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Abstract

We investigated the route taken in the first human migration from south-
east Asia to southern Australia. Mitochondrial DNA (mtDNA) sequences
were analysed using phylogenetic trees, then a simulation study was used
to identify the migration route that best described the observed data. The
simulation study compared the observed mtDNA data to DNA simulated
under nine different scenarios. If the actual migration history resembled one
of the scenarios, we would expect the summary statistics of the observed and
simulated mtDNA to be similar.

The simulation study did not conclusively select one migration route, or a
set of migration routes, that best described the data. To check that this
was a consequence of the data and not the modelling assumptions, we con-
sidered a range of extensions to the initial simulation study. This included
modifications to the time between migration events through the southeast
Asian islands, exploration of the effect of different migration levels after the
initial settlement of all populations, and then a more detailed haplogroup
analysis.

From these extended analyses, we found that increasing the length of time
between migration events through the southeast Asian islands resulted in a
greater ability to distinguish between migration routes. We also found that
we were less able to distinguish between migration routes when identical pat-
terns of ongoing migration were applied to all migration routes. Our further
haplogroup analysis used a simulation study to compare three different mi-
gration routes. While we could not determine the geographical route taken,
we could determine the patterns of ongoing migration that occurred after set-
tlement. The observed mtDNA data was consistent with ongoing, low-level
migration between northeastern Australia and New Guinea.

We conjecture that rapid migration through the southeast Asian islands re-
sulted in minimal evidence of the initial migration events in the mtDNA

11



12 Contents

sequence data. When considering the phylogenetic trees, we noticed low
branch support values around the time of settlement of Australia, which
further supports our conjecture.

Our findings suggest that small amounts of ongoing migration between north-
eastern Australia and New Guinea occurred. Our inability to reliably de-
termine the initial migration route taken also illustrates the limitations of
mtDNA analysis, and highlight the importance of using nuclear DNA for
future studies in this area.



Chapter 1

Introduction

1.1 Motivation

‘Where did humans come from?’ has been a question of interest throughout
much of human history. While much progress has been made on this topic,
many questions remain unanswered. Ongoing research aims to learn more
about the evolutionary history of humans, as well as the details of human
migration into and throughout all continents of the world.

First, we present a brief discussion on what is already known about human
prehistory, which is the time before written human records. Anatomically
modern humans, Homo sapiens, were not the first humans to inhabit the
continents outside of Africa. Neanderthals and Denisovans predate Homo
sapiens as a species; Neanderthal remains have been found in Europe and
eastern Asia, while Denisovan remains have been found in Asia (specifically,
in Denisova Cave, Russia) [72]. Outside of Africa, most humans today have
Neanderthal ancestry, Denisovan ancestry, or both Neanderthal and Deniso-
van ancestry due to interbreeding between the different human species [74].
While there are other ancestral human species, some of which also inhabited
Eurasia and the southeast Asian islands [18, 1], we do not discuss these in
detail here. Our research concerns only the history of modern humans, and
this is where we now focus.

The most widely accepted theory for the origin and later migration of modern
humans is the Out-of-Africa theory, which hypothesises that modern humans
originated in Africa, and subsequent migration events resulted in the peopling
of all other continents [44]. First, fossil evidence suggests that the Levant
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2 Chapter 1. Introduction

region (the present-day Middle East) was inhabited 126,000 - 74,000 years
ago [70], although early migration into this region did not lead to further
migration events. It is estimated that mainland southeast Asia was inhabited
between 70,000 [94] and 50,000 years ago [63]. This was followed by the
peopling of the southeast Asian islands, and then Australia approximately
50,000 years ago [85]. Later, Europe was inhabited approximately 45,000
years ago [77], and the Americas were inhabited from Eurasia via the Bering
land bridge approximately 15,000 years ago [48].

These estimates have been taken from a range of studies in the fields of
archaeology and genetics. Due to technological advances, and the corre-
sponding decrease in the cost of DNA sequencing, human prehistory has
only recently become an area that can be studied through the analysis of
genetic material.

We investigate only a small part of this vast migration history: the migra-
tion of modern humans from southeast Asia into what is now Australia,
which occurred approximately 50,000 - 65,000 years ago [85, 15]. We aim
to further the research of Tobler et al. [85], who used mitochondrial DNA
(mtDNA) to study the initial peopling of Australia by Aboriginal Australians.
They investigated the timing of the peopling of Australia, and also suggested
that coastal migration occurred within Australia based on the distribution
of mtDNA haplogroups within the country.

We will extend their research by investigating the migration path taken
through the southeast Asian islands, as well as the migration path taken
within Australia. The DNA samples that we will analyse have been collected
from descendants of the first modern humans to inhabit Australia and the
southeast Asian islands, and many of these samples were also used in the
analysis by Tobler et al..

This topic will be explored through a simulation study, in which we will in-
vestigate whether our observed mtDNA samples are consistent with a range
of previously published migration routes. We will also perform a phylo-
genetic analysis, which will describe the genetic relationships between the
populations that are relevant to our research question.

1.2 Thesis Structure

The theory required for understanding DNA simulation is described in Chap-
ter 2. This introduces the concept of phylogenetic trees, which are then pre-
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sented in the following chapter. We also discuss mitochondrial DNA and
coalescent theory.

We apply the theoretical discussion on phylogenetic trees and coalescent
theory in Chapter 3, in which we present our phylogenetic analysis in the
form of phylogenetic trees and any relevant parameter estimates. Further
theoretical details of the programs used to reconstruct these trees and other
estimates are also provided.

Before introducing the simulation study and its results, we describe the math-
ematical theory underpinning different classification and dimension reduction
methods in Chapter 4. These methods will later be used to establish the re-
sults of the simulation study.

The migration models that form the foundation of the simulation study are
defined in Chapter 5. Migration models clearly define all parameters required
to simulate DNA, and so we will need to specify geographical routes, migra-
tion times, effective population sizes, and any other parameters that describe
the demographic history of populations or the type of DNA that we wish to
simulate.

All previous chapters are brought together in Chapter 6, where we present
the results of the simulation study and discuss them in context. This involves
applying the classification methods introduced in Chapter 4 to the summary
statistics resulting from the simulations defined in Chapter 5.

Chapter 7 investigates the results presented in Chapter 6 in more detail. We
conduct further simulations that explore the effects of relaxing the assump-
tions made when defining the migration models, and whether any information
can be gained from exploring different sub-populations at a finer resolution.
We also discuss what we would theoretically expect to see under different
migration scenarios.

All code used to analyse data will be available via the sahul migration pathways
repository at https://github.com/sophie-schiller.

https://github.com/sophie-schiller
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Chapter 2

DNA Simulation and
Coalescent Theory

In this chapter, we describe the use of genetic simulators to simulate DNA,
as well as the theoretical basis of these simulators. First, we describe some
key properties of DNA, and then introduce the use of trees to describe ge-
netic relationships. We define the Wright-Fisher model, and show how this
model can be used to derive the standard coalescent. We then consider how
changes in effective population size over time and migration events can be in-
corporated as extensions of the standard coalescent. We describe how DNA
is simulated given a coalescent tree, and then conclude by discussing the
mutation process of DNA.

Genetic simulators are programs that simulate DNA, given some pre-defined
population history. This history includes any changes in effective population
size, creation or extinction of populations, and migration between popula-
tions.

Genetic simulators fall under two general categories: backward-time (e.g.
coalescent) or forward-time. Backward-time simulators start at the present
day or some other specified time, and then model how population changes
backward in time. These simulators are based on coalescent theory, and are
therefore more efficient than alternative simulators [98]. Forward-time simu-
lators begin with some population in the past, and then model the change in
this entire population through to the present day. While this type of simu-
lator is more flexible, it is also less efficient. We use the coalescent simulator
Bayesian Serial SimCoal (BayeSSC) [4, 23], due to its flexibility in simu-
lating different population histories, the automatic calculation of summary

5



6 Chapter 2. DNA Simulation and Coalescent Theory

statistics for DNA, and the prohibitive amount of time many forward-time
simulators take to produce a large number of simulations.

2.1 DNA

DNA commonly refers to autosomal DNA, which is the DNA inherited from
both parents. There are also other types of DNA, such as mitochondrial DNA
(mtDNA), X-chromosome DNA, and Y-chromosome DNA. In this project,
we only use mtDNA. Mitochondrial DNA is shorter than autosomal DNA,
having a length of 16569 base pairs (bp) compared to the approximately
2.9 × 109 bp that make up autosomal DNA [67]. Unlike autosomal DNA,
mtDNA is circular, so that the last base pair at Position 16569 is next to the
first base pair at Position 1.

Each DNA sequence is made up of four nucleotides: adenine, cytosine, gua-
nine, and thymine. These are represented by the letters A, C, G, and T
respectively. Each of the four bases is either a pyrimidine or a purine de-
pending on its chemical composition: C and T are pyrimidines, while A and
G are purines.

DNA changes over time, and one cause of this is the mutation process. There
are many types of mutations that affect DNA in practice; for example, the
insertion or deletion of DNA, or single nucleotide polymorphisms (SNPs). A
SNP occurs when one base changes to a different base. This is also referred
to as a substitution, and an example is given in Figure 2.1.

Some regions in the mitochondrial genome accumulate mutations faster than
others, and are called hypervariable regions I and II. We can split the full
genome into two main regions: the coding region and the control region.
Both hypervariable regions lie within the control region. Since the hyper-
variable regions accumulate mutations at a greater rate than other regions,
the hypervariable regions contain a greater proportion of mutations. Posi-
tions within the hypervariable regions are also more likely to be affected by
multiple mutations. The hypervariable regions have a greater average muta-
tion rate than the coding region, and also contain multiple ‘hotspots’ with a
considerably greater mutation rate. Furthermore, the higher mutation rate
and shorter length of the hypervariable regions means that these regions are
more susceptible to back-mutations, where a single site undergoes two mu-
tations. For example, an A could change to a T, and then back to an A; in
this case, it appears as though a mutation never occurred. For these reasons,
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A A C T T G
A A T T T G

Figure 2.1: Two DNA sequences with the SNP highlighted in red.

we will exclude the control region and only analyse the coding region in our
analyses.

All substitutions are either transitions or transversions. Transitions occur
within a purine/pyrimidine family; for example, a change from a C to a T is
a transition, as is an A to a G. Conversely, transversions occur when a purine
is substituted for a pyrimidine, or vice versa. For example, a change from
an A to a C is a transversion. Many simulation programs include transition
bias as a parameter, which allows transitions and transversions to occur at
different rates for more realistic simulations. The transition bias can be
estimated from the sequence data using a program such as ModelGenerator
[42].

There are some considerations when using mtDNA to investigate population
history. As mtDNA is passed along the maternal line, we can only gain
insight into the matrilineal genetic history of the population. While this is
a limitation, models based on mitochondrial DNA are also simpler due to
the lack of recombination. Recombination is a process that affects nuclear
DNA, and occurs when cells divide. DNA splits at some points along the
DNA strand, and then joins back together (recombines) in a different way.
This process is described visually in Figure 2.2.

2.2 Trees

Given a sample of mtDNA sequences, it is possible to infer a phylogenetic
tree. Trees visualise the relatedness of sequences in a DNA sequence align-
ment, and can also provide information about the timing of events in the
population history if they are calibrated. There are many different programs
that can create trees from sequence data. Two commonly used programs
are BEAST2 [8], which uses Bayesian methods to produce a tree, and IQ-
TREE [60], which constructs maximum likelihood trees. These programs are
discussed in more detail in Chapter 3.

To illustrate, we consider a simple, rooted phylogenetic tree as shown in
Figure 2.3. The three modern sequences, A, B, and C, are at the tips of the
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Figure 2.2: Chromosomes before and after recombination.

CA B

E

D

Figure 2.3: A phylogenetic tree for modern sequences A, B, and C.
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tree. D is the common ancestor of A and B, and A and B are more closely
related than either A and C or B and C. The most recent common ancestor
(MRCA) of all samples is represented by E. Sequences at D and E are not
sampled, but are inferred by the method used to construct the tree.

Both BEAST2 and IQ-TREE take a DNA sequence alignment as input and
then construct a tree. However, this method of tree building is not suitable
for DNA simulation. DNA simulation, at least using coalescent simulation
programs, works by first building a tree based on a pre-defined population
history, distributing mutations along the tree, and then simulating DNA
according to the tree topology and distribution of mutations. Since DNA
is simulated at the final step of this process, it cannot be used to construct
a tree in the first step of the process. It is also unsuitable to use another
source of DNA to build the tree, as the other source may reflect a different
population history.

Consequently, trees must be constructed based only on the population his-
tory. One method for generating trees in this situation is through the use
of coalescent theory. Next, we present the Wright-Fisher model, and how it
can be used to derive the coalescent.

2.3 The Wright-Fisher Model

The Wright-Fisher Model, developed by Sewall Wright [95] and Sir Ronald
Fisher [25], was one of the first models used to describe how the allele fre-
quencies, and therefore the genetic characteristics of a population, change
over time. This model assumes a constant population of size N , with every
individual being replaced each generation. The population is not made up
of males and females like a human population; instead, the Wright-Fisher
model assumes a haploid population. By definition, individuals in a haploid
population only carry one copy of the genetic material being passed on [61].
Mitochondrial DNA is one example of haploid inheritance, since it is only
passed on through the maternal line.

Another assumption of the Wright-Fisher model is random mating in each
generation, which means that an individual passes on their genetic informa-
tion to any individual in the next generation with equal probability. This
assumption is equivalent to each child randomly choosing one parent in the
previous generation. Children only choose one parent instead of two due to
the assumption of a haploid population.
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Figure 2.4.1 demonstrates random selection of parents for five generations.
Once each child from the current generation (t = 0) has selected a parent,
each individual from this generation (t = 1) must select a parent, and so on
until the most recent common ancestor (MRCA) for all individuals in the
present day (t = 0) is found. In Figure 2.4.1, this occurs four generations
in the past (t = 4). Figure 2.4.2 only shows the selection of parents for
descendants of the MRCA.

Since individuals are replaced in each generation, it is also helpful to consider
lineages. In terms of Figure 2.4.2, a lineage is a path from an individual at
t = 0 to the MRCA. Lineages merge backwards in time because individuals
eventually share a common ancestor. Since lineages merge over time, we
sometimes mention the number of distinct lineages. At time t = 0 there
are four distinct lineages, but at time t = 3 there are only two distinct
lineages.

A coalescent event occurs when the ancestors of two or more individuals select
the same parent, i.e. when two or more lineages coalesce. For example,
the lineages of the two leftmost individuals in Figure 2.4.2 coalesce three
generations in the past, when t = 3. These coalescent events are modelled in
continuous time in the coalescent model.
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t = 0

t = 1

t = 2

t = 3

t = 4

2.4.1: A realisation of the Wright-Fisher model showing the choice of parent
for each individual in each generation.

t = 0

t = 1

t = 2

t = 3

t = 4

2.4.2: The same realisation of the Wright-Fisher model as Figure 2.4.1, but
individuals without offspring are now coloured grey. The choice of parent is
only shown for the ancestors of individuals at t = 0. The single black circle in
the top row is the MRCA of all four individuals in the bottom row.

Figure 2.4: A realisation of Wright-Fisher model for four individuals (N = 4)
over five generations. Each generation is labelled according to the number
of generations in the past t, with t = 0 representing the present day. The
choice of parent is indicated by an arrow.
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2.4 The Coalescent Model

The coalescent model can be described in different ways, but here the deriva-
tion of the standard coalescent model from the Wright-Fisher model is pre-
sented. The general Wright-Fisher model is similar to the example given in
Figure 2.4 , except there are t generations instead of five generations, and
some fixed population size N instead of four individuals. We also introduce
the concept of a sample size n. The sample size is the number of lineages at
t = 0, and the number of individuals whose genetic history is considered. In
the example given for the Wright-Fisher model, N = n = 4.

First, we consider what it means for exactly two individuals to have a com-
mon ancestor, and then generalize this to any pair of individuals having a
common ancestor. We can generalize this because an individual’s choice of
parent is independent of the choice made by any other individuals in the
same generation.

Consider two specific individuals in a population of size N . The probability
of these individuals randomly selecting the same parent is 1/N . Therefore
the probability of these two individuals not choosing the same parent is
1− 1

N
. Since the assumptions of the Wright-Fisher model imply independence

between generations, the probability of two specific individuals not selecting
the same parent for t consecutive generations is(

1− 1

N

)t
.

At this point, the time t describes the number of generations in the past. We
rescale time to coalescent time τ by setting

τ =
t

N
. (2.1)

Let the random variable T2 be the time taken for two lineages to coalesce.
Then

P (T2 > t) =

(
1− 1

N

)t
, or equivalently,

P (T2 > Nτ) =
(

1− τ

Nτ

)Nτ
. (2.2)
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Notice that the form of Equation 2.2 is very similar to the limit characteri-
sation of the exponential. For fixed τ , we let N go to infinity:

P (T2 > t) ≈ lim
N→∞

(
1− τ

Nτ

)Nτ
(2.3)

= e−τ

⇒ P (T2 < t) ≈ 1− e−τ (2.4)

= 1− e
t
N . (2.5)

Equation 2.4 can be identified as an exponential CDF with rate parameter
one. After converting to generational time using Equation 2.1, the probabil-
ity becomes an exponential CDF with rate parameter 1/N (from Equation
2.5). By the definition of the expected value of an exponential distribution,
E[T2] = N . This means that the expected time for two lineages to coalesce
is N generations.

In Equation 2.3, we require N to go to infinity to derive properties of coa-
lescent events. While an infinitely-sized population is unrealistic when mod-
elling populations in practice, any sufficiently large value ofN where the num-
ber of lineages k is small compared to N yields a close approximation.

The main consequences of a finite population size are multiple coalescent
events in the same generation, or more than two lineages being involved in
the one coalescent event. Instead of calculating all the possibilities under
which this could happen, we directly calculate the probability of one or zero
coalescent events happening and subtract this from one. If we define the
number of coalescent events in the previous generation as C, then

P(C ≥ 2) = 1− P(C = 1)− P(C = 0). (2.6)

Suppose that there are k distinct lineages at some point in time. Consider
the probability of two of these lineages coalescing in the previous generation.
An equivalent scenario is k individuals having exactly k− 1 ancestors in the
previous generation, i.e. the event C = 1. This means that exactly two
individuals have chosen the same parent, and exactly one coalescent event
has occurred.

For one coalescent event to occur, two individuals must select the same par-
ent. For two specific individuals, this occurs with probability 1/N . Now,
we require all remaining individuals to choose different parents. If we con-
sider the next individual, the probability of them selecting the same parent
as the other two individuals is 1/N , and so the probability of not selecting
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the same parent is 1 − 1/N . For the next individual, there are two parents
selected already, and a similar argument is used. Finally, all probabilities are
multiplied due to individuals selecting parents independently of each other.
Therefore the probability of two specific individuals sharing a parent and all
other individuals having different parents is

1

N

N−2∏
i=1

(
1− i

N

)
.

We also need to accommodate the fact that there are
(
k
2

)
different pairs

of individuals that could have the same parent, instead of only two specfic
individuals having the same parent. Multiplying by the number of pairs
gives

P (C = 1) =

(
k
2

)
N

N−2∏
i=1

(
1− i

N

)
. (2.7)

Next, consider the probability of no individuals selecting the same parent
in the previous generation, i.e. the event C = 0. Once the first individual
selects a parent, the probability that the next individual selects the same
parent is 1/N , and so the probability that this individual selects a different
parent is 1 − 1/N . At this stage, there is a 2/N probability that the next
individual selects the same parent as one of the previous individuals. We can
extend this argument to find that

P(C = 0) =
N−1∏
i=1

(
1− i

N

)
. (2.8)

Substituting Equations 2.7 and 2.8 back into the original expression found
for multiple coalescent events in Equation 2.6,

P(C ≥ 2) = 1−
(
k
2

)
N

N−2∏
i=1

(
1− i

N

)
−

N−1∏
i=1

(
1− i

N

)
. (2.9)

The probability of multiple coalescent events in one generation for different
population sizes and numbers of lineages is given in Figure 2.5. We can
see that the probability of multiple coalescent events is negligible when the
population size N is large compared to the number of lineages k.
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Figure 2.5: The probability of multiple coalescent events occurring in the
previous generation, contrasted against the probabilities of exactly one co-
alescent event occurring and no coalescent events occurring in the previous
generation. This was calculated for different numbers of lineages k in different
population sizes N .

When deriving rates of coalescent events, we have only considered coalescent
events for exactly two lineages. Suppose there are now k lineages in the
population; we want to determine the rate at which coalescent events occur
between any two lineages. We can think of this as waiting for one of

(
k
2

)
sets of two lineages to coalesce, where the waiting times for all coalescent
events are distributed according to an exponential distribution with rate
parameter 1/N (see Equation 2.5). By the properties of independent and
co-occurring exponential distributions [7], coalescent events between any two
lineages occur according to an exponential distribution with a total overall
rate of

(
k
2

)
/N .

Again by the definition of an exponential distribution, a coalescent event
is expected to occur after N/

(
k
2

)
generations. Interpreting this expected

waiting time in context, we find that as the number of lineages decreases,
the expected time until a coalescent event increases. Note also that since the
rate of coalescence depends on N , coalescent events are expected to occur at
a faster rate in a smaller population than in a larger population. For a more
detailed discussion of coalescent theory and the mutation process, the reader
is directed to Wakeley’s Coalescent Theory: An Introduction [91].
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2.4.1 Implementation of the coalescent model

Coalescent trees can be constructed in practice using either a continuous
implementation or a discrete implementation.

To randomly generate a coalescent tree, a pair of lineages is randomly chosen
from the population, and then the time until their coalescence is drawn from
an exponential distribution with rate N/

(
k
2

)
, assuming generational time is

used. The process is repeated until the final two lineages coalesce into one
lineage. This single lineage persists backwards in time, but any informa-
tion further in the past does not affect the relationship between present-day
individuals in coalescent theory.

While the standard coalescent can be simulated in continuous-time using
the process outlined above, BayeSSC uses a discrete implementation. Each
generation is one time step, and at each time step, the probability of two
lineages coalescing out of a total k lineages is

P (A coalescent event occurs) =

(
k
2

)
N
. (2.10)

In Equation 2.10, N and k are the population size and number of distinct
lineages at the current generation [23].

The possibilities of multiple coalescent events or the coalescence of multiple
lineages in one generation are both included in the simulation algorithm
used by BayeSSC, where the probability of another, further, coalescent event
in each generation is calculated after the first coalescent event occurs [23].
THe algorithm continues simulating the current generation until coalescent
events have ceased to occur, and only then it begins simulating the next
generation.

2.4.2 Changes in effective population size

As seen in the introduction to the standard coalescent model, the rate of co-
alescence directly depends on N . For sudden changes in population size, e.g.
a significant decline in population size, the rate of coalescence is immediately
adjusted at the time of the population resize.

Alternatively, one may wish to model the exponential growth or decay of a
population over time. Suppose a population grows exponentially with rate
r forwards in time (i.e. the population decays backward in time). We note
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Figure 2.6: A graph showing exponential growth of effective population size
as in Equation 2.11, where r is positive. The population size shrinks going
backwards in time, which is equivalent to population growth in forwards
time.

that while Figure 2.6 displays population growth, all equations in this section
apply to population decay as well. Let N0 denote the effective population
size at the time when the exponential growth begins, and Nt the effective
population size t units of time in the past. Then population growth can be
modelled with the equation

Nt = N0e
−rt, (2.11)

where r ∈ R\{0}. This pattern of population growth is described in Figure
2.6.

Since the rate of coalescence depends on N , which was previously fixed in
the standard coalescent so that Nt = N for all t, we can simply substitute
Nt for N :

Rate of Coalescence with population growth =

(
k
2

)
Nt

=

(
k
2

)
N0e−rt

=

(
k
2

)
N0

ert.
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Now the rate of coalescence depends on the current number of generations
that have passed since the start of the exponential growth, and so the rate
is constantly changing. After one generation, the rate of coalescence has
increased by a factor of er. Instead of constantly updating the population
size and rate of coalescence, it is simpler to simulate a tree using a fixed
rate of coalescence first, and then rescale time afterwards according to the
exponentially changing rate of coalescence.

Suppose that a tree is simulated using a fixed rate of coalescence, under
some timescale t̄. The tree from a fixed coalescent rate is the same as a tree
constructed when the rate of coalescence is undergoing exponential change,
but on the actual timescale t.

Let exponential population growth occur backwards in time from the current
time t = t̄ = 0, and let t be the number of generations in the past. For the
tree generated under a fixed rate and the tree generated under an exponential
rate to be the same, the timescale of the tree with the fixed rate (t̄) must
grow exponentially quicker:

t̄ =

∫ t

0

erxdx

=
1

r
(ert − 1). (2.12)

To calculate event times on the actual timescale t, we rearrange Equation
2.12 to find

t =
1

r
log(t̄r + 1).

In the context of the population growth seen in Figure 2.6 where r is positive,
this means that the tree generated under a fixed rate on timescale t̄ would
be compressed under the actual timescale of t. Intuitively, as the population
size decreases in the past, we expect the rate of coalescence to increase. This
means that the expected waiting time for coalescent events decreases, and
the tree should be shorter in length.

Time is only rescaled while the effective population size undergoes decay or
growth. As soon as the effective population size stabilises at a constant value,
the rate of coalescence is as described in Section 2.4 and time is no longer
rescaled.

Coalescent events under an exponentially changing effective population size
also have a discrete implementation. The effective population size N is up-
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dated at each generation according to the growth rate r, and then proba-
bilities of coalescence are calculated as in Equation 2.10, using the updated
value of N from Equation 2.11 at each time step.

2.4.3 Creation of new populations

When modelling demographic histories with migration, we often consider
people moving between two existing populations in a generation. However,
we can consider the creation of new populations along the migration path as
migration events as well.

Consider large-scale migration occurring forwards in time. At first, one popu-
lation is present in one location. After reproducing for some amount of time,
some individuals may split from this population and move to a different lo-
cation. While in reality there may be some individuals that move between
populations, we first consider the simpler concept of no ongoing migration.
This new population will then continue to evolve until a group of individuals
leaves the population and moves to a new area. Suppose that this process
repeats until there are D distinct populations that have been created from
preceding populations.

To model this scenario using the coalescent, we need to consider the same
problem backwards in time. Here, we will start with D populations that
evolve independently backwards in time. Instead of individuals leaving a
population to make a new population as when time moves forward, the pop-
ulation merges back into the previous population, leaving D− 1 populations
to continue evolving. This process repeats until the second population merges
with the one remaining population, which was the starting point of our mi-
gration scenario. In this thesis, we only consider the coalescent where the
times of population merges are fixed values.

This scenario is not dissimilar to the standard coalescent, as in both cases
lineages can only coalesce within a population. However, the standard co-
alescent is only made up of one population. If there are D independent
populations in the present day and no populations ever merge, this scenario
is equivalent to building D independent coalescent trees.

As populations merge, the lineages from previously separate populations can
potentially coalesce. This is illustrated in Figure 2.7, where populations
merge at times t∗ and t∗∗.

The discrete implementation of the coalescent model does not change greatly
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Figure 2.7: A coalescent tree for three populations that merge backwards
in time. Individual populations are colour-coded at each point in time. At
the present day, there are three distinct populations, coloured red, blue, and
green. At time t∗, Population 1 merges with Population 2, creating the
merged population in purple. At time t∗∗, the two remaining populations
merge, forming one population in grey. Any coalescent events involving two
lineages from two different populations must occur after the populations
merge, looking backwards in time.
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when extended to consider multiple populations, but the probabilities of
coalescent events are calculated for each population in each generation. An
important point to note regarding the simulation process is that the timing
of population merges must be known before simulation.

If there is uncertainty about the times that populations merged (or any other
parameter), a prior distribution can be used instead of a fixed value. A prior
distribution in this case is a valid probability distribution that encompasses
the reasonable range of values for a given parameter. While prior distribu-
tions can be used in BayeSSC as part of a Bayesian inference framework to
find parameter values, we do not use them for this purpose here.

2.4.4 Post-settlement migration

Instead of an entire population merging into another, sometimes individuals,
and therefore lineages, can move between populations. From here, we will
refer to small numbers of individuals moving between already-established
populations as post-settlement migration. In this section, a migration event
refers to a case of post-settlement migration (unless otherwise stated).

The time to a migration event occurs according to an exponential distribu-
tion with rate λM [61]. This means that when considering events, either a
migration event or coalescent event could occur next at any given time. The
coalescent process and migration process occur independently of each other,
and so we can apply a property of exponential distributions to determine the
type of event that occurs [7]. By this property, some type of event (coales-
cence or migration) will occur with rate λM + λC , where λC is the rate of
coalescence. After an event occurs, the type of event can be assigned. The
probability of each event occurring is proportional to its rate:

P (coalescence | event occurs) =
λC

λM + λC

P (migration | event occurs) =
λM

λM + λC
.

Once the type of event is sampled, lineages are chosen at random and the
event occurs.

To implement this on a generation-by-generation timescale, we refer back to
the Wright-Fisher model. Suppose that there are two populations instead of
one. At each generation, there is a probability that an individual chooses a
parent in the other population. In a similar way, BayeSSC uses a matrix with
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fixed probabilities of migration between populations to implement migration.
These migration matrices are square, but not necessarily symmetric. For a
migration matrix M = [Mij], Mij is the probability of a lineage migrating
from population i to population j backwards in time, in one generation.

2.4.5 The mutation process

Using the theory developed in previous sections, we can efficiently simulate
a coalescent tree under a range of demographic histories, such as changes in
effective population size, migration events, and creation or extinction of dif-
ferent populations. To simulate DNA sequences from these trees, we need to
simulate a pattern of mutations that results in differences between present-
day DNA sequences, which are found at the tips of the tree. This can be
achieved by distributing mutation events along the branches of the coalescent
tree. In the coalescent model we only consider point mutations (substitution
mutations), i.e. a one-letter change of base at a given site, and do not
incorporate other types of mutations, such as insertions or deletions. The
substitution rate µ defines the mutation process, and is in terms of the num-
ber of substitutions that occur at one site in a year. However, it is sometimes
given in terms of the number of substitutions that occur throughout an entire
sequence in a year or a generation. Here, we assume the substitution rate is
given as substitutions per site per year, unless stated otherwise.

Substitutions are distributed according to a Poisson process with rate µ along
the tree. The process begins at the MRCA and continues downwards, dis-
tributing substitutions independently along each branch. Since the occur-
rence of substitutions is a Poisson process, the waiting time until a substi-
tution occurs is exponentially distributed, as with coalescent and migration
events. If the waiting time for a substitution event is longer than the branch
length, no substitutions occur on that particular branch. Once the locations
of the substitution events on the tree have been sampled, the substitution
is distributed spatially along the DNA sequence. This substitution can be
randomly distributed, but that is not a very realistic model. Instead, some
regions are allowed to accumulate more substitutions than others by allowing
slight variation of the substitution rate between sites.

Rate variation between sites is often parameterised by a discrete gamma dis-
tribution defined by a number of rate classes n and a shape parameter α [96].
The discrete gamma distribution is created by partitioning the correspond-
ing continuous gamma distribution into n equiprobable intervals; the value
assigned to each interval is found by calculating the mean of the gamma
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Figure 2.8: An example of how the mutation process is used to simulate
present-day DNA sequences. A substitution event (red star) affects all se-
quences after it, when considered forwards in time. The substitution from
the substitution event is shown as a red site in the DNA sequences. The
DNA sequences at internal nodes are shown to illustrate the concept, but
only the sequences at the tips would be outputs of the simulation program.

distribution within each interval. As n goes to infinity, the discrete gamma
distribution approaches the continuous gamma distribution.

A continuous gamma distribution is parameterised by the shape parameter
k and the scale parameter θ. A scale parameter is not specified for the dis-
crete gamma distribution because the effect of rate variation is multiplicative;
sampling one from the gamma distribution means that the substitution rate
remains unchanged. Since the mean of the gamma distribution is forced to be
one a scale parameter is not required, as it can be calculated from the shape
parameter. This arises from the formula of the expected value of a continu-
ous gamma distribution, where for some random variable X ∼ Gamma(k, θ),
E[X] = kθ.

Both the shape α and number of rate classes can be determined from DNA
sequence data using a program such as ModelGenerator [42].

Simulation of DNA sequences based on the location of substitution events
must occur from the MRCA downwards, as descendants inherit any substi-
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tutions that have occurred earlier in the tree. This is explained visually in
Figure 2.8. To implement the mutation process using a coalescent simulator
such as BayeSSC, a random DNA sequence is generated at the MRCA. Sub-
stitutions are then simulated according to the distribution of substitutions
on the tree. The spatial location of the substitution on the DNA sequence is
chosen probabilistically, taking into consideration the rate variation between
sites. We also need to consider the type of substitution, i.e. which base
will be selected - this is accomplished by defining a substitution model. All
substitution models referred to in this thesis are defined mathematically in
Appendix A.2, but we also present an outline of three substitution models
here to discuss limitations and software implementations.

For a substitution to occur at a given site, the current base at the site must
change to any of the other three bases. The simplest substitution model is the
Jukes-Cantor (JC69) model (see Appendix A.2.1), which selects a different
base at random [39].

As stated earlier, transitions and transversions occur at different rates, and
so the Jukes-Cantor model is not realistic. The simplest model that allows
for different substitution probabilities for transitions and transversions is
the Kimura two parameter (K2P) model [43] (see Appendix A.2.2). This
substitution model is parameterised by either the transition transversion ratio
or the transition bias. The transition transversion ratio κ means that for
every transversion that occurs, κ transitions are expected to occur. When
discussing transitions and transversions under Section 2.1, we defined the
transition bias b as the proportion of substitutions that are transitions. The
transition transversion ratio κ can be calculated from the transition bias by
applying Equation 2.13,

κ =
b

1− b
. (2.13)

There are a large number of substitution models, each allowing different sets
of substitutions to have different rates. Unlike the two models presented here,
some substitution models allow unequal base frequencies, e.g. more A’s than
T’s in a sequence. BayeSSC enforces equal base frequencies at the MRCA
to simplify the simulation process. One of the more complex models is the
General Time Reversible (GTR) model (see Appendix A.2.7), which allows
different substitution rates for each type of substitution as well as unequal
base frequencies [83].

It is important to note that substitutions occur according to a finite sites
model in most coalescent simulators. This means that substitutions are al-
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lowed to occur at the same site twice, potentially resulting in back-mutations.
A back-mutation occurs when one site undergoes two substitutions, where
the second substitution returns the site to its ancestral base. These substi-
tutions would not be identified as substitutions when calculating summary
statistics. However, mutation rates are very low (in the order of 10−8 muta-
tions/site/year), and sequences are 15447 base pairs long due to the length
of the coding region of mtDNA. This means that back-mutations rarely oc-
cur.

While many studies have been conducted to estimate the substitution rate for
human mitochondrial DNA, in this project we will use the substitution rate
for the coding region of mtDNA calculated by Fu et al. [28], of 1.57 × 10−8

substitutions per site per year. To determine the number of substitutions for
the whole coding region per generation, we need to multiply the substitution
rate by the length of the coding region (15447 base pairs) and the human
female generation time (25 years [24]). This gives a substitution rate of
6.0629× 10−3 substitutions per mtDNA coding region per generation.

The previous sections contain enough information to simulate a coalescent
tree based on the demographic history of a number of populations, and then
simulate mtDNA that would have occurred under this history. The next
chapter describes the model design process and presents some methods for
model selection, where each model describes a different migration route.
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Chapter 3

Phylogenetic Methods and
Analysis

In this chapter we introduce our data and conduct what is known as a phylo-
genetic analysis. A phylogenetic analysis explores the relationships between
the sampled individuals and the genetic history of the population. This
analysis involves the reconstruction of phylogenetic trees, which were first
introduced in Section 2.2.

First, we describe the aligned mtDNA sequence data and how this data
is filtered to exclude certain sequences and genomic regions. Next, we in-
troduce the theory behind maximum likelihood trees, as implemented in
IQ-TREE, before reconstructing a maximum likelihood tree. We then ex-
plain how BEAST can be used to produce a phylogenetic tree (referred to
as a ‘BEAST tree’) while simultaneously recovering past effective population
size, and present the results of this analysis. We conclude this chapter by
discussing the results of these analyses in context.

3.1 Data

Aligned mtDNA sequence data were provided by the researchers at the Aus-
tralian Centre for Ancient DNA (ACAD), in the School of Biological Sciences
at the University of Adelaide. This dataset included the samples collected as
part of the Aboriginal Heritage Project (AHP) [85]. The data are uniquely
provenanced because, in addition to collecting hair samples, information was
collected about the geographical origin of each sample donor’s ancestors. The

27



28 Chapter 3. Phylogenetic Methods and Analysis

geographical metadata included where the grandparents of the sample donors
lived, and therefore this recorded location predates the European colonisa-
tion of Australia and the forced relocation of Aboriginal peoples. Hence,
there is a reliable latitude and longitude for all samples within Australia in
the form of a pre-European, ancestral country for each sample donor.

The remaining sequences are from individuals with hunter-gatherer ancestry
from the islands of southeast Asia. Hunter-gatherers were the first anatomi-
cally modern humans to inhabit the islands of southeast Asia. Other migra-
tion events into this area soon followed, notably the Austronesian expansion
approximately 5 thousand years ago which introduced agriculture to the re-
gion [47]. Since we want to investigate the first wave of human migration
into the islands of southeast Asia, we analyse mtDNA sequence data from
individuals whose ancestors were part of the first migration.

