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Abstract 

Salinity is a major issue for the sustainability of agriculture worldwide. Salinity causes an initial 

hyperosmotic stress and subsequently, secondary nutritional imbalance and oxidative stress 

through ion toxicity. Many studies focus on identifying genes and the molecular mechanisms 

involved in salinity tolerance. The identification of such genes may then be used in the 

development of more salt tolerant crops required for a sustainable global food production. 

Calcineurin B-like protein interacting protein kinases (CIPKs) are key regulators of pre-

transcriptional and post-translational responses to abiotic stress. Arabidopsis thaliana CIPK16 

(AtCIPK16) was identified from a forward genetic screen as a candidate gene that mediates 

lower shoot salt accumulation and improves salinity tolerance in Arabidopsis and transgenic 

barley. However, relatively little is known about the pathways in which CIPK16s operate to affect 

salinity tolerance and even about the presence of orthologues in cereals. 

A transcriptomic study was conducted using Arabidopsis thaliana plants subjected to salt stress. 

The experiment included overexpressing AtCIPK16 and null transgenic plants that were salt 

stressed or controls. Our analysis characterizes the transcriptional landscape of AtCIPK16 

overexpression dependent salt responsiveness in Arabidopsis. These transgene-dependent 

salt responsive genes suggest an involvement of transcription factors and phytohormones, such 

as ethylene, jasmonic acid and auxin in downstream signaling pathways. Whether these 

transcription factors and possible hormone changes have an impact on the plants’ physiological 

aspect needs to be experimentally determined. 

Although enhanced salt tolerance has been demonstrated in transgenic barley plants 

overexpressing AtCIPK16, the presence of a CIPK16 orthologue in barley has not been 

established. The second part of the project therefore was involved with a molecular phylogenetic 

analysis of CIPK16 homologues in terrestrial plant species. We mined genome sequence 

databases, including monocot and dicot species, for CIPK16 homologues. The subsequent 

phylogenetic analysis revealed a clade containing AtCIPK16 along with two segmentally 

duplicated CIPKs: AtCIPK5 and AtCIPK25. We found no evidence for an AtCIPK16 orthologue 

in any monocots but instead found homologues which formed a group basal to the entire 

CIPK16, 5 and 25 clade. Our analyses also revealed that CIPK16s contain a unique inDel 

(MMPEGLGGRRG) and a putative nuclear localization signal (PPTKKKKKD). Whether these 

synapomorphic characters have a biological function will require further experimental validation. 



 

xi 
 

We investigated the transcriptome of a subset of six barley cultivars with varying Na+ 

accumulation in the leaf blade and sheath using the RNA-Seq data generated for the leaf blade, 

leaf sheath and root tissues from plants grown in saline conditions. Based on prior knowledge 

we specifically investigated genes involved in sodium transport and salt response and examined 

their expression and genetic variation (SNPs and indels) across the 6 accessions. Our results 

showed that allelic variations in HvHKT1;5 may be one of the crucial factors in determining the 

level of Na+ in the shoots of barley. We hypothesise that for high shoot Na+ accumulating 

cultivars such as Alexis, Commander and Maritime genes such as HvNHXes (e.g. HvNHX4) 

may play a role in dealing with high levels of Na+, through sequestrating Na+ into the vacuole or 

K+ homeostasis. 
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“Would you tell me, please, which way I ought to go from 

here?" 

"That depends a good deal on where you want to get to," 

said the Cat.  

"I don't much care where-" said Alice. 

"Then it doesn't matter which way you go," said the Cat. 

"- so long as I get somewhere," Alice added as an 

explanation. 

"Oh, you're sure to do that," said the Cat, "if you only walk 

long enough.” 

-Lewis Carroll, Alice in Wonderland 
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Structure of this thesis 

This thesis is presented as three papers. One manuscript has been published in Molecular 

Phylogenetics and Evolution (Amarasinghe et al., 2016), two are drafted as manuscripts for 

publication. In Chapter 1 (Introduction), a general introduction sets forth the context of the 

thesis, briefly identifying the research gaps and stating the specific objectives and techniques 

used to achieve the objectives of this research. Chapter 2 (Literature Review) aims to provide 

a comprehensive literature review setting the background to the research topic, pointing out the 

research gaps and giving an overview about the techniques used in the thesis research. 

Chapter 3 (Molecular Components of the AtCIPK16 Mediated Salt Stress Response) is 

prepared in a manuscript format that discusses the molecular mechanisms underlying the 

AtCIPK16 conferred salinity tolerance in Arabidopsis. Chapter 4 (The evolutionary origin of 

CIPK16: A gene involved in enhanced salt tolerance) is a report that discusses the molecular 

evolutionary study of a protein kinase gene from Arabidopsis (AtCIPK16) that is previously 

identified to be linked to enhanced salt tolerance in Arabidopsis and barley (Roy et al. 2013). 

This chapter has already been published (Amarasinghe et al. 2016). Chapter 5 (Evaluation of 

the molecular basis of varying Na+ accumulation in barley cultivars under salt stress) is 

prepared in a manuscript format that discusses the genetic variations and similarities amongst 

six barley cultivars with varying leaf Na+ accumulation levels. In addition to the manuscript, 

chapters 3, 4 and 5 includes a link page that serves to connect the chapter to the broader 

hypotheses addressed by this thesis. Chapter 6 (General discussion), as the name implies 

discusses the findings of this thesis in “one picture” and covers the broader significance of the 

research reported in this thesis, while identifying drawbacks and suggests improvements for 

future work. To avoid addition of large data files generated in this study to the thesis, the 

supplementary materials for each chapter, are made available through FigShare. A link to each 

file set is given following the description of the supplementary materials as well as in the 

Appendix. This thesis is in agreement with the specification of thesis of the Adelaide Graduate 

Centre Higher Degree by Research, University of Adelaide, South Australia. This “thesis by 

publication” format might show some unavoidable repetition, especially in the Introduction and 

Materials and Methods sections, but this has been kept to a minimum. 

Context of this thesis 

Salinity is an abiotic stress that causes agriculture in Australia and all around the world 

substantial losses every year (Deinlein et al. 2014; Munns and Tester 2008). Finding solutions 

to mitigate the negative effects of high salinity on crops therefore, is an important requirement 

for sustainability of world food production. Salinity poses initial hyperosmotic stress followed by 
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secondary nutritional imbalance and oxidative stress through ion toxicity (Munns and Tester 

2008; Zhu 2001). Research endeavours to identify underlying molecular mechanisms that lead 

to salt tolerance with an ultimate goal of developing salt tolerant crops (Munns and Gilliham 

2015) 

Comprehensive studies on gene expression, gene regulatory networks and allelic variants could 

provide us an understanding of the underlying molecular elements and their mechanisms 

associated with salinity tolerance in cereals. It also may lay the foundation for advanced 

experiments such as gene editing or screening for the genes which boosts tissue tolerance, salt 

exclusion and activated salt tolerance in cereals (Ashraf and Wu 1994). The information 

generated by these efforts therefore, can be utilized in designing effective breeding strategies 

for salt tolerance (Munns and Tester 2008; Negrão et al. 2017).  

Research Objectives 

The overall scientific goal of this thesis was to understand several aspects of salinity tolerance 

mechanisms in plants such as Arabidopsis and barley through bioinformatics techniques such 

as molecular phylogenetics, transcriptomics, network and variant analysis. The specific 

objectives of this thesis were to a) identify the downstream regulatory network controlled by 

AtCIPK16 in Arabidopsis thaliana b) perform a comprehensive evolutionary study of CIPK16s 

in grasses and c) evaluate salt tolerance mechanisms of Hordeum vulgare L. (barley). 
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Plant Stress 

Factors that negatively affect the growth and development of plants are classified as stresses. 

Stress can affect photosynthesis, protein synthesis, energy and lipid metabolism in plants and 

reduce their growth and productivity (Ashraf and Wu 1994; Balmer et al. 2013; Deng et al. 

2013a; Ma 2004).  

Stresses that plants experiences can be divided into two categories; biotic and abiotic. Biotic 

stress is caused by living organisms such as bacteria, viruses, fungal and herbivorous pests 

(Ma, 2004). Abiotic stress is caused by non-living factors of the environment that include 

extreme temperatures, low water availability or waterlogging, mineral deficiencies or toxicities, 

and high soil salt concentrations (Gorji et al., 2013).  

High Salinity as a Major Abiotic Stress for Crops 

Many crops are already grown in suboptimal conditions which prevent them from attaining their 

full yield potential as a result of exposure to environmental stress such as high salinity that can 

reduce their production (Rengasamy, 2010). It has been estimated that out of the 230 million 

hectares (ha) of land farmed by irrigated agriculture, 44 million ha are currently affected by salt 

(Munns and Tester, 2008; Rengasamy, 2006). One of the two main reasons for the reduction in 

growth and development of crops under salt stress is stomatal closure, which reduces carbon 

dioxide uptake, and inhibits cell division (Zhu, 2001). The second reason is the reduction of 

photosynthesis owing to reduced tillering and premature leaf senescence resulting from 

disrupted cellular metabolic processes (Chinnusamy et al., 2004; Roy et al., 2014). The inability 

for crops to reach their full potential will reduce the global food production and also the gross 

income of farmers around the world (Munns and Gilliham, 2015). In Australia, even though there 

is an increase in total wheat production, mainly due to increased extent of land brought under 

farming and introduction of cultivars with improved optimal yield (Richards et al., 2014; 

Robertson et al., 2016), since 1990, the majority of farms yielded less than 2 tonnes/ha due to 

environmental constraints like salinity and drought (Gilliham et al., 2017). Engineering plants to 

improve stress resilience therefore is essential in the development of sustainable agriculture for 

the future (Gilliham et al., 2017; Sofia et al., 2013; Tester and Langridge, 2010).  

Under high soil salinity plants initially suffer osmotic stress followed by salt-specific ionic stress 

(Brini et al., 2012; de Oliveira et al., 2013; Munns, 2005). Osmotic stress is observed 

immediately after a plant is exposed to salt and it continues throughout the exposure (Carillo et 

al., 2011). Plants manifest rapid onset of responses in the ‘osmotic phase’ (immediately after 

exposure to salt) and it is a result of the effect of salt on water potential and not due to 
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accumulation of Na+/Cl- ions in the shoot and hence described as “shoot salt accumulation 

independent effect” (Roy et al., 2014). 

Prolonged exposure to salt stress makes plants experience salt-specific ionic stress that can 

occur through several days to weeks; that is known as the “ionic phase” (Carillo et al., 2011; 

Roy et al., 2014; Zhu, 2003). Severe ion toxicity takes place in plants if Na+ concentrations in 

the cytosol are higher than 40 mM (Munns and Tester, 2008). This leads to early senescence 

of mature leaves, resulting in reduced photosynthetic capability and lower growth rates (Cramer 

and Nowak, 1992; Munns, 2005). Leaf senescence is a result of a disruption of a number of key 

metabolic processes including excess Na+ disturbing protein synthesis and enzymatic actions 

(Hasegawa et al., 2000); nutrient imbalances caused by salt-mineral interactions (e.g. calcium 

(Ehret et al., 1990; Maas and Grieve, 1987), iron (Abbas et al., 2015; Yousfi et al., 2007), nitrate 

(Zheng et al., 2013)) as well as  accumulation of Na+ in the cell wall which results in desiccating 

the cell (Munns, 2005). Although Cl- toxicity cannot be easily distinguishable from Na+ toxicity 

there are evidence to believe that negative effect of Cl- adds onto or interacts with Na+ toxicity 

and causes leaf chlorophyll decline, leaf pH changes etc. (Li et al., 2017). 

Mechanisms of Plant Salinity Tolerance 

The ability of a plant to maintain growth in the initial osmotic stress (i.e. shoot ion independent 

stress) phase is still unknown. Plants exposed to salinity immediately show the activation of 

long distance signals in response to salt, but these are transient and will activate both osmotic 

tolerance and ionic tolerance mechanisms. (Batistič and Kudla, 2010; Choi et al., 2014; Gilroy 

et al., 2014; Mittler et al., 2011; Schmöckel et al., 2015). Only a few genes have been suggested 

as being important in maintaining plant growth (Al-Tamimi et al., 2016). Plants have two, not 

mutually exclusive, mechanisms to enhance shoot ion tolerance; (a) shoot ion exclusion, by 

using transport processes which minimise Na+ and Cl- accumulation in the shoot by either 

retaining salt at the base of the stem or root, there by directing excess salt away from immature 

leaves towards mature ones which are more tolerant (Maathuis, 2014; Munns, 2006; Munns 

and Tester, 2008; Shabala, 2013; Teakle and Tyerman, 2010); and (b) tissue tolerance, by 

accumulating toxic ions in cellular compartments, such as the vacuole or in intracellular spaces 

(Carillo et al., 2011; Munns et al., 2016; Munns and Tester, 2008; Roy et al., 2014).  

Known Molecular Components of Plant Salt Tolerance Mechanisms 

As there are many responses elicited within a plant to initially receive the “salt signal” and then 

ameliorate the toxic effects of salinity, the underlying molecular components of these responses 

are extremely diverse. These components are easy to be described under following categories: 
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(a) salt sensing and signaling (b) shoot ion independent tolerance and (c) shoot ion dependent 

tolerance (Figure 1). 

 

Figure 1 The three main mechanisms of salinity tolerance in a crop plant 

Tissue tolerance, where high salt concentrations are found in leaves but are compartmentalized 

at the cellular and intracellular level (especially in the vacuole), a process involving ion 

transporters, proton pumps and synthesis of compatible solutes. Osmotic tolerance, which is 

related to minimizing the effects on the reduction of shoot growth, and may be related to as yet 

unknown sensing and signaling mechanisms. Ion exclusion, where Na+ and Cl− transport 

processes, predominantly in roots, prevent the accumulation of toxic concentrations of Na+ and 

Cl− within leaves. Mechanisms may include retrieval of Na+ from the xylem, compartmentation 

of ions in vacuoles of cortical cells and/or efflux of ions back to the soil (reproduced from Roy 

et. al., 2014). 

Salt Sensing and Signaling 

It has been suggested that the rapid onset of salt stress responses is at least partly governed 

by initial salt sensing and long distance signaling (Gilroy et al., 2014; Maischak et al., 2010; 

Mittler et al., 2011; Roy et al., 2014). These signals have a rapid onset and last for a short time 

(second to minutes). The genes involved in these processes, therefore could be initial salt 

perceiving and sensing molecules, transcription factors, hormone related genes, MAPK 

pathway genes etc. 
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Ca2+ acts as a secondary messenger to transduce cellular responses to external stimuli 

(Shabala et al., 2015). In hyperosmotic and salt stress a single or biphasic Ca2+ elevation (20-

60 s) takes place caused by the release of Ca2+ from the vacuole and extracellular stores 

(Pareek et al., 2010). Reduced hyperosmolality-induced calcium increase 1 (OSCA1) from 

Arabidopsis is a putative hyperosmotic sensor that changes the cytosolic free Ca2+ levels (Yuan 

et al., 2014). However, how OSCA1 detects osmotic stress is yet unclear (Zhu, 2016). 

Additionally, several other Ca2+ permeable channels such as cyclic nucleotide gated channels 

(CNGCs) and glutamate-receptor like channels (GLRs) may be involved in spawning stress 

related cytosolic Ca2+ signals (Swarbreck et al., 2013). 

These calcium signals are perceived by sensor molecules containing helix-loop-helix EF-hand 

motifs that can bind to Ca2+ ions with high affinity (Kudla et al., 2010; Tuteja and Mahajan, 2007). 

These highly conserved EF-hands mostly exist in pairs and are 29 amino acids long. The loop 

region binds the Ca2+ ions (Tuteja and Mahajan, 2007). Sensor molecules with EF hand motifs 

fall into four major categories, of which calcineurin B-like proteins (CBL) is one (He et al., 2013). 

The other three are calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), and 

calmodulin-like proteins (CAMLs) (Yu et al., 2007). CaMLs possess 1 to 6 EF-hand motifs (Luan 

et al., 2002). CaMs on the other hand are highly conserved, acidic small molecules with 2 EF-

hand motifs (Luan et al., 2002; Zielinski, 1998). CDPKs contain four EF-hand motifs and a 

serine-threonine kinase domain that gets activated when the Ca2+ is bound and releases the 

protein from its auto inhibitory status (Cheng et al., 2002; Ludwig et al., 2004).  

CBLs are usually 23-26 kD in size and contain four EF-hand motifs (Batistič and Kudla, 2010; 

Kolukisaoglu et al., 2004). CBL proteins can be divided into two groups according to the N-

terminal domains: CBL proteins with a shorter (27-32 amino acid) N-terminal domain and CBL 

proteins with a longer (41-43 amino acid) N-terminal domain (Batistič and Kudla, 2009). Lipid 

modification by myristoylation and S-acylation by stearate and palmitate has been 

experimentally confirmed for CBL proteins. These modifications are considered to be important 

for determining the localization of the CBL-CIPK complexes (Batistic et al., 2008; Sanchez-

Barrena et al., 2013). All CBL proteins share a reasonably well conserved central region 

encompassing four EF-hand Ca2+ binding sites that are arranged in strict spacing within the 

protein (Kolukisaoglu et al., 2004).  

Selective interactions of CBL proteins with CIPKs (CBL Interacting Protein Kinases) are key for 

localization of CIPKs and activation of downstream target proteins (Batistic et al., 2008; 

Sanchez-Barrena et al., 2007). The CIPKs have been catalogued as SNF1 (Sucrose non-

fermenting 1)-related kinases group 3 (SnRK3) proteins, according to their structural features 
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and evolutionary associations (Hrabak et al., 2003). The general structure of all CIPK-type 

kinases includes a conserved N-terminal kinase domain, and a variable junction domain, which 

separates it from a unique C-terminal regulatory domain. While much of the regulatory domain 

sequence is divergent in these proteins, there exists a well conserved FISL/NAF domain, 

mediating the interaction with CBLs (Albrecht et al., 2001). Additionally, a conserved domain 

which mediates CIPK interaction with the 2C-type protein phosphatase (PP2C) group, via 

phosphorylation, has been discovered within the C-terminus of these kinases namely, protein–

phosphatase interaction (PPI) domain (Ohta et al., 2003).  

Most CBLs and CIPKs can interact with multiple CIPKs and CBLs, respectively (Batistic and 

Kudla, 2004; Batistič and Kudla, 2010; Gong et al., 2002; Guo et al., 2001). One such example 

is that, both AtCBL4 and AtCBL10 code for Calcineurin B-like (CBL) proteins that can interact 

with SOS2/AtCIPK24 to activate downstream targets (Qiu et al., 2002). This is a case where 

SOS2 shows alternative complex formation with either AtCBL4 or AtCBL10 because expression 

of AtCBL4 is limited to root tissue and AtCBL10 to shoot tissue (Guo et al., 2001). This concept 

of alternative complex formation by AtCIPK24 with either AtCBL4 or AtCBL10 makes it a dual 

functioning kinase. i.e. AtCBL4–AtCIPK24 complexes mediate Na+ extrusion via the regulation 

of the H+/Na+ antiporter SOS1 at the plasma membrane, the formation of AtCBL10–AtCIPK24 

is likely to result in Na+ sequestration into the vacuole by regulation of unknown targets (Weinl 

and Kudla, 2009). 

There are other CBLs and CIPKs known to be involved in plant salt response. A CIPK from 

Arabidopsis (AtCIPK16) identified by Roy et al (2013) is one such example. Overexpression of 

AtCIPK16 in Arabidopsis and barley has conferred salt tolerance by Na+ exclusion from shoots 

(Roy et al., 2013). There are many more CBLs and CIPKs identified to be involved in the 

regulation of ions such as Na+ and K+ in salt stress as shown in examples from Table 1. 

