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Literature Review on Agent Transparency for the Use of Uninhabited Vehicles 

Uninhabited vehicles are considered to be vital assets for military and commercial 

operations with their reduced radar signatures, increased endurance over piloted airframes 

and, more importantly the ability to remove humans from immediate threats (Lewis, 2013). 

Although no human is required to be in the vehicles, a human operator is required to provide 

some guidance and to interpret and use the information from these vehicles. With a current 

focus of the military on reducing crewing, research is finding ways in which a single operator 

can manage multiple uninhabited vehicles as opposed to one uninhabited vehicle managed by 

multiple human operators (Cummings, Clare, & Hart, 2010). However, to do this effectively, 

a certain level of automation is required to assist a human operator to manage multiple 

uninhabited vehicles (Chen & Barnes, 2014).  

With technology development over the last few decades, uninhabited vehicles are now 

highly automated and can perform a range of functions such as flying to a designated location 

without direct operator control (Arrabito et al., 2010).  It is suggested that a single operator is 

able to manage around four to five uninhabited vehicles at a time with a significant amount of 

automation such as autopilot (Cummings, 2010). To achieve this, autonomous and 

sophisticated intelligent agents must be developed in order to support operators in the 

management of multiple uninhabited vehicles without becoming overloaded.  

Intelligent agents potentially offer a huge degree of automation. However, to manage an 

uninhabited vehicle, the human and intelligent agent need to collaborate effectively in flight 

control, navigation, and mission and payload management (Cummings, Bruni, Mercier, & 

Mitchell, 2007). The role of the human operator in managing multiple uninhabited vehicles is 

more likely to be supervisory, or what has been termed ‘on the loop’, as opposed to ‘in the 
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loop’, which would allow the intelligent agent to potentially take on more tasking. How the 

human and agent will interact needs to be determined. 

The role of the human operator while ‘on the loop’ is to appropriately evaluate decisions 

recommended by the intelligent agent, diagnose any problems and know when to reject an 

incorrect decision by the intelligent agent. Consequently, there is an increasing focus on the 

appropriate usage of intelligent agents so that human operators only rely on the intelligent 

agent when it is correct. Recent research has focused on supporting the operator to build a 

proper reliance on the intelligent agent to enable effective human-agent teaming (Chen & 

Barnes, 2014; Chen et al., 2014; Hoff & Bashir, 2015; Lee & See, 2004). In order to have 

appropriate usage and build proper reliance on the intelligent agent, it is suggested that 

human operators need to maintain an appropriate level of situation awareness about the 

agent’s actions and its environment (Drury, Riek, & Rackliffe, 2006). Moreover, it has been 

suggested that the information specific to the purpose, process and performance of the 

intelligent agent is needed to allow the operator to have adequate ‘human on the loop’ 

performance (Lee & See, 2004).  

Intelligent Agent 

In artificial intelligence, an agent is defined as ‘anything that can be viewed as perceiving 

its environment through sensors and acting upon that environment through actuators’ (Russell 

& Norvig, 2009, p. 34). Moreover, an agent that takes the best possible action in a situation is 

defined as an intelligent agent (Russell & Norvig, 2009). Generally speaking, an agent should 

also have autonomy over the choice of activity to achieve the goals (Russell & Norvig, 2009). 

The term ‘intelligent agent’ has been widely used interchangeably with other terms such as 
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autonomous agent and rational agent; however, the term ‘intelligent agent’ is used for 

consistency in this paper. 

Transparency in Intelligent Agent 

Many intelligent agents have been used in different settings and for different purposes in 

recent years (Russell & Norvig, 2009). As the agents become more independent and 

sophisticated, it has been suggested that it is increasingly important for human operators to 

understand the agents’ behaviours, the reasoning process leading to those behaviours, and the 

predicted outcomes of those behaviours to enable the human operators to calibrate their trust 

in the agents appropriately and make informed decisions (Lee & See, 2004). Collectively 

these elements have been described as the transparency of the intelligent agent, and have been 

shown to have a significant influence on human trust and preference. Transparency is defined 

as the extent to which human operators’ can understand the intelligent agent’s ability, intent 

and situational constraints, which facilitates effective interactions between the human 

operator and the intelligent agent (Lyons, 2013). Transparency can prevent human operators 

from becoming overly dependent on the intelligent agent, and can assist operators to make 

informed decisions based on a clear understanding of the working mechanism of the 

intelligent agent (Fleischmann & Wallace, 2005).  

Although agents being more transparent may be beneficial to effective human-agent 

teaming, there are some arguments against increasing agent transparency (Lyons, 2013). For 

example, it has been argued that increasing the transparency of an intelligent agent’s actions 

may overload the operator with too much information (Duggan, Banbury, Howes, Patrick, & 

Waldron, 2004). Increased agent transparency may encourage human operators to maintain 

an increased awareness of the observations, decisions and actions that the intelligent agent 
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performs, thereby offsetting the any reduction in time or cognitive effort provided by the 

intelligent agent (Helldin, Ohlander, Falkman, & Riveiro, 2014). Miller and Parasuraman 

(2007) proposed a model to explain the relationship and tradeoff between competency, 

workload and unpredictability in human-agent teaming. Competency refers to the ability of 

the human-agent teaming to make correct decisions. Workload refers to the mental workload 

of the human operator when interacting with the agent. Unpredictability means the human 

operator’s inability to understand what the agent will do. Operators can reduce workload by 

relying on the agent but this would increase unpredictability by reducing their awareness of 

the situation which relates to the agent’s behaviours. Therefore, the role of the intelligent 

agent in human-agent teaming is not only to support human operators by saving their mental 

effort in the tasking environment, but also to maintain the right amount of awareness for 

achieving effective overall performance (Helldin et al., 2014).  

Providing explanation of the Intelligent Agent’s behaviours 

While some argue that increasing agent transparency may overload human operators, 

others suggest that providing an explanation of how the intelligent agent arrives at a decision 

can enable operators to develop an appropriate reliance on the intelligent agent (Dzindolet, 

Peterson, Pomranky, Pierce, & Beck, 2003; Paradis, Benaskeur, Oxenham, & Cutler, 2005). 

One study investigated the effect of different types of agent explanations on operators’ 

understanding of the intelligent agent (Lim, Dey, & Avrahami, 2009). The study provided 

explanations of why the agent did or did not behave in a certain way, what the agent would 

do if an event occurs, and how to get the agent to do something in the current situation. 

Explaining the rationale behind the agent’s actions was found to be the most effective way to 

improve the operators’ understanding of the agent, to build a higher level of trust in the 

intelligent agent, and to increase the acceptance of the intelligent agent’s action. Another 
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study found that displaying the contextual information underlying the decision of an 

intelligent agent in an intelligence, surveillance, and reconnaissance task improved operator 

performance and enabled human operators to determine how much they should trust the 

intelligent agent’s decision (Rovira, Cross, Leitch, & Bonaceto, 2014). Moreover, presenting 

the intelligent agent’s reasoning process can enhance the involvement of human operators in 

the reasoning process. An explanation of the reasoning process can enable the human 

operator to understand why the intelligent agent makes a recommendation and allow the 

human operator to also apply their own knowledge and inference skills to the reasoning 

process (Herlocker, Konstan, & Riedl, 2000). Moreover, providing the reasoning behind the 

agent’s actions can assist human operators to understand the strengths and limitations of the 

intelligent agent, to develop a better understanding of the intelligent agent’s behaviours and 

to adopt a proper reliance on the intelligent agent (Herlocker et al., 2000). 

Helldin (2014) conducted a study which examined the effects of increasing the 

transparency of the intelligent agent’s recommendation in an automated target classification 

task. The conditions examined in the study were (1) without any intelligent agent support; (2) 

displaying intelligent agent’s proposed decision; and (3) displaying intelligent agent’s 

proposed decision and its reasoning. The study found that increasing the transparency 

improved performance, but also increased decision making time and workload. However, the 

authors noted that the amount of information presented in condition three was significantly 

more than in the other two conditions, and participants suggested that more training with the 

intelligent agent would help them to mak better and faster decisions.   

Although incorporating transparency into the intelligent agent can be beneficial in relation 

to performance, the evidence also suggests the associated increase in information can require 
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more time and effort to comprehend and, therefore, transparency may lead to a reduction in 

the decision quality for some operators (Ehrlich et al., 2011).  For instance, a study showed 

that additional contextual information of the intelligent agent only improved operator 

performance in high task demand situations, while there was no performance improvement in 

the low task demand situations (Rovira et al., 2014). Therefore, more research is required to 

understand how to effectively present information to explain the intelligent agent’s behaviour 

(Bunt, Lount, & Lauzon, 2012). 

Description of Situation Awareness-based Agent Transparency (SAT) Model 

Previous research shows that human operators criticise the effectiveness and accuracy of 

the intelligent agent’s behaviours when the human operator has difficulty in understanding 

the agent’s state (Linegang et al., 2006; Seppelt & Lee, 2007). Sarter and Woods (1995) 

identify the three most common challenges for human-agent teaming: understanding the 

agent’s current state, comprehending the agent’s intentions depending on its current 

behaviours, and projecting the future behaviours. According to prior research, an intelligent 

agent that provides some information on how it operates can improve human-agent teaming 

performance and facilitate appropriate trust (Seppelt & Lee, 2007; Wang, Jamieson, & 

Hollands, 2009).  However, only presenting reasoning information on the intelligent agent’s 

actions may not address all of the challenges for human-agent teaming.  Chen et al. (2014) 

suggest the challenges identified in Sarter and Woods (1995) are closely related to Endsley 

(1995)’s Situation Awareness model: the perception of basic components, comprehension of 

the components’ meaning, and projection of the future status. On this basis, Chen et al. 

