological models 

As pointed out in Section 2.1, when a rock mass is subjected to constant and sufficiently high stress over 

a long period it undergoes the 3-phase creep behaviour namely: transient, steady-state and accelerated 

creep which initiates squeezing [62]. Modelling of this mechanism is important in the assessment and 

prediction of the long-term stability of tunnels, a variety of theoretical and numerical approaches exist to 

represent this rock mass creep mechanism. They are divided into two categories: the phenomenological 

and micromechanics-based approaches. The phenomenological models are established on variables or 

a combination of elastic and viscous elements to form the Bingham, Burgers and Nishihara rheological 

models. Pan and Dong [63,64] conducted a study to model the rock mass time-dependent behaviour, 

they proposed a viscoelastic model which considered the rock mass as a homogenous and isotropic 

viscoelastic material. In their analysis they used a circular tunnel, they neglected the effects of normal 

stress on the axis of the tunnels and shear stress near the tunnel face. The model was incapable of 

handling non-circular tunnels in the heterogeneous and anisotropic material. Fakhimi and Fairhurst [65] 

further improved on this by presenting a continuum constitutive model capable of modelling a 

heterogeneous rock mass and predict the stand-up time. It is comprised of an MC non-associative 

elastoplastic model and traditional linear viscous substance illustrated in Figure 2-6. This rheological 
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model is characterized by the Kelvin shear modulus (��), the Kelvin viscosity (��) and governed by 

Equation (2-12). 

 

 ��� = ���
� + ���

�
+ ���

�  (2-12) 

 

Where ��� is the total strain, ���
�  is the elastic strain, ���

�
 is the plastic strain and  ���

�  is the vicious strain. 

In their analysis, the MC yield function and plastic potential were expressed as Equations (2-13) and 

(2-14) respectively. 

 
� = 0.5(�� − ��) + 0.5(�� + ��) sin � − � cos � = 0 

 
(2-13) 

 � = 0.5(�� − ��) + 0.5(�� + ��) sin �  (2-14) 

 

Where: �� and �� are the major and minor principal stresses while  � , � and �  are the cohesion, friction 

angle and dilation angle. However, Malan [31] argued that the Fakhimi and Fairhurst [65] model failed to 

determine the creep strain components in the accelerated creep phase. He pointed out that even though 

the model was successful in reproducing the stand-up time of the excavations its time-dependency was 

independent of the creep failure process. To overcome this limitation, he presented a viscoplastic model 

that assumed an intact rock behaving elastically, obeying the MC yield function to determine its failure 

strength represented by equation (2-15).         

Figure 2-6. The viscous unit used in the visco-elastoplastic model [65]. 
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 ���
�� = � 〈� 〉

��

����
 ���  � = 1,2,3  (2-15) 

                         

Where: � is the fluidity parameter, ��� is the principal stress, � is the plastic potential function and � is 

the yield function. However, the presented model had its limitations such as failure to model the 

discontinuities in a rock mass leading to its strength reduction which was dependent on time and 

deformation. The strength reduction effect is usually observed in deep tunnels where the rock mass is 

more fractured and with time, leads to reduced cohesive strength in certain rock volumes [66]. Malan [66] 

assumed that the rate of cohesion reduction was proportional to the excessive stress above the residual 

limit. 

 �� = ��〈����〉 (2-16) 

                                                         

In the equation (2-16) �� is referred to as the cohesion decay factor and  

 ���� = �� − ����� + 2������ (2-17) 

 ��� =
1 + sin ��

1 − sin ��
 (2-18) 

 

Where: ��� is the residual target surface, �� is the residual cohesion and ��  is the residual friction 

angle. The model failed to perfectly capture the time-dependent behaviour of squeezing in deep tunnels 

mainly because of the influence of the rheological properties of discontinuities. Malan [31] further pointed 

out that in cases where discontinuities dominated, a different kind of modelling was more appropriate to 

simulate the rock mass behaviour. He later suggested a different approach to simulate the effect of these 

discontinuities and their associated creep and strongly advised the use of discontinuum viscoplastic 

models. Further interpretation of the influence of discontinuities on squeezing was conferred by Mercier-

Langevin and Wilson [26] and Karampinos et al. [11,67]. Based on their experience at the LaRonde and 

Lapa mine. They observed and concluded that stress redistribution around the tunnel boundaries resulted 
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in the loading of the rock mass in a direction parallel to the foliation plane which leads to strength reduction 

by friction loss between the foliation planes. Also, Karampinos et al [11] pointed out that previous models 

faced limitations such as their inability to capture the buckling failure mechanism. In support of their claim, 

they used an approach suggested by Malan [31] to model a non-circular shaped tunnel in the LaRonde 

mine employed a perfectly plastic MC governed constitutive model to simulate the blocks and an elastic-

plastic Coulomb slip failure to model the discontinuities. This discontinuum approach resulted in a better 

simulation of the role of fractures within the rock mass and the buckling mechanism. However, it faced 

considerable difficulties in obtaining an accurate numerical solution due to the MC failure surface’s 

hexagonal shape on the �-plane convenient only when a selected side of the surface is used [68]. This 

deficiency can be eliminated by using a smoother Drucker-Prager failure criterion to approximate the 

numerical solution. 

2.2.3.2 Time-dependent constitutive models 

The conventional time-dependent constitutive models employed to capture squeezing are based on the 

general three-class type which includes:  

 The burgers creep viscoplastic model [77–79] is based on the Kelvin and Maxwell component in the 

series. In this model, the Kelvin component is characterized by the shear modulus (��) and the 

viscosity coefficient (��) while the Maxwell component is characterised by the shear modulus (��) 

and the viscosity coefficient (��), illustrated in Figure 2-7. The Kelvin component in the model is 

responsible for the reversible transient creep and the Maxwell component for the irreversible 

viscoelastic strain in the steady-state creep phase [76].  
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 It can also be referred to as a time-dependent CVISC model when it couples a plastic flow rule based 

on the MC slider to consider rock failure. In the CVISC model, the Kelvin and the Maxwell components 

are characterized by ��, �� and  ��, �� respectively while the MC slider is characterized by the 

cohesion (�), friction angle (�), dilation angle (�) and tension cutoff (��) illustrated in Figure 2-8;  

 

 

 

 

 

 

 

 

 

 The VIPLA model is based on the viscoplastic flow rule and Perzyna [80] overstress theory to 

determine the viscoplastic strain rate. The viscoplastic strain is generated only when the magnitude 

of the deviatoric stress satisfies a yield criterion such as the DP [72,81]. The total strain constitutive 

formulation is given by: 

 ��̇� = ��̇�
� + ��̇�

��  (2-19) 

 

Where: ��̇� is the total strain rate tensor, ��̇�
�  is the elastic strain rate tensor and ��̇�

��
 is the viscoplastic 

strain rate tensor which is determined by the flow rule: 

Figure 2-8. Schematic representation of the CVISC rheological model 

Figure 2-7. Schematic representation of the Burgers rheological model 
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 ��̇�
��

= �Φ(〈� 〉) 
��

����

  (2-20) 

 

Where: � is the fluidity parameter, � is the overstress function, Φ(〈� 〉) is the viscous nucleus, ���  

is the stress tensor and � is the plastic potential function. 

 

 The SHELVIP (Stress Hardening Elastic Viscous Plastic) model is also derived from Perzyna’s 

overstress theory, by adding a time-independent plastic component [82]. Splits the strain rate tensor 

into three components represented by: 

 ��̇� = ��̇�
� + ��̇�

� + ��̇�
��  (2-21) 

 

According to the conventional theory of elasto-plasticity, in this model the time-independent plastic 

strains ���
�

  develop only when the stress point reaches the plastic yield surface �� = 0, defined by 

the DP failure criterion given by: 

 �� = (� − ��)(� − ��) (2-22) 

 

       The plastic strains  ���
�  can be evaluated using the classical flow rule of elasto-plasticity given by: 

 ���
�

= �
��

����

  (2-23) 

 

Where � is the plastic multiplier computed using the consistency condition.  

Table 2-2 presents some creep constitutive models developed based on the three-class type and applied 

to analyze the time-dependent response of tunnels excavated in squeezing ground.  
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Table 2-2. The time-dependent constitutive models for squeezing tunnels. 

Researcher Constitutive model Accelerated creep 

simulation 

Structural 

features 

Norton [83] Two-Component Power Law None Neglected  

Herrmann et al [84] WIPP viscoelastic model None Neglected 

Sjaardema & Kreig [85] WIPP creep law model None Neglected  

Callahan & DeVries [86] Crushed Salt Model None Neglected 

Lemaitre & Chaboche [87] VIPLA None  Neglected 

Okubo & Fukui [88] Okubo and Fukui model Dependent on stress Neglected  

ITASCA [79] CVISC model and Power 

Law VP model 

Dependent on stress Neglected 

Sterpi & Gioda [37] 3-stage creep model Dependent on stress Neglected  

Debernardi & Barla [89] SHELVIP None Neglected 

Weng et al [71] Modified Burgers model None Neglected  

Moghadam et al [72] EVP model None Neglected 

Tran et al [73] Modified CVISC model Dependent on stress Considered 

Causse et al [74] Burger-creep VP model None Neglected 

Fahimifar et al [75] Modified 3-stage creep 

model 

None Neglected  

Ofoegbu & Dasgupta [90] FZK-INE creep model Dependent on stress Neglected 

Sainoki et al [76] Modified Okubo and Fukui 

model 

Dependent on stress Neglected  

Zhang et al [91] FVP model Dependent on stress Neglected 

*Structural features: discontinuities, joints, and faults 

The constitutive models outlined in Table 2-2 above can capture the transient and steady-state creep and 

to some extent the accelerated creep. However, the accelerated creep responsible for squeezing can be 

considered and captured by models that incorporate viscoplasticity and damage [76]. Most of these 

constitutive models assume isotropic deformation in homogeneous rock material and they cannot predict 

the time at the accelerated creep initiates.  
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It is also observed that the accelerated creep associated with rock failure responsible for squeezing can 

be characterized by the viscoplastic behaviour of structural features, which the conventional constitutive 

models neglect [73]. Tran et al. [73] suggested a model that included a single ubiquitous joint. However, 

it was based on the CVISC model which fails to explicitly capture the tertiary creep irrecoverable 

viscoplastic strains. Hence, failed to explicitly capture the time-dependent deformation in tunnels. 

Karampinos et al [11] confirmed this point in their study to capture buckling mechanisms using a 

numerical method. They concluded that the technique considers the influence of fractures contained by 

the rock mass. However, they used a perfectly plastic MC governed constitutive model which did not 

represent the actual viscoplastic behaviour of rocks subjected to squeezing. 

2.3 Conclusion 

This section aimed to provide a review of the existing tools to quantify squeezing and highlight their 

limitations. Tunnel design in squeezing ground requires the employment of a combined approach that 

considers analytical and numerical solutions. The analytical solutions proposed to estimate this ground 

deformation considers non-time dependent elastoplastic behaviour an exact opposite of the squeezing 

mechanism. However, engineers apply these tools with the above-stated limitation to quantify the 

squeezing mechanism. In line with this, an engineer should choose tools that replicate failure behaviour 

associated with the squeezing mechanism. From this review, it is possible to state that analytical and 

numerical solutions face limitations in quantifying deformation characterized by squeezing.  

The squeezing mechanism considered in this study is associated with the isotropic shearing failure. 

Additionally, the time-dependent mechanism accounted for is that of an intact rock as opposed to rock 

mass with joints that play a major role in squeezing. Several time-dependent constitutive models and 

their numerical implements have been proposed. However, only those with a particular significance and 

specific assumption are mentioned in this section. It has also been clarified that most of these developed 

models neglect the power-law mechanism experienced by rock/rock masses. 
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Abstract 

The Convergence Confinement Method (CCM) is a solution typically employed for the preliminary 

evaluation of tunnel convergence and support suitability. The CCM represents stress relaxation on 

circular tunnel boundaries in the hydrostatic stress field and isotropic conditions. However, the CCMs 

employ yield criteria that neglect the intermediate principal stress as well as are not tailored for non-

circular tunnels. This paper evaluates the CCMs for elastic-perfectly plastic (EPP) ground response in 

circular tunnels governed by the Mohr-Coulomb and Hoek-Brown criteria. Thereafter, presents an 

analytical solution that considers non-circular tunnels and the intermediate principal stress. This is 

achieved by the integration of an equivalent radius function and the circumscribed Drucker Prager yield 

criterion expressed by the stress Lode parameter. Furthermore, a numerical simulation is conducted in 

FLAC3D to verify the presented solution with a native constitutive model for a chosen rock mass condition. 

The extent of the plastic zone and tunnel convergence predicted by the proposed solution is 10% and 

4% more than the conventional solutions. Hence, the effect of the intermediate principal stress should be 

considered for accurate ground reaction estimation. The proposed solution can be used to predict tunnel 

convergence and design appropriate tunnel support structures. 

 

Keywords: Analytical Solution; Drucker Prager; FLAC3D; Stress Lode Parameter; Tunnel 

Convergence. 
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3.1 Introduction 

There are issues related to the ground reaction response during tunnelling. One of these is the extent of 

tunnel convergence, which is essential for the design of the appropriate tunnel support system. The 

conventional and widely used methods to estimate tunnel convergence are the empirical, the analytical 

and the numerical methods. These methods are employed to predict and quantify the tunnel convergence 

and the pressure of the surrounding rock mass based on the in-situ state of stress [1]. The tunnel support 

system can be designed by using these approaches. The preliminary support design prefers using 

analytical and empirical methods and full analysis using numerical methods. Furthermore, analytical 

methods act as a quick verification tool for the numerical analysis and assessment of the ground-tunnel 

support interaction during tunnelling [2,3]. The CCM is one example of the existing analytical formulations 

used to quantify tunnel convergence. Several factors influence tunnel convergence including but not 

limited to (1) the initial state of stress, (2) rock mass mechanical properties, (3) method and tunnelling 

sequence, (4) tunnel support type and (5) tunnel cross-sectional area. The CCMs employed to estimate 

tunnel convergence have proved unreliable in obtaining accurate result of the interaction between 

tunnelling and ground reaction due to insufficient in-situ stress state information and the 3-dimensional 

(3D) nature of tunnels which require numerical analysis. 

Tunnel convergence during tunnelling is a 3-dimensional (3D) procedure and the theory of the CCM takes 

the 3D aspect into account. However, modelling is done as an equivalent 2-dimensional (2D) process. 

The CCM reveals a correlation between the radial displacement and the natural support pressure acting 

on the tunnel boundary and analyses the ground interaction between this supporting pressure [4]. In the 

late 1930s, Fenner [5] presented a formulation to estimate the plastic zone extent around a circular tunnel 

in an EPP rock mass subjected to unvarying internal and far-field stress in-plane strain condition. The 

formulation did not consider cohesion in the elasto-plastic interface. Later on, Salencon [6] proposed an 

improved solution to the presented EPP analysis problem and it was further enhanced by Kastner [7]. In 

the past 30 years many researchers have made extensions and contribution to the work originally 
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presented by Fenner [5], Salencon [6] and Kastner [7], for example; [2,8–33]. However, the above-

mentioned solutions are governed by the Hoek–Brown (HB), Mohr-Coulomb (MC) and Drucker Prager 

(DP) yield criteria that ignore the intermediate principal stress effect on the rock mass strength. The MC 

and HB yield criteria wholly ignore the intermediate principal stress effect. The DP, on the other hand, 

considers the intermediate principal stress influence but it is equated to the maximum and minimum 

principal stresses [11]. Shibata [34], Mogi [35] and Single et al [36] stated that the rock mass strength is 

wholly reliant on the intermediate principal stress which has the same effect as the confining stress and 

further suggested that the influence varies with the state of stress and material type. Additionally, all these 

studies except for Ng et al [20]are restricted to circular tunnels driven in an elastic brittle plastic, elasto-

plastic with strain softening and hardening and EPP rock mass. Yu & He [37]proposed the Unified 

Strength Criterion (USC), a yield criterion that considers the maximum, intermediate and minimum 

principal stresses. Yu [38], Yu et al [39], Zhang et al [40], Xu & Yu [11,41], Zhang et al [42], Chen et al 

[43] and Ghorbani & Hasanzadehshooiili [44] later applied the criterion in their studies. 

In this paper, the circumscribed DP yield criterion integrated with the stress Lode parameter is adopted 

to describe the ground response of a tunnel excavated in an EPP rock mass. The stress Lode parameter 

considers the influence of the intermediate principal stress on the rock mass yielding. Under plane strain 

conditions the analytical formulation is derived and presented to estimate the extent of the plastic radius, 

tunnel convergence and suitable tunnel support design in squeezing ground. 

3.2 Convergence Confinement Method 

The CCM considers ground reaction to the advancing tunnel face and is comprised of a three-step 

analysis: (1) the Support Characteristic Curve (SCC), (2) the Longitudinal Displacement Profile (LDP) 

and (3) the Ground Reaction Curve [9,24]. The CCM is based on a closed-form solution for a hole-in-a-

plate [45]. The circular hole represents the tunnel subjected to uniform normal stresses 𝜎𝑅  and 𝜎0, acting 

on its internal and external walls. Plane strain conditions in an isotropic elastic-plastic rock mass are 
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normally assumed. Thus, a solution is computed in a rotationally symmetric procedure for the radial 

displacement (𝑈𝑟) at the tunnel and plastic zone boundaries. The internal pressure (𝜎𝑅) as a function of 

𝑈𝑟 is referred to as the GRC. The SCC is attained in the same way as the GRC by plotting the internal 

pressure as a function of 𝑈𝑟.The intersection point of the GRC and the SCC describes the internal 

pressure and the 𝑈𝑟 at equilibrium. The 𝑈𝑟 at equilibrium, might exceed the elastic limit in that the rock 

mass undergoes plastic behaviour.  Determination of the GRC using the CCMs requires the following 

assumptions: 

▪ Homogenous material properties of the rock mass.  

▪ Isotropic material law. 

▪ Hydrostatic state of stress. 

▪ Circular tunnel. 

▪ Theory of 2D plane strain conditions. 

 

However, the assumptions stated above are not realistic and a few analytical methods differ from these 

assumptions, such as the Feder and Arwanitakis [46] solution which employs oval cavity geometry for 

any state of stress in its computation. Additionally, the staged excavation process in discontinuous 

anisotropic non-linear rock mass conditions is usually ignored in the CCMs [2,47]. Bonini et al [48], 

Vlachopoulos and Diederichs [49], Rasouli et al [50] and Kabwe et al [51] further elaborate on the 

inaccuracies associated with the CCM approach. 

 Ground Reaction Curve 

The CCM analysis approach is conducted by considering a section behind the tunnel face as an 

axisymmetric 2-dimensional plane strain problem. The tunnel face advance effect can be considered by 

applying a varying pseudo internal pressure (𝜎𝑅) on the tunnel boundary [19]. 

 𝜎𝑅 = (1 − 𝜆)𝜎0  (3-1) 
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Where 𝜎0 is the in-situ stress and 𝜆 is the deconfinement ratio dependent on the distance from the tunnel 

face and 𝜆 varies between 0.0 and 1.0. Assume a cylindrical tunnel of the radius (𝑅) excavated in a 

continuous, homogenous rock mass subjected to a hydrostatic stress field (𝜎0). When the subjected 𝜎0 

exceeds the surrounding rock mass strength, the plastic radius (𝑅𝑃) develops and the surrounding rock 

mass is comprised of the elastic and plastic zone (Figure 3-1).  

 

 

 

 

 

 

 

 

 

When 𝜆 decreases in value the surrounding ground losses its confinement this leads to 𝑈𝑟 convergence 

towards the centre of the tunnel. When 𝜎𝑅  decreases the surrounding rock mass behaves elastically up 

to a critical deconfinement ratio (𝜆𝑒) also referred to as the critical pressure (𝑃𝑐𝑟) in solutions by Duncan 

Fama [32], Carranza-Torres and Fairhurst [9] and Vrakas and Anagnostou [18]. Further 𝜎𝑅  reduction 

beyond 𝜆𝑒, the rock mass yields plastically and the CCMs include the Duncan Fama [32] solution which 

considers an EPP material governed by the MC criterion. In the ground reaction analysis, the tunnel of 

radius 𝑅 is subjected to 𝜎0 and 𝜎𝑅 . The surrounding rock mass undergoes plastic behaviour when the 

𝜎𝑅  is less than the  𝑃𝑐𝑟 expressed as: 

 𝑃𝑐𝑟 =
2𝜎0−𝜎𝑐𝑚

1+𝑘
     (3-2) 

 

Figure 3-1. GRC of an elasto-plastic rock mass 
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Where 𝜎𝑐𝑚 is the uniaxial compressive strength of the rock mass and If 𝜎𝑅  is greater than 𝑃𝑐𝑟 the rock 

mass undergoes elastic behaviour and the inward radial elastic displacement 𝑈𝑒 of the tunnel is given 

by: 

 𝑈𝑒 =
𝑅(1+𝑣) 

𝐸
( 𝜎0 − 𝜎𝑅)     (3-3) 

 

Where 𝑣 is the Poisson ratio and 𝐸 is the elastic modulus (MPa) and when 𝜎𝑅   is less than 𝑃𝑐𝑟 the plastic 

zone is formed around the tunnel with plastic radius (𝑅𝑝) and the radial displacement 𝑈𝑝 given by:   

 𝑅𝑝 = 𝑅 [
2( 𝜎0(𝑘 − 1) + 𝜎𝑐𝑚)

(𝑘 + 1)((𝑘 − 1)𝜎𝑅 + 𝜎𝑐𝑚)
]

1
(𝑘−1)

 (3-4) 

 

  𝑈𝑝 =
𝑅(1+𝑣) 

𝐸
[2(1 − 𝑣)( 𝜎0 + 𝑃𝑐𝑟) (

𝑅𝑝

𝑅
)

2

− (1 − 2𝑣)( 𝜎0 − 𝜎𝑅)] (3-5) 

 

The Carranza-Torres and Fairhurst [9] solution employs the general form of the HB failure criterion on a 

tunnel of radius 𝑅 exposed to the uniform far-field stress (𝜎0)  and 𝜎𝑅.  It is applicable to the EPP case 

and the 𝜎𝑅 and 𝜎0 can be scaled to give the scaled 𝑃𝑖 and the far field stress 𝑆0. 

 𝑃𝑖 =
𝜎𝑅

𝑚𝑏𝜎𝑐𝑟 
+

𝑠

𝑚𝑏
2 (3-6) 

 𝑆0 =
𝜎0

𝑚𝑏𝜎𝑐𝑟 
+

𝑠

𝑚𝑏
2 (3-7) 

   
where: 𝑠 ,𝑚𝑏 are the rock mass parameters, the scaled critical internal pressure 𝑃𝑖

𝑐𝑟 for which the elastic 

region is achieved and the actual 𝑝𝑖
𝑐𝑟 are expressed by: 

 𝑃𝑖
𝑐𝑟 =

1

16
[1 − (1 + 16𝑆0)0.5]2 (3-8) 
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 𝑝𝑖
𝑐𝑟 = [𝑃𝑖

𝑐𝑟 −
𝑠

𝑚𝑏
2] 𝑚𝑏𝜎𝑐𝑟 (3-9) 

Provided that 𝜎𝑅 ≥ 𝑝𝑖
𝑐𝑟 the relationship between the 𝑈𝑒 and the 𝑃𝑖  is given by: 

 𝑈𝑒 = 𝑅
1 + 𝑣

𝐸
(𝜎0 − 𝜎𝑅) (3-10) 

When the 𝜎𝑅 < 𝑝𝑖
𝑐𝑟 the 𝑅𝑝 and the 𝑈𝑝 is given by;  

 𝑅𝑝  = 𝑒𝑥𝑝 [2(𝑃𝑖
𝑐𝑟 − √𝑃𝑖)

0.5
] 𝑅 (3-11) 

   

 

𝑈𝑝 = 𝑅
1+𝑣

𝐸𝑚
( 𝜎0 − 𝑝𝑖

𝑐𝑟) [
1−2𝑣

2

√𝑃𝑖
𝑐𝑟

𝑆0−𝑃𝑖
𝑐𝑟 + 1] (

𝑅𝑝

𝑅
)

2

+
1−2𝑣

4(𝑆0−𝑃𝑖
𝑐𝑟)

[𝑙𝑛 (
𝑅𝑝

𝑅
)]

2

−

1−2𝑣

2

√𝑃𝑖
𝑐𝑟

𝑆0−𝑃𝑖
𝑐𝑟 [2𝑙𝑛 (

𝑅𝑝

𝑅
) + 1]        

(3-12) 

   

Vrakas and Anagnostou [18] proposed an explicit solution for the ground response that considers a 

linearly EPP behaviour obeying the MC yield criterion with a non-associated flow rule. If the 𝜎𝑅  ≥ 𝑃𝑐𝑟 the 

ground undergoes elastic behavior and elastoplastic if the  𝜎𝑅  < 𝑃𝑐𝑟, the critical pressure at the onset of 

the elastic to plastic transition is given by.  

 𝑃𝑐𝑟 =
𝜁 + 1

(1 + 𝜁𝜎𝑐𝑟)
 𝜎0 (3-13) 

 

where: 𝜁 is the variable that is assumed to be unit for cylindrical openings, the expression for the elastic 

tunnel wall displacement is; 

 𝑈𝑒 = 𝑅 [1 +
𝜁𝐸

(1 + 𝑣)( 𝜎0 − 𝜎𝑅)
]

−1

 (3-14) 
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The 𝑅𝑝 is computed by considering the radial stress continuity condition at the elasto-plastic interface 

and the displacement are expressed by: 

 𝑅𝑝 = 𝑅 (
𝑃𝑐𝑟

𝜎𝑅
)

(
1

𝜁(𝜎𝑐𝑟−1)
)

 (3-15) 

 𝑈𝑝 =  [
1 + 𝑣

𝜁
( 𝜎0 − 𝑃𝑐𝑟)] 𝑅𝑝 (3-16) 

  





53 

 

Table 3-1. Results of the comparison between analytical and numerical solutions 

Solution (Analytical/Numerical) Plastic radius (m) Convergence (m) 

Analytical -Duncan Fama [32] 9.0 0.17 

Analytical -Carranza-Torres [9] 10.5 0.23 

Analytical -Lee and Pietruszczak [12] 10.5 0.23 

Analytical -Vrakas and Anagnostou [18] 8.6 0.16 

Numerical -MC model 10.0 0.26 

Numerical -HB model 13.0 0.32 

Numerical -DP model 12.0 0.25 

Numerical -Soft-Hardening model (SHM) 12.5 0.28 

Note: Circular tunnel radius = 5 m, 𝜎0 = 23 MPa 

In unsupported tunnels, the CCM describes the reduction of internal pressure which results in 

convergence increment and plastic yield extension around an excavation. When supports are installed 

the support pressure is restrained until equilibrium is reached with the converging rock mass. 

Determination of the appropriate time for support installation requires the LDP developed for unsupported 

tunnels. Although convergence is restrained by support installed closer to the face, it may lead to support 

overload. On the contrary, when supports are installed further behind the advancing face. It results in a 

lower support pressure and substantial convergence occurrence leading to complete tunnel closure. 

Hence, a balance between early and late support installation is cardinal for the appropriate tunnel support 

design [53]. Figure 3-3 shows a comparison between the support load (𝑝𝑠𝑒) at equilibrium estimated 

using the CCMs and numerical methods. It is observed that the support element installed closer to the 

face using numerical methods is subjected to higher 𝑝𝑠𝑒 at equilibrium than when installed using the 

CCM’s. This implies that the CCM underestimates 𝑝𝑠𝑒 at equilibrium and estimation using the numerical 

solution shows that support system overload is imminent. Hence, the CCMs unrealistically estimate the 

required support capacity and location behind the tunnel face.  
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It is observed from Figure 3-4 that the overall convergence is greater in the horseshoe-shaped tunnel 

than the circular tunnel (Table 3-2). This Implies that the application of the CCM’s tailored for circular 

tunnels would lead to inaccurate estimation of convergence within the horseshoe-shaped tunnel.  

 

Table 3-2. The GRC results in the horseshoe and circular tunnel (MC numerical model). 

Tunnel 

Geometry  

Average convergence Maximum 

plastic radius 

(m) 

Maximum 

convergence (m) Roof (m) Wall (m) Floor (m) 

Circular 0.26 0.17 0.27 10.0 0.26 

Horseshoe 0.28 0.21 0.34 12.4 0.34 

 

As a result of these analyses, it is observed that the CCMs oversimplify ground conditions, stress-strain 

behaviour of the rock mass, excavation process and tunnel geometry. Therefore, in the proceeding 

section, an analytical solution for the ground response around tunnels is presented. The solution is 

derived in a hydrostatic stress state, isotropic and linearly EPP rock mass obeying the circumscribed DP 

yield criterion which integrates the stress Lode parameter. 

3.4 Derivation of the solution governed by the Drucker Prager yield 

criterion 

In this section, a solution for the estimation of tunnel convergence in an EPP rock mass is derived by 

incorporating the circumscribed DP yield criterion. As mentioned earlier the conventional solutions for 

convergence estimation are based on the MC and HB yield criteria which neglect the strengthening effect 

of the intermediate principal stress. Therefore, the stress Lode parameter [54] is integrated into the 

circumscribed DP yield criterion to account for the intermediate principal stress.  
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 Strain condition and assumptions 

We assume a cylindrical tunnel of 𝑅 mined in a continuous, homogenous rock mass subjected to a 

hydrostatic stress field (𝜎0). The stress equilibrium equation irrespective of body forces and under plane 

strain condition is expressed in polar coordinates by; 

  
𝜕𝜎𝑟

𝜕𝑟
+

𝜎𝜃−𝜎𝑟

𝑟
= 0  (3-17) 

 

The relation between the radial (𝜀𝑟) and hoop (𝜀𝜃) strains with 𝑢𝑟 are expressed by  

 𝜀𝑟 =
𝜕∆𝑢𝑟

𝜕𝑟
 (3-18) 

 

 𝜀𝜃 =
∆𝑢𝑟

𝑟
 (3-19) 

The total radial and hoop strains can be expressed as a sum of individual elastic and plastic components: 

 

𝜀𝑟 = 𝜀𝑟𝑒 + 𝜀𝑟𝑝 

 

(3-20) 

 
𝜀𝜃 = 𝜀𝜃𝑒 + 𝜀𝜃𝑝 

 
(3-21) 

In the elastic zone for 𝑅 > 𝑅𝑃 the generalized Hooke’s law is valid and the relationship between 𝐸, 𝑣, 

𝜀𝑟, 𝜀𝜃 in plane strain conditions is given by; 

 𝜀𝑟 =
1 + 𝑣

𝐸
[(1 − 𝑣)𝜎𝑟 − 𝑣𝜎𝜃] (3-22) 

 

 𝜀𝜃 =
1 + 𝑣

𝐸
[(1 − 𝑣)𝜎𝜃 − 𝑣𝜎𝑟] (3-23) 
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 Yield criterion and the Lode stress parameter  

The MC yield criterion underrates the strength of the rock with increasing intermediate principal stress 

[55]. In this case, applying the circumscribed DP yield criterion will address this limitation expressed by: 

 𝑓 = 𝛼𝐼1 + √𝐽2 − 𝑘 (3-24) 

Where 

 𝐼1 =  𝜎1 + 𝜎2 + 𝜎3 (3-25) 

 

 𝐽2 =
1

6
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 +  (𝜎1 − 𝜎3)2] (3-26) 

 

 

 

 

 

𝛼 =  
2 𝑠𝑖𝑛 𝜙

√3(3 −  𝑠𝑖𝑛 𝜙)
 (3-27) 

 𝑘 =  
6 𝑐𝑐𝑜𝑠 𝜙

√3(3 −  𝑠𝑖𝑛 𝜙)
 (3-28) 

 

Where 𝜎1 , 𝜎2 and 𝜎3 are the major, intermediate and minor principal stresses respectively, 𝑐 is the 

cohesion and 𝜙 is the internal frictional angle. Where 𝐼1 is the principal stress invariant and 𝐽2 is the 

second deviatoric stress invariant. The stress Lode parameter is then introduced to account for the 

intermediate principal stress influence [54];  

 𝜏 =
2𝜎2 − 𝜎1 − 𝜎3

𝜎1 − 𝜎3
 (3-29) 

 

The 𝜎2, 𝐼1  and 𝐽2 are expressed in terms of the stress Lode parameter as: 
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 𝜎2 =
1

2
[𝜎1(1 + 𝜏) + 𝜎3(1 + 𝜏)] (3-30) 

   

 𝐼1 =
1

2
[𝜎1(3 + 𝜏) + 𝜎3(3 − 𝜏)] (3-31) 

   

 𝐽2 = [ 
(𝜎1 − 𝜎3)2

4
(1 +

𝜏2

3
)] (3-32) 

 

We can express the DP yield criterion in terms of the stress Lode parameter in polar coordinates by 

substituting Eqs (3-31) and (3-32) into Eq (3-24) to give; 

 
(𝜎𝑟 + 𝜎𝜃)

2
[(1 +  

𝜏2

3
)

0.5

−
 𝛼𝜏

2
] −

3𝛼(𝜎𝑟 + 𝜎𝜃)

2
− 𝑘 = 0 (3-33) 

3.5 Analytical solution in an elastic-perfectly plastic medium 

During the GRC and SCC interaction, the surrounding rock mass deforms elastically this completely 

mobilizes the rock mass self-bearing capacity. The process limits the development of excessive load on 

supports (yielding principle). When the tunnel converges its radius decreases towards the center, further 

convergence the surrounding rock mass satisfies the yield criterion and the plastic zone with 𝑅𝑝 

develops. 𝑅𝑝 lies in the surrounding rock mass and beyond is the elastic zone.  

 

 Solutions in the Elastic Zone 

The surrounding elastic zone has boundary conditions (r = 𝑅𝑃, 𝜎𝑟 = 𝜎𝑅). Substitution of 𝜀𝑟 = 𝜀𝑟𝑒 , 

𝜀𝜃 = 𝜀𝜃𝑒 from Eqs. (3-18) and (3-19) into Hooke’s law Eqs. (3-22) and (3-23). Eliminating 𝑢𝑟 from the 

equilibrium condition Eq (3-17) under the axisymmetrical condition and stresses can be expressed by; 
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 𝜎𝑟𝑒  = [1 − (
𝑅𝑃

𝑟
)

2

] 𝜎0 + 𝜎𝑅 (
𝑅𝑃

𝑟
)

2

         (r ≥ 𝑅𝑃 ) (3-34) 

   

 𝜎𝜃𝑒  = [1 + (
𝑅𝑃

𝑟
)

2

] 𝜎0 − 𝜎𝑅 (
𝑅𝑃

𝑟
)

2

           (r ≥ 𝑅𝑃 ) (3-35) 

 
Hence, the radial deformation component of the elastic zone is expressed by; 

 𝑢𝑒 =
1 + 𝑣

𝐸
(

𝑅𝑃
2

𝑟
) (𝜎0 − 𝜎𝑅) (3-36) 

 

Where 𝜎𝑟𝑒, 𝜎𝜃𝑒, 𝑢𝑒 are the radial stress, hoop stress and tunnel convergence in the elastic zone, 

respectively.  

 Solutions in the Plastic Zone 

The circumscribed DP failure function expressed in polar coordinates (Eq (3-33)) is used to examine the 

plastic zone stress state. When the inner radius of the tunnel reduces the hoop and radial stress 

component are obtained by using the stress equilibrium equation (Eq (3-17)) and Eq (3-33) to get; 

 𝜎𝑟𝑝  = (
𝑟

𝑅
)

𝛽

(𝜎𝑅 +
𝜌

𝛽
) − (

𝜌

𝛽
) (3-37) 

   

 𝜎𝜃𝑝  = (
𝑟

𝑅
)

𝛽

[(𝛽 + 1)𝜎𝑅 +
(𝛽 + 1)𝜌

𝛽
] − (

𝜌

𝛽
) (3-38) 

 

Where; 

 𝛽 =
6𝛼 − (1 + 

𝜏2

3
)

0.5

(1 + 
𝜏2

3
)

0.5

−
 𝛼𝜏
2 − 3𝛼

 (3-39) 
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𝜌 =

2𝑘

(1 + 
𝜏2

3
)

0.5

−
 𝛼𝜏
2 − 3𝛼

 
(3-40) 

 

Where 𝜎𝑟𝑝, 𝜎𝜃𝑝 are the radial stress and hoop stress in the plastic zone respectively. 𝑅𝑝 is obtained 

from the stress acting on the elastic and plastic interface which satisfies the elastic and plastic zones 

stress condition. In the elastic zone, Eqs (3-34) and (3-35) are satisfied and we obtain: 

 𝜎𝑟𝑒 + 𝜎𝜃𝑒 = 2𝜎0    (3-41) 

 

The stress magnitude also lies in the plastic zone and the DP yield criterion is also satisfied to give;       

 
(𝜎𝑟𝑝 + 𝜎𝜃𝑝)

2
[(1 +  

𝜏2

3
)

0.5

−
 𝛼𝜏

2
] −

3𝛼(𝜎𝑟𝑝 + 𝜎𝜃𝑝)

2
− 𝑘 = 0 (3-42) 

 

Equating the hoop stresses using Eqs (3-35) and (3-38), and the radial stresses using Eqs (3-34) and 

(3-37) (𝜎𝑟𝑒 = 𝜎𝑟𝑝, 𝜎𝜃𝑒 = 𝜎𝜃𝑝). Thereafter, combining Eqs (3-41) and (3-42) one obtains the relation 

for the stress at the elastic-plastic interface by:  

 
𝜎𝑅𝑃 = 𝜎0 −  

3𝛼𝜎0 + 𝑘

(1 +  
𝜏2

3
)

0.5

−
 𝛼𝜏
2

 
(3-43) 

 

This further calculates 𝑅𝑃 in Eq (3-44) and radial stress 𝜎𝑅𝑃 at the interface. 𝑅𝑝 is obtained by adhering 

to the conditions (𝑅𝑝 = 𝑅, 𝜎𝑅 = 𝜎𝑅𝑃 =  𝜎𝑟𝑒 ). Hence, using Eqs. (3-37), (3-38) and (3-43) we obtain 

the relation; 

 𝑅𝑝 = 𝑅 (
 𝜎𝑅𝑃 + (

𝜌
𝛽

)

𝜎𝑅 + (
𝜌
𝛽

)
)

1
𝛽

 (3-44) 
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At the elastic and plastic interface, they tend to occur a displacement when 𝑅𝑝 = 𝑅 estimated by the 

following relation; 

 

 
𝑢𝑟 =

1 + 𝑣

𝐸
𝑅𝑝

3𝛼𝜎0 + 𝑘

(1 +  
𝜏2

3
)

0.5

−
 𝛼𝜏
2

 
(3-45) 

 

When 𝑅𝑝 = 𝑅 the tunnel boundary displaces plastically, the relation to estimating this displacement is 

obtained by an integration determined by the boundary conditions given by; 

 

 
𝑢𝑃 =

1 + 𝑣

𝐸
(

𝑅𝑝
2

𝑅
)

3𝛼𝜎0 + 𝑘

(1 +  
𝜏2

3
)

0.5

−
 𝛼𝜏
2

 
(3-46) 

 Determination of the Longitudinal Displacement Profile 

There are several proposed empirical techniques to estimate the LDP. In this section, the LDP analysis 

is based on Vlachopoulos and Diederichs [56] solution in an EPP medium which considers the influence 

of the maximum plastic radius (𝑅𝑚). The displacement at the tunnel face (𝑈𝑟f) is expressed as: 

 
𝑈𝑟𝑓 = (

𝑈𝑟𝑚

3
) 𝑒− 0.15(

𝑅𝑚
𝑅

)  

 

(3-47) 

Where 𝑈𝑟𝑚 is the maximum tunnel displacement at 𝑅𝑚 obtained from Eq. (3-46) by substituting 𝑅𝑃 with 

𝑅𝑚 . 𝑅𝑚 on the hand is obtained from Eq. (3-44) by equating 𝜎𝑅 = 0. The tunnel wall displacement 

ahead of the face (𝑋 < 0) and behind the face (𝑋 > 0) are computed by Eqs. (3-48) and (3-49) 

respectively: 

 𝑈𝑟𝑋 = (
𝑈𝑖𝑓

𝑈𝑟𝑚
) 𝑒(

𝑋
𝑅

)
 (3-48) 
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𝑈𝑟𝑋 = 1 − (1 −

𝑈𝑖𝑓

𝑈𝑟𝑚
) 𝑒

(

−3𝑋
𝑅

2𝑅𝑚
𝑅

⁄ )

 

 

(3-49) 

Where 𝑈𝑟𝑋 is the tunnel wall displacement at distance (𝑋) from the tunnel face. 