Table 1 Examples of identified CBL proteins interacting with CIPKs in salinity tolerance 

At: Arabidopsis thaliana, Bd: Brachypodium distachyon, Bn:Brassica napus, Ca: Cicer 

arietinum, Gh: , Gossypium hirsutum L.  Hb: Hordeum brevisubulatum, Md: Malus 

domestica, Nt: Nicotina tobaccum, Os:Oryza sativa Pt: Populus trichocarpa, Pe: Populus 

euphratica, Si: Setaria italica, Sl: Solanum lycopersicum, Ta: Triticum aestivum, Vv: Vitis 

Vinifera, Zm:Zea mays 

CIPKs Interacting 
CBLs If 
known 

Reference for 
the 
interaction 

Proposed 
function/s 

Transgene 
Recipient (if 
applicable) 

Reference 
for the 
proposed 
function/s 
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AtCIPK1 AtCBL1 
AtCBL9 

D’Angelo et al., 
2006 

Represents a 
convergence point 
for ABA-
dependent and 
ABA-independent 
stress responses. 
Involved in salt 
stress 

- D’Angelo et 
al., 2006 

AtCIPK3 AtCBL9 Pandey et al., 
2008 

Regulation of ABA 
response in seed 
germination. 
Involved in salt 
stress 

- Pandey et al., 
2008 

AtCIPK6 Not known - Required for 
development.  
Involved in salt 
stress and ABA. 

- Chen et al., 
2013 

AtCIPK9 AtCBL3 Liu et al., 2013 Regulates K+ 
homeostasis 
under low-K+ 
stress in 
Arabidopsis. 

- Liu et al., 
2013 

AtCIPK14 AtCBL2 Akaboshi et al., 
2008  

Responsible for 
the control of the 
salt and ABA 
responses. 

- Qin et al. 
2008 

AtCIPK16 AtCBL3 
AtCBL4 
AtCBL5 

Lee et al., 2007 Overexpression in 
Arabidopsis and 
barley leads to 
enhanced salinity 
tolerance 
associated with 
reduced Na+ 
accumulation in 
shoots  

Arabidopsis 
thaliana 
(Arabidopsis) 
Hordeum 
vulgare 
L.(Barley) 

Roy et al., 
2013 

AtCIPK21 AtCBL2 
AtCBL3 

Pandey et al., 
2015 

Loss-of-function 
mutant was 
hypersensitive to 
high salt and 
osmotic stress 
conditions 

- Pandey et al., 
2015 

AtCIPK23 

AtCBL1 Xu et al., 2006 
 

Serves as a 
positive regulator 
of the potassium 
transporter AKT1 
by directly 
phosphorylating 
AKT1 in roots and 
in stomatal guard 
cells. 

- Cheong et al. 
2007 

AtCBL9 Xu et al. 2006 Serves as a 
positive regulator 
of the potassium 
transporter AKT1 
by directly 
phosphorylating 
AKT1 in roots and 
in stomatal guard 
cells. 
Involved in nitrate 
sensing. 

- Cheong et al. 
2007 



12 
 

AtCIPK24/ 
SOS2 

AtCBL4/SOS3 Guo et al., 2001; 
Halfter et al., 2000 

Mediates Na+ 
extrusion via the 
regulation of the 
H+/Na+ antiporter 
SOS1 at the 
plasma 
membrane in root 
tissue. 

- Liu et al. 2000 

AtCBL10 Guo et al., 2001; 
Halfter et al., 2000 

Participates in 
Na+ sequestration 
into the vacuole 
by regulation of 
unknown targets 
in shoot tissue. 

- Liu et al. 2000 

BdCIPK31 BdCBL1 
BdCBL2 
BdCBL5 

Luo et al., 2017 Overexpression 
functions in 
enhanced 
NtSOS1 and 
NtNHX2 
expression, high 
Na+ accumulation 
in shoots and 
reduced K+ efflux 
in roots in tobacco 
plants 

Nicotiana 
tabacum 
(Tobacco) 

Luo et al., 
2017 

BnCIPK6 BnCBL1 Chen et al., 2012 Increased 
seedling growth 
through higher 
chlorophyll and 
proline content 

- Chen et al., 
2012 

CaCIPK25 Not known - Overexpression 
resulted in varied 
germination 
period and longer 
root length in salt 
stress 

N. tabacum Meena et al., 
2015 

GhCIPK6 Not known - Overexpression 
significantly 
enhanced the 
tolerance to salt, 
drought and ABA 
stresses 

A. thaliana He et al., 
2013 

HbCIPK2 Not known - Reduced shoot 
Na+ accumulation 
and increased 
root K+ 
accumulation 

- Li et al., 2012 

MdCIPK6L Not known - Overexpression 
enhanced the 
tolerance to salt, 
osmotic/drought 
and chilling 
stresses, but did 
not affect root 
growth in 
transgenic lines 

A. thaliana 
Malus 
domestica 
(Apple) 

Wang et al., 
2012 

MdCIPK24 
–Like1 
MdSOS2L1 

Not known - Overexpression 
resulted in 
enhanced 
production of 
antioxidant 
metabolites 

M. domestica 
Solanum 
lycopersicum 
(Tomato) 

Hu et al., 
2016 
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OsCIPK15 Not known - Overexpressed 
plants had 
significantly 
longer shoot and 
root length 
compared to wild 
type in 100mM 
salt 

Oryza sativa L. 
ssp. japonica 
(rice) 

Xiang et al., 
2007 

OsCIPK31 Not known - Involves in seed 
germination and 
seedling growth 
under abiotic 
stresses and 
induce the 
expression of 
several stress 
related genes 
OsRAB21, 
OsDip1, and 
OsSalT 

O. sativa L. ssp. 
japonica (cv. 
Dongjin) 

Piao et al., 
2010 

PtSOS2 Not known - Overexpressed 
plants have  
improved salt 
tolerance 
associated with 
low Na+ 
accumulation 
levels  

Populus 
davidiana × 
Populus 
bolleana 
(Poplar) 

Yang et al., 
2015 

PeCIPK26 PeCBL1 
PeCBL4/PeS
OS3 
PeCBL9 
PeCBL10 

Lv et al., 2014 Overexpression 
resulted in higher 
germination rate 
and lower Na+ 
accumulation 

Arabidopsis 
cipk2 mutant 

Lv et al., 2014 

SiCIPK24 SiCBL4 Zhang et al., 2017 Overexpression 
rescued salt 
hypersensitivity 
phenotype 

Arabidopsis 
sos3-1 or sos2-
1 mutant 

Zhang et al., 
2017 

SlSOS2 
SlCIPK24 

SlSOS3 
SlCBL4 

Huertas et al., 
2012 

Increased salinity 
tolerances 
associated with 
higher Na+ 
content in shoots 
in transgenic 
plants 

Tomato Huertas et al., 
2012 

TaCIPK14 Not known - Overexpression 
resulted in higher 
chlorophyll 
content, higher 
stress responsive 
gene expression, 
reduced Na+ 
accumulation and 
longer root length 

N. tabacum Deng et al., 
2013b 

TaCIPK29 TaCBL2 
TaCBL3 
NtCBL2 
NtCBL3 
NtCAT1 

Deng et al., 2013a Overexpression 
resulted in higher 
germination rates, 
longer root length 
and better growth 
compared to 
controls 

N. tabacum Deng et al., 
2013a 

VvCIPK3 VvCBL2 Cuéllar et al., 
2013 

Activates a 
voltage-gated 

- Cuéllar et al., 
2013 
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inwardly rectifying 
K+ channel 
VvK1.2 

VvCIPK4 VvCBL1 Cuéllar et al., 
2013 

Activates a 
voltage-gated 
inwardly rectifying 
K+ channel 
VvK1.2 

- Cuéllar et al., 
2013 

ZmCIPK21 Not known - Overexpression 
leads to low 
accumulation of 
Na+ and high 
accumulation of 
K+ 

A. thaliana Chen et al., 
2014 

 

Further, in response to alleviated Ca2+ concentration in the cytosol, there is rapid activation of 

a well-known group of proteins, Mitogen-Activated Protein Kinases (MAPK)  (Colcombet and 

Hirt, 2008; Rodriguez et al., 2010; Zhu, 2002). A sequential MAPK circuit (i.e. MAPKKK 

→MAPKK→MAPK) that involves MEKK1, MAPKKK20, MAPKK2, interchangeable 

MAPK4/MAPK6, has being identified in Arabidopsis in hyperosmotic stress response (Moustafa 

et al., 2014 and references therein). 

Reactive Oxygen Species (ROS) even if harmful when accumulated in large amounts, have 

been proposed to be involved in long distance stress signaling (Baxter et al., 2014; Mittler et al., 

2011). For example, respiratory burst oxidase homologues (RBOHs), RBOHD and RBOHF that 

play a main role in ROS production have been shown to function in amalgamation to regulate 

seed germination, root elongation, stomatal closure and Na+/K+ homeostasis in Arabidopsis 

under salt stress (Ma et al. 2012).  

Phytohormones such as abscisic acid (ABA) (Tuteja, 2007), jasmonic acid (JA) (Valenzuela et 

al. 2016; Wasternack and Hause 2013), auxin (Naser and Shani, 2016; Zhao et al., 2011), 

ethylene (Cao et al., 2007, 2008), gibberellic acid (GA) (Colebrook et al., 2014) and 

brassinosteroids (BR) (Fariduddin et al. 2014) have been known for playing an integrated pivotal 

role in salinity responses by facilitating long distance signaling (Kazan, 2015; Peleg and 

Blumwald, 2011; Santner and Estelle, 2009). Rapid gene expression alterations then occur by 

hormone based transcriptional factor induction or degradation through the ubiquitin–

proteasome system (Santner and Estelle, 2010). ABA, one of the well-studied hormones in 

respect of salinity tolerance, is known to be involved in, stomatal closure probably by being 

synthesized as a response to ROS accumulation (Khokon et al., 2011; Mittler and Blumwald, 

2015), reducing the rate of transpiration and water loss, which ultimately reduces plant growth, 

yet aids plant survival (Raghavendra et al., 2010; Ryu and Cho, 2015; Wilkinson and Davies, 

2010) and biosynthesis of osmoprotectants by promoting the synthesis of their enzymes (Fujita 
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et al. 2011). A recent study has shown that exogenous ABA reduced the net efflux of Na+ from 

the xylem (Zhu et al. 2017).  

As of yet, one important question remains unanswered. If salt stress signaling is a rapid transient 

process, how does a plant know that it is still in stress even after the signal has ceased, and 

continues to reduce its growth rate? Are there any other long term signaling cascades that we 

are yet unaware of? For example, existence of a secondary signaling network after the salt 

stress that affects growth has been reported in Arabidopsis (Geng et al., 2013). Therefore, 

comprehensive answers to above questions may lie in understanding the immediate next 

responses that occur in the osmotic phase, i.e. shoot ion independent phase. 

Shoot Ion Independent Tolerance 

Sparse information is available on the genes involved in osmotic stress tolerance. One reason 

for this might be the underdeveloped phenotyping methods to measure the plant growth and 

transpiration in this phase. However, it has been assumed that osmotic stress has a large 

influence on yield in low to moderate salinity conditions, especially in crops such as wheat 

(James et al., 2012; Munns et al., 2012). More recently a study on 24 barley cultivars revealed 

the variations of growth amongst the cultivars in the phase they describe to be showing shoot 

ion independent effects in high salinity (Tilbrook et al., 2017). In an ideal situation, if we could 

identify the growth inhibition related gene network and identify the allelic variations among the 

cultivars that may cause this, we may be able to develop a barley germplasm that has less yield 

penalty when faced with salinity. Al-Tamimi et al. (2016) uses an image-based, non-invasive, 

high-throughput phenotyping of shoot ion independent phase in rice that has the possibility to 

be extended similar studies of other crops. Through their study, Al-Tamimi et al. (2016) revealed 

loci influencing transpiration use efficiency on the chromosome 11 of rice.     

Shoot Ion Dependent Tolerance 

Shoot ion dependent tolerance takes effect when the salt accumulates in the photosynthetic 

apparatus of the plants, i.e. the leaf. The two main methods that have been identified so far in 

this context are ion exclusion and tissue tolerance. 

Ion Exclusion 

Ion exclusion from the shoots can be mainly achieved by (1) minimising net influx of salt into 

the root and (2) reducing ions in the transpiration stream (Munns and Tester, 2008). SOS (Salt 

Overly Sensitive) is one of the most discussed families with genes known to be involved in 

excluding salt from the cytosol (Ji et al., 2013). Several of the SOS family genes (SOS1-SOS4) 
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are known to be involved in shoot Na+ exclusion in many plant species (Apse et al. 1999; Shi et 

al. 2002b; Shi et al. 2002a). SOS1, initially was thought to be involved in xylem loading (Shi et 

al. 2002a; Shi et al. 2000) is a membrane bound transporter that is activated by the SOS2-SOS3 

complex to efflux Na+ from cells. SOS1 has been hypothesised to be important in the efflux of 

Na+ from roots to the rhizosphere (Shabala et al. 2005). More information on SOS2 and 3 are 

included in the section on “Salt Sensing and Signaling”. SOS4 has shown to be involved in Na+ 

exclusion through pathways mediated by vitamin B6 (Shi et al. 2002b; Shi and Zhu 2002). 

While it is important to remove excess Na+ from the root cytosol, it is also important to restrict 

the entry of Na+ into the cytosol. It has been suggested that unidirectional passive Na+ influx 

can occur through voltage-independent non-selective cation channels (NSCCs) (Demidchik and 

Maathuis, 2007; Tyerman et al., 1997). Furthermore, it is likely that water channels (i.e. 

aquaporins) may contribute to passive influx of Na+ into the root xylem (Byrt et al., 2017). Plants 

need therefore, to actively control the amount of Na+ entering the root and possibly reduce the 

influx of Na+ from the soil. 

The high-affinity K+ transporters (HKTs) play a crucial role in regulating the leaf Na+ 

accumulation levels. Identification of an HKT from wheat (Triticum aestivum) named HKT1 

(TaHKT2;1) initiated the characterization of many HKTs throughout the plant kingdom (Rubio et 

al., 1995; Schachtman and Schroeder, 1994). HKTs are categorised into class I and class II 

(Almeida et al., 2013; Horie et al., 2009; Platten et al., 2006). The class I HKTs arise from an S-

G-G-G signature in the first pore of the protein and the class II HKTs have the G-G-G-G 

signature (Platten et al., 2006).  

Two loci named Nax1 and Nax2 that were involved in reduced shoot Na+ accumulation have 

been transferred from an ancestral wheat relative, Triticum monococcum to modern durum 

wheat (James et al., 2006). Candidate genes for Nax1 and Nax2 have been identified as  

TmHKT1;4-A (Huang et al., 2006) and TmHKT1;5-A (Byrt et al., 2007), respectively. Bread 

wheat, which is known to have greater ability to exclude Na+ from plant leaves than durum wheat 

has a region on chromosome 4DL containing the major Na+ exclusion locus named, Kna1 (Byrt 

et al., 2007). The Nax2 region on 5AL of durum wheat is homologous to Kna1 (Byrt et al., 2007). 

TmHKT1;5-A expressing tetraploid durum wheat lines showed significantly reduced leaf Na+ 

concentration and an increase in grain yield by 25% when grown under high salt compared to 

near-isogenic lines without the Nax2 locus (Munns et al., 2012). More recently, a closely related 

gene to TmHKT1;5-A was identified from bread wheat (Byrt et al., 2014). Furthermore, the allelic 

variant TaHKT1;5-D has also been introgressed to create a synthetic hexaploid wheat which 

has shown increased salinity tolerance than its progenitor without the D genome (Yang et al. 
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2014). In rice, a quantitative trait locus (QTL) for K+/Na+ homeostasis under salt stress, SKC1, 

has been found to encode an HKT-type transporter, OsHKT1;5 (Ren et al., 2005). Furthermore, 

a haplotype of rice HKT1;5 in the wild relative has shown to be associated with high salinity 

tolerance (Mishra et al. 2016). Additionally, constitutive expression of Arabidopsis HKT1;1 

resulted in high Na+ accumulation and growth penalties while cell-specific expression of the 

same gene led to reduction of root-shoot Na+ in salt stress (Møller et al., 2009). 

A class II HKT from barley (HvHKT2;1) has been identified as a Na+ and K+ co-transporter with 

low affinity for Na+ (Mian et al., 2011). Similarly, a class II HKT from rice (OsHKT2;2) has K+- 

Na+ co-transport properties, with affinity to K+ in higher extracellular Na+ concentrations (Yao et 

al., 2010). Another rice HKT, OsHKT2;1 that mediates Na+ influx has shown to be down 

regulated by the presence of external K+ (Horie et al. 2007; Yao et al. 2010). A Tibetan wild 

cultivar contains unique alleles of HvHKT1;2 and HvHKT2;1 (Qiu et al. 2011). They primarily 

regulate Na+ and K+ transport under salt stress, respectively. However this paper fails to confirm 

whether there were more than two HKT family members in barley which could be involved in 

Na+/K+ homeostasis.  

Not only cations such as Na+ but also anions such as Cl- accumulate in the cytosol in toxic levels 

due to salt stress (Li et al., 2017). Nitrate transporter 1/Peptide Transporter family proteins such 

as NPF2.4 and NPF2.5 have been shown to be, not solely, but in conjunction with other proteins, 

to be involved in Cl- exclusion from shoots of Arabidopsis by regulating Cl- loading into the xylem 

(Li et al., 2016, 2017). One of these other proteins could be SLAH1 - a homologue of slow type 

anion channel-associated 1 (SLAC1) that mediates Cl- loading into the root xylem (Qiu et al., 

2016). 

Tissue Tolerance 

Tissue tolerance is achieved mainly by (a) Na+ sequestration into the vacuoles (b) production 

of compatible osmolites and (c) enzymatic and non-enzymatic ROS scavenging. Na+ 

sequestration is mainly thought to be facilitated by intracellular antiporters such as Na+/H+ 

EXCHANGER (NHX) proteins (Bassil et al., 2012; Blumwald, 2000).  Intracellular NHXs fall into 

two groups based on their location in the cell; NHX1-4 belong to the vacuolar group and NHX5-

6 to the endosomal group (Bassil et al., 2012). Transgenic Arabidopsis overexpressing NHX1 

(AtNHX1) showed increased salt tolerance (Apse et al., 1999). NHX2 was identified as a 

functionally redundant isoform of NHX1 (Barragán et al., 2012). The double knockout mutant 

Atnhx1 Atnhx2 had significantly reduced K+/H+ exchange in tonoplast vesicles compared to the 

wild type and also showed stored K+ reduction in vacuoles from the leaf mesophyll, epidermal 
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cells and stomata guard cells (Barragán et al., 2012). This indicates that NHX1/2’s role could 

be to regulate K+ rather than Na+ homeostasis. Overexpression of AtNHX1 homologues from 

many other plant species have given rise to salt tolerant phenotypes (Yamaguchi and Blumwald, 

2005). Evidence has accumulated for the involvement of endosomal NHXs (NHX5 and 6) in 

protein trafficking, mainly to the vacuole (X et al., 2016). Their importance in plant growth and 

development, as well as salinity tolerance, has been proposed for several plant species (Bassil 

et al. 2011; Li et al. 2011). Moreover, it is mandatory for the sequestered Na+ in the vacuole to 

remain in this compartment without leaking its way back to the cytosol. There are slow-activating 

vacuolar (SV) and fast-activating vacuolar (FV) non-selective cation channels that mediate Na+ 

flux from vacuole to the cytosol (Hedrich and Marten, 2011). It has been shown, in the salt 

tolerant species, Chenopodium quinoa, that negative regulation of tonoplast SV and FV was 

needed to compartmentalise Na+ in the vacuoles (Alatorre et al., 2013).  

To transport Na+ into the vacuole plant cells must first generate a proton gradient between the 

vacuole and the cytosol. Vacuolar H+-ATPases (V-ATPases) and H+-pyrophosphatases (V-

PPases/ H+-PPases) are the most prevalent proteins which use the energy from the breakdown 

of high energy containing phosphate molecules to pump protons across the tonoplast 

(Maeshima, 2001). The V-ATPases are composed of two subcomplexes, the peripheral V1 with 

8 subunits (VHA-A to H), and membrane integral Vo complex with six subunits (VHA-a, -c, -c, -

c′, -c″, -d, and -e) (Wani and Hossain, 2015). The number of VHA encoding genes varies among 

plants (Schumacher and Krebs, 2010). Numerous studies have reported an increase of V-

ATPase in transcriptional, translational or post-translational levels in response to salt stress. For 

example, an increase of expression of several V-ATPase subunit coding genes has been shown 

in the halophytes Mesembryanthemum crystallinum (Dietz and Arbinger 1996; Golldack and 

Dietz 2001) and Salicornia europaea (Lv et al. 2012) in salt stress. Salt stress activates V-

ATPases that in return drive the salt sequestration into organelles(Cotter et al. 2015). 