The general location is also recorded for the samples from the southeast Asian
islands, but not at the resolution of latitude and longitude. The location
metadata is sufficient as we will later assign samples to broad geographical
regions instead of specific, individual locations.

We note that all samples are comparatively recent (obtained within the past
100 years), and there are no ancient samples in our dataset.

The raw dataset contains 678 aligned mtDNA sequences in total. The gen-
eral sampling locations of these sequences are given in Table 3.1. A full
table of metadata containing all available location metadata can be found in
Appendix B, in Table B.1.

3.1.1 Data filtering

To filter the aligned mtDNA sequence data we need to consider which se-
quences, and also which sites within each sequence, are best suited for this
analysis. Only sequences relevant to the candidate migration routes (de-
scribed in Section 5.1) are retained. For example, we do not include any
mtDNA sequences where the samples were taken from individuals from the
Pacific Islands east of Australia (e.g. Fiji) because the location is not in-
formative when considering migration from southeast Asia to Australia. We
retain all sequences from Borneo, Timor-Leste, the island of New Guinea and
other nearby islands, and all Australian sequences with reliable provenance.
A number of Australian sequences that had no corresponding latitude or
longitude were also excluded from the analysis. A map of the corresponding
sampling locations for the retained sequences is given in Figure 3.1.
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Sampling Location n
n

(Final Dataset)
Population ID:

(Number) Region

Borneo 58 12 (0) SE Asia
The Philippines 33 -

Timor 15 8 (1) Southern Wallacea
Remote Oceania 20 -

Santa Cruz Islands 40 -
New Britain 48 14 (2) New Guinea
Bougainville 69 27 (2) New Guinea

Solomon Islands 110 -
Australia (no location) 124 -

Brewarrina 31 20 (3) NE Australia
Cherbourg 23 21 (3) NE Australia
Lake Tyers 14 7 (4) SE Australia

Koonibba 47 10 (5) Southern Australia
Point Pearce 43 12 (5) Southern Australia

Table 3.1: The number of mtDNA sequences from each sampling location,
before and after filtering the data. The mtDNA sequences were then grouped
geographically into six different populations and assigned a Population ID.
Locations of populations are given in Figure 3.1.
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Figure 3.1: Number of sequences from each sampling location for the final
dataset. Each colour represents a distinct geographical region; we defined
these regions in Table 3.1. The number of sequences is given as a point at
each location.
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Next, we remove closely genetically related samples within populations, so
that the final set of mtDNA sequences better represents the true population
diversity. This filtering step is completed with the full mtDNA sequences,
i.e. including the control region. Recall that the control region contains the
hypervariable regions, which have a higher substitution rate than the coding
region. Related samples are conservatively defined as sequences from the
same population that differ by two or less point mutations.

Finally, we must decide which sites of the aligned mtDNA sequences to in-
clude in the analysis. As discussed in Section 2.1, we only select sites that
are in the coding region, due to the higher and more variable substitution
rate in the control region. The coding region is from position 577 to position
16023 inclusive on the mitochondrial genome [28].

The final filtered dataset is comprised of 131 aligned mtDNA sequences,
with the control region excluded for all sequences. These sequences include
43 AHP sequences previously published by Tobler et al. [85], 27 sequences
from the Aboriginal Heritage Project that have not yet been published, and
61 additional previously published sequences [21, 29, 37], with further details
given in Table 3.1. Accession numbers and references for sequence data are
given in Table B.2 (see Appendix B).

As described in Section 2.2, phylogenetic trees are used to visualise the ge-
netic relationships between different individuals. In this thesis, we will re-
construct a maximum likelihood tree using IQ-TREE, and then conduct a
Bayesian phylogenetic analysis using BEAST. In this Bayesian analysis we
will reconstruct phylogenetic trees and the effective population size over time.
A theoretical discussion of each method will be given before the results are
presented.

3.2 Maximum Likelihood Trees

3.2.1 Likelihood calculation and algorithm details

Consider a phylogenetic tree having the same form as the tree given in Figure
2.3 of Section 2.2. We describe likelihood calculations in detail using an
artificial example with the phylogenetic tree and mtDNA alignment in Figure
3.2.
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Figure 3.2: An example phylogenetic tree with sequences of length 3bp at
the tips. Unknown sequences at internal nodes are labelled s4 and s5, and
branch lengths are labelled b1, b2, b3, and b4.

The phylogenetic tree in Figure 3.2 has five nodes, including the tips. There
are three sequences at the tips of the tree, denoted s1, s2, and s3, and two
unknown sequences at the internal nodes of the tree, denoted s4 and s5. We
denote the ith site of the jth sequence as sij, e.g. s11 = s12 =A, s13 =T, and
s23 =G.

To calculate the likelihood of the aligned sequence data given the tree, we will
first consider the first site of each sequence. When calculating probabilities
from maximum likelihood trees, we can consider the substitution process
forward in time or backward in time. These two scenarios are equivalent
when the substitution model used is reversible, which is always the case for
our analysis. In the following example, we consider substitutions backward
in time.

We wish to determine the probability of observing the bases A, A, and T at
s11, s21, and s31 respectively. The sites s41 and s51 are unknown, but it is
clear that at least one substitution has occurred because not all of the bases
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at the tips are the same. From s11, we need to determine the probability
that an A changes to a different base or remains the same in time b1. From
s21, we need to determine the probability that an A changes to a different
base or remains the same after time b2. From s31, we need to determine the
probability that a T changes to a different base or remains the same after
time b3. Finally, we also need to find the probability that s41 either remains
the same or changes to a different base in time b4.

Assuming that substitutions occur according to a Poisson process (as de-
scribed in Section 2.4.5), we can calculate the probability of observing dif-
ferent types of substitutions after some amount of time from a substitution
model. Substitution models define the rate at which each type of substitution
occurs (see Appendix A.2 for details of different models).

Since the substitution process occurs independently along branches, we mul-
tiply all of the probabilities together. We also apply the law of total proba-
bility to account for the unknown sites s41 and s51, allowing the sites to be
any base in the set D = {A,C,G, T}. Let the probability that the base sij
changes to or remains as the base skj in time b as Psijskj(b). The likelihood
for the first site is then

L1 =
∑
s51∈D

∑
s41∈D

Ps51s41(b4)Ps51T (b3)Ps41A(b2)Ps41A(b1)

=
∑
s51∈D

Ps51T (b3)
∑
s41∈D

Ps51s41(b4)Ps41A(b2)Ps41A(b1).

A general formula for the ith site likelihood of the tree in Figure 3.2 is

Li =
∑
s5i∈D

Ps5is3i(b3)
∑
s4i∈D

Ps5is4i(b4)Ps4is2i(b2)Ps4is1i(b1). (3.1)

The tree likelihood is calculated by multiplying all site likelihoods. Assuming
independence between sites, the general form of the tree likelihood is

LTREE =
n∏
i=1

Li. (3.2)

For our example in Figure 3.2, n = 3, but it is easy to see how likelihood
calculations can be extended to sequences of any length n.

The likelihoods for each site in the alignment can be quite small, and so
calculating the log-likelihood often makes more sense. The log-likelihood of
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the tree is found by summing the log-likelihood calculated for each site. If
the sequences have length n, then the log-likelihood for the tree is `TREE
where

`TREE =
n∑
i=1

log(Li). (3.3)

Here, we assumed a substitution model, fixed branch lengths and a tree
topology were all known in advance. In practice, the substitution model,
branch lengths, and tree topology must all be determined before the tree log-
likelihood can be calculated. We now consider how these may be found.

IQ-TREE allows substitution models to either be specified or estimated from
the data. Models may be specified if they have been previously determined
using model selection software such as ModelGenerator [42]. Substitution
models are estimated from the data through the inbuilt program ModelFinder
Plus. This program also finds the best-fitting substitution model which corre-
sponds to the lowest BIC, although it is also possible to select a substitution
model by AIC or corrected AIC.

After selecting a substitution model, branch lengths can be estimated. This
is an optimisation problem where we wish to identify the branch lengths
bi that yield the maximum value of the likelihood function, stated fully in
Equations 3.1 and 3.3. Yang [97] gives a detailed description of estimating
branch lengths from sequence data in practice.

In the previous paragraphs, we defined the tree log-likelihood function and
described the selection of substitution models and branch lengths for a fixed
tree topology. Now, we consider how tree space can be searched to find a tree
topology that maximises the log-likelihood. IQ-TREE attempts to identify
an optimal tree topology using an algorithm that employs nearest neighbour
interchanges (NNIs).

We illustrate the concept of NNI through unrooted trees. So far, we have
only considered rooted trees, which have an ancestral node (the MRCA).
Unrooted trees do not have this ancestral node, or a clear concept of ‘time’.
A comparison of rooted and unrooted trees is given in Figure 3.3. Maximum
likelihood trees are unrooted by default, but a rooted maximum likelihood
tree can be produced by including an outgroup that is not closely related to
any of the sequences in the tree reconstruction.

Nearest neighbour interchange works by interchanging ‘neighbouring’ clades
around a particular branch. Around any given branch there are three distinct
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Figure 3.3: (A) Rooted and (B) unrooted forms of the same phylogenetic
tree.

topologies, given in Figure 3.4. The branch of interest is in red, and the four
subtrees are N1, N2, N3 and N4.

N1 N1 N1

N2 N2

N2N3 N3

N3N4 N4N4

Figure 3.4: Nearest neighbour interchanges around a particular branch (red)
of an unrooted tree. N1, N2, N3 and N4 are subtrees.

Given an initial topology, subsequent applications of NNI are used to find
the topology that maximises the log-likelihood. Initial tree topologies may
be random, or determined using a simpler algorithm. First, a hill-climbing
algorithm by Guindon et al. [31] is applied, but this may remain in a local
optima instead of finding the global optimum. Stochastic NNI decreases
the likelihood of getting stuck in local optima, because it randomly changes
the tree topology in a way that may not improve the log-likelihood. This
then provides a different starting point for the hill-climbing NNI algorithm.
Furthermore, this process is applied to a set of candidate trees, and then
the tree with the highest log-likelihood in the final set is returned as the
maximum likelihood tree [60].
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Figure 3.5: Examples of trees that have the same and different subclades as
Tree (A). The two different subclades in Tree (A) are different colours (grey
and black), and the branch of interest that separates subclades is red in Trees
(A) and (B). The branch from Trees (A) and (B) does not appear in Tree
(C), and so we use a different colour in Tree (C). The taxa in the clades of
Tree (A), ( (si, sj), (sk, sl, sm) ), are clearly not the same as the taxa in
each clade of Tree (C), ( (sj, sk), (si, sl, sm) ), and there is no branch that
we can select in Tree (C) to recover the same subclades as in Tree (A).

3.2.2 Branch support tests

Branch support tests are used to quantify the reliability and fit of a maximum
likelihood tree. IQ-TREE supports two main tests: the ultrafast bootstrap
and the Shimodaira-Hasegawa approximate likelihood ratio test.

Ultrafast Bootstrap (uBS)

Ultrafast bootstrap employs a resampling technique where each new boot-
strap sample is obtained by sampling sites with replacement from the se-
quence alignment. A maximum likelihood tree is built using only the resam-
pled sites [54]. The uBS process is parameterised by the number of bootstrap
replicates, i.e. the number of times that sites are resampled. The branch
support value is the percentage of trees constructed from the bootstrapped
samples that contain the same subclades as the original tree. Examples of
trees that contain the same subclades and different subclades are given in
Figure 3.5. Note that subclades need to contain the same set of tips, but are
not required to have the exact same topology.

Shimodaira-Hasegawa approximate Likelihood Ratio Test

Classical likelihood ratio tests formally test whether a particular branch
length in a tree is significantly greater than zero. The approximate likelihood
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ratio test (aLRT) tests whether a particular branch significantly contributes
to the likelihood by comparing the maximum likelihood to the likelihood of
the second-best tree around that branch. The SH-aLRT borrows elements of
the Shimodaira-Hasegawa test and applies them to the aLRT [30].

For each branch, the SH-aLRT algorithm considers the three distinct trees
found through nearest neighbour interchange (NNI), which slightly modifies
the tree topology to create different trees. A full description of NNI is given
in Section 3.2.1.

Of the three distinct trees, one tree is the maximum likelihood tree. We
denote the maximum likelihood tree T1, with corresponding log-likelihood `1.
The set of individual site likelihoods are denoted `s1. The tree with the second
greatest log-likelihood is denoted T2, with corresponding log-likelihood `2,
and the remaining tree is denoted T3 with corresponding log-likelihood `3.
We define the complete set of trees as Tt = {T1, T2, T3}.

The null hypothesis of the SH-aLRT test is that all three trees T1, T2, and
T3 resulting from NNI explain the data equally well. This should not be
the case if the branch of interest in the maximum likelihood tree is well-
supported. The alternative hypothesis of the Shimodaira-Hasegawa (SH)
test is: “Some or all of T1, T2 and T3 are not equally good explanations
of the data”. Combining the general SH test with the aLRT, high branch
support suggests that the maximum likelihood tree T1 is a better explanation
for the data than the trees that would result from NNI around the branch of
interest.

Let the set of all branches in a tree be B = {b1, b2, . . . , bk}. As in Figure
3.2, the jth site of the ith sequence is denoted sij, for j = 1, 2, . . . , n. To
refer to the jth site of all sequences, we use s•j. We define the number of
bootstrap replicates as r ∈ Z+. The SH-aLRT algorithm is formally defined
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in Algorithm 1, which calculates the branch support value V .

Algorithm 1: SH-aLRT

1 Set indicator v = 0
2 for bt ∈ B do
3 Find T ′ and T ′′ through NNI around bt of T1
4 for t ∈ {T ′, T ′′} do
5 for j in {1, 2, . . . , n} do
6 Calculate the log-likelihoods for each site of the sequences

s•j, denoted `jt .
7 end

8 Calculate the tree log-likelihood, `t =
∑

j `
j
t .

9 end
10 Denote the tree with the second greatest log-likelihood T2, and

the remaining tree T3.
11 for i in {1, 2, . . . , r} do
12 for t in {1, 2, 3} do

13 Draw n samples from {`jt | j = 1, 2, . . . ,n}. We denote the
kth sample as `kt∗.

14 Calculate `t∗ =
∑

k `
k
t∗

15 Calculate the centered sum, Ct = `t∗ − `t.
16 end
17 Define the two largest centered sums as Ch and Cm.
18 if 2(`1 − `2) > 2(Ch − Cm) + ε then
19 v = v + 1
20 end

21 end
22 V = v/r

23 end

Note that the expected value for all centered sums is zero. To understand
why branch support is incremented, let us consider what it means for the
condition 2(`1 − `2) > 2(Ch −Cm) + ε to be rejected. The ε in the condition
makes it unlikely to increase the branch support value V when T1 and T2 have
similar likelihoods and nearly identical site log-likelihood values [30]. Similar
site log-likelihoods mean that the sum of the resampled log-likelihoods, `t∗,
should be close to the tree log-likelihood `t, and therefore the centered sums
should be small. If the likelihoods `1 and `2 are also similar, then both sides
of the condition would be very small. Alternatively, if `1 is significantly larger
than `2, the condition is likely to be met.
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For reliable branch support values, the authors of the SH-aLRT recommend
r ≥ 1000 and ε = 0.1 [30].

According to guidelines from IQ-TREE, a branch is well supported if the
uBS support is at least 95% and the SH-aLRT support is at least 80%.

3.2.3 Results

A maximum likelihood tree of the filtered sequences was produced using IQ-
TREE version 1.6.10 [60]. Five complete or near-complete Neanderthal mi-
togenomes [11] were included as an outgroup to reliably root the tree; acces-
sion numbers for these sequences are given in Appendix B.2. We aligned the
Neanderthal sequences to the revised Cambridge reference sequence (rCRS)
using BLAST version 2.10.1 [3]. The Neanderthal sequences were removed
after the maximum likelihood tree has been reconstructed, as they are not
sequences of interest.

IQ-TREE was implemented with seed 808266 and automatic substitution
model selection, which selected a Tamura-Nei substitution model with in-
variant sites, empirical base frequencies, and a FreeRate model with two
classes.

The Tamura-Nei substitution model allows different rates for the two types of
transitions, i.e. transitions between purines and transitions between pyrim-
idines, and then another different rate for all transversions. The Tamura-Nei
model with empirical base frequencies also takes into account the frequency
of each base in the sequence data. This substitution model is defined math-
ematically in Appendix A.2.5. Invariant sites are sites that do not undergo
substitution, which is biologically reasonable for regions of the genome that
perform critical functions. The proportion of invariant sites is estimated by
IQ-TREE. The FreeRate model can be thought of as an extension to the
gamma rate variation between sites described earlier in Section 2.4.5; both
the FreeRate model and gamma rate variation allow different substitution
rates at different sites. More information on the FreeRate model is given by
Soubrier et al. [78].

To assess internal node support, the ultrafast bootstrap (uBS) [54] and the
Shimodaira-Hasegawa approximate Likelihood Ratio Test (SH-aLRT) [30]
were both performed with 1000 replicates.

The resulting maximum likelihood tree with branch support values is pre-
sented in Figure 3.6. This tree displays the topology only, and so the branch
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lengths have no meaning. We display the tree in this way to better visualise
the tree topology and provide readable branch support values. The maximum
likelihood tree with branch lengths is then presented in Figure 3.7. Both of
these trees are labelled according to the major mtDNA haplogroups of the
sequences. Different mtDNA haplogroups are defined by different sets of mu-
tations that occur in mtDNA. For further information, we refer the reader
to PhyloTree [86], which describes the genetic history of different mtDNA
haplogroups.
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Figure 3.6: The topology of the maximum likelihood tree for mtDNA se-
quences in the filtered data; the filtering process was described in Section
3.1.1. Support values are given at the end of each branch in the form SH-
aLRT(%)/uBS(%), and points are coloured according to the tests that sup-
port the branch. Major mtDNA haplogroups are also labelled. This tree
assumes a Tamura-Nei substitution model.
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Figure 3.7: The maximum likelihood tree with branch lengths for mtDNA
sequences in the filtered data. Support values are given at the end of each
branch in the form SH-aLRT(%)/uBS(%), and points are coloured according
to the tests that support the branch. Major mtDNA haplogroups are also
labelled. This tree assumes a Tamura-Nei substitution model.
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3.3 BEAST Trees

3.3.1 Methods

Bayesian evolutionary analysis by sampling trees (BEAST) is another commonly-
used program to construct ‘calibrated’ phylogenetic trees [8]. Calibrated trees
can have branch lengths in calendar years, which allows for the estimation
of divergence times. BEAST v2.6.0 and all associated packages (BEAUti,
TreeAnnotator, LogCombiner) were used for this analysis; all references to
BEAST refer to the implementation in BEAST2.

Sampling trees using MCMC

Let D denote the aligned mtDNA sequence data, and T denote the phylo-
genetic tree and its corresponding parameters: branch lengths, population
demographic history, and the substitution model. We can find the probability
of the tree given the data by applying Bayes’ theorem,

P (T | D) =
P (D|T )P (T )

P (D)
. (3.4)

BEAST uses Markov chain Monte Carlo (MCMC) to sample trees from the
posterior distribution P (tree | data) (see Equation 3.4).

We illustrate how trees are sampled in MCMC by defining the Metropolis
algorithm in Algorithm 2. The Metropolis algorithm is a special case of the
well-known Metropolis-Hastings algorithm, with the assumption of symmet-
ric proposal distributions. This is a simple example given to illustrate how
trees could be sampled. In practice, BEAST allows for the use of more re-
cently developed MCMC algorithms that are more efficient or better-suited
for post-hoc analysis [19].

In Algorithm 2, the sequence of sampled trees is denoted T , and it contains k
trees. The initial starting tree is denoted T1, and is supplied to the algorithm.
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We denote the chain length by m.

Algorithm 2: Metropolis MCMC for sampling trees

1 T = {T1};
2 k = 1
3 for i in {1, 2, . . . ,m} do
4 Sample Ti from the proposal distribution.
5 Calculate the log-likelihoods `i and `k for the trees Ti and Tk.
6 Calculate the ratio R = `iP (Ti)/`kP (Tk).
7 T = {T , Ti}, k = k + 1 with probability min{1, R}.
8 end

At Step 4, a new tree is proposed based on the proposal distribution, which is
defined by operators. Some operators are probability distributions, e.g. the
operators relating to population sizes, or substitution rate. Other operators
change the tree topology in different ways. Each operator also has a weight,
and operators with a larger weight change more frequently. To propose a
new tree, an operator is chosen according to its weight, and then the tree is
modified by changing this operator.

The changes due to the operators are random, and depend only on the current
state of the tree and its associated parameters. This behaviour illustrates the
stochastic and memoryless properties of a Markov chain: stochasticity due
to the randomness of the change in operators, and memorylessness because
the next state depends only on the current state, and not on the trees or
parameters previously sampled.

The formulation of MCMC is such that the posterior distribution that we
are interested in is the stationary distribution of the Markov chain. Since it
may take some time to reach the stationary distribution, ‘burn-in’ must be
specified. This is a percentage of initial samples that are discarded.

Monte Carlo methods rely on sampling from the posterior distribution, and
so they will not be exactly correct unless the chain has an infinite number
of steps. However, given a sufficiently large number of samples, the method
will result in a representative sample from the posterior distribution of the
parameters of interest. It can be difficult to pre-specify a sufficient number
of steps, and so after the sampling process is completed it is important to
assess whether or not enough posterior samples have been obtained.
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Convergence of MCMC chains

To check that a MCMC chain was run for long enough, we inspect trace plots
and effective sample sizes, both of which can be obtained through Tracer [71].
Trace plots are a line plot of the sampled values over time. For convergence,
it is recommended that these plots look like ‘fuzzy caterpillars’, i.e. showing
no trend and having similar variance along the chain [19]. The amount of
burn-in should be determined from the trace plot, because the default 10%
burn-in is sometimes not sufficient for the chain to reach convergence.

We can also assess the convergence of multiple MCMC chains using the R̂
statistic, which was originally suggested by Gelman and Rubin and then later
improved by Vehtari et al. [88]. The R̂ statistic compares the within-chain
variance to the total variance of all chains, and also compares the first half
of the chain to the second half of the chain. If the set of chains shows poor
mixing or lack of convergence, then we expect the posterior of the combined
chains to look different to the posterior of each chain individually, which can
result in larger variance in the combined chain. Furthermore, if the first half
of the chain is dissimilar to the second half of the chain, it is unlikely that
the chain has converged. The R̂ statistic is constructed so that R̂ > 1, with
values closer to one suggesting better mixing of the chain and little evidence
for non-convergence. Initially Gelman and Rubin suggested R̂ < 1.1 as a
threshold for using the posterior samples of MCMC chains, but recently
Vehtari et al. have suggested a threshold of 1.01 [88].

Since new trees are proposed based on the current tree in an MCMC chain,
the samples are not independent. This means that we cannot use the unad-
justed sample size for each parameter when inspecting how well the MCMC
chain has sampled the posterior distribution. Instead of considering the ac-
tual posterior sample size, we may be interested in the relative number of
‘independent’ samples from the posterior distribution. One measure of this is
the effective sample size (ESS), which accounts for the correlation of sampled
parameter values. Drummond et al. [19] suggest that all parameters should
have an ESS above 200 for sampling to be considered adequate.

3.3.2 BEAST specification

The BEAST analysis is specified using the application ‘BEAUti’, which is
part of the BEAST package. We will first present some preliminary results
from ModelGenerator, which was used to select a substitution model and
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associated parameters. We then describe all parameters required to specify
a BEAST analysis through BEAUti.

ModelGenerator [42] was used to select the optimal substitution model, as
decided by the BIC (Bayesian Information Criterion) value. This substitution
model, as well as other parameters of the substitution process that were
estimated from the data, are given in Table 3.2. These parameters will
be defined under the ‘site model’ and ‘clock model’ parts of the BEAUti
specification.

Parameter Value/Type

Substitution Model HKY

Parameter κ for HKY model 38.73

Substitution Rate 1.57×10−8 [28]

Number of Gamma Rate Classes 7

Gamma Shape Parameter α 0.53

Invariant Sites 0.81

Table 3.2: Parameters determined from the mtDNA data by ModelGenera-
tor.

When using BEAUti to specify a BEAST analysis, the parameters are di-
vided into the sections ‘site model’, ‘clock model’, ‘priors’, and ‘MCMC’. We
consider each of these sections in turn and describe them in the following
paragraphs.

First, we consider the site model, which defines how substitutions occur at
each site. We use the HKY substitution model, since it had the lowest
BIC value in the ModelGenerator output. BEAST allows for a proportion
of invariant sites (sites that do not accumulate substitutions), which was
determined to be 0.81 from the data. Different substitution rates for different
sites were modeled with a discrete gamma distribution, parameterised by
n = 7 rate categories and a shape parameter α = 0.53.

When specifying the substitution model for the BEAST analysis, we use
empirical base frequencies, i.e. the base frequencies observed in the mtDNA
alignment.

We now consider the prior distributions for all parameters. If we do not have
cause to change any prior distributions, the default distributions will be used.
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We change the tree prior and associated parameters, which defines the under-
lying model of the phylogenetic tree. For example, different tree priors allow
for different theoretical foundations (the coalescent model or a birth-death
process) and different assumptions of population growth (constant popula-
tion size, exponential growth, or no assumption). The Coalescent Extended
Bayesian Skyline tree prior is used to accommodate a complex demographic
history. Parametric models are limited to constant or exponential growth of
the effective population size through history, which can be too restrictive.
The Extended Bayesian Skyline, which will be described in detail in Sec-
tion 3.5, simultaneously estimates the tree and the effective population size
throughout history. The tree prior has an additional parameter, ‘Population
Model’, which allows the analysis of different types of DNA data in a single
MCMC analysis. Since we are analysing only mtDNA, this should be set to
0.5.

We now consider the clock model, which defines the time-scale of the tree, and
also whether different rates are allowed in different branches of the tree. We
set the mean clock rate as the substitution rate of 1.57×10−8 substitutions
per site per year to reconstruct a tree where branch lengths are in calendar
years. When one clock rate is enforced for the entire tree, a ‘strict clock’ is
used, and the single clock rate is set as the mean clock rate. In contrast,
a ‘relaxed clock’ allows different rates for different branches. The mean of
the distribution that the clock rates are drawn from is set to the mean clock
rate.

An initial BEAST analysis with chain length 1×107 was performed assuming
a relaxed clock to assess whether a strict clock was adequate, or whether a
relaxed clock was required. All other model parameters were as defined in
previous paragraphs.

A relaxed log-normal clock draws the different clock rates for different branches
from a log-normal distribution. We consider the distribution of S, the stan-
dard deviation of the log-normal distribution of clock rates, to assess whether
a relaxed clock is needed. The default prior distribution for this parameter
is a gamma distribution with 50% of the mass below 0.1. We reject the
possibility of a strict clock if the estimate of S is greater than 0.1 and there
is no probability mass near zero when inspecting the marginal probability
distribution [19].

The point estimate of S was 0.0997, with a 95% highest posterior density
(HPD) interval of (8.92×10−10, 0.261). The 95% HPD interval is the narrow-
est interval that contains 95% of the posterior density. The point estimate of
S is very close to 0.1, so we cannot confidently use a strict clock. The wide
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95% HPD interval further contributes to this uncertainty. Hence, we use a
relaxed log-normal clock. The mean clock rate was set to the substitution
rate of 1.57 × 10−8, so that the branch lengths of the tree are in calendar
years [19].

For the MCMC specification, we use a chain length of 108, and implement
thinning by retaining one sample every 104 samples. This is according to
recommendations by Drummond et al. [19], who suggest retaining no more
than a maximum of 104 samples.

The number of chains is not specified in BEAUti, but is instead the number
of times that the BEAST analysis is run. We will use three MCMC chains.
This provides another simple test for convergence, because if all chains have
converged, the marginal densities of the posterior samples should be very
similar.

3.3.3 Results

Tracer version 1.7.1 [71] was used to analyse and visualise the posterior
samples of three separate BEAST analyses. The three MCMC chains were
combined using LogCombiner, which is a part of the BEAST package. All
post-processing is described under Section 3.5.2, since we will also discuss
parameters directly related to the skyline plot.

The final set of combined posterior samples contained 13294 trees. To vi-
sualise the set of sampled trees, we can use the DensiTree software, which
superimposes all sampled trees in one figure [9]. The DensiTree results are
displayed in Figure C.1, Appendix C.1. It is difficult to determine any mea-
sures of branch support by simply inspecting the set of trees, and so an
annotated summary tree is used to better describe the set of sampled trees.
We use TreeAnnotator, which is part of the BEAST package, to obtain this
summary tree [8].

Summary trees are often selected based on the posterior clade probabilities in
a tree. For any given clade, the posterior clade probability is the proportion
of trees in the posterior sample that contain the clade.

To summarise the set of trees in the posterior sample we use a maximum
clade credibility (MCC) tree, which is the tree with the highest product of
posterior clade probabilities. Although other types of summary trees are
possible, such as the extended majority consensus tree (which produces a
tree from the clades with the highest posterior clade probabilities) or the
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tree with the highest sum of clade credibilities, we use the MCC tree because
it is an actual tree that was sampled, and therefore has positive branch
lengths.

After deciding on an appropriate summary tree, we can add annotations to
this tree. Common annotations are the posterior clade probabilities for each
clade, and either point estimates or 95% HPD intervals for node heights.
In our analysis, the node heights are the times before the present day that
lineages coalesce, because we have selected a coalescent tree prior and set
the mean clock rate to the substitution rate. When using TreeAnnotator
to create tree annotations, we also need to specify any burn-in, select a
posterior probability limit, and decide how the node heights should be sum-
marised.

The posterior probability limit restricts which nodes in the summary tree are
annotated. If the posterior clade credibility is below the posterior probability
limit, a point estimate or 95% HPD interval of node height is not calculated
for that node. Note that posterior probability limits do not change the
topology of the summary tree, and only affect the annotated information.
We use a posterior probability limit of 0.1, because clades that appear in
10% or less of the trees in the posterior sample are unlikely to have reliable
annotations.

We use common ancestor times (CAT) to construct 95% HPD intervals for
node heights. For a given clade, the set of all common ancestor times com-
prises the MRCA time of the tips in that clade, as calculated for each tree.
The 95% HPD interval is then calculated from this set of times. Based on a
study by Heled et al.[33], using CAT with MCC trees recovers node heights
more accurately than any other method available in TreeAnnotator, such as
median heights or mean heights.

BEAST trees

We present two summary trees: a MCC tree with node heights defined by
common ancestor times (Figure 3.8), and the same MCC tree annotated with
the posterior probability of each clade (Figure 3.9).
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Figure 3.8: MCC tree with 95% HPD node intervals defined by common
ancestor times. Each major mtDNA haplogroup has a distinct colour and
label.
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Figure 3.9: MCC tree with node heights according to common ancestor times.
Each node is annotated with the corresponding posterior clade probability. Again,
all major mtDNA haplogroups have a distinct colour and label.
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3.4 Discussion of Tree Results

First, we discuss the maximum likelihood trees in Figures 3.6 and 3.7. We
notice that the splits for major mtDNA haplogroups are often supported by
either both tests or the SH-aLRT only. Within haplogroups, many branches
are not supported by either tests. In particular, many branches have a score
of 0 for uBS, meaning that the subclade appeared in no other trees in the
sample. Branches with low support are also significantly shorter than well-
supported branches.

Now, we consider the BEAST trees in Figures 3.8 and 3.9. Since we are
interested in events that occurred thousands of years ago, we measure time
using the kiloannum (ka), where 1 ka is one thousand years ago. The 95%
HPD intervals for the splits of ancestral mtDNA haplogroups M and N are
older than 50 ka, suggesting that M and N had split into other haplogroups
at the time of the peopling of Sahul. The split between mtDNA haplogroups
R and P is also dated to before 50 ka; haplogroups R and P have posterior
probabilities of 0.82 and 0.78 respectively. This finding is consistent with
the proposal by Tobler et al., which is that the mtDNA haplogroups split
soon after entering Australia, taking separate migration paths around the
east and west coasts [85].

From Figure 3.9, we notice that monophyletic haplogroups tend to have high
posterior probabilities, e.g. 0.78 for haplogroup P, 1 for macrohaplogroup
M, 0.88 for haplogroup S. ‘Monophyletic’ means that all tips in a clade be-
long to the same haplogroup, and there are no other tips belonging to that
haplogroup.

The topology of the BEAST trees are consistent with those of the maximum
likelihood trees, in that many major mtDNA haplogroups are well-supported.
The ancestry of each mtDNA haplogroup is consistent with the reference hu-
man mtDNA tree at PhyloTree [86], and the split between macrohaplogroups
M and N is clearly defined. We note the short times between coalescent events
from approximately 45 ka to 55 ka; these short branch lengths were seen in a
similar region in the maximum likelihood tree in Figure 3.7. This again sug-
gests that few substitutions are likely to have occurred in the rapid migration
through the southeast Asian islands and into Australia, which is estimated
to have occurred in this window. Due to long branch lengths within mtDNA
haplogroups in both the maximum likelihood and BEAST trees, we also
expect considerable differences between sequences within the same mtDNA
haplogroup.
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3.5 Extended Bayesian Skyline Plots

3.5.1 Methods

Before introducing Extended Bayesian Skyline Plots (EBSPs), we discuss the
simpler classic skyline plots, upon which EBSPs are based. We then describe
the many improvements that have been made to classic skyline plots, before
defining the EBSP.

The classic skyline plot was introduced in Pybus et al. [68]. Given a coales-
cent tree, these plots produced an estimate of the effective population size
over every coalescent interval (the time between two consecutive coalescent
events). Figure 3.10(b) shows a classic skyline plot from Strimmer et al.. We
notice that the ‘skyline plot’ resembles a city skyline, due to the very noisy,
piecewise constant estimate of effective population size over time.

To reduce the stochastic noise present in classic skyline plots, Strimmer
et al. introduced the generalized skyline plot. Instead of estimating the
effective population size over every coalescent interval, multiple coalescent
intervals were grouped together to form a smaller number of intervals. This
grouping was defined by a parameter ε, where the grouped intervals were re-
quired to have a length greater than or equal to ε substitutions per site. As
seen in Figure 3.10, estimating the effective population size over the grouped
intervals has a significant smoothing effect on the plot and does not result in
a significant loss of information, assuming that an unreasonably large value
of ε is not chosen. The use of grouped intervals was also found to produce
a better estimate of the effective population size over time than the classic
skyline plot when there was weak phylogenetic signal in the data [80]. This
can be seen intuitively by considering our reconstructed maximum likelihood
tree in Figure 3.7: very short intervals between coalescent events occur when
there is low branch support and the tree is not fully resolved, and so little
information would be lost by grouping these short intervals with at least one
other interval.

Both the classic and generalized skyline plots were post-hoc analyses that
required a phylogenetic tree as input. Bayesian skyline plots remove the
requirement for a finalized phylogenetic tree as input, because the effective
population size and the phylogenetic tree are estimated concurrently.

In Bayesian Skyline Plots (BSPs), the number of intervals over which to
estimate the effective population size is pre-specified [20]. Both the tree and
the trajectory of effective population size over time are estimated through a
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Figure 3.10: Skyline plots for DNA sequences simulated assuming an expo-
nentially growing population: (a), estimated tree; (b), classic skyline plot
(ε = 0); and (c), generalized skyline plot (AICc estimate of ε = 0.00115).
The thick line shows the true demographic history.
Originally published by K. Strimmer and O. Pybus, Exploring the De-
mographic History of DNA Sequences Using the Generalized Skyline Plot,
Molecular Biology and Evolution, 2001, Vol. 18, Issue 12, pp. 22982305, by
permission of Oxford University Press.
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Monte-Carlo sampling process. This is beneficial as researchers are no longer
required to specify some demographic history (e.g. constant, exponential
growth, logistic growth) before reconstructing a phylogenetic tree to use as
input for the skyline plots.
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Figure 3.11: A tree with five coalescent events occurring at times t1, t2, t3, t4.
and t5.
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θ0
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Figure 3.12: One sample of the Extended Bayesian Skyline. Only θ0, θ1, θ2,
and θ4 contribute to the effective population size over time, which corresponds
to the indicator variables I0 = I1 = I2 = I4 = 1 and I3 = I5 = 0.
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There is no way to definitively know how many intervals should be used in
a BSP, so it may be necessary to try a range of values. Extended Bayesian
Skyline analysis, as defined by Heled and Drummond [34], improves on pre-
vious types of skyline analyses by considering the number of times that the
effective population size changes throughout history as a variable to be es-
timated. The effective population size over time is also constrained to be a
piecewise linear function, instead of a piecewise constant function.

We illustrate the concept of EBSPs with a simple example. Suppose that
a tree is sampled as in Figure 3.11; a trajectory of the effective population
size over time is given in Figure 3.12. The EBSP is defined by a set of
effective population sizes, θ = {θ0, θ1, θ2, θ3, θ4, θ5}, and a set of indicators,
I = {I0 = 1, I1, I2, I3, I4, I5}. The coalescent times of the tree in Figure
3.11 are denoted ti, the variable θi is the estimated effective population size
at the time ti, and the variable Ii is an indicator that defines whether the
population size θi contributes to the estimated effective population size over
time.

We note that the indicator variables define the coalescent events that are
the endpoints of the intervals over which the effective population size is es-
timated. As for generalized skyline plots and BSPs, intervals are grouped
to obtain a smoother estimate of effective population size over time while
discarding minimal signal from the data. The grouped intervals are those
that individually have weak signal.

As illustrated in Figure 3.12, the estimated effective population size at the
present day is always used to define the EBSP (i.e. I0 = 1), and Ii is either
0 or 1 for i = 1, 2, . . . , 5. Both θ and I are sampled during the MCMC
process according to their proposal distributions, and are not estimated from
the tree.