 Determination of the Support Characteristic Curves 

The extent of the plastic zone and tunnel convergence can be controlled by the addition of an internal 

support pressure provided by a combination of Cable bolts, Steel sets and Shotcrete linings. If we assume 

that support elements are installed at a given distance behind the tunnel face, the tunnel convergence 

(𝑈𝑖𝑜) at this point is obtained using the LDP. The tunnel support interaction with the tunnel inward 

convergence is partially dependent on the support element stiffness (𝐾𝑠). The support element tends to 

yield at a given phase of tunnel convergence (𝑈𝑖𝑦) expressed by: 

𝑈𝑖𝑦 = 𝑈𝑖𝑜 + 𝑈𝑖𝑚  =  𝑈𝑖𝑜 +
𝑝𝑠𝑚𝑎𝑥

𝐾𝑠
 

 

(3-50) 

Where 𝑝𝑠𝑚𝑎𝑥  is the support element capacity and  𝑈𝑖𝑚 is the maximum elastic deformation of the 

support element. Provided that the installed support element can hold the rock mass, its SCC will meet 

at an equilibrium point where the tunnel convergence is equal to the support yield. This defines the safety 

coefficient (𝐹𝑆) of the installed support expressed as: 

𝐹𝑆 =  
𝑝𝑠𝑚𝑎𝑥

𝑝𝑠𝑒 
 

 

(3-51) 

The support element can be considered suitable for a tunnel if its safety coefficient is greater than the 

allowable limit: 𝐹𝑆 ≥  𝐹𝑠 𝑚𝑖𝑛. This entirely depends on the tunnel construction type i.e. mining or civil 

tunnels and permanent or temporal tunnels. 
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3.6 Verification and comparison of the proposed solution 

The proposed solution verification is conducted using the conventional CCMs and numerical simulation 

within FLAC3D [57] governed by the MC and DP yield criteria. The horseshoe-shaped tunnel excavated 

in isotropic, continuous and homogeneous material is considered for verification (Appendix 1 & 2). The 

numerical simulation is demonstrated using this excavation in the Upper Banded Shale (UBS) rock 

formation of the Nchanga Underground Mine (NUG) at a depth of 700 m with initial stress 𝜎0 = 23 MPa 

[58,59]. The influence of the rock mass weight on the plastic zone and tunnel convergence is neglected 

and parameters used in the simulation are presented in Table 3-3. The assumptions, boundary and 

compatibility conditions of the numerical simulation are similar to the proposed solution. 

 
Table 3-3. Nchanga UBS rock mass and geometrical parameters [51] 

Geometrical parameters  Mohr-coulomb  

Specific weight (MN/m3) 0.027 Cohesion (MPa) 1.28 

Tunnel depth (m) 700 Friction angle (°) 26.6 

Diameter (m) 10.0 Uniaxial compressive strength (MPa) 1.15 

Rock Mass Parameters  Drucker-Prager  

Tensile strength (MPa) 0.05 Tensile Strength (MPa):  0.05  

Global strength (MPa) 4.38 𝛼 parameter 0.4478  

Modulus of deformation (MPa) 3193 𝑘 parameter 1.5534  

𝑣 0.20 Dilation parameter  0  

G (MPa) 1330   

K (MPa) 1774   
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Figure 3-7 illustrates that the GRC attained from the conventional analytical and proposed solutions are 

not that close in agreement. It further shows that the proposed and Fritz [28] analytical solutions estimate 

the highest and lowest tunnel convergence respectively (Table 3-5). 

Table 3-5. Estimation of the plastic zone radius and tunnel convergence 

 Fritz 

[28] 

Duncan-

Fama [32] 

Carranza-

Torres [9] 

Proposed solution (𝝉 = 

1.0) 

Plastic radius (m) 15.00 15.15 15.60 16.46 

Convergence (m) 0.11 0.24 0.23 0.27 

Note: 𝑅𝑞= 5.8  

3.6.2.2 Longitudinal Displacement Profile  

Application of the CCMs in the design of an appropriate tunnel system requires the use of equations for 

the construction of the GRC, SCC and LDP. Eqs. (3-48) & (3-49) are used to construct the unsupported 

tunnel LDP for the proposed and conventional solutions (Figure 3-8). The attained curves from the 

analysis indicate that the maximum tunnel convergence occurs approximately 60 m behind the tunnel 

face and is zero at 20 m ahead of the face. Tunnel convergence at the face using the curves defined by 

the proposed and analytical solutions shows a range of 21% - 24% of the 𝑈𝑟𝑚 (Table 3-6 & Table 3-7). 

Figure 3-8 also shows that estimates determined by the proposed solution underrate the extent of tunnel 

convergence this results in an overestimation of the installed support load. 
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Table 3-7. Maximum plastic radius, tunnel and face displacement for different solutions 

 Fritz [28] Duncan-Fama [32] Carranza-Torres [9] Proposed solution (𝝉 = 1.0) 

𝑅𝑚 (m) 11.70 14.30 15.92 17.68 

𝑈𝑟𝑚 (m) 0.08 0.26 0.29 0.29 

𝑈𝑖𝑓 (m) 0.02 0.06 0.06 0.06 

 

3.6.2.3 Support Interaction Curves 

The GRC and SRC interaction concept is used to determine and optimize the appropriate tunnel support 

system by considering the load imposed on the supports and tunnel convergence. The tunnel support 

system may be composed of one or more than one support element, depending on the extent of the 

plastic zone (failure zone) around the tunnel. In poor rock masses where the failure zone is extensive 

such that rock bolts cannot reach the stable zone a combination of support elements is needed to build 

up a support structure [62]. When the plastic zone extends beyond the depth of the rock bolts, they are 

used in a tightly spaced pattern to build up an artificial arch in the plastic zone. They are further coupled 

with cable bolts able to anchor into the stable rock mass beyond the plastic zone (Figure 3-9). In 

extremely poor rock masses, when the plastic zone is so extensive that cable bolts cannot reach the 

competent strata beyond the plastic zone and in time-dependent squeezing rock mass when it takes a 

long time for the plastic zone extension to stop. The employment of stiff external support coupled with 

cable bolts is more effective to restrict rock dilation in the plastic zone. Hence, in this section, a 

combination of steel sets, shotcrete lining and cable bolting is adopted to estimate the suitable support 

structure capacity for tunnels in squeezing ground. 
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In sections 3.6.2.3.1 & 3.6.2.3.2, estimation of the support capacity will first be assumed to act 

independently so that each support element-rock interaction is analyzed. Thereafter, a composite support 

structure GRC interaction is analyzed. The support elements, composite support structures and their 

capacity computations for the analysis are presented in Appendix 3.  

3.6.2.3.1 Reaction of individual support elements 

Steel sets, cable bolts and shotcrete linings are the primary support elements commonly used in tunnel 

design. The mechanical behaviour of these support elements is complex in that it considers the support 

element-rock mass interaction. The support element-rock mass interaction in tunnels is fully understood 

by applying the CCMs and equations that characterize the support elements together with their rock mass 

interaction concept. When these primary support elements are used, their stiffness, maximum acceptable 

pressure, maximum elastic displacement and maximum allowable failure displacement are computed by 

Eqs A56 – A61 (Appendix 3). In this section the GRC and the SCC are constructed based on the proposed 

and conventional solutions, the ground pressure expected to act on the support elements is determined 

as the intersection of both curves. The results of each expected pressure are then compared between 

solutions for instance Figure 3-10a shows support defined by the other solutions can be subjected to 

failure when applied using the GRC constructed by the proposed solution. This indicates that employing 

Figure 3-9. Principles of supporting tunnels in a weak rock mass 
(After [62]) 
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solutions governed by yield criteria that ignore the intermediate principal stress in their formulation can 

unrealistically estimate the appropriate support capacity to restrain squeezing in tunnels. The 

conventional solutions underestimate the support load (𝑝𝑠𝑒) at equilibrium and it is observed that 0. 3 m 

shotcrete thickness (t = 0.3 m) is inappropriate. While using the conventional solutions an estimated 

safety coefficient of 1.0 is observed. However, the steel sets and shotcrete (t = 0.5 m) are probably the 

most suitable with a safety coefficient of 1.6 and 1.2 respectively (Figure 3-10b & c).
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3.6.2.3.2 Reaction of composite support structures 

When more than one support elements are installed at the same distance behind the tunnel face, their 

accumulative effect is obtained by the addition of their stiffnesses for each support element. When steel 

sets and cable bolts are combined in a single application, it is assumed that the stiffness of their elements 

is: 

𝐾𝑠𝑡 =  𝐾𝑠𝑠 + 𝐾𝑠𝑏 (3-52) 

Where 𝐾𝑠𝑡 is the total support stiffness, 𝐾𝑠𝑠 and 𝐾𝑠𝑏 are the steel set and cable bolt stiffnesses 

respectively. The individual support element with low 𝑈𝑖𝑚 is used to determine 𝑝𝑠𝑚𝑎𝑥  of the composite 

support structure: 

 𝑈𝑖𝑚  =  
𝑝𝑠𝑚𝑎𝑥

𝐾𝑠𝑡
 

 

(3-53) 

The composite support structures applied with their 𝑝𝑠𝑚𝑎𝑥   and 𝐾𝑠𝑡 are presented in (Appendix 3). Figure 

3-11 below shows the SCC effect of composite support structures SCCB (shotcrete + cable bolts), 

STSCCB (steel sets + shotcrete + cable bolts) and STCB (steel sets + cable bolts). The composite 

support structure considers shotcrete (t = 0.3 m), Steel sets and Cable bolts as the support alternatives 

for the tunnel problem. In Figure 3-11a the SCC of the SCCB support system indicates that it is subjected 

to failure when analyzed using the proposed solution. This implies that the use of this support combination 

is ineffective to restrict tunnel convergence. While for the same support structure the conventional 

solutions estimate a safety coefficient of 1.0. Further, an average safety coefficient of 1.63 is estimated 

on the STCB support system using the proposed solution (Figure 3-11b). The STCB support system is 

effective in restricting tunnel convergence but an increment of the safety coefficient will be more effective. 

Hence, the STSCCB support system is more appropriate and tunnel convergence is restricted by the 
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stiffer support elements in this system. The safety coefficient of the support elements and composite 

support structures estimated by the proposed and conventional GRC are presented in Table 3-8 & Table 

3-9. There is an improvement in the safety coefficient after installing the composite support structures. 

The type of tunnel support structure setup is dependent on the allowable tunnel closure. To this regard, 

the STSCCB composite structure is recommended for permanent tunnels and the STCB is suitable for 

temporal tunnels. In this study, the STSCCB support structure is required.  

Table 3-8. Safety coefficient of the conventional solution defined support structures 

Solution Cable bolt Shotcrete Steel sets 

Safety coefficient (FS) 

Duncan-Fama [32] F 0.8 2.16 

Carranza-Torres [9] F 0.9 2.37 

Proposed solution F F 1.61 

Note: F = Support failure 
 

Table 3-9. Safety coefficient of the proposed solution defined support structures 

Solution 
Cable 

bolt 
Shotcrete Steel sets SCCB STCB STSCCB 

   

Safety 

coefficient 

(FS) 

   

Duncan-Fama [32] F 1.0 2.16 1.1 2.2 3.0 

Carranza-Torres [9] F 1.0 2.37 1.1 2.4 3.4 

Proposed solution F F 1.61 F 1.63 2.3 

Note: F = Support failure 
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3.7 Discussion 

The accurate estimation of tunnel convergence and the ability to consider the intermediate principal stress 

effect on the rock mass strength are required for the suitable design of tunnels. Therefore, stability 

analyses using a more reliable and accurate analytical solution is essential. The CCM, as mentioned 

earlier in the introduction section is based on specific assumptions. Exploring one of these assumptions 

realistically creates a limitation in non-circular tunnel stability analysis. Hence, the paper addressed 

limitations pertaining to the CCMs by the inclusion of an equivalent radius function (Appendix 1).  

The criteria used in these CCMs generally neglected the influence of the intermediate principal stress. 

However, it has been established through experimental tests that the rock and rock mass strength is 

dependent on the intermediate principal stress effect. Therefore, the real definition of the analytical 

solutions’ strength parameters requires the consideration of the intermediate principal stress. This was 

addressed by the inclusion of the stress Lode parameter in the circumscribed DP yield criterion. Figure 

3-6a & b further illustrates the significant effect of the intermediate principal stress on tunnel convergence. 

The plastic zone extension, tunnel convergence and support pressure all decrease with a decrease in 

the presented solution’s stress Lode parameter. The significant variation in the results attained by 

employing different stress Lode parameter values indicates the importance of considering the 

intermediate principal stress effect in the CCM formulations. 

Tunnel excavation effect simulation in the numerical code FLAC3D is conducted by a pressure relaxation 

procedure to determine the confinement loss around the tunnel. The procedure is a stepwise reduction 

of tunnel internal pressure computing each step’s ground response and drawing the displacement and 

plastic yield on the tunnel cross-section. This is attained by the FISH command “RELAX” within FLAC3D 

which provides control over the unloading rate of the tunnel boundary. The internal pressure is relaxed 

in 40 relaxation steps to an end factor of 0.001 signifying 97.7% relaxation. Tunnel closure is then 

monitored by recording displacement histories at selected grid points around the tunnel boundary. In turn, 
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the recorded displacement histories are used to construct numerical GRC. Figure 3-5 illustrates the 

agreement between the presented solution GRC and the numerical GRC interpreted by the pressure 

stepwise reduction procedure to be excellent. Figure 3-6a and Figure A1 3a show that plastic yielding of 

the rock mass around the tunnel is influenced by its strength parameters, the initial state of stress as well 

as the confinement loss. Hence, an increase in the confinement loss necessitates plastic yield evolution 

which leads to an extension of the plastic radius. 

Determination of the installed support structure located along a tunnel with respect to the GRC is a 

cumbersome process that requires the computation of the LDP. The significant aspect of support analysis 

is that the structures should be installed late enough to avoid support overload and early enough to 

restrain rock mass plastic yielding. Figure 3-10 & Figure 3-11 illustrate early support element installation 

at the face determined by the conventional CCMs is subjected to significantly higher load at equilibrium 

than delayed support installation. Consequently, leads to overloading and in some cases failure of the 

support elements (Table 3-8 & Table 3-9).  It must be emphasized that delayed installation indicates 

equilibrium before the supports are overloaded. It is observed that the presented solution herein 

considers delayed support installation as compared to conventional CCMs.  

It must be emphasized that the analysis conducted in section 3.6.2.3, is not focused on the yielding and/or 

resistance principles of the support elements but their installation timing and location. This is determined 

by the extent of tunnel convergence at which they are required to be installed. Hence, the comparison 

and analysis are based on the support structures with identical mechanical and physical properties. In 

conclusion, employing the same support structures at a different location along the tunnel in time 

determines their efficacy. This is quantified by their rock mass load-carrying capacity to restrain 

deformation within squeezing tunnels.  

The presented solution offers a more realistic approach to estimate the installation timing and location of 

the support structures along a tunnel. Application of the conventional CCMs determined support 
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structures, installed along tunnels excavated in the Nchanga rock mass may be subjected to overloading 

and consequently support failure. The presented solution is a practical technique to adjust the support 

structure installation at a distance from the tunnel face in squeezing ground of the NUG. 

3.8 Conclusions  

The closed-form solution is presented for tunnel convergence and plastic zone estimation within an EPP 

rock mass. The solution is governed by the circumscribed DP yield criterion incorporating the stress Lode 

parameter. Accuracy verification of the presented solution was conducted using conventional CCMs and 

numerical simulation. The GRC attained from the presented solution was verified with the numerical 

simulation within FLAC3D using the DP and MC yield criteria governed EPP models.  

The verification shows that the presented solution agrees well with the numerical solution, signifying that 

it is fundamentally sound. The extent of the plastic zone and tunnel convergence predicted by the 

proposed solution is 10% and 4% more than predicted by the conventional analytical solutions 

respectively. The numerical verification indicates that considering the circumscribed DP yield criterion 

coupled with the stress Lode parameter as an appropriate criterion could lead to accurate tunnel 

convergence estimation in squeezing ground.  

Tunnel support structure design based on the GRC and SCC equilibrium approach in squeezing ground 

is not a trivial task. However, optimizing this GRC and SCC equilibrium approach an appropriate tunnel 

support structure can be achieved. Results from the proposed GRC and SCC interaction shows that the 

STSCCB composite support structure (FS = 2.3) is more appropriate. The proposed GRC defined support 

structures can also lead to an increased safety coefficient if applied using conventional CCMs.  

The advantages of the presented solution as compared to the others governed by the USC yield criteria 

is that it is applicable when computing convergence of a simple tunnel case, requires few parameters 

and variables. The USC governed solutions, on the other hand, require a long computational time, employ 

parameters and variables obtained from experimental tests. 
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This study indicates that the conventional CCMs which employ the yield criteria that neglect the 

intermediate principal stress unrealistically estimates the strength of the rock mass. Hence, yield criteria 

that consider the intermediate principal stress effect should be employed in analytical solutions for 

accurate ground reaction estimation. The proposed solution can be used to predict tunnel convergence 

and design appropriate tunnel support structures.  
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Appendix 1: Inclusion of the equivalent radius 

The horseshoe cross-section tunnel with the dimension illustrated in Figure A1 1 is equivalent to the 

circular tunnel with radius 𝑅𝑞 (equivalent radius), the radius is computed using the equal area method 

[63]; 

 

 𝑅𝑞 = √
𝐴

𝜋
 (A54) 

 

 𝐴 =  
1

2
𝜋𝑅2 + 𝐿𝑅 (A55) 

 

Where A is the cross-section area, 𝐿 is the height of the tunnel wall, 𝜋 is the constant and the equivalent 

radius for the cross-section is 5.8 m, equivalent to a circular tunnel of radius 5.8 m.  

 

 

 

 

 

 

 

 

 

  

Figure A1 1. Layout of horseshoe cross section tunnel 
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Appendix 3: Support capacity estimation 

Estimation of the support capacity in tunnels subjected to a hydrostatic stress field, Brady and Brown [64] 

formulations for steel sets, cable bolts and shotcrete lining in tunnels are approved which are expressed 

by: 

𝑝𝑠𝑠𝑚𝑎𝑥 =
𝐴𝜎𝑦𝑠

𝜔𝑅
 (A56) 

 

𝐾𝑠𝑠 =
𝐸𝑠𝐴

𝜔𝑅2
 (A57) 

 

𝑝𝑠𝑐𝑚𝑎𝑥 =
𝜎𝑐𝑐

2
[1 −

(𝑅 − 𝑡)2

𝑅2
] (A58) 

 

𝐾𝑠𝑐 =
𝐸𝑐(𝑅2 − (𝑅 − 𝑡)2)

2(1 − 𝑣2)(𝑅 − 𝑡)𝑅2
 (A59) 

 

𝑝𝑠𝑏𝑚𝑎𝑥 =
𝑇

𝜔𝑙𝑅𝑐
 (A60) 

 

𝐾𝑠𝑏 =
𝐸𝑏𝜋𝐷2

4𝑙𝜔𝑙𝑅𝑐
 (A61) 

 

Where 𝑝𝑠𝑠𝑚𝑎𝑥  is the maximum steel set support pressure, 𝐴 is the cross-section area, 𝜎𝑦𝑠 is the yield 

strength of steel, 𝜔 is the set spacing along the tunnel, 𝐾𝑠𝑠 is the stiffness of the steel sets, 𝐸𝑠 is the 

young modulus of the steel, 𝑝𝑠𝑐𝑚𝑎𝑥 is the maximum shotcrete support pressure, 𝜎𝑐𝑐  is the uniaxial 

compressive strength of the shotcrete, 𝑡 is the thickness of the shotcrete, 𝐾𝑠𝑐 is the stiffness of the 
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shotcrete, 𝑝𝑠𝑏𝑚𝑎𝑥 is the maximum cable bolt pressure, 𝑇 is the ultimate cable load, 𝜔𝑙 is the longitudinal 

cable bolt spacing, 𝑅𝑐 is the circumferential cable bolt spacing, 𝐾𝑠𝑏 is the cable bolts elastic stiffness, 

𝐸𝑏 is the cable bolt young modulus, 𝐷2 is the cable diameter and  𝑙 is the free length of the cable bolt. 

In the formulations the following assumptions are considered;  𝜎𝑦𝑠 = 245 MPa, 𝜔 = 1 m,  𝜎𝑐𝑐  = 40 MPa 

and the supports are installed X = 4 m behind the face. Table A1 presents the support properties and 

computation of the support interaction curves one applies Eq. (3-50), where values of  𝑝𝑠𝑠𝑚𝑎𝑥  , 𝐾𝑠𝑠 and 

𝑈𝑖𝑜 are obtained from Table A1 1 and Table A1 2 and the results are presented in Table A1 3 and Table 

A1 4.  

Table A1 1. Mechanical and geometrical characteristic of support elements  
 

 Steel sets (without wood blocks) Shotcrete 

𝐴 109.27 m2 𝑝𝑠𝑠𝑚𝑎𝑥  4.61 MPa 𝐴 109.27 m2 𝑝𝑠𝑐𝑚𝑎𝑥 2.02 MPa 

𝐸𝑠 
207000 

MPa 
𝐾𝑠𝑠 

672.38 

MPa/m 
𝐸𝑐 

30000 

MPa 
𝐾𝑠𝑐 286.29 MPa/m 

𝜎𝑦𝑠 245 MPa 𝑝𝑠𝑚𝑎𝑥 𝐾𝑠𝑠⁄  0.0069 m 𝜎𝑐𝑐  40 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.0070 m 

𝑅 5.8 m   𝑅 5.8 m 𝑣 0.2 

𝜔 1 m   𝑡 0.3 m   

 Shotcrete 

𝐴 109.27 m2 𝑝𝑠𝑐𝑚𝑎𝑥 3.30 MPa 𝐴 109.27 m2 𝑝𝑠𝑐𝑚𝑎𝑥 6.30 MPa 

𝐸𝑐 30000 MPa 𝐾𝑠𝑐 486.39 MPa/m 𝐸𝑐 
30000 

MPa 
𝐾𝑠𝑐 

1025.72 

MPa/m 

𝜎𝑐𝑐  40 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.00679 m 𝜎𝑐𝑐  40 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.00614 m 

𝑅 5.8 m 𝑣 0.2 𝑅 5.8 m 𝑣 0.2 

𝑡 0.5 m   𝑡 1.0 m   

 Cable bolts     
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𝑇 0.354 MN 𝑙 14 m     

𝜔𝑙 1.0 m 𝑅 5.8 m     

𝑅𝑐 1.0 m 𝑝𝑠𝑏𝑚𝑎𝑥 0.354 MPa     

𝐸𝑏 
207000 

MPa 
𝐾𝑠𝑏 13.424 MPa/m     

𝐷 0.034 m 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑏⁄  0.02637     

 
  

Table A1 2. Tunnel convergence at a distance behind the tunnel face for different solutions  
 

 Fritz [28] Duncan-Fama [32] Carranza-Torres [9] Proposed solution (𝝉 = 1.0) 

X (m) 𝑼𝒊𝒐 

1 0.026 0.077 0.081 0.081 

2 0.033 0.095 0.0995 0.0986 

3 0.038 0.111 0.117 0.116 

4 0.043 0.126 0.132 0.129 

5 0.048 0.139 0.146 0.143 

 
 
Table A1 3. Support characteristic curve computations 
 

  Steel sets Shotcrete 

   0.3 m 0.5 m 1.0 m 

 MPa m MPa m MPa m MPa m 

Duncan-Fama [32] 

 

 

4.61 0.2 2.02 0.2 3.3 0.2 6.3 0.2 

4.61 0.133 2.02 0.133 3.3 0.133 6.3 0.132 

0 0.126 0 0.126 0 0.126 0 0.126 

Fritz [28] 4.61 0.1 2.02 0.1 3.3 0.1 6.3 0.1 
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4.61 0.050 2.02 0.050 3.3 0.050 6.3 0.050 

0 0.043 0 0.043 0 0.043 0 0.043 

Carranza-Torres [9] 

 

 

4.61 0.2 2.02 0.2 3.3 0.2 6.3 0.2 

4.61 0.139 2.02 0.139 3.3 0.139 6.3 0.138 

0 0.132 0 0.132 0 0.132 0 0.132 

Proposed solution 

 

 

4.61 0.2 2.02 0.2 3.3 0.2 6.3 0.2 

4.61 0.136 2.02 0.136 3.3 0.136 6.3 0.135 

0 0.129 0 0.129 0 0.129 0 0.129 

 

Table A1 4. SCC parameters for Individual support elements 
 

Support 𝒑𝒔𝒎𝒂𝒙 (MPa) 𝑲𝒔 (MPa/m) 𝑼𝒊𝒎(m) 

Shotcrete (t = 0.3 m) 2.02 286.29 0.0070 

Shotcrete (t = 0.5 m) 3.30 486.39 0.00679 

Steel set 4.61 672.38 0.0069 

Cable bolt 0.35 13.42 0.02637 

 

Table A1 5. SCC parameters for composite support structure 

 

Support 𝒑𝒔𝒎𝒂𝒙 (MPa) 𝑲𝒔𝒕 (MPa/m) 𝑼𝒊𝒎(m) 

Shotcrete (t = 0.3 m) + Cable bolt 2.10 299.714 0.0070 

Shotcrete (t = 0.5 m) + Cable bolt 3.39 499.814 0.0068 

Steel set + Cable bolt 4.73 685.804 0.0069 

Shotcrete (t = 0.3 m) + Cable bolt + Steel set 6.71 972.094 0.0069 
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Table A1 6. Displacement results at support-GRC equilibrium points for Individual support elements  
 

  
 

Fritz 

[28] 

Duncan-

Fama [32] 

Carranza-

Torres [9] 

Proposed solution 

(𝝉 = 1.0) 

 𝑈𝑖𝑜 0.043 0.126 0.132 0.129 

Shotcrete 𝑈𝑖𝑦 

0.3 m 0.050 0.133 0.139 0.136 

0.5 m 0.050 0.133 0.140 0.136 

1.0 m 0.050 0.132 0.138 0.135 

Cable Bolt 𝑈𝑖𝑦  0.070 0.152 0.159 0.156 

Steel sets 𝑈𝑖𝑦 0.050 0.133 0.139 0.136 

 

Table A1 7. Displacement results at GRC-SCC equilibrium points for composite support structure 
 

  
Fritz 

[28] 

Duncan-

Fama [32] 

Carranza-

Torres [9] 

Proposed solution 

(𝝉 = 1.0) 

 𝑈𝑖𝑜 0.04 0.13 0.13 0.13 

Shotcrete (t = 0.5 m) + 

Cable bolt 

𝑈𝑖𝑦 

 

0.05 0.13 0.14 0.14 

Shotcrete (t = 0.3 m) + 

Cable bolt 

𝑈𝑖𝑦 

 

0.05 0.13 0.14 0.14 

Steel set + Cable Bolt 𝑈𝑖𝑦 0.05 0.13 0.14 0.14 

Shotcrete (t = 0.3 m) + 

Cable bolt + Steel set 

𝑈𝑖𝑦 0.05 0.13 0.14 0.14 
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Abstract 

The time-dependent ground response of tunnels in squeezing ground requires a thorough understanding of 

the creep mechanism. Several studies conducted assume that this ground response can be characterized 

by elastoplastic and viscoelastic behaviour. However, the elasto-viscoplastic behaviour associated with the 

creep mechanism can predict this ground response realistically. Thus, this paper, presents a solution 

considering the elasto-viscoplastic behaviour for the ground response estimation of a non-circular tunnel 

under hydrostatic stress field in an isotropic and homogenous rock mass. The proposed method is an 

extended form of the closed-form solution based on the fractional-order derivative viscoplastic constitutive 

law. Thereafter, the proposed method is applied to the horseshoe tunnel ground response and support 

structure capacity estimation in squeezing ground. It is ascertained that delayed behaviour responsible for 

squeezing can be estimated realistically about 14% convergence and 24 m yield extension. Whereas the 

conventional solutions underestimate the convergence range between 2.5% - 5% and the yield zone 

extension between 12 m - 16 m. In comparison to these conventional solutions, it accounts for 10% tunnel 

convergence and 50% extension of the yield zone in the long-term. Additionally, the solution determines the 

suitable long-term safety coefficient for support structure installed at the right time and location behind the 

tunnel face in squeezing ground.  

Keywords: Creep; Ground reaction; Squeezing; Time-dependent behaviour; Elasto-viscoplastic 

behaviour 
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4.1 Introduction 

A prior assessment of tunnel convergence and support capacity is cardinal for a reliable design of excavations 

and appropriate support structures. During the excavation process, the ground pressure acting on the tunnel 

boundary increases with time, as a result, the tunnel convergence extends. This convergence is referred to 

the time-dependent response of the surrounding rock mass and tunnel advancement essentially associated 

with creep responsible for squeezing[1],[2]. Generally, the methods employed to describe this tunnel 

advancement and ground reaction are empirical[1,3,4], analytical [5,6] and numerical methods. Most of these 

methods rely on the elastic and elastoplastic (EP) constitutive equations to determine the stresses and strains 

in the surrounding rock mass as well as design tunnel support structure. However, these constitutive 

equations neglect the time factor which in some cases contributes a proportion of over 70% in overall tunnel 

convergence [3]. In analytical methods, the face advancement and ground reaction are analyzed and 

modelled by the employment of EP stress-strain solutions coupled with the convergence confinement 

concept. Among these include Duncan-Fama [7] presented a solution for stress and strain analysis around 

a circular tunnel in a Mohr-Coulomb (MC) yield criterion governed EP rock mass. Further on, Brown et al [8] 

presented an EP solution which considered the Hoek-Brown (HB) yield criterion for a circular tunnel, Carranza 

Torres and Fairhurst [9] proposed a solution for a circular tunnel excavated in an EP rock mass which obeyed 

the Hoek Brown yield criterion and most recently Kabwe et al [10] proposed a solution for a non-circular 

tunnel in an EP rock mass governed by the Lode angle-dependent Drucker-Prager yield criterion.  

These solutions are based on the Convergence Confinement Method (CCM), a two-dimensional (2D) 

approach that can be employed to simulate a three-dimensional (3D) problem in tunnels. However, the CCM 

is associated with the EP behaviour of the rock mass which is characterized by the time-independent 

permanent deformations. Hence, the elasto-viscoplastic (EVP)  rock mass behaviour responsible for delayed 

deformations in squeezing ground cannot be estimated by this approach [11]. As such cannot be employed 
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in the realistic estimation of the time-dependent deformations related to creep. In addition to the above-

mentioned limitation of the CCM employment in tunnels excavated in squeezing ground other solutions 

considered this rock mass time-dependent response. For instance, Gnirk & Johnson [5] analytically 

determined the boundary convergence of a circular shaft with and without tunnel support. The solution 

considered the time-dependent deformation characterised by the viscoelastic behaviour. Sulem et al [3] 

developed a time-dependent closed-form solution which considered a face advance effect in a homogeneous 

and isotropic rock mass. Ladanyi & Gill [6] evaluated the time-dependent rock mass deformation and 

proposed a solution which considered the linear and non-linear viscoelastic behaviour of a rock mass. Pan 

& dong [12] presented a time-dependent solution for a circular tunnel advancement and convergence with 

supports in a viscoelastic rock mass.  

Furthermore, researchers proposed closed-form solutions for the time-dependent response in tunnels by 

employing viscoelastic constitutive equations. These include: Nomikos et al [13] derived closed-form solution 

for the mechanical behaviour of a linear viscoelastic Burgers rock mass around an axisymmetric tunnel. 

Birchall and Osman[14] presented a solution for estimation of the time-dependent deformation by employing 

the Burgers viscoelastic constitutive equation. Fahimifar et al[15] suggested a closed-form solution for the 

time-dependent response of the visco-elastic rock mass. Gschwandtner & Galler [16] further proposed a 

novel method employing the CCM while considering the time-dependent behaviour in tunnels. Wang et al 

[17] introduced a closed-form solution using a viscoelastic relationship applicable for sequential non-circular 

excavation. Even though these closed-form solutions account for the time-dependent behaviour, they neglect 

the viscoplastic permanent deformations associated with squeezing. Moreover, they employ integer-order 

derivatives constitutive equations which can not describe the power-law characteristic of geomaterials (rocks 

and soils) associated with creep behaviour. Which is responsible for squeezing mechanism a challenge in 

tunnel operation frequently linked with post tunnel rehabilitation and support element failure. Depending on 
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the severity of the mechanism, significant investment in support installation and time-consuming rehabilitation 

is required to sustain the serviceability of tunnels[18–23]. Therefore, this paper presents a solution for the 

time-dependent ground response and support structure capacity estimation for a non-circular tunnel 

excavated in squeezing ground. It is achieved by the derivation of a time-dependent closed-form solution 

based on the newly developed fractional-order derivative viscoplastic (FDVP) constitutive model [24]. 

Thereafter, extended to the time-dependent solution for the ground response of horseshoe tunnels in 

squeezing ground.  

4.2 Limitation of the ground response solutions  

The CCM considers ground response to the tunnel face advance and comprised of a three-step analysis: (1) 

the Support Characteristic Curve (SCC) relates deformation of the support pressure to the convergence, (2) 

the Longitudinal Displacement Profile (LDP) relates tunnel displacement to the position of the tunnel face 

and (3) the Ground Reaction Curve (GRC) relates in-situ stress to tunnel convergence [25–28]. The GRC, 

on the other hand, is composed of two analysis sections which are; the elastic section based on initial hole-

in-a-plate solution attributed to Kirsch [29] and the plastic section based on a solution by Fenner [30]. The 

ground response is dependent on the rock mass behaviour, linear for instantaneous reversible elastic ground 

behaviour and non-linear for irreversible convergence characterized by the EP ground behavior [7,9,31–33]. 

Hence, the irreversible time-dependent convergence characterized by the EVP rock mass behaviour is not 

well-thought-out in this analysis (Figure 4-1). 
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The conventional CCMs [7,9,33–35] are employed for tunnel face effect evaluation by the internal pressure 

variation acting on the tunnel boundary with convergence. However, face limitations in that they neglect the 

time-dependent rock mass behaviour associated with creep mechanism [27]. Figure 4-2 illustrates the results 

of a comparison between the CCMs generated GRC and a numerical time-dependent GRC attained by a 

stepwise pressure reduction on the tunnel boundary. It is drawn from the illustration that the CCMs underrate 

the ground response of tunnels as compared to the numerical solution. The support structure installed at the 

CCM predicted location behind the tunnel face is subjected to a low support load (𝑝𝑠) at equilibrium.  

 

 

 

 

 

 

 

 

 

 
Figure 4-2. Comparison of the time-dependent numerical and convergence confinement solutions 

 

Figure 4-1. Ground response of an elastoplastic  and elasto-viscoplastic rock mass. 
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Hence, the installed support structure safety coefficient is unrealistically higher compared to the numerically 

predicted. As such the CCMs unrealistically estimate the appropriate stiffness, location and capacity of the 

installed tunnel support structure in squeezing ground. It is cardinal that this support structure should be 

installed before rock mass loosening but late enough to avoid support overload. Hence, the time of support 

structure installation and location is very important for the effectiveness of tunnel stability in squeezing ground 

[27]. As a result, the CCMs face limitation in the stability analysis of tunnels excavated in squeezing ground 

because they are: 

▪ based on the rock mass that exhibits EP shear failure. 

▪ neglect the delayed viscoplastic strains responsible for squeezing. 

▪ are based on the EP assumption which underestimates the appropriate tunnel support structure 

capacity. 

Hence, in section 4.3, a time-dependent closed-form solution for stress-strain estimation around a circular 

tunnel governed by the FDVP constitutive law is derived and verified.  

4.3 Derivation of the time-dependent closed-form solution  

The ability of rocks and rock masses to undergo time-dependent deformation upon being subjected to a 

constant state of stress is referred to as creep [36–38]. During excavation, this time-dependent behaviour 

can be an instantaneous or a steady increase of tunnel convergence. This instantaneous or steady increase 

of the tunnel convergence is due to the rock mass rheological properties, its ability to undergo creep [12]. 

Sulem et al [3] concluded that the time-dependent behaviour can account for about 70% of the total tunnel 

convergence. Hence, it is vital to take into consideration the aspect of the creep phenomenon during the 

design and excavation of tunnels. Panet [39], Sulem et al [3], Malan [36,40], Barla et al [37] and Debernardi 

& Barla [38] proposed solutions and constitutive laws to capture creep related time-dependent behaviour 

based on either the Kelvin and Maxwell rheological models or their combination (Figure 4-3).  
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However, these rheological models and their combination can only describe the viscoelastic deformations. 

On the other hand, the Burgers model and a plastic slider characterized by the MC failure criterion 

combination describes the EVP deformations. Nevertheless, the plastic slider is independent of time unless 

coupled with a viscous dashpot. Hence, viscoplastic deformation captured by this model is only dependent 

on stress. Additionally, Kabwe et al [42] concluded that it failed to simulate the time-dependent plastic 

shearing characterized by the irreversible viscoplastic deformation. Therefore, a closed-form solution capable 

of estimating the irreversible viscoplastic deformations characterised by squeezing is presented in this 

section. Firstly, it is derived based on the experimentally validated FDVP constitutive model governed by an 

associative viscoplastic flow rule. Thereafter, it is verified by comparing with conventional viscoelastic and 

viscoplastic models, respectively.  

4.3.1 Derived fractional-order constitutive equations  

In this section, a solution is derived based on the fractional-order derivative theory [43]. Employing the 

fractional-order derivatives will allow for the proposed solution to replicate and characterize all the creep 

stages. The fractional derivative theory employs the Riemann-Liouville fractional-order differential operator 

Figure 4-3. Schematic representation of rheological models: (a) 
Kelvin, (b) Maxwell, (c) Burgers and (d) CVISC models 
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which assumes that 𝑓(𝑡) is continuous in (0, +∞) and is integrated in any finite subdomain of [0, +∞) for 

𝑡 > 0 and 𝑅𝑒(𝛽) > 0 where 𝛽 is the order integral of the function 𝑓(𝑡) [44]. The Riemann–Liouville 

fractional integral of the function 𝑓(𝑡) is expressed as [45]. 

 

 
𝑑−𝛽𝑓(𝑡)

𝑑𝑡−𝛽
=

1

Γ(𝛽)
∫ (𝑡 − 𝜏)𝛽−1𝑓(𝑡)𝑑𝜏
𝑡

𝑡0
     (4-1) 

 

Where Γ(𝛽) is the gamma function given by: 

                

 Γ(𝛽) = ∫ 𝑥𝛽−1𝑒−𝑥𝑑𝑥
∞

0
 ,                                 𝑅𝑒(𝛽) > 0 (4-2) 

 

The fractional derivative 
𝑑𝛽

𝑑𝑡𝛽
 with the order 𝛽 ∈ (0,1) of the function 𝑓(𝑡) is defined by: 

 

 
𝑑𝛽𝑓(𝑡)

𝑑𝑡𝛽
= (

1

𝛤(1 − 𝛽)
∫ (𝑡 − 𝜏)1−𝛽𝑓(𝑡)𝑑𝜏
𝑡

𝑡0

)
𝑑𝑓(𝑡)

𝑑𝑡
 (4-3) 

 

and the fractional-order derivative 
𝑑𝛽

𝑑𝑡𝛽
 with the order 𝛽 ∈ (𝑛 − 1, 𝑛) of the function 𝑓(𝑡) is defined by: 

 
𝑑𝛽𝑓(𝑡)

𝑑𝑡𝛽
= (

1

𝛤(𝑛 − 𝛽)
∫ (𝑡 − 𝜏)𝑛−𝛽𝑓(𝑡)𝑑𝜏
𝑡

𝑡0

)
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 (4-4) 

 

A typical application of the fractional-order derivative theory is the fractional derivative dashpot characterized 

by the constitutive relation: 

 𝜎(𝑡) = 𝜂𝛽
𝑑𝛽[𝜀(𝑡)]

𝑑𝑡𝛽
                     (0 ≤ 𝛽 ≤ 1) (4-5) 
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Where 𝜂𝛽 is the fractional-order derivative dashpot viscosity coefficient and 𝛽 is the fractional-order 

coefficient. When 𝛽 = 1.0 the fractional-order derivative dashpot represents the Newtonian dashpot and when 

𝛽 = 0.0 it represents a solid element [46–48]. Hence, the fractional-order derivative dashpot exhibits 

characteristic of an element amid an ideal Newtonian dashpot and an ideal spring this reduces the limitation 

of both elements [49,50]. An ideal schematic representation of the rheological model which integrates the 

fractional derivative dashpot is illustrated in Figure 4-4. The model is composed of the Kelvin, fractional-order 

Maxwell and fractional-order viscoplastic components all connected in series.   