Furthermore, V-ATPase subunits B1 and B2 interactions with SOS2 in vivo, suggests that V-

ATPases may be important in facilitating ion transport across cell membrane during salt stress 

(Batelli et al. 2007). A V-PPase, AVP2 from Arabidopsis is known to be K+ insensitive and Ca2+ 

hypersensitive (Drozdowicz et al., 2000; Schilling et al., 2017).  

While cations are sequestrated in the vacuole by above mentioned ways, the Chloride channel 

(CLC) family is known for containing proteins with the functional capability to sequestrate excess 

Cl- into the vacuole (Wei et al., 2016). Rice and citrus CLCs were highly expressed in salt stress 

(Diédhiou and Golldack, 2006; Wei et al., 2015) and the overexpression of soya bean CLC1 
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(GmCLC1), and maize CLC1 (ZmCLC1-d) in Arabidopsis leads to a sat tolerant phenotypes 

(Wang et al., 2015; Wei et al., 2016).  

Keeping the shoot Na+/K+ ratio low is a well-known decisive factor responsible for a plant's ability 

to tolerate salt stress. Tonoplast bound K+ selective channels such as two-pore K+ channels 

(TPKs) and Kir-type KCO3 (Czempinski et al., 2002; Voelker et al., 2006) maintain potassium 

homeostasis within the cytosol. This would help to maintain a high cytosolic K+/Na+ ratio in salt 

stress. K+ release channels such as SKOR and GORK are activated only when the net K+ flux 

is directed outwards (Dreyer and Uozumi, 2011; Garcia-Mata et al., 2010). This is important in 

functions like stomatal closure that require K+ efflux (Dreyer and Uozumi, 2011). High-Affinity 

K+ transporters (HAK, e.g. AtHAK5) are crucial for K+ uptake from even very low external K+ 

concentrations (Bañuelos et al., 1995). The K+ channel expressed in guard cells named KAT1 

and AKT1 expressed in root epidermis regulate the K+ in a cell by reducing its net efflux (Dreyer 

and Uozumi, 2011).  

In order to balance the osmotic pressure between the cytosol and the ions within the vacuole 

the cell has to synthesis compatible solutes. Shoot tissue tolerance therefore, could also rely on 

the synthesis of compatible solutes, such as proline, glycine betaine and trehalose (Møller and 

Tester, 2007; Roy et al., 2014). A number of metabolites have been identified that accumulate 

during salt stress and contribute to the maintenance of cell growth under conditions of increased 

osmotic stress (Sairam and Tyagi, 2004; Shabala, 2013). These include carbohydrates (e.g. 

trehalose, sucrose, sorbitol, glycerol, mannitol, pinitol, arabinitol and other polyols), nitrogen 

compounds (e.g. proline, glycine betaine, glutamate, aspartate, glycine, choline, and 

putrescine) and organic acids (e.g. oxalates and malates) (Roy et al., 2014 and references 

therein). Overexpression of trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate 

phosphatase (TPP), tannitol-1-phosphate dehydrogenase (mt1D), Δ1-pyrroline-5-carboxylate 

synthetase (P5CS), betaine aldehyde dehydrogenase (BADH), choline oxidase / 

dehydrogenase, ascorbate peroxidase, superoxide dismutase, catalase and numerous other 

genes have shown improved tissue tolerance in various plants (Roy et al., 2014 and references 

therein) presumably through enhancing a plant to produce more compatible solutes. 

Another issue with the accumulation of Na+ and Cl- in the cell is salt stress increases the 

generation of ROS within cells. While ROS can also act as signaling molecules, excessive 

accumulation of ROS can cause oxidative damage to membranes, proteins and nucleic acids 

and alter normal cellular metabolism (Miller et al., 2010; Mittler et al., 2011; Zhang et al., 2014). 

ROS-induced damage in plants is minimized by enzymatic reactions and non-enzymatic 

antioxidants. Among the antioxidant enzymes that are crucial in eliminating ROS are catalase 
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(CAT), peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), 

glutathione peroxidase (GPX) and glutathione-S-transferase (GST) (Ahmad and Rasool, 2014; 

Zhang et al., 2014). Ascorbic acid (AsA), α-tocopherols, carotenoids and phenolic compounds 

are among the non-enzymatic antioxidants (Ahmad et al., 2010). There is increasing evidence 

that ROS signaling is linked with the MAPK circuit that transfers stress signals from the receptor 

to the target molecules through its cascade even between tissues (Mittler et al., 2011). Many 

MAPK family proteins have also been showed to be involved in salinity tolerance mechanisms 

(Kiegerl et al. 2000; Miransari et al. 2013; Moustafa et al. 2014; Popescu et al. 2009; Wang et 

al. 2014). 

Importance of Examining Salt Tolerance Mediated Pathways in Cereal Crops 

The ultimate goal of salinity tolerance research is to develop crop germplasm that can withstand 

or even improve yield stability in high salt conditions (Roy et al., 2014; Shabala et al., 2015). 

From both forward (i.e. examining the genetic basis for a shown phenotypic trait) and reverse 

(i.e. examining the phenotypic effects of a particular sequence) genetics approaches a plethora 

of genes have been identified as being involved in salinity response (described in the previous 

section, Known Molecular Components of Plant Salt Tolerance). Additionally, we see that allelic 

diversity may affect the salt tolerant capabilities of a given species (Munoz-Amatriain et al., 

2014). However, the translation of initial laboratory success stories of identifying novel genes 

and allelic variations involved in stress tolerance, to the commercial breeding programmes 

needs an intermediate step to identify the relay of actions which take place at the molecular 

level that lead to the desired phenotype. 

In order to fully understand the effects of gene manipulation, it is necessary to comprehend the 

underlying molecular mechanisms that give rise to a complex trait such as salinity tolerance. 

Differential gene expression analysis and co-expression networks provide complimentary 

approaches to the analysis of changes in the transcriptomic profile. While the former 

concentrates on simple differences in expression for a contrast of interest, the latter aims to 

capture the complex expression relationships between pairs of genes even if they are not 

differentially expressed on their own (Kadarmideen et al., 2011). In addition to the analysis of 

transcript abundances, these data sets can also be analysed for variants in the coding regions, 

perhaps uncovering SNP or inDel differences between cultivars which might explain an 

observed phenotype. 
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Gene Expression Analysis (with RNA-Seq) 

RNA-Seq uses high-throughput sequencing technologies to analyse the profile of the 

transcriptome of a biological sample at a particular point in time. RNA-Seq has become a 

commonly used tool in whole transcriptome studies due to its sensitivity, enabling the discovery 

and quantification of previously uncharacterized transcripts (Seyednasrollah et al., 2013; Wang 

et al., 2009). Advantages of RNA-Seq over the other available technologies such as microarray 

are;  

1. RNA-Seq is not dependent on prior knowledge of transcripts and therefore is capable 

of discovering novel transcripts even in the absence of a complete genome sequence 

2. RNA-Seq can help identify SNPs and other variations in the transcribed region, 

3. RNA-Seq requires a smaller amount of RNA (Ozsolak and Milos, 2011; Wang et al., 

2009). 

Several factors have been shown to be important to successfully conduct an RNA-Seq 

experiment (Conesa et al. 2016; Li et al. 2015b; Quinn and McManus 2015); a) the experimental 

design: whether it is a 2 factor analysis (e.g. expression changes between two conditions) or 

more complicated with addition of other factors such as time, genotype, or tissue b) expected 

depth of sequencing: for example, transcriptome characterization and novel splice variant 

identification require more depth in sequencing than is required for a transcriptomic 

characterization of known genes coming from a species with a well-annotated reference, c) 

number of replicates: in order to properly justify the biological interpretation of the data, at least 

three replicates for an experimental condition is required to account for the existing biological 

variation. However it is worth noting that the confidence associated with the statistical analysis 

is directly proportional to the number of replicates (Conesa et al., 2016). 

An RNA-Seq workflow contains the following major steps: 

Sequencing 

The current project will use the Illumina sequencing platform that uses a Sequencing-By-

Synthesis (SBS) methodology (Bentley et al. 2008). Specifically we employed a workflow that 

utilised the TruSeq™ stranded RNA library preparation so we could identify the strand on which 

transcription took place. This is achieved by degrading the synthesized second strand before 

the PCR amplification step (Parkhomchuk et al., 2009). The polarity of the RNA is important 

when identifying novel genes (Zhao et al. 2015). The first step leading to the first cDNA strand 

synthesis starts with ligating a short primer complementary to the 3' end of the RNA (polyA tail), 
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that is subsequently identified by the RTs to initiate the reverse transcription producing the first 

cDNA strand. The first strand is then used as a template for the polymerase to generate the 

second cDNA strand. The difference in the TruSeq protocol to the traditional approach is that, 

the second cDNA strand synthesis incorporates dUTPs instead of dTTPs. The addition of Y-

shaped adapters is to make sure that the library is sequenced in the same direction, hence the 

orientation of the original RNA molecule is preserved (Figure 2). 

 

Figure 2 The dUTP method in TruSeq library preparation protocol 

The difference in the TruSeq protocol lies in synthesizing of the second strand using dUTPs 

instead of dTTPs. After adding the Y-shaped adapters, UDGase treatment removes the strand 

containing Uridines. Blunt end DNA fragments are generated to which an A-base will get added. 

Subsequently a 3' end T-base overhang containing adapter is added to the A-tailed fragmented 

DNA. Additionally, a user-defined barcode can be added. The Y-shaped adapters make sure 

that the strands are sequenced in the same direction. The fragmented molecules are of different 
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sizes, hence a gel size fractionation and extraction is performed to isolated DNA fragments with 

correct size for sequencing. (source: Wang et al. (2011)). 

In the sample preparation that leads to the library creation, it needs to be taken into 

consideration that the RNA species in a cell are comprised of poly-adenylated messenger RNA 

(polyA RNA), non-adenylated RNA, ribosomal RNA (rRNA), and small and micro RNA. In order 

to confirm that the RNA which is being sequenced is of the RNA species of interest, protocols 

have been developed to remove unwanted RNA contaminations. Due to our necessity of 

wanting both polyA and non-adenylated RNA the method used in our study for purification is 

the RiboZero rRNA depletion kit from Illumina. RiboZero kit claims to remove the rRNA from 

even PolyA RNA fractions (Sooknanan et al., 2010). 

The SBS method proprietary to Illumina creates sequencing templates through bridge 

amplification which are then used for sequencing through fluorescently labelled nucleotides of 

which the fluorescence is recorded (Figure 3). Difference in paired-end sequencing protocol to 

single-end protocol is that the process in Figure 3 is repeated with sequencing-by-synthesis 

occurring from the opposite adapter to the first round.  

 

 

Figure 3 Sequencing-By-Synthesis approach from Illumina Technology  

Sequencing libraries consist of single stranded and adapter ligated cDNA fragments.  The cDNA 

loaded onto Illumina flow cells hybridizes with complementary oligo sequences attached to the 

base of the flow cells. In bridge amplification, successive rounds of complimentary strand 

synthesis and denaturing result in clusters of identical sequences. Next a mixture of all four 

individually labelled and 3′-blocked dNTPs are added which will compete and bind to the 
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complementary nucleotide of the templates. After each addition, a light source excites the 

cluster, and fluoresce of attached labels is recorded (Adapted from Anandhakumar et al., 2015). 

Quality Control 

Quality control is critical for generating reproducible results through an RNA-Seq analysis. The 

quality control takes place at various stages of the analysis starting from the point of RNA 

isolation and library preparation for the sequencing (described above). Downstream quality 

control checks of the raw read files (FASTQ data) (Cock et al., 2010), after sequence alignment 

(Sequencing Alignment Map, SAM, or its corresponding Binary Alignment Map, BAM, files) and 

following the expression quantification, are important  (Sheng et al., 2017).  

The FASTQ format of the data has four lines representing each read; 1: identifier preceded by 

an "@" character, 2: sequence 3: a "+" character optionally followed by the identifier 4: base 

qualities. The information contained in the identifier includes machine, lane and flow cell 

identifiers. Tools such as FASTQC and NGSQC can calculate statistics for samples based on 

these values from the FASTQ files (Andrews, 2010; Dai et al., 2010). For example, information 

from the identifier line could be used to analyse the batch effects of the samples. Batch effects 

are those that are not caused by the variations of the samples per se but caused by the use of 

different instruments, human errors in handling samples, time of the sequence loading to the 

machine etc. Base qualities on the 4th line are denoted by a Phred score; this is calculated by 

the formula−10 log10 𝑝, where 𝑝 is the probability of the base being incorrect. Phred score is 

given according to an ASCII table and the current scale in use is known as Phred +33 (ASCII 

0–62). As a general rule, the base quality is expected to be above 30 to be acceptable (Phred 

30 means that there is 10-3 chance for the base to be wrong; 99.99% accuracy and an error rate 

of 0.1%), and if the quality is below 20 (i.e. error rate above 1%), it is regarded as a low quality 

pass due to the signal being low than noise, etc (Cock et al., 2010). In current Illumina platforms 

the base quality drops at the first ~10 cycles, then increases, and may drop again towards the 

end, yet has not been reported to be impacting the overall alignment quality (Sheng et al., 2017). 

Trimming though tools such as Trimmomatic and FASTX-Toolkit Toolkit (Bolger et al., 2014; 

Gordon and Hannon, 2010) removes the bases with low quality, however the aligners have the 

ability to soft-clip (i.e. bases included in the alignment file yet marked as not part of the 

alignment) hence the trimming for base quality could be performed on the fly. 

Another aspect that is being checked for is the GC content. Generally, the GC level of a monocot 

(e.g. barley) falls between 33.6% and 48.9% (Šmarda et al., 2014) and is higher than that of 
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dicots (Li and Du, 2014). It is expected that the GC content of a sample should be around the 

same value as that of the reference genome, or else it hints at contamination by another species.  

Quality control examines overrepresented sequences which could either represent genes with 

high expression, adapters, PCR artifacts or other contaminations. Trimming for adapters or 

small repetitive regions (k-mers) could be performed to remove these sequences. However, it 

has to be kept in mind that while trimming sequences increases the average read quality, over-

trimming could alter the downstream differential expression results due to an increased chance 

of the trimmed read getting mapped to multiple locations (Williams et al., 2016). 

Quality checks at the alignment level can be retrieved through statistics output files from the 

alignment tools to understand how many reads were uniquely mapped, how many were 

discarded due to what reason (e.g. multimapping, ambiguity, etc.). Furthermore, the Picard suite 

of tools (“Picard Tools - By Broad Institute,”),a java-based program, can mark the duplicates 

which can be removed through SAMtools (Li et al., 2009). 

Underlying the RNA-Seq method is the assumption that the level of expression in a particular 

experimental condition remains relatively similar. However, in some cases, there could be 

deviations from this assumption. In such cases, having more than 3 replicates gives the 

researcher the flexibility to remove the sample that is an outlier without compromising a 

statistical analysis. However, it is important to exercise caution when removing "outliers" as they 

may look like an outlier, but actually represent true biological variation. Particularly in 

experiments with low levels of replication. Therefore, such samples should be “flagged” and not 

simply removed. Methods for identification of potential “outliers” are principle component 

analyses (PCA) and multi-dimensional scaling (MDS) plots of sample data. Furthermore, 

clustering based on the expression values, and visualizing using density plots, heat maps or 

box plots can identify these outliers as well. 



26 
 

Alignment 

For the species with a reference genome, reads can be directly mapped to that reference. An 

indicator of “good mapping” is the percentage of uniquely mapped reads (i.e. one read mapped 

to one genomic location) with minimum mismatch rate (ideally <2%). As a general rule, a sample 

with a percentage of mapped reads below ~70% for a well-annotated genome such as 

Arabidopsis, would be considered poor. In order to perform RNA-Seq read alignment, it is 

important to use a splice-aware read alignment tool. Such tools are capable of splice aligning a 

read which spans an exon-exon junction across the corresponding intron on the genomic 

sequence. The use of a read aligner which is not splice-aware will result in fewer reads aligning 

to the regions flanking introns. The possible incorrect alignments of non-gapped aligners are 

mentioned in Figure 4. Tools such as TopHat/HISAT2 (runs the Bowtie algorithm), STAR and 

MapSplice are capable of splice-aligning reads (Dobin et al. 2013; Langmead and Salzberg 

2012; Trapnell et al. 2009; Wang et al. 2010b). A range of developed read aligning algorithms 

Figure 4 Two possible incorrect alignments of spliced reads 

1) A read extending a few bases into the flanking exon can be aligned to the intron instead of 

the exon. 2) A read spanning multiple exons from genes with processed pseudogene copies 

can be aligned to the pseudogene copies instead of the gene from which it originates 

(Reproduced from Kim et al., 2013) 
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and tools have been reviewed (Baruzzo et al., 2017; Ekre and Mante, 2016; Escalona et al., 

2016; Li and Homer, 2010; Shang et al., 2014).  

TopHat2 and STAR aligners were used in the current study because of the high accuracy in 

aligning reads to an incomplete reference and the power of speed on well annotated genomes, 

respectively TopHat2 first identifies the potential splice sites, then maps reads to known exons. 

The unmapped reads are then mapped to the exons considering the identified potential splice 

sites. Therefore, even though time consuming, TopHat2 is extremely sensitive when it comes 

to spliced reads (Kim et al., 2013). On the other hand, the aligner STAR was chosen for aligning 

reads to the well annotated Arabidopsis genome, since it is much faster. However, STAR has 

reduced sensitivity when it comes to novel spice junctions due to the fact that the reads are 

mapped independently of the other aligned reads (Dobin et al., 2013).  

Feature Quantification 

Feature quantification, gives a number on how many reads are mapped to a set of features (e.g. 

exons, transcripts, genes). I have employed the method featureCounts that is implemented in 

the Rsubread package in the R environment (Liao et al., 2013; R Core Team, 2014). The 

algorithm in featureCounts counts a read as a hit (i.e. mapped to the correct position hence 

counted as a read for that feature) if an overlap of the read to the reference is ≥1 base pair (bp). 

It also gives the user the flexibility to either include or exclude reads that have overlap across 

more than one feature (Liao et al., 2014).  

Normalisation 

The number of reads aligned to a gene is affected by the number of reads generated for a 

sample (library size) and the length of the transcript itself. Without normalizing read alignment 

counts to take these into consideration simple read counts are not directly comparable (Aanes 

et al. 2014; Dillies et al. 2013a). Several of the popular methods used for normalization are 

mentioned in Table 2 and discussed further below. Several others have been extensively 

compared and reviewed in Conesa et al., 2016; M.-A. Dillies et al., 2013; Li et al., 2015; Reddy, 

2015; Wu et al., 2011. 

Table 2 Popular methods of RNA-Seq data normalization that were considered in the 

project 

Transformation method Special features References 

Reads Per Kilobase of 
transcript per Million mapped 
reads (RPKM) 

Within-sample normalization 
for sequencing depth before 
normalizing for the gene 
length 

Mortazavi et al., 2008 
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Performs poorly with diverse 
transcript distribution 
Developed for single-end 
sequences 

Fragments Per Kilobase of 
transcript per Million mapped 
reads (FPKM) 

Derivative of RPKM, for 
paired-end reads. Has the 
same limitations as 
described above 

Trapnell et al., 2013 

Transcripts per Million (TPM) A fractional measure of the 
abundance of a transcript 
among all sampled 
transcripts to yield a 
proportion between 0-1 and 
then multiplied by 1million to 
give transcripts per million 

Li and Dewey, 2011 

Trimmed Mean of M-values 
(TMM) 

Weighted trimmed mean of 
the log expression ratios are 
used 

Robinson et al., 2010 

Counts Per Million (CPM) Does not take the feature 
lengths into consideration. 
The log-CPM value 
introduces a prior value of 
0.25 to avoid the log zero.  

Law et al., 2016 

 

In the RPKM and FPKM methods, the normalization algorithm takes the length of the transcript 

(lg) and the depth of sampling (N) into consideration (Mortazavi et al., 2008).  

