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The computational challenge of lattice chiral symmetry

Is it worth the expense?
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Abstract. The origin of the low-lying position of the Roper resonance in the
nucleon energy spectrum has been the subject of significant interest for many
years, including several investigations using lattice QCD. It has been claimed
that chiral symmetry plays an important role in our understanding of this res-
onance. We present results from our systematic examination of the potential
role of chiral symmetry in the low-lying nucleon spectrum through the direct
comparison of the clover and overlap fermion actions. After a brief summary
of the background motivation, we specify the computational details of the study
and outline our comparison methodologies. We do not find any evidence sup-
porting the claim that chiral symmetry plays a significant role in understanding
the Roper resonance on the lattice.

1 Introduction

Discovered in 1964 via a partial wave analysis of pion-nucleon scattering data [1], the Roper
resonance (N(1440)%+) has an unusually large full width of ~350 MeV [2] and is the lowest-
lying resonance in the nucleon spectrum, sitting below the first negative-parity N(1535)%_
state. This is a reversal of the ordering predicted by simple quark models.

The nature of the Roper resonance has long been a source of puzzlement. Groups employ-
ing correlation matrix analyses in lattice QCD see a quark-model-like radial excitation [3]
with a large mass for the first positive-parity excitation, which sits high relative to the Roper
resonance, and above the first negative-parity excitation [4—13]. Figure 1 illustrates the agree-
ment among calculations employing local 3-quark operators. However, the yQCD Collabo-
ration have seen a low mass, consistent with the Roper resonance. They emphasise their use
of a lattice fermion action which respects chiral symmetry as being key to obtaining their
result [14, 15]. It is important to note that the yQCD result is also dependent on their use of
the sequential empirical Bayes (SEB) analysis method [16].

We see in Fig. 4 of Ref. [14] that when the SEB algorithm is applied to the same correla-
tion functions, produced with a lattice fermion action which does not respect chiral symmetry,
the SEB analysis obtains a ground state mass in agreement with a correlation matrix analy-
sis, but a lower first excited state mass. Our focus, however, is on the apparent ~300 MeV
difference in the first excited state obtained when applying SEB in conjunction with a lattice
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Figure 1. The positive-parity nucleon spectrum obtained from variational analyses employing nonchiral
fermions from CSSM [5], JLab [11] and Cyprus [9]. The coloured points are the first excited state
masses and the black points are the corresponding ground state masses. The star points correspond to
the spectrum observed in nature. The blue JLab point at m? =~ 0.15 corresponds to the green point in
Fig. 4 of Ref. [14].

fermion action which respects chiral symmetry, in comparison to a fermion action which does
not.

Given these discrepancies, we aim to carefully assess the role chiral symmetry plays in
understanding the Roper resonance on the lattice.

2 Fermions on the Lattice

There is a great deal of flexibility in how QCD is implemented on the lattice, provided that
continuum QCD is recovered in the limit where the lattice spacing a — 0 and the lattice
volume V — oo. Here, we focus on the implementation of fermions.

The implementation of a naive finite-difference discretisation of the fermion action on the
lattice results in the phenomenon of fermion doubling whereby we are left with sixteen times
the number of fermion species in the continuum limit. This phenomenon can be resolved by
the introduction of the O(a) Wilson term to the action [17]. Further modifications to the action
yield improved Wilson-type fermions including clover [18] and twisted mass [19] fermions.
This does not come without cost, as the Wilson term explicitly violates chiral symmetry for
massless fermions. It is then pertinent to ask why we simply do not just find an action which
removes doublers whilst preserving chiral symmetry? It turns out it is not straightforward.

The Nielson-Ninomiya no-go theorem [20-22] states that it is not possible to find a local,
doubler-free, lattice Dirac operator which obeys chiral symmetry, and has the correct contin-
uum limit. A means to circumvent the powerful no-go theorem was formulated in 1982 in
the Ginsparg-Wilson relation [23]

{D,y’} =2aDy’D, (1
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where D is some lattice Dirac operator, which defines a lattice deformed version of chiral
symmetry. Initially thought to be inconsequential as there was no known solution, one was
eventually found in the form of the overlap Dirac operator [24-29].