Figure 3.12 shows how the estimated effective population sizes θ and the
indicators I are used to construct the estimated effective population size
over time. The effective population size over time is a piecewise linear func-
tion; the effective population size is held constant after the oldest estimate of
effective population size. In Figure 3.12, we can see that the effective popula-
tion size remains at θ4 after time t4 because the later indicator variable I5 is
zero. If all indicator variables are zero, the EBSP corresponds to a constant
effective population size over time.

In addition to the variables already defined, we denote the distribution of
the mean population size as φ, the tree as T , the substitution rate as µ, and
the sequence data as D.
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The posterior distribution of an EBSP analysis in BEAST is then

f(θ, I, T, φ, µ | D) ∝ fD(D|T, µ)fT (T |θ, I)fθ(θ, φ)fI(I)fµ(µ). (3.5)

The final three terms in Equation 3.5 are the prior probabilities of the vari-
ables θ, φ, I, and µ, while the first two terms on the RHS are the conditional
probabilities of the sequence data D given the tree and substitution rate, and
of the tree given the population sizes and indicators [34].

A high posterior probability therefore requires the data to be likely given
the tree and substitution rate, and the tree to be likely given the population
sizes and indicators that define the effective population size over time. We
note that Heled et al. also extend the theory of skyline plots to multiple loci,
which is not necessarily equivalent to multiple individual sites. A locus refers
to the location of a gene on the genome [22].

The path shown in Figure 3.12 would correspond to one MCMC sample
from the posterior distribution; different samples will have different sets of
indicator variables and different effective population size estimates. This
gives us a set of effective population size paths over time. These paths can
then be aggregated to produce a 95% highest posterior density (HPD) interval
and a median estimate of effective population size over time, which are then
presented in the EBSP.

For more details on EBSPs we refer the reader to Heled and Drummond [34];
for more information on how EBSPs and trees are estimated using MCMC
sampling methods, we again refer the reader to Drummond et al. [19].

3.5.2 Results

Three MCMC chains were initialized with a length 108 states. Analysis was
performed on a HPC cluster; in ensuring that all chains reached a length of
108 states, the final length of all chains exceeded 108 states. Chain 1 had
a length 198,022,000 states, chain 2 had a length of 193,085,000 states, and
chain 3 had a length of 191,402,000 states. Recall from Section 3.3.2 that we
specified only one sample is stored every 104 states. This means that in all
trace plots, as sampling progresses from left to right, that a new sample only
occurs every 104 states instead of at every state.

While the trace plots and ESSs for all parameters should be inspected, here
we only present the trace plots and ESSs for sum(indices.alltrees) and the pos-
terior. ‘Sum(indices.alltrees)’ is the statistic that defines the number of times
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that the trajectory of effective population size changes throughout history,
and ‘posterior’ is the term used to refer to the log posterior probability.

The trace plots in Figure 3.13 suggest that the data do not strongly sup-
port one definitive result, given that both two and three changes in effective
population size dynamics are frequently accepted in sum(indicators.alltrees).
Still inspecting the trace plots for sum(indicators.alltrees), we notice that
zero is never accepted when sampling. Furthermore, the 95% HPD for
sum(indicators.alltrees) excludes zero, so we can confidently reject the pos-
sibility of a constant effective population size through time.

The ESS for all parameters is given in Tables C.1, C.2, C.3, and C.4 of Ap-
pendix C.1.2. Nearly all variables have an ESS above 100, with the majority
additionally having an ESS above 200. The individual population size and
indicator variables sometimes have low ESS values, especially deep in the
tree: 15 of these 231 parameters that define the EBSP had an ESS below
100.

We also note that the estimate of the standard deviation of the clock rate is
greater than 0.1, which confirms that a relaxed clock was required for this
analysis.

We combine the parts of each MCMC run that have converged to the same
stationary distribution using the program ‘LogCombiner’. 10% burn-in was
discarded from both the first and third MCMC runs, while 75% burn-in was
discarded from the second run.

We inspected the combined log file in Tracer, and found that the posterior
had an ESS of 1940, while sum(indicators.alltrees) had an ESS of 442. The
trace plots for these two parameters are given in Figures 3.14 and 3.15. The
trace plots for the posterior shows no trend, which is ideal. The trace plot
for sum(indicators.alltrees) is noticeably higher just after states 1.25×108

and 2×108, but quickly returns to the baseline. This plot generally has no
trend, and coupled with an ESS of over 200, it is likely reasonable to use
these combined posterior samples to construct an EBSP. To further verify
this claim, we calculate R̂ for all parameters of interest using the R package
rstan.

The resulting values of R̂ are given in Table 3.3. All R̂ values are less than
or equal to 1.01, and so as per Vehtari et al. [88], R̂ does not suggest that
our MCMC chains have not converged.

We still found that some individual population size parameters and indicator
parameters were poorly sampled deeper in the tree, and could not increase
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Figure 3.13: Trace plots for the posterior (left) and sum(indicators.alltrees)
(right) of the raw posterior samples. Each row is a different MCMC chain
and the ESS for each parameter is given as a subcaption. The burn-in for
each chain is indicated by a transparent region in each trace plot.



3.5. Extended Bayesian Skyline Plots 61
fi

n
a

l_
c
o

m
b

in
e

d
_

u
c
l.

lo
g

State

0 5E7 1E8 1.5E8 2E8 2.5E8 3E8 3.5E8

-32000

-31500

-31000

Figure 3.14: Trace plot for the posterior based on the combined posterior
samples.
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Figure 3.15: Trace plot for the variable sum(indicators.alltrees) based on the
combined posterior samples.
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Parameter R̂

Posterior 1.0047

Likelihood 1.0002

Prior 1.0049

Tree Height 1.0010

κ (HKY substitution model) 1.0010

γ (shape parameter) 1.0004

Extended Bayesian Skyline 1.0106

sum(indicators.alltrees) 1.0061

Uncorrelated clock standard deviation 1.0011

Substitution rate mean 1.0005

Substitution rate variance 1.0018

Table 3.3: R̂ values for all main parameters of interest. Values closer to one
indicate better mixing within chains. Vehtari et al. [88] recommend only

using the posterior samples if R̂ < 1.01.

the ESS through standard troubleshooting methods such as increasing the
relevant operator weights. Performing validation runs will help to verify
whether the EBSP from this analysis is a stable result.

The combined samples from the posterior distribution were analysed using
an R script based on one written for an EBSP tutorial by J. Heled and
T. Vaughan (2015). The resulting EBSP is given in Figure 3.16. Note that
linear trends on a log scale correspond to exponential growth or decay. Con-
sidering the effective population size forward in time, we see that the effective
population size remains constant until approximately 50 ka, when it starts
to increase exponentially. The effective population size stabilises again ap-
proximately 35-40 ka, and then remains constant until approximately 8 ka,
after which it undergoes exponential growth until the present day.

We perform three further MCMC analyses as validation, using the same
BEAST specification. These appear to have slightly different marginal den-
sities for sum(indices.alltrees). The trace plots and marginal densities for the
posterior and sum(indices.alltrees) are provided in Appendix C.1.3.

After selecting an appropriate amount of burn-in for each of the validation
runs, we construct EBSPs to compare to the results from the initial combined
MCMC chains. We used 20% burn-in for the first validation run, and 10%
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Figure 3.16: The Extended Bayesian Skyline Plot for the three combined
BEAST analyses. The 95% HPD interval over time is shown as the filled
blue area, while the median estimated effective population size over time is
given by a dashed line. Note that the effective population size is presented
on a log scale.
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burn-in for the remaining two validation runs. The three resulting EBSPs
are given in Figure 3.17.

We note that the EBSPs from these three validation runs are consistent with
the earlier results, despite the slight difference in marginal densities of some
variables. This gives us a higher level of confidence in the estimated effective
population sizes shown in Figure 3.16.
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Figure 3.17: Extended Bayesian Skyline Plots for the three validation
BEAST analyses. EBSP (A) was produced from the samples in validation
chain 1, after 20% burn-in was removed. EBSP (B) was produced from the
samples in validation chain 2, after 10% burn-in was removed. Finally, EBSP
(C) was produced from the samples in validation chain 3, after 10% burn-in
was removed.
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In this chapter we presented maximum likelihood trees, BEAST consensus
trees, and the Extended Bayesian Skyline Plot for the mtDNA alignment, as
well as the theory underpinning each of these methods. We found that major
mtDNA haplogroups were well-supported, and also that some events deeper
in the maximum likelihood and BEAST consensus trees had low support.
This could possibly be the result of rapid migration events leaving little signal
to recover in the reconstruction of trees. In the next chapter we describe our
simulation study, which will allow us to see which, if any, of the different
migration scenarios best describe our data.



Chapter 4

Methods for Dimension
Reduction and Classification

The summary statistics as simulated by the coalescent simulation program
BayeSSC are high-dimensional; to visualise these statistics, we need to use
dimension reduction techniques. We will then apply classification methods to
select the migration model that the summary statistics were most likely simu-
lated under. This chapter describes methods for dimension reduction, classifi-
cation methods, and techniques used to evaluate classifier performance.

4.1 Dimension Reduction

We will use two different methods for dimension reduction, which can be
used to visualise high-dimensional data. These methods are principal com-
ponent analysis (PCA) and uniform manifold approximation and projection
(UMAP). PCA is a linear dimension reduction technique, while UMAP is a
non-linear dimension reduction technique. We will explore the differences in
these two techniques by applying them to the example data shown in Figure
4.1.

Reducing two dimensions to one provides a simple way to visualise how these
methods work when applied to higher-dimensional data.

67
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Figure 4.1: Two-dimensional data, where the points lie along a S-shaped
curve. To ensure that points are comparable between two- and one-
dimensional visualisations of the data, the shape and colour of the points
change as the curve is traversed.
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4.1.1 Principal component analysis

Principal component analysis (PCA) is a form of dimension reduction that
identifies the successive directions of greatest variance in the data; the prin-
cipal components are then the data projected onto each of these directions.
The direction of each subsequent principal component must be orthogonal to
all previous principal components. For n-dimensional data, n principal com-
ponents can be found, assuming that there are more than n observations.
Since the number of observations is a controllable parameter in simulation
studies, this condition does not affect our use of PCA.

We can use the first k principal components to find a representation of the
data in k-dimensional space. This process will be described after the PCA
algorithm, which is given in Algorithm 3.

Algorithm 3: PCA

1 Center and scale the data X to get X ′.
2 Find the covariance matrix C for X ′.
3 Calculate eigenvalues of C, where λ1 ≥ λ2 ≥ . . . ≥ λn.
4 Calculate the corresponding eigenvectors of C, denoted vi for

i = 1, 2, . . . n. Each eigenvector gives the direction of a principal
component.

Step 1 is not required for the PCA algorithm; however, it is advised [38].
PCA is not scale invariant, which means that the results change for different
scaling of the variables. Since summary statistics for DNA have different
scales, e.g. some are proportions while some are counts, we will center each
variable by subtracting its mean and scale each variable by dividing by its
standard deviation before performing PCA.

Let the columns of the matrix W be the eigenvectors corresponding to the
k greatest eigenvalues. The data X can then be projected into k dimensions
by finding XW , i.e. by postmultiplying by the first k eigenvectors. By using
all eigenvectors as columns of W , we can find all principal components of the
data.

The eigenvalues of the covariance matrix can also be used to find the propor-
tion of variance explained by each principal component. This is calculated
by dividing each eigenvalue by the sum of all eigenvalues. All eigenvalues of
a covariance matrix are non-negative, which is a consequence of the struc-
ture of a covariance matrix. Hence, the proportion of variance explained
is guaranteed to be non-negative. In practice, the cumulative proportion
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Figure 4.2: The first two principal components for the data from Figure 4.1.

of variance explained is often considered when determining the number of
principal components to use.

For more information on PCA, we refer the reader to Jolliffe and Cadima
[38].

For the data presented in Figure 4.1, the directions of the first two principal
components are given by the arrows in Figure 4.2. The direction of the first
principal component corresponds to the largest possible variance in the data;
the direction of the second principal component is orthogonal (perpendicular
in 2D) to the that of the first principal component. We can see that it takes
the direction of maximum variance satisfying this condition.

The first principal component is shown in Figure 4.3; it explains 97.9% of
the variance of the data. We see that the structure of the transformed data
is similar to the structure in Figure 4.1, but the colours are mixed towards
the ends. This is a consequence of using a linear dimension reduction tech-
nique.
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Figure 4.3: The projection of the original data from Figure 4.1 onto the di-
rection of the first principal component. The original data is partially trans-
parent and the projections are indicated by dashed lines. A small amount of
vertical jitter was applied to the projected points so that overlapping points
could be easily distinguished.
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4.1.2 Uniform manifold approximation and
projection

Uniform manifold approximation and projection (UMAP) is a recently de-
veloped method which has already been widely adopted as a dimension re-
duction technique. A detailed discussion on manifolds and their use in this
method is beyond the scope of this thesis, and we direct the reader to the
paper by McInnes et al. [51]. Here, we will discuss the implementation of the
UMAP algorithm in the Python package umap-learn [52].

Unlike PCA, UMAP requires some parameters to be defined before it can
be used for dimension reduction. Some key parameters of the UMAP imple-
mentation in umap-learn are described below.

• n_components is the desired dimension of the lower-dimensional space.

• n_neighbours controls the ‘connectedness’ of the points in the high
dimensional space. Larger n_neighbours results in more points being
connected, which better preserves the overall structure of the data.
Conversely, smaller n_neighbours better preserves the local structure
around each point, but the overall structure of the data might become
very distorted.

• min_dist is the minimum distance required between points in the
lower-dimensional space. Forcing a high minimum distance can result
in no discernible trend, as points are repelled from each other.

One benefit of UMAP is that it provides results of a similar quality as other
commonly used non-linear dimension reduction techniques, but has a con-
siderably shorter run time. This was achieved through the use of stochastic
methods (for details, see McInnes et al. [52]). While the algorithm is quicker
than other methods, this stochasticity means that it is important to per-
form multiple replicates to ensure that the results are consistent. It is also
important to record the random_state parameter so that any results are
reproducible; this is the random seed used in the algorithm.

In practice, there are no guidelines for the choice of n_neighbours and
min_dist. Instead, a grid search can be conducted across multiple values
for n_neighbours and min_dist.

UMAP is applied to the data in Figure 4.1 for different n_neighbours and
min_dist; the results are given in Figure 4.4. As with the PCA example,
we project this data into one-dimensional space; i.e. n_components = 1.
Unlike PCA, where the cumulative proportion of variance explained can be



4.1. Dimension Reduction 73

calculated, there is no way to determine the optimal number of components
in UMAP.

The ‘unwrapping’ demonstrated in the bottom-right triangle of Figure 4.4,
especially the centre panel and the bottom-right panel, clearly demonstrates
the difference between a linear dimension reduction method (PCA) and a
non-linear dimension reduction method (UMAP). As seen in Figure 4.3, lin-
ear dimension reduction methods are not capable of this type of data trans-
formation.

Another point that we highlight in the UMAP results is that distance between
clusters in the lower-dimensional space is not necessarily meaningful. In the
three panels in the upper-left triangle of Figure 4.4, there are two main
clusters that do not correspond to any features in the original data. This
is a consequence of the small number of nearest neighbours used, coupled
with the low minimum distance. For example, when 10 nearest neighbours
are specified in the function call, the clustering only appears for the smallest
value of min dist, 0.1.

While it is simple to tell that the data in Figure 4.1 had non-linear struc-
ture, and therefore required a non-linear dimension reduction technique to
visualise it in a lower-dimensional space, it is not immediately obvious which
method should be used when analysing unknown high-dimensional data. We
will later apply both PCA and UMAP to the high-dimensional summary
statistics. Since UMAP requires more specification than PCA, the resulting
visualisations should be considered with caution. As we saw in Figure 4.4,
UMAP can provide a potentially useful low-dimensional visualisation of the
data.
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Figure 4.4: Applying UMAP to the data from Figure 4.1. A range of values
for n_neighbours and min_dist were compared. Once again, vertical jitter
and transparency are used to display overlapping points.
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4.2 Classification: An Example

A classification problem arises when we have an observation of some nu-
merical variables and wish to determine which ‘class’ this observation be-
longs to. Class is a categorical variable, and the number of classes is always
known in advance. Classification is a form of supervised learning, because the
known classes of some observations are used to determine rules to separate
the classes.

To illustrate the concept of classification, we present a problem using a simple
dataset. This data was simulated by sampling from normal distributions as
parameterised in Table 4.1.

Suppose that you collect three particular types of shells from a local beach.
Each of these shells has their length and width measured, as described in
Table 4.2. There are 75 pairs of measurements (length and width) for each
shell type.

Shell Type Shell Measurement Mean µ (cm) Standard Deviation σ (cm)

Type 1 Length 6 1

Type 1 Width 6 1

Type 2 Length 4 3

Type 2 Width 8 0.5

Type 3 Length 3 1

Type 3 Width 4 2

Table 4.1: Mean and standard deviations of normal distributions behind the
length and width of each type of shell.

Now suppose that a friend finds a shell at the same beach to add to your
collection, but will only give you the shell if you can guess the type of shell.
They give you the length and width of the shell as a hint. This is shown in the
final row of Table 4.2, where the length and width of the shell are known but
the type is unknown. We want to classify this shell as some particular type,
based on what we already know about the measurements of shells.
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Figure 4.5: A scatter plot of shell width against shell length for this toy
dataset, coloured by shell type. The measurements of the shell with unknown
type are represented by a star.

Shell Length (cm) Shell Width (cm) Shell Type

6.94 6.92 Type 1

5.63 6.13 Type 1

6.08 7.89 Type 2

2.13 7.90 Type 2

2.98 5.42 Type 3
...

...
...

2.81 4.15 Type 3

3.01 5.23 ???

Table 4.2: Shell lengths and widths for different types of shells, labelled Type
1, Type 2, or Type 3. The final row shows the measurements of the shell
that we wish to classify as one of the three types.
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This is a classification problem with three classes: Type 1, Type 2, and
Type 3. The variables are shell length and shell width, and each shell is one
observation. The measurements of all shells that have already been collected
would be the data used to train any classifiers.

Now, we consider the classification problem in two parts:

1. Training the classifier on data where the class is known;

2. Classifying data where the class is unknown.

First, we use observations (shell length and width) with class labels (shell
types) to train a classifier. This step involves estimating parameters from
data that define the classifier. Data used at this step is referred to as training
data.

Once a classifier has been trained, it can take numerical variables as input
(shell length and width) and then predict a class (shell type). Note that we
trained the classifier on shells of Type 1, Type 2, and Type 3; this means
that the classifier will only predict one of these three types. Based on the
distributions of shell measurements of each type in Figure 4.5, it seems likely
that the new shell is a shell from Type 3.

Depending on the classifier used, a soft or hard classification may be pro-
duced. Soft classification results in a list of numbers between zero and one
that indicate the degree of class membership for each class. These can some-
times be interpreted as the probability of an observation belonging to each
class. Alternatively, hard classification gives a single class label.

In the following sections we describe how the concept of classification ex-
tends to migration models and summary statistics, and explore classification
methods that could be used to classify the new shell.

4.3 Using Classification Methods to Identify

Migration Routes

The remaining sections of my thesis aim to use classification methods to in-
vestigate potential migration models that describe the path taken by Aborig-
inal Australians from southeast Asia to Sahul. A migration model comprises
a geographical migration route, as well as information describing the demo-
graphic history and how DNA changes through time. Each of the migration
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models describe a different geographical path, which will be fully explained
in Chapter 5.

Framing this classification problem with the same terminology as the shell
example, we can consider each migration model as a class, each simulation
as one observation, and every summary statistic calculated from simulated
DNA as a predictor variable. Since there are nine candidate migration models
there are nine classes, and therefore this is a multiclass classification problem.
The shell classification problem described in the previous section is also a
multiclass classification problem. When there are only two classes, we say
that it is a binary classification problem.

The following steps describe how classification can be used to select a migra-
tion model.

1. Simulate DNA under each of the migration models.

2. Find the simulated summary statistics by calculating summary statis-
tics for the simulated DNA.

3. Find the observed summary statistics by calculating summary statistics
on the actual collected DNA.

4. Use the simulated summary statistics and known migration models as
predictor variables and class labels to train a classifier.

5. Use the observed summary statistics as input for the trained classifier,
which will then predict some migration model.

These steps are slightly different to the process described previously in the
shell example. We draw attention to Steps 4 and 5 of the above procedure:
the classifier is trained on simulated summary statistics, and then used to
predict the class of the observed summary statistics.

In the shell example, we train the classifier on the measurements of collected
shells, and then use the classifier to predict the type of another actual shell.
Unfortunately in this case we have exactly one set of summary statistics from
our observed data, and we do not know the migration path that resulted in
the collected DNA or summary statistics. This is analogous to having one
set of length and width measurements from a shell, and not even knowing
the type of shell that was measured.

A classifier cannot be trained on a single observation of real data, and the
data that we have does not describe what would have happened under the
‘incorrect’ migration models. There is no method that allows us to observe
real mtDNA data that evolved under different migration models, as the initial
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migration from southeast Asia to Sahul only occurred once and time travel
does not exist. The next best option is to simulate the changes in DNA that
would likely have occurred under different migration models.

This means that any classifier used to predict a migration model based on
real mtDNA data is answering the following question:

“If the real mtDNA sequences were output from BayeSSC, under
which migration model were they most likely simulated?”

There is also the limitation inherent to all classifiers that the selected class is
not guaranteed to be correct. This is true even when we are using the same
type of data for training and prediction. We return to the shell example:
suppose that the shell that my friend found was of Type 4, and Type 4
shells are a similar size to Type 3 shells. The classifier would likely classify
the shell as Type 3, but this would be an incorrect result. Likewise, the
migration model predicted for the real mtDNA data can only be one of the
migration models on which the classifier was trained.

4.4 Classification Methods

As described in Section 4.3, classification methods can be used to select a
migration model based on summary statistics of DNA.

Multinomial logistic regression, support vector machines, and neural net-
works can all be applied to multiclass classification problems, and can there-
fore be used to select the most likely migration model based on the observed
mtDNA summary statistics. In all cases, training data is used to estimate
the parameters before the trained classifier can be used to make predictions
for new data.

4.4.1 Multinomial logistic regression

Multinomial logistic regression (MLR) is often a first approach for multiclass
classification. MLR calculates the probability of an observation belonging to
each of the K classes. This calculation of class probabilities means that MLR
is a type of soft classification, since each class has a degree of membership.
If a hard classification is desired, the observation is assigned to the most
probable class.
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Suppose that the data Xn×p is made up of n observations of p variables. We
refer to one observation as xi, for i = 1, 2, . . . , n. The corresponding class of
each observation xi is the categorical variable yi, where yi ∈ {1, 2, . . . , K}.
If we take the reference class to be class K, there are K − 1 logistic regres-
sions,

ln

(
P (yi = k|xi)
P (yi = K|xi)

)
= ck + xiβk, k = 1, 2, . . . , K − 1. (4.1)

In Equation 4.1, the data xi are a 1×p row vector, while the regression coef-
ficients βk are a p×1 column vector. A different set of regression coefficients
is estimated for each logistic regression.

Exponentiating both sides, we can find the probability of the observation
belonging to class k,

P (yi = k|xi) = P (yi = K|xi)eck+xiβk , k = 1, 2, . . . , K − 1. (4.2)

An implicit assumption of MLR is that each observation xi belongs to one
of the K classes, i.e. that

K∑
k=1

P (yi = k|xi) = 1 for all i. (4.3)

Using Equation 4.3, we can find the probability of belonging to each class
expressed in terms of the regression coefficients and the data.
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P (yi = K|xi) = 1−
K−1∑
k=1

P (yi = k|xi)

= 1−
K−1∑
k=1

P (yi = K|xi)eck+xiβk

⇒ P (yi = K|xi) = 1− P (yi = K|xi)
K−1∑
k=1

eck+xiβk

⇒ 1 = P (yi = K|xi) + P (yi = K|xi)
K−1∑
k=1

eck+xiβk

1 = P (yi = K|xi)

(
1 +

K−1∑
k=1

eck+xiβk

)
⇒ P (yi = K|xi) =

1

1 +
∑K−1

k=1 e
ck+xiβk

. (4.4)

Substituting Equation 4.4 into Equation 4.2, we can find the class probabil-
ities

P (yi = k|xi) =


eck+xiβk

1+
∑K−1
k=1 eck+xiβk

, k = 1, 2, . . . , K − 1,

1

1+
∑K−1

k=1 eck+xiβk
k = K.

(4.5)

Determining the probability of class membership relies on knowing the pa-
rameter estimates βk. These estimates are determined using maximum like-
lihood estimation. Maximum likelihood estimates are the parameters that
maximise the likelihood of observing the data. Using the probabilities from
Equations 4.4 and 4.5, the likelihood of observing the data given the param-
eter values is given by

L(x;β) =
n∏
i=1

[
eck+xiβk

1 +
∑K−1

k=1 e
ck+xiβk

]∑K−1
k=1 Cik

[
1

1 +
∑K−1

k=1 e
ck+xiβk

]CiK

,

(4.6)

where C is an indicator variable such that

Cik =

{
1 if yi = k,

0 if yi 6= k.
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In practice the log-likelihood is maximised instead, which yields the same pa-
rameter values that would be obtained from maximising the likelihood. The
log-likelihood is found by taking the logarithm of Equation 4.6. Optimisation
methods can be used to calculate maximum likelihood estimates.

Further discussion on the theory of multinomial logistic regression is given
by Friedman, Hastie, and Tibshirani [26].

As with all regression models, the predictor variables to include in Equation
4.1 must be chosen with some thought. There is also no requirement that the
predictor variables are from the raw data. We may wish to make indicator
variables to include categorical data, or to derive other variables from the
raw data. Variables should be selected through a combination of subject
matter expertise and variable selection algorithms.

We consider two algorithms for variable selection: forwards selection based
on the Akaike Information Criterion (AIC), and the least absolute shrinkage
and selection operator (LASSO).

Information Criteria

There are two main information criteria used when assessing model fit: Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC)

AIC can be used to compare nested models, which makes it ideal for selecting
the regression model in MLR. The predictive accuracy of regression models
depends on the variables included in the model. While adding predictor
variables will increase the accuracy of the model on the training data, this
increases the risk of overfitting and the model may not predict well for new
data. AIC penalises the inclusion of too many parameters while rewarding a
high likelihood, and is defined as

AIC = 2p− 2log(L̂). (4.7)

The value of the log-likelihood evaluated at the maximum likelihood esti-
mates of the parameters is denoted log(L̂), and there are p parameters [2].
In a model selection framework, preferred models have lower values of AIC.
In our analyses, the model with the smallest AIC is chosen.

BIC also penalizes the inclusion of free parameters p.

BIC = log(n)p− 2log(L̂), (4.8)
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where n is the number of observations in the data [75]. Due to the different
coefficient of p, BIC penalizes complex models more than AIC except when
there is a very small amount of data [26]. Similarly to AIC, models with
smaller BIC are preferable, and in our analyses we will select the model with
the smallest BIC.

Both AIC and BIC are used when comparing substitution models in Model-
Generator.

To find the absolute minimum AIC, we would need to calculate the AIC
for all models under consideration. Calculating the AIC for all possible
regression models is infeasible, and so forward selection is used to restrict
the combinations of predictor variables.

Forward selection

Forward selection is used to determine which predictor variables should be
included in a regression model. At first, no predictor variables are included
in the model. Each variable is then added one at a time, testing all possible
ways to add one new variable to the model. Some performance metric is
calculated for each possible model. The predictor variable with the best
performance metric is then included in the regression model, and the process
is repeated [26].

Predictor variables are no longer added when the performance metric ceases
to improve upon adding another variable. AIC and BIC are both common
performance metrics used to compare models in forward selection.

There is the caveat that forward selection is not guaranteed to select the best
subset of predictor variables [26]. For this reason we will also use LASSO for
variable selection, and compare the results for the two algorithms.

LASSO

The least absolute shrinkage and selection operator (LASSO) penalizes the
size of the regression coefficients, shrinking them towards zero [27]. Consider
performing LASSO on a MLR model with K classes and n observations. We
define the indicator variable yik as

yik =

{
1 if observation i is from class k;

0 if observation i is not from class k.
(4.9)
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For fixed λ, LASSO maximizes the penalised log-likelihood

1

N

n∑
i=1

[
K∑
k=1

yik(ck + xTi βk)− log

(
K∑
k=1

eck+x
T
i βk

)]
− λ

K∑
k=1

|βk|. (4.10)

The penalty applied to the regression coefficients βk increases as λ increases.
An appropriate value for λ is chosen through cross-validation; the general
cross-validation process is described in Section 4.5.1. The misclassification
error (proportion of misclassified points) is calculated using cross-validation
for a range of λ values. The chosen λ value is the one with the lowest cross-
validated misclassification error.

Using MLR for prediction

Once the predictor variables and corresponding coefficients have been deter-
mined, we can use MLR to predict the most likely class of new data.

Suppose that we have m observations of p predictor variables, Xm×p. This
could be completely new data that we wish to know the class of, but it is
also reasonable to predict the classes of observations in the training data. In
fact, this can be an important validation process.

Recall that xi denotes the ith row of matrix X. The predicted classes Y ∗

are determined by assigning each observation to the class with the highest
probability, i.e.

y∗i = argmax
k

P (y∗i = k|xi) for i = 1, 2, . . . ,m.

4.4.2 Support vector machines

Support vector machines (SVMs) are a classification method that relies on
finding an optimal boundary, or a separating hyperplane, between classes. A
hyperplane is the generalisation of a line to higher dimensions; e.g. a line is a
hyperplane in R2, and a plane is a hyperplane in R3. It is called the optimal
separating hyperplane because the hyperplane is chosen to best separate the
different classes.

First, consider a binary classification problem. The target variable y can
take values ±1 to represent two different classes. These two classes are lin-
early separable if a ‘straight line’ can be drawn to separate the two classes.
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More formally, for some data x, classes are linearly separable when for each
observation i, w and b can be found such that

w · xi + b > 0 for yi = 1, and

w · xi + b ≤ 0 for yi = −1.

An example of linearly separable classes is given in Figure 4.6. While there
are many possible hyperplanes that separate the two classes here, support
vector machines find the hyperplane that maximises the width of the margin.
This means that the hyperplane depends only on the points lying on the
margin, i.e. the support vectors. These vectors are used to determine the
weights w and the bias b that define the hyperplane w · x+ b = 0.

This scenario describes the basic idea behind linear SVMs, except instead of
a two dimensional hyperplane (i.e. a line) separating the classes, there is a
p-dimensional hyperplane separating the classes, where p is the number of
variables in the data.

Classes are linearly separable in the example in Figure 4.6, but this is rarely
the case for actual data. However, a transformation can always be applied
to the data to create linearly separable classes. Mapping all data points
into the required higher-dimensional space can be computationally infeasible,
especially if a space of high dimension is needed. Conveniently, the formula
for calculating the weights only depends on the dot product of points in the
higher-dimensional space, and we can calculate this without projecting the
points into the higher-dimensional space by using kernels. A frequently used
kernel that allows non-linear transformations is the Gaussian or radial basis
function (RBF) kernel,

K(u,v) = exp(−γ||u− v||2).

This takes two points u and v of the untransformed data and returns a scalar.
The Gaussian kernel is defined by the hyperparameter γ ∈ R+. Hyperparam-
eters are any classifier parameters that must be defined before other classifier
parameters are estimated from the data.

While applying different kernel functions can theoretically always separate
classes perfectly, this is rarely a good idea. If the classes are separated per-
fectly, the equation of the hyperplane may be highly specific to the data used,
and so the SVM would not predict well for new data. A way to counteract
this is to allow some points to be misclassified. This is allowed in soft-margin
SVMs, which penalize the misclassified points by some cost C ∈ R+. In a
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Class

−1

1
Margin Width 

Figure 4.6: A support vector machine used to separate linearly separable
data. The black line represents the optimal separating hyperplane, while
the grey lines show the maximum width of the margin. Support vectors are
indicated by a larger circle around the data point; note that these points are
the ones closest to the hyperplane.
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soft-margin classifier, the value of the hyperparameter C must also be cho-
sen.

To determine the hyperparameter values that are best suited to the classifica-
tion problem, all hyperparameters that define a SVM are optimised together
using a grid search over a range of values [12]. SVMs are defined using each
value or pair of hyperparameters.

After hyperparameters have been specified, the equation of the hyperplane
can be found through an optimisation problem, which seeks to maximise the
width of the margin while also penalizing misclassified points.

Using SVMs for prediction

The method for assigning a class to a new data point is the same for both
hard- and soft-margin SVMs. Recall that the hyperplane is defined so that it
best linearly separates the two classes in the higher-dimensional space. This
means that once the equation of the hyperplane has been determined, the
class of a new point s is given by sign(w · s+ b), where

sign(x) =


1 if x > 0

−1 if x < 0

0 if x = 0.

The value w · s + b is the corresponding decision value for the point s.
Decision values do not necessarily correspond to any distance from the hy-
perplane or other classes, and so they are not meaningful to use as a soft
classification. Since SVMs only return a class, they are an example of hard
classification.

We emphasise that there is a difference between hard and soft classification
and hard-margin and soft-margin SVMs. Hard and soft classification describe
whether a classifier assigns class probabilities or merely classes; SVMs provide
only a hard classification, since the decision values are meaningless when it
comes to describing a degree of class membership. Only the sign of the
decision value defines the class of a point. Hard- and soft-margin classifiers
are terms used to describe whether the hyperplane must perfectly separate
classes or not.

So far, we have only considered SVMs in the context of binary classification.
SVMs are capable of multiclass classification by breaking the problem down
into pairwise binary classification. For K classes,

(
K
2

)
classifiers are trained,



88 Chapter 4. Methods for Dimension Reduction and Classification

and the new point is assigned to the most frequent class allocation from the
output of the binary classifiers. In the case where there is more than one
class tied for the most frequent class allocation, the class that appears first
in the vector of classes is chosen [12].

We direct the reader to the paper by Vapnik and Cortes [17] for a more de-
tailed theoretical discussion, and the LibSVM manual [12] for further com-
putational details.

4.4.3 Neural networks

Neural networks are a flexible class of models that can be applied to classifi-
cation and regression problems. Here, we describe how neural networks can
be applied to a multiclass classification problem.

We direct the reader to Figure 4.7 while explaining the architecture of a
neural network. Neural networks are made up of layers; in Figure 4.7, each
layer has a different colour. First, there is the input layer (shown in blue),
which contains the data. Next, there are a number of hidden layers. In
Figure 4.7 there are two hidden layers, `1 and `2, shown in different shades
of grey. Finally, there is an output layer (shown in green), which contains
the values required to make a classification decision.

At a more detailed level, each of these layers contains some number of nodes,
represented by individual shapes in Figure 4.7. Nodes in the input layer are
squares, nodes in the hidden layers are circles, and the node in the output
layer is a diamond. For the input layer, each node is a feature or input
variable; i.e. x1, x2, and x3 are three different variables, and therefore there
are three nodes in the input layer.

Each hidden layer has a pre-defined number of nodes. In Figure 4.7, both
hidden layers are made up of four nodes, but it is not required that all hidden
layers contain the same number of nodes. The number of nodes in these layers
should be determined by trial and error. We use validation accuracy as a
metric to determine the number of nodes, although other metrics may also
be used.

Finally, we consider the number of nodes in the output layer. In regression
or binary classification, only one output node is needed, as in Figure 4.7.
For multiclass classification the number of nodes should correspond to the
number of classes in the classification problem.
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x1

x2

x3

`1 `2

Figure 4.7: A neural network with three input variables x1, x2, and x3. There
are two hidden layers `1 and `2 that both have four nodes, and the output
layer has one node.

We now describe how data is transformed between layers. The data under-
goes a similar transformation at each node in the neural network, except for
the input nodes. One such node is illustrated in Figure 4.8. The outputs
from all nodes in the previous layer are denoted x1, x2, and x3. These may
be outputs from the input layer or a previous hidden layer. First, a linear
combination is taken of the inputs to this particular node, i.e. if there are n
nodes in the previous layer, then

z =
n∑
i=1

wixi + wn+1,

where wi are the weights for this particular node. The term wn+1 is often
defined as the bias term. Weights are not required to be the same within or
between layers, and so there can be a large number of weights throughout the
entire network. After taking this linear combination, a nonlinear activation
function σ is applied. The activation function must be nonlinear, otherwise
adding layers does not boost the power of the network. This is because
networks with multiple layers can be collapsed to a simple linear combination
of the input variables if only linear activation functions are used.

Table 4.3 presents the most commonly used activation functions. The output
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x1

x2

x3

z σ(z)

Figure 4.8: One node from a hidden layer of a neural network, where z =
w1x1 + w2x2 + w3x3 + w4 for weights wi.

Function Formula

Rectified Linear Unit (ReLU) [57] max{0, x}

Sigmoid [40]
ex

1+ex

Hyperbolic tangent (tanh) [40]
e2x−1
e2x+1

Table 4.3: Common activation functions for nodes in hidden layers.

of a node is the number obtained from taking the linear combination of the
previous layer and then applying the activation function, as described in Fig-
ure 4.8. This continues until the output layer, where the data is transformed
as in previous layers but a different activation function may be used. The
activation function for the output layer will depend on the type of problem.
Since we are using neural networks for multiclass classification, the softmax
function should be used as the activation function in the output layer. The
softmax output corresponding to the kth class (output node) for the ith ob-
servation is

softmax(z)ik = pik =
ezk∑K
k=1 e

zk
.