In the absence of any sampling biases, the normalized value (𝜇𝑔) of reads (rg) for each gene g 

multiplied by 10-9 will result in a RPKM value. However, RNA-Seq counts are affected by 

biological variation and technical variation: i.e. batch effects (McIntyre et al., 2011). In their 

paper Wagner et al. (2012) showed that the inconsistency of RPKM values across samples is 

due to the fact that the total number of reads for a gene (rg) is dependent on the sequencing 

run, but not on the biological variation, like the total RNA abundance would be. Wagner et. al 

(2012) suggested that the TPM method (Li and Dewey, 2011) that effectively normalizes only 

for library size to be better than RPKM in that sense. Even so, TPM method also takes the length 

of the transcripts into consideration as the sum of all counts per base. Hence, both TPM and 

RPKM are missing one fundamental criterion in differential expression analyses; RNA 

composition and complexity of a sample affect the total number of reads generated due to the 

finite sequencing real-estate on Illumina flow cells. Despite the fact that both sum of counts per 

base (as in TPM) and the length of all reads in a sample (as in RPKM) are not a constant across 

the samples RPKM/FPKM and TPM methods are still being used for comparing gene 

 𝜇𝑔  =
𝑟𝑔

𝑁𝑙𝑔
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expression differences across samples. However, there is no clear requirement for 

normalization for the gene length. This is because the expression changes are measured for 

the same gene across the samples, hence the transcript length would be a constant for a 

statistical test. 

Robinson et al., 2010 proposed the method TMM to overcome this issue of sample biases in 

RPKM and TPM and take the real biological variation across samples for normalization. The 

TMM approach uses a weighted trimmed mean of the log expression ratios. Another approach, 

CPM, can also be used for normalization because for example, CPM value for the ith gene is 

the ratio between counts (Xi) and the number of sequenced fragments ( ) multiplied by one 

million (Law et al., 2014), hence does not take the length normalization into account; 

 
𝐶𝑃𝑀𝑖 =  

𝑋𝑖

𝑁
×  106 

 

The TMM and CPM methods were employed in this study to normalize across samples, as 

these methods are sufficient in RNA-Seq experiments because the gene length biases are 

affected similarly for the same genes in different samples. 

Differential Expression 

Statistical approaches have been developed for detection of differentially expressed genes and 

are summarized in Table 3 and further explained below 

Table 3 The Statistical approaches for identifying differentially expressed genes using 

normalized RNA-Seq data 

Approach Features Reference 

edgeR Uses an empirical Bayes 
estimation and exact test 
based on binomial models to 
determine differential 
expression 

Robinson et al., 2010 

DESeq Uses a binomial model that 
allows the differential gene 
expression analysis to be 
based on a dynamic range 
of data 

Anders and Huber, 2010 

BaySeq Uses negative binomially 
distributed data and 
estimated posterior 
likelihoods of differential 
expression using a Bayesian 
method 

Hardcastle and Kelly, 2010 

NOIseq A non-parametric tool that 
empirically models the noise 
distribution from the actual 

Tarazona et al., 2011 
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data that can adapt to the 
size of the dataset and 
control the false discoveries 

SAMseq Non-parametric approach 
based tool that is believed to 
derive significant features 
better than the parametric 
models mentioned above 

Li and Tibshirani, 2013 

Cuffdiff2 A transcript based detection 
method that enables 
differential reports and uses 
a beta negative binomial 
model for controlling the 
variability and ambiguity  

Trapnell et al., 2013 

EBSeq Estimating the posterior 
likelihoods of differential 
expression using a Bayesian 
method with an assumption 
that the data is distributed 
negative-binomially  

Leng et al., 2013 

Limma Based on linear modelling 
Assigns weights to each 
observation through voom 
based on the mean-variance 
relationship prior to linear 
modeling of the observations 

Law et al., 2014; Ritchie et 
al., 2015 

Poisson distribution, that is used in PoissonSeq (Li et al. 2012a), can be used to model the read 

counts. Even though the Poisson distribution assumes the variance to be similar to the mean, it 

works well when modeling expression data from technical replicates (Marioni et al., 2008). 

Technical replicates are from the same biological sample sequenced across different lanes. 

However, expression data from various biological samples have a higher variance than their 

mean. Therefore, an over-dispersed Poisson model or a negative binomial distribution model 

(NB) is better at explaining gene expression data (Robinson and Smyth, 2008; Smyth, 2004). 

In the Bioconductor package edgeR, the association between the mean and the variance of the 

negative binomial is calculated through a single parameter that is estimated thorough a constant 

𝛼𝑔from all data; 

 𝜎𝑔
𝑠 =  𝜇𝑔 +  𝛼𝑔𝜇𝑔

2   

On the other hand, DESeq estimates the variance-mean dependence within each sample which 

makes it more flexible than edgeR.  

Limma assumes a log-normal distribution of expression data and uses a generalised linear 

model to identify significantly differentially expressed genes (Smyth, 2004). Each gene has a 
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vector of expression values (𝑦𝑔) that is related to any coefficients of interest (i.e. hypotheses; 

𝛽𝑔) through a design matrix (X). 

 𝐸(𝑦𝑔)  =  𝑋𝛽𝑔  

The linear modelling allows sharing information across samples hence, analyses the entire 

experiment in integration. The ability to do simple pairwise comparisons, as well as more flexible 

hypotheses that include interactions between pairwise comparisons made it suitable for the 

current study with a multiple factorial design. Furthermore, independent studies from Soneson 

and Delorenzi, (2013), Seyednasrollah et al., (2013) and Schurch et al., (2015) show with the 

use of various simulated and real data sets that Limma (alongside edgeR and DESeq) has a 

minimum requirement of 3 biological replicates to detect differentially expressed genes for the 

threshold of 2 log2-fold change with lowest false positive rate. Additionally, the high quality of 

the available support and documentation as well as the high speed of the algorithm added to 

the suitability of Limma for this study. 

Gene Co-expression analysis 

A gene co-expression network is a graph containing nodes and edges, where genes are the 

nodes and correlation in expression are the edges (Civelek and Lusis, 2014; Zhang and 

Horvath, 2005) (Figure 5). Networks can identify potential genes that are likely to be the vital 

members of a biological process by acting in similar pathways and regulatory networks and 

having similar expression patterns (Civelek and Lusis, 2014; Lu et al., 2011).  

Define a Gene Co-expression Similarity

Define Family Adjacency Functons (AF)

Determine the AF Parameters

Define a Measure of Node Similarity

Identify Network Modules (Clustering)

Relate Network Concepts to Each Other

Relate Nework Concepts to External Gene or Sample Information

Figure 5 Flowchart of the process of gene co-expression analysis 

(Reproduced from Zhang and Horvath, 2005)  



32 
 

Weighted gene co-expression network analysis (WGCNA), the method used in the present 

study for the gene co-expression analysis, describes the correlation patterns between gene 

expression profiles and assigns weights for each edge according to the strength of the 

correlation (Lu et al., 2011). Zhang and Horvath, (2005) proposed the workflow for WGCNA and 

it will be described below (Figure 5).  

The first step of the network generation is to create a similarity matrix using the quantified and 

normalized expression value data. Statistical methods such as Pearson correlation can be used 

for this purpose (Galton, 1889; Pearson, 1920). There are other statistical methods that allow 

themeasure of correlation between data in gene co-expression analyses, and were used in 

examples shown in Table 4. The similarity matrix typically take values in the interval [-1, 1]. 

Table 4 Statistical methods for measuring correlation amongst observations 

Statistical method Special features Reference 

Pearson Correlation Parametric 
measures the linear correlation 
between two variables 

Pearson, 1920 

Hoeffding method  Non-parametric 
The D statistic depends only on 
the ranks order of the 
observations 

Hoeffding, 1948 

Kendall method Non-parametric 
Measures the strength of the 
dependence between two 
variables 

Kendall, 1938 

Theil-Sen method Theil-Sen estimator is the 
median of the slopes determined 
by all pairs of sample points 

Sen, 1968 

Spearman method Non-parametric 
Measures nonlinear monotonic 
relationship between two 
variables 

Spearman, 1904 

Weighted Rank method gives weight to the distance 
between two ranks using a 
linear function of those ranks 

Pinto da Costa and Soares, 
2005 

 

The next step is to convert the similarity matrix to an adjacency matrix (also known as a network) 

which must only contain values in the interval [0, 1]. Therefore, this conversion from an n x n 

similarity matrix (Aoriginal) to an n x n adjacency matrix (A) is undertaken with the use of an 

Adjacency function (AF); 

 𝐴 = 𝐴𝐹(𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)  

One such AF involves hard thresholding (AFthreshold) an assignment of either 1 or 0 is given if the 

original value surpasses some threshold value, thus deriving an unweighted network: 
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𝐴𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝜏)

𝑖𝑗
=  {

1 𝑖𝑓 𝐴𝑖𝑗
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 ≥  𝜏

0 𝑖𝑓 𝐴𝑖𝑗
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 <  𝜏
 

 

Hard thresholding has the issue of what to choose for the value for the threshold as edges falling 

just short of the threshold contribute nothing to the resulting network. This can be addressed by 

using soft thresholding, such as the power function (AFpower, β) for the transformation: 

 
𝐴𝐹𝑝𝑜𝑤𝑒𝑟(𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝛽)

𝑖𝑗
= |𝐴𝑖𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
|

𝛽
 

 

While hard thresholding results in an unweighted network, soft thresholding results in a weighted 

network (Horvath, 2011); which contains information on the weight of a connection, not just 

whether a connection exists or not. The topological overlap measure (TOM) is used to detect 

subsets of tightly interconnected nodes. This is done by measuring the degree of overlap 

between the neighbours for a pair of nodes. However, in the case of TOM, this is generalised 

to cover all neighbours, not just the first-step neighbours. The generalised TOM approach used 

in Zhang and Horvath (2005) has evolved from Ravasz et al. (2002) and is defined as; 

 

𝑡𝑖𝑗 = {

𝑙𝑖𝑗 +  𝑎𝑖𝑗

𝑚𝑖𝑛{𝑘𝑖 , 𝑘𝑗} +  1 − 𝑎𝑖𝑗

, 𝑖𝑓 𝑖 ≠ 𝑗

1, 𝑖𝑓 𝑖 = 𝑗

 
 

Where, 𝑎𝑖𝑗 is the adjacency matrix, 𝑙𝑖𝑗 =  ∑ 𝑎𝑖𝑢, 𝑎𝑢𝑗𝑢 , 𝑘𝑖 = ∑ 𝑎𝑖𝑢𝑢  and u is an index that 

runs across all nodes of the network. 

One class of important nodes in a network, are those with the highest connectivity within a 

module (as measured by module membership). These are called hub genes. It is known that 

removal of a hub gene from a network causes the whole network topology to collapse (Figure 

6) and are thus integral to the overall network structure. As such, hub genes are expected to be 

crucial players in understanding the biological mechanism underlying these modules.  

 

Figure 6 A hypothetical network topology to show the importance of a hub gene 

The circles represent nodes (e.g. genes) and the connectors represent the edges (e.g. 

correlation between two nodes). The hub nodes and their edges are coloured in orange in a. 

These are the nodes that have the largest number of edge weights within the network. 
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Therefore, the presence of hub genes is mandatory for the presence of that network, and 

relating to the biological importance, the function of the hub genes can be assumed to be 

important in preserving the topology of the network. 

Variant Analysis 

Sequence variants caused by single nucleotide changes, a short insertion or deletion, can in 

some cases, be advantageous for the carrier (e.g. give rise to phenotypes with high Na+ 

tolerating ability) over others of the same species (Saxena et al., 2014) and may explain 

phenotypic differences (Rafalski, 2002). Such variants, if associated with an advantageous trait 

can be used for marker-assisted selection in breeding programs (Telem et al., 2016).  

Single Nucleotide Polymorphisms (SNPs) can occur in non-coding regions of the genome as 

well as in coding regions (Clevenger et al., 2015; Ganal et al., 2009). SNPs that are located in 

protein-coding regions may (non-synonymous SNP) or may not (synonymous SNP) give rise to 

a change of an amino acid in the encoded protein sequence. Thus non-synonymous SNPs can 

either be a) missense: can lead to altered protein function or activity or b) nonsense: result in a 

premature stop codon. Another common type of genetic variant is insertions and deletions 

(inDels) (Ajawatanawong and Baldauf, 2013). InDels in genes may cause reading frame shifts 

that lead to gene knockouts through premature translational stops or an altered amino acid 

sequence.  

One process of identifying SNPs and short InDels is sequencing a genotype of interest, aligning 

the reads to a reference genome, and calling the variants. There are a range of tools for calling 

variants including Genome Analysis Toolkit (GATK) HaplotypeCaller and GATK 

UnifiedGenotyper, SAMtools mpileup/bcftool pipeline, VCFtools, FreeBayes and SNPSV 

(Danecek et al., 2011; Garrison and Marth, 2012; Li et al., 2009; Li, 2011; O’Fallon et al., 2013). 

Since most of the tools have been developed for and tested on human/mammalian but not on 

plant data (Cornish and Guda 2015; Deelen et al. 2015; Hwang et al. 2015; Liu et al. 2013b)  

(Olson et al., 2015), I decided to use the GATK HaplotypeCaller for variant calling based on 

available evaluations on accuracy shown with multi-sample analyses (Cornish and Guda 2015; 

Liu et al. 2013b; Pirooznia et al. 2014). 

Variant annotations and effect predictions are feasible with tools such as ANNOVAR, VEP, 

CCED, CooVar, SNPEff and SNPSift (Cingolani et al. 2012; Kircher et al. 2014; McLaren et al. 

2016; Vergara et al. 2012; Wang et al. 2010a). Similarly to the variant calling tools these have 

not been evaluated for plant genomes. Therefore, based on prior knowledge in working with, I 

chose SNPEff to predict the variant effects in the present study. 
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Molecular Phylogenetics 

Molecular phylogenetics is a method to infer orthologues relationships among genes/proteins. 

Moreover, one can infer the functions for uncharacterised proteins based on their orthologues 

relationship to members of the same family that have functional evidence. 

There are several steps in a phylogenetic analysis. They are: 1) Identification of homologous 

sequences; 2) Model selection and 3) Tree building. 

Identifying Homologous Sequences 

One of the first steps in phylogenetic analyses is often the identification of similar sequences to 

a given nucleotide or protein sequence (Altschul et al., 1990; Pei, 2008). Genes can become 

similar in sequence by convergence, rather than by divergence, and thus have no common 

ancestor and are therefore not homologous. Therefore, clues to support the divergence of a 

particular set of sequences from a common ancestor by the process of mutation and selection 

is important in homology studies (Reeck et al., 1987). Sequence alignment algorithms can be 

used for genomic data mining to identify homologous sequences (Henikoff and Henikoff 1992). 

The alignment algorithms can be loosely categorized as, 1) pairwise local aligners 2) pairwise 

global aligners and 3) multiple sequence aligners. Pairwise local aligners are for associated 

fragments of sequences. Pairwise global aligners are for sets of sequences linked by mutual 

ancestry throughout their lengths. Multiple sequence aligners are for multiple members of 

sequence families and alignments made in database investigations to detect homology 

(Henikoff and Henikoff 1992). Some of the popular algorithms developed for this purpose 

include the Needlemann-Wunsch algorithm, Smith-Waterman algorithm, BLAST and FASTA 

(Polyanovsky et al., 2011).  

Needleman and Wunsch (1970) and Smith and Waterman (1981) both developed alignment 

algorithms using dynamic programming to generate a global alignment. The dynamic 

programming algorithm is computationally intensive but is guaranteed to find the optimal 

alignment for a scoring function. Heuristic alignment algorithms such as BLAST can perform 

high speed local pairwise alignments but are not guaranteed to find the optimal solution (Altschul 

et al., 1990). The heuristic method FASTA is considered to be much more sensitive but slower 

than BLAST (Lipman and Pearson, 1985).  

Progressive alignment techniques have been introduced for multiple sequence alignment to 

avoid the weaknesses of pairwise alignments which uses dynamic programming techniques 

(Pei, 2008). Progressive methods create multiple alignments by the use of a series of pairwise 
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alignments or pre-aligned clusters. However, they do not promise an optimal solution and could 

be error-prone in the pairwise alignment step. Nevertheless, using a correct substitution scoring 

model these multiple sequence alignment can produce a reliable and fast result (Pei, 2008). 

From the currently available tools, CLUSTALW, MAFFT, MUSCLE and TCoffee are considered 

to produce reasonably accurate multiple sequence alignments (Chenna et al., 2003; Edgar, 

2004; Katoh et al., 2005; Notredame et al., 2000; Thompson et al., 1994). MUSCLE, the 

technique I have employed in the multiple sequence alignment of the sequences, involves initial 

pairwise sequence profile alignment, which is then used for progressive alignment and later for 

fine-tuning (Edgar, 2004). 

Model Selection 

Any method for inferring the homology of nucleotide or protein sequences directly or indirectly 

uses the evolutionary models of nucleotide or protein substitutions (Adachi and Hasegawa, 

1996; Hasegawa et al., 1985; Kimura, 1980). Even though the mutation events occur at the 

nucleotide level, selective pressure primarily pertains on the protein level (Massingham and 

Goldman, 2005; Tourasse and Li, 2000). Therefore codon substitution models and amino acid 

substitution models are more reliable than the models applied to nucleotide sequences (Arenas, 

2015).  

Codon substitutions can be of two different types; a) synonymous (no changes to amino acids) 

and b) non-synonymous (altering amino acids). Therefore, the ratio between synonymous (𝑑𝑆) 

and non-synonymous (𝑑𝑁) substitutions (i.e. 
𝑑𝑆

𝑑𝑁
 ratio) was used initially for identifying the 

selection pressure on a population. Existence of positive selection pressure caused by the 

substitutions on the gene that codes for altered proteins is implied by 
𝑑𝑆

𝑑𝑁
> 0, while 

𝑑𝑆

𝑑𝑁
≤

0 implies that there is either neutral or negative selection pressure on the gene (Yang and 

Bielawski, 2000).  

Proteins from different species tend to have varied amino acid substitutions, as do proteins with 

different functions (Miyazawa, 2013). Residues at different positions are exposed to different 

selective pressures. In distantly related sequences where non-synonymous substitutions are 

significant, it is important to evaluate selective pressures on amino acids and consider 

substitution models based on amino acids (Miyazawa, 2013). When multiple sequence 

alignments are inspected, some positions are more conserved than others, and some regions 

of a multiple alignments seem to be more tolerant to inDels than others (Henikoff and Henikoff 

1992). 
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Unlike empirical models, mechanistic codon models take these issues into consideration. They 

attempt to explain the biology involved in protein evolution including things such as mutational 

biases in the DNA and the genetic code. These models usually separate mutational biases at 

the nucleotide level from selective constraints at the amino acid level and take features of 

sequence evolution into consideration (e.g. transition-transversion and base or codon 

occurrence bias) and make use of physical and chemical properties of amino acids to stipulate 

non-synonymous substitution rates (Yang et al., 1998). Therefore, mechanistic codon models 

perform better than the empirical models (Miyazawa, 2013). However, the matrices involved in 

codon substitution models are so large (61 x 61 excluding the stop codons), which makes the 

application of these models computationally extensive. A better alternative for codon 

substitution models therefore are the amino acid substitution models that would test a 20 x 20 

matrix instead.  

Amino acid substitution models can be broadly categorized into; 1) empirical models 2) 

parametric models (Henikoff and Henikoff 1992; Marti-Renom 2004). Empirical models are 

based on the fact that the likelihood of an amino acid A replacing the amino acid B is same as 

B replacing A. This is assumed on the basis that likelihood should depend on the product of the 

frequencies of occurrence of the two amino acids and on their chemical and physical similarity 

caused by change in amino acid frequencies over the evolutionary distance (Dayhoff et al., 

1978). Therefore, the relative substitution rates between amino acids are fixed in those models, 

no matter which protein is analysed (Yang et al., 1998). Dayhoff (PAM) model and BLOSUM 

(BLOck SUbstitution Matrix) are two of the main empirical models used today (Dayhoff et al., 

1978).  Further improvements of the empirical models involved the work and the critical analysis 

done between Dayhoff models and maximum likelihood models (Adachi and Hasegawa, 1996; 

Jones et al., 1992; Müller et al., 2002). 