(2014) developed the Situation Awareness-based Agent Transparency (SAT) model, which 

aims to address Sarter and Woods (1995)’s challenges through displaying transparency 

information to operators to support them in developing an accurate mental model of the 
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• Purpose 

 Desire (Goal 

selection) 

• Process 

 Intentions (Planning/ 

Execution) 

 Progress 

• Performance 

• Reasoning process 

(Belief/ Purpose) 

• Environmental and other 

constraints 

• Projection to future/ End 

State 

• Potential limitations 

 Likelihood of error 

 History of 

performance 

Situation awareness is the operator’s state of knowledge of the dynamic environment 

(Endsley, 1995). Endsley (1995) proposes that situation awareness has three levels including 

the perception of basic components, comprehension of the components’ meaning, and 

projection of the future status. Perception represents the basic level at which the operators 

perceive the information they need to know to achieve the goal. Comprehension means the 

human operators could integrate the perceived information with other information and 

interpret it accurately. Projection is the ability of human operators to make predictions based 

on the current situation. This model can guide the design of the intelligent agent to facilitate 

operators’ acquisition of awareness about the agent’s actions (Scholtz, Antonishek, & Young, 

2005). Chen et al. (2014) has incorporated Endsley (1995)’s situation awareness theory into 

the SAT model, such that each level supports a level of the operator’s situation awareness of 

the intelligent agent’s actions (see Table 1).  The higher levels of Endsley (1995)’s theory of 

situation awareness depend on the success of lower levels of situation awareness, such that an 

operator cannot project without being able to comprehend the meaning of the information. 

However, Chen et al. (2014) suggested that transparency is not a cumulative result over the 

levels. For instance, the operator may only be required to know the agent’s actions (SAT 

Level 1) and the projected outcomes (SAT Level 3) to make a sufficiently informed decision 

in a time-critical situation.  
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The SAT model also incorporates Lee and See (2004)’s 3Ps model i.e. the system’s 

Purpose, Process and Performance under Level 1 and Level 2 of the SAT model (Table 1). 

Lee and See (2004) suggest that these three components are critical in developing trust in the 

interaction between human and agent. When the 3P’s information is communicated to the 

human operator, this increases operator trust in the intelligent agent by making it clearer to 

the human operator what the intelligent agent is doing (Lee & See, 2004). The information on 

Performance informs the human operator about what the intelligent agent is doing and its 

ability to achieve the operator’s goals. The Process information informs the operators on how 

the intelligent agent is operating and the consistency of its actions. Information about Purpose 

conveys why the intelligent agent is operating in the way it is. Lee and See (2004) suggest 

Performance, Process and Purpose form the general basis of trust for the human operator. 

Rao and Georgeff (1995) propose that the agent’s belief, desire and intention (BDI) are the 

mental attitudes which represent the information, motivational and deliberative states of the 

intelligent agent. These attitudes form the reasoning process and drive the intelligent agent’s 

behaviours and therefore it is important for the operators to understand the intelligent agent’s 

BDI to achieve effective human-agent teaming. Belief is the information which the agent 

perceives from the situation. Desire is about what the agent wants to bring about. Intention is 

the desire that the agent has committed to achieve. The SAT model includes the agent’s BDI 

components to support the operator’s situation awareness of the intelligent agent in Level 1 

and 2 as per Table 1.  

Representing the three levels of SAT model in the design of an intelligent agent enables 

the human operator to understand the rationale behind the agent’s actions and assist the 

human operator to make informed decisions (Chen et al., 2014). The aim of agent 
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transparency is not to provide all of the system’s capabilities, behaviours, and decision 

making rationale to the human operator, but to communicate the appropriate level of 

information to allow the operator to maintain adequate situation awareness of the intelligent 

agent’s actions without becoming overloaded (Chen et al., 2014; Lee & See, 2004). Previous 

studies that have employed the SAT model are discussed in the following section to evaluate 

this proposed model.  

Studies using the SAT model 

A number of studies have examined the impact of agent transparency using the SAT 

model in various tasking environments, such as route planning and navigation of multiple 

uninhabited vehicles in human-robot teams (Mercado et al., 2016; Selkowitz, Lakhmani, & 

Chen, 2017; Selkowitz, Lakhmani, Larios, & Chen, 2016; Stowers et al., 2016; Stowers et al., 

2017). In particular, Mercado et al. (2016) and Stowers et al. (2017) conducted two studies 

using different transparency interface designs to examine the utility of the SAT model in a 

route planning task for uninhibited vehicles management. Both studies aimed to meet the 

following goals: show information of all three SAT levels, maintain scalability in the display 

of agent transparency, and maintain ecological validity of the overall design (Stowers et al., 

2016). 

In both studies, participants were required to complete a number of missions by giving 

orders to the uninhabited vehicles through the intelligent agent. The intelligent agent provided 

the human operator with two plans of the actions that could be carried out by the uninhibited 

vehicles to complete the missions based on the commander’s intent, vehicle capability and 

environmental constraints. Plan A was always the agent’s primary recommendation and plan 

B was the secondary recommendation. Plan B was a better option in approximately one in 
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three times, when the agent was incorrect due to changes in external information such as 

commander’s intent.  Participants were required to select either Plan A or Plan B based on the 

information presented by the agent and the additional information that was given to them 

(Mercado et al., 2016; Stowers et al., 2017).  

In the first study, Mercado et al. (2016) included Level 1, Level 1+2, and Level 1+2+3 

based on the SAT model. The results suggest that human operators improved their 

performance without the cost of longer response time as agent transparency increase. The 

study also found no increase in subjective or objective workload when operators were 

presented with increased agent transparency. Moreover, the operators perceived the decision 

made by the agent as more trustworthy when presenting information on the intelligent agent’s 

intent, reasoning and projection (Mercado et al., 2016). However, the participants could only 

choose between the two recommended plans and could not modify the plans or reject both of 

them; therefore the study design forced the participants to choose one of the two plans where 

the participants might disagree with both plans. For instance, participants might choose one 

over the other as they perceived the chosen plan was relatively better than the other plan. 

Building on the study by Mercado et al. (2016), Stowers et al. (2017) assessed the impact 

of agent transparency by using a different interface design and separating uncertainty from 

SAT Level 3 to further investigate the role of projection and uncertainty in building operator 

situation awareness of the intelligent agent. Uncertainty in the SAT model indicates that the 

agent may not know all of the factors that have an impact on its actions, and hence the future 

event could not be absolutely known. Therefore, the uncertainty information informs the 

human operators of the intelligent agent’s uncertainty and assumptions incorporated in its 

actions. Mercado et al. (2016) demonstrated that there are positive impacts of presenting 
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additional information on intelligent agent’s reasoning and projection compared to just 

presenting information on the intelligent agent’s desires and intentions. Therefore, Stowers et 

al. (2017) investigated the impact of the following conditions: SAT Level 1+2, SAT Level 

1+2+3 and SAT Level 1+2+3+ Uncertainty. The results showed that the human operators 

made more correct decisions without increasing their perceived workload when information 

on the intelligent agent’s intent, reasoning, projection, and uncertainty are presented. 

However, operators took longer to make the decisions when the additional intelligent agent’s 

uncertainty information is presented to them (i.e. SAT Level 1+2+3+ Uncertainty) compared 

to displaying the information of the agent’s intent and reasoning (i.e. SAT Level 1+2). 

Moreover, operator perceived trust in both integrating information and decision making 

increased across transparency levels. In particular, participants perceived the intelligent agent 

to be most trustworthy in its information integration when presenting the information of the 

intelligent agent’s intent, reasoning, projection and uncertainty (i.e. SAT Level 1+2+3+ 

Uncertainty), while to be most trustworthy in its decision making when presenting the 

information of the intelligent agent’s intent, reasoning and projection (SAT Level 1+2+3). 

The perceived usability of the intelligent agent is consistent with the trust results in that 

participants perceived the intelligent agent to be most usable when the information on the 

intelligent agent’s intent, reasoning and projection was displayed, and less usable when the 

information on the intelligent agent’s intent, reasoning, projection and uncertainty was 

displayed.  

Both studies suggest that when the agent is more transparent, operator performance 

improves without increasing their workload. However, because they also took more time, it is 

necessary to ensure there is no tradeoff between speed and accuracy. When more information 

is presented, further analysis in future research may yield information and best practices 
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about the display of information, in particular the presentation of uncertainty information. 

The two studies presented the uncertainty information through text or graphics; however, a 

different representation of uncertainty, such as numerically or as a percentage, may impact 

operator perceived trust and usability. Moreover, Stowers et al. (2017) suggest that the impact 

of agent transparency depends on the task and environment, and future research is needed to 

investigate the impact of agent transparency in other contexts.  

Trust in Intelligent Agent 

An intelligent agent can be used in a number of tasks including acquiring and analysing 

information, making decisions, taking actions and monitoring other systems (Parasuraman, 

Sheridan, & Wickens, 2000). However, an intelligent agent may sometimes create errors 

when introduced into complicated situations, so it may not always be reliable in a military 

context (Hoff & Bashir, 2015). However, the operator may overly trust the intelligent agent 

and rely on its incorrect decisions which has the potential for serious consequences (Atoyan 

& Shahbazian, 2009). The willingness of the operator to rely on the intelligent agent in 

uncertain situations has been labelled as operator trust (Hoff & Bashir, 2015). 

It is critical for the human operators to recognise when they should rely on the intelligent 

agent and when to override the intelligent agent (Lee & See, 2004; Schaefer, Chen, Szalma, 

& Hancock, 2016). When the intelligent agent makes mistakes in its decisions and the human 

operator overly trusts the intelligent agent, the operator may accept the agent’s incorrect 

decisions, which is a misuse of the intelligent agent. On the other hand, a human operator 

who has too little trust to the intelligent agent could disuse of the intelligent agent by ignoring 

the intelligent agent’s decision and forgo the potential benefits of using the intelligent agent 

such as improved performance and the  saving of operator time and effort (Lee & See, 2004; 
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Parasuraman & Riley, 1997). Consequently, for effective human-agent teaming, the operators 

need to have an appropriate level of trust in the intelligent agent, also called calibrated trust. 

Calibrated trust has the potential to lead to better human-agent teaming performance, with 

lower operator workload and faster response time (Parasuraman & Riley, 1997). Calibrated 

trust occrus when the operator has an accurate mental model of the intelligent agent and 

depends on the intelligent agent within the agent’s capabilities while being aware of its 

limitations. In this situation the operator can override the intelligent agent when it is outside 

of its capabilities (Lee & See, 2004).  However, it may be difficult for the operators develop 

such calibrated trust. 