After the data reaches the output layer, the output of the neural network is
compared to the known classes from the training data using a loss function.
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If an observation is of class k, the kth node of the output layer should be one,
while all other nodes should be zero.

For multiclass classification, the most appropriate loss function is categorical
cross entropy [14], given by

L = −
K∑
k=1

yik ln(pik). (4.11)

For the ith observation, pik is the softmax output corresponding to the kth

class and yik is a class indicator, i.e.

yi,k =

{
1 if observation i belongs to class k,

0 if observation i does not belong to class k.

It can be checked that L ≥ 0. In the event that the ith observation is
perfectly classified as class k (i.e. pik = 1), and the observation is actually
from class k, there is a zero contribution to the categorical cross entropy
because log(1) = 0. Hence, small values of L occur when pik ≈ 1 for the
correct class k.

In a forward pass through the network, the output of all nodes is calculated,
as well as the loss function. Once the loss function is known, the weights
are shifted in the direction that minimises the loss function. While there can
be many thousands of weights in a neural network, backpropagation makes
this update process feasible. Backpropagation uses variations on stochastic
gradient descent to minimise the loss function, and applies the chain rule
to efficiently determine in which direction the weights should be adjusted.
The details of this process can be found in Rumelhart et al. [73], while Deep
Learning with Python [14] provides a practical resource for building neural
networks.

Using neural networks for prediction

Predicting the class of a new observation i requires one forward pass through
the network to calculate the softmax outputs pik.

To obtain a hard classification y∗i for each observation, we take

y∗i = argmax
k

pik.



92 Chapter 4. Methods for Dimension Reduction and Classification

4.5 Assessing Classifier Performance

4.5.1 Validation methods

Validation methods are used to evaluate the performance of a classifier. They
are also necessary because they identify possible overfitting, which occurs
when a classifier performs well on the data that were used to determine the
parameter values of the classifier, but then generalizes poorly to previously
unseen data.

Train/test splits

When fitting and assessing the performance of different classifiers, we par-
tition the data into three different sets: training data, validation data, and
testing data. This partitioning method is discussed in detail by Friedman
et al. in The Elements of Statistical Learning [26].

The training data is the data used in the training process of the classifier. In
the context of the classifiers presented earlier in this chapter, training data
is used to determine the coefficients in MLR, the equation of the hyperplane
in SVMs, and the loss function in neural networks. All observations that
comprise the training data must have a corresponding class label.

Validation data is used to determine the predictive performance of the clas-
sifier under different parameterisations. Examples of this include variable
selection in MLR, kernel hyperparameters for SVMs, or determining the
number of layers for neural networks. All observations that comprise the
validation data must also have a class label, although these class labels are
not directly used in training the classifier. The predictive performance of the
classifier is assessed by comparing the predicted class labels to the true class
labels through some metric.

To determine how well the classifier performs on new data, it is necessary
to set aside some data that will not be used in the training process. This
data is referred to as test data. As for validation data, all observations that
comprise the test data must have a class label, but again this class is not
used as input for the classifier. The classifier will predict a class for each
observation in the test data, which can be compared to the true class of the
observation.
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For efficiency, we can apply cross-validation instead of using fixed partitions
for training and validation data. Separate test data would still be used.

Cross-validation

Cross-validation repeatedly uses different splits of training and validation
data to get a general picture of how an algorithm performs. In full, it is
called k-fold cross-validation, where k is the number of folds. The cross-
validation process is described below.

1. Randomly split the data into k equally-sized ‘folds’ (illustrated here
with k = 5 folds).

3

2

1

4

5

2. Set one of these folds aside as the validation data, and combine the
remaining k − 1 folds and use as training data.

2
3
4
5

Training Data

1

Validation Data

3. Implement the classification algorithm with the given training and val-
idation data.

4. Calculate some metric to evaluate the results.

5. Repeat from Step 2 for each of the k folds.

The metric can be averaged across all folds once the cross-validation process
is complete.
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In this thesis, cross-validation is used to determine the value of hyperparam-
eters. These hyperparameters include the value of λ in the LASSO and γ and
C parameters for SVMs. In this application, cross-validation is only applied
to the training data, splitting it into multiple training and validation sets.
This means that there is always separate test data that was not used during
the training process.

4.5.2 Accuracy

Accuracy is the percentage of correctly classified cases. Table 4.4 shows
the actual and predicted classes for an example data set with five observa-
tions.The three different classes are taken from the shell example presented
in Section 4.2.

Actual Class Predicted Class

Type 1 Type 1

Type 2 Type 2

Type 2 Type 3

Type 1 Type 1

Type 3 Type 3

Table 4.4: Actual and predicted classes for an example data set with five
observations.

In this case, four observations out of the five were classified correctly, and so
the accuracy would be 80%.

The accuracy for a single classifier can vary depending on the data used to
calculate the accuracy. In this thesis we consider three types of accuracy:
training accuracy, validation accuracy, and test accuracy. We explained how
data can be partitioned into training, validation, and test data in Section
4.5.1. To calculate the training accuracy, the classifier is used to predict
a class for each observation in the training data. The training accuracy is
the percentage of the predicted classes that match the true, known, classes.
Similarly, the validation accuracy is based on the validation data and the
test accuracy is based on the test data.
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Cross-validated accuracy can be reported instead of validation accuracy. This
arises from using accuracy as the metric to evaluate the results (see step 4
of the cross-validation process in Section 4.5.1).

The accuracy as calculated on the training data is likely to overestimate
the performance of the classifier, since the data was used in estimating any
parameters of the classifier. If the parameters are too specific to the training
data, overfitting may occur. Overfitting occurs when a classifier performs
well on the training data, but performs poorly when used to classify test
data.

Validation accuracy is usually lower than training accuracy, since the classi-
fier is not directly trained on the validation data. Because the validation data
is used to select hyperparameters, the validation accuracy may still slightly
overestimate the performance of the classifier.

Finally, test accuracy provides an unbiased estimate of classifier performance.
This value best describes how the classifier will perform on previously un-
seen data, and is usually lower than both the training and validation accu-
racy.

There are some common criticisms of using accuracy as a performance metric.
Consider the shell example again: if 90% of the shells in the test data were
Type 3, the classifier would be 90% accurate if it blindly predicted all shells to
be Type 3. Despite the high accuracy, this is clearly not a useful classification
rule. To decrease the chances of this scenario occurring in our analysis, we
will ensure that all classes are evenly represented in the training, validation,
and test data. We will also use confusion matrices to analyse patterns of
misclassification, which would clearly indicate observations being assigned to
only some classes.

In this chapter we introduced methods for dimension reduction, described
how the selection of a migration model can be considered as a classification
problem, and then described three different classification methods. We also
describe how accuracy is used to assess classifier performance. These dimen-
sion reduction and classification methods will be used in Chapter 6 to analyse
the results of the simulation study.
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Chapter 5

Simulation Study Design

Previous studies have investigated Aboriginal migration to Australia using a
variety of different methods, such as concepts from network theory and the
analysis of bathymetric data [41, 62]. A definitive consensus on the migration
route taken has not yet been reached; some studies [41] suggest a northern
route through the southeast Asian islands to New Guinea, while other studies
[62] find support for a southern route.

Aboriginal Australian mtDNA sequences have previously been analysed to
gain understanding of the peopling of Australia [50, 56]. We use uniquely
provenanced Aboriginal Australian mtDNA sequence data to conduct a sim-
ulation study that investigates migration from southeast Asia into Australia.
In this chapter, we describe how the migration models that define the simu-
lation process are constructed. The coalescent simulator BayeSSC is used for
simulations; further information on coalescent theory and its implementation
in BayeSSC can be found in Chapter 2.

5.1 Construction of Migration Models

We define a migration route to be the geographical route taken from one
population location to another, beginning in southeast Asia and ending in
a region of southern Australia. Population locations used in this study in-
clude southeast Asia, southern Wallacea, New Guinea and the surrounding
areas, northeastern Australia, southeastern Australia, and central southern
Australia.

97
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To obtain a set of candidate migration routes from southeast Asia to Aus-
tralia, we combined migration routes that have been previously suggested in
the literature. The resulting candidate migration routes are presented Figure
5.1.

For migration routes from southeast Asia to New Guinea, we consider Bird-
sell’s northern and southern routes [6] (see Figure 5.2). Birdsell’s suggested
routes through the islands of southeast Asia are then joined to migration
routes within Australia, which were proposed by Birdsell [5], Tindale [84],
and Bowdler [10]. Each of these combinations results in a full migration route
from southeast Asia to southern Australia. Migration routes are named for
the author of the work that suggested the corresponding within-Australia
migration path, and then numbered if there is more than one route based on
the author’s work.

The two additional migration routes referred to as ‘Northern Sunda’ and
‘Southern Sunda’ were suggested through discussion with J. Teixeira and
G. Purnomo (personal communication, December 05, 2018). These two
routes take the coastal migration suggested by Bowdler [10], and combine
it with a single entry point to Australia from New Guinea. The eight candi-
date migration routes discussed so far encompass most reasonable migration
routes between the population locations defined in this study.

We also include a ninth migration route, which we will term the ‘aggregated
model’. In the aggregated model, populations in the same general region are
combined. These regions are denoted by black boxes in Figure 5.1, while
the individual populations are still marked by black dots for consistency.
No structure is assumed within the blocks; this migration route describes
a general route from southeast Asia, through the islands of southeast Asia,
expansion into the northern part of Australia and then an eventual migration
into southern Australia.

To define a complete migration model, it is necessary to specify other pa-
rameters in addition to the migration route. Other required parameters are
the time between migration events, the effective population size throughout
history, any further migration between populations once population locations
are inhabited, and DNA-specific parameters which pertain to the underlying
biological processes. We discuss each of these parameters in turn, beginning
with the time between migration events.
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Birdsell 1 Birdsell 2 Northern Sunda 

Bowdler 2 Bowdler 1 Southern Sunda 

Tindale 1 Tindale 2 Aggregated 

Figure 5.1: All nine candidate migration routes, with major migration events
represented by solid arrows. The name of the migration model is given in
the top left corner of each diagram.



100 Chapter 5. Simulation Study Design

Figure 5.2: Birdsell’s northern and southern routes from southeast Asia to
the island of New Guinea. The dashed line represents the northern route,
while the finer dotted line represents the southern route. A complete map
of Australia is shown inset, with a rectangle around the region in the main
image.
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5.1.1 Time between migration events

Times are often measured using the kiloannum (ka), where one kiloannum
is one thousand years before present. When times need to be converted to
generation time, e.g. when defining the migration model in a BayeSSC input
file, we assume a generation time of 25 years [24].

The timing of migration events is determined by the estimated timing of
the initial colonisation of Sahul, and also the expected amount of time to
move between population locations. The timing of the colonisation of Sahul
remains uncertain, and so we allow a range of times between 50 ka and 65
ka. The endpoints of the interval are from Tobler et al. [85] and Clarkson
et al. [15] respectively.

Based on archaeological estimates from the Warratyi rock shelter, we assume
that humans were present in southern Australia by at least 45 ka [85]. De-
pending on the migration route, these dates require migration events towards
southern Australia to occur every 2500 - 5000 years. We constrain popula-
tion movement throughout the islands of southeast Asia by the estimated
times that anatomically modern humans were present in southeast Asia. A
wide interval with a high upper bound of 70 ka [94] and a lower bound of
50-55 ka [63] is considered. Migration events through the islands of southeast
Asia cannot occur instantly or take a negative amount of time, so we con-
sider a reasonably quick migration through this area to take approximately
500 years. This means that the two migration events through the islands of
southeast Asia have an inter-event time of 250 years. Alternatively, there are
5000 years between 65 ka and 70 ka, so the maximum reasonable inter-event
time for these migration events is 2500 years.

Prior distributions are probability distributions that describe prior knowledge
about a parameter. They are traditionally used within a Bayesian framework
for parameter estimation, but they can also be used in BayeSSC to account
for uncertainty in parameter values. For each simulation, the value of a
parameter is randomly sampled from the prior distribution. The timing
of the colonisation of Sahul is modelled using a uniform prior distribution
defined by the endpoints 50 ka and 65 ka.

5.1.2 Effective population size

Population size is intuitively a census population size, or a count of the
number of people in the population. In the coalescent model, effective pop-
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ulation size is used instead. It is important to understand the difference
between these two types of population size; although census population size
influences effective population size, the two are not interchangeable.

Recall that in Chapter 2 we derived the coalescent from the Wright-Fisher
model. The effective population size, Ne, is the size of a Wright-Fisher popu-
lation required for the genetic variability of the Wright-Fisher population to
match the genetic variability of the population of interest [61]. Much like the
census population size, the effective population size can change over time.
Since mtDNA records the genetic history of the maternal line, we use the
female effective population size, Nef .

One method for determining effective population size is through the use of
skyline plots. Skyline plots were first proposed in 2000 by Pybus et al. [68],
and produce an estimate of effective population size over time based on a
coalescent tree. Early approaches gave noisy estimates of effective population
size, and many methods have been developed in an effort to provide smoother
and more accurate estimates. Two commonly used methods are Extended
Bayesian Skyline Plots (EBSPs) and the GMRF Skyride.

The Bayesian skyline uses MCMC to determine the effective population size
from the sequence data, and uses multiple change-point models to provide a
smoother estimate than earlier methods [20]. GMRF Skyride uses a Gaussian
Markov random field (GMRF) smoothing prior to produce a smooth estimate
of effective population size through time. The GMRF Skyride has been shown
to perform at least as well as Bayesian skyline methods, with both methods
adequately recovering known effective population sizes [55]. Bayesian skyline
plots and GMRF Skyride are both implemented in BEAST2 [8].

Although we performed an EBSP analysis in Section 3.5.2, these values are
not suitable for defining our simulations. The female effective population size
calculated in our EBSP analysis was for the entire population of Australia,
New Guinea and southeast Asia. Due to the structure of populations in this
region, where very low levels of migration are observed between populations
once a population location has been inhabited [85], we expect the estimated
effective population size to be biased upwards [90]. Consequently, we base
our values of female effective population size on those estimated by Lippold
et al. [46], as our sample sizes are too small to construct further EBSPs for
each population location.

Lippold et al. used Bayesian skyline plots to reconstruct the female effective
population size of New Guinea and the southeast Asian islands throughout
history. Point estimates were taken from Figure 4 in Lippold et al., which is
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Figure 5.3: Bayesian skyline plot from Lippold et al. [46]. The red line shows
the estimated Nef over time (calculated from mtDNA data), while the two
blue lines are estimates of Ne from non-recombining Y (NRY) chromosome
data. The darker blue line is based on a ‘fast’ mutation rate estimate for
the NRY data, while the lighter blue line is based on a ‘slow’ mutation rate
estimate. This figure was originally published in BMC Investigative Genetics.

presented here as Figure 5.3.

The effective population size from the skyline plot will be used for all six pop-
ulation locations (southeast Asia, southern Wallacea, New Guinea and the
surrounding areas, northeastern Australia, southeastern Australia, and cen-
tral southern Australia), as there are no studies that present reliable effective
population size estimates for individual Aboriginal populations.

Exponential growth and decay correspond to linear trends on the log scale.
Considered backward in time, the Bayesian skyline plot in Figure 5.4 suggests
an initial constant effective population size, which decreases exponentially
from approximately 8 ka to 50 ka. The two different slopes of the piecewise-
linear approximation suggest two different rates of population growth. Table
5.1 gives the time and effective population size at each of the estimated
change points, and then Table 5.2 gives the corresponding exponential growth
rates. When calculating exponential growth rates, we assume a human female
generation time of 25 years [24]. We also use the equation for exponential
decay backward in time,

Nt = N0e
−rt, (5.1)
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Figure 5.4: The Bayesian skyline plot from Lippold et al., annotated with the
piecewise-linear approximation of effective population size over time (black
dashed line). Points where the population growth rate changes are repre-
sented with a point and labelled as Ci, with i increasing backward in time.

where N0 is the initial (current) effective size of the population, t is the
number of generations that have passed (backward in time), and Nt is the
effective population size t generations ago. Generations are used here instead
of years because BayeSSC uses generations as the timescale when simulating
DNA. Equation 5.1 can be rearranged to

r =
logN0 − logNt

t
(5.2)

to calculate the rate of population growth.
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Change Point Time (years ago)
Population Size *
Generation Time

Nef

C1 8500 104 10047

C2 21800 104.6 1592

C3 50000 104.27 744

Table 5.1: Values taken from the piecewise linear approximation to the
Bayesian Skyline plot. The Skyline plot with the linear approximation is
given in Figure 5.4. To calculate Nef from population size * generation time,
we divide by the human female generation time of 25 years [24].

Interval
Interval Length

(years)
Interval Length
(generations)

r

C1 − C2 13300 532 3.4629× 10−3

C2 − C3 28200 1128 6.744× 10−4

Table 5.2: Interval lengths in years and generations, and the corresponding
exponential growth rate over each interval. This rate was calculated using
Equation 5.2 and the interval length in generations.
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5.1.3 Post-settlement migration rates

So far, we have defined estimates for migration times and effective popula-
tion sizes. To adequately describe the population demographic history, we
still need to specify the rate at which lineages move between populations
over time. We refer to this low-level ongoing migration as post-settlement
migration, as it can only occur once people have first inhabited, or settled
at, a particular population location.

As introduced in Section 2.4.4, we can describe migration between popula-
tions using a square migration matrix M = [mij], where mij is the probability
of an active lineage moving from population i to population j in one gen-
eration, going backwards in time. Active lineages are the lineages that are
present in the tree at a particular point in time. The diagonal elements mii

are meaningless, since active lineages cannot migrate to a population that
they are already in. The BayeSSC manual recommends setting diagonal el-
ements to zero to improve computational efficiency, even though the values
do not affect the output of the simulations [4].

To define post-settlement migration, we need to define the elements of a 6×6
migration matrix. Matrix elements can be either single values or a prior
distribution. A colour-coded migration matrix and map of corresponding
population locations is given in Figure 5.5.

First, we consider populations between which ongoing low-level migration
may be reasonable. For example, it does not make sense to have ongoing mi-
gration between southeast Asia and southern Australia, due to the large
distance, extensive water crossings, and other populations between these
two locations. We allow migration between the following population loca-
tions:

• Southern Wallacea/New Guinea,

• New Guinea/NE Australia, and

• NE Australia/SE Australia/Southern Australia.

These possible levels of migration are shown as coloured elements of the
migration matrix in Figure 5.5.

Despite the comparatively close geographical distance between southeast
Asia and southern Wallacea, we do not allow ongoing migration between
these two populations because it would require regular crossing of Wallace’s
Line. Wallace’s Line divides the islands of southeast Asia, with the Philip-
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m11 m12 m13 m14 m15 m16
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m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66

Figure 5.5: Top: A map indicating the population location corresponding to
each row/column of the migration matrix.
Bottom: The migration matrix, with each level of migration having a dif-
ferent colour. Darker colours represent a higher probability of migration
on average, and no colour indicates no migration between populations. Di-
agonal entries are shaded, because migration from a population to itself is
meaningless.
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pines and Borneo on the western side of the line, and the islands of Sulawesi
and Timor-Leste on the eastern side of the line. Alfred Wallace first noticed
a difference in flora and fauna species on either side of this line [92]; this
difference is a consequence of the deep sea levels and strong currents along
Wallace’s line. Ongoing post-settlement migration is therefore extremely un-
likely.

Furthermore, we only allow migration to occur if a migration corridor is
present in the migration route. This allows us to investigate the presence
or absence of gene flow between New Guinea and Australia. For example,
Bowdler’s models suggest that Australia was inhabited from the southern
Wallacean islands and not via New Guinea, and so in this case there would
be no migration between New Guinea and northeastern Australia at all.
This assumption about the presence and absence of migration rates is later
explored as an extension. Figure 5.6 displays the post-settlement migration
for each migration route.

While some studies suggest pronounced regionalism or female philopatry [85],
i.e. low or non-existent migration between populations, there have been no
studies that give numeric values for migration rates in the region of interest
based on mtDNA. We use migration rates estimated from nuclear DNA as
an approximation.

We find estimates of the effective number of migrants in each generation in
Malaspinas et al. [50], presented here in Table 5.3. To calculate the proba-
bility of migration from the effective number of migrants between population
locations, we divide the effective number of migrants by the total effective
population size of the population that migrants are leaving. Point estimates
for the effective population size of each population are presented in Table
5.4.

Dividing the values in Table 5.3 by the corresponding effective population
sizes in Table 5.4, we get point estimates and confidence intervals for m, the
probability of an active lineage moving from one population to another in
one generation. These are given in Table 5.5.

Most intervals in Table 5.5 are asymmetric, but the point estimates and
confidence intervals for each pair of populations are similar. We assume
symmetric migration between populations, e.g. so that the probability of a
lineage moving from New Guinea to NE Australia is the same probability
as a lineage moving from NE Australia to New Guinea. This assumption
reduces the dimensionality of the migration models.

Define m as the probability of an active lineage moving from one population
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 Birdsell 1 Birdsell 2 Northern Sunda

Bowdler 2 Bowdler 1 Southern Sunda

AggregatedTindale 2Tindale 1

Figure 5.6: Migration patterns for each migration route. Major migration
events are represented by the solid arrows as in Figure 5.1; post-settlement
migration is represented by dashed arrows. The name of the corresponding
migration model is given in the top left corner of each diagram.
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Populations
Effective number of

migrants per generation
(point estimate)

95% CI

New Guinea → East Asia 0.50 (0.02, 0.76)

NE Australia → New Guinea 0.4088 (0.0009, 20.3506)

New Guinea → NE Australia 0.0151 (0.0005, 1.7293)

NE Australia → SW Australia 0.0114 (0.0005, 11.2492)

SW Australia → NE Australia 0.0031 (0.0005, 6.1587)

Table 5.3: The expected effective number of migrants moving between pop-
ulations in one generation (backwards in time). The original table was given
forwards in time, so directions were reinterpreted to be presented backwards
in time. All values are from Malaspinas et al. [50]. No values were given for
migration from East Asia to Papua New Guinea.

Region N̂e

New Guinea 3586

SW Australia 9779

NE Australia 34214

Table 5.4: Point estimates of effective population sizes, N̂e [50].

Populations
Probability of migration

in one generation
(point estimate)

95% CI

New Guinea → East Asia 1.394×10−4 (5.577×10−6, 2.119×10−4)

NE Australia → New Guinea 1.195×10−5 (2.631×10−8, 5.948×10−4)

New Guinea → NE Australia 4.211×10−6 (1.394×10−7, 4.822×10−4)

NE Australia → SW Australia 3.332×10−7 (1.461×10−8, 3.288×10−4)

SW Australia → NE Australia 3.170×10−7 (5.113×10−8, 6.298×10−4)

Table 5.5: The probability of an active lineage moving between populations
in one generation (backward in time). All values are given to four significant
figures.



5.1. Construction of Migration Models 111

Populations
Probability of migration

in one generation
(point estimate)

95% CI

New Guinea ↔ East Asia 8.080×10−6 (5.577×10−6, 2.119×10−4)

NE Australia ↔ New Guinea 1.195×10−5 (2.631×10−8, 5.948×10−4)

SW Australia ↔ NE Australia 3.251×10−7 (1.461×10−8, 6.298×10−4)

Table 5.6: Symmetric point estimates and intervals for the probability of
migration between two populations in one generation. All values are given
to four significant figures.

to another in one generation. Three ‘types’ of post-settlement migration are
considered, as illustrated in Figure 5.5. For each of the three types of post-
settlement migration, we want to create a single point estimate and a single
interval for m. To create a single point estimate from the point estimates of
two populations, we calculate the mean of the point estimates. To create a
single interval for m between two populations, we take the most conservative
values of the 95% confidence intervals for each population. This means that
the endpoints of the new interval will be the smallest lower bound of the
pair and the largest upper bound of the pair. The new intervals and point
estimates are given in Table 5.6.

We model migration rates using a prior distribution. The corresponding
author of Malaspinas et al. suggested that we do not use the confidence
intervals as strict bounds, and instead choose a larger range (L. Excoffier,
personal communication, June 13, 2019). Consequently, we decide not to use
a uniform prior distributions for these parameters, as this type of prior does
not allow values outside of a given range to be selected. We use gamma prior
distributions for the intervals in Table 5.6, as the gamma distribution is more
flexible and because it has no support on the negative real numbers.

The gamma distribution of a migration rate, mij, is defined by two parame-
ters: a shape parameter k and a scale parameter θ. Hence is impossible to
exactly fit a gamma distribution to the lower bound, upper bound, and point
estimate of m. We choose to set the mode of the gamma distribution equal
to the point estimate, because if simulations were ran without uncertainty
on migration rates, this point estimate alone would be used as an estimate
of migration rates.

We determine the parameters of the gamma distribution based on the point
estimate and the upper bound of the confidence interval for the migration
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Populations
Gamma parameters
(shape k, scale θ)

Migration matrix

New Guinea ↔ East Asia (22.580, 6.461×10−6) m23, m32

NE Australia ↔ New Guinea (1.052, 1.567×10−4) m34, m43

SW Australia ↔ NE Australia (1.002, 1.705×10−4)
m45, m54, m46,
m64, m56, m65

Table 5.7: The parameters of the gamma distribution fitted to the intervals
and point estimate of mij for each population. The corresponding elements
of the migration matrix are also given (see Figure 5.5 for more details).

rate. The upper bound was used to determine the parameters because after
determining the parameters, the 2.5th percentile was reasonably close to the
lower bound of the confidence interval. Conversely, we also tested using
the lower bound of the interval to estimate the parameters of the gamma
distribution. The 97.5th percentile of this distribution was found to be very
different to the upper bound of the confidence interval; hence, using the point
estimate and the lower bound of the interval would have resulted in poorly-
fitting gamma distributions. Fitting to the lower and upper bound of the
interval did not result in a meaningful value for the mode or the mean of the
distribution.

Parameters of the gamma distribution were calculated using Nelder-Mead op-
timisation through the optim function in R [69]. The optimisation function
minimises the absolute distance between the mode of the gamma distribu-
tion and the point estimate, and also the 97.5th percentile of the gamma
distribution and the upper bound of the confidence interval. The mode of a
gamma distribution parameterised by shape k and scale θ is (k − 1)θ.

The parameters of a gamma distribution are estimated for each pair of pop-
ulations in Table 5.6. These parameters, as well as the elements of the
migration matrix in Figure 5.5 that the prior distributions correspond to,
are presented in Table 5.7.

For the purposes of simulation, the population demographic history is com-
pletely described by the sample sizes, migration routes, timing between mi-
gration events, effective population sizes, and rates of post-settlement migra-
tion. To fully describe the simulation process of DNA, we also need to define
the length of the simulated DNA and other parameters that describe how
DNA evolves over time.
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Population ID Population Location Sample Size

0 Southeast Asia 12

1 Southern Wallacea 8

2 New Guinea 41

3 NE Australia 41

4 SE Australia 7

5 Central southern Australia 22

Table 5.8: Sample sizes for each population location.

5.1.4 Further parameters for DNA simulation

First, we need to consider the number of DNA sequences to be generated
for each population location. This will be the number of observed mtDNA
samples that we have at each population location, as determined in Section
3.1.1. The sample sizes are presented in Table 5.8.

Next, we consider how long the simulated DNA needs to be. Once again, this
should match the observed mtDNA samples, which have a length of 15447
base pairs (the length of the coding region of mtDNA).

A substitution rate is required to define how quickly substitutions accumu-
late; we use the substitution rate of 1.57 ×10−8 substitutions per site per
year from Fu et al. [28].

We will also need to select a substitution model to describe how DNA accu-
mulates substitutions over time; for this we use the software package Mod-
elGenerator [42]. ModelGenerator compares a comprehensive range of sub-
stitution models by AIC [2], AIC2, and BIC [75]. AIC2 was created for
ModelGenerator based on empirical findings [42]. These three criteria cal-
culate the goodness of fit of a model with n estimated parameters using the
equation −2 × loglikelihood + kn. For AIC, k = 2; for AIC2, k = 5; and
for BIC k = log(n). Hence AIC penalizes complexity the least, while BIC
penalizes complexity the most.

ModelGenerator also estimates the proportion of invariant sites (denoted by
the flag +I) , and whether a gamma distribution should be used to allow
different substitution rates at different sites (denoted by the flag +G).
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Ranking AIC AIC2 BIC

1
TVM+I+G

AIC = 86780.08

loglik = -42026.04

TVM+I+G

AIC2 = 90872.08

loglik = -42026.04

HKY+I+G

BIC = 97294.23

loglik = -42034.22

2
GTR+I+G

AIC = 86785.48

loglik = -42027.74

HKY+I+G

AIC2 = 90873.44

loglik = -42034.22

K81uf+I+G

BIC = 97300.83

loglik = -42032.66

3
K81uf+I+G

AIC = 86789.32

loglik = -42032.66

K81uf+I+G

AIC2 = 90875.31

loglik = -42032.66

HKY+I+G

BIC = 97303.92

loglik = -42034.20

Table 5.9: The three highest-ranked substitution models according to AIC,
AIC2, and BIC. The +I flag represents invariant sites, while the +G flag
represents the inclusion of gamma rate variation. The uf appended to the
K81 substitution model indicates unequal base frequencies.

The three highest-ranked substitution models for each criterion from the
ModelGenerator output are given in Table 5.9. Following the advice of Luo
et al. [49], we use BIC to select a substitution model. The HKY substitution
model cannot be implemented directly in BayeSSC; we approximate it using
the Kimura two parameter (K2P) substitution model, which is equivalent to
the HKY model with equal base frequencies enforced. The K2P substitution
model allows transitions and transversions to occur at different rates, and is
parameterised by the transition bias. For the definitions of all substitution
models in Table 5.9, please see Appendix A.2.

In Section 2.4.5 we introduced the concept of different sites having different
substitution rates. This rate variation between sites is modeled by a discrete
gamma distribution, which has some number of classes n and a shape pa-
rameter α. The ModelGenerator output best supported seven rate classes
and estimated α to be 0.53.

The transition/transversion ratio is estimated to be 18.44 by ModelGen-
erator, which is equivalent to a transition bias of 0.9485 (to four decimal
places).

All DNA-specific parameters other than sample sizes for each population
location are presented in Table 5.10 for completeness. For more a complete
discussion of DNA-specific parameters, please refer to Chapter 2, specifically
Sections 2.1 and 2.4.5.
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Parameter Value

Sequence Length 15447 bp

Substitution Rate 1.57× 10−8 substitutions/site/year [28]

Substitution Model Kimura two-parameter

Transition bias 0.9385

Gamma shape parameter α 0.53

Number of rate classes 7

Table 5.10: Other parameters required to define a full migration model in
BayeSSC.

5.2 Model Summary

In this chapter, we have defined all necessary input parameters for DNA
simulation using BayeSSC. We constructed potential migration routes from
previous studies on migration in this region. Considering two population
genetics studies, we assume that the colonisation of Sahul occurred between
50 ka and 65 ka; the timings between migration events are then defined based
on the estimated time that humans were present in southeast Asia [94, 63]
and archaeological evidence for when humans reached southern Australia
[85]. Estimates for post-settlement migration (small amounts of migration
between population locations) were calculated from a parameter estimation
study using nuclear DNA [50], as no rates based on mtDNA could be found
for the region of interest.

The female effective population size throughout history was determined from
the Bayesian skyline analysis of Lippold et al. [46], because the estimates
from our EBSP analysis in Section 3.5.2 were calculated at a much coarser
geographical scale.

Finally, we discussed DNA-specific parameters such as the substitution model
and gamma rate variation between sites, and described how ModelGenerator
was used to estimate these parameters.

The models designed here will be used to simulate DNA using BayeSSC;
Chapter 6 presents the results of applying the classification methods de-
scribed in Chapter 4 to the summary statistics of the simulated DNA.
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Chapter 6

Simulation Study Results

In this chapter, we present the results of the simulation study designed in
Chapter 5. We begin by describing our simulated data and the method used
to summarise the observed mtDNA alignment, followed by two-dimensional
visualisations of these observed and simulated data. We then describe the
process used to train each of the classifiers, and compare how the classifiers
perform on simulated data. Next, we apply all classifiers to our observed
data. Finally, we conduct additional validation analyses to check the stability
of our results, and then summarise the findings of our simulation study.

6.1 Simulation of mtDNA

For all simulations we used Bayesian Serial Simcoal (BayeSSC) to simulate
DNA sequence alignments, and to automatically calculate the associated
summary statistics. We performed 15,000 simulations for each migration
model, which has been successfully used in the past by Llamas et al. [48],
who also used BayeSSC to perform a simulation study. Performing 15,000
simulations for each migration model resulted in a total of 135,000 realisations
of sequence alignments, from which the 126 summary statistics of interest
were calculated. The summary statistics that were used in this study are
described in Appendix A.

Data is recorded as in Table 6.1 for each analysis. Each row corresponds to
one simulation, and the columns are the associated within-population and
between-population summary statistics. For each set of summary statistics,
we also record the migration model that the corresponding DNA sequence

117
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Within-population
summary statistics

Between-population
summary statistics︷ ︸︸ ︷ ︷ ︸︸ ︷

Ŝ0 . . . D6 k̂01 . . . FST 45 Migration Model

58 . . . -2.08 31.17 . . . 0.62 Birdsell 1

64 . . . -1.69 57.19 . . . 0.42 Birdsell 2
...

...
...

...
...

...
...

89 . . . -1.59 67.79 . . . 0.13 Tindale 2

Table 6.1: The 135, 000×126 matrix of simulated summary statistics, with a
127th column giving the associated migration model. Each row corresponds to
a simulation, while each column corresponds to a different summary statistic.
The numbers given are taken from the actual summary statistics calculated
for the simulated DNA alignments.

alignment was simulated under. The migration models are labelled ‘Birdsell
1’, ‘Birdsell 2’, ‘Tindale 1’, ‘Tindale 2’, ‘Bowdler 1’, ‘Bowdler 2’, ‘Northern
Sunda’, ‘Southern Sunda’, and ‘Aggregated’. These migration models were
described in detail in Chapter 5, and are shown here in Figure 6.1.

We discarded all measurements of nucleotide diversity before training any
classifiers, as it is a scalar multiple of the average number of pairwise differ-
ences k̂ (see Appendix A.1.1).

From this point, we refer to the summary statistics of the simulated DNA
sequence alignment as ‘simulated summary statistics’, and the summary
statistics of the observed mtDNA alignment as ‘observed summary statis-
tics’.

Custom R [69] scripts were used to calculate the observed summary statistics,
using the R packages ape [65] and pegas [64].
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 Birdsell 1 Birdsell 2 Northern Sunda

Bowdler 2 Bowdler 1 Southern Sunda

AggregatedTindale 2Tindale 1

Figure 6.1: Migration patterns for each migration route. Major migration
events are represented by solid arrows and post-settlement migration is rep-
resented by dashed arrows. The name of the corresponding migration model
is given in the top left corner of each diagram. The boxes in the aggregated
model show the distinct geographical regions that are considered (i.e. the
two southern Australian populations are aggregated).



120 Chapter 6. Simulation Study Results

6.2 Visualising Observed and Simulated

Summary Statistics

We used both principal component analysis (PCA) and uniform manifold
approximation and projection (UMAP) to visualise the distribution of the
simulated summary statistics and the relative location of the observed sum-
mary statistics. Recall that PCA is a linear dimension reduction method
that identifies orthogonal directions of maximum variance in the data, while
UMAP is a recently developed algorithm for non-linear dimension reduction
that aims to capture non-linear relationships in a lower-dimensional repre-
sentation.

Figure 6.2 shows the PCA of the observed and simulated summary statistics,
while Figure 6.4 shows the UMAP dimension reduction of the same data.
Recall that UMAP requires some parameters to be pre-selected. We chose
to use two components (i.e. two dimensions) for easy visualisation, and then
tested all possible combinations of either 5, 10, 20, 50 or 100 nearest neigh-
bours and a minimum distance of 0.1, 0.3, 0.5, 0.7, or 0.9. All combinations
of parameters produced similar results, and the full set of plots are given
in Appendix C.2.1. For the UMAP dimension reduction in Figure 6.4, the
random_state parameter was set to 71817.

Simulated summary statistics are coloured according to the migration model
that they were simulated under; the observed summary statistics are given
by a black star. All points are slightly transparent to better visualise how
migration models differ or overlap. Due to the large number of points, we
also present facetted plots in Figures 6.3 and 6.5, which split Figures 6.2 and
6.4 by migration model.

We notice that in both Figures 6.2 and 6.4 the aggregated model is clearly
distinguishable from all other migration models, while the remaining migra-
tion models appear to overlap significantly. In both the PCA and the UMAP
dimension reduction, the observed summary statistics (given by a black star)
lies within the range of simulated summary statistics. It appears to be ex-
tremely unlikely that the observed summary statistics are best explained by
the aggregated model.

Other than the noticeably different summary statistics from the aggregated
model, Figure 6.3 confirms that there is no visible difference between the
PCA of simulated summary statistics from different migration models.

By further examining the facetted UMAP dimension reduction in Figure 6.5,
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we notice some differences between the simulated summary statistics from
different migration models. The Birdsell models appear to have less points
in the leftmost region of the point cluster, and the Bowdler models appear
to have less points in the top-left region of the point cluster. Despite these
slight differences in the dimension reduction of different simulated summary
statistics, the observed summary statistics still lie within the set of simulated
summary statistics for all models except the aggregated model, and so we
cannot rule out any further migration models.
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6.3 Training and Evaluating Classification

Methods

The aim of our simulation study is to explore which, if any, of the migration
models adequately explain the observed summary statistics. If the observed
summary statistics closely resemble those simulated under one or more of
the candidate migration models, as determined using classification methods,
we can conclude that the observed DNA is likely a product of a similar
demographic history.