Tree Building 

A phylogenetic tree is a representation of the evolutionary history of a group of species of 

sequences considered, whereby leaves (external nodes/Operational Taxonomic Units/OTUs) 

of the tree represent the species or the sequences and internal nodes represent the ancestral 

states (Soltis and Soltis 2003). This information on biological diversity, structural classification 

and insight into evolution provide the clues for homology modelling and identification of novel 

proteins which are not yet characterized (Baum, 2008).  
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Choosing a Method for Phylogenetic Analysis 

Distance-based methods are simple approaches to constructing phylogenetic trees (Saitou and 

Imanishi, 1989). Pairwise distances between all pairs of sequences of a multiple sequence 

alignment are calculated. Missing data or gaps are handled by either deleting them pairwise or 

completely or considering them as all possible bases. Some examples of distance-based 

methods are the Unweighted Pairwise Group of Multiple Alignments (UPGMA), Neighbor-

Joining (NJ), Minimum Evolution and Fitch-Margoliash (Saitou and Imanishi, 1989). These 

methods can tolerate a large number of sequences since they are derived from pairwise 

distance calculations which are quick and easy to calculate (Saitou and Imanishi, 1989). 

Character-based methods such as Maximum Parsimony (MP), Maximum Likelihood (ML) and 

the Bayesian probability technique are alternative techniques, which depend on the likelihood 

or probability models (Reddy, 2011; Zvelebil and Baum, 2008). A distance-based method 

computes pairwise distances according to some measure which discards the actual data and 

the fixed distances are used in the construction of trees. On the other hand, trees derived by 

way of a character-based method have been optimized according to the distribution of actual 

data patterns in relation to a specified character. Although these character based models are 

more robust, they are significantly more time consuming than the distance-based methods. 

However, erroneous phylogenetic relationships can be drawn from any of these methods if they 

are not understood and explored properly. Therefore, careful consideration should be given to 

select the appropriate model and backing the results with the previous literature findings is 

important (Reddy, 2011).  

The tool MEGA encompasses the capability to generate phylogenetic trees using either several 

distance-based or character-based methods (Tamura et al., 2013). This tool was used in the 

project to compute the phylogenetic trees using suitable mechanistic codon substitution models. 
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Confidence in Phylogenetic Trees 

Bootstrapping is a method to provide a level of confidence in the branching order of phylogenetic 

trees (Efron et al., 1996). In bootstrapping, random sampling of alignment positions is conducted 

with replacement to generate pseudo datasets (Figure 7). These pseudo datasets are used as 

input into the phylogenetic tree reconstruction method being used (Nei and Kumar, 2000). The 

topology of each bootstrap tree is then compared with the initial phylogenetic tree. Each internal 

node that is different henceforth will be assigned a zero. A one is assigned to similar internal 

nodes. A percentage value (bootstrap value) will be calculated from the data generated in all 

bootstrapping iterations. As a general rule if the bootstrap value for a given internal node is ≥ 

80%, the node is considered to be correct (Nei and Kumar, 2000). This can be applied to any 

phylogenetic reconstruction method (Felsenstein, 1985). As few as 100-200 bootstrapping 

replications can give reliable estimates (Efron et al., 1996). 

Tree building 

algorithm 

 

Figure 7 Steps in bootstrapping a phylogenetic tree 

Reproduced from http://phylogenetictrees.com/images/seq_tree_4.gif 
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Conclusion and Research Aims 

The challenge for functional genomics in plant salinity tolerance related research now will be to 

develop sustainable and transferrable agronomically important crops with minimal manipulation 

to aid improvements of yield in areas with highly salinized soil (Atkinson and Urwin, 2012). Given 

that salinity is a complex trait, the plant responses to it involves a large array of genes. 

Investigation of global transcriptomes and variants of candidate genes of plants exposed to high 

salinity can provide a holistic view on how the plant genome is involved in salinity response and 

whether there are any noteworthy genotypic differences in this response that need further 

investigations. 

Research in this thesis therefore, attempts to understand several aspects of salinity tolerance 

in the context of Arabidopsis and barley through RNA-Seq and phylogenetics. Being able to 

relate the genetic variation to phenotypic information through gene co-expression and genotypic 

variations will add another layer of information to this context. These findings will add to the 

overall body of knowledge on how to generate sustainable salt tolerant germplasm. 

Specific research questions addressed in this thesis are; 

1. What are the underlying molecular mechanisms of AtCIPK16 overexpression conferred 

salinity tolerance in Arabidopsis? 

2. What is the prevalence of CIPK16s in the terrestrial plant kingdom? 

3. What are the main genetic and expression variations among the barley genotypes with 

varying Na+ accumulation levels?  
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Abstract 

Soil salinity causes large productivity losses for agriculture worldwide. “Next-generation crops” that can 

tolerate salt stress are required for the sustainability of global food production. Previous research that 

attempted to uncover novel plant salinity tolerant capabilities has identified a protein kinase named 

AtCIPK16 to be involved in enhanced salinity stress response. A comparative transcriptomic study on 

Arabidopsis lines expressing AtCIPK16 was conducted in the presence and absence of salt stress, using 

an RNA-Seq approach. Previously AtCIPK16 overexpression has shown to be involved in enhanced 

salinity tolerance through high Na+ exclusion and increased biomass in both Arabidopsis and barley. In 

this study, we provide evidence for a possible involvement of a transcription factor, AtTZF1, 

phytohormones and the ability to quickly reach a new homeostasis as components of the salinity 

tolerance response in transgenics. Furthermore, we suggest the possibility of both biotic and abiotic 

tolerance achieved by AtCIPK16 transgenics and propose a model for the salt tolerance pathway elicited 

through AtCIPK16. 

Keywords 

Arabidopsis thaliana, salinity tolerance, AtCIPK16, RNA-Seq, differential gene expression, gene co-

expression, AtTZF1, phytohormones 
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Introduction 

Soil salinity has adverse effects on global agricultural production (FAOSTAT, 2014; Rengasamy, 

2006, 2010). An estimated 30% of the irrigated land and 6% of the world’s total land is affected by 

salt, and these areas are increasing in size (Schroeder et al., 2013). Estimates put agricultural 

production losses at 12 billion USD per annum in the US alone (Munns and Gilliham, 2015; 

Shabala, 2013). Finding crops that can withstand high salinity therefore is a high-priority for 

achieving sustainable world food production. Salinity imposes two main limitations on plant growth 

and survival: (i) an initial hyperosmotic stress, and (ii) secondary nutritional imbalance, ionic and 

oxidative stress through accumulation of high concentrations of Na+ and Cl– (Roy et al., 2014). 

There is extensive research efforts toward understanding the molecular mechanisms that enable 

salt tolerance with the ultimate goal of developing more salt tolerant crops (Deinlein et al., 2014; 

Hanin et al., 2016; Munns and Gilliham, 2015; Roy et al., 2014). 

Molecular mechanisms involved in salt tolerance in plants, including Arabidopsis, can be broadly 

classified into the following categories: a) transporters that can reduce influx, or increase efflux or 

compartmentalization of Na+/Cl- ions, or maintain K+ homeostasis (e.g. SOS, NHX, HKT, AKT, 

HAK, KAT,CCC, SLAH1) (Bassil et al., 2012; Chen et al., 2007; Diédhiou and Golldack, 2006; 

Grabov, 2007; Hamamoto et al., 2015; Ji et al., 2013; Qiu et al., 2016; Wang et al., 2015); b) 

detoxifiers that can scavenge excessive reactive oxygen species (ROS) and alleviate negative 

effects of ROS (e.g. SOD, APX, AsA, CAT, GPX PrxR) (Baxter et al., 2014; Mittler et al., 2011); c) 

osmotic adjusters that can maintain low intracellular osmotic potential in plants under salt stress 

(for example proline, glycine betaine, free amino acids, sugars, polyamines and polyphenols) (Rosa 

et al., 2009); d) phytohormones that can facilitate a broad array of adaptive responses and long 

distance signalling (such as abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic 

acid, brassinosteroids, jasmonates, ethylene) (Fahad et al., 2015; Peleg and Blumwald, 2011; Ryu 

and Cho, 2015); and e) salt sensors including those that sense cytosolic Ca2+ changes resulting 

from changes in the cytosol due to salinity and communicate the effects to downstream activating 

proteins (CBLs and CIPKs, CDPKs, CaMs, CAMLs, etc.) (Shabala et al., 2015). 

The involvement of CBL-CIPK complexes as signalling components in salt stress has been well 

established (Hashimoto et al. 2012; Luan 2009; Mao et al. 2016; Thoday-Kennedy et al. 2015). 

Arabidopsis CIPKs found to be involved in salinity tolerance mechanisms of plants include CIPK1 

(D’Angelo et al., 2006), CIPK3 (Kim, 2003), CIPK6 (Tripathi et al., 2009), CIPK16 (Roy et al., 2013) 

and CIPK24 (SOS2) (Liu et al., 2000). AtCIPK16 from Arabidopsis thaliana (At2g25090) was 

identified from a forward genetic screen as a gene with a role in reducing Na+ content in leaves 

during salt stress (Roy et al., 2013). Therefore AtCIPK16 is a potential candidate for the genetic 
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engineering of salinity tolerant crops. The knowledge on the mode of action of AtCIPK16 is still 

largely unknown, however previous studies have shown that AtCIPK16 may get directed to the 

nucleus (Huang, 2015) and has a nuclear localisation signal (NLS) (Amarasinghe et al., 2016). 

The current study is an attempt to fill the gap in our understanding of AtCIPK16 mediated salt stress 

tolerance in A. thaliana. Through an investigation of the transcriptomic responses in transgenic and 

null-transgenic plants, as well as a co-expression network analysis, we aimed to identify a set of 

genes, whose expression is influenced directly or indirectly by AtCIPK16 overexpression. Our 

results suggest that the AtCIPK16 mediated salt tolerance is mainly achieved through transcription 

factor modulation and phytohormone signalling. We propose a molecular pathway for at least a 

part of the AtCIPK16 mediated salt tolerance mechanism for validation in future laboratory 

experiments. 

Results 

Determining presence and transgene expression level in 35S:AtCIPK16 expressing Arabidopsis 

and DNA binding properties of AtCIPK16 

Presence of the transgene was determined by using primers designed to the transgene specific 

3′ UTR region of the gene. As expected only transgenic plants contained the AtCIPK16 transgene 

(S1). AtCIPK16 transgene expression was higher in transgenic plants compared to native 

AtCIPK16 expression in null segregants in the absence of salt stress, and after both 3 and 51 hours 

of salt stress (Figure 1a). The AtCIPK16 sequence was tested for DNA binding potential based on 

the postulation that AtCIPK16 activity is within the nucleus. It was identified that the protein region 

from A357 – G391 has the ability to bind to DNA (Figure 1b).  

Differential Gene Expression 

To determine differential gene expression between AtCIPK16 over-expressing lines and null 

segregants, RNA was extracted from shoot and root material of 5 week old, hydroponically grown, 

plants exposed to either 0 or 75 mM NaCl for 3 or 51 hours. RNA-Seq analysis was performed to 

determine the plants’ gene expression profiles. On average, a mapping percentage of ~88% was 

reported across root and shoot material collected from both transgenic and null segregants for the 

3 hour time point data and a mapping percentage of ~86% for 51 hour time point samples (S2). 

A total of 21,974 and 21,160 genes were differentially expressed across the two tissues from 3 

hours and 51 hours, respectively, in salt treated AtCIPK16 transgenic plants compared to the null 

transgenics. In order to identify the differentially expressed genes in salt stressed plants with 

AtCIPK16 overexpression several contrasts were tested (Figure 2) based on the differences in 
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gene expression levels in the roots at 3 hours, shoots at 3 hours, roots at 51 hours and shoots at 

51 hours. The number of genes which were up or down-regulated at each of the two time points 

and in each tissue for each line are shown in Figure 3.  

Contrast 1: Transgenic Control Vs Null Control 

In the comparison of transgenic control vs null control (transgene-effect in controls; TC) samples, 

5 differentially expressed genes (DEGTC) in the roots at 3 hrs (DEGTC(3R)) and 160 in the shoots at 

3 hrs (DEGTC(3S)) were identified (Figure 3a, S4 worksheet 1-2). As expected, AtCIPK16 

(AT2G25090) was present in both DEGTC(3R) and DEGTC(3S) (Figure 4a). Most (150) of the genes in 

DEGTC(3S) had higher expression in transgenics.  

At 51 hours, there was only 1 DEGTC in roots (i.e. DEGTC(51R)) (Figure 3a; S4 worksheet 3). In shoot 

controls at 51 hours there were 17 DEGTC (i.e. DEGTC(51S))  (Figure 3a; S4 worksheet 4). While 

there is 1 DEGs in common between the root and the shoot DEGTC at 51 hours, it is not AtCIPK16 

but AT1G47970 (Figure 4b). 

Contrast 2: Transgenic Salt Vs Null Salt 

In the comparison of transgenic vs null samples in presence of salt (transgene effect in salt: TS) 

(Figure 2) There were DEGs (DEGTS) present for this contrast for both tissues at both time points 

(i.e. DEGTS(3R): 403, DEGTS(3S): 108, DEGTS(51R): 4, DEGTS(51S): 13) (Figure 3b; S4 worksheet 5, 6, 7 

and 8). While there was a ~80 fold increase in the DEGTS(3R) compared to DEGTC(3R) (403 vs 5), the 

DEGTS(3S) remained more or less in the same range as DEGTc(3S) (160 vs 108) (Figure 3 a and b). 

However, there were proportionally more down regulated genes in the DEGTS(3S). While only ~6% 

of the DEGs from DEGTC(3S) were down regulated (10/160), ~37% of DEGTS(3S) were down 

regulated (40/108). Clearly, in salt stress overexpression of AtCIPK16 has reduced the expression 

of genes. 

At 51 hours, very low number of DEGs were seen in salt stress in both roots and shoots similar to 

the observations in non-stressed conditions (4 DEGTS(51R) vs 1 DEGTC(51R) and 13 DEGTS(51S)  vs 17 

DEGTC(51S)) (Figure 3 a and b). There were 10 genes in common between DEGTS of root and shoots 

at 3 hours (Figure 4c) while there were none at 51 hours (Figure 4d). 

Contrast 3: Transgenic Salt Vs Transgenic Control and Contrast 4: Null Salt Vs Null Control 

At 3 hours, in both tissues the effect of salt (salt effect on transgenics: ST; Figure 2) elicited 

differential expression of more genes (DEGST) in AtCIPK16 transgenics (i.e. DEGST(3R): 1696 and 

DEGST(3S): 572) compared to the null transgenics (salt effect on nulls: SN; Figure 2) (DEGSN(3R): 849 

and DEGSN(3S): 439) (Figure 3 c and d). But at 51 hours it is the opposite; effect of salt elicited the 
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differential expression of fewer genes in AtCIPK16 transgenics (i.e. DEGST(51R): 123 and DEGST(51S): 

135) compared to nulls (DEGSN(51R): 1043 and DEGSN(51R): 358) (Figure 3 c and d).  

Contrast 5: Interaction between SN and ST 

With the presence of DEGs in both ST and SN, genes with significantly different expression levels 

between these two contrasts were examined through linear modelling of data. The results of 

contrast 5 are differentially expressed genes due to the absolute effect of transgene in salt stress 

(INT) (i.e. DEGINT) (Figure 2). Even though for 3 hours there were 231 DEGINT in roots (DEGINT(3R)) 

and 152 DEGINT in shoots (DEGINT(3S)), there were no DEGINT for the 51 hours (Figure 3 e; S4 

worksheet 9, 10, 11 and 12). Furthermore, there were 9 DEGINT common to both roots and shoots 

at 3 hour time point (Figure 4e).  

Investigating potential biological implications of AtCIPK16 overexpression 

Genes with a significant transgene-effect in controls (5 DEGTC(3R), 160 DEGTC(3S), 1 DEGTC(51R) and 

17 DEGTC(51S)) (Figure 3a) were further analysed through Gene Ontology (GO) studies and pathway 

analysis to understand potential biological consequences of AtCIPK16 overexpression in the non-

stressed conditions. GO analysis showed that DEGTC(3S) that are up-regulated were most enriched 

for response to chitin (p value = 3.47×10-92) (S5; worksheet1 cells with yellow background colour). 

Perhaps not surprisingly, the corresponding Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

pathways that DEGTC(3S) fell into include plant-pathogen interaction (S6, column B). Additionally, 

molecular functions such as transcription regulator activity was significant for the DEGTC(3S) that are 

up-regulated (p value = 7.51×10-09) (S5; worksheet 1 cells with yellow background colour). Down-

regulated DEGTC(3S) were enriched for the molecular function of negative regulation of RAS protein 

signal transduction (p value = 6.95×10-04) and RHO-GTPase binding (p value = 6.95×10-04) 

(S5, worksheet1 cells with blue background colour). 

The significant GO terms found for up-regulated DEGTS(3R) were the biological process response 

to organic substance (p value = 1.59×10-42) and the molecular function sequence specific DNA 

binding transcription factor activity (p value = 5.65×10-11) (S5, worksheet 2 cells with yellow 

background colour). The up-regulated DEGTS(3S) were enriched for cell wall modification involved 

in abscission (p value = 7.28×10-04) and indole-3-acetic acid amido synthetase activity 

(p value = 1.52×10-03) (S5, worksheet 3 cells with yellow background colour). The down-regulated 

DEGTS(3S) were enriched for terms such as cellular response to iron starvation 

(p value = 7.03×10- 07) and iron ion binding (p value = 6.37×10-04) (S5, worksheet3 cells with blue 

background colour). The molecular functions related to metal binding, interestingly had a focus on 

calcium ion binding in salt absent shoots (S5, worksheet1 cells with yellow background colour) 
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while it is more DNA and Ferric ion binding for salt stressed roots (S5, worksheet2 cells with yellow 

background colour) and shoots (S5, worksheet3 cells with yellow background colour), respectively.  

The transgene dependent salt responsiveness was investigated for the combined effect of both 

AtCIPK16 overexpression and salt on the plant. DEGINT(3R) were enriched for response to chitin 

(p value = 3.08×10-26) (S5, worksheet 4 biological process). The pathways the DEGINT(3R) fall in 

included “carbon metabolism”, “Phenylpropanoid biosynthesis”, “Glyoxylate and dicarboxylate 

metabolism” and “Galactose metabolism” (S6 column E). Response to carbohydrate stimulus 

(p value = 5.13×10-10) was a GO category identified for the DEGINT(3S) (S5, worksheet 5 biological 

process). Peroxidases that are involved in the Phenylpropanoid biosynthesis pathway and genes 

involved in flavonoid biosynthesis were identified through pathway analysis (S6 column F). 

Furthermore, Calcium-binding EF-hand motif containing genes involved in plant-pathogen 

interaction were among the pathways which DEGINT(3S) were grouped into (S6, column F). 

Next specific roles of DEGs were investigated in the following functional categories; a) 

transporters/channels, b) regulation of transcription, c) metal handling, d) enzyme families, e) 

hormone metabolism and f) signalling pathways (S7).  

Transporters/Channels 

More transporters were identified as DEGTS(3R) compared to transporter DEGTS(3S) and DEGTC(3S) 

(S7 worksheet 1, under Transport in S8 a, b, d and e). The transporter genes from the DEGTC(3S) 

included SLAH3. The transporter DEGTS(3R) included several NRTs, CHX17, CNGC19, root hair 

specific 2 genes. Furthermore, there are transporters from DEGTS(3R) associated with JAZ proteins 

that are involved in ubiquitination leading to proteolysis, as well as SAUR protein coding genes 

involved in cell expansion through auxins (S9 a). Other pathways that DEGTS(3R) belonged to were: 

Phenylpropanoid biosynthesis and phenylalanine metabolism (S10 a) and “valine, leucine and 

isoleucine degradation related genes”. While transporter DEGTS(3S) are directly or indirectly 

associated with cell wall biosynthesis, α-Linolenic acid metabolism and Pentose and glucuronate 

interconversions were associated with DEGINT(3S) (S10 a).  