 
 
 
 
 
 
 
 
 

 

The fractional-order Maxwell component is composed of a spring and fractional-order derivative dashpot 

coupled in series, and the fractional-order viscoplastic component is parallelly linked by a fractional-order 

derivative dashpot and a plastic slider. From Figure 4-4 expressions for the total strain and stress can be 

obtained by: 

 𝜎(𝑡) = 𝜎𝐾 = 𝜎𝑀 = 𝜎𝑉𝑃 ;           𝜀(𝑡) = 𝜀𝐾 + 𝜀𝑀 + 𝜀𝑉𝑃 (4-6) 

 

Where 𝜎𝐾 , 𝜎𝑀  and 𝜎𝑉𝑃  are the stress acting in the Kelvin, fractional-order Maxwell and the fractional-order 

viscoplastic components respectively; 𝜀𝐾, 𝜀𝑀 and 𝜀𝑉𝑃 are the strain in the Kelvin, fractional-order Maxwell 

and the fractional-order viscoplastic components respectively. Based on the fractional-order derivative 

Figure 4-4. Schematic view of the FDVP consitutive model 
(Kabwe et al [24]) 
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dashpot the total stress is obtained by Eq. (4-5). Therefore, setting 𝜎(𝑡) = 𝜎 (constant stress), employing 

the fractional-order calculus attributed to Reimann-Liouville [51] operation and applying Laplace 

transformation on either side of Eq. ((4-5)), the following expression can be obtained: 

                                                                   

 𝐹𝛽1,2(𝑠) =
𝜎

𝜂𝛽1,2(𝑠1+𝛽1,2)
 (4-7) 

 

Conducting an inverse Laplace transformation on Eq. (4-7), the total strain represented by the fractional-

order derivative dashpot is given by: 

 𝜀(𝑡) =
𝜎

𝜂𝛽1,2

𝑡𝛽1,2

𝛤(1 + 𝛽1,2)
                                 (0 ≤ 𝛽1,2 ≤ 1) (4-8) 

 

The total stress in the fractional-order viscoplastic component  𝜎𝑉𝑃  is given as: 

 𝜎𝑉𝑃 = 𝜎𝑝 + 𝜎𝑣  (4-9) 

 

Where 𝜎𝑝 is the stress in the plastic slider and 𝜎𝑣  is the stress in the fractional-order derivative dashpot. 

The 𝜎𝑝 is expressed as: 

 𝜎𝑝 =  {
𝜎0,     𝜎0 < 𝜎𝑌
𝜎𝑌 ,    𝜎0 ≥ 𝜎𝑌

 (4-10) 

 

When  𝜎0 < 𝜎𝑌, combining Eq. (4-9) and Eq. (4-10), then 𝜎𝑣 = 0 and 𝜀𝑉𝑃 = 0. When 𝜎0 ≥ 𝜎𝑌 , the 

total stress on the fractional-order viscoplastic unit is expressed as: 

 𝜎𝑉𝑃 = 𝜂𝛽2 (
𝜎0 − 𝜎𝑌
𝜂𝛽2

) + 𝜎𝑌 (4-11) 
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Where 𝜂𝛽2 is the viscosity coefficient in the fractional-order viscoplastic component. Considering the 

fractional-order derivative relation Eq. (4-8) and setting initial condition as 𝜀𝑉𝑃 = 0 and 𝑡 = 0, expression for 

Eq. (4-11) is: 

 

 𝜀𝑉𝑃 =
𝜎0−𝜎𝑌

𝜂𝛽2

𝑡𝛽2

𝛤(1+𝛽2)
                                      𝜎0 ≥ 𝜎𝑌, (0 ≤ 𝛽2 ≤ 1) (4-12) 

 

Therefore, from Eq. A7 (Appendix: A) and Eq. (4-12), the relationship between radial tunnel convergence 

and time befits: 

 

 

𝑢𝑟

=

{
 
 

 
 

𝑅

2
{
𝜎0
𝐺𝑀

+
𝜎0𝑡

𝜂𝑀
+
𝜎0
𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)]},                                                       𝜎0 < 𝜎𝑌

𝑅

2
{
𝜎0
𝐺𝑀

+
𝜎0𝑡

𝜂𝑀
+
𝜎0
𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

𝛤(1 + 𝛽2)
)} ,                       𝜎0 ≥ 𝜎𝑌

 
(4-13) 

          

Where 𝑢𝑟 is the tunnel convergence (𝑢𝑟 = 𝜀(𝑡) = 𝜀𝐾 + 𝜀𝑀 + 𝜀𝑉𝑃) and 𝛽2 is the fractional-order 

coefficient (viscoplastic unit dashpot). Integrating the fractional-order derivative relation Eq. (4-8) in the 

Maxwell dashpot of Eq. (4-13), one gets the radial convergence relation in an EVP material expressed based 

on the FDVP constitutive model: 

 

𝑢𝑟

=
𝑅

2

{
 
 

 
 {

𝜎0
𝐺𝑀

+
𝜎0𝑡

𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
𝜎0
𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)]},                                                𝜎0 < 𝜎𝑌

{
𝜎0
𝐺𝑀

+
𝜎0𝑡

𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
𝜎0
𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌

𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
)} ,          𝜎0 ≥ 𝜎𝑌

 
(4-14) 

 



112 

 

Where 𝜂𝛽1 is the viscosity coefficient of the Maxwell dashpot and the fractional-order derivatives can describe 

the rheological behaviour of geomaterials. The gamma function adopted in these derivatives describes the 

power-law characteristic observed in creep behaviour. Whereas the conventional integer-order solutions 

assume linearity in the rheological behaviour of geomaterials. Hence, the gamma function employment 

provides a realistic estimation of the delayed deformations responsible for squeezing. The closed-form 

solution (Eq. (4-14)) presented herein is derived from the constitutive equations based on the FDVP 

constitutive model [24] calibrated using experimental data attained from Zhou et al [52] and Chen et al [53] 

(Appendix B). 

 

4.3.1.1 Verification of the proposed closed-form solution 

In this section, verification is conducted in which the closed-form solution (Eq. (4-14)) is compared with the 

existing viscoelastic and viscoplastic solutions[53,54] (Figure 4-5). The solutions are employed to determine 

the time-dependent radial deformation of a circular tunnel excavated in a rock mass governed by the creep 

parameters presented in Table 4-1.  
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4.3.2  Determination of the time-dependent ground reaction curve 

4.3.2.1 General assumptions 

In the evaluation of a circular tunnel in an EVP rock mass characterized by squeezing the following 

assumptions are considered: 

1. Circular tunnel in a homogenous, isotropic rock mass which obeys an FDVP constitutive law. 

2. The MC yield criterion governed FDVP constitutive model with an associated viscoplastic flow rule. 

3. Circular tunnel in-plane strain conditions subjected to the hydrostatic stress field. 

However, it must be mentioned that the preliminary derivation is based on a circular tunnel. Subsequently, 

the shape function which considers the non-circular tunnel shape is incorporated to estimate the EVP 

deformations characterized by squeezing in horseshoe tunnels. The proposed closed-form solution (Eq. 14) 

is implemented in the CCM to derive the ground response of a circular tunnel in an EVP rock mass. The 

ground response estimation using conventional CCMs considers EVP rock mass which employs time-

independent material parameters. Therefore, in this section, the time-independent and creep parameters are 

integrated into the solution to realistically estimate the ground response of tunnels in an EVP rock mass 

associated with squeezing. The CCM approach is presented by considering a section behind the tunnel face 

as an axisymmetric 2D plane strain problem. The tunnel face advance effect is considered by employing a 

pseudo internal pressure 𝜎𝑖  alteration on the tunnel boundary [55]: 

 𝜎𝑖 = (1 − 𝜆)𝜎0 (4-15) 

 

Where 𝜎0 is the in-situ stress and 𝜆 is the deconfinement ratio which lies between 0.0 and 1.0. During the 

excavation of a cylindrical tunnel (radius = 𝑅) in a continuous, homogenous rock mass subjected to a 

hydrostatic state of stress. When 𝜎0 exceeds the strength of the surrounding rock mass a viscoplastic zone 
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radius (𝑅𝑃) develops. Figure 4-6 illustrates the viscoplastic, elastic and viscoelastic zones created as a 

result of 𝜎0 exceeding the strength of the surrounding rock mass. Moreover, the surrounding rock mass 

viscoplastic behaviour is represented by the fractional-order derivative formulation Eq. (4-14) characterised 

by the EVP constitutive laws.  

 

 

  

 

 

 

 

 

 

 

 
 

4.3.2.2 Failure surface definition 

In axisymmetric conditions the MC yield criterion is expressed as: 

 𝐹(𝜎𝜃 , 𝜎𝑟) = 𝜎𝜃 − 𝜎𝑟𝑁𝜙 + 𝜎𝑐 = 0 (4-16) 

 

Where 𝜎𝜃  and 𝜎𝑟  are the tangential and radial stress respectively. Where 𝑁𝜙 is expressed as 

(1 + sin𝜙 1 − sin𝜙⁄ ) and 𝜎𝑐  is the unconfined compressive strength (𝜎𝑐 = 2𝑐√𝑁𝜙). During 

excavation, a tunnel loses its surrounding rock mass confinement when λ decreases as a result 𝑈𝑟 converges 

towards its central axis. During this decrease, the surrounding rock mass undergoes elastic behaviour up to 

a critical deconfinement ratio (𝜆𝑒). Further reduction (< 𝜆𝑒), the rock mass yields plastically, in this case, it 

Figure 4-6. Viscoplastic zone surrounding a circular tunnel. Note: 𝜎𝑅 =
𝜎𝑟  and Non visco-plastic zone refers to elastic and viscoelastic zones. 
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undergoes viscoplastic behaviour characterised by creep mechanism. The 𝜆𝑒 is governed and can be 

obtained from the MC yield criterion by substituting Eq. (4-15) for 𝜎𝜃  and  𝜎𝑟 to obtain the relation:             

which is expanded to: 

 

𝐹((1 + 𝜆𝑒 )𝜎0, (1 − 𝜆𝑒 )𝜎0) = 0 

 

(1 + 𝜆𝑒 )𝜎0 − (1 − 𝜆𝑒 )𝜎0𝑁𝜙 − 𝜎𝑐 = 0 

 

        

(4-17) 

 

 

Solving for  𝜆𝑒, Eq. (4-17) is simplified to [56]: 

 𝜆𝑒  =
1

𝑁𝜙 + 1
(𝑁𝜙 − 1 +

2𝑐√𝑁𝜙

𝜎0
) (4-18) 

 

4.3.2.3 Stresses and displacements in the viscoelastic and viscoplastic 

zones  

The stress equilibrium equation assuming axisymmetric loading around the circular tunnel is expressed in 

cylindrical coordinates by: 

  
𝜕𝜎𝑟
𝜕𝑟

+
𝜎𝜃 − 𝜎𝑟
𝑟

= 0 (4-19) 

 

Substitution of Eq (4-16) in Eq. (4-19), then conducting an integration one obtains the radial and tangential 

stress for the viscoplastic zone (𝑅 ≤ r ≤ 𝑅𝑃 ) as: 

 𝜎𝑟  =
2𝑐√𝑁𝜙

𝑁𝜙 − 1
[(
𝑟

𝑅
)
𝑁𝜙−1

− 1] + (1 − 𝜆)𝜎0 (
𝑟

𝑅
)
𝑁𝜙−1

 (4-20) 



117 

 

  

 𝜎𝜃  =
2𝑐√𝑁𝜙

𝑁𝜙 − 1
[𝑁𝜙 (

𝑟

𝑅
)
𝑁𝜙−1

− 1] + 𝑁𝜙(1 − 𝜆)𝜎0 (
𝑟

𝑅
)
𝑁𝜙−1

 (4-21) 

 

Where 𝑅 and 𝑅𝑃 is the tunnel radius and viscoplastic zone radius respectively and the ratio of the viscoplastic 

radius to the tunnel radius is expressed by [57]: 

 𝑅𝑃
𝑅
 = [(

2

𝑁𝜙 + 1
)

(𝑁𝜙 − 1)𝜎0 + 2𝑐√𝑁𝜙

(1 − 𝜆)(𝑁𝜙 − 1)𝜎0 + 2𝑐√𝑁𝜙
]

1
𝑁𝜙−1

 (4-22) 

 

The radial (𝜎𝑟) and tangential (𝜎𝜃) stress in the viscoelastic zone (r ≥ 𝑅𝑃 ) are given by [3]: 

 𝜎𝑟  = [1 − 𝜆𝑒 (
𝑅𝑃
𝑟
)
2

] 𝜎0 (4-23) 

 

 𝜎𝜃  = [1 + 𝜆𝑒 (
𝑅𝑃
𝑟
)
2

] 𝜎0 (4-24) 

 

The analysis in this study accounts for stress and strain of near section of a tunnel and the effect of the tunnel 

face. Hence, the mean stress (𝜎𝑚) of the near section to be considered is given by [15]: 

 𝜎𝑚  =
𝜎𝜃 + 𝜎𝑧 + 𝜎𝑟

3
= 𝜎0      (4-25) 

 𝑠𝑟 = 𝜎𝑟 − 𝜎𝑚 = 𝜎0 [1 − 𝜆𝑒 (
𝑅𝑃
𝑟
)
2

] − 𝜎0 = −𝜆𝑒𝜎0 (
𝑅𝑃
𝑟
)
2

 (4-26) 
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 𝑠𝜃  = 𝜎𝜃 − 𝜎𝑚 = 𝜎0 [1 + 𝜆𝑒 (
𝑅𝑃
𝑟
)
2

] − 𝜎0 = 𝜆𝑒𝜎0 (
𝑅𝑃
𝑟
)
2

 (4-27) 

 

Where 𝜎𝑧 is the longitudinal stress, 𝑠𝑟 is the radial deviatoric stress and 𝑠𝜃 is the tangential deviatoric stress. 

Since the stress field acting around the tunnel boundary is obtained from Eq. (4-26) and Eq. (4-27). The total 

deviatoric strain (𝑒𝑖𝑗) in the viscoelastic zone (r ≥ 𝑅𝑃 ) is computed by deviatoric components of the strain 

tensor:                                                              

 𝑒𝑖𝑗 = 𝑒𝑖𝑗
𝐾 + 𝑒𝑖𝑗

𝑀 (4-28) 

 

Where 𝑒𝑖𝑗
𝐾 and 𝑒𝑖𝑗

𝑀 are the Kelvin and Maxwell material strain contribution respectively. The Kelvin strain and 

deviatoric stress tensors relation are expressed by:                                                 

 𝑠𝑖𝑗 = 2𝜂𝐾𝑒̇𝑖𝑗
𝐾 + 2𝐺𝐾𝑒𝑖𝑗

𝐾 (4-29) 

 

and setting initial condition as 𝑒𝜃
𝐾 = 0, the tangential strain (𝑒𝜃

𝐾) of the Kelvin material is expressed by: 

 𝑒𝜃
𝐾 =

𝑠𝜃
2𝐺𝐾

[1 − 𝑒𝑥𝑝 (−
𝑡

𝑇𝐾
)] (4-30) 

 

While the stress-strain relation of the fractional-order Maxwell material is expressed by: 

 𝑒̇𝑖𝑗
𝑀 =

𝑠𝑖𝑗𝑡
𝛽1

2𝜂𝛽1Γ(1 + 𝛽1)
+
𝑠̇𝑖𝑗

2𝐺𝑀
 (4-31) 

 

Therefore, the tangential strain (𝑒𝜃
𝑀) of the fractional-order Maxwell material is expressed as: 



119 

 

 𝑒𝜃
𝑀 =

𝑠𝜃𝑡
𝛽1

2𝜂𝛽1Γ(1 + 𝛽1)
+

𝑠𝜃
2𝐺𝑀

 (4-32) 

 

Coupling the fractional-order Maxwell and Kelvin material in series (Eq. (4-16)) and substituting Eq. (4-27), 

one obtains tangential strain expression:                      

 𝜀𝜃
𝑣𝑒 = 𝜆𝑒 (

𝑅𝑃
𝑟
)
2

𝜎0
1

2

            

(
1

𝐺𝑀
+

𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)]) (4-33) 

and the viscoelastic zone deformation (
𝑢𝑣𝑒

𝑟
) from: 

 
𝑢𝑣𝑒
𝑟
= 𝜆𝑒 (

𝑅𝑃
𝑟
)
2

𝜎0
1

2

            

(
1

𝐺𝑀
+

𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)]) (4-34) 

 

In the viscoplastic zone (𝑅 ≤ r ≤ 𝑅𝑃 ) the strains are typically expressed as a totality of the viscoelastic 

and viscoplastic strains expressed as: 

                                                 

 

𝑒𝑖𝑗 = 𝑒𝑖𝑗
𝑀 + 𝑒𝑖𝑗

𝐾}𝑒𝑖𝑗
𝑣𝑒 + 𝑒𝑖𝑗

𝑣𝑝
 

𝑒̇𝑟 = 𝑒̇𝑟
𝑣𝑒 + 𝑒̇𝑟

𝑣𝑝;      𝑒̇𝜃 = 𝑒̇𝜃
𝑣𝑒 + 𝑒̇𝜃

𝑣𝑝
 

(4-35) 

 

When 𝜆 > 𝜆𝑒 a viscoplastic zone develops around the tunnel periphery and the deformation in the zone is 

associated with dilation. Therefore, an associative flow rule is applied and the viscoplastic strains are derived 

from a plastic potential: 

 𝑔(𝜎𝜃 , 𝜎𝑟) = 𝜎𝜃 − 𝜎𝑟𝑁𝜓 (4-36) 

 

Where 𝑁𝜓 is the dilatancy coefficient (𝑁𝜓 = 1 + sin𝜓 1 − sin𝜓⁄ ). Therefore: 
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 𝑒̇𝑟
𝑣𝑝 = 𝛬

𝜕𝑔

𝜕𝜎𝑟
= 𝛬𝑁𝜓 (4-37) 

 

 𝑒̇𝜃
𝑣𝑝 = Λ

𝜕𝑔

𝜕𝜎𝜃
= Λ (4-38) 

 

Where Λ represents the viscoplastic multiplier and using the flow rule one can express: 

                                                           

 𝑒̇𝑟
𝑣𝑝 + 𝑁𝜓𝑒̇𝜃

𝑣𝑝 = 0 (4-39) 

 

In axisymmetric conditions 𝑒̇𝑟
𝑣𝑝

 and 𝑒̇𝜃
𝑣𝑝

 are expressed as: 

 𝑒̇𝑟
𝑣𝑝 =

𝜕∆𝑢̇𝑟
𝑣𝑝

𝜕𝑟
;  𝑒̇𝜃

𝑣𝑝 =
∆𝑢̇𝑟

𝑣𝑝

𝑟
 (4-40) 

 

Substituting Eq. (4-40) into Eq. (4-39) gives:                                                    

 
𝜕∆𝑢̇𝑟

𝑣𝑝

𝜕𝑟
+ 𝑁𝜓

∆𝑢̇𝑟
𝑣𝑝

𝑟
= 0 (4-41) 

 

Reference to Eq. (4-30) and Eq. (4-31) the tangential strain (𝑒𝜃
𝑣𝑒) of the viscoelastic material is expressed 

as:                             

 𝑒𝜃
𝑣𝑒 =

𝑠𝜃
2𝐺𝐾

[1 − 𝑒𝑥𝑝 (−
𝑡

𝑇𝐾
)] +

𝑠𝜃
2
(

𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1

𝐺𝑀
) (4-42) 

 

and the stress-strain relation of the viscoplastic material is expressed by:                                                             
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 𝑒̇𝑖𝑗
𝑣𝑝 =

𝑠𝑖𝑗 − 𝜎𝑌

2𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
 (4-43) 

Therefore, the tangential strain (𝑒𝜃
𝑣𝑝

) is given by:                                                           

 𝑒𝜃
𝑣𝑝 =

𝑠𝜃 − 𝜎𝑌
2𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
 (4-44) 

 

Substituting Eq. (4-29), Eq. (4-31) and Eq. (4-43) into Eq. (4-35) one gets an expression: 

 

𝜀𝜃
𝑣𝑝

= 𝜆𝑒 (
𝑅𝑃
𝑟
)
2 1

2

            

[
𝜎0
𝐺𝑀

+
𝜎0𝑡

𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
𝜎0
𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
)] 

(4-45) 

Therefore.       

 

𝜕∆𝑢̇𝑟
𝑣𝑝

𝜕𝑟
+ 𝑁𝜓

∆𝑢̇𝑟
𝑣𝑝

𝑟

= 𝐹1
1

2

            

[
1

𝐺𝑀
+

𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
)]𝐹2 

(4-46) 

                                        

 𝐹1 = [(1 − 𝑁𝜓 ) [(1 − 𝑁𝜙) (1 − 𝜆)𝜎0 − 2𝑐√𝑁𝜙]] (4-47) 

                                                                                                      

 𝐹2 = (
𝑟

𝑅
)
𝑁𝜙−1

 (4-48) 

 

With (𝑅 ≤ r ≤ 𝑅𝑃 ) and computing the differential equation (Eq. (4-46)) gives the proposed solution of 

the radial deformation in the viscoplastic zone as:                
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𝑢𝑣𝑝

𝑟

=

[
 
 
 
 𝐹1

1
2

            

[
1
𝐺𝑀

+
𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1
𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡
𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
)]

𝑁𝜓 + 𝑁𝜙

]
 
 
 
 

𝐹2

+ G(
𝑅𝑃
𝑟
)
𝑁𝜓 +1

 

(4-49) 

 

Where G is an integral constant computed by the application of the displacement continuity condition on the 

viscoelastic and viscoplastic interface, G is then expressed as:    

 

G

= [𝜆𝑒𝜎0

−
𝐹1

𝑁𝜓 +𝑁𝜙
(
𝑅𝑃
𝑅
)
𝑁𝜙−1

]
1

2

            

[
1

𝐺𝑀
+

𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑅𝑝

𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2
 

(4-50

) 

 

Where 𝜎𝑅𝑝 in this case is the radial stress at the viscoelastic and viscoplastic interface which is expressed 

as [57]:                                                                   

 𝜎𝑅𝑝 =
2𝜎0 − 𝜎𝑐
1 + 𝑁𝜙

  (4-51) 

   

It must be emphasized that the presented ground response solution (Eq (4-49)) is consistent with the newly 

proposed by Nomikos et al [13] and Tran-Manh et al [56] solutions. However, these solutions are based on 

integer-order derivatives as opposed to Eq. (4-49) capable of the power-law realistic description of the creep 

mechanism of geomaterials. 
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4.3.2.4 Determination of the horseshoe tunnel ground response  

The presented time-dependent ground response solution (Eq. (4-49)) constructs the time-dependent GRC 

for circular tunnels by the reduction of 𝑟 to 𝑅. However, it must empathize that the solution in its present form 

is applicable for circular tunnels excavated in civil engineering operations. It neglects the non-circular 

(Horseshoe) tunnels excavated in underground mine operations. Hence, the solution (Eq. (4-49)) cannot 

realistically estimate the time-dependent ground response of tunnels in most underground mines. Therefore, 

in this section, the equivalent radius function is incorporated into Eq. (4-49), to enhance its functionality in 

estimating the time-dependent wall convergence within a horseshoe tunnel. The equivalent radius (𝑅𝑞) 

function based on the equal area method is expressed by: 

 𝑅𝑞 = √
𝐴

𝜋
 (4-52) 

 

 𝐴 =  
1

2
(𝜋𝑅2) + 𝐿𝑅 (4-53) 

 

 𝑅𝑞 = √(

1
2
(𝜋𝑅2) + 𝐿𝑅

𝜋
) (4-54) 

 

Where 𝐴 is the tunnel cross-section area, 𝜋 is the radial constant, 𝑅 is the radius of the tunnel arc and 𝐿 is 

the tunnel wall height. Therefore, to determine the time-dependent convergence within a horseshoe tunnel 

we substitute 𝑅 with 𝑅𝑞 in Eq. (4-49) herein and after. The time-dependent convergence of a horseshoe 

tunnel estimated using the solution is compared with the conventional CCMs [7,9,58] and the Burgers 

viscoelastic model. The tunnel considered for this estimation is illustrated in Figure 4-7. Horseshoe tunnel 
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geometry with 𝑅𝑞 = 5.8 m and parameters presented in Table 4-2. Rock mass strength, creep and tunnel 

geometrical parameters.. The results attained from this comparative analysis shows that the presented time-

dependent solution estimates the overall time-dependent horseshoe tunnel convergence in squeezing 

ground (Figure 4-8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4-2. Rock mass strength, creep and tunnel geometrical parameters. 

𝝂 c (MPa) 𝛟(°) 𝝈𝒄𝒎(MPa) GSI mi mb s a 𝝈𝒕  𝝆(kg/m3) 𝑹𝒒(m) 𝝈𝟎(MPa) E (MPa) 

0.2 1.28 26 35 40 8 0.94 0.0013 0.5 0.05 2700 5.8 23 3193 

 

𝜼𝑲(GPa.d) 𝜼𝑴(GPa.h) 𝑮𝑲(GPa) 𝑮𝑴(GPa) 𝑲𝑯(GPa) 𝜼𝑩(GPa.h) 𝛈𝜷𝟏(GPa.h) 𝛈𝜷𝟐(GPa.h) 𝜷𝟏,𝟐 

49.5 478.97 23.39 2.714 5.88 4.8 4789.7 4.8 0.9 

Figure 4-7. Horseshoe tunnel geometry and dimensions. 
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determined by the LDP of unsupported tunnels. Which utilizes the relation between support structure 

installation timing and nominal tunnel boundary convergence.  

4.4.1 Determination of the longitudinal displacement profile 

During tunnel stability analysis support elements need to be installed at the appropriate distance behind the 

face. In such a case the LDP is required to calibrate the tunnel model so that the internal pressure and 

convergence is correlated to the actual tunnel support setup behind the face. Hence, to determine the 

appropriate timing for support structure installation and optimization, the LDP is determined based on the 

Vlachopoulos and Diederichs [59] which considers the maximum plastic radius (𝑅𝑚) influence. In the LDP 

analysis, the tunnel face displacement (𝑈𝑟𝑓) is expressed as:  

 𝑈𝑟𝑓 = (
𝑈𝑟𝑚
3
) 𝑒

− 0.15(
𝑅𝑚
𝑅𝑞
)
 (4-55) 

 

Where 𝑈𝑟𝑚 is the maximum tunnel displacement at 𝑅𝑚𝑎𝑥 obtained from Eq. (4-49) by substituting 𝑅𝑃 with 

𝑅𝑚 and the value of 𝑅𝑚 is attained from Eq. (4-22) by substituting (1 − 𝜆)𝜎0 with 0.0. The tunnel wall 

displacement ahead of the face (𝑋 < 0) and behind the face (𝑋 > 0) are estimated by Eq. (4-53) and Eq. 

(4-54) respectively: 

 𝑈𝑟𝑥 = (
𝑈𝑟𝑓

𝑈𝑟𝑚
) exp

(
𝑋
𝑅𝑞
)
 (4-56) 

 
𝑈𝑟𝑥 = 1 − (1 −

𝑈𝑟𝑓

𝑈𝑟𝑚
) exp

(

−3𝑋
𝑅𝑞

2𝑅𝑚
𝑅𝑞

⁄ )

 
(4-57) 
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Table 4-3. Scaled convergence at a normalized distance behind the tunnel face for different solutions 

 

Fritz[58] Duncan-Fama[7] Carranza-Torres[9] 
Time-dependent solution 

(Eq. 49) 

X (m) 𝑼𝒓 𝑼𝒓𝒎⁄  

0 0.24 0.22 0.21 0.18 

2 0.41 0.37 0.34 0.28 

4 0.54 0.49 0.46 0.36 

 

Table 4-4. Maximum plastic radius, tunnel and face displacement for different solutions 

 Fritz[58] Duncan-Fama[7] Carranza-Torres[9] 
Time-dependent 

solution 

𝑅𝑚 11.70 14.30 15.92 23.98 

𝑈𝑟𝑚 0.08 0.26 0.29 0.48 

𝑈𝑟𝑓 0.02 0.06 0.06 0.09 

 

Installation of an appropriate support structure is important for the effective and efficient stability of tunnels in 

squeezing ground. This can be done by considering the capacity and safety coefficient of the installed support 

structures. The estimation of these parameters requires the employment of the SCC which describes the 

stress-strain relations of the support structure-rock mass interaction.  

4.4.2 Tunnel support capacity estimation 

Tunnel pre-deformation behind its advancing face is dependent on the installed support structure and tunnel 

construction process. The bearing capacity of support measure of this installed support structure can be 

determined by the SCC. Which defines the support pressure (𝑝𝑖) at the predetermined tunnel convergence 
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𝑈𝑖𝑦 = 𝑈𝑖𝑜 + 𝑈𝑖𝑚  =  𝑈𝑖𝑜 +
𝑝𝑠𝑚𝑎𝑥
𝐾𝑠

 

 

(4-59) 

4.4.2.1 Support characteristic curve construction 

In the supported tunnels, the support structure is installed after the occurrence of an instantaneous elastic 

deformation[15]. In this paper, the tunnel face effects, and rock mass-support interaction is considered. If 𝑡0 

is the elapsed time until support structures are installed before that time it was unsupported (𝑡 ≤ 𝑡0). During 

excavation, it is assumed that the support structure is installed instantaneously at 𝑡 = 𝑡0 as such 

convergence at this time is neglected. When 𝑡 ≤ 𝑡0 the tunnel convergence is calculated from Eq. (4-14) 

whereas when 𝑡 > 𝑡0 excavation is halted and the ground pressure on the support structure is related to the 

tunnel convergence by: 

 
𝑝𝑠𝑚𝑎𝑥 = 𝐾𝑠 (

𝑈𝑟(𝑡)

𝑅𝑞
−
𝑈𝑟(𝑡0)

𝑅𝑞
) 

 

(4-60) 

Where 𝑈𝑟(𝑡) and 𝑈𝑟(𝑡0) are the tunnel convergence after and before support structure installation, 

respectively. The tunnel radial stress, in this case, will be the sum of 𝑝𝑠𝑚𝑎𝑥  and the pseudo internal pressure 

((1 − 𝜆)𝜎0) expressed by Eq. (4-61) and the radial deviatoric stress of the tunnel wall can be expressed by 

Eq. (4-62): 

 𝜎𝑟  = 𝑝𝑠𝑚𝑎𝑥 + (1 − 𝜆)𝜎0 (4-61) 

 

 𝑠𝑟 = 𝜎𝑟 − 𝜎𝑚 = 𝑝𝑠𝑚𝑎𝑥 + (1 − 𝜆)𝜎0 − 𝜎0 = 𝑝𝑠𝑚𝑎𝑥 − 𝜆𝜎0 (4-62) 
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𝑈𝑟(𝑡)

= 𝑅𝑞
(𝑝𝑠𝑚𝑎𝑥 − 𝜆𝜎0)

2

            

[
1

𝐺𝑀
+

𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽
 

(4-63

) 

 

Therefore, the substitution of Eq. (4-60) into Eq. (4-57) one gets the expression for 𝑝𝑠𝑚𝑎𝑥  as: 

 

{
 
 
 

 
 
 𝑝𝑠𝑚𝑎𝑥 = 𝐾𝑠 (

(𝑝𝑠𝑚𝑎𝑥 − 𝜆𝜎0)

2𝐺(𝑡)
−
(𝜆𝜎0)

2𝐺(𝑡0)
)

1

𝐺(𝑡)
=  [

1

𝐺𝑀
+

𝑡𝛽1

𝜂𝛽1𝛤(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

𝛤(1 + 𝛽2)
)]

1

𝐺(𝑡0)
=  [

1

𝐺𝑀
+

𝑡0
𝛽1

𝜂𝛽1𝛤(1 + 𝛽1)
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡0
𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝛽2

𝑡0
𝛽2

𝛤(1 + 𝛽2)
)]

 (4-64) 

 

Provided that the installed support structure can hold the rock mass, its SCC intersects the tunnel GRC at an 

equilibrium point (Figure 4-10). At this point, the tunnel convergence is equal to the support yield this further 

allows the determination of the support structure safety coefficient (𝐹𝑆).  

 

𝐹𝑆 =  
𝑝𝑠𝑚𝑎𝑥
𝑝𝑠 

 

 

(4-65) 

The installed support structure can be considered suitable within a tunnel if its safety coefficient is greater 

than the allowable limit (𝐹𝑆 ≥  𝐹𝑠 𝑚𝑖𝑛). However, unsupported excavations in squeezing ground conditions 

experience severe strain (20%) which makes it extremely challenging. In such conditions, the support 

structure is installed early enough to maintain a safe working area behind the face and delayed enough to 

avert load build-up and consequent failure. Besides, early support structure installation results in a low short-

term safety coefficient and an unsuitable long-term safety coefficient (< 1.0). However, the safety coefficient 

can be more appropriate by installing support structures at the right time (Figure 4-11).  
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coefficient of 1.6 and 1.7 above the allowable limit is attained. Figure 4-12b draws that the steel set support 

element installed early at a location estimated by the CCM is overloaded under the long-term GRC. Whereas 

if installed at a delayed location estimated by the time-dependent solution it is subjected to a lower load at 

equilibrium. As a result, the delayed support installation estimates a long-term safety coefficient of 1.2 this 

signifies the importance of installing support structures at the right time and location. 
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Besides, the effect of two or more support elements installed at the same location behind the tunnel face can 

be determined by their accumulative stiffness. When steel set, shotcrete and cable bolts are merged in a 

single application the accumulative stiffness (𝐾𝑠𝑡) of this composite structure is: 

 𝐾𝑠𝑡 = 𝐾𝑠𝑠 + 𝐾𝑠𝑏 + 𝐾𝑠𝑐  (4-66) 

The individual support element with low 𝑈𝑖𝑚 is employed to ascertain 𝑝𝑠𝑚𝑎𝑥  of the composite support 

structure: 

 

 𝑈𝑖𝑚  =  
𝑝𝑠𝑚𝑎𝑥
𝐾𝑠𝑡

 

 

(4-67) 

The composite support structure considered in this analysis with their 𝑝𝑠𝑚𝑎𝑥   and 𝐾𝑠𝑡  values are presented 

in Appendix C: Table C 5. It is composed of 0.3 m thick shotcrete, steel sets and cable bolts. Figure 4-13 

illustrates the SCC effect of the SCCB (shotcrete + cable bolts) and STSCCB (steel sets + shotcrete + cable 

bolts) composite support structures. If the SCCB support structure is installed at the CCM defined location 

behind the face, the structure fails to restrain the long-term convergence associated with squeezing (Figure 

4-13a). It is drawn that the SCCB support structure will be subjected to failure as compared to its short-term 

application with the safety coefficient between 1.0-1.1. As such application of the support structure at the 

time-dependent solution and CCM defined locations will be inappropriate to restrain tunnel convergence in 

squeezing ground. Besides, the installation location estimated in the long-term by the time-dependent 

solution raises the safety coefficient for the CCM defined support structure. Employing the STSCCB support 

structure at the CCM defined position estimates a low safety coefficient in the long-term as compared to the 

time-dependent solution defined location (Figure 4-13b). The support structure has a safety coefficient of 1.8 

in the long-term when installed at the time-dependent solution defined location. Hence, the STSCCB support 
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structure is more appropriate to restrain tunnel convergence in squeezing ground when installed at a time-

dependent solution determined location behind the advancing tunnel face. 
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4.5 Discussion 

The study presented herein shows that during tunnel excavation, the convergence should be considered a 

function of tunnel advancement and the time-dependent behaviour of the rock mass. The traditional CCMs 

employed to estimate the LDP and GRC neglect this time-dependent behaviour as such fail to realistically 

estimate delayed deformations associated with squeezing. The analysis conducted to estimate the time-

dependent tunnel convergence comprise of; 1) derivation of a time-dependent closed-form solution, 2) 

verification of the derived solution using creep models, 3) extension of the time-dependent closed-form 

solution to a ground reaction solution and estimation of the support structure capacity.  

The closed-form solution based on the FDVP constitutive model employs constitutive equations which 

realistically describe the creep behaviour of rock mass. This makes it a better fit to describe the time-

dependent ground response of tunnels in squeezing ground as compared to the integer-order derivative-

based constitutive equations. The study is conducted to describe the time-dependent creep behaviour of 

tunnels in squeezing ground and the constitutive equations derived appear to be adequate for its description. 

The derived closed-form solution is compared with existing viscoelastic and viscoplastic models and agrees 

very well with other time-dependent viscoplastic models. This signifies that the closed-form solution is robust 

for the accurate estimation of tunnel convergence. Its extension, the time-dependent ground response 

solution is further compared with the Burgers model and the conventional CCMs in a horseshoe tunnel. This 

extended solution estimates the delayed ground reaction experienced within tunnels excavated in adverse 

squeezing ground conditions. It estimates the delayed ground response as such addresses the limitation that 

the conventional CCMs face during tunnel stability analysis in squeezing ground.  

The convergence estimation and support structure design of tunnels in EPP rock mass tend to be unrealistic 

because during excavation the assumption considered underestimate the stress relief. Additionally, the 
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estimation of tunnel support capacity by considering these assumptions proves to be inadequate in squeezing 

ground conditions. Also, an important factor to be considered in support design is the time and location of 

these support structure installation. Even though they must be installed immediately behind the face for a 

safe working environment their installed support capacity cannot be activated.  

It is drawn from section 4 that the SCCB support structure installation is ineffective whereas the STSCCB 

support structure installation is more appropriate in squeezing ground. Moreover, the installation of the 

composite support structure increased the safety coefficient as compared to the individual support elements. 

Installation of the support structure can be more effective if we consider the life of the tunnel either temporal 

or permanent. However, in this study the allowable tunnel closure considered applies for a temporal tunnel 

as such the STSCCB support structure is installed at tunnel convergence (0.17 m). It has been drawn that 

the conventional CCMs employed for LDP and GRC estimation neglect the time-dependent convergence 

which occurs over time. The convergence considered in this study is characterized by creep which can be 

estimated by employing the presented solution.

4.6 Conclusion  

A time-dependent ground reaction solution is presented for unsupported and supported non-circular tunnels 

in the rock mass which exhibit EVP behaviour. The solution is successfully derived as an extension of the 

closed-form solution based on the newly proposed FDVP constitutive equations. It is further tailored for 

estimation of the delayed ground reaction within horseshoe tunnels excavated in squeezing ground. It is 

drawn from the results that the solution estimates delayed deformations responsible for squeezing 

realistically with about 14% convergence and maximum yield extension of 23 m. whereas the CCMs 

unrealistically underestimates the convergence between 2.5% - 5% and the yield extension between 12 m - 

16 m. On the other hand, the solution’s estimation accounts for 10% and 50% more tunnel convergence and 

yield extension respectively. 
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Additionally, the solution determines the suitable long-term safety coefficient for support structure installed at 

the right time and location behind the tunnel face in squeezing ground. It is drawn that steel sets installed at 

0.17 m tunnel convergence exhibited a safety coefficient of 1.2 in the long-term. This is further increased to 

1.8 when the STSCCB support structure is installed at the same defined location. This shows that for this 

tunnel excavated in squeezing ground characterized by the FDVP constitutive law with a viscoplastic flow 

rule the STSCCB support structure is the most appropriate for convergence restraint. It is the most suitable 

based on the support structure capacity estimation, installation timing and location.  