The overlap Dirac operator D, is defined by

1
Do = 7 (1 +yse(H)) @
where e(H) is the matrix sign function, and typically H = y°D,,, the Hermitian form of
the Wilson-Dirac operator. As the matrix sign function is expensive to evaluate, simulations
which employ overlap fermions are on the order of 100 times more computationally expensive
than those which use Wilson-type fermions.

3 NP improved clover versus overlap valence fermions

The role that chiral symmetry plays in understanding the Roper resonance on the lattice can
be assessed through the direct comparison of results obtained from simulations employing
nonchiral and chiral fermions, respectively. We choose to compare results obtained using
the chiral symmetry breaking nonperturbatively (NP) improved clover action [18] to those
obtained using the overlap action with H = Dgj., where Dg;. is the fat-link irrelevant clover
(FLIC) fermion action [30, 31]. Specifically, we seek to determine if the chiral symmetry
preserving overlap fermion action delivers a finite-volume spectrum 300 MeV lower than the
NP improved clover action.

The respective simulations are carried out on PACS-CS 2 + 1-flavour configurations [32]
at m; = 0.3881(16) GeV. To ensure that any differences in the results are due to choice
of fermion action all analysis techniques are matched. We ensure the set of gauge fields
used, correlation matrix construction, smearing parameters, and variational parameters are
identical across both simulations. Simulations are performed at three valence quark masses
corresponding to m, = 0.435(4), 0.577(4), and 0.698(4) GeV, tuned to match for both actions.

3.1 Variational correlation matrix analysis

To extract states we employ variational correlation matrix analyses [33, 34]. We construct the
matrix of Euclidean time cross correlation functions for momentum g

G0 = D P Q yi(E X (0,140 | Q), 3)

X

where y | and y; are the respective baryon creation and annihilation operators carrying the
quantum numbers of the nucleon, 7y, is the source creation time, and ¢ is the sink annihilation
. . . . N I

time. Dirac-traced correlation functions G;;(p, t) at p = 0 are

Gij(t) = Tr[T Gyi(F = 0, 1)] , “)

where the parity projection operator ', = % (yo £ I) projects out positive/negative parity.
Introducing a complete set of states, I = 3., | aXa ', into Eq. (3) we can write

Gijny = D Ar Are™!, ©)

(o2
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Figure 2. Nucleon ground and first excited state masses for clover (blue, square) and overlap (red,
circle) actions as a function of m2.

where m, is the mass of the ath energy eigenstate, Ay = (Q |X,- | a) and /_l‘; ={a |)2j | Q).
We search for a linear combination of the creation and annihilation operators

o =gu  and ¢ =il (©)

which ideally couple to a single energy eigenstate. In practice, the energies observed in lattice
QCD calculations can be contaminated with states not captured by the span of the basis of
operators. To minimise this effect, improved analysis techniques have been developed [7].
From Eq. (5) we can find uj and v{ for a choice of variational parameters # and dt by solving

(G~ (10) Gltg + dn)];u§ = e uf', (7

and
o [0+ d0 G ), = ®

the left- and right-handed eigenvalue equations, to obtain the eigenstate projected correlator
G (1) = v Gy(D) uf . C)]

The spectrum obtained from our analysis is presented in Fig. 2 for variational parameters
to = 1 relative to the source at t;,, = 0 and ¢ = 1y + dt = 4. All corresponding masses are in
statistical agreement across both actions.

3.2 Direct comparison of projected correlators

The results presented in Fig. 2 are dependent on specific choices of fit windows. To improve
the robustness of our results, we investigate further, avoiding the selection of fit windows.
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First, we consider the projected correlator for the ath energy eigenstate
G*(t) ~ e, (10)
obtained from our variational analysis and compute the effective mass function

G*(n )

GY(t+1) (n

MC(1) = ln(

Initially calculating the ratio of the first excited and ground state effective mass functions,
respectively for each action

Rijo(t) = Mig(t)/ M%), (12)

we then take the ratio of these ratios

clover
RT;0 ()

R(l)\//(e)rlap ( t)

R(t) = 13)

providing a comparison of the ratio of the two masses from each fermion action.