Regulation of Transcription and DNA/DNA Processing 

The largest number of DEGs encoding transcription factors (TFs) belonged to DEGTS(3R) 

(S7 worksheet 2, under regulation of transcription in S8 d). Only five of these TFs were identified 

in pathways and they fell into plant hormone transduction and plant-pathogen interaction pathways 

(S10 b). The TFs from DEGTS(3S) were related to limonene and pinene degradation, ubiquitin 

mediated proteolysis, starch and sucrose metabolism and stilbenoid, diarylheptanoid and gingerol 

biosynthesis (S10 b). The TF genes from DEGINT(3R) and DEGINT(3S) are directly or indirectly involved 
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in plant-pathogen interactions, starch and sucrose metabolism and plant hormone transduction 

(S10 b). The hormone signal transduction related genes from DEGINT(3R) are related to auxin, ABA 

and jasmonic acid (S9 b). RNA synthesis and processing genes were not in DEGINT(3R) while they 

were in DEGTS(3R) (under RNA synthesis and RNA processing in S8 d and h). DEGTC(51S) contained 

DNA replication and nucleotide excision repair pathway genes, which included the transcription 

factor NF-YB11 (AT2G27470) (S6 column J). 

Metal Synthesis and Assimilation 

There are metal related genes within both DEGTS(3R) and DEGTS(3S) which are not in DEGTC(3R) or 

DEGTC(3S) (under metal handling in S8 a, d and e). Moreover, DEGINT at 3 hours contain metal 

handling genes that are iron (Fe) related (S7 worksheet 3). Pathways these metal binding DEGINT 

directly or indirectly modulate include Porphyrin and chlorophyll metabolism (S10 c). 

Enzyme Families 

There were ‘enzyme related’ 1 DEGTC(3R) and 2 DEGTC(3S) (S7 worksheet 4, under enzyme families 

in S8 a). However, there are at least 12 ‘enzyme related’ DEGTS (S7 worksheet 4, under ‘enzyme 

families’ in S8 d and e). Enzyme related DEGINT(3R) were fewer compared to those from DEGTS(3R) 

but the number of enzyme related genes from DEGINT(3S) and DEGTS(3S) were more or less similar 

(S7 worksheet 4). ‘Enzyme family’ DEGTS showed associations to genes that fell into pathways of 

ROS mediation, pathogen interactions and cell growth, and cell wall strengthening (S10 d). 

Phenylalanine metabolism and phenylpropanoid biosynthesis were seen to be pathways the 

differentially expressed enzymes of 3 hour DEGINT grouped into (S10 d).  

Hormone Metabolism 

The hormone related DEGTC(3S) were directly or indirectly involved in ethylene, auxin and 

brassinosteroid metabolism (S8 j, S9 c). Additionally, 66 of the DEGs from this contrast have 

putative involvement in biotic stress which include the ethylene signalling related genes and 

ethylene-responsive element binding protein family genes (S8 q).  

Within DEGTS(3R) there were genes that were either directly associated to or indirectly modulating 

genes related to gibberellin, ethylene, auxin, brassinosteroids and JA (S8 l, S9 d). Several genes 

encode products that are known to be involved in ethylene biosynthesis (1-aminocyclopropane-1-

carboxylic acid (acc) synthase 6; AT4G11280) and JA biosynthesis (allene oxide cyclase 

2; AT3G25770, allene oxide synthase; AT5G42650) were evident within DEGTS(3R) 

(S7 worksheet 5). The potential function of the proteins encoded by these genes mainly was 

ubiquitination mediated proteolysis (S9 d). However, it was observed that there are genes related 

to auxin metabolism that may also be related to ubiquitination related proteolysis or plant growth 
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from DEGTS(3S) and DEGINT(3R) (S8 m, o and p; S9 e and f). Plant pathogen interactions were 

suggestive as a function of the proteins encoded by DEGTC(3S) and DEGTS(3R) (S10 f). A gene of 

which the product is regulated by ethylene and JA (CEJ1; AT3G50260) was differentially expressed 

as a DEGINT(3S) (S7 worksheet 5). Furthermore, the only hormone related gene that was 

differentially expressed in shoots DEGTS(51S) was GASA14 (AT5G14920) (S7 worksheet 5, S8 n). 

Putative biotic stress related signaling pathways 

Compared to the number of signalling related genes in putative biotic stress pathways from 

DEGTC(3S), there were fewer numbers in DEGTS (S7 worksheet 6, under signalling in S8 q, r and s). 

Calcium signalling genes dominated the biotic stress related signalling pathway DEGTC(3S) 

(S7 worksheet 6). Additionally to the groups of genes in putative biotic pathways that were a 

DEGTS(3S), DEGTS(3R) had genes related to ROS mediation, signal recognition and propagation to 

the MAPK cascade and heat shock (S8 q, r and s). While DEGTS(3S) were involved in starch and 

sucrose metabolism, DEGINT contained genes in phenylpropanoid biosynthesis in both roots and 

shoot (S10 g). 

Narrowing Down on Potential Genes Involved in the AtCIPK16 Dependent Salt Response 

A pairwise comparison of DEGINT(3R) with the DEGTC(3R) revealed that there are 187 genes out of 

the 231 genes that are only expressed in a transgene dependent manner in salt (S11 worksheet 

1). Furthermore, out of the 152 DEGINT(3S), 120 are uniquely expressed as a transgene dependent 

salt response, compared to the transgene effect on non-stressed plants (S11 worksheet 2).  

The GO terms such as response to ethylene activated signalling pathway, response to wounding 

and response to chitin were enriched for this subset of 187 genes from root at 3 hours (S11 

worksheet 3). Functional clustering of these 187 genes in DAVID revealed the presence of 24 

transcription factors, 10 ethylene responsive genes and 15 iron related genes (S11 worksheet 4).  

The subset of 120 genes from shoot 3 hours were enriched for GO terms such as cellular response 

to iron starvation, response to chitin and iron ion homeostasis (S11 worksheet 3). The functional 

clustering in DAVID revealed that the 120 subset contains genes involved in ‘nucleus’, ‘metal 

binding’ and ‘transcription regulation’ (S11 worksheet 4).  

Narrowing Down on Transcription Factors Putatively Controlled by AtCIPK16 

AtCIPK16 was thought to be directly phosphorylating one or more transcription factors in the 

presence of salinity. To investigate if this was the case, transcription factors with a significant 

transgene effect only in salt responsiveness were identified; the TFs from DEGINT were compared 

to TFs from DEGTC. Any genes that were common to these two sets were thought to be differentially 

expressed due to the transgene, yet not explicitly due to transgene effect in salinity. On the other 
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hand, TF genes that were exclusively DEGINT from both roots and shoots at 3 hours were 

considered as explicitly expressed due to transgene n presence of salt. There were 25 and 16 TFs 

that were thus, exclusive to DEGINT(3R) and DEGINT(3S), respectively (S7 worksheet 2; yellow 

background). Interestingly, there was only one such exclusive TF gene common to DEGINT(3R) and 

DEGINT(3S) (AT2G25900; AtTZF1) (S7 worksheet 2; yellow background, bold with black border). 

It was previously shown that AtTZF1 acts as a transcription factor and binds ARE promoter domains 

in AU rich regions (Pomeranz et al., 2011; Qu et al., 2014). Therefore, in order to identify potential 

downstream transcriptional regulatory targets of AtTZF1 in AtCIPK16 overexpression lines, the 

region 3000 bp upstream of the transcription start site of all root and shoot transgene dependent 

salt responsive genes was scanned for the ARE motif through the FIMO tool in MEME suite. In 

roots 14 such genes with 17 putative ARE promoter motifs were discovered (Table 2). In shoots 10 

genes with 13 putative promoter ARE motifs were identified (Table 2). 

Known DEGs with Potential Phosphorylation Ability with a Focus on MAPK Phosphorylated DEGs 

Furthermore, the NetPhoS4.1 phosphorylation prediction server results showed that the above 

subset of 187 genes from DEGINT(3R) contained 181 genes that code for amino acid sequences 

containing multiple serine/threonine phosphorylation sites (S11 worksheet 5). Furthermore, 

NetPhoS4.1 server shows that, 109 out of 120 DEGINT(3S) could potentially be phosphorylated with 

a given score ≥ 0.9 (S11 worksheet 6).This observation was not surprising because the consensus 

sequence of a phosphorylation site is less than 20 amino acids long. 

The ability of protein phosphorylation is best studied for the MAPK cascade in various stress 

conditions. Therefore, genes that are phosphorylated by various MPKs were identified. There were 

twelve and two DEGINT(3R) and DEGINT(3S), respectively, that are potential targets of the MAPK 

phosphorylation (S12). Majority of the identified substrates are phosphorylated by MPK6 (S12).  

While the nine DEGs that are common between DEGINT(3R) and DEGINT(3S) are showing the ability 

to get phosphorylated (S11 worksheet 5 and 6), ZAT10 (AT1G27730) and ATCTH (AT2G25900) 

are also known to be substrates of the MAPK cascade (S12).  

Co-expression Analysis 

Roots 

The WGCNA network analysis created 66 modules. Hub genes of a module are comprehended as 

the key drivers of that module which have highest connectivity to the module (i.e. most responsible 

for the intact network topology). In order to identify the effect of transgene dependent salt 

responsiveness on these modules (i.e. gene clusters), hub genes from each cluster were screened 

for DEGINT(3R). Out of the 86, 14 modules contained one or more DEGINT(3R) as hub genes 
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(S13 worksheet 1) and were selected for further investigations. The genes in each selected module 

are in S13 (worksheet 2). Hub genes from the modules are shown in S13 (worksheet 3) and the 

DEGINT(3R) are highlighted in yellow. Since there were no transgene dependent salt responsive 

genes in roots, no such analysis was performed for the 51 hour time-point.  

To extend the network analysis further and retrieve biological relevance underlying the identified 

modules from 3 hours, functional enrichment analysis of genes in the selected 14 modules was 

performed (S13 worksheet 4, 5 and 6). The green module that contained 1026 genes was highly 

enriched for the biological process (BP) response to chitin (p value = 2.87×10-18) (S13 worksheet 4). 

The darkgrey module was enriched for the term ‘response to wounding’ (p value = 3.81×10-05) while 

pink module was enriched for ‘defence response’ (p value = 2.75×10-09) (S13 worksheet 4). 

Interestingly, the lightsteelblue1 module was highly enriched for photosynthesis 

(p value = 1.89×10- 61). The other modules were enriched for the terms ‘response to water 

deprivation’, ‘response to abscisic acid’, ‘response to absence of light’, ‘circadian rhythm’, 

‘autophagy’, ‘rRNA modification’, ‘cell wall organisation’, ‘response to karrikin’, ‘oxidation reduction 

process’ and ‘syncytium formation’ (S13 worksheet 4). 

AtCIPK16 was found in the yellow module and co-clustered with AtHKT1 (AT4G10310) 

(S13 worksheet 2) and trehalose phosphate synthase 10 (AT1G60140). The yellow module is 

enriched for ‘carbohydrate metabolic process’ (p value = 0.002) and ‘sodium ion transport’ 

(p value = 0.002) (S13 worksheet 4). The KEGG pathways the yellow module genes fall into include 

starch and sucrose metabolism (S13 worksheet 5).  

Shoots 

There were 17 WGCNA modules for shoots. Out of these four modules contained transgene 

dependent salt responsive genes from shoot at 3 hours as hub genes (S13 worksheet 1). Again 

the analysis was restricted to the 3hr time-point since there were no transgene dependent salt 

responsive genes in shoots at 51 hours. The module genes and the respective module hub genes 

that were transgene dependent salt responsive are in S13 (worksheet 8 and 9, respectively). 

The tan module was highest enriched for the term cellular response to iron starvation 

(S13 worksheet 10) and contained bHLH43 (POPEYE/PYE: AT3G47640). The blue module, which 

also contained AtCIPK16, on the other hand was enriched for the term mRNA processing 

(p value = 4.81×10-19) (S13 worksheet 10). Turquoise module was enriched for ribosome 

biogenesis (p value = 2.33×10-10) while magenta was enriched for water deprivation 

(p value = 2.00×10-13) (S13 worksheet 10). 
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Discussion 

Plant transformation has the potential to be a fast, versatile method to improve plant traits with the 

ultimate goal of increasing or stabilising crop yield under adverse environmental conditions 

(Gilliham et al., 2017). It has been shown that AtCIPK16 overexpression in Arabidopsis conferred 

enhanced salt tolerance (Roy et al., 2013). However, the underlying molecular mechanisms that 

govern the observed traits were unknown. It is important to identify the targets which are affected 

by AtCIPK16, to determine whether overexpression of AtCIPK16 is not detrimental, but only 

beneficial to the plant in the long term. We attempted to reduce this disparity in knowledge using a 

transcriptomic approach. 

The experiment was designed to study the transcriptome differences between the transgenics and 

null transgenics at two different time points that have possible early (3 hours after initial salt 

application) and late (51 hours after initial salt application) responses to salinity stress. Illumina 

sequencing was used to generate the transcriptomic data which were subsequently mapped and 

analysed to gauge the salt tolerance responses of AtCIPK16 overexpression. 

Effect of AtCIPK16 transgene in salt stress 

We are now able to provide in-silico evidence to support the assumption - AtCIPK16 may elicit its 

function within the root cell nucleus in the presence of salt stress and this function includes the 

manipulation of one or more transcription factors (TFs); a) we previously showed that AtCIPK16 

possesses a putative nuclear localisation signal (Amarasinghe et al., 2016), b) here we show that 

AtCIPK16 has a putative DNA binding domain which may bind it to a DNA bound molecule, c) a 

GFP assay shows that AtCIPK16 is localised partially to the nucleus (Huang, 2015), d) there is 

minimal gene expression differences in control roots due to the which increases almost 4 fold in 

salt stressed roots and e) a large number of TFs are differentially expressed.  

It is likely that a regulator is needed to release the AtCIPK16 from its auto-inhibitory status and 

direct towards the targets, however, RNA-Seq experiment cannot identify the potential regulators 

of AtCIPK16. Nonetheless, especially in roots it could possibly be that, these regulators are 

dormant until the plant is stressed. Lee et al. (2007) has suggested the possibility of CBL1 and 

CBL9 to be the interacting partners of CIPK16. More recently, the ability of other kinases, such as 

GRIK kinases, to release the auto-inhibitory state of SOS2 has been established (Barajas-Lopez 

et al., 2018). This implies that there could be an alternative interactome for CIPKs apart from the 

well-known CBLs to release it from its’ auto-inhibitory form. 



78 
 

Possible Downstream Activation of AtTZF1 

Among the TFs differentially expressed, we identified one CCCH zinc finger (AtTZF1) that stands 

out as being the only upregulated TF in both roots and shoots at 3 hours exclusive to the transgene 

dependent salt responsiveness. A previous study has revealed that Arabidopsis plants 

overexpressing AtTZF1 show enhanced salinity tolerance compared to the wild type due to less 

shoot Na+ accumulation, increased chlorophyll content and increased growth (Han et al. 2014). 

AtCIPK16 transgenics also do show reduced Na+ accumulation and increased biomass (Roy et al., 

2013). Increased chlorophyll content can also be directly related to the increased growth 

(Wieckowski, 1963). We propose AtTZF1 as a potential downstream master regulator of AtCIPK16 

mediated salt stress tolerance and suggest knockout or knockdown lines to investigate this 

contention. The ability of C3H zinc fingers to be post translationally phosphorylated and enhance 

their activity has been shown and suggested previously for plants and mammals (Bogamuwa and 

Jang, 2016; Brooks and Blackshear, 2013; Maldonado-Bonilla et al., 2014; Taylor et al., 1995). It 

was identified that a Serine after the zinc finger can be phosphorylated and enhance the activity of 

the TF (Cziferszky et al., 2002). It would be interesting therefore, to know whether AtTZF1 

enhances its activity through phosphorylation, and if so, could AtCIPK16 phosphorylate AtTZF1 as 

well. Furthermore, it was shown in this study that there are 14 and 10 genes from roots and shoots 

respectively that could be transcriptionally regulated by AtTZF1 in presence of AtCIPK16. This is 

an exciting path for further investigations due to the fact, that manipulation of a fine-tuned TF that 

can control many downstream targets is a desirable feature in developing crops that can tolerate a 

highly complex trait such as salt stress, with no detrimental consequences (Zhou et al., 2007). 

Potential Regulation through Phytohormones 

It was evident from the functional categorisation that hormone metabolism related genes, mainly 

those related to ethylene biosynthesis (e.g. 1-Aminocyclopropane-1-carboxylic acid synthase 6; 

ACC synthase 6/ACS6) (Wang et al., 2002), jasmonic acid (JA) biosynthesis and cross talk with 

ethylene (e.g. Allene Oxide Synthase/AOS, AtERF1, CEJ1 and AtMYC2) (Cheng et al., 2013; Park 

et al., 2002; Vogel et al., 2012; Wasternack and Hause, 2013; Zhao et al., 2014) and auxin 

regulation (e.g. SAUR genes) (Ren and Gray, 2015), were differentially expressed in the transgenic 

salt stressed transcriptome, especially at 3 hours. It could mean that phytohormone regulation is 

an important aspect of AtCIPK16 mediated salt stress tolerance. There is also a possibility that 

while AtCIPK16 affects the transcription of these genes downstream, the phosphorylation also 

could enhance their activity post-translationally. Salt stress was shown to enhance ethylene 

production (Cao et al. 2007; Cao et al. 2006). In turn, ethylene biosynthesis and signalling has been 

shown to reduce salt sensitivity (Cela et al. 2011; Tao et al. 2015).Could it be that the downstream 
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activity of AtCIPK16 under salt stress enhances the ethylene biosynthesis at least partly owing to 

increased ACS6 gene expression? If so, higher accumulation rates of ethylene may inhibit the 

negative effect of ethylene receptors on salinity caused growth arrest. AtCIPK16 overexpression in 

ACS6 knockouts can firmly link the function of ACS6 to salinity tolerant AtCIPK16 overexpressing 

phenotypes. 

Inhibition of primary root growth and promotion of lateral root growth owing to redistributed auxin 

from shoots to roots as a response to ethylene synthesis has been suggested to be important in 

tolerating low salinity stress in Arabidopsis (Zhao et al., 2011) and more recently in barley (Witzel 

et al., 2018). The involvement of a protein coded by another CIPK gene (SOS2; AtCIPK24) in the 

process of auxin redistribution that contributes to lateral growth development in mild salinity stress 

has been reported previously (Zhao et al., 2011). Data on lateral root length and number could 

provide answer to the query on whether AtCIPK16 mediated salt tolerance cause a similar 

morphological change.  

A zinc finger protein named ZFP5 has been shown to integrate ethylene with other phytohormones 

to control root hair development in Arabidopsis (An et al. 2012). In the present study, ZFP5 is co-

expressed and a direct neighbour of AtZAT10 in the green module of roots. It is possible that 

AtZAT10 may be involved in modulating the activity of ZFP5. If so, the downstream effect of 

AtCIPK16 overexpression may direct the ethylene signalling cascade towards ZFP5 through 

AtZAT10 that can cause morphological effects such as root hair growth. Plant root hair growth is 

observed in salinity stress which enables rapid influx and efflux of ions (An et al. 2012; Gilroy and 

Jones 2000). It has been suggested that root hairs show preferential expression of certain K+ 

channels involved in K+ uptake (Ivashikina et al., 2001). Increase of K+ increases the K+/Na+ ratio 

hence provides a protective function against the toxicity of Na+ within the cytosol (Maathuis and 

Amtmann, 1999). This could be investigated further in transgenic lines by measurements of K+ in 

the roots in control and salt stressed conditions. 

Our study identified multiple MPK substrates differentially expressed (S12) (Meng et al. 2013; Meng 

and Zhang 2013; Nguyen et al. 2012; Vogel et al. 2012) yet MPKs were not differentially expressed. 

One of these substrates,MKK9, acts as a negative regulator of salinity tolerance (Alzwiy and Morris, 

2007). Therefore, whether the molecular machinery activated by the AtCIPK16 overexpression can 

rescue the negative effects of MKK9 on salinity tolerance remains to be answered. 