Ultimately, the presented solution addresses the limitation encountered during time-dependent convergence 

estimation in squeezing ground. It also shows that the time-dependent behaviour is a significant factor to be 

considered in ground reaction and stability assessment of tunnels in squeezing ground. Hence, the solution 

can be a useful tool for the optimum tunnel and support structure design based on the ground reaction-

support structure interaction in squeezing ground 
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Appendix A. Derivation of the EVP constitutive equations 

The following relation (A1) is employed to describe the EVP model by taking 𝜎(𝑡) = 𝜎 (constant stress) 

given by: 

𝜎𝑣 =  𝜂𝜀̇𝑝 (A1) 

 

Where 𝜎𝑣 is the viscous stress, 𝜂 is the viscosity coefficient and 𝜀̇𝑝 is the plastic strain rate. Given that the 

total stress 𝜎0 is the sum of viscous stress 𝜎𝑣 , the initial yield stress 𝜎𝑌 and hardening stress 𝑅(𝜀𝑝) as 

shown: 

𝜎0 = 𝜎
𝑣 + 𝜎𝑌 +  𝑅(𝜀

𝑝) (A2) 

 

Substituting Eq. A1 into Eq. A2 and differentiating for 𝜀̇𝑝 gives: 

𝜀̇𝑝 =
𝜎0 − 𝜎𝑌 −  𝑅(𝜀

𝑝)

𝜂
 (A3) 

 

The total strain 𝜀 is the sum of the elastic strain and the plastic strain 𝜀𝑝  gives:                                                                         

𝜀 =
𝜎0
𝐸
 + 𝜀𝑝 (A4) 

 

Where 𝐸 is the stiffness matrix, assuming no isotropic hardening 𝑅(𝜀𝑝) = 0 then integration of Eq. A3 to 

time gives the total strain as:                                                    

𝜀(𝑡) =
𝜎0
𝐸
 +
𝜎0 − 𝜎𝑌
𝜂

𝑡 (A5) 
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Viscoplastic model without hardening assumes that the material behaves elastically below the yield stress 

𝜎𝑌 level and undergoes viscoplastic behaviour above the 𝜎𝑌  expressed by: 

                                                    

𝜀(𝑡) =  {

𝜎0

𝐸
                      𝜎0 < 𝜎𝑌

𝜎0

𝐸
 +

𝜎0−𝜎𝑌

𝜂
𝑡     𝜎0 ≥ 𝜎𝑌

 (A6) 

 

Combining the Burgers viscoelastic material formulation [15] and Eq. A6, the relationship between strain and 

time is given by: 

  

𝜀(𝑡) =

{
 

 𝜎0 {
1

𝐺𝑀
+
𝑡

𝜂𝑀
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)]},                                                                  𝜎0 < 𝜎𝑌

𝜎0 {
1

𝐺𝑀
+
𝑡

𝜂𝑀
+
1

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝑡

𝑇𝐾
)] + (

𝜎0 − 𝜎𝑌
𝜂𝐵

𝑡)} ,                                         𝜎0 ≥ 𝜎𝑌 

 (A7) 

 

Where 𝜂𝐵  are the viscoplastic component viscosity coefficient and retardation time  𝑇𝑘 = 𝜂𝐾 𝐺𝐾⁄ . The 

theory of hardening can be a justification for the deferred plastic deformation developed during creeping at 

both low-stress levels (< 𝜎𝑌) and high-stress levels.  
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Appendix B: Constitutive model calibration  

In this section, the FDVP constitutive model is calibrated based on experimental data achieved from salt 

rock[52] and Jinping marble[53] sample creep tests. The constitutive model parameters are calibrated by 

creep curves attained from the experimental data of salt rock over 1256 days. Neglecting damage and 

viscoplastic hardening subjected to the uniaxial stress load 𝜎0 = 14.1 MPa with 𝜎𝑌 = 8.46 MPa (Figure A 1a). 

Additional creep curves attained from the experimental data of marble under uniaxial stress load 𝜎0 = 125.5 

MPa with 𝜎𝑌 = 130.1 MPa over 50 hours is used for further model calibration (Figure A 1b).  
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Figure A 2 illustrates the results attained from the evaluation of the critical parameters 𝛽1,2 effect on the creep 

curves. Figure A 2a shows creep curves obtained from salt rock indicating that the higher the values of 𝛽1,2 

the greater the creep strain. Figure A 2b draws the creep curves attained from marble and it is shown that 

the rise in the 𝛽1,2 values have an incremental effect on the creep strain rates. This indicates the importance 

of choosing an appropriate value of 𝛽1,2 to realistically describe the viscoelastic and viscoplastic behaviour 

of rocks or rock masses. Hence, optimized 𝛽1,2 values are required when the FDVP constitutive model is 

employed for time-dependent deformation estimation in squeezing ground and the values attained are 

between 0.2 - 0.32 with 0.315 as the most accurate. 
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The evaluation of the stress level effect on the creep strain rates is conducted by keeping other parameters 

constant while changing the stress levels. The stress level applied on the salt rock range between 14.1 MPa 

– 26 MPa and it is observed that the stress level rise has an incremental effect on the strain rates (Figure A 

3a). Additionally, the creep strain response of the marble subjected to an incremental applied stress level 

(125.5 MPa - 160 MPa) is shown in Figure A 3b. It is drawn from these illustrations that an increment in the 

applied stress level upsurges the creep strain rates. 
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Appendix C: Estimation of the Support capacity  

The formulations for support element capacity estimation employed in this study are expressed by: 

𝑝𝑠𝑠𝑚𝑎𝑥 =
𝐴𝜎𝑦𝑠

𝜔𝑅
 (A8) 

 

𝐾𝑠𝑠 =
𝐸𝑠𝐴

𝜔𝑅2
 (A9) 

 

𝑝𝑠𝑐𝑚𝑎𝑥 =
𝜎𝑐𝑐
2
[1 −

(𝑅 − 𝑡)2

𝑅2
] (A10) 

 

𝐾𝑠𝑐 =
𝐸𝑐(𝑅

2 − (𝑅 − 𝑡)2)

2(1 − 𝑣2)(𝑅 − 𝑡)𝑅2
 (A11) 

𝑝𝑠𝑏𝑚𝑎𝑥 =
𝑇

𝜔𝑙𝑅𝑐
 (A12) 

 

𝐾𝑠𝑏 =
𝐸𝑏𝜋𝐷

2

4𝑙𝜔𝑙𝑅𝑐
 (A13) 

Where: 

 𝑝𝑠𝑠𝑚𝑎𝑥  - maximum steel set support pressure 

 𝐴 - cross-section area 

 𝜎𝑦𝑠 - yield strength of steel 

 𝜔 - set spacing along the tunnel 

 𝐾𝑠𝑠 - stiffness of the steel sets 

 𝐸𝑠 - young modulus of the steel 

 𝑝𝑠𝑐𝑚𝑎𝑥 - maximum shotcrete support pressure 
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 𝜎𝑐𝑐  - uniaxial compressive strength of the shotcrete 

 𝑡 – shotcrete thickness 

 𝐾𝑠𝑐 – shotcrete stiffness 

 𝑝𝑠𝑏𝑚𝑎𝑥 - maximum cable bolt pressure 

 𝑇 - ultimate cable load 

 𝜔𝑙 - longitudinal cable bolt spacing 

 𝑅𝑐 - circumferential cable bolt spacing 

 𝐾𝑠𝑏 - cable bolt stiffness 

 𝐸𝑏 - cable bolt young modulus 

 𝐷2 - cable diameter 

  𝑙 - cable bolt free length  

 

Table C 1 presents the support structure properties employed in this study, Table C 3 present estimations of 

the SCCs, the  𝑝𝑠𝑚𝑎𝑥  , 𝐾𝑠 , 𝑈𝑖𝑜 values and their results are presented in Table C 4 – C 7.  
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Table C 1. Support element mechanical and geometrical properties  

  Steel sets (without wood blocks) Shotcrete 

𝐴  109.27 m2 𝑝𝑠𝑠𝑚𝑎𝑥  4.61 MPa 𝐴 109.27 m2 𝑝𝑠𝑐𝑚𝑎𝑥 2.02 MPa 

𝐸𝑠 
 207000 

MPa 
𝐾𝑠𝑠 

672.38 

MPa/m 
𝐸𝑐 

30000 

MPa 
𝐾𝑠𝑐 

286.29 

MPa/m 

𝜎𝑦𝑠  245 MPa 𝑝𝑠𝑚𝑎𝑥 𝐾𝑠𝑠⁄  0.0069 m 𝜎𝑐𝑐  40 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.0070 m 

𝑅𝑞  5.8 m   𝑅𝑞 5.8 m 𝑣 0.2 

𝜔  1 m   𝑡 0.3 m   

  Shotcrete 

𝐴  109.27 m2 𝑝𝑠𝑐𝑚𝑎𝑥 3.30 MPa 𝐴 109.27 m2 𝑝𝑠𝑐𝑚𝑎𝑥 6.30 MPa 

𝐸𝑐 
 

30000 MPa 𝐾𝑠𝑐 
486.39 

MPa/m 
𝐸𝑐 

30000 

MPa 
𝐾𝑠𝑐 

1025.72 

MPa/m 

𝜎𝑐𝑐   40 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.00679 m 𝜎𝑐𝑐  40 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.00614 m 

𝑅𝑞  5.8 m 𝑣 0.2 𝑅𝑞 5.8 m 𝑣 0.2 

𝑡  0.5 m   𝑡 1.0 m   

  Cable bolts     

𝑇  0.354 MN 𝑙 14 m     

𝜔𝑙  1.0 m 𝑅𝑞 5.8 m     

𝑅𝑐  1.0 m 𝑝𝑠𝑏𝑚𝑎𝑥 0.354 MPa     

𝐸𝑏 
 207000 

MPa 
𝐾𝑠𝑏 

13.424 

MPa/m 
    

𝐷  0.034 m 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑏⁄  0.02637     
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Table C 2. Convergence at a distance behind the tunnel face for different solutions  

 Fritz[58] Duncan-Fama[7] Carranza-Torres[9] Time-dependent solution (Eq. 49) 

X (m) 

1 0.026 0.077 0.081 0.110 

2 0.033 0.095 0.100 0.134 

3 0.038 0.111 0.117 0.154 

4 0.043 0.126 0.132 0.173 

5 0.048 0.139 0.146 0.192 

 
Table C 3. Calculated results for the support characteristic curve  

 

Steel sets shotcrete 

  0.3 m 0.5 m 1.0 m 

 MPa m MPa m MPa m MPa m 

Duncan-Fama[7] 

4.61 0.2 2.02 0.2 3.3 0.2 6.3 0.2 

4.61 0.133 2.02 0.133 3.3 0.133 6.3 0.132 

0 0.126 0 0.126 0 0.126 0 0.126 

Fritz[58] 

4.61 0.1 2.02 0.1 3.3 0.1 6.3 0.1 

4.61 0.050 2.02 0.050 3.3 0.050 6.3 0.0495 

0 0.043 0 0.043 0 0.043 0 0.043 

Carranza-Torres[9] 

4.61 0.2 2.02 0.2 3.3 0.2 6.3 0.2 

4.61 0.139 2.02 0.139 3.3 0.139 6.3 0.138 

0 0.132 0 0.132 0 0.132 0 0.132 

Time-dependent solution (Eq. 49) 4.61 0.3 2.02 0.3 3.3 0.3 6.3 0.3 
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 4.61 0.1797 2.02 0.1798 3.3 0.1796 6.3 0.179 

0 0.173 0 0.173 0 0.173 0 0.173 

 
Table C 4. Support elements SCC parameters  

Support 𝒑𝒔𝒎𝒂𝒙 (MPa) 𝑲𝒔 (MPa/m) 𝑼𝒊𝒎(m) 

Shotcrete (t = 0.3 m) 2.02 286.29 0.0070 

Shotcrete (t = 0.5 m) 3.30 486.39 0.0068 

Steel set 4.61 672.38 0.0069 

Cable bolt 0.35 13.42 0.0264 

 
Table C 5. Composite support structure SCC parameters  

Support 𝒑𝒔𝒎𝒂𝒙 (MPa) 𝑲𝒔𝒕 (MPa/m) 𝑼𝒊𝒎(m) 

Shotcrete (t = 0.3 m) + Cable bolt 2.10 299.714 0.0070 

Shotcrete (t = 0.5 m) + Cable bolt 3.39 499.814 0.0068 

Steel set + Cable bolt 4.73 685.804 0.0069 

Shotcrete (t = 0.3 m) + Cable bolt + Steel set 6.71 972.094 0.0069 

 

Table C 6. Displacement results at GRC-SCC equilibrium points for Individual support elements  
 

  
 Fritz[58] Duncan-Fama[7] 

Carranza-

Torres[9] 

Time-dependent 

solution (Eq. 49) 

 𝑈𝑖𝑜 0.0433 0.126 0.132 0.173 

Shotcrete 𝑈𝑖𝑦 

0.3 m 0.050 0.133 0.139 0.180 

0.5 m 0.050 0.133 0.139 0.180 

1.0 m 0.050 0.132 0.138 0.179 
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Steel sets 𝑈𝑖𝑦 0.050 0.133 0.139 0.180 

 

 

Table C 7. Displacement results at GRC-SCC equilibrium points for the composite support structure 

  Fritz[58] 
Duncan-

Fama[7] 

Carranza-

Torres[9] 

Time-dependent 

solution (Eq. 49) 

 𝑈𝑖𝑜 0.04 0.13 0.13 0.17 

Shotcrete (t = 0.5 m) + 

Cable bolt 

𝑈𝑖𝑦 

 

0.05 0.13 0.14 0.18 

Shotcrete (t = 0.3 m) + 

Cable bolt 

𝑈𝑖𝑦 

 

0.05 0.13 0.14 0.18 

Steel set + Cable Bolt 𝑈𝑖𝑦 0.05 0.13 0.14 0.18 

Shotcrete (t = 0.3 m) + 

Cable bolt + Steel set 

𝑈𝑖𝑦 0.05 0.13 0.14 0.18 
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Abstract 

Tunnel excavation in squeezing ground is very challenging due to the difficulty in making reliable predictions 

at the preliminary design stage. Tunnel response in squeezing ground is made possible by employing creep 

constitutive models. However, literature outlines the limitations of the conventional creep constitutive models 

in estimating delayed deformations due to the squeezing mechanism. Hence this paper presents, a fractional-

order derivative viscoelastic viscoplastic (FDVP) constitutive model capable of estimating delayed 

deformations characterized by squeezing. The FDVP constitutive equations are derived as an extension to 

the Burgers model and adjusted Perzyna overstress function with an associated viscoplastic flow rule. The 

constitutive model validation and verification are conducted by using the experimental data obtained from 

literature and monitored tunnel convergence data, respectively. Thereafter, the constitutive equations are 

implemented in FLAC3D and applied to simulate deformations responsible for squeezing within a tunnel 

employing in-built constitutive models for verification purposes. The constitutive model shows very good 

agreement with experimental data and yields close results with monitored tunnel convergence data. The 

model can be successfully used in numerical code for tunnel stability analysis in squeezing ground. 

  

Keywords: Creep; Delayed deformation; FLAC3D; Fractional-order derivative; Viscoplastic flow rule 
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5.1 Introduction  

Excavation of tunnels in squeezing ground is very challenging because it is difficult in making reliable 

estimation of the squeezing mechanism at the preliminary design stage. Throughout excavation, this 

phenomenon is not predicted, the experience is only gained on the squeezing problems encountered. 

This makes the selection and design of the most appropriate excavations in squeezing conditions more 

cumbersome [1]. Squeezing is a large time-dependent (TD) deformation encountered during tunnel 

excavation. It arises when a certain combination of induced stresses and material properties initiates 

tunnel boundary closure at which TD behaviour emanates. This TD deformation tends to occur 

instantaneously during excavation or continue over time and it is related to creep [2,3] (Figure 5-1). 

Impacts of squeezing consists of large tunnel closure, considerable deformation of the tunnel face, 

support structure overload and in extreme cases, the total collapse of tunnels. In engineering practice 

difficulties encountered with this phenomenon are attributed to: (1) the employment of inappropriate 

constitutive model to describe the squeezing mechanism and (2) the design of a suitable excavation and 

its support structure. 

 

 

 

 

 

 

 

This entails consideration of the viscoplastic (VP) creep behaviour and most importantly that exhibited in 

the accelerated creep stage responsible for squeezing related delayed deformations. To describe the 3-

Figure 5-1. 3-stage creep behaviour 
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FDVP constitutive model is presented by coupling the Burgers model and the VP component. 

Additionally, contribution to the understanding of tunnel response in squeezing ground through 

formulating a constitutive model requires presentation of simple constitutive laws applicable in research 

and design practice. However, the mathematical theory and constitutive laws employed in the existing 

non-linear creep models are not adequate to satisfactorily describe the TD behaviour most prominently 

the accelerated creep stage. The commonly used differential constitutive equations to describe TD 

behaviour in these models employs integral calculus based on integer-order derivatives. In this regard, it 

is important to propose a creep model for squeezing ground governed by fractional-order derivative 

capable of describing the power-law mechanism of geomaterials. Fractional-order calculus is a concept 

of integrals and derivatives of random real and even complex numbers [11,12]. It is a generalization of 

integer-order derivative calculus and therefore preserves most of the basic functions.  

As an intensively developing area of calculus during the last couple of decades, it offers new features for 

research and other applications such as rheological models. Some classic creep models such as Maxwell 

and Kelvin models have been improved by using fractional-order derivatives [13–17]. Zhang et al.,[18] 

presented the FVP constitutive model based on fractional-order derivatives to capture deformations in 

tunnels. However, their model used so many parameters, considered the Hoek-Brown strength criterion 

and neglected numerical implementation. Furthermore, the FVP constitutive model employed the 

fractional Maxwell coupled with the fractional VP components and neglected the Kelvin component effect. 

Lu et al., [19] employed fractional-order derivatives to develop an EP constitutive model for soils governed 

by a fractional plastic flow rule. Lu et al., [20] further employed fractional plastic flow rule and developed 

a fractional EP constitutive model for concrete material. In the application of these models, the fractional-

order derivative is adopted by an element called “spring-pot”. The spring-pot exhibits characteristic amid 

an ideal Newtonian dashpot and an ideal spring addresses limitations faced by both elements 

[14,16,21,22]. However, these fractional-order derivatives based constitutive models have not been 

applied in the estimation of delayed deformations responsible for squeezing in tunnels. Furthermore, they 
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are constrained to a more solitary degree of freedom approach and under simple loading conditions. 

Neglect the three-dimensional (3D) numerical code implementation with intricate initial boundary and 

heterogeneous stress-strain conditions to verify their applicability [11]. These models display advantages 

and limitations which are mainly dependent on their applicability. Some are relatively simple but neglect 

the time effect and others describe actual rock mass behaviour but are complex.  

Besides, the FDVP constitutive model presented in this paper takes advantage of the Perzyna [23]  

overstress theory to describe the viscoplastic strains. There are several time-dependent constitutive 

models based on this overstress theory and they are classified into two categories [24]: (1) conventional 

overstress constitutive models [25–28], assume a static yield surface in which state stress occur within 

and only elastic strains develop. The determination of viscosity parameters in these constitutive models 

require laboratory tests at low-stress levels. This has proved to be a limitation in the actual in-situ 

application of these models. Regards to this (2), the extended overstress constitutive models [29–31] 

were introduced to address this limitation. In overcoming this curb, these constitutive models assume 

viscoplastic strain development even though the stress state occurs inside the static yield surface. Hence, 

the determination of the viscosity parameters and yield surface evolution is straight forward. Therefore, 

in this paper, the limitation of the conventional overstress constitutive model is addressed by the 

extension of the Perzyna [23] overstress function. This is achieved by incorporating the fractional-order 

derivative function and the time-independent yield surface. 

The FDVP constitutive model presented in this paper comprises of the following features and 

assumptions: 

1) The model adopts an adjusted Perzyna [23] overstress function using fractional-order derivatives 

as such its parameters can be calibrated using conventional creep test data. 

2) The model ignores the viscoplastic flow rule assumption that governs the conventional overstress 

constitutive models as such addresses their limitation. 
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3) The model is governed and restricted to the associated viscoplastic flow rule in which the 

potential function is given as the yield function. 

4) The model ignores the assumption of the conventional creep constitutive models governed by 

the integer-order derivatives as such addresses their limitation. 

5) The model assumes ideal viscoplasticity in that it overlooks the isotropic and kinematic hardening 

constitutive laws. 

Hence, a not exceedingly complicated creep constitutive model capable of describing the power-law 

mechanism of geomaterials is proposed with the intent of estimating delayed deformations in squeezing 

ground. The constitutive model is derived as an extension to the Burgers model and Perzyna [23] 

overstress theory with an associated viscoplastic flow rule. It is worth mentioning that the presented form 

of this creep constitutive model is presently under development. The further enhancement will include 

the integration of constitutive equations able to describe the accelerated creep stage explicitly, account 

for creep damage effect and hardening viscoplasticity. 

5.2 Fractional-order derivative application 

The viability of employing fractional-order derivatives to describe the EVP behaviour of rocks stems from 

its application to represent viscoelasticity and elastoplasticity which include [11,19,20,32–35] among 

others. The fractional-order derivatives are applied in rheological models (Kelvin and Maxwell) by 

substitution of a dashpot with a spring-pot. It is correctly established that ideal solids (spring) abide by 

Hooke’s law and Newtonian fluids (dashpot) comply with Newton’s law of viscosity [11,33]. In the 

hypothesis of viscoelasticity, it is considered that the Hooke’s law is defined by the zero-order derivative 

of strain relative to time (Eq. (5-1)) and Newton’s law is defined by the first-order derivative of strain 

relative to time (Eq. (5-2)).   

 𝜎(𝑡) =
𝑑0[𝜀(𝑡)]

𝑑𝑡0
                      (5-1) 
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 𝜎(𝑡) =
𝑑1[𝜀(𝑡)]

𝑑𝑡1
                      (5-2) 

 

The spring-pot represent the element that obeys the fractional-order derivative amid Eq. (5-1) and Eq. 

(5-2), and it is represented by the fractional relation (Eq. (5-3)). The relation is defined by the fractional-

order derivative coefficient (𝛽) which satisfy the condition 0 ≤ 𝛽 ≤ 1: 

 𝜎(𝑡) = 𝜂𝛽
𝑑𝛽[𝜀(𝑡)]

𝑑𝑡𝛽
                                     (0 ≤ 𝛽 ≤ 1) (5-3) 

 

Where 𝜂𝛽 is the spring-pot viscosity coefficient and it has been verified that employing fractional-order 

derivative governed constitutive models can describe the rheological behaviour of materials in a better 

way as compared to classical constitutive models. 

 

5.2.1 The Riemann-Liouville operator 

Fractional-order calculus is a branch of mathematics that investigates the likelihood of considering power-

law of the differential and integral operators of real or complex numbers [11,33,36]. Definitions of 

fractional-order calculus include Grunwald-Letnikov, Riemann-Liouville and Caputo among others 

[11,32,33]. At this point, the Riemann-Liouville definition is presented because it is used to propose the 

model that will be able to describe the 3-stage creep behaviour of geomaterials. The Riemann-Liouville 

fractional-order differential operator assumes that 𝑓(𝑡) is continuous in (0, +∞) and is integrated into 

any finite subdomain of (0, +∞) for 𝑡 > 0 and 𝑅𝑒(𝛽) > 0 where 𝛽 is the order integral of the function 

𝑓(𝑡) [37–39]. The Riemann–Liouville fractional-order integral of the function 𝑓(𝜏) is expressed as [40]: 

 

 
𝑑−𝛽𝑓(𝑡)

𝑑𝑡−𝛽
=

1

Γ(𝛽)
∫ (𝑡 − 𝜏)𝛽−1𝑓(𝜏)𝑑𝜏
𝑡

𝑡0

 (5-4) 
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Where 𝑡0 is the lower integration limit, 𝛽  lies between 0 ≤ 𝛽 ≤ 1 and  Γ(𝛽) is the gamma function of 

argument 𝛽 and this function is calculated as: 

                

 Γ(𝛽) = ∫ 𝑥𝛽−1𝑒−𝑥𝑑𝑥
∞

0
 ,                                 𝑅𝑒(𝛽) > 0 (5-5) 

 

The  
𝑑𝛽

𝑑𝑡𝛽
 with the order 𝛽 ∈ (0,1) of the function 𝑓(𝑡) is defined by: 

 

 
𝑑𝛽𝑓(𝑡)

𝑑𝑡𝛽
= (

1

𝛤(1 − 𝛽)
∫ (𝑡 − 𝜏)1−𝛽𝑓(𝑡)𝑑𝜏
𝑡

𝑡0

)
𝑑𝑓(𝑡)

𝑑𝑡
 (5-6) 

 

and the  
𝑑𝛽

𝑑𝑡𝛽
 with the order 𝛽 ∈ (𝑛 − 1, 𝑛) of the function 𝑓(𝑡) is defined by: 

 
𝑑𝛽𝑓(𝑡)

𝑑𝑡𝛽
= (

1

𝛤(𝑛 − 𝛽)
∫ (𝑡 − 𝜏)𝑛−𝛽𝑓(𝑡)𝑑𝜏
𝑡

𝑡0

)
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 (5-7) 

 

In this relation, the gamma function characterizes a continuous extension of the factorial function. It is 

defined for non-negative numbers and displays a concave response for positive real numbers as 

illustrated in Figure 5-3. Figure 5-3 draws the comparison with the factorial function, and it is observed 

that the factorial function always maintains the constant output of 2.0 when the fractional-order derivative 

coefficient is increased from 1.0 to 2.0. Whereas the gamma function experiences a continuous increment 

of the output from 2.0 to 6.0. This clearly shows that the gamma function can describe the power-law 

characteristic when applied to describe the rheological behaviour of materials.  
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Fractional-order derivative is an exceptional mathematical tool for modelling viscoelastic behaviour and 

especially appropriate for building the EVP constitutive models. In the following section, a brief derivation 

of the stress-strain constitutive equations in an EVP medium is conducted which utilizes the fractional-

order derivatives. Thereafter, the FDVP constitutive model is proposed and employs the fractional-order 

derivative function which incorporates an adjusted Perzyna [23] overstress function with an associative 

flow rule. 

5.3 Fractional-order viscoplasticity model 

In Section 5.2, the total stress in the spring-pot was represented by the constitutive relation (Eq. (5-3)). 

When we set 𝜎(𝑡) = 𝜎 (constant stress) and employing the fractional-order derivative attributed to 

Reimann-Liouville operation. Thereafter, applying Laplace transformation on either side of Eq. (5-3), the 

following expression can be obtained: 

                                                                   

 𝐹𝛽1,2(𝑠) =
𝜎

𝜂𝛽1,2

1

𝑠1+𝛽1,2
 (5-8) 

 

Figure 5-3. The gamma function 
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The stress-strain partition in the model is expressed by: 

 

 𝜎(𝑡) = 𝜎𝐾 = 𝜎𝑀 = 𝜎𝑣𝑝;           𝜀(𝑡) = 𝜀𝐾 + 𝜀𝑀 + 𝜀𝑣𝑝 (5-10) 

 

Where 𝜎𝐾 , 𝜎𝑀  and 𝜎𝑣𝑝 are the stress acting in the Kelvin, Maxwell and VP components respectively. 

𝜀𝐾, 𝜀𝑀 and 𝜀𝑣𝑝 are the strain in the Kelvin, Maxwell and VP components respectively. The total stress 

in the VP component  𝜎𝑣𝑝 is computed by: 

 

 𝜎𝑣𝑝 = 𝜎𝑝 + 𝜎𝑣  (5-11) 

 

Where 𝜎𝑝 is the stress in the plastic slider,  𝜎𝑣  is the stress in the spring-pot and 𝜎𝑝 is partitioned in the 

form: 

 

 𝜎𝑝 =  {
𝜎     𝜎 < 𝜎𝑌
𝜎𝑌 ,    𝜎 ≥ 𝜎𝑌

 (5-12) 
 

 

When  𝜎 < 𝜎𝑌, combining Eq. (5-9) and Eq. (5-10) then 𝜎𝑣 = 0 and 𝜀𝑣𝑝 = 0. When 𝜎 ≥ 𝜎𝑌 , the total 

stress in the VP component is expressed as: 

Figure 5-5. Schematic view of the FDVP model. Note: β = 𝜷𝟏 & α = 𝜷𝟐 
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 𝜎𝑣𝑝 = 𝜂𝛽2 (
𝜎 − 𝜎𝑌

𝜂𝛽2
) + 𝜎𝑌 (5-13) 

 

Where 𝛽2 is the VP spring-pot fractional-order derivative coefficient and 𝜂𝛽2 is the VP spring-pot viscosity 

coefficient. Considering the fractional-order relation Eq. (5-8) and setting initial condition as 𝜀𝑣𝑝 = 0 and 

𝑡 = 0, Eq. (5-11) in terms of the fractional-order derivatives is further expressed as: 

 

 𝜀𝑉𝑃 =
𝜎−𝜎𝑌

𝜂𝛽2

𝑡𝛽2

𝛤(1+𝛽2)
                         𝜎 ≥ 𝜎𝑌, (0 ≤ 𝛽2 ≤ 1) (5-14) 

 

Substituting Eq.(5-14) into Eq. A7 (Appendix A) the strain and time relationship befit: 

 

 

𝜀(𝑡)

=

{
 
 

 
 {

𝜎

𝐺𝑀
+
𝜎𝑡

𝜂𝑀
+
𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)]} ,                                                       𝜎 < 𝜎𝑌

{
𝜎

𝐺𝑀
+
𝜎𝑡

𝜂𝑀
+
𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)] + (

𝜎 − 𝜎𝑌
𝜂𝛽2

𝑡𝛽2

𝛤(1 + 𝛽2)
)} ,                      𝜎 ≥ 𝜎𝑌

 
(5-15) 

          

As mentioned earlier in Section 5.2, the fractional-order derivatives can realistically describe the 

rheological behaviour of geomaterials. Additionally, the gamma function adopted in these derivatives 

describes the power-law mechanism due to its power-law characteristic. Whereas the conventional 

integer-order solutions assume linearity in the rheological behaviour of geomaterials. Hence, the gamma 

function employment in the fractional-order solution provides a realistic estimation of the delayed 

deformations responsible for squeezing.  

5.3.1 Viscoelastic and Viscoplastic constitutive equations 

It is important to emphasize that the results presented in this section represent the fractional-order 

derivative viscoplasticity formulation based on Perzyna [23] overstress theory. The FDVP constitutive 

model is presented in a form exemplified by the three components (Figure 5-5) and serves as a Burgers 
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creep model extension which is characterised by an EVP deviatoric and volumetric behaviour. 

Substituting the Maxwell and VP dashpots with the spring-pot constitutive relations in Eq.(5-15), one gets 

the FDVP constitutive equations expressed as: 

 

{
 
 

 
 

 

 𝜀 =
𝜎

𝐺𝑀
+

𝜎𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)] , 𝜎 < 𝜎𝑌                                                                

𝜀 =
𝜎

𝐺𝑀
+

𝜎𝑡𝛽1

𝜂𝛽1Γ(1 + 𝛽1)
+
𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)] + (

𝜎 − 𝜎𝑌

𝜂𝛽2

𝑡𝛽2

Γ(1 + 𝛽2)
) , 𝜎 ≥ 𝜎              

 
(5-16

) 

 

Where 𝜂𝛽1 is the fractional-order Maxwell viscosity coefficient and in Eq (5-16), when 𝜎 < 𝜎𝑌 transient 

creep and steady-state creep exhibit, when 𝜎 ≥ 𝜎𝑌 the transient creep, steady-state creep and 

accelerated creep exhibit. Realistically, a rock mass exists under triaxial stress state as such the model’s 

constitutive equations are expressed in a 3D stress state. In which the rock stress tensor (𝜎𝑖𝑗) is 

comprised of the mean stress tensor (𝜎𝑚), deviatoric stress tensor (𝑆𝑖𝑗) and these are expressed by: 

𝜎𝑚 =
𝜎𝑘𝑘
3

 (5-17) 

𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑚𝛿𝑖𝑗 (5-18) 

  

Where 𝛿𝑖𝑗 is the Kronecker delta, 𝜎𝑚 is responsible for volume change of a rock mass and 𝑆𝑖𝑗 is 

responsible for the change in the shape of the rock mass. The strain tensor (𝜀𝑖𝑗) can also be decomposed 

into mean strain tensor (𝜀𝑚) and deviatoric strain tensor (𝑒𝑖𝑗): 

𝜀𝑚 = 
𝜀𝑘𝑘
3

 (5-19) 

 

𝑒𝑖𝑗 = 𝜀𝑖𝑗 − 𝜀𝑚𝛿𝑖𝑗 (5-20) 

 



180 

 

Based on Hooke’s law the 𝜎𝑚 and 𝑆𝑖𝑗 in a 3D stress state is computed by: 

𝜎𝑚 = 3𝐾𝜀𝑚 (5-21) 

 

𝑆𝑖𝑗 = 2𝐺𝑒𝑖𝑗 (5-22) 

 

Where 𝐾 is the bulk modulus and substituting Eqs (5-21) and (5-22) into Eq. (5-16) and assuming  𝑆𝑖𝑗 is 

less than the 3D long-term strength (𝑆𝑌) the creep constitutive equation with the VP component 

deactivated is expressed as: 

𝜀𝑖𝑗 =
𝑆𝑖𝑗

2𝐺𝑀
+
𝜎𝑚𝛿𝑖𝑗

3𝐾
+

𝑆𝑖𝑗𝑡
𝛽1

2𝜂𝛽1Γ(1 + 𝛽1)
+
𝑆𝑖𝑗

2𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)]     𝑆𝑖𝑗 < 𝑆𝑌 (5-23) 

When 𝑆𝑖𝑗 ≥ 𝑆𝑌 the VP component is activated and Eq (5-25) becomes: 

𝜀𝑖𝑗 =
𝑆𝑖𝑗

2𝐺𝑀
+
𝜎𝑚𝛿𝑖𝑗

3𝐾
+

𝑆𝑖𝑗𝑡
𝛽1

2𝜂𝛽1𝛤(1+𝛽1)
+

𝑆𝑖𝑗

2𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)] +

 (
𝑆𝑖𝑗−𝑆𝑌

2𝜂𝛽2𝛤(1+𝛽2)
) 𝑡𝛽2     𝑆𝑖𝑗 ≥ 𝑆𝑌  

(5-24) 

 

In this case, the viscoplastic strains initiate as such the viscoplastic potential function (𝑄𝑣𝑝) and 

viscoplastic flow rule is introduced in the constitutive equations. Constitutive equations of viscoplasticity 

also referred to as the TD plasticity are formulated in the same way as the time-independent plasticity. 

For instance, in viscoplasticity theory, the flow rule constitutive equation can be postulated as Eq (5-25) 

which is similar to the plastic flow rule.  

𝜀ሶ𝑖𝑗
𝑣𝑝  = 𝜆

𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
 (5-25) 

Where 𝜆 is the scalar multiplier which determines the flow intensity. However, there is a distinction in this 

flow rule definition that describes the evolution of the effective plastic strain [41,42]. It must be 

emphasized that in the time-independent constitutive models the plastic strain rate is a pseudo-time rate 
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and its derivative to this pseudo-time is irrelevant [41]. Whereas the viscoplastic strain rate is the actual 

time derivative of the viscoplastic strain. Additionally, in plasticity theory, the scalar multiplier is 

determined by the consistency condition whereas in the viscoplasticity theory it is given by the explicit 

function based on 𝑆𝑖𝑗 and 𝑆𝑌. In the TD theory the viscoplastic strain rate is further expressed by the 

Perzyna [23] overstress function:  

𝜀ሶ𝑖𝑗
𝑣𝑝  =

〈𝜙(𝐹)〉

𝜂

𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
 (5-26) 

 

Where 𝜂 is the viscosity parameter, 〈𝜙(𝐹)〉 is the viscoplastic nucleus that regulates the extent of the 

viscoplastic strain, 𝐹 is the overstress function, 𝑄𝑣𝑝 describes the viscoplastic strain rate tensor’s 

direction and 〈 〉 are the Macaulay brackets defined by: 

〈𝜙(𝐹)〉 = {
0, 𝐹 < 0

𝜙(𝐹), 𝐹 ≥ 0
 (5-27) 

 

A full description of the viscoplastic strain rates requires comprehensive clarification. Hence, in classical 

viscoplasticity, it is hypothesized that the rate of viscoplastic strains is obtainable from Perzyna [23] 

overstress function. Equating Eq (5-25) to Eq (5-26) it can be observed that the scalar multiplier is 

determined by the constitutive equation (Eq (5-28)) as opposed to time-independent plasticity which 

employs the consistency condition. 

𝜆 =  
〈𝜙(𝐹)〉

𝜂
 

 

(5-28) 

 

In time-independent plasticity when the state stress lies above the yield surface the scalar multiplier is 

obtained from the consistency condition. In viscoplasticity when the state stress is above the failure 

surface the constitutive relation (Eq (5-28)) is used to obtain the scalar multiplier. It has been argued that 

during viscoplasticity stress correction the consistency condition is not pertinent as such certain state 
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stress conditions are irrelevant. However, the fact that the overstress theory postulates that the stress 

state always lies above the yield surface. This signifies a consistency condition that needs to be satisfied 

for viscoplastic strains to occur. Additionally, the plastic stress return mapping computation is similar to 

the viscoplastic return mapping procedure. This numerical framework of the viscoplastic return mapping 

can be described as: 

1. Elastic predictor. The geomaterial behaves elastically in this state in a given time interval 

[tn,tn+1]. The elastic trail state is calculated by: 

1

trial

n n  + = +   

1

vp trial vp

n n + =  

( )1

trial vp

n eC  + = −  

1 1

trial trial

n n Yf  + += −  

 

(5-29) 

      If 𝑓𝑡𝑟𝑖𝑎𝑙≤ 0, then the procedure is elastic within the stipulated interval [tn,tn+1] and variable 

at [tn+1] are assigned the values of the trial variables. 

                                         Set: 

𝜎𝑛+1 = 𝜎𝑛+1
𝑡𝑟𝑖𝑎𝑙  

𝐶𝑣𝑝 = 𝐶𝑒 
(5-30) 

Else 𝑓𝑡𝑟𝑖𝑎𝑙> 0, hence the load step is viscoplastic and we apply the viscoplastic return 

mapping as described below. 

2. Viscoplastic corrector.  In this state, a system of equations is computed as follows: 

𝜎𝑛+1 = 𝜎𝑛+1
𝑡𝑟𝑖𝑎𝑙 − Δ𝜆𝐶𝑒:

𝜕𝑓

𝜕𝜎
|
𝑛+1

 

                     

(5-31) 
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                     Where the viscoplastic scalar multiplier (𝛥𝜆) is given by 

 

Δ𝜆 =  
〈𝜙(𝐹)〉

𝜂
 

 

(5-32) 

                       Hence we solve Eq (5-31) for the stress and strain update 

1 1 1

1 1

,       vp vp e trial

n n n n

n n

f f
     

 
+ + +

+ +

 
= +  = −

 
 

 

(5-33) 

As outlined above the stress return mapping procedure is similar only that Eq (5-32) is employed to 

account for the viscous time effect as opposed to the time-independent plasticity. In the viscoplastic 

correction procedure, the failure surface is considered just like in time-independent plasticity [43]. It also 

considers the same assumption, that if the stress state occurs below the failure surface then it is 

admissible or else it violates the condition. Hence, the scalar multipliers for both are expressed as: 

𝜆 = {

𝑓

𝐶𝑒
, 𝑓 ≥ 0 

0, 𝑓 < 0 

| 𝑃𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 , 𝜆 = {

〈𝜙(𝐹)〉

𝜂
, 𝑓 > 0 

0, 𝑓 ≤ 0 

| 𝑉𝑖𝑠𝑐𝑜𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 (5-34) 

 

5.3.1.1 Adjustment of the overstress constitutive equation 

In this section, the viscoplastic constitutive equation a product of an adjusted Perzyna [23] overstress 

function is presented. The equation accounts for the viscoplastic strain rates, it considers an MC yield 

surface and neglects hardening constitutive law as such assumes ideal viscoplasticity. According to 

Perzyna [23], the total strain rate is an additive resulting from the elastic and viscoplastic strain rates. In 

this constitutive equation, the assumption considered is that the viscoplastic strain rates obey an 

associative flow rule (Eq (5-26)). The Perzyna [23] overstress function is adjusted by incorporating the 

fractional-order derivatives to represent the 3D viscoplastic constitutive relation as: 

𝜀ሶ𝑖𝑗
𝑣𝑝  =

〈𝜙(𝐹)〉

2𝜂𝛽2𝛤(1 + 𝛽2)
𝑡𝛽2

𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
 (5-35) 
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The overstress function exemplifies the state of overstressing inside the rock mass defined by the yield 

surface and it is reliant on the time-independent yield surface [42]. Hence, In the presented model, 𝐹 is 

assumed to be equal to 𝑓 and It is widely assumed in classical viscoplasticity theory that the yield 

direction is normal to the failure surface [34,44–46]. Therefore, an associated viscoplastic flow rule 

(𝐹 = 𝑄𝑣𝑝) is assigned and Eq (5-35) is further expressed as: 

𝜀ሶ𝑖𝑗
𝑣𝑝  = (

𝑓

2𝜂𝛽2𝛤(1+𝛽2)
)
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑡𝛽2                                      (𝑓 ≥ 0) (5-36) 

 

In Eq (5-36), the overstress function is substituted with the time-independent yield surface and the 

fractional-order derivative function to address the limitation of the conventional overstress models. 