Hoff and Bashir (2015) have systematically reviewed the empirical research on trust 

between human and automation and have identified that trust is affected by the human 

operator, the intelligent agent, and environmental factors. Hoff and Bashir (2015) further 

mapped these three factors to the three different layers of trust suggested by Marsh and 

Dibben (2003), which are dispositional trust, situational trust and learned trust. Dispositional 

trust is the individual variability in the tendency to trust the agent which may vary according 

to culture, age, gender and personality traits. Situational trust represents trust that varies due 

to the external environment such as the workload, perceived risk and task framing, and the 

internal context-dependent characteristics of the operator such as self-confidence and 

attentional capacity in a particular situation. Learned trust arises from the operators’ 

evaluation of the intelligent agent’s behaviours from their past experience or current 

interaction with the agent. Therefore, learned trust is affected by the operators’ previous 

knowledge and the intelligent agent’s performance. Transparency of the agent’s capability 

could build the operators’ learned trust and reduce the chances of the operators’ misuse or 

disuse the intelligent agent (Hoff & Bashir, 2015).  
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Prior research has shown that human operators could develop an appropriate level of 

expectations of the agent’s capability in achieving task goals when transparency information 

is displayed (Chen, Barnes, & Harper-Sciarini, 2011; Lee & See, 2004). Although greater 

transparency of an agent may facilitate an operator’s trust calibration, calibrated trust has also 

been shown to be affected by the perceived workload and usability of the intelligent agent 

(Hoff & Bashir, 2015). Operators perceive the intelligent agent to be more usable and 

trustworthy when showing transparency information is displayed as the operator can easily 

form an accurate mental model of the intelligent agent. Without displaying transparency 

information, the operators are likely to perceive the intelligent agent to be less usable and 

trustworthy (Hoff & Bashir, 2015). Therefore, the information needs to be relevant and 

efficient to allow the operator to form an accurate mental model of the intelligent agent. 

Accurate feedback on an agent’s reliability could enable operators to build an appropriate 

level of trust and improve the human-agent teaming performance (Wang et al., 2009). 

Moreover, it has been suggested that operators are likely to have proper calibrated trust when 

the agent is transparent on its analytical, intentional and awareness-based parameters (Lyons, 

2013). Given these findings, the SAT model provides a foundation for what information 

should be displayed to assist the operator in building the mental model of an intelligent agent 

while using it; specifically the agent’s intent, reasoning and projection (Chen et al., 2014). 

Agents that have been designed based on the SAT model have shown that an operator’s trust 

in intelligent agent increases as the agent transparency increases (Mercado et al., 2016; 

Selkowitz et al., 2017).  
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Workload in Transparency 

One of the concerns with agent transparency is that the additional information presented in 

higher transparency levels may increase operator workload (Chen et al., 2014). Workload is 

described as ‘the cost of accomplishing mission requirements for the human operator’ (Hart, 

2006, p. 904). When the operator performs a task with higher workload, it decreases the 

operator’s capability to do additional tasks (Cain, 2007). High operator workload may affect 

performance and situation awareness during the task, and lead to incorrect agent usage 

decisions (Chen & Barnes, 2012; Parasuraman & Riley, 1997). An increase in agent 

transparency may affect workload as it may require more cognitive effort to process the 

additional information (Lyons & Havig, 2014). However, Chen et al. (2011) suggest that 

increased agent transparency may reduce operator workload as the agent’s current state, 

rationale, and future state projections are directly presented to the operator. Therefore, agent 

transparency may potentially reduce the effort and time required to process this information. 

Nonetheless, Duggan et al. (2004) argue that increasing the transparency of an intelligent 

agent’s behaviours may overload the operators with too much information. Therefore, the 

challenge for agent transparency design is to implement the agent in a manner that allows the 

operator to be on the loop while minimizing the additional operator workload. 

Research on the impact of agent transparency on workload has not produced consistent 

results. Helldin (2014) reports that additional transparency information improved operator 

performance at the cost of increasing workload, while Mercado et al. (2016) found increased 

transparency information did not increase the operator workload. In contrast, an increase in 

the transparency of uninhabited vehicle autonomy and functional capability has produced a 

reduction in workload and performance (Chen, Gonzalez, Campbell, & Coppin, 2014). The 

inconsistent findings suggest that the additional transparency information has the potential to 
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have a positive or negative influence on operator workload, Therefore the additional 

information may need to be relevant and designed effectively, to assist in operators’ decision 

making and may not increase the operator workload (Hoff & Bashir, 2015). Similarly, 

information visualisation techniques may assist the operators to understand the information 

and enhance their situation awareness (Robertson, Czerwinski, Fisher, & Lee, 2009). Hence, 

the way the transparency information is displayed is likely to have an impact on workload. 

The principles of Ecological Interface Design (EID), such as graphical displays and 

simplified text, offer an approach to display the additional information (Cook & Smallman, 

2008; Neyedli, Hollands, & Jamieson, 2011).  

Kilgore and Voshell (2014) reviewed the application of EID principles in presenting 

transparency information on uninhibited vehicles in the maritime domain and presented some 

design strategies, such as using more salient visual cues, to manage operator attention. An 

effective interface should assist operators to easily perceive and understand the critical 

information of the task and enable operators to execute effective strategies to drive the 

agent’s behaviours (Kilgore & Voshell, 2014). The EID techniques use graphics to explicitly 

show abstract information which can increase the agent’s transparency and observability. 

Representing critical and complex relationships may also improve usability by integrating 

different information. For instance, a second layer of information could be mapped as a 

graphical sub-element to direct operator attention, such as using the opacity of an icon to 

represent uncertainty (Kilgore & Voshell, 2014). The presentation of contextual information 

may also assist the human operator to overcome the cost of an imperfect intelligent agent 

without increasing the operator’s workload (Rovira et al., 2014). 
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Future Research 

Several studies have examined the effect of agent transparency on performance 

effectiveness, workload and trust in uninhabited vehicle management tasks (Chen & Barnes, 

2015; Chen et al., 2014; Mercado et al., 2016; Stowers et al., 2016). All of these studies have 

found that performance improves when the agent is more transparent (Helldin, 2014; 

Mercado et al., 2016). However, greater agent transparency had an inconsistent effect on 

operator workload and response time in the studies (Chen et al., 2014; Helldin, 2014; 

Mercado et al., 2016). Studies using the SAT model, that is being transparent about the 

intelligent agent’s intent, reasoning and projections, found improvements in performance 

without the costs of increasing workload and longer response time (Mercado et al., 2016; 

Stowers et al., 2017), suggesting this model holds greatest potential benefits in human-agent 

teaming. 

Previous research in human-agent performance has focused on the route planning and 

navigation aspects of uninhabited vehicle management in a military context (Mercado et al., 

2016; Stowers et al., 2016). There is limited research on the impact of agent transparency in 

other areas of uninhabited vehicle management such as mission and payload management, 

where incoming information from the sensors is monitored and analysed to meet mission 

requirements. Therefore, future research may build upon previous research with a new type of 

agent applying the SAT model (Stowers et al., 2017), such as a target identification agent. 

This future study could apply the SAT model to a new task, and investigate the impact of 

agent transparency on trust as well as identifying any possible trade-offs in performance with 

respect to response time and workload.  
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ABSTRACT 

Objective: To examine how increasing the transparency of an intelligent maritime target 

identification system impacts on operator performance, workload and trust in the intelligent 

agent.  

Background: Previous research has shown that operator accuracy improves with 

increased transparency of an intelligent agent’s decisions and recommendations. This can be 

at the cost of increased workload and response time, although this has not been found by all 

studies. Prior studies have predominately focussed on route planning and navigation, and it is 

unclear if the benefits of agent transparency would apply to other tasks such as target 

identification.  

Method: Twenty seven participants were required to identify a number of tracks based on 

a set of identification criteria and the recommendation of an intelligent agent at three 

transparency levels in a repeated-measures design. The intelligent agent generated an 

identification recommendation for each track with different levels of transparency 

information displayed and participants were required to determine the identity of the track. 

For each transparency level, 70% of the recommendations made by the intelligent agent were 

correct, with incorrect recommendation due to additional information that the agent was not 

aware of, such as information from the ship’s radar. Participants’ identification accuracy and 

identification time were measured, and surveys on operator subjective workload and 

subjective trust in the intelligent agent were collected for each transparency level. 

Results: The results indicated that increased transparency information improved the 

operators’ sensitivity to the accuracy of the agent’s decisions and produced a greater tendency 
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to accept the agent’s decision. Increased agent transparency facilitated human-agent teaming 

without increasing workload or response time when correctly accepting the intelligent agent’s 

decision, but increased the response time when rejecting incorrect intelligent agent’s 

decisions. Participants also  reported a higher level of trust when the intelligent agent was 

more transparent. 

Conclusion: This study shows the ability of agent transparency to improve performance 

without increasing workload.  Greater agent transparency is also beneficial in building 

operator trust in the agent. 

Application: The current study can inform the design and use of uninhabited vehicles and 

intelligent agents in the maritime context for target identification. It also demonstrates that 

providing greater transparency of intelligent agents can improve human-agent teaming 

performance for a previously unstudied task and domain, and hence suggests broader 

applicability for the design of intelligent agents. 
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Agent Transparency for Intelligent Maritime Target Identification 

Uninhabited vehicles are considered to be increasingly important for military and 

commercial operations (Lewis, 2013). Recent research suggests a single operator can manage 

multiple uninhabited vehicles (Cummings, Clare, & Hart, 2010). However, to do this 

effectively, an intelligent agent is required to assist a human operator (Chen & Barnes, 2014). 

Cummings, Bruni, Mercier, and Mitchell (2007) found a single operator is able to 

simultaneously manage around four to five uninhabited vehicles with a significant amount of 

automation. Much early research focused on the impact of different levels of automation in 

managing multiple uninhabited vehicles (Cummings et al., 2007; Cummings et al., 2010). 

However, more recent research has focused on supporting the operator to build a proper 

reliance of the intelligent agent in order to have effective human-agent teaming (Chen & 

Barnes, 2014; Chen et al., 2014; Hoff & Bashir, 2015; Lee & See, 2004). The aims of 

increasing automation in uninhabited vehicle management are to enhance human-agent 

performance through simplified operations, reduced operation costs, and lower human 

operator workload. Nonetheless, there are increasing concerns about the potential misuse and 

disuse of automation as the level of autonomy increases (Parasuraman, 1997). That is, can the 

operator appropriately evaluate the situation and reject advice when the intelligent agent’s 

decision is incorrect? Research has suggested that influencing the transparency of the 

intelligent agent may improve operator trust and performance; and thereby create a proper 

reliance on the intelligent agent (Chen et al., 2014; Lee & See, 2004).  