Potential Fe Deficiency Mitigation 

Transgene dependent salt responsive gene from shoots at 3 hours, bHLH43 (POPEYE/PYE: 

AT3G47640), that is also a hub gene in the shoot tan module, has been identified as a crucial gene 
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in maintaining Fe homeostasis when Fe availability is low (Long et al., 2010). While, we maintained 

a pH of 5.5 throughout the experiment, and replaced the nutrient solution to ensure there was no 

mineral deficiency (refer to materials and methods), salinity has shown to reduce Fe uptake leading 

to Fe deficiency (Rabhi et al., 2007). Therefore, the differential expression of the POPEYE could 

be related to Fe deficiency. A recent study shows an involvement of another transcription factor 

that regulated Fe deficiency, Femu2, in the protective function against salt stress in 

Chlamydomonas reinhardtii (Li et al., 2017). Interestingly, in this same study they observed the 

down regulation of a CIPK23 homologue, which is from the same family as CIPK16, after 

Femu2 silencing in C. reinhardtii. Several other research have shown the cross-talk between Fe 

homeostasis and salinity response in plants and fungi (Abbas et al., 2015; Li et al., 2016; Purohit 

et al., 2016). Furthermore, the involvement of ethylene in up regulating many Fe regulating genes 

as well as promotion of ethylene biosynthesis by Fe deficiency has been discussed (García et al., 

2010). This warrants further investigation into the specific role of the POPEYE in AtCIPK16 

overexpression through POPEYE knockout lines. 

Possible Regulation of Carbohydrate Synthesis 

Carbohydrates such as proline, glycine betaine and trehalose may play a role as osmoprotectants 

in salinity stress (Delauney and Verma, 1993; Li et al., 2011; Wani et al., 2013). Carbohydrate 

metabolism in the presence of AtCIPK16 in salinity was observed in the differential expression and 

gene co-expression analysis, especially in roots. It is therefore important to validate the possible 

protective function elicited through carbohydrates such as Trehalose in AtCIPK16 overexpression 

to further zoom in on AtCIPK16 overexpression mediated salinity tolerance.  

Transgenics Adapt to New Conditions Faster than the Wild type 

There could be several possible reasons for not seeing any DEGINT at 51 hours; a) AtCIPK16 

mediated salinity tolerance has already reached homeostasis by 51 hours, while it still has not 

reached homeostasis in the null transgenics; this could explain why we see reduced number of 

DEGs as an effect of salt in transgenics compared to the nulls at 51 hours, in contrast to 3 hours. 

Rapid adjustment to new conditions may explain the high salinity tolerance of halophytes, such as 

mangroves, and this may be an important mechanism for improved salt tolerance (Krishnamurthy 

et al., 2017; Liang et al., 2012; Zhu, 2001). b) it is a consequence of low number of replicates that 

reduces the statistical power (current study uses only four). However, it has been noted that the 

minimum number of replicates needed for most RNA-Seq studies is three (Conesa et al., 2016). 

On the other hand, it has also been suggested by many that the osmotic phase of salinity tolerance, 

which must have a rapid onset to counteract the immediate reduction in plant growth, requires rapid 
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root-to-shoot signalling once salt has been detected at the roots (Batistič and Kudla, 2010; Gilroy 

et al., 2014; Roy et al., 2011, 2014; Shabala et al., 2016). It is plausible that overexpression of 

AtCIPK16 may be responsible for the rapid induction of its downstream stress tolerant pathway that 

aides in the rapid adjustment to the new stressful condition. 

Is AtCIPK16 a Potential Intermediate between Abiotic and Biotic Stress Responses? 

In nature, plants are exposed to various concurrent abiotic and biotic stresses. Abiotic stresses 

have been shown to affect the tolerance of biotic stresses negatively as well as positively. Cross-

tolerance is a term used to define the phenomenon of abiotic stress augmenting plant pathogen 

resistance (Ayres, 1984). An example for this is barley, Hordeum vulgare, grown in saline water 

exhibiting enhanced tolerance to the barley powdery mildew fungus (Wiese et al., 2004) while, pre-

treatment of Arabidopsis with chitin, a key component of the fungal cell wall, was shown to improve 

salt tolerance (Brotman et al., 2012). Recently, the identified interaction of a chitin receptor CERK1 

with the Na+ induced Ca2+ channel ANN1, was shown to function both in fungal attack and salt 

stress tolerance (Espinoza et al., 2017). Seeing transgene dependent salt responsive genes 

involved in putative biotic stress pathways poses the question whether the AtCIPK16 mediated 

molecular mechanism also confers tolerance to biotic stresses. This is plausible due to the fact that 

AtCIPK16 overexpression, leads to an increased abundance of the respective CIP kinase which 

can phosphorylate multiple targets, hence could potentially activate more than one pathway or 

signal transduction cascade and lead to cross-tolerance. Transgene dependent salt responsive 

genes being enriched for chitin response in both roots and shoots would support our speculation 

on AtCIPK16's overexpression also activating biotic stress tolerance pathways. There is previous 

evidence and suggestions on the involvement of CIPKs such as CIPK11 (Xie et al., 2010), CIPK25 

(Huibers et al., 2009) and CIPK26 (Drerup et al., 2013) in biotic stresses. Further investigation of 

the involvement of AtCIPK16 in cross-tolerance would be required therefore.  

We found an abundance of DEGs implicated in the phenylpropanoid biosynthesis pathway in 

salinity stressed roots and shoots. Phenylpropanoids are considered antimicrobial compounds that 

were shown to increase resistance to viral and bacterial infections or function as signalling 

molecules in biotic stress responses (Naoumkina et al. 2010). Phenylpropanoid biosynthesis, 

however, can lead to lignin formation which increases the rigidity of plant cell wall and stalls the 

plants development (Gall et al., 2015) thereby reducing its biomass. Plants with AtCIPK16 

overexpression however had higher biomass than that wild type plants grown under salinity stress 

(Roy et al., 2013). Therefore, it is still unclear whether the phenylpropanoid biosynthesis is 

detrimental or favourable in this particular situation. 



82 
 

Caution should be taken, however, not to over analyse these results, as it first needs to be 

investigated whether the observation of differentially regulated biotic stress genes are due to a real 

pathogen infection, and not due to the presence of the transgene. This can be investigated by an 

independent test on RNA from another set of plants. There is also a possibility for what we observe 

in shoots in control conditions to be not biotic stress related, but due to actual unintended effects 

due to the ubiquitous overexpression of root stellar specific AtCIPK16. This assumption can be 

investigated using cell specific promoters in future transgenic studies.(Cellini et al., 2004).  

The Proposed Model of Salinity Response in AtCIPK16 Transgenics 

We propose a molecular pathway of AtCIPK16 mediated salt stress tolerance (Figure 5). Salt stress 

signals may be sensed by “sensor molecules” owing to the salt stress related changes in cytosolic 

Ca2+ levels in root cells. These sensor molecules can then interact with/phosphorylate AtCIPK16 to 

release it from the auto-inhibitory state (Barajas-Lopez et al., 2018; Sanchez-Barrena et al., 2007). 

The active form of AtCIPK16 could phosphorylate multiple downstream targets including ACS6 

which in return could enhance the ethylene biosynthesis. Elevated levels of ethylene could overrule 

ethylene receptor induced arrest of root growth. Furthermore, ethylene can promote auxin 

redistribution to promote lateral root and root hair growth which may involve ZAT10/12 and AtZFP5 

(An et al. 2012; Ivanchenko et al. 2008; Zhao et al. 2011). A possible increase in root surface area 

could result in elevated uptake of K+ thereby creating a favourable K+/Na+ ratio (Cellier et al., 2004). 

Furthermore, carbohydrates such as trehalose may be synthesised in the roots, possibly as 

osmoprotective molecules. AtCIPK16 may even enhance the activity of AtTZF1 through 

phosphorylation which leads to regulation of multiple downstream targets of AtTZF1. Through 

enhancing the expression of downstream targets such as ERF104 in roots, AtTZF1 might aid the 

enhancement of ethylene production. Additionally, AtCIPK16 may phosphorylate and enhance 

activity of AOC which leads to enhanced biosynthesis of JA that can elicit salinity tolerance 

responses such as inhibition of primary root growth, as well as potential root-shoot signalling. Salt 

stress signalling to shoots could activate Fe accumulation and suppress the inhibition of 

photosynthetic systems which in return may promote plant shoot growth. Auxin in shoots may also 

promote cell growth that increases biomass of AtCIPK16 transgenics in salinity. 

Conclusion 

We now have reasons to believe that AtCIPK16 mediated salinity tolerance is achieved through 

the activity of a host of TFs synchronised with the regulation of phytohormones, mainly ethylene 

and jasmonic acid. Modulating TFs and phytohormone mediated responses may well be a crucial 

aspect in generating salt tolerant germplasm. However, this can be an audacious task, given that 
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both these components are involved in all aspects of a plant’s life cycle including its response 

towards environmental cues. Yet, their importance is re-established by this study. The large overlap 

of putative functionality of differentially expressed gene products with biotic stress responses shows 

that AtCIPK16 overexpression may have the ability to elicit tolerance to multiple abiotic and biotic 

stresses which is also an important trait towards developing a field-ready salt tolerant plant. 

However, the importance of AtCIPK16 as a genetic tool for engineering salt tolerance in crops such 

as barley need further investigation. These investigations should shed light on the stability of the 

transgene in propagation through generations, its ability to be fine-tuned by using cell specific 

promoters therefore eliminating any negative effects of AtCIPK16 overexpression. 
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Experimental Procedures 

Experimental Design 

This study has a 2 (genotype: null, transgenic) by 2 (tissue: root, shoot) by 2 (treatment: control, 

salt treated) by 2 (time: 3 hr, 51 hr) factorial design. To ensure a minimum number of 4 biological 

replicates for the RNASeq analysis six A. thaliana replicate plants were sampled for each 

experimental group of which 4 were sent for sequencing. The final experimental design is 

summarised in Table 1. For the 3 hour time point there were two technical replicates per biological 

sample hence represented as a multiple of 2. 

Transformation of AtCIPK16, T2 seed germination, Plant material, growth conditions, salt treatment 

and sampling 

Transgenic 35S:AtCIPK16 overexpressing Arabidopsis thaliana, Col-0, were previously generated 

as described in Roy et al. 2013. The plant growth in hydroponics was conducted according to Jha 

et al. (2010). Seeds of T2 35S:AtCIPK16 plants were soaked in 70% ethanol for 2 minutes followed 

by 4-5 rinses in sterile milli-Q water for surface sterilisation. Subsequently the seeds were planted 

in 1.5 mL microfuge tubes containing half-strength Arabidopsis nutrient solution (Arteca and Arteca 

2000) and 0.8% Bacto agar.  After vernalisation for 2 days at 4°C the seeds were transferred to a 

growth room with controlled light (10 hr light/14 hr photoperiod, an irradiance of 70 mmol m-2s-1) 

and constant temperature of 21 °C. After the emergence of the seedling roots, the plants were 

transferred to a hydroponic tank containing full-strength Arabidopsis nutrient solution. The pH in 

the hydroponic solution was maintained at 5.7. After 5 weeks of growth in hydroponics, salt stress 

was applied to half the plants by the addition of 75 mM NaCl. Calcium activity in the growth medium 

was maintained at 0.3 mM by the addition of the correct amount of CaCl2, as calculated using Visual 

Minteq Version 2.3 (KTH, Department of Land and Water Resources Engineering, Stockholm, 

Sweden). Shoot and root tissues were removed after 3 hours and 51 hours of salt stress for RNA 

extraction and were immediately frozen in liquid nitrogen. The time point 51 hours was selected, 

rather than 48 hours (2 days) after stress treatment so that the plants were sampled at the same 

time of day as the 3 hour time point, to ensure that effects of the circadian or diurnal rhythm on 

gene expression is minimal. 

RNA isolation, library preparation and Illumina sequencing 

Total RNA was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA), following the 

protocol described by Chomczynski (1993). TruSeq™ stranded RNA sample preparation was 

utilized with dUTP second strand marking protocol for cDNA library preparation. Ribo-Zero kit 

(Epicentre, an Illumina company, Madison, WI) was used to remove rRNA from the libraries. 
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Illumina Sequencing was carried out to collect 100bp paired-end (2 * 100bp). Aim was to get a read 

depth of 15 Mill read pairs per library.  

RNA-Seq data pre-processing  

Raw data was examined by the program FASTQC for read quality, detection of adapter 

contaminations and presence of overrepresented sequences (Andrews, 2010). Next, a Java based 

in-house k-mer counting algorithm was used to confirm the presence/absence of the transgene in 

each sample by counting reads belonging to the UTRs of the transgene and the wild type 

respectively. The complete gene of AtCIPK16, including the intron and 49 bp of the 3′UTR, had 

previously been inserted behind the 35S promoter of Cauliflower Mosaic virus (CaMV) and in front 

of a 3′ UTR from of the nopaline synthase (nos) terminator sequence in the pTOOL2 transformation 

vector (Roy et al., 2013). Arabidopsis thaliana, Col-0, were previously transformed with the 

construct, using Agrobacterium transformation and single insert lines were grown on for further 

studies (Roy et al., 2013). To distinguish expression of the transgene from the endogenous 

AtCIPK16 in Col-0 plants, an k-mer counting script was supplied with these sequences (35S 

promoter, nos terminator, and region in between the AtCIPK16 exon 1 and the 35S promoter) to 

count reads belonging to the expressed transgene from the FASTQ files Furthermore, regions 20 

kb upstream and downstream of the AtCIPK16 gene obtained from the TAIR database 

(https://www.arabidopsis.org/) were used to count the reads expressed from the endogenous wild-

type AtCIPK16. 

The Reads with length spanning ≥ 70 bp after quality trimming were used for further processing. 

The Arabidopsis reference genome TAIR10, and gene model annotation files were downloaded 

from the TAIR ftp site (http://www.tair.org). Read alignment to the reference genome was performed 

using the splice aligner STAR (version 2.4.1c) (Dobin et al., 2013). There are two steps in mapping 

using the STAR aligner. 1; Building a genome index for the reference genome (FASTA sequences): 

A. thaliana GFF file was used with an overhang of 100 (i.e. max readLength -1) for creating the 

index. The chloroplast and mitochondrial genomes were excluded when creating these index files. 

2; Mapping the reads to the genome: the paired-end reads were mapped to the reference with no 

mismatches allowed (both reference and the samples were from Col-0 cultivar), with a maximum 

intron size of 2000 and a maximum gap of 2000 between two mates. Alignment results were output 

in Sequence/Binary Alignment Map (SAM/BAM) format sorted by the chromosome coordinates. 

Alignments with non-canonical junctions were filtered out. A simple shell/bash script was used to 

count mapped, multi-mapped hence eliminated, and unmapped read percentages from the BAM 

files. The package ggplot2 from Bioconductor was used to create plots for this experiment and one 

http://www.tair.org/
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such plot was to identify the number of counts mapped to the AtCIPK16 (AT2G25090) in order to 

see whether any samples have visibly high or low reads.  

Quantification of gene expression level and identification of Differentially Expressed Genes (DEGs) 

Read counting for the transcripts was done using the featureCounts() function of the Rsubread 

package (Liao et al., 2014) implemented in the R environment (http://www.R-project.org).  

DGEList() function from DESeq R library was used to calculate the counts per million (CPM) for 

each experimental group based on the count matrix, and the calcNormFactors() function was 

applied to estimate normalization factors (Anders and Huber, 2010). Data from each time point (i.e. 

3 hr, 51 hr) and each tissue were analysed separately resulting in 4 groups (i.e. Root_3Hr, 

Shoot_3Hr, Root_51Hr and Shoot_51Hr). Transcripts with CPM values of less than 100 in 75% of 

the samples or more were filtered out. Out of 64, 60 samples at the 3 hour time point were analysed. 

A sample from root and the corresponding shoot sample (of which each had 2 technical replicates; 

Table 1) from the 3 hour time point had to be removed due to a large variation in AtCIPK16 

expression compared to other samples (S3). 

T-statistics for mean expression values for each gene was determined using the LIMMA (Linear 

Models for Microarray Data) package implemented in the R software environment (Ritchie et al., 

2015; Smyth, 2004). The read count data fed into the Limma linear model fitting were transformed 

using Voom with quantile normalization followed by group-means parameterization and robust 

eBayes (Law et al., 2014; Smyth, 2004). The contrast matrix was created with the final goal of; 

identifying the differentially expressed genes in salt stress that is due to the definite effect of the 

transgene (Figure 2). This contrast matrix was used on the 4 groups of expression value data 

separately. P-values for multiple testing were corrected  according to Benjamini and Hochberg 

1995. Differentially expressed genes are those with a FDR-adjusted P value of ≤0.05 and ≥2-fold 

change in expression relative to the control. 

Regulatory network construction using WGCNA 

Weighted Gene Co-expression Network Analysis (WGCNA) enables the detection of modules of 

genes with high expression value correlation to one another (Langfelder and Horvath, 2008). 

Briefly, WGCNA assigns a connection weight between pairs of genes within the network based on 

a biologically motivated criterion and attempts to identify relevant modules by applying a soft 

threshold to correlations between pairs of genes within a network. R software environment was 

used for all WGCNA analysis (Langfelder and Horvath, 2008; Zhang and Horvath, 2005). After 

confirming that there were no outliers in the tissue-separated samples optimization of the soft 

threshold values was performed. Signed co-expression network was constructed using the 
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automatic one-step network construction method (function cuttreeDynamic()) with following 

settings; a signed type of network, an unsigned type of topological overlap matrix (TOM), 

correlations of the network raised to a soft thresholding power β (roots:10; shoots: 5), correlation 

measures with option ‘bicor’, deepSplit value of 2, a minimum module size of 20. The first principle 

component of a module (module eigengene) value was calculated and used to test the association 

of modules with salt response in the null and transgenic genotypes. Total network connectivity 

(kTotal), and module membership (MM), were calculated for each of the DEGs. Modules for further 

analysis were selected if one or more of their hub genes (genes with modular membership ≥ 0.9) 

was among the transgene dependent salt-responsive gene list of the respective tissue. 

Functional analysis 

GO term enrichment was performed using the Plant Gene Set Enrichment Analysis Toolkit 

(PlantGSEA) and the DAVID online web server (http://david.abcc.ncifcrf.gov/) (Dennis et al., 2003; 

Yi et al., 2013). Up and down regulated DEGs from each contrast were used for GO and pathway 

enrichment analysis, and a False Discovery Ratio (FDR) corrected p value ≤ 0.05 was selected as 

the threshold level of significance to determine the enrichment in the gene set. MapMan stand-

alone software allowed the assignment of DEGs into regulatory pathways (Thimm et al., 2004). 

Additionally, Kyoto Encyclopaedia of Genes and Genomes (KEGG) was used to identify higher 

order functional information related to the DEGs (Kanehisa et al., 2017). ATTED-II (http://atted.jp) 

gene co-expression database was mined to identify additional yet relevant genes that may be co-

expressed with the DEGs (Aoki et al., 2016).  

In order to identify genes that are exclusively differentially expressed only in transgene dependent 

manner in presence of salt, the DEGs from the transgene dependent salt responsive gene list was 

compared in a pairwise manner to the DEGs from that of transgene effect in controls for a given 

tissue at a particular time point. 

Phosphorylation targets were identified using the NetPhoS4.1 online server (Blom et al., 1999). 

MPK substrates were identified by comparing the DEGs to  known substrates recorded in the 

literature (Meng et al. 2013; Nguyen et al. 2012; Popescu et al. 2009; Vogel et al. 2012). Promoter 

analysis for the ARE motif; regions 3000 bp upstream from the transcription start site (TSS) of all 

transgene dependent salt responsive genes of root and shoot at 3 hours were downloaded from 

the TAIR database (https://www.arabidopsis.org/). The motif pattern ATTTATTTATTT{A|T] was 

searched against the downloaded sequences through the FIMO tool (http://meme-

suite.org/tools/fimo) in the MEME suite (Grant et al., 2011). The p-value threshold was set to 0.01. 

DNA binding domains and amino acid properties were identified from protein sequences using the 

http://david.abcc.ncifcrf.gov/home.jsp
https://www.arabidopsis.org/
http://meme-suite.org/tools/fimo
http://meme-suite.org/tools/fimo
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consensus of results obtained through several freely available online tools with the use of their 

default settings; DP-BIND (Hwang et al., 2007), BINDN (Wang and Brown, 2006), NetSurfP 

(Petersen et al. 2009), PredictProtein (Rost et al., 2004), paircoil2 (McDonnell et al., 2006) and 

pepinfo (Li et al., 2015). 
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Tables and Figures 

Table 1 Experimental design for the current study 

There were 4 biological replicates per condition per experimental group for both time points. The 3 

hour samples were sequenced in two technical replicates per biological sample hence indicated as 

a multiple of 2.  