Hence, the presented viscoplastic constitutive equation (Eq (5-36)) acts as an extended Perzyna [23] 

overstress function. As a result, there is no viscoplastic strain development constraint when the stress 

state occurs within or above the yield surface. Subsequently, the 3D FDVP constitutive equation is further 

expressed as: 

 

𝜀𝑖𝑗 =
𝑆𝑖𝑗

2𝐺𝑀
+
𝜎𝑚𝛿𝑖𝑗

3𝐾
+

𝑆𝑖𝑗𝑡
𝛽1

2𝜂𝛽1Γ(1 + 𝛽1)
+
𝑆𝑖𝑗

2𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾𝑡

𝜂𝐾
)]

+ (
𝑓

2𝜂𝛽2𝛤(1 + 𝛽2)
)
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑡𝛽2             (𝑓 ≥ 0) 

(5-37) 

 

Whereas 𝑓 is assumed to be the MC yield surface expressed as: 

 

𝑓 = 𝜎1 − 𝜎3𝑁𝜙 + 2𝑐√𝑁𝜙 

 

(5-38) 
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Where 𝜎1 is the major principal stress, 𝜎3 is the minor principal stress, 𝑐 is the cohesion, 𝑁𝜙 =

 1 + sin𝜙 1 − sin𝜙⁄  and 𝜙 is the internal friction angle. Even though the MC yield surface adopted 

for the FDVP constitutive model provides a relatively simple approach in constitutive behaviour 

simulation. Its implementation in finite element solutions is complicated due to its hexagonal shape apex 

on the deviatoric plane [47,48]. Specific treatment is required for the intersection of its yield surfaces 

during implementation for the general stress state [49]. The singularity posed at the apex can be 

addressed by considering each yield surface and implementing its constitutive equation as a multi-surface 

yield function. Additionally, this singularity can be removed by the smooth approximation techniques such 

as the hyperbolic approximation [50]. The hyperbolic approximation involves the surface asymptotical 

approach to the MC yield surface apex as the mean stress increases on a (𝜎𝑚, 𝜎) space. This surface 

approach is usually very close to model the MC yield surface, its accuracy is controlled by the alteration 

of the distance (𝑎) between the apex of the MC yield surface and the tip of the hyperbolic surface (Figure 

5-6).  

 
 
 
 
 
 
 
 
 
 
 

In this procedure, the hyperbolic surface lies within the MC yield surface at all stress states as such it 

underestimates the strength of geomaterials as compared to the original MC yield surface. However, the 

hyperbolic approximation has been implemented in the commercial finite volume code (FLAC3D) as an 

inbuilt feature. As such the limitation posed by the singularity effect of the MC yield surface apex has 

been addressed in this paper. Therefore, in the sections that follow, the model is; (1) validated through a 

curve comparison procedure between its computed strain rates and creep test results accessible in 

Figure 5-6. Hyperbolic approximation of the MC yield surface on the (𝝈𝒎, 𝝈ഥ) plane [50]. 
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literature; (2) verified on an in-situ scale employing a real tunnel case; (3) written in the object-oriented 

C++ as a user-defined constitutive model source code which is then implemented in FLAC3D as a 

compiled DLL. 

5.4 Calibration of the FDVP constitutive model  

In this section, the procedure to calibrate the FDVP constitutive model is presented conferring to the 

experimental data achieved from salt rock and Jinping marble sample creep tests. The experimental data 

of the rock salt sample is attained from the literature provided by Zhou et al [15]. Whereas that of the 

Jinping marble sample is obtained from two creep tests conducted by Chen et al [17].  

5.4.1 Viscoelastic and viscoplastic model parameters  

It is worthing mentioning that damage evolution in this model attained either under low or high-stress 

levels is neglected. Therefore, the salt rock and Jinping marble merely exhibit the transient, steady-state 

and part of the accelerated creep stages. Even though, the accelerated creep stage is not fully captured 

the viscoplastic strains characterized by the TD delayed deformations in squeezing ground are described 

by the FDVP constitutive equations. The constitutive model parameters are calibrated by curve 

comparison with experimental data over 1256 days using Eq (5-16). Additionally, the experimental data 
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5.4.2 Parametric analysis of the constitutive model 

This analysis is conducted to identify the most sensitive and critical parameters in the creep curve 

description. It is observed that the TD strain of salt rock and Jinping marble depends on these parameters 

such as 𝛽1,2 and applied stress levels. To gain a better understanding of the influence of these 

parameters on the TD behaviour, a parametric investigation is performed to evaluate their effects on the 

creep strain rates.  

5.4.2.1 Effects of the fractional derivative order on the creep strain 

The effect of the critical parameters 𝛽1,2 on the creep curves of the salt rock and Jinping marble are 

evaluated and the results presented in this section. Figure 5-10 illustrates a series of creep curves 

obtained from salt rock indicating the influence of these critical parameters. It is drawn that the higher the 

values of 𝛽1,2 the greater the creep strain. The variation of the creep curves with time attained from the 

Jinping marble using the two data sets under different values of 𝛽1,2 are illustrated in Figure 5-11a & Figure 

5-11b. It is observed that an increment in the 𝛽1 values lead to an increase in the strain rates in all the 

creep stages while the steady-state creep strain rates are reduced. Furthermore, an increment in 𝛽2 

values showed a small change in the transient and steady-state creep strain rates. The creep curves 

attained from the additional data set of the Jinping marble shows that the rise in the 𝛽1,2 values have an 

incremental effect on the creep strain rates (Figure 5-11c). 

These results indicate the importance of selecting an appropriate value of 𝛽1,2 to realistically describe 

the viscoelastic and viscoplastic behaviour of salt rock and marble. Hence, it is necessary to optimize the 

𝛽1,2 values when the FDVP constitutive model is employed to estimate the TD deformation of tunnels in 

squeezing ground. The compared curve results of the FDVP constitutive model are most appropriate 

when 𝛽1,2 values are between 0.2 - 0.32 and most accurately when 𝛽1,2 = 0.315. 
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5.4.2.2 Effects of the stress level on the creep strain 

The evaluation of the stress level effect on the creep strain rates is conducted by letting the other 

parameters be constant while changing the stress levels. The stress level applied on the salt rock ranged 

between 14.1 MPa – 26 MPa and it is observed that a rise in its level had an incremental effect on the 

strain rates (Figure 5-12a). Additionally, the creep strain response of the Jinping marble subjected to an 

incremental applied stress level (125.5 MPa - 160 MPa) is illustrated in Figure 5-12b & Figure 5-12c. It is 

drawn from these depictions that an increment in the applied stress level upsurges the creep strain rates. 
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5.5 In-situ scale verification and numerical implementation 

The numerical implementation of the FDVP constitutive model in FLAC3D follows the procedure outlined 

in the FLAC3D user manual [51] (Appendix C). The implementation flowchart of the developed FDVP 

constitutive model is shown in Figure 5-13. It is programmed for ITASCA code FLAC3D/3DEC and it can 

be loaded as a user-defined creep constitutive model by the following commands: 

model configure creep 

model configure plugin  

zone cmodel load "cmodelFDVP006_64" (for FLAC 3D version 6.0) 

zone cmodel assign FDVP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13. FDVP constitutive model implementation 
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In FLAC3D
 numerical code, the implementation and running of time-independent constitutive models are 

different from the creep constitutive models. The dissimilarity is attributed to the numerical simulation 

time-step, for creep simulation, time-step represent real-time while in static analysis represents virtual 

values required to reach steady-state conditions [52]. Time-stepping is required in creep analysis to 

ensure TD simulation stability [6,53]. The conditions for the effective simulation using the FDVP 

constitutive model require mechanical equilibrium state. The other condition that should be considered in 

the efficient running of the FDVP constitutive model is the increment of the TD stress. This increment 

should have a higher value as compared to stress increment dependent on the strain. If this condition is 

not considered unbalanced forces tend to elevate and inertia effects may affect the outcome of the 

simulation. 

 

5.5.1 Estimation of tunnel boundary deformation  

Real tunnel verification of the proposed model is conducted through field deformation estimated in the 

Jinping underground tunnel [17,18] at a depth of 2500 m with rock mass parameters of the white marble 

with green schist’s weak planes (Table 5-4). The in-situ stress around the tunnel is assumed to be uniform 

(36.36 MPa) and the tunnel cross-section layout and deformation monitoring points are illustrated in 

Figure 5-14. Deformation was estimated around the tunnel boundary using deformation gauges placed 

at points (1-5) around the tunnel.  

 

Table 5-4. Rock strength, tunnel and creep parameters 

𝛟(°) 𝝈𝒄𝒎(MPa) GSI mi mb s a 𝝆(kg/m3) 𝑹𝒒(m) 𝝈𝟎(MPa) 

9.9 85.2 55 9 0.432 0.000791 0.5 2700 3.68 36.36 

Note: 𝜈 = Poisson ratio, c = Cohesion ϕ = Friction angle, 𝜎𝑐𝑚= Rock mass strength, 𝐺𝑆𝐼= Geological strength index. 

𝜷𝟏 𝜼𝑴(GPa.h) 𝜷𝟐 𝑮𝑴(GPa) 𝜼𝜷𝟏(GPa.h) 𝜼𝜷𝟐(GPa.h) 𝜼𝑲(GPa.h) 𝑮𝑲(GPa) 

0.2 53 0.32 51.7 1920 147.7 81.7 2610 
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constitutive model are highly dependent on stress rather than on time. It must be noted that creep 

parameters used in this numerical analysis must correspond closely to the field scale values. The 

laboratory scaled creep parameters should not be employed directly in models for full-scale simulation. 

They should be scaled to account for the influence of rock mass discontinuities and heterogeneities 

[51,56]. Therefore, the first step to address this limitation is by employing creep parameters already 

calibrated on an in-situ scale (Table 5-5).  

Table 5-5. FDVP creep model parameters (after Barla et al [57]) 

𝜼𝑲(MPa.y) 𝑮𝑲(MPa) 𝑮𝑴(MPa) 𝜼𝜷𝟏(MPa.y) 𝜼𝜷𝟐(MPa.y) 𝜷𝟏 𝜷𝟐 c (MPa) 𝛟 𝝂 𝑲(MPa) 𝝈𝒕(MPa) 

4.26 498.1 566 27.98 0.64 0.9 0.65 0.61 28 0.2 942 0.0085 

CVISC creep model parameters (after Barla et al., 2010) 

𝜼𝑲(MPa.y) 𝑮𝑲(MPa) 𝑮𝑴(MPa) 𝜼𝑴(MPa.y) 𝝈𝒕(MPa) c (MPa) 𝛟 𝝂 𝑲(MPa) 

4.26 498.1 566 27.98 0.0085 0.61 28 0.2 942 

 
In the numerical simulation, the tunnel employed for the analysis is excavated in stages.  After stress was 

initialized during simulation, the excavation of the tunnel was conducted in stages of 5 m every advance 

(length of excavation at each step). The tunnel advance simulation commenced with an EP analysis and 

after 200 steps the simulation reached an equilibrium of which the creep model was activated. The creep 

period employed in the creep simulation was equivalent to 5 days (4.32E5 s). Figure 5-16 & Figure 5-17 

draw results attained after simulation convergence.  
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Table 5-6.Tunnel deformation and viscoplastic extension 

Constitutive model MC model CVISC model FDVP model (This study) 

Yield extension radius (m) 7.18 8.18 10.59 

Tunnel deformation (mm) 164 1540 1582 

  

Figure 5-17. Estimation of the tunnel 
deformation employing: (a) MC model, 
(b) CVISC model and (c) FDVP model 
 

(a) 

(b) 

(c) 
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5.6 Discussion  

In this paper, the four rheological elements of the Kelvin and Maxwell components of the Burgers model 

are utilized to describe the viscoelastic strains whereas the two elements of the VP component are used 

to replicate the viscoplastic strains. This combination of components gives the FDVP constitutive model 

its rheological structure. It is presented to describe the TD behaviour related to creep that occurs during 

tunnel excavation in squeezing ground. Its mathematical derivation has been elucidated to address the 

shortfall of the existing constitutive laws that describe the TD behavioural feature. Attention is focused on 

the major issue of the existing constitutive law based on integer-order derivatives incapability of 

describing the power-law mechanism of geomaterials.  

The constitutive equations based on the FDVP rheological structure are derived in 1D then further 

transformed to 3D by the integration of an adjusted Perzyna [23] overstress function. This adjusted 

viscoplastic constitutive equation employs the fractional-order derivative theory and the MC yield surface 

substitution. The important attribute about this adjusted constitutive equation is its capability in estimating 

the viscoplastic strain rates when the stress state occurs within or above the time-independent yield 

surface. Consequently, addresses the limitation of the conventional overstress constitutive models based 

on the classic Perzyna [23] overstress theory.  

The validation procedure conducted which involves the experimental data of salt rock by Zhou et al [15] 

and constitutive model predictions of the creep strain shows close agreement. It is observed that the 

constitutive model agrees very well when the 𝛽1,2= 0.31 and overall prediction of the transient, steady-

state and part of the accelerated creep stages is substantiated. The experimental data provided by Chen 

et al [17] and the constitutive model indicates that it yields quite close results after 20 hours but very close 

with the FVP constitutive model. However, this deemed insufficient as such an extended verification is 

conducted by including additional experimental data set. The additional experimental data set provided, 

and the constitutive model predicted curves shows very good agreement when 𝛽1,2= 0.31.  
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The constitutive parameters can be obtained directly from the conventional mechanical and creep tests 

whereas the 𝛽1,2 values can be calculated between 0 and 1 as a rule of thumb. The three experimental 

data sets of different rock specimens subjected to different confining pressure provide a comprehensive 

set of experimental data which can only be replicated by a robust constitutive model. Besides, it is 

observed that the FDVP constitutive model prediction of the creep curves show very good agreement 

with these data sets. They employ different creep parameters and subjected to different stress levels but 

with almost the same values of 𝛽1,2.  

After the validation with experimental data, the constitutive model proved to be robust for numerical 

implementation within FLAC3D. Further verification of its application on an in-situ scale proved to be 

successful after a series of parametric scaling of the 𝛽1,2 values to accommodate the effect of rock mass 

discontinuities and heterogeneities. Thereafter, the implemented constitutive model applicability was 

evaluated by carrying out a large-scale numerical simulation of a tunnel case. In the simulation, the model 

employed scaled parameters 𝛽1 = 0.9 and 𝛽2 = 0.65 which provided a realistic estimation of the delayed 

deformation. The completed simulation signified the implemented model was robust for stability analysis 

of tunnels in squeezing ground. 

The FDVP constitutive equations presented are straightforward as such can simply be executed in any 

numerical code especially ITASCA code (FLAC3D/3DEC). Additionally, estimation of squeezing within 

tunnels through numerical computation can readily be achieved with the numerical code. Section 5.5.2 

presented numerical simulations of the TD behaviour within a tunnel and results show discrepancies in 

tunnel deformation and yielding zone extension. The results show more deformation and yielding when 

employing the FDVP constitutive model as compared to the MC and CVISC constitutive models.  

However, the FDVP constitutive model assumes ideal viscoplasticity in which the isotropic and kinematic 

hardening constitutive laws are ignored. Hardening viscoplasticity is characterized by the transient creep, 

ideal viscoplasticity by the steady-state creep and softening viscoplasticity by the accelerated creep. 
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Hence, incorporating their constitutive laws and effects is very important for the accurate description of 

the 3-stage creep mechanism. Although it lacks the consideration of these constitutive laws and the 

capability to explicitly capture the 3-stage creep mechanism. The constitutive model can be employed 

with confidence in estimating delayed deformations associated with squeezing ground. Nevertheless, the 

presented constitutive equations are relatively straightforward to allow for further implementation. As such 

they have the potential for further integrating the hardening and softening viscoplasticity laws.
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5.7 Conclusion  

The proposed constitutive model applies fractional-order derivatives to realistically describe the creep 

behaviour characterised by the power-law mechanism. In addition to that, it employs an adjusted 

associated viscoplastic flow rule based on the overstress theory which establishes the onset of the 

delayed deformations. Its mathematical formulation, experimental validation and in-situ verification draw 

that it can describe the most significant features characterised by the squeezing related TD behaviour. 

This includes the transient, the steady-state and the accelerated creep stage to some extent. It is shown 

from this study that: 

▪ The validation results indicate that the model yield close results with experimental data attained from 

salt rock and marble. Whereas the in-situ verification draws a closer match to the mean tunnel 

monitored deformation as compared to the FVP constitutive model. As such it describes the TD 

behaviour associated with squeezing ground more realistically. The sensitivity parameter analysis 

performed shows that 𝛽1,2 values had a relatively large influence on the constitutive model’s 

viscoelastic viscoplastic characteristics. The constitutive model best describes the creep behaviour 

and TD characteristic of squeezing rock and rock masses when 𝛽1,2= 0.315. Further on, in-situ 

verification shows that the model estimates the mean delayed deformation within a tunnel reasonably 

well when 𝛽1,2 values are between 0.2 - 0.32. 

 

▪ The FDVP constitutive equations are written in code using C++ for FLAC3D implementation as a user-

defined constitutive model. It is drawn that the implemented constitutive model can estimate delayed 

deformations as compared to the existing CVISC creep constitutive model. However, the 𝛽1,2 values 

and creep parameters require upscaling to account for the influence of rock mass discontinuities and 

heterogeneities. The constitutive model estimates more deformation and yielding as compared to the 

other constitutive models. This is attributed to its capability in estimating the delayed deformation 

characterized by squeezing. 
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5.8 Further constitutive model enhancement  

The FDVP constitutive equations are not complex as they are readily applicable in research and 

engineering practice. This allows them to be used with confidence in describing the creep behaviour 

responsible for delayed deformations in squeezing ground. However, the full explicit description of the 3-

stage creep mechanism is a limitation that needs to be addressed. As such further enhancement on the 

constitutive equations is considered to aid in the explicit 3-stage creep description and currently in 

progress to include:   

▪ the isotropic and kinematic hardening viscoplasticity and creep damage effect. 

▪ the softening viscoplasticity characterised by the explicit accelerated creep description. 

▪ the dynamic effects governed by the material forces and time-dependent properties. 

▪ the temperature dependency and its effect on the squeezing mechanism.   
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5.10 Appendix: Script 
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1 #include "modelFDVP.h" 

2 #include "state.h" 

3 #include "convert.h" 

4 #include "version.txt" 

5 #include <algorithm> 

6 #include <limits> 

7 

8 #ifdef FDVP_EXPORTS 
9 int stdcall DllMain(void *,unsigned, void *) { 

10 return(1); 

11 } 

12 
13 extern "C" EXPORT_TAG const char *getName() { 

14 return("cmodelfdvp"); 

15 } 

16 
17 extern "C" EXPORT_TAG unsigned getMajorVersion() { 

18 return(MAJOR_VERSION); 

19 } 

20 
21 extern "C" EXPORT_TAG unsigned getMinorVersion(){ 

22 return(MINOR_VERSION); 

23 } 

24 
25 extern "C" EXPORT_TAG void *createInstance() { 

26 models::ModelFDVP *m = NEWC(models::ModelFDVP()); 

27 return((void *)m); 

28 } 

29 #endif // FDVP_EXPORTS 

30 

31 namespace models 

32 { 

33 static const unsigned long mShearNow = 0x01; /* state logic */ 
34 static const unsigned long mTensionNow = 0x02; 

35 static const unsigned long mShearPast = 0x04; 

36 static const unsigned long mTensionPast = 0x08; 

37 static const Double pi = 3.141592653589793238462643383279502884197169399; 

38 static const Double degrad = pi / 180.0; 

39 static const Double dC1d3 = 1.0 / 3.0; 

40 static const Double time = 1.0; 

41 //static const Double gamma = 0.988; 

42 //static const Double d4d3 = 4.0 / 3.0; 

43 

44 ModelFDVP::ModelFDVP() : Bulk_(0.0), 
45 Kshear_(0.0), Mshear_(0.0), Kviscosity_(0.0), Mviscosity_(0.0), 

46 Fdviscosity_(0.0),cohesion_(0.0), friction_(0.0), dilation_ 

(0.0), tension_(0.0), 

47 gamma_(0.0),beta_(0.0),alpha_(0.0),AccshearE_(0.0),AcctensE_ 

(0.0), Mnphi_(0.0), Mnpsi_(0.0), Mcsnp_(0.0) 

{ 
49 

50 

51 

52 

53 

54 

 
Mekd_[0]= 0.0; 

Mekd_[1]= 0.0; 

Mekd_[2]= 0.0; 

Mekd_[3]= 0.0; 

Mekd_[4]= 0.0; 

Mekd_[5]= 0.0; 
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} 

56 

57 UInt ModelFDVP::getMinorVersion() const{ 

58 return MINOR_VERSION; 

59 } 

60 
61 String ModelFDVP::getProperties() const{ 

62 return 

(L"bulk,kshear,mshear,kviscosity,mviscosity,fdviscosity,cohesion,frictio 

n,dilation,tension,gamma,beta,alpha," 

63 L"k_exx,k_eyy,k_ezz,k_exy,k_exz,k_eyz"); 64 } 

65 
66 String ModelFDVP::getStates(void) const { 

67 return L"shear-n,tension-n,shear-p,tension-p"; 68

 } 

69 
70 Variant ModelFDVP::getProperty(UInt ul) const { 

71 switch (ul) { 

72 case 1: return(Bulk_); 

73 case 2: return(Kshear_); 

74 case 3: return(Mshear_); 

75 case 4: return(Kviscosity_); 

76 case 5: return(Mviscosity_); 

77 case 6: return(Fdviscosity_); 

78 case 7: return(cohesion_); 

79 case 8: return(friction_); 

80 case 9: return(dilation_); 

81 case 10: return(tension_); 

82 case 11: return(gamma_); 

83 case 12: return(beta_); 

84 case 13: return(alpha_); 

85 case 14: return(Mekd_[0]); 

86 case 15: return(Mekd_[1]); 

87 case 16: return(Mekd_[2]); 

88 case 17: return(Mekd_[3]); 

89 case 18: return(Mekd_[4]); 

90 case 19: return(Mekd_[5]); 

91 } 

92  return(0.0); 

93 } 

94 
95 void ModelFDVP::setProperty(UInt ul,const Variant &p,UInt restoreVersion){ 

96 ConstitutiveModel::setProperty(ul,p,restoreVersion); 

97 switch (ul) { 

98 case 1: { // BULK 

99 Bulk_ = p.toDouble(); 

100 break; 

101 } 

102 case 2: { // KELVIN SHEAR 

103 Kshear_ = p.toDouble(); 

104 break; 

105 } 

106 case 3: { // MAXWELL SHEAR 

107 Mshear_ = p.toDouble(); 

108 break; 



216 

 

 

 

 

109 }  

110 case 4: { // KELVIN VISCOSITY 

111 Kviscosity_ = p.toDouble(); 

112 break;  

113 }  

114 case 5: { // MAXWELL VISCOSITY 

115 Mviscosity_ = p.toDouble(); 

116 break;  

117 }  

118 case 6: { // FD VISCOSITY 

119 Fdviscosity_ = p.toDouble(); 

120 break; 

121 } 

122 case 7: { // COHESION 

123 cohesion_ = p.toDouble(); 

124 break; 

125 } 

126 case 8: { // FRICTION ANGLE 

127 friction_ = p.toDouble(); 

128 break; 

129 } 

130 case 9: { // DILATION ANGLE 

131 dilation_ = p.toDouble(); 

132 break; 

133 } 

134 case 10:{ // TENSION 

135 tension_ = p.toDouble(); 

136 break; 

137 } 

138 case 11:{ // GAMMA 

139 gamma_ = p.toDouble(); 

140 break; 

141 } 

142 case 12:{ // BETA 

143 beta_ = p.toDouble(); 

144 break; 

145 } 

146 case 13:{ // ALPHA 

147 alpha_ = p.toDouble(); 

148 break; 

149 } 

150 case 14: { // Kelvin strain 11 

151 Mekd_[0] = p.toDouble(); 

152 break; 

153 } 

154 case 15: { // Kelvin strain 22 

155 Mekd_[1] = p.toDouble(); 

156 break; 

157 } 

158 case 16: { // Kelvin strain 33 

159 Mekd_[2] = p.toDouble(); 

160 break; 

161 } 

162 case 17: { // Kelvin strain 12 

163 Mekd_[3] = p.toDouble(); 
164 break; 
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} 

166 case 18: { // Kelvin strain 13 

167 Mekd_[4] = p.toDouble(); 

168 break; 

169 } 

170 case 19: { // Kelvin strain 23 

171 Mekd_[5] = p.toDouble(); 

172 break; 

173 } 

174 } 

175 } 

176 

177 void ModelFDVP::copy(const ConstitutiveModel *cm) 
178 { 

179 ConstitutiveModel::copy(cm); 
180 const ModelFDVP *vm = dynamic_cast<const ModelFDVP *>(cm); 

181 if (!vm) throw std::runtime_error("Internal error: constitutive model 

dynamic cast failed."); 

182 Bulk_ = vm->Bulk_; 
183 Kshear_ = vm->Kshear_; 

184 Mshear_ = vm->Mshear_; 

185 Kviscosity_ = vm->Kviscosity_; 

186 Mviscosity_ = vm->Mviscosity_; 

187  Fdviscosity_ = vm->Fdviscosity_; 
188  cohesion_ = vm->cohesion_; 

189  friction_ = vm->friction_; 

190  dilation_ = vm->dilation_; 

191  tension_ = vm->tension_; 

192  gamma_ = vm->gamma_; 

193  beta_ = vm->beta_; 

194  alpha_ = vm->alpha_; 

195  AccshearE_ = vm->AccshearE_; 

196  AcctensE_ = vm->AcctensE_; 

197  Mnphi_ = vm->Mnphi_; 

198  Mnpsi_ = vm->Mnpsi_; 

199  Mcsnp_ = vm->Mcsnp_; 

200  Mekd_[0] = vm->Mekd_[0]; 

201  Mekd_[1] = vm->Mekd_[1]; 

202  Mekd_[2] = vm->Mekd_[2]; 

203  Mekd_[3] = vm->Mekd_[3]; 

204  Mekd_[4] = vm->Mekd_[4]; 

205  Mekd_[5] = vm->Mekd_[5]; 

206 }  

207   

208 void ModelFDVP::initialize(UByte dim,State *s) { 

209 ConstitutiveModel::initialize(dim,s); 

210 if (Mshear_ <= 0.0) Mshear_ = 1e-20 ; 
211 if (Kshear_ <= 0.0) Kshear_ = 0.0; 
212 if (Kviscosity_ <= 0.0) Kshear_ = 0.0; 

213 //if (yield_<= 0.0) yield_ = 0.0; 

214 //if (gamma_<= 0.0) gamma_ = 0.0; 

215 //iMerr = 0; 

216 //if (friction_ > 89.0) iMerr = 1; 

217 //if (fabs(dilation_) > 89.0) iMerr = 2; 

218 //if (cohesion_ < 0.0) iMerr = 3; 
219 //if (tension_ < 0.0) iMerr = 4; 
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220 //if (iMerr != 0) {  

221 // iNerr = 126; 

222 // iErr = 1 ; 

223 //} 

224 Double dSphi = sin(friction_ * degrad); 
225 Double dSpsi = sin(dilation_ * degrad); 

226 Mnphi_ = (1.0 + dSphi) / (1.0 - dSphi); 
227 Mnpsi_ = (1.0 + dSpsi) / (1.0 - dSpsi); 

228 Mcsnp_ = 2.0 * cohesion_ * sqrt(std::max(Mnphi_, 0.0)); 

229  

230 // --- set tension to prism apex if larger than apex --- 

231 Double apex = tension_; 

232 if (friction_ != 0.0) apex = cohesion_ / tan(friction_ * degrad); 

233 tension_ = ((apex < tension_) ? apex : tension_); 

234 } 

235  

236 static const UInt eps = 6; 

237 static const UInt ept = 7; 

238  

239 void ModelFDVP::run(UByte dim,State *s) { 

240 ConstitutiveModel::run(dim,s); 

241 UInt iplas = 0; 

242 Double e1=0,e2=0,x1=0; 

243 Double tempk=0, tempm=0; 

244  

245 if (!s->sub_zone_) { 

246 s->working_[0] = 0.0; 

247 s->working_[1] = 0.0; 

248 s->working_[2] = 0.0; 

249 s->working_[3] = 0.0; 

250 s->working_[4] = 0.0; 

251 s->working_[5] = 0.0; 

252 s->working_[eps] =0.0; 

253 s->working_[ept] =0.0; 

254 } 

255  

256 Double dCrtdel = (s->isCreep() ? s->getTimeStep() : 0.0); 

257  

258 /* --- plasticity indicator: */ 

259 /* store 'now' info. as 'past' and turn 'now' info off ---*/ 

260 if (s->state_ & mShearNow) s->state_ |= mShearPast; 

261 s->state_ = s->state_ & ~mShearNow; 

262 if (s->state_ & mTensionNow) s->state_ |= mTensionPast; 

263 s->state_ = s->state_ & ~mTensionNow; 
264  

265 if (Kviscosity_ <= 0.0) tempk = 0.0; 

266 else tempk = 1.0 / Kviscosity_ ; 

267 if (Mviscosity_ <= 0.0) tempm = 0.0; 

268 //else tempm = pow (time,beta_)*(1.0 / Mviscosity_*gamma_); 

269 //else tempm = 1.0 / Mviscosity_ *gamma_ ; 

270 else tempm = 1.0 / Mviscosity_ ; 

271   

272 Double temp = 0.5 * Kshear_ * dCrtdel * tempk; 

273 Double a_con = 1.0 + temp; 

274 Double b_con = 1.0 - temp; 
275 Double ba = b_con / a_con; 
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329 if (canFail())  

330 {  

331 /* --- calculate and sort principal stresses and principal directions 
 

--- */ 

332 // Calculate principal stresses 

333 SymTensorInfo info; 

334 DVect3 prin = s->stnS_.getEigenInfo(&info); 

335 //; --- shear yield criterion --- 

336 Double fs = prin.x() - prin.z() * anphi + amc; 

337 Double alams = 0.0; 

338 //; --- tensile yield criterion --- 

339 Double ft = tension_ - prin.z(); 

340 Double alamt = 0.0; 

341 Double bisc = sqrt(1.0 + anphi * anphi) + anphi; 

342 Double pdiv = - ft + (prin.x() - anphi * tension_ + amc) * bisc; 

343 //; --- tests for failure --- 

344 if (fs < 0.0 && pdiv <= 0.0) { 

345 //; --- shear failure --- 
346 e1 = Bulk_ + (2*dC1d3) * c1dxc; 

347 e2 = Bulk_ - dC1d3 * c1dxc; 

348 x1 = 2.0 * Fdviscosity_*gamma_; 

349 alams = (fs / x1) * deriv * dCrtdel; 

350 prin.rx() -= alams * (e1 - e2 * anpsi);//sigma1 

351 prin.ry() -= alams * e2 * (1.0 - anpsi); 

352 prin.rz() -= alams * (e2 - e1 * anpsi);//sigma3 

353 s->state_ |= mShearNow; 

354 iplas = 1; 
355 } 

356 else { 

357 if (ft < 0.0 && pdiv > 0.0) { 

358 //; --- tension failure --- 

359 e1 = Bulk_ + (2*dC1d3) * c1dxc; 

360 e2 = Bulk_ - dC1d3 * c1dxc; 

361 //alamt = ft / e1 ; 

362 alamt = (ft / x1) * deriv * dCrtdel; 

363 Double tco= alamt * e2 ; 

364 prin.rx() += tco; 

365 prin.ry() += tco ; 

366 prin.rz() = tension_; 

367 s->state_ |= mTensionNow; 

368 iplas = 2; 

369 } 

370 } 

371 //simple apex correction 

372 if (friction_) 

373 { 

374 Double dApex = cohesion_ / tan(friction_*degrad); 

375 if ((prin.x()>=dApex)||(prin.y()>=dApex)||(prin.z()>=dApex)) 

376 { 

377 if(prin.x()>=dApex) prin.rx() = tension_; 

378 if(prin.y()>=dApex) prin.ry() = tension_; 

379 if(prin.z()>=dApex) prin.rz() = tension_; 

380 iplas = 2; 

381 s->state_ |= mTensionNow; 

382 } 
383 } 
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384 //; --- resolve back to global axes ---  

385 if (iplas != 0) 

386 { 

387 /* --- resolve back to global axes --- */ 

388 s->stnS_ = info.resolve(prin);// transform back to refrence frame 

389 } 

390  

391 //; --- accumulate hardening parameter increments --- 

392 if (iplas == 1) 

393 { 

394 Double de1ps = alams; 

395 Double de3ps = -alams * anpsi; 

396 Double depm = dC1d3 * (de1ps + de3ps); 

397 de1ps = de1ps - depm; 

398 de3ps = de3ps - depm; 
399 s->working_[eps] += (sqrt(0.5*(de1ps*de1ps+depm*depm+de3ps*de3ps)) * 

 s->getSubZoneVolume());  

400  } 

401  if (iplas == 2) 

402  { 

403  s->working_[ept] -= (alamt * s->getSubZoneVolume()); 

404  } 
405 } // if (canFail()) 
 

//;--- sub-zone contribution to Kelvin-strains --- 

407 s0 = dC1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); 

408 s->working_[0] += (Mekd_[0] * ba + (s->stnS_.s11() - s0 + s11old) * 

z_con)  * s->getSubZoneVolume(); 
409 s->working_[1] += (Mekd_[1] * ba + (s->stnS_.s22() - s0 + s22old) * 

z_con) * s->getSubZoneVolume(); 

410 s->working_[2] += (Mekd_[2] * ba + (s->stnS_.s33() - s0 + s33old) * 

z_con) * s->getSubZoneVolume(); 

411 s->working_[3] += (Mekd_[3] * ba + (s->stnS_.s12() + s12old) * 

z_con) * s->getSubZoneVolume(); 

412 s->working_[4] += (Mekd_[4] * ba + (s->stnS_.s13() + s13old) * 

z_con) * s->getSubZoneVolume(); 

413 s->working_[5] += (Mekd_[5] * ba + (s->stnS_.s23() + s23old) * 

z_con) * s->getSubZoneVolume(); 

414 //;--- update stored Kelvin-strains and plastic strain --- 

415 if (s->sub_zone_ == s->total_sub_zones_-1) { 
416 Double Aux = 1./s->getZoneVolume(); 

417 if (s->overlay_==2) Aux *= 0.5; 

418 Mekd_[0]= s->working_[0] * Aux; 

419 Mekd_[1]= s->working_[1] * Aux; 

420 Mekd_[2]= s->working_[2] * Aux; 

421 Mekd_[3]= s->working_[3] * Aux; 

422 Mekd_[4]= s->working_[4] * Aux; 

423 Mekd_[5]= s->working_[5] * Aux; 

424 if (canFail()) 

425 { 

426 AccshearE_ += s->working_[eps]*Aux; 

427 AcctensE_ += s->working_[ept]*Aux; 

428 } 

429 } 

430  

431 if( (s->state_ & mShearNow) || (s->state_ & mTensionNow) ) 
432 s->viscous_ = false; // inhibit viscous strains 
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433  else 
434  s->viscous_ = true; // allow viscous strains 

435 }  

436   

437 Double ModelFDVP::getStressStrengthRatio(const SymTensor &st) const { 

438 DVect3 prin = st.getEigenInfo(); 

439 Double rat = 10.0; 

440 Double tanf = std::tan(friction_*degrad); 

441 Double tcut = friction_ ? std::min(tension_,(cohesion_/tanf)) : tension_; 

442 if (tcut - prin.z() <= 0.0) 

443 rat = 0.0; 

444 else 

445 { 

446 Double sinf = std::sin(friction_*degrad); 

447 Double denom = 1.0 - sinf; 

448 Double nph = limits<Double>::max(); 

449 if (denom) nph = (1.0 + sinf) / denom; 

450 Double sig1f = nph*prin.z() - 2.0*cohesion_*std::sqrt(nph); 

451 denom = prin.z() - prin.x(); 

452 if (denom) rat = (prin.z() - sig1f) / denom; 

453 } 

454 rat = std::min(rat,10.0); 

455 return(rat); 

456 } 

457  

458 void ModelFDVP::scaleProperties(const Double &scale,const std::vector<UInt> 
 &props) { 

459 for (UInt u=0;u<props.size();++u) { 

460 switch (props[u]) { 

461 case 1: Bulk_ *= scale; break; 

462 case 2: Kshear_ *= scale; break; 

463 case 3: Mshear_ *= scale; break; 

464 case 7: cohesion_ *= scale; break; 
465 case 8: friction_ = std::max(0.0,std::min(85.0,std::atan(std::tan 

(friction_*degrad) * scale)/ degrad)); break; 

466 case 9: dilation_ = std::max(0.0,std::min(85.0,std::atan(std::tan 

(dilation_*degrad) * scale)/ degrad)); break; 

467  case 10: tension_ *= scale; break; 
468  default: break; 
469 }  

470  } 

471  setValid(0); 
472 }  

473 } 

474 // EOF 

475 

476 
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Abstract 

The conventional constitutive models employed to describe rock mass creep behaviour under the squeezing 

mechanism are widely adopted in research and design practice. However, these models fail to replicate the 

3-phase creep behaviour especially the accelerated creep phase; only the transient and steady creep phase 

are described explicitly. Hence, this paper presents an elasto-viscoplastic with isotropic damage (EVPD) 

constitutive model that describes the 3-phase behaviour. This is achieved by the Newtonian dashpot 

replacement with the fractal-order spring-pot that incorporates isotropic damage effect. Derivation of the 

fractal-order derivative-based creep constitutive equations is conducted using scaling transformations. The 

model is then calibrated using experimental data and its derived constitutive equation is implemented in 

FLAC3D using C++ code. Furthermore, its numerical implementation is employed to simulate delayed 

response of a tunnel excavated in squeezing ground. The average radii of yield zone around the tunnel 

estimated by the CVISC and EVPD constitutive models are approximately 8.7 m and 14.7 m, respectively. 

Whereas the deformation is approximately 29% and accounts for 8% more than the CVISC estimation, the 

disparity attributed to time-dependent behaviour. It is observed that the EVPD constitutive model describes 

the creep mechanism and mean deformation in squeezing ground reasonably well. 

Keywords: Accelerated creep; Isotropic damage; Delayed deformations; Fractal-order derivative; 

Squeezing ground
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6.1 Introduction  

The time-dependent behaviour of rocks and rock masses in response to stress has a significant impact 

on the stability of underground tunnels. The behaviour might occur instantaneously after tunnel 

excavation and continue over time and it is often referred to as creep. Hence, estimation and numerical 

modelling of the time-dependent behaviour of rocks and rock masses is of great importance in tunnel 

design and stability analysis [1]. There are several constitutive models developed with different 

assumptions employed to estimate creep related time-dependent behaviour in tunnels. Reversible 

deformation is one aspect considered in the classical constitutive model for time-dependent behaviour 

estimation. Conventional viscoelastic models have been developed and used by a great number of 

researchers by employing analytical formulations [2]. In line with this, time-dependent rheological 

components have been integrated into these conventional viscoelastic models by different researchers 

such as Debernardi & Barla [3] and Fahimifar et al., [1]. conventional viscoelastic models are only capable 

of capturing the irrecoverable viscoplastic strains by incorporating the classic Bingham component [4,5].  

The accurate estimation of these irrecoverable creep strains requires a proper and explicit description of 

the 3-phase (3-stage) creep behaviour (Figure 1). This entails that the elastic-viscoplastic (EVP) creep 

behaviour of the rock masses should be taken into consideration. Most importantly the viscoplastic 

behaviour exhibited in accelerated creep phase characterised by delayed deformation and damage 

responsible for squeezing. The idealised creep behaviour consists of the instantaneous elastic strain 

which tends to occur immediately upon the subjection of load or stress, then followed by the 3-phases. 

The 3-phase creep behaviour is interpreted as follows [6]: (1) Stage 1 or primary (transient) creep is 

represented by the Kelvin component where viscoelastic (reversible) deformation occurs sometimes 

accompanied by irreversible deformation this results in strain accumulation with decreasing rate over 

time. In this phase, the rock undergoes strain hardening and deformation is characterised by sliding and 

breakage of material weak bonds. (2) Stage 2 or secondary (steady-state) creep is represented by the 

Maxwell component, this phase exhibits a consistent strain accumulation over time. It is also 
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characterised by the intermediate behaviour between strain hardening and strain softening mechanism 

of the transient and accelerated creep phases respectively, and (3) Stage 3 or tertiary (accelerated) creep 

is a phase where there is a non-linear rapid strain increment leading to rupture and commonly 

represented by viscoplastic (VP) models. It is characterised by rock failure (Figure 6-1). 

 

 

 

 

 

 

 

 

 

 

 

The transient and steady creep phase combination can be represented by merging the Kelvin and 

Maxwell components into a Burgers model. However, representation of the entire 3-phase creep 

behaviour requires a combination of more rheological components, as discussed below.  