However, there are still several challenges that need to be addressed to achieve a proper 

reliance of the human operator on an intelligent agent (Chen & Barnes, 2014). Human 

operators may not understand the rationale made by the intelligent agent, and question the 
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accuracy of an intelligent agent’s decision (Linegang et al., 2006). Thus, the intelligent agent 

has the potential to increase operator workload if the operator needs to determine the 

rationale behind the agent’s decisions (Chen et al., 2014).  Lee and See (2004) suggest that 

presenting a human operator with information specific to the purpose, process and 

performance of the intelligent agent could enable the operator to have adequate ‘human on 

the loop’ performance.  Therefore, Chen et al. (2014) propose the Situation Awareness-based 

Agent Transparency (SAT) model to support the operators’ situation awareness (Endsley, 

1995) of the intelligent agent regarding the agent’s current understanding of the world, 

reasoning process, and projected outcomes.  

Agent Transparency 

In artificial intelligence, an agent is defined as ‘anything that can be viewed as perceiving 

its environment through sensors and acting upon that environment through actuators’ (Russell 

& Norvig, 2009, p. 34). Moreover, an agent that takes the best possible action in a situation is 

defined as an intelligent agent (Russell & Norvig, 2009). The term has been widely used 

interchangeably with other terms such as autonomous agent and rational agent; however, the 

term ‘intelligent agent’ is used for consistency in this paper.  

Previous research shows that human operators criticise the effectiveness and accuracy of 

an intelligent agent’s behaviours when the human operator has difficulty in understanding the 

agent’s state (Linegang et al., 2006; Seppelt & Lee, 2007). Sarter and Woods (1995) identify 

the three most common challenges for human-agent teaming: understanding the current 

agent’s state, comprehending the agent’s intentions, and projecting the future behaviours. 

According to prior research, an intelligent agent that provides some information on how it 

operates can improve human-agent task performance and facilitate appropriate trust (Seppelt 
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& Lee, 2007; Wang, Jamieson, & Hollands, 2009).  Chen et al. (2014) suggest that the Sarter 

and Woods (1995)’s challenges are closely related to the Endsley (1995)’s Situation 

Awareness model: the perception of basic components, comprehension of the components’ 

meaning, and projection of the future status.  Chen et al. (2014) then developed the Situation 

Awareness-based Agent Transparency (SAT) model, which aims to address the Sarter and 

Woods (1995)’s challenges through displaying transparency information to operators to 

support them in developing an accurate mental model of the agent. The SAT model 

incorporates Endsley (1995)’s situation awareness model on how each SAT level could 

support each level of the operator’s situation awareness on the agent, which are the 

perception of what the intelligent agent is doing, the reasoning of the intelligent agent’s 

action and the projection of the intelligent agent’s behaviours.  

The SAT model has also incorporated Lee and See (2004)’s 3Ps (Purpose, Process and 

Performance) model. When the information about the intelligent agent’s purpose, process and 

performance is communicated to the operator, greater trust is developed by clearly showing 

to the operator what the intelligent agent is doing (Lee & See, 2004). The Purpose 

information is about what the intelligent agent is trying to achieve. The Process information 

informs the operators about how the intelligent agent operates and the consistency of its 

actions. The information on Performance informs the human operator about what the 

intelligent agent is doing and its ability to achieve the operator’s goals. 

Moreover, Rao and Georgeff (1995) propose that an agent’s beliefs, desires and intentions 

(BDI) are the mental attitudes which represent the information, motivational and deliberative 

states of the intelligent agent. These attitudes drive the intelligent agent’s behaviours and 

therefore it is important for the operators to understand the intelligent agent’s BDI to achieve 
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The aim of agent transparency is not to display all of the system’s capabilities, behaviours, 

and decision making rationale to the human operator, but to communicate the appropriate 

level of information to allow the operator to maintain adequate situation awareness of the 

intelligent agent’s actions without becoming overloaded (Chen et al., 2014; Lee & See, 

2004). Some studies have examined the information that the intelligent agent should present 

to the human operators and suggested elements that may improve overall performance such 

as providing accurate feedback about the intelligent agent’s reliability and providing an 

explanation of why the agent behaved in a certain way (Helldin, Ohlander, Falkman, & 

Riveiro, 2014; Lim, Dey, & Avrahami, 2009; Lyons, 2013; Wang et al., 2009). However, 

Chen et al. (2014) propose a three-level agent transparency model which identifies the 

essential information that should be shown to the operators to enable them to maintain proper 

situation awareness of the agent’s action in the tasking environment without being 

overloaded. 

Trust in Intelligent Agent 

An intelligent agent has the potential to assist human operators to achieve better 

performance with lower workload (Parasuraman & Riley, 1997). However, these benefits 

may not be achieved without an appropriate level of trust (Lee & See, 2004). Lee and See 

(2004) define trust in automation as, ‘the attitude that an agent will help achieve an 

individual’s goals in a situation characterised by uncertainty and vulnerability’ (p. 54). Trust 

is also described as an attitude towards automation which could affect reliance (Lee & See, 

2004). People tend to rely on an intelligent agent that they trust and tend to reject an 

intelligent agent that they do not trust. Thus, trust guides the operators’ reliance on an 

intelligent agent to overcome the cognitive complexity of managing an intelligent agent (Lee 

& See, 2004). If the operator over-trusts the intelligent agent, the operator becomes 
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complacent and over-relies on the agent, which may result in a misuse of the intelligent agent. 

Overreliance on the agent may reduce the frequency with which operators monitor the agent, 

and therefore may reduce the operator’s situation awareness and may result in detrimental 

consequences (Lee & See, 2004).  On the contrary, if the operator under-trusts the agent, the 

operator may disuse the intelligent agent and undermine the potential benefits if offers. The 

misuse and disuse of the intelligent agent are influenced by how well the human operator 

matches the true capabilities of the intelligent agent to their trust in the intelligent agent, 

which determines whether the operators have a proper trust calibration (Lee & See, 2004). 

Calibrated trust occurs when the operator has an accurate mental model of the intelligent 

agent. In this situation the operator will depend on the intelligent agent when it is operating 

within the agent’s capabilities, and also be aware of the agent’s limitations and override the 

agent when it is outside of the agent’s capabilities (Lee & See, 2004). Therefore, it is critical 

that operators have proper calibrated trust to avoid misuse and disuse of the intelligent agent 

and facilitate human-agent teaming (Lee & See, 2004).  

Trust in an intelligent agent is a complex and multidimensional concept that is grounded 

on at least one of the intelligent agent’s characteristics such as motives, intentions and actions 

(Hoff & Bashir, 2015). In order for operators to have a proper trust calibration, operators 

need to understand the intelligent agent’s ability to achieve the intended goals so they can 

form an appropriate level of expectation of the agent’s capability to achieve the goals (Lee & 

See, 2004). The information presented needs to be relevant and efficient to enable the 

operator to form an accurate mental model, which the operators can understand, to explain 

and predict the intelligent agent’s actions and act accordingly. Otherwise, operators may 

perceive the intelligent agent to be less trustworthy and usable when the additional 

transparency information increases their workload (Hoff & Bashir, 2015). To reduce the 
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misuse and disuse of the intelligent agent, a transparent agent should provide accurate and 

useful feedback to the operator (Hoff & Bashir, 2015). Wang et al. (2009) found that when an 

agent was transparent about its level of reliability this facilitated appropriate trust and 

improved operator performance. More specifically, an intelligent agent should provide its 

analytical, intentional and awareness-based parameters to the operator to build proper 

calibrated trust (Lyons, 2013). Chen et al. (2014) have further investigated what information 

should be included to build a proper calibrated trust in an intelligent agent and proposed the 

SAT model. Previous research that applied the SAT model to the design of displays for 

multiple uninhabited vehicles management has found that increasing the transparency levels 

improved both subjective and objective trust in the intelligent agent (Mercado et al., 2016; 

Selkowitz, Lakhmani, Larios, & Chen, 2016).  

Workload 

One concern with agent transparency is that the additional amount of information that 

needs to be presented as transparency levels increase may increase operator workload (Chen 

et al., 2014). Workload is described as ‘the cost of accomplishing mission requirements for 

the human operator’ (Hart, 2006, p. 904). When the operator performs a task with higher 

workload, it decreases the operator’s capability to do additional tasks (Cain, 2007). It is 

suggested that operators are more likely to rely on the intelligent agent’s decisions when they 

experience higher mental workload, which may lead to more incorrect agent usage decisions. 

One study showed that high operator workload reduced operator performance and situation 

awareness in managing multiple robots (Chen & Barnes, 2012). Therefore, an increase in 

operator workload may lead to incorrect agent usage decisions (Parasuraman & Riley, 1997). 

An increase in agent transparency may affect workload as it may require more cognitive 

efforts to process the additional information (Lyons & Havig, 2014). However, Chen, Barnes, 
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and Harper-Sciarini (2011) suggested that increased agent transparency may reduce operator 

workload as the agent’s current state, rationale, and future state projections are presented 

directly to the operator. Therefore, agent transparency may potentially reduce the time and 

processing effort required to acquire this information. Nonetheless, Duggan, Banbury, 

Howes, Patrick, and Waldron (2004) argue that operators found it difficult to process all the 

information displayed to them in a time-sensitive military situation, in which case increasing 

the transparency of an intelligent agent’s behaviours may overload operators with too much 

information. 

Research on the impact of agent transparency on workload has not produced consistent 

results. Mercado et al. (2016) found increasing transparency information did not increase 

operator workload, while Helldin (2014) reports that additional transparency information 

improved operator performance at the cost of increasing workload. In addition, an attempt to 

increase transparency by providing more direct and specific information about subsystem 

autonomy in group of heterogeneous uninhabited vehicles produced a reduction in workload 

and performance (Chen, Gonzalez, Campbell, & Coppin, 2014). However, additional 

information that is relevant and effectively designed does not increase the operator workload 

(Hoff & Bashir, 2015). To effectively display information, the display of the additional 

information needs to be in simplified form and meet ecological interface design principles 

such as using graphical displays and having simplified text (Cook & Smallman, 2008; 

Neyedli, Hollands, & Jamieson, 2011).  