Secondly, we again begin with the projected correlator for the ath energy eigenstate from
Eq. (10), this time calculating the effective mass splitting between the first excited and ground
states for each action, respectively, by taking the ratio of correlators

Gip(®) =G'(/G(1), (14)

and applying the effective mass function

G/0(D)
AMeg(H) = In| ———— . 15
et (1) n(G1/o(t+l)) (15)
We then take the difference
D(r) = AMER (1) — AMS™ (1) (16)

corresponding to the difference between the mass splittings of each action in GeV.

We present results for R(¢) and D(r) for a variety of variational parameters in Figs. 3, 4, 5,
and 6. In each case we compute the )(2 /d.o.f. for fits of R(r) and D(¢) to constants one and
zero, respectively for 2 < ¢ < 6 which are presented in Tables 1, 2, 3, and 4. We note that
R(t) = 1 and D(¢) = 0 correspond to no difference in excitation energies between the actions.

4 In Summary

We have systematically compared results obtained from simulations employing chiral overlap
and nonchiral clover fermion actions. The only difference in the calculations is the choice of
fermion action. All corresponding masses are in statistical agreement across both actions.
Both the ratio R(7) of the respective first excited to ground state effective mass ratios and
the difference D(r) of the mass splittings are statistically consistent with no difference in
excitation energies produced by each action for a range of variational parameters. We find no
evidence that chiral symmetry plays a significant role in understanding the Roper resonance
on the lattice. Hence, the implementation of chiral symmetry on the lattice is not worth the
additional computational expense when studying the nucleon spectrum.
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Figure 3. D(r) and R(r) at three different pion Figure 4. D(r) and R(¢) at three different pion

masses with m, = 0.698(4) GeV (top); m, = masses with m, = 0.698(4) GeV (top); m, =
0.577(4) GeV (middle); and m, = 0.435(4) 0.577(4) GeV (middle); and m, = 0.435(4)
GeV (bottom), for variational parameters #, = GeV (bottom), for variational parameters ¢, =
land t =ty + dt = 4 with 1. = 0. landt =ty + dt = 5 with t,,. = 0.
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Figure 5. D(r) and R(r) at three different pion Figure 6. D(r) and R(r) at three different pion

masses with m, = 0.698(4) GeV (top); m, = masses with m, = 0.698(4) GeV (top); m, =

0.577(4) GeV (middle); and m, = 0.435(4) 0.577(4) GeV (middle); and m, = 0.435(4)

GeV (bottom), for variational parameters #, = GeV (bottom), for variational parameters #, =

2andt =ty + dt = 4 with ¢, = 0. 2andt =ty + dt = 5 with t,. = 0.

Table 1. y?/d.o.f. for variational parameters Table 2. y?/d.o.f. for variational parameters

to=1landt =1ty +dt =4 with t,. =0, to=1andt =1ty +dt=5witht,. =0,
corresponding to Fig. 3. corresponding to Fig. 4.

m,;/GeV  D(1) R(7) m,;/GeV  D(t) R(t)
0.698(4) 0.842 0.757 0.698(4) 0.874 0.821
0.577(4) 0.595 0.850 0.577(4) 0.556 0.811
0.435(4) 0.619 1.002 0.435(4) 0.493 0.930
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Table 3. y?/d.o.f. for variational parameters Table 4. y?/d.o.f. for variational parameters
to=2andt =ty +dt = 4 with 1, =0, to =2andt =ty +dt =5 with ¢, =0,
corresponding to Fig. 5. corresponding to Fig. 6.
m;/GeV  D(r) R(t) m;/GeV  D(1) R(r)
0.698(4) 0.772 0.804 0.698(4) 1.032 1.031
0.577(4) 0.594 0.841 0.577(4) 0.728 0.992
0.435(4) 0.816 0.962 0.435(4) 0.528 0.843
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