To describe the 3-phase creep behaviour, research has been conducted on modelling the accelerated 

creep phase. Modelling is divided into two broad categories which involve the non-linear rheological and 

damage rheological modelling [7]. The non-linear rheological models that have been built to describe the 

accelerated creep phase include Boukharov et al [8] creep model which described the 3-phase creep 

behaviour of brittle rocks by employing a strain-triggered non-linear viscous dashpot. Lemaitre and 

Chaboche [9] VIPLA creep model estimated the VP irreversible deformation. The Burgers model 

connected in series with a Bingham component [4,10,11], the Burgers VP (CVISC) creep model [12], 

Zhou et al [13,14] creep model that describes the 3-phase creep behaviour by employing fractional 

Figure 6-1. The 3-phase creep mechanism 
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calculus theory and Newtonian dashpot replacement with the Abel dashpot. Yang et al [15] creep model 

which combines a viscoelastic-plastic Schiffman component with a Bingham and classic elastic Hooke 

components in series. The model describes the creep behaviour of a diabase under variable stress 

loading. However, some of these models fail to explicitly describe the 3-phase creep behaviour especially 

the accelerated creep phase [16]. Additionally, it is considered that the accelerated creep phase is a rapid 

growth of micro-cracks which can be described by the damage evolution [7]. Hence, the study has been 

conducted by researchers on the 3-phase creep behaviour by introducing the damage variable. For 

example, Chan et al [17], Mazzotti & Savoia [18], Hou [19], Verstrynge et al [20] and Ma et al [21]. The 

mathematical theory used in these non-linear and damage creep models is however not adequate to 

explain the 3-phase creep behaviour most significantly the accelerated creep. When the damage variable 

is directly integrated into the constitutive equations of the non-linear and damage governed dashpots it 

is a function of not only stress but time [7,22]. In such models, the widely used differential constitutive 

equations to explain 3-phase creep process use integral calculus Based on integer-order derivatives, and 

there exist the fractional-order and fractal-order derivatives. 

Fractional-order derivatives have long been employed to model the transient and steady creep behaviour 

of rocks and rock masses. The employment has been feasible and successful in establishing the creep 

constitutive relation. Additionally, it has satisfactorily modelled the power-law rheological mechanism of 

these rocks and rock masses [23,24]. The consideration of fractional-order derivative theory in describing 

creep mechanism is interesting and motivating by the fact that it requires fewer parameters to achieve 

validation with experimental data as compared to integer-order derivative models [25]. However, 

fractional-order derivatives require expensive computations and memory allocation during numerical 

implementation [23]. As an alternative, this paper adopts fractal-order derivatives simpler and 

computationally efficient as compared to fractional-order derivatives. It requires less time in carrying out 

numerical computations and its efficacy can be drawn from the Maxwell and Kelvin creep constitutive 

equations (Section 6.3; Table 6-2). Besides, the constitutive model that is being presented takes 
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advantage of the overstress function represented by Perzyna [26]. However, there exist constitutive 

models based on this overstress hypothesis. Include the conventional overstress constitutive models [27–

29] which consider a static yield surface where the state of stress occurs within and allows solely elastic 

strains to develop. The extended overstress constitutive models [30–32] proposed to address the 

drawback of the traditional overstress constitutive models. They assume the production of viscoplastic 

strain as the stress condition occurs within the surface of the static yield [25]. Hence, an efficient creep 

constitutive model must be developed able to address the above limitations and describe the 3-phase 

creep mechanism explicitly. Hence the limitation of traditional overstress constitutive models is addressed 

in this paper by tweaking the Perzyna [26] overstress function. In this paper, a time-based fractal 

derivative creep constitutive model that considers isotropic damage is presented. It must be 

emphasised that the constitutive model presented in this paper is the build-up on the earlier proposed 

constitutive model by Kabwe et al [25]. Extension of this constitutive model employs the fractal-order 

derivatives, softening viscoplasticity, and damage effects. Besides, it considers the following: 

▪ Adopts an adjusted Perzyna [26] overstress function by integrating the fractal-order isotropic 

damage factor and neglects tensile and shear damage. 

▪ Ignores the assumptions that govern the conventional overstress constitutive models.  

▪ Obeys the associative viscoplastic flow rule under which the potential function is equivalent to 

the yield. 

▪ Neglects the integer-order and fractional-order derivative constitutive model assumptions. 

▪ Adopts ideal and softening viscoplasticity and overlooks isotropic and kinematic hardening 

constitutive laws.  

The presented constitutive model is constructed by coupling the Burgers model with a rheological 

component that incorporates a fractal-order derivative spring-pot (variable dashpot) that considers 

isotropic damage. This component is required to describe the accelerated creep phase characterized by 

damage evolution in squeezing ground, which is responsible for delayed deformations. 
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6.2 Conventional creep constitutive models  

The widely adopted conventional constitutive models for the 3-phase creep mechanism description 

associated with squeezing include the Nishihara [33], CVISC and Burgers model. However, they 

(including those presented in Table 6-1 below) can only describe the transient and steady creep phase 

explicitly [34,35]. Additionally, they assume isotropic deformation in homogeneous rock material which is 

unrealistic. It shows that they cannot describe the accelerated creep phase explicitly, in that irreversible 

deformations estimated in this phase are mainly dependent on stress rather than on time. More notably, 

apart from the model presented by Kabwe et al [25], they cannot predict the time when accelerated creep 

phase initiates and damage evolution. 

Table 6-1. Conventional creep constitutive model. 

Researcher Constitutive model Accelerated creep simulation 

Norton (1929) Two-Component Power Law None 

Herrmann et al., (1980) WIPP viscoelastic model None 

Sjaardema & Kreig (1987) WIPP creep law model None 

Callahan & DeVries (1991) Crushed Salt Model None 

Lemaitre and Chaboche 

(1996) 

VIPLA None  

Okubo & Fukui (2006) Okubo and Fukui model Dependent on stress 

ITASCA (2006) CVISC model and Power Law VP 

model 

Dependent on stress 

Sterpi & Gioda (2009) 3-stage creep model Dependent on stress 

Debernardi & Barla (2009) SHELVIP None 

Weng et al (2010) Modified Burgers model None 

Moghadam et al (2013) EVP model None 
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Tran et al (2015) Modified CVISC model Dependent on stress 

Causse et al (2015) Burger-creep VP model None 

Fahimifar et al (2015) Modified 3-stage creep model None 

Ofoegbu & Dasgupta (2017) FZK-INE creep model Dependent on stress 

Sainoki et al (2017) Modified Okubo and Fukui model Dependent on stress 

Zhang et al (2019). FVP model Dependent on stress 

Kabwe et al (2020) FDVP model Neglected damage evolution 

 
However, the accelerated creep phase responsible for squeezing can be considered with models that 

incorporate VP behaviour and damage evolution [25,45]. It is observed from experimental studies that 

creep strains in the accelerated creep phase increase non-linearly with a varying viscosity coefficient 

[46]. Therefore, to address the above limitations, a constitutive model in this paper able to describe the 

non-linear and unsteady creep behaviour in the accelerated creep phase is presented. It is devised as 

an extension of the Burgers model and the recently proposed FDVP [25] constitutive model by 

incorporating damage evolution.  

6.2.1 Burgers viscoplastic creep model 

The conventionally employed CVISC model is comprised of a classic Burgers model able to replicate the 

transient and steady-state creep phases and a Mohr Coulomb (MC) frictional slider (Figure 6-2). Its 

constitutive equations are characterized by volumetric elasto-plastic and deviatoric EVP behaviour. 

Therefore, the strain levels of this component function in sequence, the viscoelastic constitutive laws are 

provided by the classic Burgers model and the plastic constitutive laws by the MC failure surface. It can 

describe creep strains of the transient and steady-state creep phases represented by the Kelvin and 

Maxwell rheological components, respectively. However, In the accelerated creep process, the frictional 

slider estimates the instantaneous plastic deformation, yielding and permanent strain rates. However, the 

estimated plastic strain levels in this process are highly dependent on stress and not time. But it has been 
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observed through experimental studies that permanent strains develop overtime especially in weak rocks 

subjected to high stress. In tunnels excavated in weak rock mass under high in-situ stress, the developed 

permanent strains are characterized by the time-dependent squeezing behaviour [48]. It is therefore 

necessary to estimate the time-dependent VP stresses in the accelerated creep process to reliably predict 

squeezing.  

 

 

 

 

 

 

 

6.2.2 FDVP creep constitutive model 

The FDVP constitutive model employs four rheological elements of the Burgers model for defining 

viscoelastic strains and two VP component elements for replicating viscoplastic strains (Figure 6-3). It 

employs fractional-order derivatives for the realistic description of the power-law related creep 

mechanism. Which involves to some extent the creep strains of the transient, the steady-state and the 

accelerated creep stages. The constitutive model is based on an adjusted overstress function with a 

related viscoplastic flow rule that sets the delayed deformations. However, this constitutive model obeys 

ideal viscoplasticity and ignores isotropic and kinematic hardening laws. Furthermore, it does not account 

for softening viscoplasticity associated with the accelerated creep stage and damage evolution.  

 
 
 
 
 
 
 
 
 

Figure 6-2. Schematic representation of the CVISC rheological model 

Figure 6-3. Schematic representation of the FDVP rheological 
l 
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As such integrating these constitutive laws will aid in a full creep description. Hence, in this paper, the 

improved version of this constitutive model is presented which includes ideal viscoplasticity, softening 

viscoplasticity and visco-damage laws.  

6.3 Fractal-order derivative creep constitutive model 

6.3.1 Visco-plastic component with damage evolution 

When rocks and or rock masses are subjected to stress level which exceeds their yield strength failure 

initiates which leads to accelerated creep stage. To estimate this mechanism, a VPD (viscoplastic with 

damage) component composed of an MC frictional slider and a fractal-order spring-pot is presented. 

However, damage evolution tends to occur during this creep mechanism, this is often referred to as creep 

damage. During this process, the viscosity coefficient of the dashpot reduces as damage accumulates. 

Hence, it is important to consider damage evolution in the VPD component for an accurate estimation of 

the accelerated creep phase. Considering damage in the accelerated creep phase entails the viscosity 

coefficient of the fractal-order spring-pot may not be constant. The fractal-order coefficient employed in 

this spring-pot is assumed to obey the exponential decay law for non-constant viscosity and permanent 

viscous deformation [25,47,48], which is expressed by; 

η(𝑡) = η0(1 − 𝐷) (6-1) 

 

Where η0 is the initial viscosity coefficient and 𝐷 is the damage variable computed by: 

𝐷 = 1 − 𝑒−𝜔𝑡 (6-2) 

 

Where 𝜔 is the damage factor, 𝑡 is the time and 𝐷 varies between 0.0 – 1.0. This signifies that the rock 

or rock masses can be either in an undamaged (𝐷 = 0.0) or completely damaged (𝐷 = 1.0) state. The 

viscosity coefficient (η(𝑡)) can be expressed as Eq. (6-3) by substituting Eq. (6-2) into Eq. (6-1). 
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η(𝑡) = η0𝑒
−𝜔𝑡 (6-3) 

 

Hence, the constitutive equation of the VPD component considering isotropic damage evolution is 

expressed as:  

𝜎 − 𝜎𝑌 = η0𝑒
−𝜔𝑡 𝑑𝜀(𝑡)

𝑑𝑡
        𝜎 ≥ 𝜎𝑌 (6-4) 

 

Where 𝜎𝑌 is the rock yield strength, Laplace transformation of Eq. 4 and further inverse transformation 

expresses the constitutive equation for the VPD component incorporating isotropic damage evolution as: 

𝜀(𝑡) =
𝜎 − 𝜎𝑌
η0𝜔

𝑒𝜔𝑡 (6-5) 

 

There is a certain level of stress for damage to initiate in rocks (soft and hard), it tends to initiate when 

the applied stress is greater than 𝜎𝑌 [49,50]. During the time-dependent material deformation process 

and when loading stress is greater than 𝜎𝑌 the material undergoes all the 3-phase creep behaviour. In 

this creep process damage initiates after steady-state and during the accelerated creep phase but not at 

the initial phase of the accelerated creep. When damage accumulates change in material deformation 

tends to occur and 𝐷 can be expressed by: 

𝐷 = 1 − 𝑒−𝜔𝑡       𝑡 > 𝑡𝑎 (6-6) 

 

Where 𝑡𝑎 is the starting time for the accelerated creep phase and the constitutive equation of the VPD 

component incorporating damage can now be expressed by: 

𝜀(𝑡) {

 0                                                  𝜎 < 𝜎𝑌                                               
0                                                  𝜎 ≥ 𝜎𝑌                          0 ≤ 𝑡 ≤ 𝑡𝑎 
𝜎 − 𝜎𝑌
η0𝜔

𝑒𝜔𝑡                                     𝜎 ≥ 𝜎𝑌                                 𝑡 > 𝑡𝑎   
 (6-7) 
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Regarding Eq. (6-7), the accumulation of damage is not entirely dependent on 𝜎𝑌 but also on 𝑡. The 

EVPD constitutive model is represented by three rheological components connected in series these are 

the Kelvin, Maxwell and VPD (Figure 6-4).  

 

 

 

 

 

 

 
This combination can be represented by the constitutive equations (Eq (6-8)) expressed in one-dimension 

(1D): 

{
  
 

  
 

    𝜀 = 𝜀𝐾 + 𝜀𝑀 + 𝜀𝑣𝑝𝑑                                                                      
𝜎 = 𝜎𝐾 = 𝜎𝑀 = 𝜎𝑣𝑝𝑑                                            0 ≤ 𝑡 ≤ 𝑡𝑎 

𝜎𝐾   =   𝜂𝐾𝜀𝐾̇ + 𝐺𝐾𝜀𝐾                                                                        

𝜎𝑀   =     𝜂𝑀𝜀̇
𝑀  +    𝐺𝑀𝜀

𝑀                                                               

             𝜎𝑉𝑃𝐷 =    η0𝑒
−𝜔𝑡

𝑑𝜀(𝑡)

𝑑𝑡
+ 𝜎𝑌                                                                          

 (6-8) 

 

Where 𝜎𝐾 , 𝜀𝐾, 𝜀𝐾̇, 𝐺𝐾 and 𝜂𝐾  are the stress, strain, strain rate, shear modulus and viscosity coefficient 

of the Kelvin component respectively. 𝜎𝑀, 𝜀𝑀, 𝜀̇𝑀, 𝜂𝑀 and 𝐺𝑀 are the stress, strain, strain rate, shear 

modulus and viscosity coefficient of the Maxwell component respectively. Whereas the  𝜀𝑣𝑝𝑑and 𝜎𝑣𝑝𝑑  

are the strain and stress of the VPD component. When the deviatoric stress is below 𝜎𝑌 the VPD 

component is ineffective and when increased to more or equal to 𝜎𝑌 it is activated.  

 

Figure 6-4. Schematic representation of the EVPD consitutive 
 



239 

 

6.3.2 Fractal-order derivative application  

In this section, the theory of fractal-order derivatives is adopted to formulate a time-dependent constitutive 

model for EVP materials. The rheological behaviour of materials can be accurately described by 

employing the fractional-order derivative constitutive equations. However, as mentioned earlier fractional-

order derivatives require a lot of computational time. Hence, compared to fractal-order derivatives they 

are less efficient in numerical computation [51]. By employing the time scaling transformation fractal 

derivatives can be defined as: 

𝑑𝑓(𝑡)

𝑑𝑡𝛾
= lim

𝑡′→𝑡

𝑓(𝑡) − 𝑓(𝑡′)

𝑡𝛾 − 𝑡′𝛾
 (6-9) 

Where 𝛾 is the fractal-order derivative coefficient which represents the fractal-order time in space. It can 

be seen from Eq (6-9) that the fractal-order derivative is a local operator without convolution integrals. 

While fractional-order derivatives employ convolution integrals as such fractal-order derivatives can be 

easily transformed into classical integer-order derivatives by employing scaling transformation [51]. They 

coincide with these classical derivatives employed in most constitutive equations by using a metric 

transform 𝑡 = 𝑡𝛾  [52]. The fractal-order derivative has successfully been employed to characterize the 

viscoelastic behaviour of materials, for instance, Cai et al [51] proposed the Maxwell and Kelvin models 

based on fractal-order derivatives to describe the material’s creep modulus. Thereafter, compared the 

creep modulus results attained with those of the integer-order and fractional-order derivative models 

(Table 6-2)  

Table 6-2. Creep modulus relation based on classical, fractal-order and fractional-order derivative 

components  

Component Integer-order 

derivative 

Fractal-order 

derivative 

Fractional-order derivative 

Maxwell 

 

𝐽(𝑡) =
1

𝐸𝑀
+
𝑡

𝜂𝑀
 

 

 

𝐽(𝑡) =
1

𝐸𝑀
+
𝑡𝛾

𝜂𝑀
 

 

𝐽(𝑡) =
1

𝐸𝑀
+

𝑡𝛼

𝜂𝑀Γ(1 + 𝛼)
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𝜎(𝑡) =
𝑑0[𝜀(𝑡)]

𝑑𝑡0
                      (6-10) 

 

𝜎(𝑡) =
𝑑1[𝜀(𝑡)]

𝑑𝑡1
                                     (6-11) 

 

The spring-pot represents an element with the derivative order amid Eq. (6-10) and Eq. (6-11), and it is 

represented by the fractal-order derivative relation (Eq.(6-12)) which satisfies the condition 0 ≤ 𝛾1,2 ≤

1.  

𝜎(𝑡) = η
𝑑𝜀(𝑡)

𝑑𝑡𝛾1,2
                                (0 ≤ 𝛾1,2 ≤ 1) (6-12) 

 

When 𝛾1,2 = 0 the spring-pot is a spring represented as an ideal solid and when 𝛾1,2 = 1, it is a 

Newtonian dashpot represented as an ideal fluid. If we consider constant stress which occurs during 

creep and applying scaling transformation, 𝑡 = 𝑡𝛾1,2  we obtain an expression for strain as:   

𝜀(𝑡) =
𝜎

𝜂
𝑡𝛾1,2                                 (0 ≤ 𝛾1,2 ≤ 1) (6-13) 

 

Eq. (6-13) shows that the strain rate obeys the power-law mechanism and incorporating damage 

evolution, the fractal-order derivative formulation can be expressed in the form of fractal time. Applying 

the scaling transformation  𝑡 = 𝑡𝛾1,2  on Eq. (6-3), fractal-order damage variable (𝐷𝐹𝐷) is expressed by 

Eq. (6-14) and the influence of the fractal-order coefficient and the damage factor on the 𝐷𝐹𝐷 can be 

illustrated in Figure 6-6. 

 

𝐷𝐹𝐷 = 1 − 𝑒−𝜔𝑡
𝛾2

                                (0 ≤ 𝛾2 ≤ 1) (6-14) 





243 

 

If we consider a stress level 𝜎(𝑡) = 𝜎 and initial strain as 𝜀(0) = 0 we further obtain a constitutive 

expression for strain in the spring-pot incorporating 𝐷𝐹𝐷 as: 

𝜀(𝑡) =
𝜎

𝜂0𝜔
(𝑒𝜔𝑡

𝛾2 − 1) (6-16) 

 

In section 6.3, the derived fractal-order derivative with damage equation (Eq.(6-16)) for the spring-pot is 

integrated into the creep constitutive equations to construct the EVPD constitutive model. 
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6.4 The EVPD creep constitutive equations 

The EVPD rheological model is represented by the Kelvin, Maxwell and VPD components which consists 

of 14 parameters. It is an extension of the Burgers rheological model characterised by an EVP deviatoric 

behaviour, EVP volumetric behaviour and an improvement to the FDVP rheological model. 

6.4.1 Viscoelastic and viscoplastic constitutive equations 

The viscoelastic viscoplastic constitutive equations presented in this section takes the form of the recently 

proposed FDVP constitutive model. They employ fractal-order derivatives with a few creep parameters 

for computational time reduction during numerical implementation and offers the same power-law 

description of rock mass response in 1D (Eq. (6-17)).  

{
 
 

 
 

 

 𝜀 =
𝜎

𝐺𝑀
+
𝜎𝑡𝛾1

𝜂𝛾1
+
𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾 𝑡𝛾1

𝜂𝐾
)] , 𝜎 < 𝜎𝑌                                                               

𝜀 =
𝜎

𝐺𝑀
+
𝜎𝑡𝛾1

𝜂𝛾1
+
𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾 𝑡𝛾1

𝜂𝐾
)] + (

𝜎 − 𝜎𝑌
𝜂𝛾2

𝑡𝛾2) , 𝜎 ≥ 𝜎𝑌                     0 ≤ 𝑡 ≤ 𝑡𝑎 

 (6-17) 

 

Where 𝜂𝛾1 is the Maxwell spring-pot viscosity coefficient, 𝜂𝛾2 is the VPD spring-pot viscosity coefficient 

and Eq (6-17) can describe the 3-stage creep mechanism to some extent. The transient creep and  

steady-state creep exhibit (𝜎 < 𝜎𝑌), the transient creep, steady-state creep and accelerated creep 

display (𝜎 ≥ 𝜎𝑌 &  0 ≤ 𝑡 ≤ 𝑡𝑎)[25]. Further on, the fact that on an in-situ scale a rock mass is subjected 

to a triaxial state of stress. In a general state of three-dimension (3D) stress, a point can be represented 

by three principal stresses 𝜎1, 𝜎2 and 𝜎3 which are the major, intermediate, and minor acting on mutual 

orthogonal planes. Hence, it is prudent to express these constitutive equations in 3D stress state to 

realistically represent the rock mass behaviour. Where the stress tensor (𝜎𝑖𝑗) is composed of the 

deviatoric stress tensor (𝑆𝑖𝑗) and spherical stress tensor (𝜎𝑚). 

𝜎𝑚 =
𝜎𝑘𝑘
3

 (6-18) 
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𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑚𝛿𝑖𝑗 (6-19) 

 

Where 𝜎𝑘𝑘= 𝜎1+𝜎2+𝜎3 and 𝛿𝑖𝑗 is the Kronecker delta. The strain tensor (𝜀𝑖𝑗) can also be decomposed 

into spherical strain tensor (𝜀𝑚) and deviatoric strain tensor (𝑒𝑖𝑗). 

 

𝜀𝑚 =
𝜀𝑘𝑘
3

 (6-20) 

𝑒𝑖𝑗 = 𝜀𝑖𝑗 − 𝜀𝑚𝛿𝑖𝑗 (6-21) 

 

Based on Hooke’s law 𝜎𝑚 and 𝑆𝑖𝑗 in 3D stress state is computed by: 

𝜎𝑚 = 3𝐾𝜀𝑚 (6-22) 

 

𝑆𝑖𝑗 = 2𝐺𝑒𝑖𝑗 (6-23) 

 

Substitution of Eq. (6-17) with Eq (6-22) and (6-23) where 𝑆𝑖𝑗 < 𝑆𝑌 the 3D viscoelastic constitutive 

equation is expressed by Eq (6-24). The constitutive equation determines the current deviatoric stress 

and the total accumulated viscoelastic strains characterised by the Burgers model viscoelasticity. 

𝜀𝑖𝑗 =
𝑆𝑖𝑗

2𝐺𝑀
+
𝜎𝑚𝛿𝑖𝑗

3𝐾
+
𝑆𝑖𝑗𝑡

𝛾1

2𝜂𝛾1
+
𝑆𝑖𝑗

2𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾 𝑡
𝛾1

𝜂𝐾
)]     𝑆𝑖𝑗 < 𝑆𝑌 (6-24) 

 

Where 𝑆𝑌 is the 3D long-term strength (yield strength). Besides when 𝑆𝑖𝑗 ≥ 𝑆𝑌  and  𝑡 ≤ 𝑡𝑎 the 

irreversible viscoplastic strain initiates It introduces the viscoplastic potential function (𝑄𝑣𝑝) and the 

viscoplastic flow rule [15]. In classical viscoplasticity, it is hypothesized that the rate of viscoplastic strains 

is achieved by Perzyna [26] overstress function. In this theory the constitutive equations for viscoplastic 

strain rate (𝜀𝑖̇𝑗
𝑣𝑝

) estimation is represented by this overstress function.  
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vpvp

ij

ij

Q
 




=


 

 

(6-25) 

Where 𝜆 Is the scalar multiplier that defines the rate of flow. Hence, in this stage, we adopt the 3D 

viscoplastic constitutive law represented by an adjusted Perzyna [26] overstress function to estimate the 

viscoplastic strain rates. In this definition of the flow rule, however, there is a distinction which depicts the 

effective plastic strain evolution [54,55]. In plasticity concept, the plastic strain rate is a quasi-time factor, 

and its derivative is unrelated to this quasi-time [54]. However, the viscoplastic strain intensity is the time 

derivative of the real viscoplastic strain. Furthermore, the state of consistency is calculated in the plasticity 

theory, while in the viscoplasticity hypothesis it is calculated by the specific function dependent on ijS and 

YS . As such, the viscoplastic strain rate is represented by an explicit function based on Perzyna [26] 

overstress theory (Eq.(6-26)).   

( ) vpvp

ij

ij

F Q


 


=


 

 

(6-26) 

Where η is the viscosity parameter,  〈𝜙(𝐹)〉 Is the viscoplastic nucleus that controls the viscoplastic 

strain range, 𝑄𝑣𝑝 the tensor direction of the viscoplastic strain rate and the Macaulay brackets 〈 〉 is 

determined by; 

〈𝜙(𝐹)〉 = {
0, 𝐹 < 0

𝜙(𝐹), 𝐹 ≥ 0
 (6-27) 

 

Where 𝜙(𝐹) is the overstress function illustrates the overstress state inside the rock mass and 

expressed in terms of the yield function (𝐹). The constitutive relationship (Eq. (6-28)) is used to determine 

λ in viscoplasticity when the state stress is above the surface of the failure.  

 

( )F



=  

 

(6-28) 
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Additionally, to account for the fractal-order derivative power-law effect of the viscoplastic spring-pot while 

neglecting the isotropic damage variable. Thus, the adjusted 3D viscoplastic constitutive law 

incorporating the fractal-order coefficient is expressed by. 

𝜀𝑖̇𝑗
𝑣𝑝  =

〈𝜙(𝐹)〉

2𝜂𝛾2

𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
𝑡𝛾2  (6-29) 

In this case, 𝐹 is presumed to be equal to 𝑓 and an associated viscoplastic flow rule (𝐹 = 𝑄𝑣𝑝) is 

assigned commonly assumed in rock plasticity [7]. Hence, the adjusted 3D viscoplastic constitutive law 

(Eq. (6-29)) is reduced to Eq. (6-30). 

𝜀𝑖̇𝑗
𝑣𝑝  = (

𝑓

2𝜂𝛾2
)
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑡𝛾2                                 (𝑓 ≥ 0) (6-30) 

 

Where 𝑓 is the MC failure surface represented by Eq (6-31). 

 

𝑓 = 𝜎1 − 𝜎3𝑁𝜗 + 2𝑐√𝑁𝜗 

 

(6-31) 

 

Where 𝑐 is the cohesion, 𝑁𝜗 = 
1+sin𝜗

1−sin𝜗
  and 𝜗 is the internal friction angle. In viscoplasticity when the 

state of stress lies above 𝑓 the scalar multiplier (λ) is obtained from Eq (6-32) and the 3D viscoelastic 

viscoplastic constitutive equation is expressed by Eq (6-33). 

𝜆 = (
𝑓

2𝜂𝛾2
) 𝑡𝛾2  (6-32) 

 

𝜀𝑖𝑗 =
𝑆𝑖𝑗

2𝐺𝑀
+
𝜎𝑚𝛿𝑖𝑗

3𝐾
+
𝑆𝑖𝑗𝑡

𝛾1

2𝜂𝛾1
+
𝑆𝑖𝑗

2𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾  𝑡
𝛾1

𝜂𝐾
)]

+ (
𝑓

2𝜂𝛾2
)
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑡𝛾2      (𝑓 ≥ 0) 

(6-33) 
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6.4.2 Visco-damage constitutive equations 

In section 6.3, it was highlighted that the damage evolution is a significant factor and should be considered 

in estimating the accelerated creep phase. Research has postulated that damage evolution subjected to 

variable loading condition is highly dependent on the stress level and strain accumulation. In this study, 

the damage evolution is represented by the derived constitutive equation of the viscous stress and strain 

rate. The stress effect is embodied in a power-law function characterised by the fractal-order derivative 

integrated with the damage variable. The damage variable is a significant factor that is considered in 

estimating the long-term deformations characterised by visco-damage strains. Hence, coupling the 

viscoelastic and viscoplastic constitutive equation with visco-damage effect will enable the explicit 

description of the accelerated creep stage. Therefore, substitution of the Newtonian dashpot with a 

fractal-order spring-pot an enhanced time-based constitutive model which incorporates isotropic damage 

effect is presented. In this constitutive law, when 𝜎 ≥ 𝜎𝑌 and  𝑡 > 𝑡𝑎 the transient creep, steady-state 

creep, accelerated creep and creep damage display. In the accelerated phase (𝑡 ≤ 𝑡𝑎) the non-linear 

part of the dashpot is triggered, and the viscosity coefficient is no longer constant but varies with time. 

Hence, damage accumulation sets in as such incorporating the variable viscosity coefficient with damage 

is important and the damage associated viscoplastic strain is obtained from Eq (6-34). 

( )2

2

1tY e




 


 

−
= −             Y             at t  

 

(6-34) 

Therefore, the 1D viscoelastic viscoplastic visco-damage strain is estimated by the constitutive equation 

(Eq (6-35)) when  𝜎 ≥ 𝜎𝑌 and  𝑡 > 𝑡𝑎.  

𝜀 =
𝜎

𝐺𝑀
+
𝜎𝑡𝛾1

𝜂𝛾1
+

𝜎

𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾 𝑡
𝛾1

𝜂𝐾
)] +

𝜎−𝜎𝑌

𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1) ,    Y          at t  

 

(6-35) 

 

When 𝑆𝑖𝑗 ≥ 𝑆𝑌 and 𝑡 > 𝑡𝑎 viscoplastic strains associated with damage evolution occurs which 

represents the accelerated creep stage and the strain is characterised by both stress and time. The 
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viscoplastic strain rate estimation in this creep stage is determined by the adjusted Perzyna [26] 

overstress constitutive relation incorporated with isotropic damage evolution. 

6.4.3 Perzyna overstress function adjustment 

Coupling of the viscoplastic law and the isotropic damage law is possible in this section for the explicit 

definition of the 3-stage creep mechanism. This is essential in that the stress-strain response of the 

rock/rock mass depends not on the viscoelastic viscoplastic behaviour but also on damage evolution. 

Combining these constitutive equations will provide the means of attaining stress, strain, and damage 

evolution at an instance. Therefore, description of the viscoplastic with damage behaviour we adopt Eq. 

34 which accounts for the viscous time effect and damage evolution. Additionally, when 𝑆𝑖𝑗 ≥ 𝑆𝑌  and  

𝑡 > 𝑡𝑎 damage evolution initiates and the viscoplastic strains are determined by the adjusted overstress 

function which incorporates fractal-order damage evolution (Eq. (6-36)). 

( )
( )2

2

1
2

vpd t

ij

ij

F f
e








  


= −


 (6-36) 

 

As well as being governed by the condition that if the stress state occurs below the yield surface then it 

is admissible, otherwise the condition is violated and, in this case, λ is determined by Eq. (6-37).  

 

( )
( )2

2

1 ,      0  
 Visco-damage2

                        0,       0

t
F

e f

f







  


− 

= 




 

 

(6-37) 

Therefore, considering isotropic damage 3D constitutive equation (Eq. (6-36)) with an associated 

viscoplastic flow rule (𝐹 = 𝑄𝑣𝑝) and assuming 𝐹 is equal to 𝑓 is expressed by. 

𝜀𝑖̇𝑗
𝑣𝑝𝑑  =

𝑓

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1)
𝜕𝑓

𝜕𝜎𝑖𝑗
      

 

(6-38) 
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6.4.4 Coupling of the viscoelastic, viscoplastic and visco-damage 

constitutive equations 

Damage evolution develops overtime under high-stress levels, as a result, the primary, steady-state and 

accelerated creep occurs. Because the accelerated creep is influenced by the damage evolution 

integration of the visco-damage component in the model’s constitutive equations is required. The 

viscoelastic-viscoplastic constitutive equations employed to describe the 3-stage creep behaviour 

underestimate the behaviour including the explicit accelerated creep description. However, the addition 

of the visco-damage constitutive equation to the viscoelastic-viscoplastic model compensates this 

shortfall and explicitly describes the damage evolution-based creep stage. Therefore, the integrated 

EVPD creep constitutive equation under 3D stress state is expressed by (6-39). 

𝜀𝑖𝑗 =
𝑆𝑖𝑗

2𝐺𝑀
+
𝜎𝑚𝛿𝑖𝑗

3𝐾
+
𝑆𝑖𝑗𝑡

𝛾1

2𝜂𝛾1
+
𝑆𝑖𝑗

2𝐺𝐾
[1 − 𝑒𝑥𝑝 (−

𝐺𝐾  𝑡
𝛾1

𝜂𝐾
)]

+ (
𝑓

2𝜂𝛾2𝜔
)(𝑒𝜔𝑡

𝛾2 − 1)
𝜕𝑓

𝜕𝜎𝑖𝑗
     (𝑓 ≥ 0) 

(6-39) 

 

In the section that follows, the presented EVPD constitutive model is calibrated with experimental data 

attained from literature. 
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6.5 The constitutive model calibration 

In this section, the calibration procedure of the EVPD constitutive model is presented per the experimental 

data set attained from salt rock and Marble. The experimental data set of salt rock is attained from Zhou 

et al., [13] and of Marble attained from Chen et al.,[53]. The mechanical rock mass parameters of the 

experimental samples are presented in Table Table 6-3,Table 6-4 and Table 6-5. Table Table 6-3 & Table 

6-4 creep parameters are used to calibrate the viscoelastic – viscoplastic component of the EVPD 

constitutive model. Whereas those in Table Table 6-5 are utilised for the entire calibration of the EVPD 

constitutive model which includes the viscoelastic, viscoplastic and visco-damage constitutive laws.  

Table 6-3. Calibrated creep parameters with salt rock 

𝛈𝐌(GPa.h) 𝐆𝐊(GPa) 𝛈𝐊(GPa.h) 𝐆𝐌(GPa) 𝛈𝜸𝟏(GPa.h) 𝛈𝜸𝟐(GPa.h) 𝜸𝟏,𝟐 

1.23 4.52 2.98 2.0 1.23 13.76 0.32 

 
Table 6-4. Calibrated creep parameters with marble 

𝛈𝐌(GPa.h) 𝐆𝐊(GPa) 𝛈𝐊(GPa.h) 𝐆𝐌(GPa) 𝛈𝜸𝟏(GPa.h) 𝛈𝜸𝟐(GPa.h) 𝜸𝟏,𝟐 

4650 2610 1961 53 4650 4959 0.31 

 

Table 6-5. Employed creep parameters: 

(a) EVPD constitutive model 

𝜼𝑲(GPa.h) 𝑮𝑲(GPa) 𝑮𝑴(GPa) 𝜼𝜸𝟏(GPa.h) 𝜼𝜸𝟐(GPa.h) 𝜸𝟏 𝜸𝟐 𝝎 𝝈𝒀(MPa) 

2552 73.6 49.3 5860 7567 0.56 0.6 0.9 130.1 

(b) CVISC constitutive model 

𝜼𝑲(GPa.h) 𝑮𝑲(GPa) 𝑮𝑴(GPa) 𝜼𝑴(GPa.h) 𝑲(GPa) 

2552 73.6 49.3 5860 50 

 

6.5.1 Viscoelasticity and viscoplasticity constitutive model parameters  

In this model state, the isotropic damage effect has not yet been initiated or is insignificant and neglected 

under low-stress levels in the short term. Hence, the salt rock and Jinping marble in this state exhibits 
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transient, steady-state and to some extent accelerated creep neglecting visco-damage. Constitutive 

equations employed for the calibration in this section are represented by Eq. (6-29) which obeys an 

associative viscoplastic flow rule and ideal viscoplasticity whereas neglecting the isotropic and kinematic 

hardening laws. The creep strain rate calibrated curves of the constitutive model with experimental data 

as well as comparison with the recently proposed FDVP constitutive model is illustrated in Figure 6-7.  
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6.5.1.1 Sensitivity analysis of the viscoelasticity and viscoplasticity 

constitutive parameters 

The purpose of this section is to define the most sensitive and important parameter in the definition of the 

viscoelasticity and viscoplasticity creep curves. For a better understanding of the effects of these 

parameters on the creep strain rates, a parametric analysis is carried out. It is observed that the salt rock 

and marble strain rates are entirely dependent on these parameters (𝛾1,2) and the subjected stress levels. 

 

6.5.1.1.1 Effects of the fractal-order derivative coefficient on the 

creep strain 

The influence of the essential parameters 𝛾1,2 on the salt rock/Jinping marble creep strain rates are 

evaluated in this section. Figure 6-8a shows the effect of these important parameters by a sequence of 

creep curves acquired from the salt rock. It is illustrated that the greater the 𝛾1,2 values, the more 

extensive the creep strain. Figure 6-8b reveals the variance of the creep curves with the time reached 

from the marble under different values of 𝛾1,2. It is seen that an increase in these parameter values leads 

to an increment of the creep strain levels while the rate of steady-state creep strain is reduced. Also, an 

increase in 𝛾1,2 values revealed a slight change in the rate of transient and steady-state creep strains. 

The creep curves obtained indicate that the increase in the values of 𝛾1,2 has a gradual impact on the 

creep strain levels. These findings signify the significance of opting for a suitable value of 𝛾1,2 to depict 

the viscoelastic and viscoplastic behavior of salt rock and marble realistically. Therefore, when employing 

the viscoelasticity and viscoplasticity constitutive model for TD tunnel reaction in squeezing ground, it is 

necessary to optimize the 𝛾1,2 values. The comparative curve results of shows that the most appropriate 

values of 𝛾1,2 are between 0.2 - 0.32 and most accurate when 𝛾1,2 = 0.315. 
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6.5.1.1.2 Effects of the stress level on the creep strain 

The estimation of the stress level effect on the rates of creep strain is achieved by allowing the other 

parameters to be constant while the stress levels change. The level of stress applied to salt rock ranged 

from 14.1 MPa to 26 MPa and an increase in its level is observed to have an incremental effect on the 

strain rate (Figure 6-9a). Also, the Jinping marble's creep strain response under incremental applied 

stress level (125.5 -160 MPa) is shown in Figure 6-9b. From these depictions, it is derived that an increase 

in the applied stress level increases the rates of creep strain. 
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6.5.2 Visco-damage constitutive model parameters 

When a rock mass is subjected to high stress level sufficient to initiate damage evolution, at this instant 

in time both the transient, steady-state, and accelerated creep occurs. Thus, the calibrated parameters 

in section 6.5.1 considered for the viscoelastic viscoplastic constitutive model can be used to calibrate 

the viscoelastic viscoplastic viscodamage constitutive model. However, the fact that it neglects visco-

damage it underrates the creep mechanism most importantly accelerated creep associated with damage 

evolution. Hence, the visco damage constitutive law is coupled with the viscoelastic and viscoplastic 

constitutive model to address the above limitation.  Calibration of this coupled constitutive model is based 

on experimental data attained from a 3-stage creep mechanism test conducted by Chen et al.,[53] and 

these calibrated creep parameters are presented in Table 6-5. The results attained from the coupled 

viscoelastic, viscoplastic and visco-damage constitutive equation (Eq. (6-20)) and the experimental data 

are compared in an illustration (Figure 6-10). The illustration also shows that the creep strain curve at the 

stress level 135.7 MPa obtained from the CVISC and EVPD constitutive models is in close agreement 

with experimental data up to 20 hours. Beyond that, the rock material exhibits the accelerated creep 

stage which is further explicitly described by the EVPD constitutive model.  
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6.5.2.1.2 Effects of the fractal-order derivative coefficient and damage 

variable on the creep strain 

The variation of the creep curves with time attained under a few 𝛾1,2 values are illustrated in Figure 6-11b 

& c. It is observed that when there is an increment in the 𝛾1 values the creep strains in all phases 

increases. While an increment in 𝛾2 values, the transient and steady creep strain rates are hardly 

affected. This is attributed to the damage progression which is the key role in the accelerated creep phase 

when the fractal-order dashpot in the VPD component is activated. Figure 6-11d illustrates the increase 

of the ω values which influences the initiation of the accelerated creep phase early. This signifies the 

importance of the ω values regulatory effect on the damage progression of the creep model. It also shows 

that the greater the ω value leads to an early transient creep phase transition into steady creep phase.  
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6.6 Numerical implementation of the constitutive equations  

In this section, the basic ingredients to implement the viscoelastic viscoplastic visco-damage constitutive 

model in a finite volume numerical framework the following requirements are needed. 