This is a multiclass classification problem which therefore requires the use
of multiclass classification methods, such as multinomial logistic regression
(MLR), support vector machines (SVMs) and neural networks. We use mul-
tiple methods due to the complexity of the problem: consistent results from
all classifiers would provide stronger evidence for our results. Using both lin-
ear and non-linear classification methods also allows us to determine whether
non-linear classification methods are better suited to this classification prob-
lem.

6.3.1 Multinomial logistic regression

When applying MLR to a multiclass classification problem with k classes,
k − 1 logistic regression models are fitted to the data before the probability
of an observation belonging to each class can be predicted.

Before applying MLR, we center and scale each column of summary statistics
so that they have a mean of zero and a standard deviation of one. This is
performed according to recommendations by the authors of the nnet package
[89], which we used to fit our MLR. The maximum number of iterations
performed to determine the coefficients of each model was increased to 105 to
allow the model estimates to converge, and the maximum number of weights
was increased to 107 so that the total number of predictor variables added
was not truncated.

We partitioned the simulated summary statistics so that 70% were used as
training data and 30% were reserved as test data. This partitioning was
performed within classes so that there were equal proportions of each class
in the training and test data.

To select appropriate predictor variables for MLR we used both forward
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selection and LASSO, which were described in Section 4.4.1.

Forward selection

Recall that forward selection begins by using only an intercept term, i.e. no
summary statistics, to predict the migration model. One statistic at a time
is then added as a predictor variable until the model fit, as measured by AIC,
ceases to improve.

The final regression model from forward selection had 55 predictor variables,
and resulted in 50.6% accuracy on test data. The training accuracy was
50.9%, and so the low test accuracy is not a consequence of overfitting. We
note that for nine classes, random guessing would result in a classifier that
was 11.11% accurate. While this classifier does not have high accuracy, it at
least performs better than random guessing.

Predictor variables that were included in the final regression model were
mostly FST , segregating sites, pairwise differences, and the number of private
alleles, as well as two pooled haplotype diversity statistics and three Tajima’s
D statistics. A full list of predictor variables and coefficients is given in
Appendix C.2.2.

LASSO

Recall from Section 4.4.1 that LASSO penalizes the size of regression coeffi-
cients, and results in regression coefficients being shrunk towards zero. We
implemented LASSO with the glmnet package [27]. The same training and
test data partitions were used as in forward selection.

In addition to calculating the regression coefficients, the parameter that con-
trols the level of penalization (λ) must also be selected in LASSO. We use
the recommended default λ sequence provided by glmnet, which explores 100
values between a near-zero value and the highest possible λ. The λ values
close to zero result in very little penalization and therefore minimal reduction
in predictor variables, while the maximum possible λ value would result in
no predictor variables.

We perform five-fold cross-validation to determine the best value of λ. Af-
ter the cross-validation procedure is complete, two candidate λ values are
returned. The value of λ that minimises the cross-validated error is given,
along with the value of λ corresponding to the simplest model within one
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Variable Value Training Accuracy Test Accuracy

λmin 3.77× 10−5 50.5% 50.4%

λ1se 9.56× 10−5 50.5% 50.4%

Table 6.2: The λ values that minimise cross-validated error (λmin), and that
correspond to the most parsimonious model within one standard error (λ1se).
The classification accuracies on the training and test data are also given.

Migration Model
number of

predictors (λmin)
number of

predictors (λ1se)

Birdsell 1 63 53

Birdsell 2 66 57

Bowdler 1 58 44

Bowdler 2 56 49

Northern Sunda 51 38

Southern Sunda 63 51

Tindale 1 48 47

Tindale 2 51 38

Aggregated 6 7

Table 6.3: The number of predictor variables in the optimal regression model
for each migration model (i.e. each class) for the cases λ = λmin and λ =
λ1se. The regression models using λmin nearly always have at least as many
predictor variables as the regression models using λ1se.

standard error. We denote these λmin and λ1se respectively. The variable
λ1se is based on the ‘one standard error’ rule proposed by Friedman, Hastie,
and Tibshirani [26]. We compare the two λ values in Table 6.2, along with
the test and training accuracy of the regression performed using each value
of λ.

Due to the negligible difference in test accuracy between the two λ values, we
performed regression using λ = λ1se. The regression models using λ1se have
fewer predictor variables, on average, than the models using λmin; Table 6.3
presents the number of predictors in the regression model for each class. A
key difference between the implementations of forward selection and LASSO
is that in LASSO, each of the regression models that comprise the multi-
nomial logistic regression can use different predictor variables. In forward
selection, the same predictor variables are used in all logistic regression mod-
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els. A full list of all included predictor variables for the regression models
under λ1se is given in Appendix C.2.3.

6.3.2 Support vector machines

Support vector machines (SVMs) aim to find the optimal separating hyper-
plane between classes, and do this by transforming the data into a higher-
dimensional space. Important considerations when specifying a SVM model
are the choice of kernel and the associated hyperparameters. The kernel
specifies how the data is transformed, and the hyperparameters define parts
of the SVM such as the kernel parameters and the misclassification penalty.
This is in contrast to the parameters of the SVM, which define the equation
of the hyperplane [17].

In the following analysis, we begin by considering a linear kernel which is
defined by one hyperparameter, the cost C ∈ R+. We then decide whether
a linear or non-linear (Gaussian) kernel should be used by comparing the
results of the linear kernel to the results of the Gaussian kernel. The Gaussian
kernel is parameterised by two hyperparameters, gamma γ ∈ R+ and the cost
C ∈ R+, and is also known as the radial basis function (RBF) kernel. SVMs
are fitted in R using the e1071 package [53].

For both types of kernels, the corresponding hyperparameters are optimised
by using a grid search algorithm. As per the recommendations in Hsu
et al. [35], we performed a grid search over exponentially growing values
of C and γ. All combinations of the ranges C = {2−5, 2−3, 2−1, 2, 23, 25} and
γ = {2−5, 2−3, 2−1, 2, 23} are considered. The grid search is conducted within
a cross-validation framework using five folds. The final hyperparameters for
each SVM are given in Table 6.4.

It was impractical to use 70% of the data for training due to computational
limitations. To assess the performance of SVMs, we instead create a learning
curve. Learning curves are a plot of the accuracy of the classifier against
the percentage of the total data used to train the classifier, for different
percentages of training data. Learning curves for SVMs using linear and
Gaussian kernels are given in Figure 6.6.



128 Chapter 6. Simulation Study Results

0

25

50

75

100

0 5 10 15

Size of training data (% of whole)

A
c
c
u

ra
c
y

Data Partition

Test

Training

Kernel

Gaussian

Linear

Figure 6.6: Training and test accuracy for SVMs with linear and Gaussian
kernels against the percentage of the complete dataset used as training data.
The test accuracy increases with the size of the training data for both kernels,
while the training accuracy decreases with the size of the training data.

Kernel
Type

Size of
Training Data

C γ
Test

Accuracy
Cross-Validated

Accuracy
Training
Accuracy

Linear 1% 0.5 - 45.3% 44.8% 58.8%

Linear 5% 32 - 48.9% 47.8% 53.4%

Linear 10% 1 - 49.7% 50.1% 52.3%

Linear 15% 32 - 50.1% 49.7% 52.1%

Gaussian 1% 1 2−5 41.7% 41.9% 79.4%

Gaussian 5% 1 2−5 46.3% 45.9% 70.0%

Gaussian 10% 1 2−5 47.2% 47.1% 67.6%

Gaussian 15% 1 2−5 47.8% 47.6% 65.9%

Table 6.4: The test, cross-validated, and training accuracies of the SVMs for
each combination of kernel and training data size.
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In Table 6.4 we present the test, cross-validated, and training accuracies for
each classifier, along with the best hyperparameters for each SVM kernel
as found by a grid search. The test accuracy is the accuracy of the classi-
fier evaluated on the test data, the training accuracy is the accuracy of the
classifier evaluated on the whole training set, and the cross-validated accu-
racy is the accuracy found through 5-fold cross-validation when tuning the
hyperparameters.

From the learning curves in Figure 6.6 and the SVM results in Table 6.4, it
is clear that there is no benefit to using the more complex Gaussian kernel.
It also seems likely that using a Gaussian kernel results in considerable over-
fitting, due to the difference between training and test accuracies. We note
that small values of γ and C are selected for the Gaussian kernel. Overfitting
is often coupled with large values of γ and C, because larger γ values allow
more flexibility when determining the separating hyperplane and larger C
values heavily penalize misclassification [66].

Since using the Gaussian kernel did not produce better results, we now con-
sider the training and test accuracy for the linear kernel. From Figure 6.6
we see that test accuracy improves as the amount of training data increases,
although the increase is less pronounced as more data is used for training.
From Table 6.4, we also notice that as the amount of training data increases,
the difference between the test accuracy and the training accuracy decreases.
It is therefore likely that the effects of overfitting decrease as greater amounts
of data are used as training data. Furthermore, the test accuracy only in-
creased by 0.4% when the size of the training data was increased from 10%
to 15%. It is likely that using greater amounts of training data will provide
little benefit. Hence, we do not consider using more than 15% of the total
data as training data, and will apply a linear kernel trained on 15% of the
data to the observed summary statistics.

6.3.3 Neural networks

The theory of neural networks was previously described in Section 4.4.3. We
used the keras library [13] in Python 3.7.2 [87] to train neural networks on the
simulated summary statistics. The four different neural network architectures
used are described in Figure 6.7. All architectures had 126 nodes in the input
layer, because there were 126 summary statistics. The architectures also had
the same number of nodes in the output layer. We used nine nodes because
this is a multiclass classification problem with nine classes.
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Consider Figure 6.7. Each architecture is represented as a labelled flow chart.
Each box represents a layer, with the number of nodes given in brackets.

Architecture 1 is a neural network with two hidden layers.

Architecture 2 has a larger capacity, since it has an extra layer and more
nodes in each layer (Figure 6.7.2). If the accuracy is limited by the network
size of Architecture 1, we expect the accuracy of this neural network to be
greater than the accuracy of Architecture 1.

Architecture 3 builds on Architecture 2, and introduces dropout into the
network. Dropout is a regularization technique that makes some proportion
of the nodes in a layer inactive, which reduces the chance of overfitting [79].
The proportion of nodes that are rendered inactive is given by the dropout
rate. The effect of dropout is different to the effect of using a smaller neu-
ral network, since the nodes affected by dropout change with each forward
pass through the network. If Architecture 2 results in low accuracy due to
overfitting, we expect performance to improve in Architecture 3.

Architecture 4 is the same as Architecture 3, but the dropout rate is lower
in both hidden layers where dropout is applied. This tests whether a high
dropout rate unnecessarily hinders accuracy.

The data partitions for neural networks are similar in concept to the parti-
tions used for support vector machines, in that we use training, validation,
and test data. Initially, 30% of the data is set aside as test data. The remain-
ing data are then partitioned into training and validation sets using a 70/30
split. We used the train_test_split function in scikit-learn [66], with the
random_state seed 5467.

To find the optimal weights for each network, each network is trained for
1000 passes through the entire training dataset, i.e. for 1000 epochs. We
use a batch size of 32, which means that the weights are updated after 32
observations have been processed. To minimise overfitting, we apply check-
pointing through the model training process. Checkpointing calculates the
validation accuracy every epoch, and only saves the weights if the validation
accuracy has increased.

The accuracy for the optimal model found under each network architecture is
given in Table 6.5. Architecture 2 has the best performance, with a test ac-
curacy of 48.7%, validation accuracy of 49.4%, and a test accuracy of 49.1%.
The similarity between the accuracies calculated on each type of data suggest
that overfitting did not negatively affect the classifier performance.

The minimal increase in accuracy from Architecture 1 to Architecture 2 sug-
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6.7.4: Architecture 4

Figure 6.7: Four different neural network architectures that are trained on
the simulated summary statistics. All neural networks have an input layer
with 126 nodes (the number of variables), and an output layer with 9 nodes
(the number of classes).
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Architecture Training Accuracy Validation Accuracy Test Accuracy

1 48.6% 49.0% 48.3%

2 49.4% 49.4% 49.3%

3 45.4% 45.5% 45.1%

4 47.1% 47.6% 47.0%

Table 6.5: Classification accuracies for each neural network architecture.
Architectures are described in Figure 6.7.

gests that increasing the capacity of the network through adding nodes and
another hidden layer had minimal effect, and so we should not expect signif-
icant benefits from using a network with greater capacity than Architecture
2. As already suggested from the accuracies of Architecture 2, we do not
expect that overfitting is a problem. The lack of increase in accuracy when
dropout is added in Architecture 3 further supports this assumption. We see
that lower dropout rates in Architecture 4 produce higher accuracies than
Architecture 3, but these are still below the Architectures with no dropout.
Consequently, we will use Architecture 2 for prediction.

6.3.4 Evaluating classification methods using
confusion matrices

Confusion matrices were used to investigate misclassification patterns for all
classifiers. In Table 6.6, we present the confusion matrices for MLR with
forwards selection; in Table 6.7 we present the confusion matrices for MLR
with LASSO; in Table 6.8 we present the confusion matrices for the linear
SVM trained on 15% of the data; and in Table 6.9 we present the confusion
matrices for the neural network with architecture 2.

Unsurprisingly, given the PCA and UMAP results, we see that the aggregated
model was always correctly classified for both the training and test data
for all classifiers. For migration models other than the aggregated model,
we notice two main patterns of misclassification. The confusion matrices
for MLR with forward selection, MLR with LASSO, and SVMs all have a
similar misclassification pattern, while the confusion matrices for the neural
network have a different misclassification pattern. First, we will discuss the
misclassification patterns seen for MLR with both types of variable selection
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and for SVMs.

In the following discussion we refer to the confusion matrix for the test data,
although we note that the confusion matrices for the training and test data
are very similar. We give specific percentage values based on the confusion
matrix of the test data for MLR with forward selection, but we note that
the confusion matrices for the training and test data for MLR with forward
selection, MLR with LASSO, and SVMs are all very similar (within 0.03
when comparing all confusion matrices elementwise).

Birdsell 1 and 2 were mostly classified correctly, with 72% and 76% of the
observations of the respective migration models being classified correctly. 14
% of the true Birdsell 1 observations were misclassified as Birdsell 2, and
14% of the true Birdsell 2 observations were misclassified as Birdsell 1. The
remaining 14% of Birdsell 1 observations and 10% of Birdsell 2 observations
were misclassified as other migration models.

Bowdler 1 and 2 are classified correctly 34% and 39% of the time respectively,
and are also commonly misclassified as each other (28% of Bowdler 1 obser-
vations are misclassified as Bowdler 2, while 26% of Bowdler 2 observations
are misclassified as Bowdler 1) . Both of these classes are also occasionally
misclassified (18% Bowdler 1 and 16% of Bowdler 2 observations) as Birdsell
1. Southern Sunda is classified correctly for 67% of observations; after the
Birdsell migration models, this is the migration model with the third-highest
percentage of correct classifications. Finally, we note that observations simu-
lated under the Northern Sunda, Tindale 1, and Tindale 2 migration models
are not as likely to be classified correctly, with only 17%, 30% and 20% of
observations respectively being classified correctly. The Northern Sunda and
Tindale models are also somewhat likely to be misclassified as each other,
and are less likely to be misclassified as either of the Birdsell models.

We now discuss the misclassification patterns in the confusion matrices for
the neural network (Table 6.9). Once again, we refer to the confusion matrix
for the test data, and emphasise that the confusion matrices for the test and
training data are near identical. Note that the Northern Sunda migration
model no longer appears as a column with the other predicted models, which
means that no observations were classified or misclassified as Northern Sunda.
Summary statistics that were simulated under the Northern Sunda migration
model are most likely to be classified as Tindale 2 (48% of observations)
followed by Bowdler 2 (23% of observations).

As for the misclassification patterns of all other classes, Birdsell 1 and 2
are often correctly classified, with 80% and 72% of observations classified
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correctly. Southern Sunda is also well identified, with 67% of observations
classified correctly. The Bowdler 1 and Bowdler 2 migration models are
most likely to be classified as Bowdler 2, with 62% and 64% of observations
classified as Bowdler 2 respectively. We also notice that all observations from
the Northern Sunda, Tindale 1, or Tindale 2 migration models are most likely
to be classified as Tindale 2, with 48%, 45%, and 46% of observations being
classified as Tindale 2. These apparent groupings of Bowdler 1 and 2, and
then Northern Sunda, Tindale 1, and Tindale 2 are similar to those noticed in
the confusion matrices for other classifiers, except here they are all classified
as belonging to one class.
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Table 6.6: A confusion matrix of the migration model predicted by MLR with
forward selection and the true migration model. The proportions in matrix
(A) calculated using the training data, while the proportions in matrix (B)
were calculated using the test data. Rows correspond to the true migration
model, while columns correspond to the predicted migration model. For
example, the proportion of Birdsell 1 observations in the training data that
were misclassified as Birdsell 2 is 0.13. Darker squares indicate that a higher
proportion of observations fall into that category.
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Table 6.7: A confusion matrix of the migration model predicted by MLR
with LASSO and the true migration model. Matrix (A) was calculated from
the training data, while matrix (B) was calculated from the test data. Rows
correspond to the true migration model, while columns correspond to the
predicted migration model. Darker squares indicate that a higher proportion
of observations fall into that category.



6.3. Training and Evaluating Classification Methods 137

Aggregated

Tindale 2

Tindale 1

Southern Sunda

Northern Sunda

Bowdler 2

Bowdler 1

Birdsell 2

Birdsell 1

T
ru

e
 M

ig
ra

tio
n

 M
o

d
e

l

Aggregated

Tindale 2

Tindale 1

Southern Sunda

Northern Sunda

Bowdler 2

Bowdler 1

Birdsell 2

Birdsell 1

T
ru

e
 M

ig
ra

tio
n

 M
o

d
e

l

Bird
se

ll 
1

Bird
se

ll 
2

Bow
dl
er

 1

Bow
dl
er

 2

N
or

th
er

n 
Sun

da

Sou
th

er
n 

Sun
da

Tin
da

le
 1

Tin
da

le
 2

Agg
re

ga
te

d

Predicted Migration Model

0.74

0.15

0.19

0.17

0.06

0

0.02

0.06

0.06

0.12

0.78

0.03

0.04

0.03

0

0.09

0.03

0.03

0.05

0.01

0.38

0.24

0.11

0

0.03

0.09

0.11

0.05

0.01

0.27

0.42

0.1

0

0.03

0.12

0.09

0.01

0.01

0.04

0.03

0.21

0

0.06

0.15

0.17

0

0

0

0

0

1

0

0

0

0

0.04

0.03

0.02

0.1

0

0.66

0.1

0.1

0.01

0.01

0.03

0.06

0.21

0

0.06

0.28

0.21

0.01

0

0.03

0.03

0.18

0

0.06

0.16

0.23

0.73

0.16

0.19

0.17

0.07

0

0.01

0.05

0.07

0.12

0.74

0.04

0.03

0.03

0

0.1

0.03

0.03

0.05

0.01

0.34

0.28

0.11

0

0.03

0.1

0.12

0.07

0.02

0.3

0.38

0.1

0

0.03

0.13

0.1

0.01

0.01

0.04

0.03

0.18

0

0.06

0.15

0.18

0

0

0

0

0

1

0

0

0

0

0.05

0.02

0.02

0.11

0

0.64

0.11

0.11

0.01

0.01

0.04

0.05

0.2

0

0.07

0.27

0.2

0.01

0.01

0.04

0.03

0.2

0

0.06

0.16

0.2

(A)

(B)

Table 6.8: A confusion matrix for true and predicted migration models using
a linear SVM trained on 15% of the data. All values are given in proportions.
Matrix (A) is calculated from the training data, while matrix (B) is calculated
from the test data.
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Table 6.9: A confusion matrix for true and predicted migration models using
a neural network with Architecture 2. All values are given in proportions.
Matrix (A) is calculated from the training data, while matrix (B) is calculated
from the test data. Note that there is no column for Northern Sunda, as this
migration model was never predicted by the classifier.
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6.4 Using Classification Methods for

Prediction

Now that we have trained all classifiers and compared their performance
through accuracy and confusion matrices, we use the classifiers to predict
the migration model where the simulated summary statistics most closely
resemble the observed summary statistics. The outputs of MLR with forward
selection, MLR with LASSO, a linear SVM trained on 15% of the data, and
a neural network with Architecture 2 are given in Table 6.10.

According to MLR with forward selection, the most likely migration model
was Southern Sunda with a probability of approximately one, although from
the confusion matrices in Table 6.6 we note that summary statistics from
models that were known to be Southern Sunda were only correctly identified
67% of the time.

To further investigate this seemingly confident prediction from MLR with
forward selection, we determined the class probabilities for all observations
in the test data. The resulting data was then filtered to include the observa-
tions that were classed as Southern Sunda, but were truly simulated under
a different migration model. The mean and median probabilities of observa-
tions misclassified as Southern Sunda were 0.42 and 0.39 respectively, which
is consistent with an uncertain result. We also note that the maximum prob-
ability of an observation coming from the Southern Sunda migration model,
when it was simulated under another migration model, is 0.98. A class prob-
ability of 1 for Southern Sunda does not guarantee that the classification is
correct.

MLR with LASSO produced less conclusive results, but the most likely mi-
gration model was again Southern Sunda, with a probability of 0.262. The
second most likely migration model was Southern Sunda with a probability of
0.178. Based on the class probabilities in Table 6.10, it is very unlikely that
the observed summary statistics are consistent with the scenarios described
in either of the Birdsell migration models. The probability of these classes
is low, and in the confusion matrices for training and test data (Table 6.7),
we notice that if the predicted class is Southern Sunda, the actual class is
almost never Birdsell, Bowdler, or the aggregated model. If we were to base
our results solely on the results from this one classifier, we could consider
the similarities between Northern Sunda, Southern Sunda, and the Tindale
migration models to tentatively suggest that a single entry point to Australia
via New Guinea, and then subsequent coastal migration, is the most likely
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Migration Model
MLR with

Forward Selection
MLR with

LASSO
Linear
SVM

Neural Network

Birdsell 1 1.07× 10−22 2.04×10−3 1# 0.489

Birdsell 2 8.34× 10−14 5.31×10−3 0 0.082

Bowdler 1 2.12× 10−19 0.106 0 0.151

Bowdler 2 1.17× 10−35 0.092 0 0.152

Northern Sunda 3.84×10−10 0.178 0 0.040

Southern Sunda ≈ 1.00 0.262 0 0.008

Tindale 1 8.74× 10−17 0.162 0 0.039

Tindale 2 1.05× 10−10 0.195 0 0.039

Aggregated 4.45× 10−26 5.74×10−6 0 < 2.22× 10−16

Table 6.10: The output of each classifier, given as the predicted probability
of the observed summary statistics coming from each migration model.
# SVMs provide only a hard classification with no class probabilities, and so we represent
the classification of the observed summary statistics as Birdsell 1 by a class probability of
1.

scenario based on the observed data.

We do note that both MLR with forward selection and MLR with LASSO
both technically performed better than random guessing, which would give
1/9 ≈ 11.1% accuracy for nine classes. The accuracies of the classifiers may
still not be high enough to confidently predict a migration model: the forward
selection regression model had a test accuracy of 50.6%, while the LASSO
regression model had a slightly lower test accuracy of 50.4%.

Using a SVM with a linear kernel trained on 15% of the data to predict the
migration model that best describes the observed summary statistics results
in a prediction of Birdsell 1. No probability or other measure of confidence
is given, as SVMs only provide hard classifications.

Recall from the theoretical discussion of SVMs in Section 4.4.2 that SVMs
do not inherently provide a multiclass classification, and instead consider all
possible pairs of binary classification problems. In the case of a tie in the class
most frequently selected by the binary classifiers, the LibSVM implementa-
tion that underpins SVMs in R selects the first class alphabetically. Since
the alphabetically first migration model was selected, we should investigate
the prediction of each binary classifier to ensure that a tie did not occur.
These results are displayed in Table 6.11. It is clear from Table 6.11 that a
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Migration Model Number of times selected

Birdsell 1 8

Birdsell 2 6

Bowdler 1 3

Bowdler 2 3

Northern Sunda 2

Southern Sunda 4

Tindale 1 6

Tindale 2 4

Aggregated 0

(Total) 36

Table 6.11: The number of times that each migration model was selected by
a binary SVM classifier. There were 36 binary classifiers in total, since there
were nine different classes. Each class appeared in 8 binary classifiers.

tie did not occur, so Birdsell 1 was the migration model that was selected
most frequently in all possible binary classifications.

The prediction of Birdsell 1 as the migration model that best explains the
observed summary statistics is not consistent with the predictions obtained
from MLR. From the confusion matrices in Figure 6.8, we notice that sum-
mary statistics simulated under Birdsell 1 are rarely classified as another
model, and only 1% of the observations are misclassified as Southern Sunda.
Both types of MLR predicted Southern Sunda as the migration model, with
some support for other similar models such as Northern Sunda, Tindale 1,
and Tindale 2. From the confusion matrices in Tables 6.6 and 6.7, we also
notice that observations from any of these migration models are rarely mis-
classified as Birdsell 1. Hence both MLR and SVMs are unlikely to have
provided a correct classification.

In Table 6.10 we also present the output of using a neural network for pre-
diction, by giving the values of the output layer that correspond to each
class. The model with the largest output value, and hence the classification
of the observed summary statistics, is Birdsell 1. This is consistent with the
prediction from the linear SVM, but inconsistent with the results from MLR
with both types of variable selection.
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6.5 Validation Analyses

Despite all classification methods producing a model with similar test ac-
curacy we note that different migration models were selected by different
classifiers, as summarised in Table 6.10. Across all classifiers that provide
probabilities or output values, we notice that the probabilities are either
low or unreliable. Recall that in Section 6.3.1 we found that when using
MLR with forward selection, misclassified observations in the test data had
class probabilities up to 0.98; this is what we mean by ‘unreliable’ in this
context.

To further investigate the stability of these predictions, we conducted val-
idation runs using a smaller percentage of the data due to computation
time. The test accuracy and confusion matrices were similar across all clas-
sifiers, and not significantly worse than the accuracies and confusion matri-
ces already presented. The results of all validation runs are given in Table
6.12. Further details of the validation process can be found in Appendix
C.2.4.

From Table 6.12, we can see that MLR with forwards selection consistently
predicts migration models with high probability, but these are not always the
same model. The fourth validation set for MLR had more balanced probabil-
ities, resembling the class probabilities from MLR with LASSO. MLR with
LASSO consistently predicted Southern Sunda, although the class probabil-
ities across all classes are relatively similar. Linear SVMs do not produce
consistent results when using 10% of the data as training data. The second
validation set resulted in a ‘strong’ prediction for Birdsell 1 in terms of the
votes of binary classifiers; the fourth validation set returned Birdsell 1 due
to a tie between Birdsell 1, Birdsell 2, Southern Sunda and Northern Sunda.
Finally, neural networks predict both Southern Sunda and the aggregated
migration model with high output values in different validations.
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Method
Validation

Run

Training
Accuracy

(%)

Val.
Accuracy

(%)

Test
Accuracy

(%)
Migration Model Probability

MLR
(forward
selection)

1 51.4 - 50.0 Southern Sunda 1

2 51.4 - 49.8 Birdsell 1 1

3 51.1 - 49.9 Southern Sunda 1

4 51.8 - 49.7 Southern Sunda 0.397

MLR
(LASSO)

1 51.0 - 49.5 Southern Sunda 0.349

2 50.6 - 49.3 Southern Sunda 0.323

3 50.7 - 49.5 Southern Sunda 0.232

4 51.5 - 49.5 Southern Sunda 0.384

SVM
(linear)

1 52.3 49.4 49.7 Tindale 1 -

2 52.7 49.6 49.6 Birdsell 1 -

3 52.3 49.2 49.6 Tindale 1 -

4 53.0 49.9 49.6 Birdsell 1t -

Neural
Network
(Arc. 2)

1 48.8 48.9 48.6 Aggregated 1

2 48.8 49.9 49.7 Southern Sunda 0.999

3 48.7 48.7 48.5 Southern Sunda 1

4 49.7 49.6 49.3 Aggregated 1

Table 6.12: Results from validation runs across all classifiers. The t su-
perscript indicates that the SVM classification was a tie between different
migration models.
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6.6 Discussion

Multinomial logistic regression, support vector machines, and neural net-
works did not consistently classify the observed summary statistics as a par-
ticular migration model. The best models found using each of these methods
had test accuracies of 50.6%, 50.1%, and 49.3% respectively. Recall that
random guessing with nine classes would result in an accuracy of 11.11%,
and so it is clear that all classifiers perform better than random guessing.
From inspecting confusion matrices for each classifier, it is also clear that
the performance of classifiers is not uniform across classes. Some migration
models are more distinguishable than others.

We hypothesise that common misclassifications are based on the locations
that post-settlement migration is allowed to occur between. The different
types of post-settlement migration are given in Figure 6.8, and the groups
of different types of post-settlement migration are described in Table 6.13.
With the exception of the aggregated model, these groups correspond to the
patterns observed in the confusion matrices for all classifiers.

The aggregated model is likely to be perfectly classified as all populations
in southern Australia are aggregated into one population, which results in
the ‘individual’ populations in southern Australia having identical summary
statistics. This is clearly not the case for all other migration models: even
if the summary statistics for the two southern populations are similar, they
would not be identical. Therefore, we do not expect Southern Sunda to
be misclassified as the aggregated model or vice versa, even though they
have identical post-settlement migration patterns. The link between post-
settlement migration patterns and misclassification will be explored further
in Chapter 7.
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Migration Types Migration Models

(None) Birdsell 1

m23 Birdsell 2

m{456} Bowdler 1, Bowdler 2

m34, m{456} Northern Sunda, Tindale 1, Tindale 2

m23, m34, m{456} Southern Sunda, Aggregated∗

Table 6.13: Locations where post-settlement migration occurs in each mi-
gration model. Recall that post-settlement migration was allowed to occur
along three different migration corridors: between southern Wallacea and
New Guinea (denoted m23), New Guinea and northern Australia (denoted
m34), and within Australia (denoted m{456}). These correspond to the mi-
gration matrix elements given in Figure 6.8.
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Figure 6.8: Top: A map indicating the population location corresponding to
each row/column of the migration matrix.
Bottom: The migration matrix, with each level of migration having a dif-
ferent colour. Darker colours represent a higher probability of migration
on average, and no colour indicates no migration between populations. Di-
agonal entries are shaded, because migration from a population to itself is
meaningless.
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The lack of accuracy exhibited by all classifiers, the clear misclassification
patterns observed in all confusion matrices in Section 6.3.4, and the insta-
bility of the results highlighted in Section 6.5 mean that we could not reli-
ably identify a single migration model that described the observed summary
statistics. From the dimension reductions and the classification results we
can conclude that the observed summary statistics are not consistent with the
demographic history presented in the aggregated model, although we cannot
conclusively state which of the other migration models is most likely.

This inconclusive result is consistent with the results of the previous phylo-
genetic analysis in Section 3.4. All trees had poor branch support approxi-
mately 50 ka when different haplogroup splits occurred, and the migration
events that we base our migration models on occur in quick succession ap-
proximately 50 ka. The results are also consistent with the dimension re-
ductions from Section 6.2. The representation of the summary statistics in
two-dimensions were similar for all migration models except the aggregated
model, and so it is not surprising that there was not a strongly-supported
result.

Finally, we note that if we had used only one classification method, we may
have erroneously been much more confident in our results. Considering each
of the classifiers individually, there was either a clear migration model se-
lected or a family of migration models with similar characteristics. There
is no clear rationale for one classifier to have a superior result to all other
classifiers, and so we cannot rule out predictions from this perspective. We
should treat all neural network results with caution because of the occasional
prediction of the aggregated model in the validation runs (see Table 6.12).
Due to the black-box nature of this classification method, no reason could be
found for these unlikely classifications. Even when disregarding the neural
network results, we still have conflicting predictions from the linear SVM and
MLR.

In conclusion, we could not select one migration model that best explains
the observed summary statistics, although we did find that the aggregated
model is extremely unlikely to adequately explain the observed data. Our
inconsistent results are also reasonable in light of the phylogenetic analyses
presented in Chapter 3. Different conclusions could have been made by only
considering the results of one classification method, but when considering the
results of all classification methods, we find no strong support for any single
migration model.

In the next chapter we consider extensions to this simulation study to further
investigate the effects of rapid migration events, as well as the consequences
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of other modelling choices.



Chapter 7

Extended Analysis and
Discussion

In this chapter we explore multiple extensions to our initial simulation study,
where we will thoroughly examine the effect of the assumptions made in the
model design process and assess whether they contributed to our inconclusive
results in Chapter 6.

First, we apply a homogeneous post-settlement migration pattern, which is
identical for all migration models. Recall that post-settlement migration is
the small amount of migration that occurs after the initial migration events
have occurred. This extension will further our understanding of how post-
settlement migration rates affect the summary statistics.

Next, we investigate how the time between island hops through the islands of
southeast Asia affect the summary statistics of different migration models.
The initial migration models assumed a time of 250 years between island
hops; we remind the reader that a human female generation time of 25 years
[24] is used to convert years to generations. This short inter-event time of
250 years reflects potential rapid migration [63], which could result in a lack
of signal in the data due to a lack of substitution events.

As mentioned in Section 5.1.1 when defining the times between migration
events, reasonable estimates for the times between island hops are from 250
to 2,500 years. These values correspond to the migration between mainland
southeast Asia (Sunda) and Sahul taking a total of 500 - 5,000 years [63,
94]. We present results that assume 2,500 years between island hops, as
well as exploring the effect of using unreasonable inter-event times of 25,000

149
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or 250,000 years between island hops. These longer times between island
hops are clearly unrealistic, but they should illustrate how changing the time
between island hops affects the summary statistics, and what length of time
may be required to significantly increase the signal in the data.

Finally, we implement further subsetting of our data based on the hap-
logroups of the mtDNA samples. We will investigate whether mixed mtDNA
haplogroups within the southern Australian population significantly affect
our results, and if further subsetting results in more distinguishable simu-
lated summary statistics.

7.1 Homogeneous Post-Settlement

Migration

Recall that in our initial simulation study, we assumed that post-settlement
migration only occurred between population locations connected by the ini-
tial migration route, and also that post-settlement migration occurred from
the creation of a population to the present day.

To investigate the extent to which the distinct post-settlement migration
patterns affected the signal in the summary statistics, we now apply homo-
geneous post-settlement migration patterns across all migration routes. We
will also consider the effects of the Last Glacial Maximum on post-settlement
migration, which was not accounted for in the initial simulations.

The Last Glacial Maximum began approximately 30 ka and ended approx-
imately 8 ka [45, 16]. This resulted in sea levels rising, which would have
impeded post-settlement migration between the southeast Asian islands, New
Guinea, and mainland Australia. We therefore allow ongoing migration be-
tween southern Wallacea and New Guinea, as well as New Guinea and north-
eastern Australia from the settling of all population locations until 8 ka.

Migration routes with homogeneous post-settlement
migration

Figure 7.1 illustrates the patterns of post-settlement migration applied to
each of the migration routes. The solid arrows indicate large-scale migration
events that result in the occupation of a new location, while the dashed
arrows indicate ongoing post-settlement migration.
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Birdsell 1 Birdsell 2 Northern Sunda

Bowdler 2 Bowdler 1 Southern Sunda

Tindale 1 Tindale 2 Aggregated

Figure 7.1: All migration routes (solid arrows) and ongoing patterns of post-
settlement migration (dashed arrows). The name of the corresponding mi-
gration model is given in the top left corner of each diagram.

Duration of homogeneous post-settlement migration

Since post-settlement migration can now occur between populations that
are not connected by an initial large-scale migration, we require that post-
settlement migration begins after all population locations have been inhab-
ited. The time that post-settlement migration commences is variable, be-
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cause we allow the timing of the peopling of Sahul to uniformly occur any
time between 50 ka and 65 ka. The duration of post-settlement migration
through the islands of southeast Asia is restricted by the Last Glacial Max-
imum which caused sea levels to rise, making the maritime travel required
along this migration corridor more difficult. Post-settlement migration within
Australia occurs from the time that all population locations were inhabited
to the present day.

Comparing homogeneous post-settlement migration to the
original migration models

Before comparing the initial migration models to those assuming homoge-
neous post-settlement migration, we perform PCA on the summary statistics
for our migration models with homogeneous post-settlement migration (see
Figure 7.2). We see that the principal components for all models except the
aggregated model overlap significantly. We also note that the observed sum-
mary statistics do not lie within the range of the principal components for
any migration models. UMAP was also used for dimension reduction, and
we observe a similar overlap (see Figure C.26, Appendix C.3.1).

Figure 7.3 shows the first and second principal components of the original
simulated summary statistics, and those simulated assuming homogeneous
post-settlement migration. Convex hulls are added to visualise the boundary
and spread of each type of summary statistics. Note that all points lie either
on the boundary of or inside a convex hull, and the polygon created by a
convex hull is therefore convex.

The convex hulls are considerably different, which is due to the significantly
different summary statistics for the aggregated model under homogeneous
and non-homogeneous assumptions of post-settlement migration. We re-
peated the PCA after excluding the aggregated model in both cases, and
obtained Figure 7.4. Here, we can see that the summary statistics simulated
under the original post-settlement migration models and the homogeneous
post-settlement migration models overlap considerably.