Individual differences 

Prior studies have shown that video gamers perform better than non-gamers on different 

aspects of visual attention (Green & Bavelier, 2003; Green & Bavelier, 2006; Hubert-



Agent Transparency for Intelligent Target Identification                                                        42 

 

 

Wallander, Green, & Bavelier, 2011). Gamers were found to be more flexible and efficient in 

distributing attention over space and time (Hubert-Wallander et al., 2011). Research has also 

found that frequent gamers had better performance and situation awareness, and had faster 

response time when managing an intelligent agent in a military context than the infrequent 

gamers (Chen & Barnes, 2012; Chen & Barnes, 2015). Thus, people with gaming experience 

may perform better on tasks that require rapid processing of visual information, multiple 

object tracking, and flexibility in attention allocation (Green & Bavelier, 2003; Green & 

Bavelier, 2006; Hubert-Wallander et al., 2011). Therefore, the current study was interested in 

the impact of gaming experience on operator performance, trust and workload when the agent 

is more transparent in a maritime target identification task.  

Increasing the transparency of an intelligent agent may enhance the operators’ ability to 

build a new and sound mental model. However, it is also suggested that the operators’ 

previous mental models may also have an impact on human-agent teaming (Johnson-Laird, 

1983). Thus, the current study was also interested in the operators’ previous experience with 

programming and its impact on a maritime target identification task and examined the impact 

of programming and gaming experience across transparency levels. 

Current Study 

While increasing agent transparency has been shown to improve operator performance in 

uninhabited vehicle management, there are no consistent findings about the impact of 

transparency on operator workload and response time. Mercado et al. (2016) reported 

performance improved with no increase in workload or response time. However, Helldin 

(2014) found that greater transparency increased both operator workload and response time. 

Chen et al. (2014) found that a more transparent agent reduced operator workload and 
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improved reaction time. Furthermore, prior research in human-agent performance has been 

focussed on route planning and navigation in a military context (Mercado et al., 2016; 

Stowers et al., 2016). The aim of this study was to build upon previous research through 

applying the SAT model to an intelligent agent that makes recommendations on the 

classification of contacts in a maritime surveillance task. The intelligent agent generated an 

identification recommendation based on the information from an uninhabited aerial vehicle 

(UAV), and the participants made the identification decision for each contact based on a set 

of identification criteria. The current study examined the impact of agent transparency on 

trust and investigated any possible trade-offs in performance with respect to response time 

and workload. Four hypotheses were generated: 

1. Operator performance will improve as the level of agent transparency increased. 

2. There will be no difference in response time across transparency level. 

3. Operator trust in the agent will increase as the level of agent transparency increases. 

4. There will be no difference in perceived workload across the transparency levels. 

The current study also explored the impact of gaming and programming experience on 

operator performance, response time, trust and workload across transparency level. 

Method 

Participants 

Participants were recruited from the Defence Science & Technology (DST) Group 

Edinburgh through an intranet daily news advertisement. A power analysis using GPower 

(Erdfelder, Faul, & Buchner, 1996) indicated that a sample of 27 participants would be able 

to detect expected effect sizes based on the previous research conducted by Mercado et al. 
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(2016) with 80% power using an ANOVA with a significance level of p = .05. Consequently, 

twenty seven staff (21 men, 6 women) aged between 21 and 56 (M = 37, SD = 9.9) 

participated in this study. Participation was voluntary and no incentive was given for 

participation.  

Apparatus and Stimuli 

A customized simulator was created to support the current study. The simulation software 

was run on an Intel I7 Workstation and the simulator interface was displayed on a 30inch 

Dell monitor with a resolution of 2560 x 1600 pixels. The simulator interface is shown in 

Figure 1 and consists of three main sections showing information received by different 

sources. The left-hand half of the interface was a simulated ship radar display on which 

‘ownship’ was represented as a blue circle at the centre of the display and the positions of 

other tracks were represented by symbols at various ranges and bearing from ownship. The 

operator was required to select a track by clicking on a symbol using the mouse cursor. The 

radar display also contained a green circle which represented a range of 30 nautical miles 

from ownship, a horizontal blue band to the south of ownship which represented a shipping 

lane and a diagonal red line to the northwest of ownship which indicated the Australian 

exclusive economic zone. The bottom-right section of the interface displayed Automatic 

Identification System information about the selected track which comprised of vessel type, 

vessel name, port of registry, and the maximum and current speed. The top-right section of 

the interface showed the identification recommendation made by the intelligent agent for the 

selected track and allowed participants to select their assessment of the identity of the 

selected track.  
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Figure 1. Example of the simulator screen with SAT Level 1+2+3 (See Appendix A for a full 

page simulator screen) 

The intelligent agent section of the screen displayed different information depending on 

the level of agent transparency. The intelligent agent generated an identification 

recommendation based on the information received from the sensors on the UAV including 

the camera, radar and electronic support sensor. For all transparency levels, the intelligent 

agent’s identification recommendation for the track was shown at the top of the section, and 

at the bottom of the section there were three grey identity boxes where the participants made 

the identification decision and a ‘Submit’ button for them to submit the identification 

decision. The participants made the identification decision of each track based on the three 

main identification attributes of visual identification, speed / course and electronic support. 

For the SAT Level 1 (basic information only) interface, there was a graphic representation 
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showing whether the track was assessed to be a threat for each identification attribute (Figure 

2). Green indicated ‘not a threat’, yellow meant ‘no information is available’, and red 

indicated ‘possible threat’. The SAT Level 1+2 (basic information and reasoning) interface,  

displayed text describing the reasoning behind the intelligent agent’s recommendation for 

each identification attributes in addition to the SAT Level 1 graphical display (Figure 3). For 

SAT Level 1+2+3 (basic information, reasoning and projection) interface, additional text was 

presented that provided projection information for each identification attribute, together with 

the graphical display and text on the reasoning information (Figure 4).  

 

Figure 2. Example of the Intelligent Agent section with SAT Level 1 (basic information 

only). 
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Figure 3. Example of the Intelligent Agent section with SAT Level 1+2 (basic information 

and reasoning). 

 

Figure 4. Example of the Intelligent Agent section with SAT Level 1+2+3 (basic 

information, reasoning and projection). 
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Design 

A repeated-measures design was used in which participants were required to identify a 

number of tracks at each transparency level based on a set of identification criteria. The 

condition order (SAT Level 1, SAT Level 1+2, SAT Level 1+2+3) was counterbalanced 

using a Williams’ randomization procedure (Williams, 1949). The participants completed 

three experimental sessions, and the conditions were in the order according to their 

participation sequence.  

Each experimental session consisted of 22 tracks that needed to be identified, and the first 

two tracks in each session were considered as trials. For six out of the remaining twenty 

tracks in a session, the intelligent agent’s recommendations were inaccurate due to additional 

information that was not available to the intelligent agent, that is, the information from the 

ship’s radar and Automatic Identification System. The six tracks were pseudo randomised in 

each session. The choice of a reliability rate of 70% was based on Wickens and Dixon 

(2007)’s research which found that operator performance with automation reliability lower 

than 70% was worse than that with a lack of automation. Moreover, reliability that is too high 

may lead to over-reliance, while very low reliability may lead to under-reliance. 

Measures 

Participants’ identification accuracy, identification time, workload, and trust in the 

intelligent agent were measured at each transparency level. 

Operator performance. Identification accuracy was divided into measures based on Signal 

Detection Theory as shown in Table 2 (Chen et al., 2014). The correct acceptance rate was 

calculated as the proportion of trials where participants accepted a correct recommendation 

by the intelligent agent, while the correct rejection rate was calculated as the proportion of 
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trials where participants rejected an incorrect recommendation by the intelligent agent. These 

measures of accuracy were translated into the Signal Detection Theory metrics of sensitivity 

and bias (Stanislaw & Todorov, 1999). 

Table 2 

Decision matrix by applying signal detection theory adapted from Chen et al. (2014) 

Intelligent agent’s 

recommendation 

Participant’s identification 

submission 
Signal detection theory 

Correct Accept and submit correct Hit (Correct acceptance) 

Correct Reject and submit incorrect  Miss 

Incorrect Reject and submit correct Correct Rejection 

Incorrect Accept and submit incorrect False Alarm 

Incorrect Reject and submit incorrect Error 

Response time. Response time for each track was defined as the time from when the 

participant clicked on the track to the time the participant submitted the identification of that 

track. Response times were then categorised based on the Signal Detection Theory and 

average response times were calculated for correct acceptance, correct rejection, miss, false 

alarm and error responses. 

Workload. Workload was measured using a self-report questionnaire, the National Air and 

Space Administration Task Load Index (NASA-TLX) (Hart & Staveland, 1988) (Appendix 

B). NASA-TLX measures workload using six subscales of mental, physical, temporal 

demands, effort exerted, self-performance evaluation, and frustration felt during the task. 

Participants rated each subscale on a continuous scale ranged from 0 to 100, with lower 

scores representing lower workload and higher scores indicating higher workload in that 

subscale. The ratings of the subscales were equally weighted and averaged to create an 

estimate of overall workload (Hart, 2006). The Cronbach’s alpha of the overall workload 

scale in Braarud (2001)’s study was 0.82. 
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Trust. Trust was measured using a modified version of an automation trust scale developed 

by Jian, Bisantz, and Drury (2000) (Appendix C). The questionnaire was modified by 

Mercado et al. (2015) to combine the scale with the four types of automation introduced by 

Parasuraman, Sheridan, and Wickens (2000). Parasuraman et al. (2000) identified four stages 

of information processing and suggested that each stage can be automated. The four stages 

are information acquisition (sensory processing), information analysis (perception), decision 

and action selection, and action implementation (response selection). Only trust of 

information analysis and decision and action selection were assessed in the current study as 

these were the two stages manipulated in this experiment. Participants were asked the trust 

questions for each stage of the information processing. Each question was scored on a 7-item 

Likert scale (1= not at all and 7= extremely). The Cronbach’s alpha in Safar and Turner 

(2005)’s sample of the original version of the automation trust scale was strong (α = 0.93).  