▪ an algorithm for numerical integration of the EVPD constitutive equations to be employed to 

update stresses and other state variables. 

▪ the correlated viscoplastic modulus to be employed in the assemblage of the finite volume 

stiffness matrix. 

6.6.1 Explicit solution scheme (Integration algorithm) 

To illustrate the application of the EVPD constitutive model by constructing a numerical framework which 

provides components to its computational implementation in a finite volume numerical code. An algorithm 

comprised of the elastic predictor and the viscoplastic with damage return mapping is presented. The 

iteration algorithm is based on the closest point projection method (CCPM) which describes the behaviour 

of the viscoelastic viscoplastic and visco-damage material. An adjusted associated viscoplastic 

constitutive function is considered and assume that all initial variables at time (𝑡𝑛) are known and ∆t 

denotes their change in the interval (𝑡𝑛, 𝑡𝑛+1).  

1. Elastic prediction. In this state, the purely elastic behaviour occurs within a stipulated time 

interval [tn,tn+1]. In this state the variables are calculated as follows  

1

trial

n n  + = +   

1

vp trial vp

n n + =  

( )1

trial e vp

n D  + = −  

1 1

trial trial

n n Yf  + += −  

 

(6-40) 

      Check the yielding function.            
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If 1  0trial

nf +  , this iteration lies in the elastic range within the interval [tn,tn+1]. In this case, 

the state variables are assigned values equal to the trial variables. 

                                                Then set: 

1 1

trial

n n + +=  

vp eD D=  

 

(6-41) 

                   And exit                

                Else 1  0trial

nf +  , therefore the loading phase is viscoplastic otherwise we employ the 

viscoplastic return mapping procedure. 

2. Viscoplastic correction. In this state using the consistency condition 

( )1 1 0trial trial

n n Yf  + +− − = we solve for the incremental viscoplastic scalar multiplier (Δ𝜆) and 

employ the Newton-Raphson backward Euler solution then update the state variables. 

( )
( )2
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(6-42) 
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(6-43) 

             With the time increment (Δt) within time interval the system of equations (Eq (6-40)) is used to 

calculate the viscoplastic and elastic strain updates. 

1 1 1

1 1
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n n n n
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 
+ + +

+ +

 
= +  = −

 
 

 

(6-44) 

Then exit the scheme 

6.6.2 Finite volume implementation 

The formulated EVPD constitutive equations are transcribed in object-oriented C++ as a user-defined 

constitutive model (UDM). This UDM is then executed as a compiled Dynamic Library Link (DLL) in a 

finite volume numerical code FLAC3D and it is loaded on startup as: 
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model configure creep 

model configure plugin  

zone cmodel load "cmodelEVPD007_64" (FLAC3D version 7.0) 

zone cmodel assign EVPD 

 

This numerical code allows the ability to build the EVPD user-defined material behaviour through the 

UDM. It employs an explicit material scheme using a time-step based solution more appropriate for 

computing non-linear material associated with large strain in squeezing ground. The solution computes 

the increment in strain and stress state at a time (t + ∆t) given initial stress state at the time (t). The 

implemented model measure perfectly elastic trial stress and then compare the results at a time (t + ∆t) 

to the nonlinear parameters considered. Additionally, to evaluate the true stress condition an adjustment 

is made to the trial stress where necessary and implementation of the established constitutive model is 

illustrated in a flowchart below (Figure 6-12).  



265 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Implementing and running this model in FLAC3D is distinct from the time-independent constitutive models 

which employ static analysis. This discrepancy is due to the time-step of the creep simulation, which 

represents real-time, while in the static analysis it represents the virtual values required to attain the 

conditions of a stable state. Successful EVPD constitutive model simulation requires a mechanical state 

of equilibrium condition and creep time steps. In the numerical simulation to guarantee a quasi-static 

equilibrium is reached a sufficient and smaller time step is considered governed by

1

max min ,cr K

K M

t
G G

  
   

 

as the maximum creep time step. Whereas strain-dependent stress increment 

should be as low as possible compared to time-dependent stress increment to avert unbalanced forces 

rising. 

Figure 6-12. Implementation steps in FLAC3D 
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6.7 Application of the constitutive model 

6.7.1 Numerical scale application 

In the section, the 3D tunnel case study numerical analysis is conducted within FLAC3D to simulate the 

time-dependent behaviour. Figure 6-13 illustrates the constructed meshed 3D numerical model geometry 

large enough for simulation and minimize boundary effects. The far-field boundaries are placed at an 

average distance of 10 and 20 radii (R = 5.8 m), the model axial length is 50 m and the mesh are 

discretised into 0.45 m elements. Additionally, fixed boundary conditions are adopted in which all 

displacements on the boundaries are static in the perpendicular direction to their surfaces. Additionally, 

half of the model as a symmetrical geometry is adopted  in order to reduce the simulation time [54]. The 

applied boundary conditions are similar in both the CVISC and EVPD constitutive model simulations and 

the state of stress (Sx = Sy = Sz = 23.3 MPa) is initialized on every model zones. It is assumed that the 

depth at which the circular tunnel is considered for stability analysis is 700 m, average ground specific 

gravity is 2700 kN/m3 and the gravity effect is neglected. The excavation step adopted is 5 m every 2000 

numerical steps to a maximum of 10 m tunnel advance which follows the actual rate of 5 m/day tunnel 

advance observed at the mine. The material strength and creep properties used the tunnel yield zone 

extent and deformation in response to the 3-phase creep behaviour are adopted from the Nchanga 

underground (NUG) back analysis [55,56](Table 6-6).  
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Table 6-6. Strength and creep parameters for the EVPD constitutive model 

𝜼𝑲(GPa.h) 𝑮𝑲(GPa) 𝑮𝑴(GPa) 𝜼𝜸𝟏(GPa.h) 𝜼𝜸𝟐(GPa.h) 𝜸𝟏 𝜸𝟐 𝝎 c(MPa)  𝝑(°) 𝝍(°) 𝝂 𝑲(GPa) 𝝈𝒕(MPa) 

2552 73.6 49.3 5860 7567 0.56 0.6 0.9 1.28 26.6 0.0 0.2 50 0.05 

Strength and creep parameters for the CVISC constitutive model 

𝜼𝑲(GPa.h) 𝑮𝑲(GPa) 𝑮𝑴(GPa) 𝜼𝑴(GPa.h) c(MPa)  𝝑(°) 𝝍(°) 𝝂 𝑲(GPa) 𝝈𝒕(MPa) 

2552 73.6 49.3 5860 1.28 26.6 0.0 0.2 50 0.05 

 

The simulation adopts the EVPD and CVISC constitutive models for comparative analysis. The results of 

this simulation show that the deformation and yield zone extension around the tunnel in a CVISC and 

EVPD simulation is extensive in the latter than the former (Figure 6-14). In the CVISC simulated tunnel, 

the yield zone is about 9 m, 8 m and 9 m for the roof, wall, and floor, respectively. Whereas, for the EVPD 

simulated tunnel it is not more than 18 m, 10 m, and 16 m. On the other hand, the tunnel wall to wall 

deformation in the EVPD simulation as compared to the CVISC simulation is approximately 29% and 

accounts for 8% (29% - 21%) more. This variance is attributed to delayed deformations which occur in 

squeezing ground characterised by the accelerated creep phase.  

Figure 6-13. Meshed and discretised geometry 
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6.7.2 In-situ scale application 

In this section, a tunnel case at the Jinping hydropower station excavated at a depth of 2500 m is 

considered for time-dependent convergence estimation [58]. Its dimension and designed convergence 

monitor positions (1, 2, 3, 4 & 5) are illustrated in Figure 6-15. The illustration also shows attained results 

from the comparison between the EVPD, FDVP estimated and monitored time-dependent convergence. 

The convergence between monitor positions 1 and 2 is represented by 1-3, between positions 2 and 3 

by 2-3, between positions 2 and 5 by 2-5 and between positions 4 and 5 by 4-5. This comparative analysis 

is conducted with an emphasis on the mean tunnel convergence which occurs over time [3]. The 

preliminary analysis verified that the EVPD constitutive model does not satisfactorily replicate the time-

dependent tunnel scale (in-situ scale) response if experimental calibrated creep parameters (Table 6-5) 

are employed. This limitation is addressed by conducting a sequence of parametric analyses to assess 

the appropriate creep parameters to match monitoring data at an in-situ scale. The suitable and calibrated 

creep parameters for the constitutive model to describe the time-dependent tunnel deformation on an in-

situ scale are presented in Table 6-7 below.  

Table 6-7. Calibrated in-situ creep and rock strength parameters for the EVPD constitutive model 

𝜼𝑲(GPa.h) 𝑮𝑲(GPa) 𝑮𝑴(GPa) 𝜼𝜸𝟏(GPa.h) 𝜼𝜸𝟐(GPa.h) 𝜸𝟏 𝜸𝟐 𝝎 c  𝝑 𝝍 𝝂 𝝈𝒀(MPa) 

81.7 2610 53 4470.83 141.7 0.56 0.6 0.66 6 32.6 0 0.2 130.1 
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6.8 Discussion  

The integer-order derivative constitutive models fail to fully describe the 3-phase creep behaviour most 

importantly the tertiary creep phase. This phase is characterised by the time-dependent behaviour 

responsible for squeezing. Hence, a time-dependent constitutive model for squeezing ground conditions 

based on fractal-order derivatives constitutive equations is presented. This constitutive model is derived 

to efficiently estimate the time-dependent (delayed deformation) in squeezing ground. An extension and 

adjustment of the FDVP [25] model coupled with a time-dependent viscoplastic component with a visco-

damage element. The visco-damage element is governed by the derived time scaling transformation 

constitutive equation established on fractal-order derivative hypothesis and Perzyna [26] fundamental 

constitutive law.  

The different values of the fractal-order parameters can be determined by the fractal mathematical law 

based on the condition 0.0 ≤ 𝛾1,2≤ 1.0. This condition determines the behaviour of the spring-pot strain 

derivation characterised by a zero-order derivative as a spring and first-order derivative as a dashpot. 

Important for damage development consideration in the spring-pot which entails explicit creep 

mechanism description. However, it can be mentioned that the calibration of the fractal-order parameters 

𝛾1,2 will be different for different rock masses due to different response when subjected to stress. Seeing 

that validation in this study is based on different rock specimens, the calibrated fractal-order parameters 

for salt rock and marble are 0.31 and 0.32 respectively. As such further research will be conducted to 

determine the appropriate fractal-order derivative for different rock masses prone to squeezing.  

Additionally, modelling the 3-stage creep behaviour is very ambiguous with few or lesser parameters it is 

almost impossible to attain that delayed time-dependent response characterised by the accelerated creep 

stage associated with squeezing. Therefore, additional parameters are required to explicitly describe this 

mechanism as such 14 parameters are adopted in the EVPD constitutive model. To this regard, results 

attained from the constitutive model validation, calibration and response show very close alignment with 
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experimental data. It must be mentioned that to achieve the explicit description of the 3-stage creep 

mechanism, specified rocks/rock masses should be selected, and experimental conditions critically 

designed. Hence, the selected rocks employed in this study are those attained from an underground 

operation which experiences squeezing mechanism associated with creep. Additionally, the experimental 

setting adopted and data attained are from experiment set conditions by [13] and [53]. Whereas the 

constitutive parameters can be derived directly from traditional mechanical and creep tests and 𝛾1,2 

values can be determined as rule of thumb between 0.0 and 1.0. The three experimental data sets of the 

rock specimens under specific confining pressure provide a detailed collection of experimental data which 

can only be reproduced by a reliable constitutive model. As such the EVPD constitutive model shows 

good agreement with experimental data and replication of the 3-creep phases. 

Its finite volume numerical implementation proved successful as well as actual simulation of the delayed 

deformation of a tunnel excavated in squeezing ground. The constitutive model was intended to describe 

the squeezing mechanism characterised by the 3-phase creep behaviour and its occurrence during 

tunnelling in squeezing ground. The soft rock tunnel case study adopted in the numerical simulation to 

verify the constitutive model applicability is one which experiences severe squeezing occurrences. The 

3D numerical model considers a staged excavation option and design analysis based on experience 

gained during excavation at a mine. Finally, the simulation result shows that the CVISC model 

underestimates the squeezing based delayed deformations compared to the EVPD model. 

Thus, the presented constitutive equations will allow for the appropriate excavation and tunnel support 

structure design in squeezing ground. Furthermore, damage evolution consideration is critical in 

modelling and estimating the delayed deformation characterised by squeezing. 
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6.9 Conclusions 

The strain rate curves of the EVPD constitutive model indicate near alignment with the experimental 

creep results. Hence, this validation signifies that its constitutive equations can describe not only the 

transient creep and steady-state creep but also the accelerated creep process. As such the following 

conclusion are drawn from this study. 

▪ The results from the undertaken calibration, validation and verification demonstrated that the 

constitutive model provides an efficient tool for describing 3-stage creep mechanism, delayed 

deformation estimation and tunnel stability in squeezing ground. The model perfectly described 

the accelerated creep phase and its time-dependent characteristics when 𝛾1 = 0.56, 𝛾2 = 0.6 

and ω = 0.9. Findings obtained from the sensitivity analysis of these constitutive parameters 

indicate that different values of 𝛾1,2, ω and stress level have a major effect on the rate of creep 

strain and the shape of the creep curves. However, on an in-situ scale, the model required 

parameter scaling of these constitutive parameters to match the monitoring data. 

 

▪ The constitutive model is shown to stimulate the time-dependent tunnel deformation perfectly by 

comparing its performance with the built-in CVISC constitutive model. The yield extension was, 

according to the numerical calculation, more across the tunnel simulated by the constitutive 

model (14.7 m) relative to the constitutive model CVISC (8.7 m). Whereas the deformation is 

approximately 29% and accounts for 8% more than the CVISC estimation (21%), delayed (time-

dependent) deformations are attributed to the disparity between the two results. The CVISC 

constitutive model underestimates the squeezing related delayed deformations in comparison 

with the EVPD constitutive model. 

 

▪ The constitutive model employs rather simple and powerful fractal-order derivative constitutive 

laws which improves the estimation of squeezing mechanism associated with the 3-phase creep 
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behaviour. It shows that fractal-order derivatives can serve as a bridge between the fractional-

order and integer-order derivative models by employing scaling transformation. As such 

preserves the integer-order derivative functionality and describes the power-law mechanism with 

few parameters.  

6.10 Further enhancement  

The EVPD constitutive model’s not too simple and not complex characteristic simply makes it a good fit 

in both research and design practice. This allows the model to be used with confidence in estimating the 

time-dependent deformation in squeezing ground. However, some limitation of the constitutive model 

which will require further research and improvement include: 

▪ The constitutive model neglected heterogeneity influence on damage evolution characterized by 

the VP behaviour of rock mass joints, discontinuities, and fractures. Which plays a major role on 

the extent of delayed deformations responsible for squeezing. 

▪ The constitutive model considered static and quasistatic conditions neglected dynamic effects 

(attributed to blasting and seismic events) governed by material forces and time-dependent rock 

mass properties. 

▪ The assumption adopted by the constitutive model neglects temperature effects even though its 

impact is significant. However, in cases of deep underground tunnels, influence of temperature 

on squeezing should be taken into consideration.  

Therefore, further work on the constitutive equations should consider the heterogeneity, dynamic and 

temperature effects on squeezing.
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6.12 Appendix A: Formulation of the constitutive model  

The EVPD constitutive equations are formulated by coupling the VPD component and the Burgers model, 

the strain rate relationship of the coupling is expressed by: 

𝑒̇𝑖𝑗 = 𝑒̇𝑖𝑗
𝐾 + 𝑒̇𝑖𝑗

𝑀 + 𝑒̇𝑖𝑗
𝑣𝑝𝑑

 (A1) 

Where 𝑒̇𝑖𝑗 is the total strain, 𝑒̇𝑖𝑗
𝑀 is the Maxwell strain rate, 𝑒̇𝑖𝑗

𝐾 is the Kelvin strain rate and 𝑒̇𝑖𝑗
𝑣𝑝𝑑

 is the VPD 

component strain rate. The Maxwell, Kelvin components’ strain and stress rates are expressed by: 

𝑆𝑖𝑗 = 2𝜂𝐾𝑒̇𝑖𝑗
𝐾 + 2𝐺𝐾𝑒𝑖𝑗

𝐾 (A2) 

𝑒̇𝑖𝑗
𝑀 =

𝑆𝑖𝑗
𝑀

2𝜂𝛾1
𝑡𝛾1 +

𝑆̇𝑖𝑗
𝑀

2𝐺𝑀
                             (0 ≤ 𝛾1 ≤ 1) (A3) 

Where 𝑒̇𝑖𝑗
𝑀 is the deviatoric strain rate, 𝑆𝑖𝑗

𝑀 is the deviatoric stress acting on the Maxwell component, 𝜂𝛾1 is 

the viscosity of the fractal order dashpot. The stress-strain relationship in the VPD component is computed 

from:  

𝑒̇𝑖𝑗
𝑣𝑝𝑑 =  𝜆

𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
′ −

𝑒̇𝑣𝑜𝑙
𝑣𝑝𝑑

3
𝛿𝑖𝑗 (A4) 

𝑒̇𝑣𝑜𝑙
𝑣𝑝𝑑 =  𝜆 [

𝜕𝑄𝑣𝑝

𝜕𝜎11
′ +

𝜕𝑄𝑣𝑝

𝜕𝜎22
′ +

𝜕𝑄𝑣𝑝

𝜕𝜎33
′ ] (A5) 

Where 𝑒𝑖𝑗
𝑉𝑃𝐷 is the deviatoric strain and 𝜎𝑖𝑗

′  is the total stress acting in the VPD component plastic slider 

respectively while the fractal derivative dashpot is represented by the constitutive relation given by; 

𝑒̇𝑖𝑗
𝑣𝑝𝑑 =

𝑆𝑖𝑗
𝑣𝑝𝑑

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1)                    (0 ≤ 𝛾2 ≤ 1) (A6) 

Where 𝑆𝑖𝑗
𝑣𝑝𝑑

 is the deviatoric stress partition and 𝑒𝑖𝑗
𝑉𝑃𝐷 is the deviatoric strain in the fractal-order derivative 

spring-pot. Computations of the strain in the VPD component is obtained by calculating the stress acting on 

the spring-pot, slider and 𝜆. These are computed from the stress equilibrium between the fractal dashpot and 
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slider, the deviatoric strain rates contributed by the VPD component. The deviatoric strain rate of the slider 

and the dashpot in the VPD component are equal because the elements are connected in parallel.  

𝜆
𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
′ −

𝑒̇𝑣𝑜𝑙
𝑣𝑝𝑑

3
𝛿𝑖𝑗 =

𝑆𝑖𝑗
𝑣𝑝𝑑

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1) (A7) 

and the stress equilibrium for the VPD component is represented by; 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
′ + 𝑆𝑖𝑗

𝑣𝑝𝑑
 (A8) 

Alternatively, the strain rate acting in both the plastic slider and dashpot of the VPD component can be 

integrated into one relation expressed as; 

𝑒̇𝑖𝑗
𝑣𝑝𝑑  =

𝑆𝑖𝑗
𝑣𝑝𝑑 − 𝑆𝑌

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1) (A9) 

The VPD component strain rate is further represented by the rock yield function (〈𝜙(𝐹)〉 = 𝑆𝑖𝑗
𝑣𝑝𝑑 − 𝑆𝑌) 

and the flow rule: 

𝑒̇𝑖𝑗
𝑣𝑝𝑑  =

〈𝜙(𝐹)〉 

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1)
𝜕𝑄𝑣𝑝

𝜕𝜎𝑖𝑗
 (A10) 

Where 𝑒𝑖𝑗
𝑣𝑝𝑑

 is the total strain rate of the VPD component and the plastic slider is represented by Eqs. A11, 

A12 & A13;  

𝑒̇𝑖𝑗
𝑝 =  𝜆

𝜕𝑄𝑝

𝜕𝜎𝑖𝑗
−
𝑒̇𝑣𝑜𝑙
𝑝

3
𝛿𝑖𝑗 (A11) 

𝑒̇𝑣𝑜𝑙
𝑝 =  𝜆 [

𝜕𝑄𝑝

𝜕𝜎11
+
𝜕𝑄𝑝

𝜕𝜎22
+
𝜕𝑄𝑝

𝜕𝜎33
] (A12) 

𝜎0 = 𝐾(𝑒𝑣𝑜𝑙 + 𝑒𝑣𝑜𝑙
𝑝 ) (A13) 

Where 𝑄𝑣𝑝 is the plastic potential and the MC yield criterion (𝑓 = 0) employed is comprised of the shear 

and tensile yielding (Eq A14 & A15).  
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𝑓𝑠 = 𝜎1 − 𝜎3𝑁𝜗 + 2𝑐√𝑁𝜗 (A14) 

𝑓𝑡 = 𝜎𝑡 − 𝜎3 (A15) 

Where 𝑓𝑠 is the shear yielding, 𝑓𝑡 is the tension yielding, 𝜎𝑡  is the tensile strength and their potential 

functions are represented by Eqs A16 & A A17.  

𝑄𝑣𝑝
𝑠 = 𝜎1 − 𝜎3𝑁𝜓 (A16) 

𝑄𝑣𝑝
𝑡 = −𝜎3 (A17) 

Where 𝑄𝑣𝑝
𝑠  is the shear yielding potential function, 𝑄𝑣𝑝

𝑡  is the tension yielding potential function, 𝑁𝜓 =

(1 + sin𝜓 1 − sin𝜓⁄ ) whereas 𝜆 for shear and tensile yielding is determined by Eq A18 & A19. 

𝜆𝑠 =
𝑓𝑠

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1) (A18) 

𝜆𝑡 =
𝑓𝑡

2𝜂𝛾2𝜔
(𝑒𝜔𝑡

𝛾2 − 1) (A19) 
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6.13 Appendix B: Script 
 

1 #include "modelEVPDF.h" 

2 #include "state.h" 

3 #include "convert.h" 

4 #include "version.txt" 

5 #include <algorithm> 

6 #include <limits> 

7 

8 #ifdef EVPDF_EXPORTS 
9 int stdcall DllMain(void *,unsigned, void *) { 

10 return(1); 

11 } 

12 
13 extern "C" EXPORT_TAG const char *getName() { 

14 return("cmodelEVPDF"); 

15 } 

16 
17 extern "C" EXPORT_TAG unsigned getMajorVersion() { 

18 return(MAJOR_VERSION); 

19 } 

20 
21 extern "C" EXPORT_TAG unsigned getMinorVersion(){ 

22 return(MINOR_VERSION); 

23 } 

24 
25 extern "C" EXPORT_TAG void *createInstance() { 

26 models::ModelEVPDF *m = NEWC(models::ModelEVPDF()); 

27 return((void *)m); 

28 } 

29 
30 #endif // EVPDF_EXPORTS 

31 

32 namespace models { 

33 

34 static const unsigned long mShearNow = 0x01; /* state logic */ 
35 static const unsigned long mTensionNow = 0x02; 

36 static const unsigned long mShearPast = 0x04; 

37 static const unsigned long mTensionPast = 0x08; 

38 static const Double pi = 3.141592653589793238462643383279502884197169399; 

39 static const Double degrad = pi / 180.0; 

40 static const Double dC1d3 = 1.0 / 3.0; 

41 static const Double time = 1.0; 

42 //static const Double d4d3 = 4.0 / 3.0; 

43 

44 ModelEVPDF::ModelEVPDF(): Bulk_(0.0), 

45 Kshear_(0.0), Mshear_(0.0), Kviscosity_(0.0), Mviscosity_ 

(0.0),Fdviscosity_(0.0), 

46 cohesion_(0.0), friction_(0.0), dilation_(0.0), tension_(0.0), 

dvariable_(0.0), gamma_(0.0), 

47  AccshearE_(0.0), AcctensE_(0.0), Mnphi_(0.0), Mnpsi_ 

(0.0), Mcsnp_(0.0) { 

48 Mekd_[0]= 0.0; 
49 Mekd_[1]= 0.0; 

50 Mekd_[2]= 0.0; 

51 Mekd_[3]= 0.0; 

52 Mekd_[4]= 0.0; 
53 Mekd_[5]= 0.0; 

 

Note: EVPDF refers to the EVPD_final (this is because i could not create an updated C++ code with the same 
name) 
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} 

55 

56 UInt ModelEVPDF::getMinorVersion() const{ 

57 return(MINOR_VERSION); 58

 } 

59 
60 String ModelEVPDF::getProperties(void) const { 

61 return 

(L"bulk,kshear,mshear,kviscosity,mviscosity,Fdviscosity,cohesion,frictio 

n,dilation,tension,dvariable,gamma," 

62 L"k_exx,k_eyy,k_ezz,k_exy,k_exz,k_eyz"); 63 } 

64 
65 String ModelEVPDF::getStates(void) const { 

66 return(L"shear-n,tension-n,shear-p,tension-p"); 67

 } 

68 
69 Variant ModelEVPDF::getProperty(UInt ul) const { 

70 switch (ul) { 

71 case 1: return(Bulk_); 

72 case 2: return(Kshear_); 

73 case 3: return(Mshear_); 

74 case 4: return(Kviscosity_); 

75 case 5: return(Mviscosity_); 

76 case 6: return(Fdviscosity_); 

77 case 7: return(cohesion_); 

78 case 8: return(friction_); 

79 case 9: return(dilation_); 

80 case 10: return(tension_); 

81 case 11: return(dvariable_); 

82 case 12: return(gamma_); 

83 case 13: return(Mekd_[0]); 

84 case 14: return(Mekd_[1]); 

85 case 15: return(Mekd_[2]); 

86 case 16: return(Mekd_[3]); 

87 case 17: return(Mekd_[4]); 

88 case 18: return(Mekd_[5]); 

89 } 

90  return(0.0); 

91 } 

92 
93 void ModelEVPDF::setProperty(UInt ul, const Variant &p,UInt restoreVersion) 

{ 

94 ConstitutiveModel::setProperty(ul,p,restoreVersion); 

95 switch (ul) { 

96 case 1: { // BULK 

97 Bulk_ = p.toDouble(); 

98 break; 

99 } 

100 case 2: { // KELVIN SHEAR 

101 Kshear_ = p.toDouble(); 

102 break; 

103 } 

104 case 3: { // MAXWELL SHEAR 

105 Mshear_ = p.toDouble(); 

106 break; 
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107 } 
108 case 4: { // 

109 Kviscosity_ 

110 break; 

111 } 

112 case 5: { // 

113 Mviscosity_ 

114 break; 

115 } 
116 case 6: { // 

117 Fdviscosity_ = p.toDouble(); 

118 break; 

119 } 

120 case 7: { // COHESION 

121 cohesion_ = p.toDouble(); 

122 break; 

123 } 

124 case 8: { // FRICTION ANGLE 

125 friction_ = p.toDouble(); 

126 break; 

127 } 

128 case 9: { // DILATION ANGLE 

129 dilation_ = p.toDouble(); 

130 break; 

131 } 

132 case 10:{ // TENSION 

133 tension_ = p.toDouble(); 

134 break; 

135 } 

136 case 11: { // DVARIABLE 

137 dvariable_ = p.toDouble(); 

138 break; 

139 } 

140 case 12:{ // GAMMA 

141 gamma_ = p.toDouble(); 

142 break; 

143 } 

144 case 13: { // Kelvin strain 11 

145 Mekd_[0] = p.toDouble(); 

146 break; 

147 } 

148 case 14: { // Kelvin strain 22 

149 Mekd_[1] = p.toDouble(); 

150 break; 

151 } 

152 case 15: { // Kelvin strain 33 

153 Mekd_[2] = p.toDouble(); 

154 break; 

155 } 

156 case 16: { // Kelvin strain 12 

157 Mekd_[3] = p.toDouble(); 

158 break; 

159 } 

160 case 17: { // Kelvin strain 13 

161 Mekd_[4] = p.toDouble(); 
162 break; 
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} 

164 case 18: { // Kelvin strain 23 

165 Mekd_[5] = p.toDouble(); 

166 break; 

167 } 

168 } 

169 } 

170 

171 void ModelEVPDF::copy(const ConstitutiveModel *cm) { 
172 ConstitutiveModel::copy(cm); 

173 const ModelEVPDF *vm = dynamic_cast<const ModelEVPDF *>(cm); 

174 if (!vm) throw std::runtime_error("Internal error: constitutive model 

dynamic cast failed."); 

175 Bulk_ = vm->Bulk_; 
176 Kshear_ = vm->Kshear_; 

177 Mshear_ = vm->Mshear_; 

178 Kviscosity_ = vm->Kviscosity_; 

179 Mviscosity_ = vm->Mviscosity_; 

180  Fdviscosity_ = vm->Fdviscosity_; 
181  cohesion_ = vm->cohesion_; 

182  friction_ = vm->friction_; 

183  dilation_ = vm->dilation_; 

184  tension_ = vm->tension_; 

185  dvariable_ = vm->dvariable_; 

186  gamma_ = vm->gamma_; 

187  AccshearE_ = vm->AccshearE_; 

188  AcctensE_ = vm->AcctensE_; 

189  Mnphi_ = vm->Mnphi_; 

190  Mnpsi_ = vm->Mnpsi_; 

191  Mcsnp_ = vm->Mcsnp_; 

192  Mekd_[0] = vm->Mekd_[0]; 

193  Mekd_[1] = vm->Mekd_[1]; 

194  Mekd_[2] = vm->Mekd_[2]; 

195  Mekd_[3] = vm->Mekd_[3]; 

196  Mekd_[4] = vm->Mekd_[4]; 

197  Mekd_[5] = vm->Mekd_[5]; 

198 }  

199   

200   

201 void ModelEVPDF::initialize(UByte dim,State *s) { 

202 ConstitutiveModel::initialize(dim,s); 

203 if (Mshear_ <= 0.0) Mshear_ = 1e-20 ; 

204 if (Kshear_ <= 0.0) Kshear_ = 0.0; 

205 if (Kviscosity_ <= 0.0) Kshear_ = 0.0; 

206 //iMerr = 0; 

207 //if (friction_ > 89.0) iMerr = 1; 

208 //if (fabs(dilation_) > 89.0) iMerr = 2; 

209 //if (cohesion_ < 0.0) iMerr = 3; 

210 //if (tension_ < 0.0) iMerr = 4; 

211 //if (iMerr != 0) { 

212 // iNerr = 126; 

213 // iErr = 1 ; 

214 //} 

215 Double dSphi = sin(friction_ * degrad); 

216 Double dSpsi = sin(dilation_ * degrad); 
217 Mnphi_ = (1.0 + dSphi) / (1.0 - dSphi); 
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274 //; --- define constants locally --- 

275 Double anphi = Mnphi_; 

276 Double anpsi = Mnpsi_; 

277 Double amc = Mcsnp_; 

278 //;--- partition strains --- 

279 Double dev = s->stnE_.s11() + s->stnE_.s22() + s->stnE_.s33() ; 

280 Double dev3 = dC1d3 * dev; 

281 Double de11d = s->stnE_.s11() - dev3; 

282 Double de22d = s->stnE_.s22() - dev3; 

283 Double de33d = s->stnE_.s33() - dev3; 

284 //;--- partition stresses--- 
285 Double s0 = dC1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); 

286 Double s11d = s->stnS_.s11() - s0; 

287 Double s22d = s->stnS_.s22() - s0; 

288 Double s33d = s->stnS_.s33() - s0; 

289 //;--- remember old stresses --- 

290 Double s11old = s11d; 

291 Double s22old = s22d; 

292 Double s33old = s33d; 

293 Double s12old = s->stnS_.s12(); 

294 Double s13old = s->stnS_.s13(); 

295 Double s23old = s->stnS_.s23(); 
296 //;--- new trial deviator stresses assuming viscoelastic increments --- 

297 s11d = (de11d + s11d * y_con - Mekd_[0] * bal) * c1dxc ; 

298 s22d = (de22d + s22d * y_con - Mekd_[1]* bal) * c1dxc ; 

299 s33d = (de33d + s33d * y_con - Mekd_[2]* bal) * c1dxc ; 

300 Double s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con - Mekd_[3] * 

bal) * c1dxc ; 

301 Double s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con - Mekd_[4] * 

bal) * c1dxc ; 

302 Double s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con - Mekd_[5] * 

bal) * c1dxc ; 

303 //;--- new trial isotropic stress assuming elastic increment --- 
304 s0 += Bulk_ * dev; 

305 //;--- convert back to x-y components --- 

306 Double s11i = s11d + s0; 

307 Double s22i = s22d + s0; 

308 Double s33i = s33d + s0; 

--- */ 
320 // Calculate principal stresses 

321 SymTensorInfo info; 

322 DVect3 prin = s->stnS_.getEigenInfo(&info); 

323 //; --- shear yield criterion --- 

324 Double fs = prin.x() - prin.z() * anphi + amc; 

325 Double alams = 0.0; 

309 //; --- trial stresses --- 
310 s->stnS_.rs11() = s11i; 

311 s->stnS_.rs22() = s22i; 

312 s->stnS_.rs33() = s33i; 

313 s->stnS_.rs12() = s12i; 

314 s->stnS_.rs13() = s13i; 

315 s->stnS_.rs23() = s23i; 

316  

317 if (canFail()) 

318 { 
319 /* --- calculate and sort principal stresses and principal directions 
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399 s->working_[0] += (Mekd_[0] * ba + (s->stnS_.s11() - s0 + s11old) * 

z_con) * s->getSubZoneVolume(); 

400 s->working_[1] += (Mekd_[1] * ba + (s->stnS_.s22() - s0 + s22old) * 

z_con) * s->getSubZoneVolume(); 

401 s->working_[2] += (Mekd_[2] * ba + (s->stnS_.s33() - s0 + s33old) * 

z_con) * s->getSubZoneVolume(); 

402 s->working_[3] += (Mekd_[3] * ba + (s->stnS_.s12() + s12old) * 

z_con) * s->getSubZoneVolume(); 

403 s->working_[4] += (Mekd_[4] * ba + (s->stnS_.s13() + s13old) * 

z_con) * s->getSubZoneVolume(); 

404 s->working_[5] += (Mekd_[5] * ba + (s->stnS_.s23() + s23old) * 

z_con) * s->getSubZoneVolume(); 

405 //;--- update stored Kelvin-strains and plastic strain --- 
406 if (s->sub_zone_ == s->total_sub_zones_-1) { 

407 Double Aux = 1./s->getZoneVolume(); 

408 if (s->overlay_==2) Aux *= 0.5; 

409  Mekd_[0]= s->working_[0] * Aux; 
410  Mekd_[1]= s->working_[1] * Aux; 

411  Mekd_[2]= s->working_[2] * Aux; 

412  Mekd_[3]= s->working_[3] * Aux; 

413  Mekd_[4]= s->working_[4] * Aux; 

414  Mekd_[5]= s->working_[5] * Aux; 

415  if (canFail()) 

416  { 

417  AccshearE_ += s->working_[eps]*Aux; 

418  AcctensE_ += s->working_[ept]*Aux; 

419  } 

420  } 

421   

422  if( (s->state_ & mShearNow) || (s->state_ & mTensionNow) ) 

423  s->viscous_ = false; // inhibit viscous strains 

424  else 
425  s->viscous_ = true; // allow viscous strains 

426 }  

427   

428 Double ModelEVPDF::getStressStrengthRatio(const SymTensor &st) const { 

429 DVect3 prin = st.getEigenInfo();  

430 Double rat = 10.0;  

 

382 //; --- accumulate hardening parameter increments ---  

383 if (iplas == 1) 

384 { 

385 Double de1ps = alams; 

386 Double de3ps = -alams * anpsi; 

387 Double depm = dC1d3 * (de1ps + de3ps); 

388 de1ps = de1ps - depm; 

389 de3ps = de3ps - depm; 
390 s->working_[eps] += (sqrt(0.5*(de1ps*de1ps+depm*depm+de3ps*de3ps)) * 

 s->getSubZoneVolume());  

391 } 

392 if (iplas == 2) 

393 { 

394 s->working_[ept] -= (alamt * s->getSubZoneVolume()); 

395 } 

396 } // if (canFail()) 

397 //;--- sub-zone contribution to Kelvin-strains --- 
398 s0 = dC1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); 
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431  Double tanf = std::tan(friction_*degrad); 
432  Double tcut = friction_ ? std::min(tension_,(cohesion_/tanf)) : tension_; 

433  if (tcut - prin.z() <= 0.0) 

434  rat = 0.0; 

435  else 

436  { 

437  Double sinf = std::sin(friction_*degrad); 

438  Double denom = 1.0 - sinf; 

439  Double nph = limits<Double>::max(); 

440  if (denom) nph = (1.0 + sinf) / denom; 

441  Double sig1f = nph*prin.z() - 2.0*cohesion_*std::sqrt(nph); 

442  denom = prin.z() - prin.x(); 

443  if (denom) rat = (prin.z() - sig1f) / denom; 

444  } 

445  rat = std::min(rat,10.0); 

446  return(rat); 

447 }  

448   

449 void ModelEVPDF::scaleProperties(const Double &scale,const std::vector<UInt> 

&props) { 

(friction_*degrad) * scale)/ degrad)); break; 
457 case 9: dilation_ = std::max(0.0,std::min(85.0,std::atan(std::tan 

(dilation_*degrad) * scale)/ degrad)); break; 

458 case 10: tension_ *= scale; break; 
459 default: break; 

460 } 

461 } 

462 setValid(0); 

463 } 

464 } 

465 // EOF 

450 for (UInt u=0;u<props.size();++u) { 
451 switch (props[u]) { 

452 case 1: Bulk_ *= scale; break; 

453 case 2: Kshear_ *= scale; break; 

454 case 3: Mshear_ *= scale; break; 

455 case 7: cohesion_ *= scale; break; 
456 case 8: friction_ = std::max(0.0,std::min(85.0,std::atan(std::tan 
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Abstract 

Tunnel closure due to squeezing ground conditions poses a significant challenge in the support structure 

set up, maintenance and tunnel stability. It is associated with excessive rehabilitation, rock reinforcement 

and support element failure. In this paper, the schematic support system design for tunnel stability in 

squeezing ground by employing a newly proposed analytical and numerical solutions is presented. This 

analytical solution considers the strengthening effect of the intermediate principal stress on the ground 

reaction of non-circular tunnels as well as employs strength degradation to represent squeezing. The 

solution quantifies squeezing as a consequence of high stresses, yielding, strength deterioration and 

determines the required support structure for tunnel ground response restraint at the preliminary stage. 

In addition, a finite element numerical simulation in RS2 is performed to estimate the ground response 

and support structure performance. It is drawn from the simulation results that after installation of the 

determined support structure, ground response and plastic flow radii around the tunnel decreased 

considerably. This indicates that a combination of the analytical solution and numerical simulation is 

required for a reliable tunnel support structure design in squeezing ground. It is also drawn that the 

analytical solution determines a preliminary ground response estimation which is further verified by the 

numerical simulation.  

Keywords:  Analytical solution; Ground reaction; Intermediate principal stress; Non-circular tunnels; 
Squeezing  
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7.1 Introduction 

Excavation and stability of tunnels require a thorough understanding of the surrounding weak rock mass 

behaviour. This understanding enables the appropriate support structure design and installation. The 

support structure design is highly dependent on the rock mass classification and the drift design 

experience. Excessive tunnel closure due to squeezing ground conditions in weak rock masses may pose 

a significant challenge for support structure installation, maintenance and tunnel stability. Large 

deformation associated with these conditions is characterized by the tunnel cross-section area reduction 

due to the combination of induced stress and weak rock mass [1]. This squeezing associated long-term 

deformation is usually in the form of roof sagging, wall extrusion and floor heave (Figure 7-1).  

 

 

 

 

 

 

 

 

 
Squeezing mechanism is a major challenge when excavating tunnels in weak rock mass associated with 

high induced stress fields. It is usually not identified and predicted at an early stage of tunnel excavation 

[2]. Tunnelling under this ground condition is frequently associated with excessive rehabilitation, rock 

reinforcement and support element failure. Based on the extent of the squeezing process, considerable 

investment is needed in extra rock reinforcement and support installation and time-consuming 

rehabilitation to keep tunnels serviceable [1,3,4]. When a tunnel is driven in a high-stressed rock mass 

stress redistribution occurs around its boundary depending on the geometry of its opening. This stress 

redistribution leads to the increase in deviatoric stresses which in turn induce squeezing. 

Figure 7-1. Profile 
deformation associated 
with squeezing 
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Several conducted studies about squeezing ground conditions are associated with civil engineering 

projects, for instance [5–9]. They analysed the squeezing mechanism in tunnels and concluded that 

squeezing is a long-term behaviour of rocks that can be predicted using constitutive modelling and 

numerical analyses. This estimation is centred on the rock mass strength and in situ state of stress. 