Next, consider Table 7.1. The mean of each summary statistic was calcu-
lated for each migration model, for both the original and homogeneous post-
settlement migration patterns. The resulting point for each migration model
is referred to as the centroid of the summary statistics for that migration
model. The absolute Manhattan distances between all pairwise combinations
of means were then calculated for each type of post-settlement migration pat-
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Figure 7.2: The first two principal components of the summary statistics
from migration models assuming homogeneous post-settlement migration
patterns. The plot was facetted by migration model due to the significant
overlap of the principal components. The observed summary statistics are
given as the black star in all panels.
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Figure 7.3: Simulated summary statistics from the original migration models
(blue) and the migration models with homogeneous post-settlement migra-
tion (red). Models are not given distinct colours, as it has already been
shown that the summary statistics for different models overlap significantly
(see Figure 7.2). Convex hulls are shown as a solid line in the corresponding
colour for each type of summary statistics.
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Figure 7.4: Simulated summary statistics from the original migration models
(blue) and the migration models with homogeneous post-settlement migra-
tion (red), excluding the aggregated model. Migration models are not given
distinct colours, as it has already been shown that the summary statistics
for different models overlap significantly (see Figure 7.2). Convex hulls are
shown as a solid line in the corresponding colour for each type of summary
statistics.
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(Between) Birdsell 2 Bowdler 1 Bowdler 2 Aggregated

Birdsell 1
10356.7 51.1 176.8 130.7
303.8 5.0 10.5 13.9

Birdsell 2
- 10386.1 10460.3 10425.9
- 303.0 304.4 301.6

Bowdler 1
- - 131.4 122.6
- - 9.9 13.5

Bowdler 2
- - - 55.0
- - - 9.6

Aggregated
- - - -
- - - -

Northern
Sunda

- - - 59.4
- - - 11.2

Southern Sunda
- - - -
- - - -

Tindale 1
- - - -
- - - -

(Between)
Northern

Sunda
Southern

Sunda
Tindale 1 Tindale 2

Birdsell 1
79.9 77.6 132.2 132.0
5.7 14.1 7.6 8.1

Birdsell 2
10393.7 10387.7 10431.6 10429.8
303.5 300.3 301.1 300.1

Bowdler 1
127.8 126.0 126.1 124.8
6.2 14.5 7.7 9.0

Bowdler 2
99.6 107.8 48.7 49.7
7.0 11.1 7.4 8.5

Aggregated
- 56.9 10.7 8.8
- 5.2 9.7 10.6

Northern
Sunda

- 9.4 55.6 55.4
- 12.1 6.2 5.9

Southern
Sunda

- - 64.3 63.2
- - 9.0 9.8

Tindale 1
- - - 4.1
- - - 3.9

Table 7.1: L1 (Manhattan) distance between the centroids of the summary
statistics for each pair of migration models. The distances for the original
migration models are the topmost element of each cell, while the distances
for the migration models assuming homogeneous post-settlement migration
are the second element given in each cell.
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tern (original or homogeneous). Manhattan distances can be thought of as
the total ‘element-wise’ distance.

Since Euclidean distances are commonly used even for high-dimensional dis-
tances, we include the Euclidean distances between each centroid in Appendix
C.3.2. To determine if the conclusions are affected by significant skew in the
summary statistics, we also take the median of each summary statistic for
each migration model. The resulting point for each migration model is re-
ferred to as the geometric median. The distances between geometric medians
are also included in Appendix C.3.2.

For nearly all comparisons, the means of the summary statistics resulting
from homogeneous post-settlement migration are much closer together than
the means of the original summary statistics. Similar patterns were noticed
for comparisons involving Euclidean distances and geometric medians.

To further illustrate the effects of homogeneous post-settlement migration,
we use a classification method to predict the migration model given a set
of summary statistics. We will only use MLR with LASSO to obtain a
confusion matrix; in Chapter 6 we noticed that even if classifiers produced
different results, the confusion matrices were nearly identical across different
methods, and accuracies were very similar. As in Chapter 6, we use 70% of
the simulations as training data and the remaining 30% as test data. MLR
with LASSO is again implemented through the glmnet package in R, and 5-
fold cross-validation is used to determine the penalization parameter λ.

The test accuracy of the classifier was 23.3% and the training accuracy was
24.7%. The confusion matrix is given in Table 7.2. We see that only the
aggregated model is clearly distinguished from the other models. This is
consistent with the PCA results, and is also a property of the confusion
matrices calculated in Section 6.3.4.

There are no discernible groupings for the remaining migration models. We
can see that summary statistics are most likely to be classified as the Bowdler
2 or Tindale 1 migration models regardless of the true migration model.
Equivalently, if an observation is classified as any model other than the ag-
gregated model, it is likely to have come from any other migration model
with near-equal probability (again, excluding the aggregated model).

The closer centers of summary statistics under homogeneous post-settlement
migration, the smaller convex hull seen in Figure 7.3, and the lack of struc-
ture in the confusion matrices in Table 7.2 all suggest that assuming a ho-
mogeneous pattern of post-settlement migration across all migration models
results in summary statistics that are less distinct.
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Table 7.2: Confusion matrices for the true and predicted migration models.
Matrix (A) is based on the training data, while matrix (B) is based on the
test data. The proportion of observations that fall into each category is given,
with rows summing to one. Darker squares indicate greater proportions.
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7.2 Mutations before Australia

In Sections 6.2 and 7.1 we have highlighted that the summary statistics
for different migration models are quite similar, and the differences that
are seen might be at least partially explained by post-settlement migration
patterns. A natural topic to explore from here is the differences between
sequences that should be expected due to the geographical migration routes.
The expansion from southeast Asia through to Australia was quite rapid, and
so the number of mutations that occurred in the migration events through the
southeast Asian islands will be small compared to the number of mutations
that occurred in the subsequent 50,000 years within Australia.

The signal present in the mtDNA sequence data that we are attempting to
identify through the classification process comes from mutations that occur at
different stages along the migration path. Certain mutations will be present
in some populations but not others, depending on the migration path taken.
Since no signal has been clearly identified, there are possibly no or very few
substitutions currently occurring in the island hops between southeast Asia
and Australia. We investigate this statement by looking at the expected
number of point mutations and the probability of observing at least one
point mutation.

7.2.1 Expected number of point mutations

When considering a single lineage and a substitution rate of µ = 6.0629 ×
10−3 substitutions per mtDNA coding region per generation [28], there is an
expected time between substitution events of approximately 4,000 years (160
generations). Since there are multiple simulated DNA sequences, and the
substitution process is stochastic, the expected time could be less than this,
but it is still unlikely that many mutations will occur in ten generations.

Let N ∈ Z+∪{0} be a discrete random variable that is the number of substi-
tutions occurring in one lineage. Since substitutions are modelled according
to a Poisson process with rate µ, the number of substitutions occurring in
the interval (0, t] has a Poisson distribution with rate µt [7]. Therefore

P (N ≥ 1) = 1− P (N = 0)

= 1− (µt)0e−µt

0!
= 1− eµt,
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Figure 7.5: Probability of observing at least one substitution in one lineage.

where t is the amount of time elapsed in generations and µ is the substitution
rate per sequence per generation.

Figure 7.5 displays the probability of observing at least one point mutation
in one lineage, after allowing zero to 500 generations of point mutations to
occur.

We define E[N |t = g] as the probability of observing N substitutions in a
single lineage after g generations. Figure 7.6 displays the expected number
of substitutions in one lineage for g between zero and 500 generations. Recall
that substitutions occur according to a Poisson process with the rate defined
by the substitution rate µ, and therefore the expected number of substitutions
in t generations will be µt.

We can see that if the shortest reasonable time between island hops is as-
sumed, with an inter-event time of 10 generations, less than one point mu-
tation per lineage is expected to occur between each island hop. In the
same timeframe, the probability of observing one or more substitutions is
low (probability ≈ 0.1). Assuming the maximum reasonable time between
island hops, i.e. an inter-event time of 100 generations, results in the ex-
pected number of substitutions per lineage being slightly above one. On



7.2. Mutations before Australia 161

E[N|t=200] = 1.21

E[N|t=20] = 0.118

L
o

n
g

e
s
t 
re

a
s
o

n
a

b
le

 is
la

n
d

 h
o

p
s

S
h

o
rt

e
s
t 
re

a
s
o

n
a

b
le

 is
la

n
d

 h
o

p
s

0

1

2

3

4

5

0 100 200 300 400 500

g (generations)

E
x
p

e
c
te

d
 n

u
m

b
e

r 
o

f 
p

o
in

t 
m

u
ta

tio
n

s
 

 in
 o

n
e

 li
n

e
a

g
e

 (
E

[N
 |
 t

=
g

])

Figure 7.6: The expected number of substitutions in one lineage after g
generations, E[N |t = g]. The expected number of substitutions only passes
1 after 165 generations.
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average, a greater number of substitutions would yield greater difference in
the summary statistics of different migration models, making them more
distinguishable from each other.

We also emphasise that this is an expected value: it is impossible for ex-
actly 0.118 mutations to occur after 20 generations because the number of
substitutions is a discrete random variable that cannot take non-integer val-
ues. The important conclusion from Figure 7.6 is that in general, we expect
less than one substitution to occur in one lineage for the entire duration of
the migration through island southeast Asia, which is unlikely to create any
traceable signal of these migration events.

In conclusion, Figures 7.5 and 7.6 demonstrate that there are likely to be
a very small number of substitutions accumulated in the migration through
the southeast Asian islands. While one may hope the presence of any num-
ber of substitutions could result in clear selection of a migration model, the
12.1 substitutions that are expected to occur in the subsequent 50,000 years
(for one lineage) after reaching Sahul makes it difficult to clearly identify any
trace of the early migration events in the mtDNA. Post-settlement migra-
tion occurring after the peopling of Sahul would further obscure any signal
present.

7.3 Increasing the Time Between Migration

Events

If the low power to distinguish between migration models corresponds to the
short times between migration events early in the migration, then one would
expect the summary statistics to become more distinct as the time between
migration events increases. In the previous section, we noted that the proba-
bility of observing at least one mutation in 2,500 years (100 generations) was
higher than the probability of observing at least one mutation in 25 years
(10 generations). Here, we explore how allowing 2,500 years, 25,000 years,
and 250,000 years between migration events through the islands of southeast
Asia affects the summary statistics of different migration models. Increasing
the time between migration events increases the number of substitutions that
are expected to occur in this region, which should make summary statistics
from different migration models more distinguishable.

This lengthening of the wait times between migration events is only im-
plemented for the original models, and not the models with homogeneous
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Time Between SE. Asian
Migration Events (years)

Training Accuracy Test Accuracy

250 50.5% 50.4%

2,500 54.5% 54.5%

25,000 71.8% 71.8%

250,000 75.0% 74.7%

Table 7.3: Training and test accuracy for MLR with LASSO predicting the
migration model based on summary statistics. The results in Chapter 6 as-
sume 250 years between migration events in southeast Asia; these accuracies
were taken from Section 6.3.1.

post-settlement migration.

7.3.1 Comparing summary statistics from different
inter-event times

We produced simulations with inter-event times of 2,500, 25,000, and 250,000
years for migration events through the southeast Asian islands. Specifically,
this involved lengthening the times taken before lineages from population
regions in Borneo, Southern Wallacea, and New Guinea could coalesce.

In Section 6.6 all classifiers had similar test accuracies that were between
45.1% and 50.6%. Since performance was comparable for all classifiers, we
will use the classification method with the lowest computation time in the
interest of computational efficiency.

Table 7.3 gives the test and training accuracies of MLR with LASSO calcu-
lated on the summary statistics simulated under each of the times between
migration events. We can see that classifier performance, as measured by
training and test accuracy, increases as the time between migration events
through southeast Asia increases.

We also consider the confusion matrices for the data for each time between
migration events. The confusion matrices for classification of data assuming
2,500, 25,000, and 250,000 years between migration events in southeast Asia
are all given in Table 7.4. Based on these confusion matrices, it is clear
that migration models become statistically more distinct as the time between
migration events increases. This separation only increases to a certain extent
though, because even when there are 250,000 years between migration events,
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Bowdler 1 and Bowdler 2 are still commonly misclassified as each other,
as are Northern Sunda and Tindale 1. The two characteristics shared by
these pairs is that they have the same path through the southeast Asian
islands (the migration models of both pairs contain Birdsell’s Northern Route
through the southeast Asian islands), and they also share the same entry
point to Australia. This demonstrates that, given enough signal in the data
in the form of informative substitutions, migration models can be statistically
distinguished from each other.

We also expect to see signs of this increase in predictive accuracy visually.
We performed linear and nonlinear dimension reduction techniques on the
summary statistics, in the form of PCA and UMAP respectively.

The PCA results are given in Figure 7.7. All PCA plots appear very similar,
and there is no indication that the summary statistics from different mi-
gration models become more distinct as the time between migration events
through southeast Asia increases.We have not included the projected ob-
served summary statistics in Figure 7.7 because these longer durations of
island hops are clearly unreasonable, and

Recall that UMAP can identify non-linear trends in the summary statistics[51].
It considers both the overall structure of the summary statistics and the lo-
cal structure around each point. The trade-off in local and global structure
is controlled through the parameters min_dist and n_neighbors. Here, we
use min_dist = 0.5 and n_neighbors = 100, which emphasises the global
structure of the data. 200 training epochs are used to optimise the low-
dimensional representation. Each dimension reduction used a different ran-
dom state. Referring to Figure 7.8, random states of 12094, 72815, and 88212
were used for subfigures (A), (B), and (C) respectively.

The UMAP dimension reductions for the summary statistics simulated under
island hops of 2,500, 25,000, and 250,000 years are displayed in Figure 7.8.
We notice that class separation appears to increase as the time between
migration events increases. The summary statistics of some migration models
are still completely overlapping after the times between migration events
have increased to 250,000 years; these are also the summary statistics of the
migration models that are commonly confused in the confusion matrix from
MLR with LASSO (Table 7.4).

By extending the time between migration events through southeast Asia
in the original migration models, we have found that the training and test
accuracies of a classifier (MLR with LASSO) improve as the time between
migration events increases (see Table 7.3). This increasing accuracy is consis-
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Table 7.4: Confusion matrices for the true and predicted migration models of summary
statistics simulated assuming (A) 2,500 years, (B) 25,000 years, and (C) 250,000 years
between migration events through southeast Asia. All confusion matrices are calculated
from test data. The confusion matrices calculated from the training data are nearly
identical, and are presented in Appendix C.3.3. The proportion of observations that fall
into each category is given, with rows summing to one. Darker squares indicate greater
proportions.
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Figure 7.7: PCA plots of the summary statistics assuming (A) 2,500 years,
(B) 25,000 years, and (C) 250,000 years between migration events through
southeast Asia. There is no perceivable difference between the different PCA
plots. Both axes of plot (B) were reversed so that the points were more
comparable between all plots.
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Figure 7.8: UMAP dimension reductions of the summary statistics assuming
(A) 2,500 years, (B) 25,000 years, and (C) 250,000 years between migration
events through southeast Asia. Summary statistics for different migration
models become more distinct as the time between migration events increases.
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tent with the greater separation of summary statistics from different models
that is observed in UMAP dimension reductions (see Figure 7.8).

We emphasise that even though longer times between migration events re-
sulted in greater separation of summary statistics and greater predictive ac-
curacy of the underlying migration model, we cannot make any conclusions
about the observed summary statistics based on summary statistics simu-
lated assuming longer migration events. Waiting 25,000 or 250,000 years
between migration events is incredibly unrealistic, and so this data cannot
be used to infer what may have happened with shorter, more realistic, times
between migration events through southeast Asia.

These analysis conducted in this section suggests that if there is a strong
signal of past migration events, as is the case with long times between mi-
gration events, it can be detected in the simulated summary statistics. It is
very likely that the short times between migration events through the south-
east Asian islands result in a weak signal present in the mtDNA sequence
data.

7.4 Mitochondrial DNA Haplogroup

Analysis

Initially, only geographical location and relatedness were used to filter the
mtDNA samples comprising the observed data. All mtDNA haplogroups in
a particular population location were included in the population. Here, we
investigate whether grouping all mtDNA haplogroups for the population lo-
cated in southern Australia significantly masked any signal present in the
observed data. In the rest of this chapter, we use the general term ‘hap-
logroup’ to refer to mtDNA haplogroups.

Tobler et al. [85] found that haplogroups R and O were likely to have mi-
grated around the west coast of Australia while haplogroups M, N, P and S
were likely to have migrated around the east coast of Australia. These two
sets of haplogroups then met in southern Australia. This is reflected in the
haplogroups present in the southern Australian population (Population ID
#5). A breakdown of all haplogroups for all populations is given in Table
7.5.

To avoid combining mtDNA sequences that arose from potentially different
migration histories in one panmictic population, we exclude haplogroups R
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Population ID (Location) Haplogroups

0 (Borneo)

M20 (1), M21a (1), M22a (1), M74b2 (1),

N21a (1), N22a (1), N9a6a (2), N9a6b (1),

R21(3)

1 (Southern Wallacea)
M21b (1), M73a (1),
P1 (1), P1d (3), P1d2 (1)
Q3 (1)

2 (New Guinea)

M25 (1), M27a (6), M27b (2), M27c (8), M28a (8),
M29a (1), M29b (1),

P1 (2),

Q1a (1), Q1b (1), Q1c (7), Q1e (2), Q2a (1)

3 (NE Australia)

M (1), M42 (3), M42a (9),

N (2),

P (3), P4b1 (9), P5 (7),

S1 (2), S2 (5)

4 (SE Australia)

M42 (3), M42a (2),

P4b1 (1)

S1 (1)

5 (S. Australia)

M42 (2),
O (5),
P (1), P4b1 (6),
R12 (1),
S (2), S1 (1), S1a (2), S2 (2)

Table 7.5: A breakdown of the mtDNA haplogroups present in each of the
population group. Haplogroups corresponding to the suspected migration
around the western coast of Australia are written in bold.
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Figure 7.9: Migration routes where migration events (solid arrows) in Aus-
tralia only occur around the east coast. Distinct patterns of post-settlement
migration (dashed arrows) still occur along the migration routes that were
taken.
L-R: Bowdler, Tindale/Northern Sunda, and Southern Sunda migration
routes.

and O from the samples comprising the southern Australian population. We
choose to exclude R and O instead of M, P and S due to sample sizes:
combined, there are 6 mtDNA sequences with either haplogroup R or O,
but 14 mtDNA sequences with haplogroups M, P, or S. Note that we do not
repeat the analysis for haplogroups R and O only due to the small sample
size.

Excluding the samples with haplogroups involved in migration along the west
coast of Australia means that it is not sensible to include migration along
the west coast in candidate migration routes. This reduces the number of
migration models: the two Bowdler models are now identical to each other, as
are the two Tindale models. The Northern and Southern Sunda routes must
also be adapted to include migration along the eastern coast of Australia.
After adapting Northern Sunda to include migration along the east coast, it
is identical to the Tindale model.

Summary statistics were simulated under the new migration models given in
Figure 7.9, i.e. without haplogroups R and O present in southern Australia.
We explore how excluding haplogroups R and O from the southern Australian
population affects the simulated summary statistics, and then investigate
whether these new summary statistics result in distinguishable migration
models.



7.4. Mitochondrial DNA Haplogroup Analysis 171

-30

-20

-10

0

10

20

-30 -20 -10 0 10

Principal Component 1

P
ri

n
c
ip

a
l C

o
m

p
o

n
e

n
t 
2

Migration Model

Bowdler

Southern Sunda

Tindale/Northern Sunda

Figure 7.10: A PCA plot of the summary statistics of migration models with-
out migration around the western coast of Australia. The observed summary
statistics (recalculated excluding haplogroups R and O) are represented by
the black star.

We first visualize the summary statistics using PCA and UMAP dimension
reduction techniques. The observed summary statistics were recalculated to
exclude haplogroups R and O in the southern Australian population, and are
shown as a black star in both dimension reductions.

The PCA plot is given in Figure 7.10, and the UMAP dimension reduction
is given in Figure 7.11. For the UMAP dimension reduction, we again used
100 nearest neighbours, a minimum distance of 0.5 and a random state of
70859.
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Figure 7.11: A UMAP dimension reduction of the summary statistics
of migration models without migration around the western coast of Aus-
tralia. Convex hulls have been added to better visualise the range of semi-
transparent points. The observed summary statistics (recalculated excluding
haplogroups R and O) are represented by the black star.
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We performed MLR to assess whether a migration model can be reliably
selected under these new assumptions, again using LASSO for variable se-
lection. 70% of the data was used as training data, while the remaining
30% was set aside as test data. As in Section 7.1, we used 5-fold cross-
validation to determine the λ parameter that defines the penalization term
in LASSO.

The MLR classifier had a test accuracy of 72.0% and a training accuracy of
73.1%. For three classes, guessing a migration at random has an expected
accuracy of 33.33%, so this classifier is more accurate than random guessing.
The confusion matrices for the training and testing data are given in Table
7.6. The probabilities that summary statistics are classified correctly (the
diagonal elements) are similar to those for MLR with LASSO in the main
results section (see Table 6.7, Section 6.3.1), with the exception of Northern
Sunda/Tindale. In this section, approximately 58% of observations that were
truly simulated under the Northern Sunda/Tindale migration model were
classified correctly; there were fewer correctly classified observations in Table
6.7. This may be because this analysis used a smaller number of migration
models that were more distinct than those investigated in Chapter 6.

The estimated probabilities of the observed summary statistics coming from
each migration model are given in Table 7.7. The highest class probability
is for Southern Sunda, and it is noticeably larger than the probabilities for
other migration models.

This is a stronger prediction than that in Chapter 6 based on the probabili-
ties, so we seek to verify our results using support vector machines (SVMs)
trained on 15% of the data. A summary of the training and test accuracies
are given in Table 7.8. We see that using a Gaussian kernel results in signifi-
cant overfitting despite the kernel parameters and the cost being determined
through a cross-validation process. Hence, we apply an SVM with a linear
kernel to the observed data.

Confusion matrices showing misclassification patterns produced by an SVM
with a linear kernel are given in Table 7.9. We notice similar patterns to the
confusion matrices for MLR with LASSO (see Table 7.6).

Using a linear SVM to predict the migration model that best explains the ob-
served summary statistics results in a prediction of Tindale/Northern Sunda.
Looking at the breakdown of binary SVM classifications given in Table 7.10,
we find that the Bowdler migration model was never selected in the voting
process.

Both classifiers in this section have high enough test accuracy to rule that
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Table 7.6: Confusion matrix for MLR, using LASSO for variable selection.
Matrix (A) is calculated based on the training data, while matrix (B) is based
on the test data.

Migration Model Probability

Bowdler 0.127

Tindale/Northern Sunda 0.291

Southern Sunda 0.582

Table 7.7: The output of MLR with LASSO. These are the probabilities that
the observed summary statistics are best explained by each migration model.
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Kernel Training Accuracy Test Accuracy

Linear 74.1% 72.6%

Gaussian 95.1% 63.9%

Table 7.8: Training and test accuracies for SVMs with linear and Gaussian
kernels trained on 15% of the data.
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Table 7.9: Confusion matrices for an SVM with a linear kernel trained on
15% of the data. Matrix (A) is calculated based on the training data, while
matrix (B) is based on the test data.
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Migration Model 1 Migration Model 2 Selected Model

Bowdler Southern Sunda Southern Sunda

Bowdler Tindale/Northern Sunda Tindale/Northern Sunda

Southern Sunda Tindale/Northern Sunda Tindale/Northern Sunda

Table 7.10: Results of all binary classifiers comprising the multiclass SVM
classifier.

the observed summary statistics more closely resemble those simulated un-
der the Tindale/Northern Sunda and Southern Sunda migration models than
the Bowdler migration model. Referring to Figure 7.9, we see that the com-
mon characteristic between the Southern Sunda migration model and the
Tindale/Northern Sunda migration model is the entry point to Australia via
New Guinea. Considering the patterns of post-settlement migration that oc-
cur, Tindale/Northern Sunda and Southern Sunda also both allow migration
between New Guinea and northeastern Australia. Hence, we conclude that
the observed summary statistics are consistent with a migration model that
suggests some level of migration to Australia from New Guinea, and possibly
between the two locations.

It does not seem unreasonable to obtain a more concrete result in this hap-
logroup analysis than for the original simulation study. We note that the
original simulation study considered a wider range of models with different
migration patterns within Australia. Since we based this extended analysis
on the conclusions of Tobler et al., we enforced coastal migration within Aus-
tralia and discarded all models that suggested migration around the western
coast of Australia.

Considering only haplogroups suspected to be involved in migration around
the east coast of Australia leads to some limitations on our finding. Since
the observed summary statistics are no longer based on southern Australian
sequences with mtDNA haplogroups R and O, we cannot comment on the
migration paths taken by individuals with mtDNA haplogroups R and O.
Therefore the predictions of Southern Sunda and Tindale/Northern Sunda
do not rule out a potential different entry point to Australia for haplogroups
suspected to be involved in migration around the eastern coast of Aus-
tralia.

Earlier in Section 7.1, we also found that homogeneous patterns of post-
settlement migration significantly reduced the signal present in the summary
statistics. As noted earlier in this discussion, it is possible that the migra-
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tion models selected merely indicate that post-settlement migration occurred
between Australia and New Guinea. To test this, we perform the same
analysis but with the assumption of homogeneous post-settlement migration
patterns.

After enforcing homogeneous post-settlement migration patterns, MLR with
LASSO had a test accuracy of 34.9% and a training accuracy of 35.5%. We
note that this is already a considerably lower accuracy than for when we
were considering distinct post-settlement migration patterns. The resulting
confusion matrices further demonstrate poor predictive accuracy for all mi-
gration models. Further details of this analysis can be found in Appendix
C.3.4.

This suggests that the predictions of Southern Sunda and Tindale/Northern
Sunda by the two different classifiers indicate that the observed summary
statistics are consistent with some level of ongoing migration between north-
eastern Australia and New Guinea.

Our findings are also not inconsistent with our investigation of how timings
between migration events affect the summary statistics (see Section 7.3). We
previously concluded that short times between migration events through the
southeast Asian islands contributed to the lack of signal in the summary
statistics. This is again supported by our findings, since both Southern
Sunda and Tindale/Northern Sunda were selected by different classifiers.
Southern Sunda assumes a southern migration route through the southeast
Asian islands, while Tindale/Northern Sunda assumes a northern migration
route through these islands. Furthermore, assuming identical post-settlement
migration patterns once again significantly decreased the test accuracy of the
classifier.

7.5 Summary of Extended Analysis

First, we sought to explore the effect that using homogeneous post-settlement
migration patterns would have on the summary statistics. By using dimen-
sion reduction methods and comparing the locations of the summary statis-
tics in the original high-dimensional space, we found that the summary statis-
tics for migration models assuming homogeneous post-settlement migration
are more similar than those allowing different patterns of post-settlement mi-
gration. Through comparing the results of classification algorithms, we found
that a considerable amount of the signal present in the summary statistics
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from the initial migration models was indeed a consequence of the patterns
of post-settlement migration used.

The findings of Section 7.3.1 suggest that rapid migration through the south-
east Asian islands results in a small to negligible amount of signal of the initial
migration of Aboriginal Australians to Australia in the first place. Section
7.4 demonstrates that a careful haplogroup analysis combined with a more
limited set of migration models can yield some rudimentary findings. We
found that the observed summary statistics were consistent with some level
of post-settlement migration between New Guinea and northeastern Aus-
tralia. We reiterate that no conclusion can be drawn about the migration
path taken by ancestors of individuals with haplogroups R and O in southern
Australia, since they were excluded from analysis.



Chapter 8

Conclusion

In the early chapters of this thesis, we presented all theoretical concepts re-
quired to obtain and understand our results. We introduced mitochondrial
DNA (mtDNA), coalescent theory, and the DNA simulation process in Chap-
ter 2, and then dimension reduction and classification methods in Chapter
4. The migration models needed to perform simulations for the simulation
study were defined in Chapter 5.

We presented the results of our phylogenetic analysis in Chapter 3, which
involved reconstructing a maximum likelihood tree using IQ-TREE, recon-
structing a phylogenetic tree using BEAST, and then also performing an
Extended Bayesian Skyline analysis as part of the BEAST analysis to re-
cover the effective population size over time.

The results of our simulation study were presented in Chapter 6, where we
compared the performance of four different multiclass classification methods:
multinomial logistic regression (MLR) using forward selection for variable se-
lection, MLR using LASSO for variable selection, support vector machines
(SVMs) using a linear kernel, and neural networks. We then used these clas-
sifiers to predict the most likely migration model for the observed summary
statistics.

Both MLR classifiers selected the Southern Sunda migration model, which
includes a southern route through the southeast Asian islands, entry to Aus-
tralia via New Guinea and then subsequent coastal migration. The SVM
and neural network selected the Birdsell 1 migration model, which includes
a northern route through the southeast Asian islands, a northwestern entry
point to Australia and then no migration between Australian populations.

179
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These migration models are clearly very different. A further validation anal-
ysis also found that these results were unstable, and different results were
reached if slightly different training data was used (always balanced across
classes). In the case of neural networks, different results were obtained by
re-running the same algorithm, due to the stochasticity in the training pro-
cess.

We then conducted further analyses in Chapter 7, which were based on the
initial simulation study. The misclassification patterns seen in Chapter 6 led
us to consider using the same pattern of post-settlement migration across
all migration models. We also explored the effect that extending the times
between migration events through the southeast Asian islands had on the
simulated summary statistics. We determined how many substitution events
we would theoretically expect to see in one lineage for different stages of the
migration, and concluded by exploring more restrictive subsetting based on
mtDNA haplogroups, along with a reduced set of migration models.

We summarise our key findings in the concluding statements.

8.1 Concluding Statements

The maximum likelihood tree reconstructed with IQ-TREE and the phyloge-
netic tree reconstructed with BEAST (BEAST tree) were mostly consistent
with respect to topology, and produced reasonable results in terms of the
ancestry of different mtDNA haplogroups. For the BEAST tree, there was
little branch support for the splits that occurred from approximately 45 ka
to 55 ka, which is the time that the main migration events were occurring.
Branches at a similar point in the maximum likelihood tree had similarly
poor branch support. Furthermore, the branches with poor support were
estimated to be quite short, which foreshadows the very small number of
distinguishing DNA substitutions that are likely to have occurred in this
time.

Our simulation study did not give conclusive results by selecting one migra-
tion model, or even a family of migration models. We were able to determine
that the observed summary statistics were not consistent with the aggregated
model, but could have come from any other migration model. We highlight
that each classification method, other than MLR with LASSO, clearly chose
one migration model, but these selected migration models were not consistent
across classification methods. In the case where there is weak phylogenetic
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signal in the data, we therefore suggest thoroughly exploring the classifica-
tion results to make sure that the migration model selected is reliable. We
also noticed that misclassification patterns of all classifiers seemed to oc-
cur according to the different types of post-settlement migration that were
included in the migration models.

In Chapter 7, we first applied the same pattern of post-settlement migration
to all models, and found that there was no distinction between the summary
statistics of different migration models.

By increasing the times between migration events through the southeast
Asian islands, we found that longer times resulted in more distinct migration
models. We suggest that the short times between these migration events
contributed to the difficulty in selecting a migration model in the initial
simulation study. For models to become distinct enough to reliably choose
a model, we would have required at least 25,000 years between migration
events through the southeast Asian islands. This is clearly an unreasonable
length of time, based on the estimated times that modern humans were first
present in southeast Asia [94, 63].

Finally, we explored the effect of using further haplogroup subsetting based
on the different migration patterns suggested by Tobler et al., with mtDNA
haplogroups R and O migrating around the west coast of Australia, and
mtDNA haplogroups M, P, and S migrating around the east coast of Australia
[85]. This further subsetting also resulted in a smaller number of distinct
migration models. The two different migration models selected shared the
common characteristic of post-settlement migration between northeastern
Australia and New Guinea.

In conclusion, we were unable to reliably select one migration model, and
hence could not select a single geographical path from southeast Asia to Aus-
tralia, based on the information contained in the mtDNA samples that we
analysed. Through our extended analysis, we did find that post-settlement
migration between northeastern Australia and New Guinea, assuming that
coastal migration around the eastern coast of Australia occurred, was con-
sistent with the observed mtDNA data.

8.2 Further Work

Based on limitations that we encountered when specifying the migration
models, further research into:
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1. the effective population sizes of Aboriginal Australian populations over
time, and

2. levels of post-settlement migration between different populations in
southeast Asia and Australia

would assist in filling gaps in the current body of literature.

While we did find limited success in identifying post-settlement migration
patterns that have occurred over approximately the past 50,000 years, we
did not succeed in identifying a particular migration path that was taken
from southeast Asia through to Australia. Since summary statistics from
different migration models became more distinguishable when the time be-
tween migration events was increased, it is likely that the rapid migration
events through the southeast Asian islands and then around Australia did
not create a strong signal in the mtDNA sequence data.

We recommend that further research into the migration events that resulted
in the peopling of Australia is conducted using nuclear DNA, especially if the
migration paths of interest are of a finer geographical scale. Furthermore,
nuclear DNA is inherited from both parents, and so results determined from
nuclear DNA give more detail than the conclusions about the matrilineal
history that mtDNA analysis provides.



Appendix A

Calculations with DNA

This appendix contains detailed information on summary statistics for DNA,
as well as a full definition of all substitution models encountered in this
thesis.

A.1 Summary Statistics

We use two types of summary statistics calculated from DNA sequence
alignments: ‘within-population summary statistics’ and ‘between-population
summary statistics’. Within-population summary statistics are used to de-
scribe the differences between sequences within a population, while between-
population summary statistics are used to compare the genetic composition
of two or more populations.

In contrast to standard statistical terminology, we use the term ‘population’
to refer to a subgroup of a DNA alignment in which all sequences come from
a similar geographical region. In practice, the DNA sequences in each popu-
lation are samples from a much larger population that cannot be completely
sampled. Suppose that Population 1 is composed of the DNA sequences from
four hunter-gatherer individuals from South-East Asia. Since the summary
statistics are calculated from only the four DNA sequences sampled from
the wider population, they are referred to as statistics. If we somehow col-
lected DNA sequences from the entire wider population (all individuals with
hunter-gatherer ancestry in South-East Asia), the quantities corresponding
to the summary statistics but calculated for all DNA sequences would be
called population parameters.
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The within-population statistics and between-population statistics calculated
by BayeSSC are detailed in the following paragraphs. All examples of within-
population statistics are calculated for the artificial example alignment for
Population 1 (see Figure A.1).

𝑟""	 A A C T G T C
𝑟"$	 G A C T G T C
𝑟"%	 A A T T G T C
𝑟"&	 A A T T G T C

A.1.1: Population 1

𝑟"#	 A A C T G T C
𝑟""	 G A C T G T C
𝑟"% 	 C A C T G T C

A.1.2: Population 2

Figure A.1: Examples of DNA alignments for two populations. Each row
is a DNA sequence for a different individual, while each column is a differ-
ent site on the genome. Colours represent distinct haplotypes (defined in
Section A.1.1), and segregating sites (defined in Section A.1.1) within each
population are enclosed in boxes. The jth sequence from the ith population
is denoted rij.

A.1.1 Within-Population Statistics

Number of Unique Haplotypes

BayeSSC considers a haplotype to be any unique form of DNA sequence
in the set of simulated DNA sequences, although other definitions are com-
mon in the literature. An alternative definition is that a haplotype is a set
of Single Nucleotide Polymorphisms (SNPs) inherited together. There are
three haplotypes in Population 1, which correspond to the different colours
in Figure A.1.1.

Segregating Sites

A segregating site is defined as a position in the DNA alignment that does
not have the same nucleotide in all sequences [93].

For example, the first site in Population 1 (Figure A.1.1) is a G for the second
sequence, but an A for all other sequences in the alignment. There are two
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segregating sites in Population 1, i.e. Ŝ1 = 2. These are indicated by the
boxes in Figure A.1.1.

The number of segregating sites is an important quantity that is used to
define other statistics, so we also define other forms of segregating sites. The
number of segregating sites between sequence i and sequence j is denoted
Ŝij, e.g. in Population 1 (see Figure A.1.1), Ŝ12 = 1 and Ŝ34 = 0. Finally,
Population i will have some true number of segregating sites Si, but we do
not know the true value of this parameter as it would require sequencing the
DNA of the entire population.

Average Number of Pairwise Differences

The average number of pairwise differences in Population p is given by

k̂p =
1(
np

2

)∑
i<j

Ŝij, (A.1)

where Ŝij is the observed number of segregating sites between sequences i
and j, and np is the number of sequences in Population p [58]. For Population
1, n1 = 4, and the average number of pairwise differences is

k̂1 =
1(
4
2

)(Ŝ12 + Ŝ13 + Ŝ14 + Ŝ23 + Ŝ24 + Ŝ34)

=
1

6
(1 + 1 + 1 + 2 + 2 + 0)

=
7

6
. (A.2)

Haplotype Diversity

The haplotype diversity for Population p is defined as

ĥp =
np

np − 1

(
1−

gp∑
i=1

x2i

)
, (A.3)

where xi is the proportion of samples with haplotype i, np is the number of
samples in Population p, and gp is the total number of unique haplotypes in
Population p [59]. The term 1−

∑
x2i is the observed probability of randomly

selecting two different haplotypes from all haplotypes in the sample, when
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sampling with replacement. The probability is multiplied by np/(np − 1)
to give the intuitive property that a population with only unique haplotypes
has a haplotype diversity of one. This also serves to make the statistic
comparable between different-sized populations.