Demographics. A demographic questionnaire collected information on the participant’s 

age, gender, level of education, computer usage and computer / video gaming experience 

(Appendix D). For computer usage experience, participants were asked to choose from a list 

of the software programs they were capable of using without any help, and the number of 

languages they were capable of programming in. Participants in this study reported being 

capable of using at least five or more software programs. For computer programming 

experience, participants who were capable of programming at least in one language were 

categorised as ‘programmer’ and those who were incapable of programming in any languages 

were categorised as ‘non-programmer’. In this sample, 77.8% of the participants were 

programmers, and 22.2% were non-programmers. For computer / video gaming experience, 

participants were asked to rate how often they played computer / video games. Participants 

who chose ‘Daily’ or ‘Weekly’ were classified as ‘Gamer’ and participants who chose the 
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other options including  ‘Monthly’, ‘Less than once a month’, ‘I have played computer/video 

games in the past but not for many years’ and ‘Never’ were classified as ‘Non-gamer’ based 

on Mercado et al. (2015)’s categorisation of gaming experience. In this sample, 55.6% of the 

participants were identified as gamers, and 44.4% were non-gamers. 

Procedure 

After the participants gave informed consent, they completed the demographic 

questionnaire. Participants then received training on the task, which took approximately 45 

minutes. The training session consisted of a PowerPoint presentation that provided detailed 

instruction for performing the task followed by a simulation session to familiarise them with 

the target identification task and the user interface. Accuracy feedback was provided after 

each track was identified and participants could ask questions at any time during the training 

session. A booklet with all the materials they needed was given to them to refer to during the 

experiment. Participants were provided with a list of suspicious behaviours performed by 

vessels on the sea that identified them as ‘Suspect’ and a decision making tree to assist in 

making the identification decision. The training session was immediately followed by the 

experimental session. Participants were told that they were participating in a mission to 

protect Australian waters and their role was to identify whether vessels were friendly, neutral 

or suspect. Participants were instructed to be as quick and accurate as possible. No feedback 

was provided during the experimental sessions. Participants completed an experimental 

session for SAT Level 1, SAT Level 1+2 and SAT Level 1+2+3 in the counterbalanced order. 

After each experimental session, participants completed the workload and trust 

questionnaires. Each experimental session took approximately 20 minutes to complete. 
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Results 

Analysis Approach 

The effect of transparency level on performance, response time, workload and trust were 

examined using a series of univariate ANOVAS with planned comparisons (Tabachnick & 

Fidell, 2013). Performance was analysed as rates of correct acceptance (hit), correct rejection, 

false alarm and error (Table 2) based on Signal Detection Theory (Green & Swets, 1966). 

Miss rate was not analysed as it is the inverse of the correct acceptance (hit) rate according to 

the signal detection theory (Green & Swets, 1966). Sensitivity and response bias were also 

used to analyse the performance data based on the Signal Detection Theory (Stanislaw & 

Todorov, 1999). Sensitivity (d’) examined whether participants were sensitive to the accuracy 

of intelligent agent. Response bias (c) measured the tendency of participants to accept or 

reject the intelligent agent’s recommendation. Response time was separately analysed by the 

Signal Detection Theory categories of correct acceptance, correct rejection, miss, false alarm 

and error. The first two tracks in each condition were treated as familiarisation trials and 

excluded from the performance and response time analysis. The effect of the programming 

and gaming experiences were examined using a series of mixed ANOVAs measures. 

The significance level used in the analysis was p < .05. No correction was applied to 

examine differences between transparency levels in this study due to the small number of 

planned comparisons.  

Operator Performance 

Operator performance was analysed by the rates of correct acceptance, correct rejection, 

false alarm and error (Table 3). In particular, this study was interested in the correct 

acceptance and correct rejection rates across transparency levels, which indicated the correct 
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usage of the intelligent agent (Figure 5). Note that correct acceptance reponses were from 14 

tracks per session, with the other measures from the remaining 6 tracks per sessions, results in 

fewer responses and hence more variability for these measures. 

Table 3   

Means of Operator Performance by Transparency Level 

Performance 

M  (SD) 

Level 1 Level 1+2 Level 1+2+3 

Correct Acceptance 83.86% (11.98%) 93.65% (7.76%) 97.62% (4.43%) 

Correct Rejection 82.72% (18.19%) 75.93% (27.86%) 81.48% (27.48%) 

False Alarm 14.20% (18.32%) 21.60% (25.66%) 15.43% (26.92%) 

Error 3.09% (6.60%) 2.47% (6.03%) 3.09% (10.37%) 

 

Analysis of correct acceptance rates revealed a significant main effect across transparency 

levels, F (2, 78) = 17.48, p <.001, partial η
2
 = .40. There was a significant increase in correct 

acceptance rate from SAT Level 1 to SAT Level 1+2 with a mean difference of 9.79%, 

p = .009. The correct acceptance rate also significantly increased from SAT Level 1+2 to 

SAT Level 1+2+3 with a mean difference of 3.97%, p = .04. Correct acceptance rates in SAT 

Level 1+2+3 were significantly increased by 13.76% compared with SAT Level 1 (p < .001). 

The results revealed correct acceptance rates significantly increased with the increase of 

transparency levels. 

Results for correct rejection rates revealed no significant difference in correct rejection 

between all three levels of agent transparency, F (2, 78) = .79, p = .46, partial η
2
 = .029. 

Moreover, there was no significant difference found in the rate of false alarms, F (2, 78) = 
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Signal Detection Analysis 

Signal detection theory (SDT) was used to analyse sensitivity of the participants to the 

accuracy of the intelligent agent’s accuracy and the tendency of the participants to accept or 

reject the agent’s recommendation. Sensitivity (d’) and response bias (c) were calculated 

from the difference between the hit (correct acceptance) and false alarm (incorrect 

acceptance) rates. When the hit or false alarm rates were zero or one, the data was corrected, 

adding 0.5 to both the number of hits and the number of false alarms and adding 1 to both the 

number of signal trials and the number of noise trials, before calculating the hit and false 

alarm rates (Stanislaw & Todorov, 1999).  

Sensitivity (d’). Sensitivity increased with the transparency levels as can be seen from 

Figure 6. The results of a repeated-measures ANOVA on d’ showed a significant effect 

across agent transparency levels, F (2, 78) = 5.97, p = .005, partial η
2
 = .19. There was no 

significant difference in d’ between SAT Level 1 (M = 1.99, SD = .14) and SAT Level 1+2 

(M = 2.23, SD = .15), p = .26. However, d’ in SAT Level 1+2+3 (M = 2.66, SD = .17) was 

significantly greater than that in SAT Level 1+2, p = .008, and in SAT Level 1 (p =.006). 

 

Figure 6. Sensitivity (d’) across transparency levels. Error bars indicate SEM. 
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Response bias (c). The mean response bias (c) in each transparency level is shown in 

Figure 7. The results of a repeated measures ANOVA on c revealed a significant difference 

across transparency levels, F (2, 78) = 7.26, p = .002, partial η
2
 = .22. A significant decrease 

in c was found between SAT Level 1 (M = -.012, SD = .07) and both SAT Level 1+2     

(M = -.33, SD = .09), p =.009, and SAT Level 1+2+3, p = .002. However, there was no 

significant change in c between SAT Level 1+2 and SAT Level 1+2+3 (M = -.34, SD = .07), 

p = .90.  The results of c scores showed participants had an increased tendency to accept the 

agent’s recommendation from SAT Level 1 to  SAT Level 1+2, yet no further increase in the 

tendency of acceptance at SAT Level 1+2+3.  

 

Figure 7. Response bias (c) across transparency levels. Error bars indicate SEM. 
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required for making a correct decision (Figure 8). The miss, false alarm and error had fewer 

responses and more variability in the data.  

Table 4  

Response Time Measures by Transparency Level 

Response Time 
M  (SD) 

Level 1 Level 1+2 Level 1+2+3 

Correct Acceptance 24.83s (15.22s) 23.98s (12.06s) 27.41s (10.59s) 

Correct Rejection 25.64s (11.76s) 33.07s (12.62s) 32.99s (13.01s) 

Miss 53.32s (49.82s) 58.10s (34.29s) 39.14s (20.65s) 

False Alarm 50.74s (48.84s) 46.93s (60.92s) 30.03s (13.41s) 

Error 52.84s (45.28s) 46.86s (58.70s) 37.57s (17.48s) 

 

No significant main effect in average response time for correct acceptance across all three 

levels of agent transparency was found, F (2, 78) = .90, p = .41, partial η
2
 = .033.  The results 

for response time for correct rejection revealed a significant main effect of agent transparency 

levels, F (1.5, 78) = 4.40, p = .017, partial η
2
 = .145. Compared to the average response time 

for correct rejection rate in SAT Level 1, that in SAT Level 1+2 was 7.43s significantly 

longer (p = .024) and that in SAT Level 1+2+3 was 7.35s significantly longer (p = .001). No 

significant difference was found between SAT Level 1+2 and SAT Level 1+2+3 with a mean 

difference of 0.08s, p = .98. Moreover, no significant main effects were found in the average 

response times for miss, false alarm and error across transparency level (p >.05). Note that 

the miss, false alarm and error had fewer responses and more variability in the data. 

From Figure 8, the average response times for correct rejection were greater than those for 

correct acceptance in SAT Level 1+2 and SAT Level 1+2+3. Therefore, post hoc t-tests were 

run to examine the differences of ratings between these two variables in each condition. The 
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subscales. The results revealed a significant decrease in the Performance workload subscale 

across agent transparency levels, F (2, 78) = 3.24, p = .047, partial η
2
 = .11, indicating that 

participants perceived their performance improved with increased transparency level. No 

significant main effects across transparency levels were found in other workload subscales 

(p > .05). 

Trust 

Perceived trust was separated into trust of the agent’s information analysis and trust of the 

agent’s decision making. The mean scores of each scale across SAT Level are shown in 

Figure 9. Two separate within-subjects ANOVAs on the Information Analysis and Decision 

and Action Selection Trust subscales were conducted. 