Estimation of the rock mass response requires an accurate illustration of its long-term behaviour and 

adjustment of its mechanical properties [10].  

Tunnels in mining experience squeezing when the ore bodies are in weak rock formations and as they 

continue going deeper tunnel stability under these ground conditions is becoming a major challenge. 

There are few documented case studies on squeezing in mines as opposed to civil engineering projects. 

Some squeezing occurrences in mines include the Blackwater mine of New Zealand which experienced 

severe squeezing behaviour in the 1940s [11]. In Australia the Henty mine of Tasmania experienced 

severe squeezing conditions, up to 50% above wall strain was recorded [4], the Wattle Dam Gold Mine 

reported by [12] experienced strains up to 2.8%, the Perseverance mine in Kalgoorlie reported by [13] 

and Rio Tinto's Argyle Diamond mine reported by [14] among others. The Canadian Lapa and La Rhonde 

mines’ experience with squeezing ground conditions has been discussed by [3,15,16]. South African 

experience with squeezing is also described by [17]. The Zambia’s Nchanga Under Ground (NUG) which 

is our focus in this study also experienced severe squeezing [18]. Based on [18,19] these conditions led 

to large deformation and collapse of several tunnels, consequently shutdown of the entire underground 

mine operation. This paper highlights the practical approach of employing the new analytical solution and 

the RS2 numerical simulation in determining the appropriate tunnel support structures. This approach is 

used in the stability analysis and suggests an appropriate tunnel support system in the NUG squeezing 

ground. The analytical solution estimates the elastoplastic ground reaction with strength degradation as 

a representation of the long-term behaviour associated with squeezing. It is further employed to estimate 

the support system capacity at the preliminary stage. Whereas the numerical solution verifies this ground 

response and the performance of the analytically suggested support system. 
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7.2 Convergence quantification  

Tunnel deformation associated with squeezing can be quantified using approaches classified as empirical 

methods, semi empirical methods, analytical continuum elastoplastic models (closed-form solutions), 

analytical discontinuum elastoplastic models, analytical continuum and discontinuum models based on 

material degradation and damage and continuum and discontinuum rheological models among others.  

In this paper we consider the analytical continuum model based on material degradation. This is because 

we want to gain preliminary insight into tunnel response when excavated in a rockmass that exhibits 

squeezing mechanism. It is worth mentioning that this study and analysis does not consider time-

dependency of the squeezing mechanism. Rather considers the material degradation and strength 

characteristic of the rockmass represented by the cohesion, internal friction angle and material stiffness. 

Since material degradation or deterioration takes place overtime due to the aspect of weathering, 

squeezing, swelling and stress relief [10]. This employs an elastoplastic analytical solution that neglects 

time-dependency assumes the behaviour is a simple result of high stress, yielding and linked to the 

strength degradation overtime. This solution is based on the widely employed Convergence Confinement 

Method (CCM). Which is originally based on a hole-in-a-plate theory [20] with assumptions restricted to 

(1) continuous, homogenous and isotropic rock mass, (2) initial isotropic state stress (3) plane strain 

condition and (4) circular tunnel cross-section. The applicability of this method in estimating tunnel 

deformation associated with squeezing is well clarified in several publications [21–27]. It considers three 

basic components the ground reaction curve (GRC), support characteristic curve (SCC) and Longitudinal 

Displacement Profile (LDP). The GRC describes a curve which represents the tunnel inner boundary 

stress relaxation with an incremental convergence. The SCC is characterised by the tunnel support 

structure deformation because of the internal support pressure action and the LDP relates tunnel 

displacement to the position of the tunnel face. Whereas, numerical estimation is conducted by using 

elasto-plastic, visco-elastic and more complex elasto visco-plastic constitutive models [26,28,29]. In this 

study, the elastoplastic constitutive model is adopted to verify the analytically estimated tunnel 
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convergence and verify the support structure performance. Additionally, the CCM based solution which 

addresses an assumption considered a limitation for non-circular tunnels is employed.  

7.3 Nchanga background 

Nchanga mine lies on the Zambian Copperbelt with three overlaid orebodies namely, the Lower Orebody 

(LOB), Intermediate Orebody (IOB) and Upper Orebody (UOB) [30]. Generally, two of these orebodies 

has been the source of ore production for the Nchanga open pit (NOP) while the LOB is sorely sourced 

by the NUG. Mass mining in the NUG is mainly achieved by the conventional block caving technique. 

There has been a significant decline in the LOB ore production, as a result, the UOB is the main source 

of production which will also extend the Life of Mine (LOM). However, the highly folded UOB is 

characterised by fissures, strength degrading rock mass which poses uneconomical extraction [31].  

7.3.1 Geological structure  

The LOB lies in the argillaceous shale rock type referred to as the Lower Banded Shale (LBS) while the 

UOB lies in the Feldspathic Quartzite (TFQ) [31]. The LOB is mainly extracted from the NUG however in 

the direction of the eastern syncline section the argillaceous shale is exposed on the surface and it is 

extracted from the Nchanga Open Pit (NOP) [32,33]. Ore extraction in the LOB is achieved through 

footwall drives excavated in the Arkose rock formation while development and haulage tunnels are 

excavated in the Nchanga Red Granite a basement of the Nchanga’s Lower roan group. Overlaying the 

LBS is the friable banded sandstone (BSS) which is a very weak semi-coherent rock type. The BSS is 

comprised of two forms which are the Upper Sandstone (BSSU) and Lower Sandstone (BSSL) these are 

split by a special kind of pink quartzite and shale marker [34]. While the TFQ, Dolomitic Schist (Dolschist) 

and Upper Banded Shale (UBS) all overlay the BSS [35]. The TFQ predominates much of the UOB while 

the UBS formation exists in the upper part. Even though the TFQ is characterised by its moderately 

competent state it has long been exposed to considerable folding and occurs in a profoundly jointed 

structure. The TFQ in its heavily jointed structure cannot be compared to the UBS which is significantly 
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weaker. The Dolschist, on the other hand, is slightly more competent and less jointed as compared to the 

UBS [36]. Mechanically, lithologies in the UOB exist in the form of asymmetric extensive folds which are 

not displayed below in the lithologies overlain by the TFQ. Ore extraction in the UOB is achieved through 

tunnels excavated in the footwall mainly comprised of the BSS which acts as the LOB faulting effect 

absorber and provides the UOB folding lower limit. The significant folds which occur in the UOB are the 

northern fold and overthrust fold the former affects most of the deeper sections while the latter affects the 

upper section of the UOB [35,37]. The adverse ground conditions as well as folding in the UOB present 

a significant challenge to efficient tunnel design and ore extraction. 

7.3.2 Long-term deformations at the Nchanga mine 

The NUG tunnel development is excavated in the geological footwall at a depth 700 m which is the current 

mining level. Tunnel excavation faces significant challenges due to the NUG adverse and high stressed 

ground conditions. The UOB rock mass forms an inclined bedding structure that deforms and shears 

under the high-stress state effect. Even though the tunnel support structures are installed during 

tunnelling in this high-stress rock mass significant deformations tend to occur. tunnelling in this high-

stress surrounding rock mass induces stress redistribution which leads to squeezing related 

deformations. Squeezing related deformations can be observed through floor heave, significant sidewall 

and roof extrusion characterised buckling and roof sagging which causes shotcrete liner distortion and 

flaking (Figure 7-2).  
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Table 7-1. Support elements employed at the Nchanga Underground [18,19] 

Rock formation Support system Compliance  

BSS, highly fissured 

zones 

Resin injection or fore poling, 

elliptical steel setts, 100 – 200 mm 

fibrecrete 

Steel sett every 1 m advance 

LBS, TFQ, UBS/TFQ 

contact, minor fissure 

zone 

2.4 m permasetts (0.5 - 1.0 m 

spacing), weldmesh, wetcrete (100 -

150 mm)  

Shotcrete arch setts 

Permasetts and weldmesh within 

1.0 m of the face, wetcrete 5 m 

from the face. 1 m face advance 

UBS, DolSch 2.4 m permasetts (0.5 - 1.0 m 

spacing), weldmesh, wetcrete (75-

100 mm)  

Permasetts and weldmesh within 

1.0 m of the face, wetcrete 5 m 

from the face. 

TFQ 2.4 m permasetts (1.0 m spacing), 

weldmesh, wetcrete (50 mm) 

Permasetts and weldmesh within 

1.0 m of the face, Wetcrete 10 m 

from the face. 

Arkose Permasetts (1.2 m spacing) Permasetts within 1.0 of the face.  

Nchanga Red Granite Spot bolting 
 

 

The UOB footwall tunnel support structure design considers fibrecrete/mesh reinforced shotcrete (200 

mm) and split set bolts (2.4 m) at 0.6 m spacing from the floor. In addition, permasets (2.4 m) at 1.0 m 

spacing, grouted rock bolts (2.4 m) coupled with fibrecrete (200 mm) are usually installed in the dry/wet 

rock mass conditions (Figure 7-3).  
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7.3.4 Support system strategy in squeezing ground 

Determination of the optimized and appropriate tunnel support structure the GRC-SCC interaction is 

required which considers tunnel convergence and the load on the structures. These support structures 

and their capacity are directly dependent on the extension of the plastic flow usually extensive in poor 

rock masses. In such cases, conventional rock bolts with limited length tend not to be effectively anchored 

into the elastic stable stratum. In such conditions, they are effective when installed in a closely spaced 

arrangement which induces an unnatural arch in the failure zone (Figure 7-5). 

 

 

 

 

 

 

 

Figure 7-5. Rock bolt setup (A) normal spaced pattern and (B) tightly spaced pattern [39] 

Figure 7-4. Plastic zone extension (a) unsupported tunnel case and (b) supported 
tunnel case 
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However, in exceedingly poor rock masses the most effective approach is by employing an integrated 

support structure comprised of steel sets, shotcrete and cable bolts capable to anchor into the stable 

elastic zone (Figure 7-6). This integration is most effective in restraining rock dilation in delayed plastic 

extension experienced around tunnels in squeezing ground conditions.  

 

 

 

 

 

 

 

7.4 Tunnel convergence analysis 

Determination of the appropriate tunnel support structure design in the NUG we employ a recently 

proposed analytical solution [27]. Which considers the Lode angle dependence and non-circular tunnels 

in a hydrostatic stress field.  

 

7.4.1 Yield criterion description 

In this section, the DP yield criterion (Eq. (7-1)) is reformulated in the spherical coordinate system by 

incorporating the Lode angle parameter to account for the intermediate principal stress strengthening 

effect on the rock mass.  

 𝑓 = 𝛼𝜑𝐼1 + √𝐽2 − 𝑘𝜑 (7-1) 

 

Figure 7-6. Composite support structure design 
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Where 𝛼𝜑 and 𝑘𝜑 are material constants, 𝐽2 is the second invariant of the stress deviator tensor and 𝐼1 

is the first invariant of the stress tensor defined by: 

 𝐼1 =  𝜎1 + 𝜎2 + 𝜎3 (7-2) 

 

 𝐽2 =
1

6
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 +  (𝜎1 − 𝜎3)2] (7-3) 

 

 

 

 

 

𝛼𝜑 =  
2 𝑠𝑖𝑛 𝜑

√3(3 −  𝑠𝑖𝑛 𝜑)
 (7-4) 

 𝑘𝜑 =  
6 𝑐𝑐𝑜𝑠 𝜑

√3(3 −  𝑠𝑖𝑛 𝜑)
 (7-5) 

 

Where 𝜎1, 𝜎2 and 𝜎3 represents the major, intermediate and minor principal stresses respectively. 

Whereas c and 𝜑 are the cohesion and internal friction angle respectively. Rock mass under stress is 

subjected to elastic behavior exemplified by Hooke's law in which the change in stress-strain depends on 

the elastic modulus (𝐸) and ν. Further on, the behaviour extends into plasticity represented by 

elastoplastic constitutive equation governed models. The plastic flow attained from plasticity is controlled 

by a parameter described by the hydrostatic stress-von Mises equivalent stress ratio [40]. The Lode angle 

related to the third invariant of the stress tensor deviator (𝐽3) on the deviatoric plane will affect this plastic 

flow [41]. The Lode angle (𝜃) on this plane is represented by a coordinate system associated with the 

three stress invariants (𝑝, 𝑞, 𝑟)). This normalized Lode angle obeys the condition (−1 ≤ 𝜃̅ ≤ 1 ) and 

defined in different forms [42,43]. Additionally, in-plane stress state (𝜎3 = 0) it can be expressed by the 

relation Eq (7-6) below. 
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 cos [
𝜋

2
(1 − 𝜃̅)] =

2𝜎2 − (𝜎1 + 𝜎3)

(𝜎1 − 𝜎3)
= 𝜉 (7-6) 

The DP yield criterion (Eq. (7-1)) is expressed in terms of the radial stress (𝜎𝑟) stress, hoop stress (𝜎𝜃) 

and the Lode angle parameter as: 

 

(𝜎𝑟 + 𝜎𝜃)

2
[(1 +  

(cos [
𝜋
2

(1 − 𝜃̅)])
2

3
)

0.5

 −
 𝛼𝜑 (cos [

𝜋
2

(1 − 𝜃̅)])

2
]

−
3𝛼𝜑(𝜎𝑟 + 𝜎𝜃)

2
− 𝑘𝜑 = 0 

(7-7) 

7.4.2 Ground reaction curves 

During the excavation of tunnels, they tend to occur peripheral convergence towards its centre attributed 

to the elastic behaviour of the surrounding rock mass. When this convergence extends it satisfies the 

yield criterion as a result plastic flow emanates which is represented by the plastic radius (𝑅𝑝). This 

extension due to the yield criterion satisfaction occurs when the internal support pressure is less the 

critical pressure. The critical pressure, on the other hand, has an equal magnitude with the elastic-plastic 

interface stress (𝜎𝑅𝑃) expressed by:  

 

 

𝜎𝑅𝑃 = 𝜎0 −  
3𝛼𝜑𝜎0 + 𝑘𝜑

(1 +  
(cos [

𝜋
2

(1 − 𝜃̅)])
2

3
)

0.5

−
 𝛼𝜑 (cos [

𝜋
2

(1 − 𝜃̅)])

2

 

(7-8) 

If 𝜎𝑅𝑃 is less than the internal support pressure no failure of the rock mass arises and is associated with 

the rock mass elastic convergence (𝑢𝑒).  

 

 𝑢𝑒 =
1 + 𝑣

𝐸
(𝑅𝑞)(𝜎0 − 𝜎𝑅) (7-9) 

 
Where 𝑅𝑞 is the equivalent radius of a tunnel attained by employing the equal area method [27]: 
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 𝑅𝑞 = [(

1
2

(𝜋𝑅2 + 𝐿𝑅)

𝜋
)

0.5

] (7-10) 

 

Where 𝑅 is the radius of the horseshoe-shaped tunnel arc, 𝜋 is the radial constant and 𝐿 is the tunnel 

wall height. When 𝜎𝑅𝑃 is greater than the internal support pressure failure arises and 𝑅𝑝 develops by 

adhering to the conditions (𝑅𝑝 = 𝑅𝑞 , 𝜎𝑅 = 𝜎𝑅𝑃 ): 

 𝑅𝑝 = 𝑅𝑞  [
 𝜎𝑅𝑃 + (

𝜌
𝛽

)

𝜎𝑅 + (
𝜌
𝛽

)
]

1
𝛽

 (7-11) 

   

Where: 

 𝛽 =

6𝛼𝜑 − (1 +  
(cos [

𝜋
2

(1 − 𝜃̅)])
2

3
)

0.5

 

(1 +  
(cos [

𝜋
2

(1 − 𝜃̅)])
2

3
)

0.5

−
 𝛼𝜑 (cos [

𝜋
2

(1 − 𝜃̅)])

2 − 3𝛼𝜑

 (7-12) 

 

𝜌 =
2𝑘𝜑

(1 +  
(cos [

𝜋
2

(1 − 𝜃̅)])
2

3
)

0.5

 −
 𝛼𝜑 (cos [

𝜋
2

(1 − 𝜃̅)])

2 − 3𝛼𝜑

 

(7-13) 

 

When 𝑅𝑝 = 𝑅𝑞 the surrounding rock mass undergoes plasticity and tunnel convergence associated with 

it is estimated by: 
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Maximum plastic extension (m) 5.16 5.60 5.88 6.21 6.31 

Maximum tunnel convergence (m) 0.071 0.082 0.090 0.111 0.110 

 

Table 7-3. Ground reaction rock mass and geometrical parameters  

Parameters Mohr coulomb Drucker-Prager 

Specific weight (kN/m3) 27 c (MPa) 1.28 Tensile strength (MPa) 0.05 

Depth (m) 700 𝜑 (°) 26.6 𝛼𝜑 0.4478 

𝑅𝑞 (m) 2.15 UCS (MPa) 1.15 𝑘𝜑 1.553 

𝑣 0.20 𝐸 (MPa) 3193 𝜗 (°) 0 

Global strength (MPa) 4.38 𝑣 0.20   

 

7.4.3 Longitudinal displacement profile 

Estimation of the GRC and plastic flow around the tunnel is based on a two-dimensional (2D) analysis. 

However, the LDP is required to establish the relative position of the tunnel face and support structures. 

It is determined by a three-dimensional (3D) analysis, in this case, the LDP solution [44] in an EPP rock 

mass is adopted. Based on this solution the tunnel face convergence (𝑈𝑟f) is determined by: 

 
𝑈𝑟𝑓 = (

𝑈𝑟𝑚

3
) 𝑒− 0.15(

𝑅𝑚
𝑅

)  

 

(7-15) 

Where 𝑅𝑚 maximum plastic radius, 𝑈𝑟𝑚 is the maximum tunnel displacement and convergence ahead 

of the face (𝑋 < 0) and behind the face (𝑋 > 0) are defined by Eqs. (7-16) and (7-17) respectively: 

 
𝑈𝑟𝑋 = (

𝑈𝑖𝑓

𝑈𝑟𝑚
) 𝑒(

𝑋
𝑅

)
 

 

(7-16) 
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7.5.1 Support reaction curves 

Support pressure provided by support elements can restrain convergence and plastic flow extent around 

tunnels. The support element stiffness (𝐾𝑠) and the distance behind the face at which support elements 

are installed is an important aspect in tunnel convergence restraint and the rock mass-support element 

interaction. This rock mass-support element interaction is determined by the employment of the GRC and 

SCC. On the other hand, the LDP determines the tunnel convergence (𝑈𝑖𝑜) at a specific distance behind 

the face at which support elements are installed. The installed support elements tend to yield during 

stages of excavation and this yielding extent (𝑈𝑖𝑦) is determined by: 

𝑈𝑖𝑦 = 𝑈𝑖𝑜 + 𝑈𝑖𝑚  =  𝑈𝑖𝑜 +
𝑝𝑠𝑚𝑎𝑥

𝐾𝑠
 

 

(7-17) 

Where 𝑈𝑖𝑚 is the support elastic deformation and 𝑝𝑠𝑚𝑎𝑥  represents the support structure capacity. 

When the GRC and SCC are used they tend to intersect at a point that determines the equilibrium point. 

This point verifies the tunnel convergence of a lined tunnel and the pressure provided by the support 

installed. this, in turn, estimates the support safety coefficient (𝐹𝑆): 

𝐹𝑆 =  
𝑝𝑠𝑚𝑎𝑥

𝑝𝑠𝑒 
 

 

(7-18) 

Support elements with the safety coefficient more than the allowable limit (𝐹𝑆 ≥  𝐹𝑠 𝑚𝑖𝑛) are considered 

appropriate for a tunnel. The critical aspect of tunnel design in squeezing ground conditions is the 

sequence and installation timing of support elements and to avert overload or failure but able to maintain 

a safe working environment. Support structures are installed at the earliest time to provide safety and be 

delayed sufficiently to avert support load build-up. Early tunnel support structure installation results in 

support buckling, support failure and extension of the plastic flow. 
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7.5.2 Construction of the support characteristic curves  

This section considers the GRC and SCC interaction to determine the appropriate support structure 

capacity for tunnels in the NUG squeezing ground. This interaction is dependent on the LDP which allows 

support structure installation at distance behind the face. 

7.5.2.1 Current support reaction curves 

The stiff support structures employed at the NUG cannot allow the redistribution of stress (yielding 

principle). Also, the installed rock bolts cannot be anchored in the stable stratum beyond the plastic flow 

radius. Therefore, in this section, the current support structure capacity is evaluated in the short-term and 

long-term. A horseshoe-shaped tunnel excavated subjected to isometric stress field is assumed in this 

analysis. Its ground response is assumed to be instantaneous as such neglects the time-dependent (long-

term) effect. A flaw that greatly affects the accuracy of the analysis in that an in-situ scale tunnelling is 

influenced by the rock mass time-dependent behaviour. However, to account for this tunnel behaviour it 

is observed that time-dependent parameter estimation without consideration of the creep behaviour is 

cumbersome. Therefore, a pragmatic approach considering the rock mass strength degradation overtime 

is undertaken in which the time-dependent strength parameters are attained from the reduction of the 

time-independent parameters (Table 7-4).  

Table 7-4. Short-term and long-term strength parameters  

Strength parameter  Short-term Long-term (67%) 

c (MPa) 1.28 0.86 

𝜑 (°) 26.6 17.8 

𝐸 (MPa) 3193 2139 

 
It is worth noting that the long-term strength parameters are applied to the plastic extension since the 

long-term change due to deformation is a measure of plastic yielding. Ideally, the installation of support 
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7.5.2.2 Proposed support reaction curves 

The elastic deformation of the installed support in response to the tunnel convergence is dependent on 

the in-situ stress level, rock mass behaviour and support properties. It is worth noting that the rock 

reinforcement (rock and cable bolts) capacity cannot be effectively accounted for because its capacity is 

considered equivalent to the internal pressure.  However, length can be determined by the radius of the 

plastic flow, this gives a rough estimation of how far they can be anchored into the stable elastic stratum. 

In this section, the tunnel support capacity of the surface retaining elements will be determined based on 

the allowable wall to wall strain (𝜀%). This is highly dependent on ether mining or civil tunnel design of 

which the former has a 2% allowable closure while the latter has no allowable closure. According to [45], 

an excess of 𝜀%= 1% results in tunnel instability and difficulties in support structure installation. However, 

[46] later confirmed that some tunnels which experienced 𝜀%= 5% did not exhibit instability. Hence, the 

1% limit is an initial indication of tunnel instability signifying an immediate appropriate support structure 

installation to restrain further tunnel closure. Determination of the required support pressure (𝜎𝑖) requires 

the rock mass strength (𝜎𝑐𝑚 =  2𝑐 𝑐𝑜𝑠 𝜑 (1 − 𝑠𝑖𝑛 𝜑)⁄  ) -  stress (𝜎0) ratio estimation. In the short-

term, 𝑢𝑟 attained for this tunnel is 0.11 m, translates to 5.2% wall to wall strain whereas the long-term 

records 0.24 m (11%) according to Eq. (7-19). 

𝜀% =  
𝑢𝑟

𝑅𝐸𝑄
 (7-19) 

Based on the postulate [45] [46], the estimated 5.2% is unacceptable and appropriate support elements 

are required to avert further convergence (Figure 7-10).  
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This is achieved by installing a support structure behind the tunnel face to restrict 𝜀% to an acceptable 

level. Considering the 2% allowable strain from Figure 7 in [47], it is observed that 𝜎𝑐𝑚 𝜎0⁄  = 0.086. 

Hence, an internal support pressure of 𝜎𝑖 𝜎0⁄ = 0.25 ≈ 𝜎𝑖 23⁄  is appropriate for tunnel stability. It is drawn 

from the analysis above that the least support pressure required is 𝜎𝑖  ≈ 5.75 MPa. This pressure can be 

attained from the stiffness and capacity estimation of the appropriate NUG tunnel support structure from 

simplistic analyses (Appendix B). The structure proposed from this analysis is the STSCCB (steel sets + 

shotcrete + cable bolts). This consists of yielding steel ribs with sliding joints (Toussaint-Heintzmann 

profile - TH 44/58-curve # 6), friction bolts (Swellex), bulbed and grouted cable bolts (JENNMAR 63 T 

sumo) and shotcrete (BN 450 shotcrete) designed in a horseshoe profile (Figure 7-11). 

                                                                                         

 

 

Figure 7-10. Expected strain and the rock mass strength to in-situ stress [45].  
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Table 7-5. Current and proposed support structure safety coefficient  

Safety coefficient (FS) 

GRC Current support structure STSCCB 

Short-term 1.15 2.23 

Long-term 0.8 1.45 

 

7.5.3 Numerical verification of the proposed support structures 

In this section, the numerical simulation is conducted in the 2D RS2 to evaluate the tunnel stability and 

compare the effectiveness of the current and proposed support structures. The plane strain model is 

established using the actual geometrical standards set at of the NUG. The model dimension is 40 × 40 

m with a 4.5 m × 3.7 m tunnel while boundary conditions of the model are set to restrain the vertical 

movement during the loading process and boundary displacements at the side walls (Figure 7-13). 

However, in the model, the initial stress acting on the tunnel boundary is assumed to be hydrostatic with 

the mean in-situ stress (23.3 MPa). Input parameters for the numerical simulation include the rock mass 

and support element mechanical parameters presented in Table 7-3, Table 7-6 & Table 7-7. 

 

 

 

 

 

 

 

 

Figure 7-13. Boundary condition of the numerical model 
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Table 7-6. Current support element parameters 

Support 

element 

Elastic modulus 

(MPa) 

Poisson's 

ratio  

Compressive 

strength  

(MPa)  

Tensile strength 

 (MPa)  

Permasets   200000 0.25  0.1  

Wire mesh 200000 0.25  400 400 

Shotcrete 30000 0.15  40 3  

Steel sets 200000 0.25  400 400 

 
Table 7-7. Proposed support element parameters 
 

Support element Elastic modulus 

(MPa)  

Poisson's 

ratio  

Compressive 

strength  

(MPa)  

Tensile 

strength 

 (MPa)  

Swellex PM24C 207000 0.25  0.24 

BN 450 concrete 36000 0.2 44 5 

TH 44/58 steel ribs 200000 0.25  400 400 

JENNMAR 63 T Cable bolts                                                                                          207000 0.2  0.635 

 

7.5.4 Numerical results  

In this section, the results of the tunnel deformation and plastic flow around the unsupported, current 

supported and proposed supported tunnel case is presented. The total deformation estimated within the 

unsupported tunnel is 120 mm which translates to 5.6% wall to wall strain. This estimation comprises of 

the roof, wall and floor heave as 99 mm, 106 mm and 120 mm respectively. The numerical results attained 

from a tunnel installed with the current support structure shows a reduction in roof, wall and floor 

deformations at 40% (59 mm), 35% (69 mm) and 10% (108 mm) respectively (Figure 7-14). It is drawn 

from this analysis that the current support structure does not provide adequate tunnel stabilisation. The 
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deformation attained after installing the current support structure translates to unacceptable 4.8% wall to 

wall strain with floor heave (no significant reduction) as a major contributor. Therefore, the proposed 

support structure is installed to considerably reduce this wall strain to the allowable limit. Employing the 

proposed support structure shows a significant reduction in the wall to wall strain (Figure 7-15 & Table 

7-8).    
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Figure 7-14. Tunnel convergence (a) current supported (b) proposed supported 
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Table 7-8. Tunnel wall strain 
 

 Short-term Long-term 

 Unsupported 

Current 

support 

structure 

STSCCB Unsupported 

Current 

support 

structure 

STSCCB 

𝑢𝑟 (m) 0.13 0.11 0.046 0.24 0.22 0.044 

𝜀 (%) 5.6 4.8 2.0 11 10 2.0 

 
The numerical analysis evaluates the practicability and efficacy of the proposed support structure. 

Through estimating deformation extent recorded from the monitoring points around the peripheral of the 

numerically simulated tunnel. Figure 7-16 shows these recorded deformations which depict extent into 

the surrounding rock mass. It is shown that the extent of deformation from the peripheral into the rock 

mass reduced when the current support structure is employed. Whereas, employing the proposed 

support structure shows further reduction with depth in the rock mass. This shows that the proposed 

support structure can further restrain rock dilation deep in the surrounding rock mass.







329 

 

 

 

  

Figure 7-18. Tangential stress distribution (a) current supported tunnel (b) proposed supported tunnel 
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Figure 7-19. Plastic flow distribution around tunnels (a) current supported (b) proposed supported  
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7.6 Conclusion 

The paper has shown that determining the support requirements for tunnelling through weak rock masses 

is not a trivial task but rather an iterative process. Integrating the newly proposed analytical solution and 

numerical simulation an adequate support structure design can be achieved for NUG tunnels in 

squeezing ground. The support structure-ground reaction interaction is conducted by using this proposed 

solution, it considers the effect of delayed support installation.  

It is noteworthy that the solution does not associate squeezing with time rather the degradation of the 

rock mass strength characteristics. As such gives a preliminary insight of the tunnel response in the 

rockmass exhibiting squeezing mechanism. 

The analytical GRC and LDP interaction assists in the determination of the appropriate time of support 

structures installation. This relationship verifies the long-term stability coefficient in squeezing grounds 

for the STSCCB system that is mounted at the right place and time behind the tunnel face. It is shown 

that the system constructed at tunnel convergence (0.03 m) indicates a higher safety coefficient of 2.23 

in the short-term and 1.45 in the long-term. This shows that the structure is adequate for the effective 

restraint of both short-term and long-term convergence, most importantly that related to squeezing 

ground. Its design is based on the concept that allows for large deformation occurrence relating to that 

experienced in the NUG squeezing ground. 

The STSCCB support structure significantly restrained tunnel convergence by 35% and 18% in the short-

term and long-term. This reduction accounts for 2.0% wall to wall strain which lies on the allowable limit. 

The structure reduced the short-term deformation to approximately 27.8 mm (roof), 58.2 mm (wall) and 

44.5 mm (floor) which accounts reduction of 72%, 45% and 63% respectively. Although employing this 

structure, tunnels experienced a certain degree of boundary deformation, it occurred within the allowable 

limit. Additionally, the support structure effectively restrained the plastic flow extension around the tunnel 

by approximately 34% in the short-term and 52% in the long-term. 
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Results from the numerical simulation show that the proposed support structure installation leads to a 

considerable tunnel convergence and plastic flow reduction. However, this outcome would be different if 

the support structure is installed too early (too close to the tunnel face) or too late (too far from the tunnel 

face). The paper reinforces that integrating the analytical solutions and numerical simulations are 

recommended for a reliable support structure design. The simplicity of the analytical solution may lead to 

the preliminary ground response estimation, while the numerical simulation is used to verify this ground 

reaction and the proposed support structure performance. 
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7.8 Appendix A: Longitudinal displacement profile estimated values 

Table A 1. Scaled convergence at a normalized distance behind the tunnel face for different solutions  

𝜽(°) 15 12 9 6 

X (m) 𝑼𝒓 𝑼𝒓𝒎⁄  

0 0.24 0.22 0.21 0.21 

1 0.33 0.30 0.28 0.28 

2 0.41 0.37 0.34 0.34 

3 0.48 0.43 0.40 0.40 

4 0.54 0.49 0.46 0.44 

5 0.60 0.54 0.51 0.49 

 

Table A 2. Maximum plastic radius, tunnel and face displacement for different solutions  

𝜽(°) 15 12 9 6 

𝑅𝑚 (m) 5.32939 5.79746 

 

6.09144 

 

6.43552 

𝑈𝑟𝑚 (m) 0.07568 0.08823 

 

0.09661 

 

0.10690 

𝑈𝑖𝑓 (m) 0.01738 0.01961 

 

0.02104 

 

0.02273 
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7.9 Appendix B: Support structure capacity estimation 

Table B 1. Mechanical and geometrical characteristic of proposed support elements  

TH 44/58 steel ribs BN 450 shotcrete 

𝐴 0.00134 m2 𝑝𝑠𝑠𝑚𝑎𝑥  0.638 MPa 𝐴 
0.00134 

m2 
𝑝𝑠𝑐𝑚𝑎𝑥 7.43 MPa 

𝐸𝑠 
200000 

MPa 
𝐾𝑠𝑠 

250.77 

MPa/m 
𝐸𝑐 

36000 

MPa 
𝐾𝑠𝑐 

3615.85 

MPa/m 

𝜎𝑦𝑠 245 MPa 𝑝𝑠𝑠𝑚𝑎𝑥 𝐾𝑠𝑠⁄  0.00255 𝜎𝑐𝑐  44 MPa 𝑝𝑠𝑐𝑚𝑎𝑥 𝐾𝑠𝑐⁄  0.00205 

𝑅𝑞 2.15 m   𝑅𝑞 2.15 m 𝑣 0.2 

𝜔 1 m   𝑡 0.4 m   

JENNMAR 63 T sumo Cable bolts                                                                           Swellex PM 24C 

𝑇 0.635 MN 𝑙 8.0 m 𝑇 0.24 MN 𝑙 3 m 

𝜔𝑙 1.0 m 𝑅𝑞 2.15 m 𝜔𝑙 1.0 m 𝑅𝑞 2.15 m 

𝑅𝑐 2.0 m 𝑝𝑐𝑏𝑚𝑎𝑥 0.3175 MPa 𝑅𝑐 1.0 m 𝑝𝑏𝑚𝑎𝑥 0.24 MPa 

𝐸𝑏 
207000 

MPa 
𝐾𝑐𝑏 7.87 MPa/m 𝐸𝑏 

207000 

MPa 
𝐾𝑏 74.199 MPa/m 

𝐷 0.028 m 𝑝𝑐𝑏𝑚𝑎𝑥 𝐾𝑐𝑏⁄  0.04035 𝐷 0.037 m 𝑝𝑏𝑚𝑎𝑥 𝐾𝑏⁄  0.00324 

 
Table B 2. Tunnel convergence at a distance behind the tunnel face  

 𝜽(°) 

X (m) 15 12 9 6 

1 0.01816 0.01941 0.02029 0.02245 

2 0.02497 0.02647 0.02705 0.02993 

3 0.03103 0.03265 0.03285 0.03635 
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4 0.03633 0.03794 0.03865 0.04276 

5 0.04087 0.04323 0.04444 0.04704 

 
 

Table B 3. SCC parameters for the composite support structure 

Combined support structure 𝒑𝒔𝒎𝒂𝒙 (MPa) 𝑲𝒔𝒕 (MPa/m) 𝑼𝒊𝒎(m) 

STCB 0.66617 258.642 0.00258 

STB 0.83699 324.963 0.00258 

SCCB 7.44071 3623.723 0.00205 

SCB 7.57689 3690.043 0.00205 

STCBSCB 8.10797 3948.686 0.00205 

 
 

Table B 4. Displacement results at GRC-SCC equilibrium points for the composite support structure 

Uiy X= 2m 

𝜽(°) STCB STB SCCB SCB STCBSCB 

15 0.02755 0.02755 0.02703 0.02703 0.02703 

12 0.02905 0.02905 0.02852 0.02852 0.02852 

9 0.02963 0.02963 0.02911 0.02911 0.02911 

6 0.03251 0.03251 0.03199 0.03199 0.03199 

 
 

Table B 5. Support characteristic curve computations 

  STCB STB SCCB SCB STCBSCB 

𝜽(°)  MPa  m  MPa  m  MPa  m  MPa  m  MPa  m 
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Chapter 8.  

8. Conclusions and Recommendations 

8.1 Conclusions  

The main objectives of this study are to understand the behaviour of tunnels excavated in squeezing 

ground with the main emphasis on the 3-phase creep phenomenon and efficient tools for its reliable 

estimation. Hence, a literature review on the conventional and numerical solutions is conducted and 

limitations are outlined. As such, this thesis addressed the limitations by presenting the closed-form 

solutions and the time-dependent constitutive model.  

The two closed-form analytical solutions presented herein are derived and presented to predict the non-

circular tunnel convergence influenced by the confining stress and time-dependent behaviour. The 

presented elasto-plastic solution governed by the Lode-dependent DP yield criterion can successfully be 

employed to estimate tunnel convergence. The most important part addressed by the solution is the 

consideration of the intermediate principal stress in convergence as well as non-circular tunnel geometry, 

which most analytical solutions neglect. Whereas, the second solution addresses the conventional 

analytical method limitation in considering the elasto-viscoplastic behaviour characterized by squeezing 

mechanism. This time-dependent solution can estimate the viscoplastic plastic strains in the accelerated 

creep phase. As such can be a good and reliable tool in estimating delayed tunnel convergence in 

squeezing ground.  

The derived time-dependent constitutive equations presented herein are based on derivatives capable of 

describing the power-law mechanism. Firstly, the more complex fractional-order derivatives which require 

many parameters and secondly the less complex fractal-order derivatives that involve relatively fewer 

parameters. The fractional-order derivative-based constitutive equations are incorporated with the 

overstress and gamma functions. To build an improved time variation viscoelastic viscoplastic constitutive 

model for the 3-phase creep description. Even though the model can successfully describe the 3-phase 
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creep behaviour, it needed improvement to address certain limitations such as the number of parameters 

required and most importantly the explicit description of the accelerated creep phase associated with 

damage evolution. Hence, the second improved constitutive equations based on the fractal-order 

derivatives are derived to consider these aspects. 

In this improvement the fractal-order derivative, overstress function, and damage factor are applied to 

build a damage constitutive function. This represents a nonlinear creep damage model with time-varying 

viscoelasticity viscoplasticity for 3-phase creep behaviour estimation. This power-law and damage 

functions integrated constitutive model is efficient, easy to implement, and requires less computational 

time as compared to one which incorporates the gamma and overstress law. Finally, it shows good 

agreement with the 3-phase creep experimental data and requires few creep parameters to explicitly 

depict the 3-phase behaviour as compared to the viscoelastic viscoplastic constitutive model. 

These constitutive equations are realized by implementing in FLAC3D as user-defined constitutive models 

and efficiently employed to simulate mechanical responses associated with creep.  Which includes long-

term time-dependent deformation and damage evolution exhibited by squeezing ground. The models can 

successfully be employed to conduct the time-dependent stability and failure analysis of tunnels 

excavated in squeezing rock mass. 
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8.2 Recommendation for future research  

This study face limitation that remains unaddressed involving the implemented constitutive model’s 

applicability on the time-dependent tunnel response in squeezing ground and its verification. Hence, this 

section outlines the limitation and makes the recommendation to address them as follows:  

▪ The numerically implemented constitutive model does not consider other factors that influence 

squeezing mechanisms. This includes (1) the heterogeneity influence on damage evolution 

characterized by the viscoplastic behaviour of the rock mass discontinuities. That plays a major role 

in the extension of delayed deformations responsible for squeezing. Even though heterogeneity was 

partly considered by the creep parameter scaling, partial verification was attained because the 

fractured rock mass complete material properties are unknown. (2) The dynamic response as a result 

of ground vibration, blasting, and seismicity. (3) The civil application assumption adopted which does 

not consider cases of temperature effects. However, in cases of squeezing ground in deep 

underground mining, the temperature effect attributed to the geothermal gradient should be 

considered in tunnel stability analysis. Therefore, further work on the constitutive equations should 

consider the heterogeneity, dynamic, and temperature effects on squeezing. 

 

▪ This implemented model is used to perform a numerical stability analysis with the intent to estimate 

the actual time-dependent tunnel convergence associated with creep and its implications. However, 

the analysis can be extended further if there is access to a large monitored convergence dataset 

attained from squeezing prone tunnels. Attempts to attain this large dataset were unsuccessful and 

the available employed in the numerical back analysis proved incomplete and captured over a short 

period. In that monitored time-dependent convergence dataset associated with squeezing requires a 

significant period of acquisition. Hence, the acquisition of dataset measured over time (years) is 

cardinal for the reliable tunnel response depiction in squeezing ground.  
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▪ The results attained from numerical simulations are usually influenced by the numerical code 

(continuum or discontinuum), the mesh concentration, the constitutive model employed, among 

others. The choice of the continuum or discontinuum numerical simulation is mainly dependent on 

the problem scale and fracture system geometry. Needless, to say the employment of a wide range 

of numerical simulations requires different types of rock property characterization. As such the rock 

mass behaviour’s realistic capture correlates with the numerical simulation type and rock mass 

properties.  In this study, the simulation is performed in a continuum finite volume code that considers 

an equivalent continuous rock mass material. However, it is necessary to explicitly depict the 

heterogeneity attributed to the ground material fracture growth and block rotation.  Additionally, the 

ability of the presented constitutive model to account for the rock mass and support structure 

interaction need also be studied through explicit discontinuum numerical simulation. More importantly 

the evaluation of tunnel stability and support installation at the right location and right time. 