For Population 1, n1 = 4 and g1 = 3. The observed haplotype diversity is
then

ĥ1 =
4

3

(
1−

(
1

4

)2

−
(

1

4

)2

−
(

1

2

)2
)

=
4

3

(
5

8

)
=

5

6
. (A.4)

Nucleotide Diversity

Nucleotide diversity is the observed average proportion of segregating sites.
It is defined as

π̂p =
∑
i<j

fifjπij,

where fi and fj are the frequencies of sequence i and sequence j in popula-
tion p, and πij is the number of nucleotide differences per site [58]. In this
formulation, πij are only calculated for distinct i and j, i.e. each distinct
pair should contribute only once to the summation. It can also be rewritten
as a scalar multiple of the average number of pairwise differences:

π̂p =
1

`
k̂p,

for sequences of length `.

In Figure A.1.1, sequences are of length ` = 7, and so we can calculate the
nucleotide diversity from the value of the pairwise differences calculated in
Equation A.2:

π̂1 =
1

7

(
7

6

)
=

1

6
.
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Tajima’s D

Tajima’s D is a statistic that was formulated for testing the hypothesis that
a population is evolving under neutral conditions. This is calculated by
comparing two estimators for θ, which is the expected number of mutations
between any two sequences. A value of Tajima’s D significantly different
from zero implies either a change in population size or evidence for selection
[81]. Note that the true value of θ is often unknown since it is a population
parameter, and so to define Tajima’s D, we first need to define Watterson’s
estimator for θ, θ̂W . We begin by considering the expected number of segre-
gating sites in population j, E[Sj].

E[Sj] = θ

np−1∑
i=1

1

i
, (A.5)

where np is the number of sequences. Rearranging equation A.5,

θ = E[Sj]

(
np−1∑
i=1

1

i

)−1

⇒ θ̂W = Ŝj

(
np−1∑
i=1

1

i

)−1
. (A.6)

Note that the observed number of segregating sites in population j, Ŝj is not
necessarily the same as expected number of segregated sites E[Sj], and is
only used to estimate this value.

Tajima’s D is then defined as

D =
θ̂W − k̂√

Var(θ̂W − k̂)
,

where k̂ is the average number of pairwise differences (Equation A.1). Both
θ̂W and k̂ are unbiased estimators for θ, but selection or changes in population
size will affect these values differently, potentially resulting in significant non-
zero values of D. Details for estimating the variance of D can be found
in Tajima’s original paper [81]. For Population 1, D ≈ 0.5916. Detailed
calculations are omitted for this statistic.
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A.1.2 Between-Population Statistics

Private Alleles and Private Haplotypes

Alleles and haplotypes are said to be private if they appear in one population
only [76], and are then said to be ‘private to’ that specific population. For
example, Populations 1 and 2 each have one private haplotype (the black
and green haplotypes respectively), as the red and blue haplotypes are found
in both populations. The number of private alleles and private haplotypes
are both summary statistics, and are calculated for each pair of popula-
tions.

Average Number of Pairwise Differences

Consider two populations p1 and p2, which are made up of np1 and np2 aligned
sequences respectively. The average number of pairwise differences between
populations p1 and p2 is similar to the number of pairwise differences within
a population, except sequences i and j must be from different populations.
We define the average number of pairwise differences between populations p1
and p2 as k̂p1p2 :

k̂p1p2 =
1

np1np2

∑
i,j

Ŝij, (A.7)

where Ŝij is defined in subsection A.1.1. For the populations in Figure A.1,
n1 = 4, n2 = 3, and the segregating sites between sequences are given in
Table A.1.

r21 r22 r23

r11 0 1 1

r12 1 0 1

r13 1 2 2

r14 1 2 2

Table A.1: Number of segregating sites between sequences from Population
1 and sequences from Population 2 in Figure A.1. Sequence rpi is the ith
sequence in population p.
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It follows that the average number of pairwise differences between the two
populations is

k̂12 =
1

12
(1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 2 + 2)

=
7

6
. (A.8)

Mean Diversity H̄ij

Mean (haplotype) diversity is calculated by finding the haplotype diversity
of the two separate populations, and then taking the arithmetic mean. For
any two Populations i and j with haplotype diversities ĥi and ĥj respectively,

the mean haplotype diversity is H̄ij = (ĥi + ĥj)/2.

The haplotype diversity of Population 1 is 5/6, which was calculated in Sec-
tion A.1.1. The haplotype diversity for Population 2 is 1, and so the mean
diversity of Population 1 and Population 2 is

H̄s =
1

2

(
5

6
+ 1

)
=

11

12
.

Pooled Diversity HT

Pooled (haplotype) diversity is calculated by merging two or more popu-
lations, and then finding the haplotype diversity for the single population
using Equation A.3. BayeSSC calculates this statistic by pooling only two
populations at a time. In the pooled population made up of Populations 1
and 2 (Figure A.1), there are two ‘red’ sequences, two ‘blue’ sequences, two
‘black’ sequences, and one ‘green’ sequence (each colour represents a different
haplotype). There are seven sequences in the pooled population, and so the
pooled haplotype diversity is

HT =
7

6

(
1−

(
2

7

)2

−
(

2

7

)2

−
(

2

7

)2

−
(

1

7

)2
)

=
7

6

(
36

49

)
=

6

7
.
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Fixation Index FST

FST was first introduced by Sewall Wright in 1931, and many formulae have
been developed since its first definition. We present the formula derived by
Hudson [36],

FST = 1− HW

HB

, (A.9)

where HW is the mean of the average number of pairwise differences within
populations, and HB is the average number of pairwise differences between
populations. When calculating FST for populations i and j, note that

HW =
k̂1 + k̂2

2
, and

HB = k̂12.

While other equations for FST have been developed, Hudson’s estimator of
FST was used for the analysis in Chapters 6 and 7 due to its automatic
inclusion in the output of BayeSSC.

For example, FST is calculated below for Population 1 and Population 2 (Fig-
ure A.1) using equation A.9. Since the average number of pairwise differences
for Populations 1 and 2 separately are k̂1 = 7/6 and k̂2 = 1,

HW =
1 + 7/6

2

=
13

12
. (A.10)

From equation A.8, HB = 7/6. Then

FST = 1− 13/12

7/6

= 1− 13

14

=
1

14
.

Conceptually, FST quantifies genetic differences between populations due to
population structure [61]. If two populations have a low value of FST , they
are more similar, while a higher value indicates greater difference between
the populations. The range of values considered ‘high’ or ‘low’ depends on
context - a large value of FST for two populations of the same species may
be considered small for two populations of different species.
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A.2 Substitution Models

Substitution models define the rates at which different types of substitutions
occur. These models are first introduced in Section 2.4.5, which mentions the
Jukes-Cantor, Kimura two-parameter, and GTR substitution models. Here,
we mathematically define all substitution models that are mentioned in this
thesis.

For brevity, we define the set of all nucleotides as D = {A,C,G, T}. We
present the substitution model as a matrix of the form

Q =


qA qAG qAC qAT

qGA aG qGC qGT

qCA qCG qC qCT

qTA qTG qTC qT

 , (A.11)

where qij is the rate at which nucleotide j becomes nucleotide i, and

qi = −
∑

k∈D\{i}

qik.

All substitution models presented here model the substitution process as a
continuous-time Markov chain. This means that the time between substitu-
tions is exponentially distributed with rate qi, where i is the current state,
and that the next state (the substitution that occurs next) only depends on
the current state.

Since qij is non-negative for all i, j ∈ D, i 6= j, all qi are non-negative and
finite, and all rows sum to zero, Matrix A.11 satisfies all conditions for a ‘tran-
sition rate matrix’, which defines the transitions of a continuous-time Markov
chain. This terminology may be ambiguous, as transitions and transversions
are also types of substitutions that can occur. We will instead use the term
‘substitution rate matrix’.

We define the proportion of A’s, G’s, C’s, and T’s in a DNA sequence as
πA, πG, πC , and πT respectively. If a substitution model assumes equal base
frequencies, then πA = πG = πC = πT = 1/4. Models with unequal base
frequencies allow these values to be different with the requirement that∑

i∈D

πi = 1.
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All parameters for substitution models, including unequal base frequencies,
can be estimated from a sequence alignment using a program such as Mod-
elGenerator [42]. We note that the simulation program BayeSSC does not
support substitution models with unequal base frequencies.

A.2.1 Jukes-Cantor model

In the Jukes-Cantor model, all substitutions are equally likely [39]. This
corresponds to the substitution rate matrix

QJC69 =


−3µ/4 µ/4 µ/4 µ/4

µ/4 −3µ/4 µ/4 µ/4

µ/4 µ/4 −3µ/4 µ/4

v µ/4 µ/4 −3µ/4

 .

A.2.2 Kimura two-parameter model

The Kimura two parameter model, commonly abbreviated to the K2P or
K80 model, allows transitions to occur at a different rate than transversions
[43]. Let transitions occur with rate r and transversions occur with rate ν.
Then the substitution rate matrix is

QK2P =


−(r + 2ν) r ν ν

r −(r + 2ν) ν ν

ν ν −(r + 2ν) r

ν ν r −(r + 2ν)

 .

This substitution model can also be parameterised in terms of the transition-
transversion ratio κ, where transitions are expected to occur κ times more
frequently than transversions.

A.2.3 Kimura three-parameter model

The Kimura three-parameter model, commonly abbreviated as the K81 or
K3P model, extends the Kimura two-parameter model by allowing different
rates for two different types of transversions. The rate of substitutions be-
tween A and C, and T and G is ν1; the rate of substitutions between A and
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T, and C and G is ν2. Transitions occur at rate r. The substitution rate
matrix is

QK3P =


−(r + ν1 + ν2) r ν1 ν2

r −(r + ν1 + ν2) ν2 ν1

ν1 ν2 −(r + ν1 + ν2) r

ν2 ν1 r −(r + ν1 + ν2)

 .

A.2.4 HKY model

The HKY model [32] is named after its creators Hasegawa, Kishino, and
Yano. This model extends the Kimura two-parameter model by allowing
unequal base frequencies.

To keep notation compact, we will denote diagonal elements as qi, where i is
the state and

qi = −
∑

k∈D\{i}

qik

as defined earlier in this section.

The substitution rate matrix is

QHKY =


qA κπG πC πT

κπA qG πC πT

πA πG qC κπT

πA πG κπC qT

 .

A.2.5 Tamura-Nei model

The Tamura-Nei substitution model extends the HKY model by allowing dif-
ferent rates for each type of transition [82]. Suppose that transitions between
A and G occur at rate κAG, and transitions between C and T occur at rate
κCT . This model also allows unequal base frequencies. The substitution rate
matrix then has the form

QTN =


qA κAGπG πC πT

κAGπA qG πC πT

πA πG qC κCTπT

πA πG κCTπC qT

 .
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A.2.6 Transversion model

In the transversion model, or TVM, each type of transversion occurs at a
different rate [99]. The model assumes equal base frequencies by default, but
this assumption can be relaxed. Using similar notation to other substitution
models that have a single rate for all transitions and different rates for dif-
ferent transversions, we will denote the rate at which transitions occur as r
and the rates of different transversions as ν1, ν2, ν3 and ν4.

The substitution rate matrix has the form

QTVM =


qA r ν1 ν2

r qG ν3 ν4

ν1 ν3 qC r

ν2 ν4 r qT

 .

A.2.7 Generalised Time Reversible model

As mentioned in Chapter 2, the GTR model is one of the most general
substitution models, allowing a different rate for each type of substitution
and accommodating unequal base frequencies [83]. It can be represented by
the substitution rate matrix QGTR, where

QGTR =


qA r1 ν1 ν2

r1 qG ν3 ν4

ν1 ν3 qC r2

ν2 ν4 r2 qT

 .
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DNA sample metadata

B.1 Sunda and Sahul mtDNA

In Table B.1 we present a more detailed description of the sample locations
previously described in Table 3.1, Chapter ??. Accession numbers and ref-
erences for the aligned mtDNA sequences in the filtered dataset are given in
Table B.2.

General Location
Population ID

Number
Population/

Sampling Location
n. Samples
(Unfiltered)

n. Samples
(Filtered)

Borneo 0 Bidayuh 10 3

0 Jehai 19 3

0 Seletar 15 1

0 Temuan 14 5

Philippines NA Mindanao 19 0

NA Bataan 9 0

NA Babuyan Island 2 0

NA Luzon 2 0

NA Capul Island 1 0

Timor 1 East Timor 15 8

Table B.1: Detailed information about the sample locations of DNA se-
quences or the populations of the individuals from which mtDNA samples
were obtained, as well as the number of samples before and after filtering.
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General Location
Population ID

Number
Population/

Sampling Location
n. Samples
(Unfiltered)

n. Samples
(Filtered)

Remote Oceania NA Cook Island 1 0

NA Fiji 8 0

NA Futuna 2 0

NA Niue 1 0

NA Samoa 3 0

NA Tonga 4 0

NA Tuvalu 1 0

Santa Cruz NA Santa Cruz 40 0

New Britain 2 New Britain 8 4

2 Nakanai 25 6

2 Ata 15 4

Bougainville
(New Guinea)

2 Buin 21 8

2 Buka 4 3

NA Nagovisi 1 0

2 Nasioi 20 9

2 Siwai 8 1

2 Torau 15 6

Solomon Islands NA Choiseul 7 0

NA Gela 11 0

NA Guadalcanal 13 0

NA Isabel 7 0

NA Kolombangara 2 0

NA Makira 2 0

NA Malaita 29 0

NA Ranonga 18 0

NA Russel 3 0

NA Savo 5 0

NA Shortland 5 0

NA Vella Lavella 8 0

Table B.1: Detailed information about the sample locations of DNA se-
quences or the populations of the individuals from which mtDNA samples
were obtained, as well as the number of samples before and after filtering.
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General Location
Population ID

Number
Population/

Sampling Location
n. Samples
(Unfiltered)

n. Samples
(Filtered)

Australia NA
Australia

(no location)
124 0

4 Lake Tyers 14 7

3 Cherbourg 23 21

5 Koonibba 47 10

3 Brewarrina 31 20

5 Point Pearce 43 12

Table B.1: Detailed information about the sample locations of DNA se-
quences or the populations of the individuals from which mtDNA samples
were obtained, as well as the number of samples before and after filtering.
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Reference
Sample

Location(s)
Accession Numbers

Duggan et al. [21]
Bougainville,
New Britain

KJ154486, KJ154492, KJ154496,

KJ154500, KJ154508, KJ154518,

KJ154544, KJ154546, KJ154554,

KJ154579, KJ154581, KJ154584,

KJ154590, KJ154600, KJ154601,

KJ154603, KJ154604, KJ154618,

KJ154621, KJ154624, KJ154625,

KJ154626, KJ154630, KJ154631,

KJ154634, KJ154635, KJ154638,

KJ154851, KJ154852, KJ154859,

KJ154861, KJ154866, KJ154887,

KJ154888, KJ154895, KJ154904,

KJ154928, KJ154932, KJ154933,

KJ154934, KJ154937

Gomes et al. [29] East Timor
KJ676777, KJ676780, KJ676784,

KJ676786, KJ676787, KJ676788,

KJ676789, KJ676790

Jinam et al. [37] Borneo

AP012349, AP012354, AP012368,

AP012383, AP012391, AP012392,

AP012413, AP012421, AP012422,

AP012425, AP012430, AP012431

Tobler et al. [85]∗
Cherbourg,
Point Pearce,
Koonibba

PRJEB15344

(Unpublished)
Brewarrina,
Lake Tyers

-

Table B.2: GenBank accession numbers, sample locations, and references
for all sequences used in this study.

* All sequences from Tobler et al. were submitted to the European
Nucleotide Archive (ENA) under the study accession number provided.
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B.2 Neanderthal mtDNA

The accession numbers of the Neanderthal sequences used to root the
maximum likelihood tree in Section 3.2.3 are FM865407, FM865408,
FM865409, FM865410, and FM865411 [11].
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Appendix C

Supplementary Figures and
Tables

C.1 Extended Results from Chapter 3

C.1.1 Densitree summary

Figure C.1 shows the DensiTree output, which superimposes all trees in the
posterior sample after burn-in was removed [9]. Each tree is partly
transparent, so that darker regions indicate greater support. We notice that
there is a clear split between the samples AP012430.1 N22a and
KJ154851.1 M28a7b, which is indicative of the deep split between
haplogroups M and N. We also notice that some haplogroups form distinct
monophyletic clades, such as M28, M42a, and P4b1.
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AP012431.1_M21a
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KJ154581.1_M29a
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Figure C.1: DensiTree output showing all trees in the posterior sample. The
timescale is given in the number of years before present.
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C.1.2 Effective Sample Sizes (ESSs) for all variables
from the combined posterior samples

In Section 3.5.2, we ran three MCMC chains via BEAST. We then
combined the posterior samples from these chains after removing burn-in
samples, which were 10%, 75%, and 10% of all samples in each chain,
respectively. The ESSs for all parameters were calculated with Tracer
v1.7.1 [71], and are presented here in Tables C.1, C.2, C.3, and C.4.

Parameter ESS

indicators.alltrees1 2178.7
indicators.alltrees2 2637.9
indicators.alltrees3 3836.3
indicators.alltrees4 3515.9
indicators.alltrees5 3319.2
indicators.alltrees6 2513.3
indicators.alltrees7 4474.3
indicators.alltrees8 5075.4
indicators.alltrees9 6414.2

indicators.alltrees10 5422.6
indicators.alltrees11 6063.1
indicators.alltrees12 5033.1
indicators.alltrees13 6960.2
indicators.alltrees14 5767.3
indicators.alltrees15 5598.3
indicators.alltrees16 5551.2
indicators.alltrees17 5253.1
indicators.alltrees18 7091.6
indicators.alltrees19 4801.9
indicators.alltrees20 5434
indicators.alltrees21 6729.2
indicators.alltrees22 7385.6
indicators.alltrees23 8162.5
indicators.alltrees24 8206.4
indicators.alltrees25 7866.2
indicators.alltrees26 7415.9
indicators.alltrees27 6267.1
indicators.alltrees28 6050.9
indicators.alltrees29 9724.5
indicators.alltrees30 6129.9

Parameter ESS

indicators.alltrees31 9102.1
indicators.alltrees32 4142.9
indicators.alltrees33 7606
indicators.alltrees34 5530.3
indicators.alltrees35 5990.3
indicators.alltrees36 8104.2
indicators.alltrees37 8795.6
indicators.alltrees38 8752
indicators.alltrees39 6701.6
indicators.alltrees40 5449.2
indicators.alltrees41 8848.3
indicators.alltrees42 10805.2
indicators.alltrees43 4425.6
indicators.alltrees44 9452
indicators.alltrees45 5969.5
indicators.alltrees46 7510.9
indicators.alltrees47 8715.5
indicators.alltrees48 8573.2
indicators.alltrees49 7395.6
indicators.alltrees50 9046.9
indicators.alltrees51 6090.8
indicators.alltrees52 6513
indicators.alltrees53 5456.8
indicators.alltrees54 9465
indicators.alltrees55 7228.2
indicators.alltrees56 10083.8
indicators.alltrees57 9328.6
indicators.alltrees58 9430
indicators.alltrees59 7155.2
indicators.alltrees60 8672.5

Table C.1: ESSs for the indicators.alltrees parameters.
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Parameter ESS

indicators.alltrees61 9817.4
indicators.alltrees62 10694.3
indicators.alltrees63 12646
indicators.alltrees64 9053.8
indicators.alltrees65 10280.5
indicators.alltrees66 10406.6
indicators.alltrees67 9668.9
indicators.alltrees68 9964.4
indicators.alltrees69 10781.8
indicators.alltrees70 10014.5
indicators.alltrees71 12347.8
indicators.alltrees72 10662
indicators.alltrees73 6212.9
indicators.alltrees74 10863.5
indicators.alltrees75 10492.4
indicators.alltrees76 7161.6
indicators.alltrees77 10610.5
indicators.alltrees78 8338.3
indicators.alltrees79 10973
indicators.alltrees80 8579.1
indicators.alltrees81 10104.7
indicators.alltrees82 11382.1
indicators.alltrees83 11736.1
indicators.alltrees84 8430.2
indicators.alltrees85 6437.4
indicators.alltrees86 10173
indicators.alltrees87 8983.4
indicators.alltrees88 7026.9
indicators.alltrees89 9447
indicators.alltrees90 7906.5
indicators.alltrees91 8273.6
indicators.alltrees92 8382
indicators.alltrees93 7791
indicators.alltrees94 4700.1
indicators.alltrees95 8017.4
indicators.alltrees96 4700.6
indicators.alltrees97 4832.7
indicators.alltrees98 3303
indicators.alltrees99 445.1

indicators.alltrees100 1455.3
indicators.alltrees101 1963.1
indicators.alltrees102 2187.5
indicators.alltrees103 1550.5
indicators.alltrees104 695.3
indicators.alltrees105 1395.1
indicators.alltrees106 1323.2
indicators.alltrees107 704.7
indicators.alltrees108 807.3
indicators.alltrees109 145.5
indicators.alltrees110 98.6

Parameter ESS

indicators.alltrees111 64.2
indicators.alltrees112 434.7
indicators.alltrees113 206.7
indicators.alltrees114 97
indicators.alltrees115 180.4
indicators.alltrees116 -
indicators.alltrees117 -
indicators.alltrees118 17
indicators.alltrees119 8.9
indicators.alltrees120 -
indicators.alltrees121 -
indicators.alltrees122 7.6
indicators.alltrees123 -
indicators.alltrees124 -
indicators.alltrees125 -
indicators.alltrees126 -
indicators.alltrees127 -
indicators.alltrees128 -
indicators.alltrees129 13294
indicators.alltrees130 10355.4

Table C.2: ESSs for the remaining indicators.alltrees parameters.
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Parameter ESS

popSizes.alltrees1 2282.5
popSizes.alltrees2 1192.9
popSizes.alltrees3 777.3
popSizes.alltrees4 648.9
popSizes.alltrees5 2017.9
popSizes.alltrees6 1177.9
popSizes.alltrees7 800.7
popSizes.alltrees8 2040.6
popSizes.alltrees9 2428.1

popSizes.alltrees10 747.1
popSizes.alltrees11 797.2
popSizes.alltrees12 934.2
popSizes.alltrees13 995.2
popSizes.alltrees14 400.3
popSizes.alltrees15 715.3
popSizes.alltrees16 602.7
popSizes.alltrees17 199.8
popSizes.alltrees18 935.1
popSizes.alltrees19 519.8
popSizes.alltrees20 741.7
popSizes.alltrees21 2006.2
popSizes.alltrees22 1049.4
popSizes.alltrees23 852
popSizes.alltrees24 789.5
popSizes.alltrees25 963.6
popSizes.alltrees26 685.9
popSizes.alltrees27 932.4
popSizes.alltrees28 808.9
popSizes.alltrees29 688.6
popSizes.alltrees30 746.1
popSizes.alltrees31 535.4
popSizes.alltrees32 768.7
popSizes.alltrees33 1695.2
popSizes.alltrees34 353
popSizes.alltrees35 557.5
popSizes.alltrees36 637.4
popSizes.alltrees37 252.8
popSizes.alltrees38 769.3
popSizes.alltrees39 672.7
popSizes.alltrees40 522.9
popSizes.alltrees41 319.4
popSizes.alltrees42 382.8
popSizes.alltrees43 369.5
popSizes.alltrees44 481.9
popSizes.alltrees45 105.3
popSizes.alltrees46 740.2
popSizes.alltrees47 54.3
popSizes.alltrees48 185.1
popSizes.alltrees49 54
popSizes.alltrees50 543.3

Parameter ESS

popSizes.alltrees51 758.3
popSizes.alltrees52 793.5
popSizes.alltrees53 518.7
popSizes.alltrees54 831.9
popSizes.alltrees55 796.4
popSizes.alltrees56 449.5
popSizes.alltrees57 210
popSizes.alltrees58 978.3
popSizes.alltrees59 91.1
popSizes.alltrees60 441.8
popSizes.alltrees61 395.6
popSizes.alltrees62 552.1
popSizes.alltrees63 850.1
popSizes.alltrees64 333.7
popSizes.alltrees65 474
popSizes.alltrees66 710
popSizes.alltrees67 716.1
popSizes.alltrees68 58.3
popSizes.alltrees69 812.1
popSizes.alltrees70 259.6
popSizes.alltrees71 591.8
popSizes.alltrees72 675.3
popSizes.alltrees73 468.2
popSizes.alltrees74 58.7
popSizes.alltrees75 788.4
popSizes.alltrees76 677.4
popSizes.alltrees77 393.7
popSizes.alltrees78 192.8
popSizes.alltrees79 84.5
popSizes.alltrees80 542.6
popSizes.alltrees81 112.8
popSizes.alltrees82 524.3
popSizes.alltrees83 299.1
popSizes.alltrees84 408.9
popSizes.alltrees85 358.6
popSizes.alltrees86 263.4
popSizes.alltrees87 233.8
popSizes.alltrees88 328.7
popSizes.alltrees89 120.2
popSizes.alltrees90 254.3
popSizes.alltrees91 706.6
popSizes.alltrees92 323.1
popSizes.alltrees93 282
popSizes.alltrees94 415.8
popSizes.alltrees95 415
popSizes.alltrees96 140.4
popSizes.alltrees97 279
popSizes.alltrees98 559.2
popSizes.alltrees99 824.9

popSizes.alltrees100 171.5

Table C.3: ESSs for the first 100 popSizes.alltrees parameters.
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Parameter ESS

popSizes.alltrees101 467.5
popSizes.alltrees102 400
popSizes.alltrees103 319.9
popSizes.alltrees104 81.3
popSizes.alltrees105 341.6
popSizes.alltrees106 157.7
popSizes.alltrees107 608.8
popSizes.alltrees108 438.2
popSizes.alltrees109 69.7
popSizes.alltrees110 68.5
popSizes.alltrees111 323.2
popSizes.alltrees112 211.2
popSizes.alltrees113 40.9
popSizes.alltrees114 131.4
popSizes.alltrees115 90.5
popSizes.alltrees116 86.2
popSizes.alltrees117 2832.3
popSizes.alltrees118 2832.3
popSizes.alltrees119 67.7
popSizes.alltrees120 59.8
popSizes.alltrees121 1544
popSizes.alltrees122 2314.2
popSizes.alltrees123 56.7
popSizes.alltrees124 2156.7
popSizes.alltrees125 319.6
popSizes.alltrees126 1943.5
popSizes.alltrees127 115.9
popSizes.alltrees128 2832.3
popSizes.alltrees129 1482
popSizes.alltrees130 70.9
popSizes.alltrees131 114.2

Parameter ESS

posterior 1939.8
likelihood 10187.7

prior 1925.1
TreeHeight 10775.9

kappa 12244.8
gammaShape 12581.2

ExtendedBayesianSkyline 343.3
populationMean.alltrees 2832.3
sum(indicators.alltrees) 442.3

ucldStdev 9589.3
rate.mean 11364.7

rate.variance 9345.4
rate.coefficientOfVariation 9568.4

Table C.4: ESSs of remaining popSizes.alltrees parameters, as well as the
other, more general, parameters.
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C.1.3 EBSPs from BEAST validation runs

In this section, we present the trace plots for the validation runs of the
Extended Bayesian Skyline analysis. The trace plots are for the posterior
and the parameter‘sum(indicators.alltrees)’. Recall that ‘posterior’ is the
log posterior probability, and sum(indicators.alltrees) is the number of
changepoints for the trajectory of the effective population size. Figure C.2
displays all trace plots as well as the corresponding effective sample sizes
(ESSs). All trace plots seem reasonable, although there is a small deviation
in the trace plot for sum(indicators.alltrees) in Validation 1. All ESSs are
above 200.

The kernel density estimate for the posterior across all validation runs is
given in Figure C.3, and the bar graph comparing the marginal distributions
of the posterior samples of sum(indicators.alltrees) is given in Figure C.4.

From Figure C.4 and the RHS of Figure C.2, we can see that each
validation run has a slightly different distribution of posterior samples of
the parameter sum(indicators.alltrees). All validation runs accept 3 major
changes in the trajectory of effective population size more often than any
other number. We notice that the posterior samples of
sum(indicator.alltrees) are lower in the third validation run, because there
is a greater posterior probability for 1 or 2 changes in effective population
size compared to other runs. Conversely, the first validation run has greater
posterior probabilities for sum(indicators.alltrees) ≥ 4 than both other
validation runs. From Figure C.3, the marginal densities of the log
posterior probability are similar for all validation runs. Despite the slightly
different densities across the validation runs, all three produced similar
Extended Bayesian Skyline Plots (EBSPs).
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Figure C.2: Trace plots from the three validation runs for the posterior (left)
and sum(indicators.alltrees) (right) of the raw posterior samples. Each row
is a different MCMC chain and the ESS for each parameter is given as a
subcaption. The burn-in for each chain is indicated by a transparent region
in each trace plot.



C.1. Extended Results from Chapter 3 209
D

e
n

s
it

y

posterior

sky_trace_ucl_long1.log - posterior

sky_trace_ucl_long2.log - posterior

sky_trace_ucl_long3.log - posterior

-31900 -31800 -31700 -31600 -31500 -31400 -31300 -31200 -31100 -31000 -30900
0

0.001

0.002

0.003

0.004

0.005

sky_trace_ucl_long1.log - posterio

sky_trace_ucl_long2.log - posterio

sky_trace_ucl_long3.log - posterio

Validation 1 - posterior

Validation 2 - posterior

Validation 3 - posterior

Figure C.3: Kernel density estimate of the posterior for all three validation
chains.

P
ro

b
a

b
il
it

y

sum(indicators.alltrees)

sky_trace_ucl_long1.log - sum(indicators.alltrees)

sky_trace_ucl_long2.log - sum(indicators.alltrees)

sky_trace_ucl_long3.log - sum(indicators.alltrees)

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sky_trace_ucl_long1.log - sum(indicators.alltrees

sky_trace_ucl_long2.log - sum(indicators.alltrees

sky_trace_ucl_long3.log - sum(indicators.alltrees

Validation 1 - sum(indicators.alltrees)

Validation 2 - sum(indicators.alltrees)

Validation 3 - sum(indicators.alltrees)

Figure C.4: Bar graph of the marginal distribution of sum(indicators.alltrees)
for all three validation chains.
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C.2 Extended Results from Chapter 6

C.2.1 UMAP dimension reduction of summary
statistics

We present the UMAP dimension reductions of the observed and simulated
summary statistics for n_components = 2, min_dist = 0.1, 0.3, 0.5, 0.7, 0.9
and n_neighbours= 5, 10, 20, 50, 100. The random seeds (random_state
parameters) for each combination of minimum distance and number of
nearest neighbours are given in Table C.5.

Number of nearest neighbours (nn)
5 10 20 50 100

M
in

im
u
m

d
is

ta
n
ce

(m
i
n
_
d
i
s
t
) 0.1 44193 65095 303 6259 56520

0.3 65587 71788 98174 30671 63216
0.5 82390 33110 34477 62206 71817
0.7 14215 78506 31 96043 29632
0.9 68184 92076 84761 47948 20461

Table C.5: Random states used to initialize the UMAP algorithm for all
combinations of parameters.

Each value of minimum distance is given as a set of plots on a new page,
with all possible values for nearest neighbours. The plots are consistent
across all values for minimum distance and nearest neighbours, which
suggests that we are not falsely identifying any clusters. We notice that
there is more spread in the dimension reduction for smaller numbers of
nearest neighbours, which is true for all minimum distances.
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Figure C.5: UMAP dimension reductions with a minimum distance of 0.1.
This means that only a small distance is required between points in the
two-dimensional space.
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Figure C.6: UMAP dimension reductions with a minimum distance of 0.3.
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Figure C.7: UMAP dimension reductions with a minimum distance of 0.5.
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Figure C.8: UMAP dimension reductions with a minimum distance of 0.7.
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Figure C.9: UMAP dimension reductions with a minimum distance of 0.9.
This means that a comparatively large distance is required between points
in the two-dimensional space.
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C.2.2 Predictor variables for MLR with forward
selection

The predictor variables and estimated coefficients from MLR with forward
selection are given in Tables C.2 and C.3. Recall that MLR compares two
classes in each regression model, and so there are no coefficients
corresponding to the Birdsell 1 migration model because it is the reference
class.

The names of the predictor variables correspond to the summary statistics
in the BayeSSC output. ‘MeanDiv.Hs.bar’ is the name given to mean
haplotype diversity, while ‘PoolDiv.Ht’ is the name given to pooled
haplotype diversity. Since there are multiple populations, there are more
than one of each of the summary statistics. Every time that a summary
statistic is repeated, a number is incremented at the end of the statistic
name. For example, the first time the number of segregated sites appears, it
is given as ‘SegSites’. The second time this statistic appears, it is given as
‘SegSites.1’.

For within-population summary statistics, this naming convention means
that the population ID is appended to within-population summary statistics
(excluding pairwise differences). Within-population summary statistics that
do not have a number appended are for Population 0, i.e. Borneo.

The numbers appended to the names of the summary statistics are not as
easily interpretable for between-population summary statistics or for the
average number of pairwise differences. All numbers appended to the
names of between-population summary statistics are explained in Table
C.6.1. Suppose that we wish to find which populations were considered in
the calculation of ‘Fst.10’. Using Table C.6.1, we can see that ‘Fst.10’ is
FST calculated from the DNA simulated for Populations 2 and 4.

There are a larger number of pairwise differences statistics because it is
both a within-population and between-population statistic. The numbers
appended to the average number of pairwise differences are explained in
Table C.6.2. Giving another two examples, we can see from Table C.6.2
that ‘PairDiffs.18’ is the average number of pairwise differences calculated
from Population 4, while ‘PairDiffs.13’ would be the average number of
pairwise differences between populations 2 and 4.
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Number
appended

Population IDs
used for statistic

(blank) 0, 1
1 0, 2
2 0, 3
3 0, 4
4 0, 5
5 1, 2
6 1, 3
7 1, 4
8 1, 5
9 2, 3
10 2, 4
11 2, 5
12 3, 4
13 3, 5
14 4, 5

C.6.1: Numbering convention for
between-population summary statis-
tics, excluding pairwise differences.

Number
appended

Population IDs
used for statistic

(blank) 0
1 0, 1
2 0, 2
3 0, 3
4 0, 4
5 0, 5
6 1
7 1, 2
8 1, 3
9 1, 4
10 1, 5
11 2
12 2, 3
13 2, 4
14 2, 5
15 3
16 3, 4
17 3, 5
18 4
19 4, 5
20 5

C.6.2: Numbering convention for
pairwise differences.