The results for the Information Analysis subscale showed a significant agent transparency 

level effect, F (2, 78) = 5.93, p = .005, partial η
2
 = .19. No significant difference was revealed 

between SAT Level 1 (M = 4.76, SD = .96) and SAT Level 1+2 (M = 4.98, SD = .93), 

p = .17. However, trust for the Information Analysis subscale in SAT Level 1+2+3 (M = 5.22, 

SD = .99) was significantly greater than in both SAT Level 1(p = .002) and SAT Level 1+2 (p 

= .043). The results showed that the trust in the agent’s ability to integrate and display 

information increased as transparency level increased. 

No significant transparency level effect in trust for the Decision and Action Selection 

subscale was found, F (2, 78) = 2.00, p =.15, partial η
2
 = .07. However, the results 

demonstrated a trend that trust in the agent’s ability to suggest or make decisions increased as 

transparency level increased (Figure 9).  Trust for the Decision and Action Selection subscale 

was the lowest in SAT Level 1 (M = 4.22, SD = .93), subsequently increased in SAT Level 

1+2 (M = 4.41, SD = .85) and SAT Level 1+2+3 (M = 4.53, SD = 1.02). 
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(p > .05). Note that over 70% of the participants were categorised as programmers, which 

results in different sample sizes between the two groups.  

Discussion 

This study investigated the impact of introducing agent transparency to a maritime target 

identification task. The Situation Awareness-Based Agent Transparency (SAT) model was 

used to provide a foundation for what information was to be displayed to support human-

agent teaming. The current study examined whether a more transparent agent could support 

an operator in identifying a contact in the maritime context and how the transparency 

information affected operator performance, trust and workload.  

Operator Performance 

Greater transparency enabled participants to accept more correct decisions made by the 

intelligent agent; however transparency was not shown to be beneficial when the intelligent 

agent’s decisions were incorrect. Signal Detection Theory (Green & Swets, 1966; Stanislaw 

& Todorov, 1999) measures of sensitivity and response bias showed that participants were 

more sensitive to the accuracy of the intelligent agent’s decisions, but also more likely to 

accept the intelligent agent’s recommendations when the agent was more transparent. This 

suggests that presenting the agent’s intents, reasoning and projection can improve operator 

performance by improving the human operators’ ability to distinguish the correct and 

incorrect intelligent agent’s recommendation, but also increase the tendency for operators  to 

rely on the intelligent agent.  

One explanation for the increase in the tendency to accept the intelligent agent’s decision 

is that displaying transparency information enabled the operators to understand the agent’s 
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decision making rationale; therefore, operators are more likely to rely on and accept the 

agent’s recommendations. Alternatively, Mercado et al. (2015) suggests that operators may 

more rely on the intelligent agent when the mental demand increases due to the increased 

amount of information. However, in the present study increasing transparency information 

did not increase operator subjective workload. This suggests that the increased tendency to 

accept the intelligent agent’s decisions across transparency level was not caused by changes 

in workload.  

When the agent was more transparent, participants were better able to discriminate the 

accuracy of the intelligent agent’s decisions yet were more likely to rely on the intelligent 

agent’s decisions. This finding partially supports Hypothesis 1 that operator performance 

would improve with increased transparency. It is inconsistent with previous studies (Helldin, 

2014; Mercado et al., 2016; Selkowitz et al., 2016; Stowers et al., 2016) which found that a 

more transparent agent improved operator performance both when the intelligent agent’s 

decisions were correct and incorrect, and Finger and Bisantz (2000)’s study that presenting 

information of uncertainty supported operator decision making. The current finding suggests 

that the transparency information may help the operators’ decisions in accepting the correct 

intelligent agent’s decisions; however, the information about the agent’s intent, reasoning and 

projection may not help the operators in making decisions when the intelligent agent’s 

decisions are incorrect. It may be because operators might perceive they need to have a 

stronger argument before rejecting the intelligent agent’s incorrect decisions when the 

intelligent agent’s intent, reasoning and projection are presented to them. Decision making 

research suggests that new evidence that supports the present belief has a greater impact on 

beliefs than that which does not support it (Ross & Lepper, 1980). Future research could 
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examine how the operators arrive at their decisions when the intelligent agent’s decision is 

correct in comparison with that when the intelligent agent’s decision is incorrect.  

In the current study, participants did not take longer to accept the correct intelligent 

agent’s decisions when the intelligent agent was more transparent yet more time was required 

to reject the incorrect intelligent agent’s decisions as transparency increased. It partially 

supports Hypothesis 2 that there would be no significant difference in response time across 

transparency levels, and is partially consistent with the prior research (Helldin, 2014; 

Mercado et al., 2016). Mercado et al. (2016)’s study showed that greater agent transparency 

improved performance without increasing response time, while Helldin (2014)’s research 

reported that the improved performance also increased the time required to make a decision. 

One explanation of the current study’s finding is that operators might spend more time and be 

more careful when evaluating additional transparency information when they need to override 

the intelligent agent’s incorrect decisions. The current study showed the participants were 

quicker in accepting the correct intelligent agent’s decisions. This may be because the 

additional transparency information enabled them to better understand the intelligent agent’s 

correct decision, which compensated for the time required to read the additional information. 

The decision to use an automation reliability level of 70% (Wickens & Dixon, 2007) 

meant that only 30% of the intelligent agent’s recommendation were incorrect in this study. 

Thus, only six out of twenty trials could be a correct rejection, false alarm, or  error in each 

session. This resulted in a small number of data points and large variability in the error, false 

alarm and correct rejection rate, which may have led to the lack of significant results. More 

data points may enable a better understanding of the impact of increasing the transparency on 

operator performance when the intelligent agent’s decisions are incorrect. Overall, the present 
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study suggests that increasing transparency information improved the operators’ sensitivity in 

the intelligent agent’s decisions by enabling them to correctly accept the intelligent agent’s 

recommendation faster, but also caused an increase in the time taken to correctly reject the 

intelligent agent’s recommendation.   

Trust in the Intelligent Agent 

The performance data showed participants improved their performance across the 

transparency levels when the intelligent agent’s decisions were correct and had no significant 

improvement when the intelligent agent’s decisions were incorrect. It suggests greater 

transparency reduces the disuse decisions, which occurred when operators reject the 

capabilities of the intelligent agent and refuse to accept the intelligent agent’s decisions. 

However, the absence of difference in correct rejection rates across transparency levels 

suggests that increasing transparency may not reduce the misuse decisions, which arise when 

operators become complacent and overly rely on the intelligent agent’s decisions. Therefore, 

greater transparency may assist operators not to under-trust the agent by reducing the disuse 

decisions; however, it may not help operators in preventing over-trust. Moreover, the Signal 

Detection Theory analysis revealed that the sensitivity increased in relation to the 

transparency levels. It indicates participants were able to better discriminate the accuracy of 

the intelligent agent’s decisions with the increased information on the agents’ intent, 

reasoning and projection.  

Additionally, the Signal Detection Theory analysis showed that the operators were better 

able to discriminate the correct intelligent agent’s decisions from the incorrect intelligent 

agent’s decisions and were more reliant on the intelligent agent when intelligent agent’s 

decisions were correct. Considering the performance data and Signal Detection Theory 
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analysis as the objective trust measure, it indicates that greater transparency on the agent’s 

intents, reasoning and projection lead to greater operator trust when the intelligent agent’s 

decisions are correct. 

However, the objective trust measure may only partially assess the operators’ trust in the 

intelligent agent. Participants might not trust the intelligent agent and ignore the agent’s 

recommendations; however, they might still be able to make the correct decisions manually 

with more transparency information being available (Parasuraman & Riley, 1997). 

Consequently, the subjective trust measure was examined to provide further insight into the 

participants’ trust in the intelligent agent. When the intelligent agent was more transparent, 

participants reported greater trust in the intelligent agent ability to integrate and display 

information, while there was no significant difference in participants’ trust in the intelligent 

agent’s ability in making decisions. The opposite was found with previous finding (Mercado 

et al., 2016), which found participants’ trust in an intelligent agent’s decision making ability 

increased while trust in the intelligent agent’s ability to integrate and display information 

showed no significant difference with increased transparency levels. Together with the 

objective trust data, the operators in the current study increased their trust in the intelligent 

agent and relied more on the intelligent agent when the agent was more transparent in its 

intention and behaviours. This supports Hypothesis 3 that operator trust would increase with 

increased transparency information. One explanation of the increase in trust is that the 

operators might have a better understanding of the capability and limitations of the more 

transparent agent, and how it arrives at its decisions. Overall, greater transparency caused the  

participants to be more reliant on the agent when the intelligent agent’s decisions are correct, 

however, participants did not show more reliance on the intelligent agent when the intelligent 

agent’s decisions were incorrect. Therefore, the current study did not find that participants 
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had more calibrated trust with increased transparency information, which is inconsistent with 

a previous finding (Mercado et al., 2016). An explanation of the trust result is that the 

decision making required to reject the intelligent agent’s recommendation might be difficult 

due to the complexity of the target identification task. Future research may examine the 

operator decision making strategies when the intelligent agent’s recommendations are correct 

and incorrect. Moreover, trust is a complex construct and is influenced by the human 

operator, the intelligent agent and environmental factors. The current finding shows that each 

level of agent transparency impacts on the operator trust to a different extent. For instance, 

operator trust of the intelligent agent’s ability to integrate and display information 

significantly increased from SAT Level 1+2 to SAT Level 1+2+3; however, no difference 

was found between SAT Level 1 and SAT Level 1+2. Future research may investigate how 

the additional information in each level of agent transparency impacts operator trust.  

Furthermore, participants were sensitive to the experiment’s manipulation of reliability as 

reflected in the results of subjective trust measures. Participants perceived the intelligent 

agent as being more trustworthy in displaying analysed information than in suggesting or 

making decisions for all transparency levels. The agent was designed to be accurate in 

analysing the information all the time in this experiment, while the decision made by the 

intelligent agent was only accurate for 70% of the time for all transparency levels. This is 

supported by Wang et al. (2009) which found that disclosing the reliability level of the 

intelligent agent positively influenced the operator in having an appropriate level of trust. 

Thus, it indicates that participants recognised the reliability of the intelligent agent in the 

current study and were able to differentiate their trust in different elements of the intelligent 

agent.   
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Operator Workload 

In contrast to Helldin (2014)’s finding which suggested that increasing transparency 

information could increase the demand on operators’ information processing capacity, the 

current study showed that presenting information on agent’s intent, reasoning and projection 

enabled the agent to be more transparent without increasing operator workload. Therefore, 

the result is consistent with Mercado et al. (2016)’s finding and supports Hypothesis 4. It may 

be because the information helped the operator to understand the rationale behind the agent’s 

decision and therefore it reduced the operator’s mental effort. Additionally, participants 

perceived that their performance improved when the agent was more transparent, which is 

consistent with the performance data. Overall, a more transparent agent improved operator 

performance without increasing workload, which is consistent with the other findings (T. 

Chen et al., 2014; Mercado et al., 2016).  

Limitation  

Participants took longer to correctly reject than to correctly accept the intelligent agent’s 

recommendation with greater transparency; however, the correct rejection rates were 

significantly lower than the correct acceptance rates when the agent was more transparent. It 

is possible that this may be due to an increase in cognitive effort when the intelligent agent’s 

recommendation was incorrect; however, operators did not report any change in workload 

with different levels of agent transparency. It is possible that an objective measure of 

workload such as eye movement and pupillary responses may be more sensitive to changes 

(Buettner, 2013). While some research has suggested objective workload measures may not 

be correlated (Crabtree, Bateman, & Acton, 1984), Mercado et al. (2016) found consistent 

results on increasing agent transparency with the subjective workload measure (Mercado et 



Agent Transparency for Intelligent Target Identification                                                        68 

 

 

al., 2016). Therefore, using other workload measures may provide more insight into the 

longer response time for correct rejection.  

In addition, civilian participants were recruited for this study who had little or no prior 

experience with maritime contact identification. However, the interface used in the current 

study was designed for civilians based on the Ecological Interface Design (Neyedli et al., 

2011; Vicente & Rasmussen, 1992). For instance, simplified text was used in the interface to 

allow the naïve participants to easily understand the content of the task. Moreover, 25 out of 

27 participants had already completed tertiary education, and over 70% of the participants 

reported they were able to program in at least one language. The result might not be 

generalisable to the general and Defence population. Nonetheless, Helldin (2014) recruited 

Defence participants in the study and found improvement on performance when the agent 

was more transparent.  

Future Research 

The current study focused on the impact of increasing agent transparency in a target 

identification task but uncertainty information was not included in SAT Level 3 (intelligent 

agent’s projection). This study showed displaying the intelligent agent’s intents, reasoning 

and projection showed to improve operator performance. Future research could examine the 

impact of including uncertainty in agent transparency in the projection information. 

Uncertainty might be critical for decision making in target identification.  Disclosing the 

uncertainty information has been shown to reduce operators’ attempts to make a final 

identification without an increase in workload or time required (Riveiro, Helldin, Falkman, & 

Lebram, 2014). Moreover, Selkowitz, Lakhmani, and Chen (2017) have separated uncertainty 

from SAT Level 3 in a route planning task, and found that operators were more cautious in 
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trusting the agent to make decision and execute actions when the uncertainty information was 

presented (Selkowitz et al., 2017). Moreover, operators have been shown to be less likely to 

adopt risky behaviours with the uncertainty information (Andre & Cutler, 1998). Therefore, 

follow-up research could consider uncertainty separately from SAT Level 3 and investigate 

the impact of displaying information of intelligent agent’s projection and uncertainty 

respectively on operator performance, trust and workload in the target identification task. 

In the current study, participants spent more time correctly rejecting an agent’s 

recommendation across transparency level, while they did not spend longer time correctly 

accepting the recommendation when transparency increased. It is unclear what the 

participants’ decision making was strategy in the present study. Human operators, in 

particular military operators, heavily rely on their own subjective experience and decision 

making strategies to make a decision (Roux & van Vuuren, 2007). When presenting 

information about the agent’s uncertainty, some operators may prefer to examine all possible 

options in relation to the worst case scenarios, while some operators may evaluate the options 

as to their expected outcomes (Roux & van Vuuren, 2007). Therefore, future research could 

explore participants’ decision making strategy to gain a better understanding of the 

participants’ approach to the task including how they arrive at their decision in accepting or 

rejecting the agent’s recommendations. Moreover, a baseline condition, which is a condition 

without the intelligent agent’s recommendation could be included in a future study to further 

understand how the participants utilise the intelligent agent.  

The current study examined the impact of increasing transparency on operator 

performance in terms of accuracy and sensitivity. Future research could investigate how an 

increase in agent transparency affects the operators’ choice of target identity. Previous 
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research has shown that operators are more likely to choose suspect identities in target 

identification as they may consider the worst case scenario when the uncertainty information 

is presented (Riveiro et al., 2014). Therefore, future research could investigate the influence 

of transparency level on the choice of target identity. 

The current study used simple graphic and textual representations to display transparency 

information for civilian participants. Future research could examine other interface designs to 

display the three transparency levels information for experts based on the Ecological 

Interface Design and investigate their impact on operator performance, trust and workload 

(Neyedli et al., 2011; Vicente & Rasmussen, 1992). 

Conclusions 

The current study has broadened the research of agent transparency by showing that 

greater transparency of the intelligent agent’s decision enhances operators’ ability to assess 

the accuracy of an intelligent agent’s decisions for a target identification task in the maritime 

domain. Moreover, increasing agent transparency did not increase operator workload or 

increase the time taken to accept correct intelligent agent’s decisions, yet it caused operators 

to spend more time rejecting incorrect intelligent agent’s decisions. Displaying more 

transparency information was beneficial in terms of building operator trust in the intelligent 

agent as operators perceived the intelligent agent to be more trustworthy and were more 

reliant on the intelligent agent’s correct decisions.  This finding may facilitate the design and 

use of intelligent agents for uninhabited vehicles management in the maritime domain. Future 

research could investigate other interface designs for displaying agent transparency 

information to experienced military operators.  
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Key Points 

 Greater agent transparency improved operator ability to assess the accuracy of an 

intelligent agent’s decisions while also causing a higher tendency to follow the agent’s 

decision in an intelligent maritime target identification system.  

 Displaying information on the intelligent agent’s intention, reasoning and projections 

facilitated the human-agent teaming without the cost of increased workload or a longer 

time to accepting correct intelligent agent’s decisions, while increasing the time taken to  

reject incorrect intelligent agent’s decisions. 

 Increasing the agent transparency information enabled operators to build a higher level of 

trust and be more reliant on the correct intelligent agent’s decisions. 
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Appendix B 

NASA Task Load Index (TLX) 

Participant No: ______ Session:____ Condition:____ Scenario:____ Date:_________ 

 

Please mark the point with a cross (x) on each rating scale that matches your experience during the 

last time period. 

 

Mental Demand   

How much mental and perceptual activity was required (e.g. thinking, deciding, calculating, 

remembering, looking, searching, etc.)? Was task easy or demanding, simple or complex, exacting or 

forgiving? 

                      
                      
                      

Low                  High 

 

Physical Demand  

How much physical activity was required (e.g., pushing, pulling, turning, controlling, activating, 

etc.)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious? 

                      
                      
                      

Low                  High 

 

Time Demand  

How much time pressure did you feel due to the rate or pace at which the tasks or task elements 

occurred? Was the pace slow and leisurely or rapid and frantic? 

                      
                      
                      

Low                  High 

 

Effort  

How hard did you have to work (mentally and physically) to accomplish your level of performance? 

                      
                      
                      

Low                  High 

 

Performance  

How successful do you think you were in accomplishing the goals of the task set by the analyst (or 

yourself)? How satisfied were you with your performance in accomplishing these goals? 

                      
                      
                      

Good                  Poor 

 

Frustration Level  

How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content, 

relaxed and complacent did you feel during the task? 

 

                      
                      
                      

Low                  High 
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Appendix C 

Trust Survey 

Participant No: ________ Session:____ Condition:____ Scenario: ____ Date:___________ 

For each of the following items and situations, circle the number which best describe your 

feeling or your feeling or your impression based on the system you just used. For each item, 

consider the following situations: 

 When the system is integrating information, generating predictive displays, and/or 

presenting its analysis. 

 When the system is making decisions and/or selecting actions. 

 

1. The system is deceptive. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

2. The system behaves in an underhanded manner. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

3. I am suspicious of the system’s intent, action, or output. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

4. I am wary of the system. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

 

 



Agent Transparency for Intelligent Target Identification                                                        83 

 

 

5. The system’s action will have a harmful or injurious outcome. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

6. I am confident in the system. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

7. The system provides security. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

8. The system has integrity. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

9. The system is dependable. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 
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10. The system is reliable. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

11. I can trust the system. 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 

 

12. I am familiar with the system. 

 

 Not at all Neutral Extremely 

Integrating and Displaying 

Analysed Information 
1 2 3 4 5 6 7 

Suggesting or Making 

Decisions 
1 2 3 4 5 6 7 
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Appendix D 

Demographics Questionnaire 

Participant No: ________   Date: ___________ 

Please circle the corresponding response. 

Your Age: ________ 

 

Your Gender: 

Male Female    

 

What is the highest level of education you have completed? 

a) Less than Year 12 or equivalent 

b) Year 12 or equivalent 

c) Vocational Qualification / Associate Diploma / Advanced Diploma 

d) Bachelor degree / Bachelor degree Honours 

e) Postgraduate degree (including postgraduate diploma, Master and Doctorate) 

 

Which of the following software programs are you capable to use without any help? 

(Please tick on one or more boxes) 

 

  Word processing (e.g. Word) 

  Spreadsheet (e.g. Excel) 

  Presentation software (e.g. PowerPoint) 

  Databases (e.g. Access) 

  Graphic / Movie editing software (e.g. Photoshop, iMovie) 

  Internet (e.g. Internet Explorer, Chrome) 

  Email (e.g. Outlook) 

  Others: __________________________________________ 

  None 
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How many languages are you capable to program in (e.g. Java, JavaScript, or C)? 

a) None 

b) 1-3 

c) 4-6 

d) 7-9 

e) 10 or more 

 

How often do you play computer/video games? 

a) Daily 

b) Weekly 

c) Monthly 

d) Less than once a month 

e) I have played computer / video games in the past but not for many years 

f) Never 
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