218 Appendix C. Supplementary Figures and Tables

Predictor Variable Birdsell 2 Bowdler 1 Bowdler 2
Northern

Sunda

(Intercept) -29.40 0.03 -0.09 -2.69

Fst 0.70 -0.41 -0.57 -0.59

Fst.1 0.89 -0.15 -0.25 0.10

Fst.10 0.39 0.52 0.76 1.59

Fst.11 0.50 0.42 0.55 0.91

Fst.12 -0.59 -3.79 -3.41 -3.32

Fst.13 -0.06 0.39 -0.20 1.08

Fst.14 -0.02 -1.95 -2.39 -1.94

Fst.2 0.02 0.09 0.12 1.14

Fst.3 -0.50 1.03 1.00 0.67

Fst.4 -0.58 0.37 0.62 -0.01

Fst.5 -6.79 -0.13 -0.49 0.47

Fst.6 0.76 0.43 0.27 0.91

Fst.7 0.85 1.16 1.25 1.01

Fst.8 1.18 0.03 0.49 -0.18

Fst.9 0.82 0.29 0.25 -5.12

MeanDiv.Hs.bar..5 -146.00 27.00 18.90 35.70

PairDiffs 0.76 1.73 1.58 2.29

PairDiffs.1 -0.58 0.20 0.28 0.17

PairDiffs.10 -0.45 0.03 -0.14 0.12

PairDiffs.11 -9.99 2.80 2.47 -5.17

PairDiffs.12 -0.34 -0.07 -0.06 1.36

PairDiffs.13 -0.17 -0.13 -0.21 -0.52

PairDiffs.14 -0.24 -0.20 -0.16 -0.40

PairDiffs.15 -2.27 -6.50 -7.76 -11.40

PairDiffs.16 0.18 0.82 0.82 0.62

PairDiffs.17 -0.04 -0.14 -0.02 -0.41

PairDiffs.18 1.63 -7.49 -4.37 -5.18

PairDiffs.19 0.00 0.75 0.78 0.79

PairDiffs.2 -0.28 0.03 0.05 -0.06

PairDiffs.20 1.79 -3.23 -3.86 -2.52

Table C.7: Estimated coefficients for each pairwise logistic regression that
comprises MLR. Birdsell 1 is the reference class, and forward selection was
used for variable selection.
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Predictor Variable Birdsell 2 Bowdler 1 Bowdler 2
Northern

Sunda

PairDiffs.3 0.02 -0.03 -0.01 -0.37

PairDiffs.4 0.21 -0.33 -0.31 -0.22

PairDiffs.5 0.27 -0.16 -0.22 0.07

PairDiffs.6 -4.00 0.44 0.72 0.70

PairDiffs.7 1.99 0.01 0.14 -0.16

PairDiffs.8 -0.19 -0.10 -0.03 -0.27

PairDiffs.9 -0.27 -0.43 -0.47 -0.38

PoolDiv.Ht..13 0.14 0.38 0.33 0.49

PrivHaps.2 30.70 -16.20 -15.10 7.41

PrivHaps.5 -20.30 40.00 38.80 38.70

PrivTo2.1 -126.00 65.40 61.30 -31.00

PrivTo3 -111.00 17.50 17.20 123.00

PrivTo3.2 2.20 10.60 10.60 -20.10

PrivTo3.3 157.00 -84.60 -84.20 -82.20

PrivTo4.3 0.20 -2.10 -2.03 -2.20

PrivTo5.3 5.13 -23.90 -21.40 -21.10

PrivTo5.4 18.00 -29.70 -29.60 -29.70

SegSites.1 1.65 0.17 0.00 0.25

SegSites.2 3.12 -0.02 -0.03 2.18

SegSites.3 0.38 2.14 2.03 3.22

SegSites.4 -0.26 1.04 0.46 0.86

SegSites.5 0.07 1.40 1.30 1.23

TajimasD.1 0.17 0.07 0.03 0.12

TajimasD.3 0.49 -0.03 0.06 -0.10

TajimasD.4 -0.04 0.08 -0.09 0.02

Table C.7: Estimated coefficients for each pairwise logistic regression that
comprises MLR. Birdsell 1 is the reference class, and forward selection was
used for variable selection.
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Predictor Variable Aggregated
Southern

Sunda
Tindale 1 Tindale 2

(Intercept) -5.55 -43.90 -12.70 -1.94

Fst -1.37 0.09 -0.85 -0.48

Fst.1 -0.02 1.34 0.05 -0.04

Fst.10 0.84 2.14 1.58 1.73

Fst.11 -0.52 1.30 1.32 0.99

Fst.12 -1.47 -3.71 -3.05 -3.55

Fst.13 0.94 0.72 0.19 1.22

Fst.14 -2.32 -2.07 -2.26 -1.87

Fst.2 1.27 0.70 0.88 1.06

Fst.3 1.59 0.30 0.93 0.82

Fst.4 -0.31 -0.19 0.34 -0.19

Fst.5 -2.73 -7.15 0.18 0.47

Fst.6 2.11 2.29 1.17 0.92

Fst.7 2.30 1.51 1.00 0.76

Fst.8 0.85 0.78 0.13 -0.27

Fst.9 -4.01 -3.44 -5.06 -5.10

MeanDiv.Hs.bar..5 45.60 -159.00 74.00 46.60

PairDiffs 2.09 3.93 2.30 2.03

PairDiffs.1 0.32 -0.16 0.30 0.10

PairDiffs.10 -0.51 -0.33 0.03 0.12

PairDiffs.11 -13.60 -11.90 -4.61 -5.00

PairDiffs.12 0.92 0.67 1.34 1.34

PairDiffs.13 -0.02 -0.80 -0.51 -0.57

PairDiffs.14 0.55 -0.52 -0.49 -0.48

PairDiffs.15 5.66 -14.20 -10.20 -12.00

PairDiffs.16 -0.54 0.79 0.69 0.72

PairDiffs.17 -0.99 -0.34 -0.17 -0.40

PairDiffs.18 -3.53 -7.78 -6.87 -7.43

PairDiffs.19 0.54 0.86 0.70 0.73

PairDiffs.2 -1.08 -0.57 -0.06 -0.00

PairDiffs.20 -0.82 -1.44 -3.00 -2.56

Table C.8: Estimated coefficients for each pairwise logistic regression that
comprises MLR. Birdsell 1 is the reference class, and forward selection was
used for variable selection.
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Predictor Variable Aggregated
Southern

Sunda
Tindale 1 Tindale 2

PairDiffs.3 -0.77 -0.25 -0.25 -0.34

PairDiffs.4 -0.39 -0.09 -0.33 -0.29

PairDiffs.5 -0.40 0.18 -0.00 0.15

PairDiffs.6 -9.34 -3.69 1.01 1.20

PairDiffs.7 0.34 2.12 -0.08 -0.16

PairDiffs.8 0.02 -0.62 -0.38 -0.26

PairDiffs.9 -1.03 -0.52 -0.32 -0.22

PoolDiv.Ht..13 0.23 0.36 0.54 0.33

PrivHaps.2 1.25 30.40 -9.25 5.90

PrivHaps.5 2.70 38.80 38.30 38.90

PrivTo2.1 -6.05 -125.00 36.30 -25.00

PrivTo3 1.01 121.00 125.00 124.00

PrivTo3.2 -0.27 -19.70 -20.30 -20.20

PrivTo3.3 -4.46 -81.30 -83.40 -82.90

PrivTo4.3 -0.34 -2.17 -1.66 -1.93

PrivTo5.3 -4.33 -21.40 -21.30 -21.80

PrivTo5.4 -0.09 -29.60 -29.20 -29.60

SegSites.1 4.93 1.80 0.14 -0.05

SegSites.2 1.98 3.96 2.22 2.15

SegSites.3 3.50 3.99 2.70 3.27

SegSites.4 2.03 1.40 1.14 1.23

SegSites.5 -0.42 1.28 1.22 1.31

TajimasD.1 1.65 0.24 0.07 0.00

TajimasD.3 -0.19 0.74 -0.41 0.00

TajimasD.4 0.32 0.23 0.16 0.17

Table C.8: Estimated coefficients for each pairwise logistic regression that
comprises MLR. Birdsell 1 is the reference class, and forward selection was
used for variable selection.
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C.2.3 Predictor variables for MLR with LASSO

LASSO allows different predictor variables in each of the logistic regression
models that comprise the multinomial logistic regression. The estimated
coefficients for each of the predictor variables are displayed in Tables C.9,
C.10, and C.11. Each predictor variable appears in at least one regression
model. Table C.9 contains the estimated coefficients for the Birdsell 1,
Birdsell 2, and Northern Sunda migration models; Table C.10 contains the
estimated coefficients for the Bowdler 1, Bowdler 2, and Southern Sunda
migration models; and Table C.11 contains the estimated coefficients for
the Tindale 1, Tindale 2, and Aggregated migration models. All estimated
coefficients are given to three significant figures. Predictor variables that do
not appear in a particular regression model are denoted by a dash.

Predictor Variable Birdsell 1 Birdsell 2
Northern

Sunda

(Intercept) 0.649 0.0785 0.277

Haptypes - - -

PrivHaps -0.0139 - -

SegSites -0.234 -0.114 0.0904

PairDiffs - - -

HapDiver - - -

TajimasD -0.178 -0.0484 0.0368

PrivTo0 - - -

PrivTo1 - - -

PairDiffs.1 0.048 -0.442 -

MeanDiv.Hs.bar. - - -

PoolDiv.Ht. - - -

Fst 0.208 0.819 -0.0888

PrivTo0.1 - - -

PrivTo2 - - -

PairDiffs.2 0.0498 -0.0659 -

MeanDiv.Hs.bar..1 - - -

PoolDiv.Ht..1 - - -

Fst.1 -0.07 0.466 0.00966

PrivTo0.2 - - -

Table C.9: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Birdsell 1 Birdsell 2
Northern

Sunda

PrivTo3 - - -

PairDiffs.3 0.0146 0.00166 -0.0728

MeanDiv.Hs.bar..2 - - -

PoolDiv.Ht..2 - - -

Fst.2 -0.205 -0.118 0.322

PrivTo0.3 - - -

PrivTo4 - - -

PairDiffs.4 0.237 0.392 -0.00468

MeanDiv.Hs.bar..3 - - -

PoolDiv.Ht..3 -0.00283 0.0322 -

Fst.3 -0.74 -1.11 -0.000759

PrivTo0.4 - - -

PrivTo5 - 0.0467 -

PairDiffs.5 - 0.0966 -

MeanDiv.Hs.bar..4 - - -

PoolDiv.Ht..4 - - 0.0524

Fst.4 -0.108 -0.376 -

Haptypes.1 - - -

PrivHaps.1 -0.0522 0.697 -

SegSites.1 -0.434 0.215 0.0521

PairDiffs.6 - -1.97 -

HapDiver.1 - - -

TajimasD.1 -0.128 -0.306 0.0731

PrivTo1.1 - -5.87 -

PrivTo2.1 - - -

PairDiffs.7 - 1.78 -0.0723

MeanDiv.Hs.bar..5 - - -

PoolDiv.Ht..5 - - -

Fst.5 - -6.37 0.288

PrivTo1.2 - 0.0147 -

PrivTo3.1 - - -

Table C.9: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Birdsell 1 Birdsell 2
Northern

Sunda

PairDiffs.8 0.103 0.00375 -0.00451

MeanDiv.Hs.bar..6 - - -

PoolDiv.Ht..6 - - -

Fst.6 -0.576 - -

PrivTo1.3 - - -

PrivTo4.1 0.0481 - -

PairDiffs.9 0.308 8.14e-05 -0.0179

MeanDiv.Hs.bar..7 - - -

PoolDiv.Ht..7 - 0.231 -0.0414

Fst.7 -0.906 - -0.0155

PrivTo1.4 - - -

PrivTo5.1 - - -

PairDiffs.10 0.0438 -0.172 0.0638

MeanDiv.Hs.bar..8 - - -

PoolDiv.Ht..8 - - -

Fst.8 -0.259 0.453 -0.265

Haptypes.2 - - -

PrivHaps.2 0.0616 -0.197 -0.00346

SegSites.2 -1.58 0.336 -

PairDiffs.11 - - -

HapDiver.2 - - -

TajimasD.2 0.47 -0.67 -0.0711

PrivTo2.2 0.877 0.472 -

PrivTo3.2 1.4 2.54 -1.54

PairDiffs.12 -0.0362 -0.432 0.833

MeanDiv.Hs.bar..9 - - -

PoolDiv.Ht..9 0.0821 - -

Fst.9 0.684 1.62 -3.34

PrivTo2.3 - - -

PrivTo4.2 - - -

PairDiffs.13 0.237 0.125 -0.00522

Table C.9: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Birdsell 1 Birdsell 2
Northern

Sunda

MeanDiv.Hs.bar..10 - - -

PoolDiv.Ht..10 - -0.122 -

Fst.10 -0.998 -0.726 -

PrivTo2.4 - - -

PrivTo5.2 - - -

PairDiffs.14 0.279 0.0107 -0.0369

MeanDiv.Hs.bar..11 - - -

PoolDiv.Ht..11 - -0.0395 -

Fst.11 -0.746 -0.17 -

Haptypes.3 - - -

PrivHaps.3 -1.04 -2.18 1.46

SegSites.3 -1.29 -1.18 0.403

PairDiffs.15 - - -

HapDiver.3 - - -

TajimasD.3 0.753 0.977 -0.717

PrivTo3.3 - - -

PrivTo4.3 - - -

PairDiffs.16 -0.439 -0.262 -0.00368

MeanDiv.Hs.bar..12 - - -

PoolDiv.Ht..12 0.0238 0.00328 -

Fst.12 2.85 2.24 -

PrivTo3.4 - - -

PrivTo5.3 - - -

PairDiffs.17 0.0764 0.0388 -0.0976

MeanDiv.Hs.bar..13 - - -

PoolDiv.Ht..13 -0.287 - 0.0415

Fst.13 -0.157 -0.196 0.418

Haptypes.4 - - -

PrivHaps.4 - - -

SegSites.4 0.05 0.12 -

PairDiffs.18 - - -

Table C.9: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Birdsell 1 Birdsell 2
Northern

Sunda

HapDiver.4 - - -

TajimasD.4 0.206 0.259 -0.0328

PrivTo4.4 - - -

PrivTo5.4 0.396 0.219 -

PairDiffs.19 -0.576 -0.58 0.0328

MeanDiv.Hs.bar..14 - - -

PoolDiv.Ht..14 0.0316 0.0585 -

Fst.14 1.72 1.7 0.0422

Haptypes.5 - - -

PrivHaps.5 - - -

SegSites.5 -0.716 -0.363 0.0728

PairDiffs.20 - - -

HapDiver.5 - - -

TajimasD.5 0.268 0.454 -

Table C.9: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.

Predictor Variable Bowdler 1 Bowdler 2
Southern

Sunda

(Intercept) 1.26 1.37 -0.255

Haptypes - - -

PrivHaps -0.00484 - 0.0161

SegSites - - 0.387

PairDiffs - - -

HapDiver - - -

TajimasD -0.0173 - 0.207

PrivTo0 - - -

PrivTo1 - - -

PairDiffs.1 0.0983 0.104 -0.193

MeanDiv.Hs.bar. - - -

PoolDiv.Ht. - - -

Table C.10: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Bowdler 1 Bowdler 2
Southern

Sunda

Fst - -0.0575 0.416

PrivTo0.1 - - -

PrivTo2 - - -

PairDiffs.2 0.0433 0.0852 -0.381

MeanDiv.Hs.bar..1 - - -

PoolDiv.Ht..1 - - -

Fst.1 -0.131 -0.276 0.993

PrivTo0.2 - - -

PrivTo3 - - -

PairDiffs.3 - 0.0198 -0.00104

MeanDiv.Hs.bar..2 - - -

PoolDiv.Ht..2 - - -

Fst.2 -0.159 -0.132 -

PrivTo0.3 - - -

PrivTo4 - - -

PairDiffs.4 - - 0.021

MeanDiv.Hs.bar..3 - - -

PoolDiv.Ht..3 - - -

Fst.3 0.105 0.115 -0.194

PrivTo0.4 - - -

PrivTo5 - - -

PairDiffs.5 -0.0468 -0.104 0.0121

MeanDiv.Hs.bar..4 - - -

PoolDiv.Ht..4 - - -

Fst.4 0.0555 0.309 -

Haptypes.1 - - -

PrivHaps.1 -0.0335 -0.0378 0.84

SegSites.1 -0.0709 -0.136 0.489

PairDiffs.6 - - -1.87

HapDiver.1 - - -

TajimasD.1 - -0.000558 -0.201

Table C.10: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Bowdler 1 Bowdler 2
Southern

Sunda

PrivTo1.1 - - -6.06

PrivTo2.1 - - -

PairDiffs.7 - 0.11 1.81

MeanDiv.Hs.bar..5 - - -

PoolDiv.Ht..5 - - -0.0165

Fst.5 -0.11 -0.42 -6.58

PrivTo1.2 - - -

PrivTo3.1 - - -

PairDiffs.8 0.034 0.0507 -0.196

MeanDiv.Hs.bar..6 - - -

PoolDiv.Ht..6 - - -

Fst.6 -0.227 -0.281 1.06

PrivTo1.3 - - -

PrivTo4.1 0.0387 - -3.61e-05

PairDiffs.9 - -0.00284 -0.131

MeanDiv.Hs.bar..7 - - -

PoolDiv.Ht..7 0.000398 - -

Fst.7 - 0.0236 0.432

PrivTo1.4 - - -

PrivTo5.1 - - -

PairDiffs.10 0.0289 -0.0203 -0.247

MeanDiv.Hs.bar..8 - - -

PoolDiv.Ht..8 - - -

Fst.8 -0.145 0.0842 0.447

Haptypes.2 - - -

PrivHaps.2 0.204 0.13 -0.204

SegSites.2 -1.2 -1.26 1.03

PairDiffs.11 - - -

HapDiver.2 - - -

TajimasD.2 0.863 0.816 -0.881

PrivTo2.2 - 0.453 -

Table C.10: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Bowdler 1 Bowdler 2
Southern

Sunda

PrivTo3.2 2.86 2.74 -1.14

PairDiffs.12 -0.0971 -0.083 0.0172

MeanDiv.Hs.bar..9 - - -

PoolDiv.Ht..9 0.139 - -

Fst.9 0.961 0.891 -1.47

PrivTo2.3 - - -

PrivTo4.2 - - -

PairDiffs.13 0.0577 0.00338 -0.112

MeanDiv.Hs.bar..10 - - -

PoolDiv.Ht..10 0.136 0.122 -0.0268

Fst.10 -0.402 -0.205 0.241

PrivTo2.4 - - -

PrivTo5.2 - - -

PairDiffs.14 0.0643 0.0788 -0.0734

MeanDiv.Hs.bar..11 - - -

PoolDiv.Ht..11 - 0.0502 -0.0173

Fst.11 -0.306 -0.131 0.25

Haptypes.3 - - -

PrivHaps.3 -2.76 -2.59 1.08

SegSites.3 - -0.204 0.885

PairDiffs.15 - - -

HapDiver.3 - - -

TajimasD.3 1.89e-05 - -0.195

PrivTo3.3 - - -

PrivTo4.3 - - -

PairDiffs.16 0.203 0.225 0.0376

MeanDiv.Hs.bar..12 - - -

PoolDiv.Ht..12 -0.145 -0.13 -

Fst.12 -0.506 -0.182 -0.157

PrivTo3.4 - - -

PrivTo5.3 - - -

Table C.10: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Bowdler 1 Bowdler 2
Southern

Sunda

PairDiffs.17 0.0278 0.0843 -0.00239

MeanDiv.Hs.bar..13 - - -

PoolDiv.Ht..13 - - -

Fst.13 - -0.446 -

Haptypes.4 - - -

PrivHaps.4 - - -

SegSites.4 -0.162 -0.211 0.103

PairDiffs.18 - - -

HapDiver.4 - - -

TajimasD.4 -0.0978 -0.0859 0.0208

PrivTo4.4 - - -

PrivTo5.4 -0.00702 -0.0148 -

PairDiffs.19 0.0187 0.0284 0.0577

MeanDiv.Hs.bar..14 - - -

PoolDiv.Ht..14 -0.0591 -0.0101 -

Fst.14 - -0.416 -0.0285

Haptypes.5 - - -

PrivHaps.5 - - -

SegSites.5 0.127 -0.0864 0.226

PairDiffs.20 - - -

HapDiver.5 - - -

TajimasD.5 -0.104 -0.191 0.0751

Table C.10: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.

Predictor Variable Tindale 1 Tindale 2 Aggregated

(Intercept) 0.497 0.275 -4.15

Haptypes - - -

PrivHaps 0.000122 -0.00631 -

SegSites 0.088 0.0548 -

PairDiffs - - -

Table C.11: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Tindale 1 Tindale 2 Aggregated

HapDiver - - -

TajimasD 0.0368 - -

PrivTo0 - - -

PrivTo1 - - -

PairDiffs.1 0.0873 -0.0273 -

MeanDiv.Hs.bar. - - -

PoolDiv.Ht. - - -

Fst -0.289 -0.0331 -

PrivTo0.1 - - -

PrivTo2 - - -

PairDiffs.2 -0.0151 - -

MeanDiv.Hs.bar..1 - - -

PoolDiv.Ht..1 - - -

Fst.1 - - -

PrivTo0.2 - - -

PrivTo3 - - -

PairDiffs.3 - -0.0148 -

MeanDiv.Hs.bar..2 - - -

PoolDiv.Ht..2 0.0159 - -0.00901

Fst.2 0.162 0.2 -

PrivTo0.3 - - -

PrivTo4 - - -

PairDiffs.4 -0.0523 -0.00406 -

MeanDiv.Hs.bar..3 - - -

PoolDiv.Ht..3 - - -

Fst.3 0.134 - -

PrivTo0.4 - - -

PrivTo5 - - -

PairDiffs.5 -0.0343 0.03 -

MeanDiv.Hs.bar..4 - - -

PoolDiv.Ht..4 - - -

Fst.4 0.27 -0.076 -

Table C.11: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Tindale 1 Tindale 2 Aggregated

Haptypes.1 - - -

PrivHaps.1 0.0058 -0.00992 -

SegSites.1 - - -

PairDiffs.6 0.13 - -

HapDiver.1 - - -

TajimasD.1 0.0387 0.0349 -

PrivTo1.1 - - -0.168

PrivTo2.1 - - -

PairDiffs.7 -0.0196 -0.074 -

MeanDiv.Hs.bar..5 - - -

PoolDiv.Ht..5 - - -

Fst.5 0.0647 0.277 -

PrivTo1.2 - - -

PrivTo3.1 - - -

PairDiffs.8 -0.0322 - -

MeanDiv.Hs.bar..6 - - -

PoolDiv.Ht..6 - - -

Fst.6 0.0711 - -

PrivTo1.3 - - -

PrivTo4.1 -0.000254 -0.0329 -

PairDiffs.9 - 0.0412 -

MeanDiv.Hs.bar..7 - - -

PoolDiv.Ht..7 - - -

Fst.7 0.0385 -0.0891 -

PrivTo1.4 - - -

PrivTo5.1 - - -

PairDiffs.10 - 0.0845 -

MeanDiv.Hs.bar..8 - - -

PoolDiv.Ht..8 - - -

Fst.8 - -0.392 -

Haptypes.2 - - -

PrivHaps.2 -0.0015 - -

Table C.11: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Tindale 1 Tindale 2 Aggregated

SegSites.2 0.104 - -

PairDiffs.11 - - -

HapDiver.2 - - -

TajimasD.2 - -0.0349 -

PrivTo2.2 - - -

PrivTo3.2 -1.71 -1.6 -

PairDiffs.12 0.842 0.798 -

MeanDiv.Hs.bar..9 - - -

PoolDiv.Ht..9 0.000408 -0.0717 -1.21

Fst.9 -3.33 -3.29 -

PrivTo2.3 - - -

PrivTo4.2 - - 5.93

PairDiffs.13 -0.0535 -0.0274 -

MeanDiv.Hs.bar..10 - - -

PoolDiv.Ht..10 -0.0376 0.017 -

Fst.10 0.114 0.0978 -

PrivTo2.4 - - -

PrivTo5.2 - - 0.719

PairDiffs.14 -0.0406 -0.0728 -

MeanDiv.Hs.bar..11 - - -

PoolDiv.Ht..11 - - -

Fst.11 0.238 - -

Haptypes.3 - - -

PrivHaps.3 1.64 1.54 -

SegSites.3 0.0713 0.423 -

PairDiffs.15 - - -

HapDiver.3 - - -

TajimasD.3 -0.83 -0.65 -

PrivTo3.3 - - -

PrivTo4.3 - - -

PairDiffs.16 0.109 - -

MeanDiv.Hs.bar..12 - - -

Table C.11: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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Predictor Variable Tindale 1 Tindale 2 Aggregated

PoolDiv.Ht..12 - - -

Fst.12 0.163 -0.0607 -

PrivTo3.4 - - -

PrivTo5.3 - - -

PairDiffs.17 -0.0194 -0.0814 -

MeanDiv.Hs.bar..13 - - -

PoolDiv.Ht..13 0.0472 - -0.0355

Fst.13 -0.14 0.537 -

Haptypes.4 - - -

PrivHaps.4 - - -

SegSites.4 -0.0231 - -

PairDiffs.18 - - -

HapDiver.4 - - -

TajimasD.4 - -0.0153 -

PrivTo4.4 - - -

PrivTo5.4 - - -

PairDiffs.19 -0.0844 - -

MeanDiv.Hs.bar..14 - - -

PoolDiv.Ht..14 0.0405 - -

Fst.14 -0.244 0.0792 -

Haptypes.5 - - -

PrivHaps.5 -0.00941 - -

SegSites.5 - 0.117 -

PairDiffs.20 - - -

HapDiver.5 - - -

TajimasD.5 -0.0479 -0.0309 -

Table C.11: Estimated coefficients for all regression models that make up
MLR, with LASSO used for variable selection.
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C.2.4 Detailed results from validation analyses

For MLR (with both types of variable selection) and linear SVMs, we used
10% of the data as training data. There were four different
randomly-selected 10% validation sets that contained the same number of
observations for each migration model. We used these four different
validation sets to train all three classifiers.

Since neural networks rely on large amounts of data to be effective, we
re-trained the neural network on the same 70% training data.

Validation for MLR with Forward Selection

For the first validation run, the classifier had a training accuracy of 51.4%
and a test accuracy of 50.0%. For the second validation run, the classifier
had a training accuracy of 51.4% and a test accuracy of 49.8%. For the
third validation run, the classifier had a training accuracy of 51.1% and a
test accuracy of 49.9%. For the fourth validation run, the classifier had a
training accuracy of 51.8% and a test accuracy of 49.7%.

For all validation runs, the class probabilities for the observed summary
statistics are given in Table C.12. We note that different validation runs
choose different models (Validation 1, 3, and 4 select Southern Sunda, while
Validation 2 selects Birdsell 1), and the highest class probability is often
approximately one.

Confusion matrices for all validation runs are given below. Similar
misclassification patterns appear in all confusion matrices, and these also
resemble the confusion matrices from the initial analysis.
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Migration Model
Probability

(Validation 1)
Probability

(Validation 2)
Probability

(Validation 3)
Probability

(Validation 4)

Birdsell 1 1.011× 10−35 ≈ 1.00 3.145× 10−25 1.756× 10−3

Birdsell 2 2.078× 10−40 5.583× 10−10 6.050× 10−24 6.953× 10−3

Bowdler 1 3.444× 10−36 2.941× 10−19 1.439× 10−31 0.122

Bowdler 2 2.210× 10−35 4.060× 10−19 2.970× 10−31 9.385× 10−2

Northern Sunda 5.496× 10−19 6.126× 10−19 5.303× 10−19 0.139

Southern Sunda ≈ 1.000 5.516× 10−18 ≈ 1.00 0.397

Tindale 1 1.358× 10−18 3.666× 10−18 3.760× 10−22 0.133

Tindale 2 7.854× 10−18 1.019× 10−18 1.211× 10−21 0.107

Aggregated 4.721× 10−47 4.230× 10−33 7.553× 10−48 3.596× 10−36

Table C.12: Class probabilities of the observed summary statistics belonging
to each migration model, determined by MLR with forward selection.
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Figure C.10: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with forward selection (Validation 1).
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Figure C.11: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with forward selection (Validation 2).
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Figure C.12: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with forward selection (Validation 3).
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Figure C.13: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with forward selection (Validation 4).
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Validation for MLR with LASSO

The training and test accuracy for the MLR classifier for each validation
run, along with the penalization parameter λ, are given in Table C.13. For
all classifiers we used λ1se. The same data partitions were used as for MLR
with forward selection, using 10% of the data as training data. The
probabilities of the observed data belonging to each class for each of the
migration models are given in Table C.14.

Validation λ1se Training Accuracy Test Accuracy

1 4.235× 10−4 51.0% 49.5%

2 3.515× 10−4 50.6% 49.3%

3 3.515× 10−4 50.7% 49.5%

4 2.012× 10−4 51.5% 49.5%

Table C.13: Training and test accuracy, along with λ1se values for all MLR
classifiers using LASSO for variable selection.

Migration Model
Probability

(Validation 1)
Probability

(Validation 2)
Probability

(Validation 3)
Probability

(Validation 4)

Birdsell 1 2.468× 10−3 3.535× 10−3 1.442× 10−2 2.993× 10−3

Birdsell 2 7.298× 10−3 7.251× 10−3 6.923× 10−3 5.632× 10−3

Bowdler 1 9.393× 10−2 0.104 7.807× 10−2 0.218

Bowdler 2 6.864× 10−2 9.099× 10−2 0.101 4.778× 10−2

Northern Sunda 0.175 0.130 0.140 0.140

Southern Sunda 0.349 0.323 0.232 0.384

Tindale 1 0.167 0.172 0.210 7.498× 10−2

Tindale 2 0.137 0.169 0.231 0.127

Aggregated 6.153× 10−5 3.236× 10−5 3.618× 10−5 1.370× 10−5

Table C.14: Class probabilities of the observed summary statistics belonging
to each migration model, determined by MLR with LASSO.
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Figure C.14: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with LASSO (Validation 1).
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Figure C.15: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with LASSO (Validation 2).
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Figure C.16: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with LASSO (Validation 3).
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Figure C.17: Confusion matrices based on (A) the training data and (B) the
test data when using MLR with LASSO (Validation 4).
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Validations for a SVM with linear kernel

We trained four linear SVMs using the same data partitions as for MLR,
i.e. using 10% of the data as training data for each validation. The cost
parameter C ∈ R+ is given for each classifier in Table C.15, along with the
corresponding validation accuracy and test accuracy, and the final class
prediction for the observed data.

Validation Cost Validation Accuracy Test Accuracy Prediction

1 1 49.4% 49.7% Tindale 1

2 32 49.6% 49.6% Birdsell 1

3 8 49.2% 49.6% Tindale 1

4 8 49.9% 49.6% Birdsell 1

Table C.15: Cross-validated and test accuracies for the SVM trained in each
validation. The cost parameter C for the linear SVMs is also given for each
validation, as well as the predicted migration model for the observed sum-
mary statistics.
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Figure C.18: Confusion matrices based on (A) the training data and (B) the
test data when using a linear SVM (Validation 1).
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Figure C.19: Confusion matrices based on (A) the training data and (B) the
test data when using a linear SVM (Validation 2).
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Figure C.20: Confusion matrices based on (A) the training data and (B) the
test data when using a linear SVM (Validation 3).
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Figure C.21: Confusion matrices based on (A) the training data and (B) the
test data when using a linear SVM (Validation 4).
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Neural network validations

For the neural network validations, we used the same data partitions and
the same parameter values as the original analysis. This is because neural
networks use stochastic methods to minimize the loss function, which
means it is possible to obtain different results each time.

The validation and test accuracies for each validation are given in Table
C.16, and the output value of the classifier for each migration model in each
validation is given in Table C.17. Recall that if a column for a migration
model is missing, it means that the migration model was never predicted by
the neural network.

Validation Validation Accuracy Test Accuracy

1 48.9% 48.6%

2 49.9% 49.7 %

3 48.7 % 48.5%

4 49.6% 49.3%

Table C.16: Validation and Training accuracies for each validation of the
neural network classifier.

Migration Model
Probability

(Validation 1)
Probability

(Validation 2)
Probability

(Validation 3)
Probability

(Validation 4)

Birdsell 1 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Birdsell 2 < 2.2× 10−16 3.48× 10−4 2.00 ×10−15 < 2.2× 10−16

Bowdler 1 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Bowdler 2 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Northern Sunda < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Southern Sunda < 2.2× 10−16 ≈ 1.00 ≈ 1.00 < 2.2× 10−16

Tindale 1 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Tindale 2 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Aggregated ≈ 1.00 < 2.2× 10−16 < 2.2× 10−16 ≈ 1.00

Table C.17: The output value of the softmax layer of neural networks for
each validation. Values that were given as zero are presented in this table as
less than machine precision (i.e. < 2.2× 10−16 .
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Figure C.22: Confusion matrices based on (A) the training data and (B) the
test data when using a neural network with Architecture 2 (Validation 1).
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Figure C.23: Confusion matrices based on (A) the training data and (B) the
test data when using a neural network with Architecture 2 (Validation 1).
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Figure C.24: Confusion matrices based on (A) the training data and (B) the
test data when using a neural network with Architecture 2 (Validation 1).
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Figure C.25: Confusion matrices based on (A) the training data and (B) the
test data when using a neural network with Architecture 2 (Validation 1).
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C.3 Extended Results from Chapter 7

C.3.1 UMAP dimension reduction for summary
statistics assuming homogeneous
post-settlement migration

The UMAP dimension reduction displayed in Figure C.26 was performed
with the parameters n_neighbors = 100, min_dist = 0.5, and
random_state = 65640. We notice that the summary statistics from
different migration models are generally indistinguishable in this
lower-dimensional space, with the exception of the aggregated model.
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Figure C.26: The UMAP dimension reduction of the summary statistics
from migration models, assuming homogeneous post-settlement migration
patterns. The plot was facetted by migration model due to the significant
overlap of the migration models. The observed summary statistics are given
as the black star in all panels.



C.3. Extended Results from Chapter 7 257

C.3.2 Distances between the centers of simulated
summary statistics for each migration model

Manhattan distance between geometric medians

(Between) Birdsell 2 Bowdler 1 Bowdler 2 Aggregated

Birdsell 1
129.6 10386.4 122.2 53.7
8.0 298.1 8.1 4.3

Birdsell 2
- 10310.9 49.2 79.4
- 302.4 8.4 5.6

Bowdler 1
- - 10342.8 10349.4
- - 299.7 300.5

Bowdler 2
- - - 126.3
- - - 9.6

Aggregated
- - - -
- - - -

Northern
Sunda

- - - 100.9
- - - 8.4

Southern Sunda
- - - -
- - - -

Tindale 1
- - - -
- - - -

(Between)
Northern

Sunda
Southern

Sunda
Tindale 1 Tindale 2

Birdsell 1
53.1 8.5 62.5 3.4
8.4 9.8 10.1 2.3

Birdsell 2
176.9 127.2 75.4 128.2
10.6 13.4 16.3 7.3

Bowdler 1
10422.8 10381.0 10343.2 10386.4
303.1 299.8 298.4 298.3

Bowdler 2
131.5 119.7 122.8 123.3
11.0 14.4 13.6 6.6

Aggregated
- 57.8 9.8 52.4
- 11.2 11.9 3.6

Northern
Sunda

- 59.7 109.8 53.3
- 7.1 8.6 7.0

Southern
Sunda

- - 55.1 10.2
- - 5.7 8.9

Tindale 1
- - - 61.8
- - - 10.4

Table C.18: L1 (Manhattan) distance between the geometric medians of the
summary statistics for each pair of migration models. The distances for the
original migration models are the topmost element of each cell, while the
distances for the migration models assuming homogeneous post-settlement
migration are the second element given in each cell.
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Euclidean Distance between Centroids

(Between) Birdsell 2 Bowdler 1 Bowdler 2 Aggregated

Birdsell 1
7719.5 27.1 67.6 52.2
99.5 1.1 2.5 3.9

Birdsell 2
- 7719.9 7721.1 7720.6
- 99.4 100.3 100.8

Bowdler 1
- - 54.2 48.4
- - 2.5 4.1

Bowdler 2
- - - 23.7
- - - 2.6

Aggregated
- - - -
- - - -

Northern
Sunda

- - - -
- - -

Southern Sunda
- - - -
- - - -

Tindale 1
- - - -
- - - -

(Between)
Northern

Sunda
Southern

Sunda
Tindale 1 Tindale 2

Birdsell 1
34.3 32.3 53.7 53.4
1.3 3.9 2.2 2.0

Birdsell 2
7720.0 7720.0 7720.6 7720.6
100.0 100.9 100.2 99.9

Bowdler 1
43.8 42.3 50.4 49.8
1.4 4.1 2.0 1.9

Bowdler 2
49.1 49.8 24.0 23.7
1.5 2.9 1.7 1.8

Aggregated
28.9 29.5 3.4 2.7
3.1 1.3 3.0 3.0

Northern
Sunda

- 3.2 28.9 29.0
- 3.2 1.4 1.3

Southern
Sunda

- - 29.9 30.0
- - 2.8 2.8

Tindale 1
- - - 1.0
- - - 0.7

Table C.19: L2 (Euclidean) distance between the centroids of the summary
statistics for each pair of migration models. The distances for the original
migration models are the topmost element of each cell, while the distances
for the migration models assuming homogeneous post-settlement migration
are the second element given in each cell.
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Euclidean Distance between Geometric Medians

(Between) Birdsell 2 Bowdler 1 Bowdler 2 Aggregated

Birdsell 1
53.6 7726.0 49.8 29.1
2.7 99.0 2.1 1.7

Birdsell 2
- 7724.8 27.2 34.6
- 98.3 2.4 1.7

Bowdler 1
- - 7725.3 7725.3
- - 98.9 99.0

Bowdler 2
- - - 44.0
- - - 1.8

Aggregated
- - - -
- - - -

Northern
Sunda

- - - -
- - - -

Southern Sunda
- - - -
- - - -

Tindale 1
- - - -
- - - -

(Between)
Northern

Sunda
Southern

Sunda
Tindale 1 Tindale 2

Birdsell 1
23.1 3.1 29.9 1.2
2.3 3.0 3.2 0.6

Birdsell 2
67.3 51.9 32.1 53.1
3.3 4.2 4.5 2.6

Bowdler 1
7726.4 7725.9 7725.3 7725.9
100.0 100.1 100.1 99.0

Bowdler 2
54.0 48.1 42.1 49.9
3.2 4.3 4.3 2.0

Aggregated
48.6 28.6 3.6 28.3
2.6 3.4 3.6 1.6

Northern
Sunda

- 23.4 49.2 23.9
- 2.3 2.5 2.1

Southern
Sunda

- - 29.1 3.4
- - 1.9 3.1

Tindale 1
- - - 29.2
- - - 3.3

Table C.20: L2 (Euclidean) distance between the geometric medians of the
summary statistics for each pair of migration models. The distances for the
original migration models are the topmost element of each cell, while the
distances for the migration models assuming homogeneous post-settlement
migration are the second element given in each cell.
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C.3.3 Confusion matrices for training data from
Section 7.3.1

In Section 7.3.1 we used MLR with LASSO to classify the simulated
summary statistics from simulations that assumed 2,500 years, 25,000
years, and 250,000 years between migration events through the southeast
Asian islands. In Table C.21, we present the confusion matrices calculated
from the training data. They show similar patterns of misclassification to
those calculated from the test data.
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Table C.21: Confusion matrices for the true and predicted migration models of
summary statistics simulated assuming (A) 2,500 years, (B) 25,000 years, and (C)
250,000 years between migration events through southeast Asia. All confusion
matrices are calculated from training data. The confusion matrices calculated
from the training data are nearly identical, and are presented in Appendix C.3.3.
The proportion of observations that fall into each category is given, with rows
summing to one. Darker squares indicate greater proportions.
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C.3.4 Effects of excluding west coast migration and
requiring homogeneous post-settlement
migration

For MLR with LASSO, we partition the data using 70% for training data
and the remaining 30% for test data. A λ value of 2.563× 10−3 was
selected through a 5-fold cross-validation process.
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Table C.22: Confusion matrices for the simulated summary statistics, as-
suming no migration around the western coast of Australia, as well as homo-
geneous post-settlement migration patterns. Matrix (A) is calculated from
the training data, while matrix (B) was calculated from the test data. The
proportion of observations that fall into each category is given, with rows
summing to one. Darker squares indicate greater proportions.
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