Genotype 
Time 3Hr 51Hr 

Treatment Root Shoot Root Shoot 

Null lines Control 4×2 4×2 4 4 

75 Mm Salt treated 4×2 4×2 4 4 

Transgenic lines Control 4×2 4×2 4 4 

75 Mm Salt treated 4×2 4×2 4 4 

Total number of samples 32 32 16 16 
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Table 2 The genes that are putatively regulated by transcriptional activity of AtTZF1 from roots and shoots at 3 hours 

The DNA binding motif of AtTZF1 ATTTATTTATTT[T|A] (Pomeranz et al., 2011; Qu et al., 2014), was scanned on the 3,000 bp upstream from the 

transcription start site (TSS) of all transgene dependent salt responsive genes from roots and shoots at 3 hours (sequences were retrieved using bulk 

sequence retrieval option from TAIR portal; https://www.arabidopsis.org/tools/bulk/index.jsp and scanned through FIMO from MEME suite; http://meme-

suite.org/tools/fimo). The genes with one or more positive hits with a p value ≤ 0.01 are reported here. The gene ID and the descriptions are in the first two 

columns. The start and the stop site of the identified motif are in the 3rd and 4th columns, respectively. The strand the motif is predicted on is in the 5th 

columns. FIMO assigned score, p-value and FDR corrected p-value (q-value are in the 6th 7th and 8th columns, respectively. The matched motif is displayed 

in 9th column.  

Gene ID Gene description start stop strand score p-value q-value matched sequence 

Root | 3Hr 

AT1G12540 basic helix-loop-helix (bHLH) DNA-binding superfamily 
protein;(source:Araport11) 

-1465 -1453 - 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

AT1G43160 RELATED TO AP2 6 (RAP2.6) -1217 -1205 - 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

AT1G57990 PURINE PERMEASE 18 (PUP18) -1467 -1455 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT1G63057 transmembrane protein;(source:Araport11) -1265 -1253 + 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

transmembrane protein;(source:Araport11) -1261 -1249 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT1G64950 CYTOCHROME P450, FAMILY 89, SUBFAMILY A, POLYPEPTIDE 5 
(CYP89A5) 

-56 -44 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT2G04110 pseudogene of expressed protein;(source:Araport11) -653 -641 - 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

AT2G38240 JASMONATE-INDUCED OXYGENASE4 (JOX4) -873 -861 + 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

JASMONATE-INDUCED OXYGENASE4 (JOX4) -877 -865 + 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

AT3G59480 FRUCTOKINASE 7 (FRK7) -1573 -1561 - 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

FRUCTOKINASE 7 (FRK7) -1577 -1565 - 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT4G22690 CYTOCHROME P450, FAMILY 706, SUBFAMILY A, POLYPEPTIDE 1 
(CYP706A1) 

-1970 -1958 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT4G29780 nuclease;(source:Araport11) -1659 -1647 + 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

AT4G39640 GAMMA-GLUTAMYL TRANSPEPTIDASE 1 (GGT1) -518 -506 - 21.9827 5.04E-08 0.00404 ATTTATTTATTTA 

https://www.arabidopsis.org/tools/bulk/index.jsp
http://meme-suite.org/tools/fimo
http://meme-suite.org/tools/fimo
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AT5G13080 WRKY DNA-BINDING PROTEIN 75 (WRKY75) -1966 -1954 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT5G56550 OXIDATIVE STRESS 3 (OXS4) -29 -17 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

AT5G61600 ETHYLENE RESPONSE FACTOR 104 (ERF104) -1664 -1652 + 21.9769 1.01E-07 0.00444 ATTTATTTATTTT 

Shoot | 3Hr 

AT1G47370 RESPONSE TO THE BACTERIAL TYPE III EFFECTOR PROTEIN 
HOPBA1 (RBA1) 

-588 -576 - 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

RESPONSE TO THE BACTERIAL TYPE III EFFECTOR PROTEIN 
HOPBA1 (RBA1) 

-877 -865 - 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT1G73325 Kunitz family trypsin and protease inhibitor protein;(source:Araport11) -2763 -2751 - 21.9827 5.04E-08 0.00464 ATTTATTTATTTA 

AT2G07042 other_RNA;(source:Araport11) -924 -912 - 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT2G21140 PROLINE-RICH PROTEIN 2 (PRP2) -1392 -1380 + 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT3G16720 TOXICOS EN LEVADURA 2 (ATL2) -317 -305 + 21.9827 5.04E-08 0.00464 ATTTATTTATTTA 

TOXICOS EN LEVADURA 2 (ATL2) -313 -301 + 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT3G29000 Calcium-binding EF-hand family protein;(source:Araport11) -2278 -2266 - 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT4G18440 L-Aspartase-like family protein;(source:Araport11) -1181 -1169 + 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT4G20860  (ATBBE22) -336 -324 + 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT5G03150 JACKDAW (JKD) -1717 -1705 - 21.9769 1.01E-07 0.00464 ATTTATTTATTTT 

AT5G04340 ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6) -868 -856 + 21.9827 5.04E-08 0.00464 ATTTATTTATTTA 
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Figure 1  AtCIPK16 gene expression in the current study and putative DNA binding domain of AtCIPK16 

a) The expression values are measured in counts per million (CPM) and displayed as log2(CPM) for clarity (y axis). Each dot represent a sample and is coloured according 

to the experimental condition. Expression values are separated by genotype (i.e. null, transgenic: on top) and tissue-time point (i.e. root 3hr, shoot 3hr, root 51 hr and 

shoot 51hr: right) and treatment (i.e. control, salt: bottom). A black solid line connects the mean expression value from the two treatments in each group of samples. A 

gene is considered expressed if the mean of log expression value is above 0 for a given experimental condition; b) Identified region of AtCIPK16 protein with DNA binding 

affinity: the amino acid residue numbers and the respective residues are mentioned in the first and second rows, respectively; residues in the putative region with DNA 

binding ability are shown in red. The server result summary for each residue is shown below the respective amino acid. Row 3-5 show the predicted DNA binding affinity 

by three independent online tools (i.e. PairCoil2; grey, DP-BIND; green and BINDN; yellow); 6th row shows the polarity prediction for the region using pepinfo server 

(denoted with a P in red background); 7th and 8th rows show the solvent accessibility predicted by two independent servers (PredictProtein and NetSurfP, respectively; 

denoted by E in blue background).
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Figure 2 Contrasts tested in the 

current analysis 

The experimental groups 

compared by Limma (Ritchie et al, 

2015) to test each contrast are 

shown by blue two headed arrows. 

The red dashed boxes and two 

headed arrow denote the contrast 

to test the interaction term. The 

term that defines the differentially 

expressed genes for each contrast 

is mentioned below each 

hypothesis in bold italics 
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Figure 3 Number of genes differentially 

identified 

The number of differentially expressed 

genes (DEG) for each test shown in Figure 

2 are shown for; a) transgene effect in 

controls (DEGTC); b) transgene effect in salt 

(DEGTS); c) salt effect in transgenics 

(DEGST); d) salt effect in nulls (DEGSN) and 

e) transgene dependent salt responsiveness 

(DEGINT). Y axis displays the number of 

DEG; x axis represent the experimental 

group (3R: 3 hr root; 3S: 3 hr shoot; 51R: 51 

hr root; 51S: 51 hr shoot) through Limma 

analysis (Ritchie et al, 2015). Yellow 

denoted the upregulated genes and blue 

denoted the down regulated genes. The 

total number of DEGs are shown on top of 

each bar. Individual numbers for up and 

down regulated genes are shown along the 

y axis on yellow and blue bars 
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Figure 4 Comparison of the DEGs 

Overlap of differentially expressed genes (DEG) in roots and shoots. The comparisons that were 

tested (Figure 2) are given at the top and the genes which overlap between the two tissues for that 

treatment are listed on the left side of each venn diagram. DEGTC: DEG from transgenic controls; 

DEGTS: DEG from transgenics in salt; DEGTC: DEG from transgene dependent salt responsiveness 
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Figure 5 The proposed model for AtCIPK16 mediated salinity tolerance mechanism in 

Arabidopsis 

The model proposes the involvement of ethylene and JA in the AtCIPK16 overexpression mediated 

salinity tolerance. Blue arrows depict currently known knowledge and red arrows depict the 

proposed AtCIPK16 related pathways. If a potential method of regulation is known for the proposed 

pathways they are shown next to the arrow (+p: phosphorylated for enhanced activity; +t: enhanced 

by transcriptional regulation; u: unknown method of regulation). The arrow heads represent the 

direction of regulation. Double pointed arrows are when the direction of regulation is uncertain.  
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Supplementary Material  

Available at https://doi.org/10.4225/55/5aa11470444b0 

S1: Summary of k-mer baiting step to confirm the presence of the transgene in samples  

a) Construct architecture of the AtCIPK16 transgene; b) the sequence in between the 35S promoter 

and the AtCIPK16 exon 1; c) 35S promoter sequence that was used to bait the 5 ′ UTR region of 

the transgene; d) NOS terminator sequence that was used to bait the 3′ UTR region of the 

transgene; e) wild type AtCIPK16 5′ UTR region; f) wild type AtCIPK16 3′ UTR region; g) baiting 

results from the 3 hour time point; h) baiting results from the 51 hour time point; for g and h the 

columns from left to right represent the following: column1: name of the fastq file, column2: number 

of baits for the transgene 3′ UTR region, column3: number of baits for the transgene 5′ UTR region, 

column4: number of baits for the transgene 5′ UTR region between exon1 and the 35S promoter, 

column5: number of baits for the wild type 3′ UTR region, column6: number of baits for the 

transgene 5′ UTR region, column7-9: experimental conditions of each sample. Rows of g and h are 

coloured for green shades to represent the shoot samples and brown shades to represent root 

samples. 

S2: Percentages of mapped, multi-mapped and unmapped reads from the samples using 

STAR aligner 

S3: The plot to show the justification of the removal of a root and a shoot sample 

a) Mapped raw counts for AtCIPK16 (AT2G25090) of the 3 hour samples, b) Normalised counts 

mapped to AtCIPK16. The blue semi-transparent bars indicate the samples that were removed 

based on their visibly high amount of normalised reads mapped to AtCIPK16.  

S4: Differentially expressed genes (DEGs) resulted from the hypothesis testing shown in 

Figure 1 

Where applicable the yellow colour represents up regulated genes and blue colour represents down 

regulated genes  

S5: GO enrichment analysis of the DEGs performed through PlantGSEA online web server 

(http://structuralbiology.cau.edu.cn/PlantGSEA/index.php) 

Where applicable the yellow colour represents GO terms enriched by up regulated genes and blue 

colour represents GO terms enriched by down regulated genes 

S6: Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) information mining for 

the DEGs using the "Search and Color Pathway" option (http://www.kegg.jp/) 

https://doi.org/10.4225/55/5aa11470444b0
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S7: Selected MapMan categories that the DEGs fall into    

     

S8: MapMan pathway analysis of the DEGs 

a-i: cell function overview; j-p: regulation overview; q-u: putative biotic stress pathways 

S9: S9: KEGG Pathways of DEG subsets that are discussed in Mapman categories and their 

associated genes identified through ATTED-II. 

The pathways are auto generated through the search and colour pathway option in Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) server (www.genome.jp/kegg/) The input genes 

for each section are the up regulated DEGs  for a), c), d) and e). and all DEGs for b) and f). The 

associated genes that are included in the list are retrieved through the NetworkDrawer tool with 

default options (Platform is automatic, CoEx option add many genes and PPI option add a few 

genes) of ATTED-II server (atted.jp/). Rectangular boxes with green colour background represent 

genes in the pathway, arrows represent a molecular interaction or a relationship. The red framed 

green boxes with red letters show the genes that are in the input lists, each group of DEGs used to 

mine the pathways in each sub figure are mentioned below the respective sub figure a)-f), empty 

circles represent chemical molecules, rectangles with rounded edges shows the ink from the 

current pathway to another pathway, doubled lines represent the plasma membrane, the dashed 

grey lines are shown when a direct association between two molecules are unknown. 

S10: KEGG pathways enriched for the DEG subsets of selected MapMan categories and 

their associated genes identified through ATTED-II 

S11: Novel genes involved in the AtCIPK16 dependent salt responsiveness 

The gene lists identified from both roots and shoots, their GO enrichment and functional 

categorisation through DAVID online web server and the novel genes that have the ability to get 

phosphorylated that are identified through NetPhos3.1b online server 

S12: Identified novel AtCIPK16 transgene dependent salt responsive genes that are also 

putative MAPK substrates 

S13: Summary of the WGCNA analysis of DEGs      

Interesting modules were selected if one or more transgene dependent salt responsive DEGs from 

the respective tissue (i.e. root or shoot) are hub genes of the said module. The GO enrichment was 

performed for each selected module through DAVID online tool (https://david.ncifcrf.gov/). The 

pathway analysis was cone using search and Color pathway option in Kyoto Encyclopedia of Genes 

and Genomes (KEGG) (www.genome.jp/kegg/)      

https://david.ncifcrf.gov/
http://www.genome.jp/kegg/
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Link to Chapter 4 

The molecular components underlying the AtCIPK16 mediated salt tolerance as we show in 

Chapter 3 are largely transcription factors, and they are related to phytohormone regulation in the 

presence of salinity stress. However, what we were unaware of is how prevalent the CIPK16 within 

the terrestrial plants. Investigating how CIPK16s evolved through time will enable us to gain an 

understanding of its functional importance in different species. Through this study we also 

attempted to distinguish a protein in barley that can potentially function similar to AtCIPK16 in salt 

stress. This chapter has been published as follows: Amarasinghe, S., Watson-Haigh, N.S., 

Gilliham, M., Roy, S., Baumann, U., 2016. The evolutionary origin of CIPK16: A gene involved in 

enhanced salt tolerance. Mol. Phylogenet. Evol. 100, 135–147. 

https://doi.org/10.1016/j.ympev.2016.03.031. Sequence similarity testing with the Arabidopsis 

thaliana sequence as a reference was used to identify CIPK homologues in monocots and dicots. 

Together with information on domain and intron structure, an in-depth phylogenetic analysis has 

been performed. The findings of this study suggested that CIPKs contained unique characters that 

define them and were confined to a very specific group of dicots called core Brassicales. According 

to the presented model of evolution of CIPK16s in the terrestrial plant kingdom, it is likely that an 

AtCIPK16 orthologue is not present in the monocot species barley. 
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a b s t r a c t

Calcineurin B-like protein interacting protein kinases (CIPKs) are key regulators of pre-transcriptional and
post-translational responses to abiotic stress. Arabidopsis thaliana CIPK16 (AtCIPK16) was identified from
a forward genetic screen as a gene that mediates lower shoot salt accumulation and improved salinity
tolerance in Arabidopsis and transgenic barley. Here, we aimed to gain an understanding of the evolution
of AtCIPK16, and orthologues of CIPK16 in other plant species including barley, by conducting a phyloge-
netic analysis of terrestrial plant species. The resulting protein sequence based phylogenetic trees
revealed a single clade that included AtCIPK16 along with two segmentally duplicated CIPKs, AtCIPK5
and AtCIPK25. No monocots had proteins that fell into this clade; instead the most closely related
monocot proteins formed a group basal to the entire CIPK16, 5 and 25 clade. We also found that
AtCIPK16 contains a core Brassicales specific indel and a putative nuclear localisation signal, which are
synapomorphic characters of CIPK16 genes. In addition, we present a model that proposes the evolution
of CIPK16, 5 and 25 clade.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction Plants retain only around 5% of the water that they take up in
Salinity in soil impacts negatively on crop growth and is a signif-
icant limiting factor for agriculture, particularly in arid and semi-
arid regions, with an estimated cost of US$27 billion due to lost crop
production per year (Munns and Gilliham, 2015; Qadir et al., 2014).
It has been estimated that on land irrigated for agriculture, which
produces 40% of the world’s calories, one-fifth of soils are salt-
affected (FAOSTAT, 2014). The extent of this salt-affected irrigated
agricultural land has been forecasted to increase by 4% every year
(FAOSTAT, 2014; Pimentel et al., 2004). Crops with increased
tolerance to salt, which provide higher yields under saline soil
conditions, are needed to sustain future global food production
(Munns and Gilliham, 2015). To this end, aspects of plant responses
to salinity have to be understood before they can bemanipulated by
molecular assisted breeding or transgenesis (Roy et al., 2014).
transpiration, thus salt concentration in the transpiration stream
needs to be in the order of 1/20th of that in the soil to avoid the
accumulation of salt in leaves to concentrations above that in the
soil (Munns, 2005). As a result, all plants have developed
mechanisms to exclude salt to a large degree: halophytes exclude
�92–95% of the salt in the soil solution and most crop plants
exclude 96–99% (Munns, 2005; Munns and Tester, 2008). Plants
achieve this by either minimising the entry of salt into the leaves
(i.e. the trait of shoot ion exclusion) or by tolerating the accumula-
tion of salt in leaves by reducing the concentration of salt in the
cytoplasm (i.e. the trait of tissue tolerance) by compartmentalizing
of the salt in the cells of leaf sheath or leaf cell vacuole (Munns,
2005; Munns and Gilliham, 2015; Munns and Tester, 2008; Plett
and Møller, 2010; Shabala, 2009). Both ion exclusion and tissue tol-
erance demand high amounts of energy for osmotic adjustment
within the cytosol via organic solutes (Adem et al., 2014; Munns
and Gilliham, 2015; Plett and Møller, 2010; Shabala, 2013). Wheat
and rice have lower Na+ and Cl� concentrations in their leaves than
the external solution as a consequence of ion exclusion
mechanisms (Roy et al., 2014). Salt tolerant non-halophytes such
as barley, exclude less salt from leaves more clearly exhibit the
trait of tissue tolerance (Colmer et al., 2005; Munns and
Gilliham, 2015; Shabala, 2013).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ympev.2016.03.031&domain=pdf
http://dx.doi.org/10.1016/j.ympev.2016.03.031
mailto:ute.baumann@adelaide.edu.au
http://dx.doi.org/10.1016/j.ympev.2016.03.031
http://www.sciencedirect.com/science/journal/10557903
http://www.elsevier.com/locate/ympev
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In instances when plants are unable to eliminate the negative
effects of salinity, they initially suffer due to the buildup of osmotic
stress followed by salt-specific ionic stress (Munns, 2005; Munns
and Tester, 2008; Rajendran et al., 2009). Immediately after expo-
sure to salinity but before ions accumulate in the plant’s shoot,
plant growth rate is reduced (Rajendran et al., 2009; Tavakkoli
et al., 2010). Over time as ions accumulate in the shoot, ion toxicity
reduced plant growth rate even further. Reducing the severity of
salinity stress in plants therefore, needs early detection of salinity
stress and the activation of stress signalling mechanisms.

Many aspects of stress signalling are facilitated through sec-
ondary messengers such as calcium ions (Ca2+) (Batistic et al.,
2011). A 20–60 s long single or biphasic Ca2+ elevation in the cyto-
sol is one of the initial cellular responses of a plant to high salinity
(Choi et al., 2014; Tracy et al., 2008). The sensor molecules captur-
ing these signals fall into four major categories, namely Calcineurin
B-Like (CBL) proteins, calcium-dependent protein kinases (CDPKs),
calmodulins (CaMs), and calmodulin-like proteins (CAMLs) (Weinl
and Kudla, 2009). Amongst these, CBLs selectively interact with
one or more protein kinases from the group named CBL interacting
protein kinases (CIPKs) (Batistic and Kudla, 2004; Kim et al., 2000).
The CIPKs have been catalogued as SNF1 (Sucrose non-fermenting
1)-related kinases and group 3 (SnRK3) proteins, according to their
structural features and evolutionary associations (Hrabak et al.,
2003). The general structure of all CIPK-type kinases includes a
conserved N-terminal kinase domain, and a variable junction
domain, which separates it from a unique C-terminal regulatory
domain (Sanchez-Barrena et al., 2007; Weinl and Kudla, 2009). In
common with many kinases, an activation loop lies between two
conserved tri-peptide motifs (DFG. . .APE) in the kinase domain,
which needs to be phosphorylated for the kinase to be activated
(Nolen et al., 2004). While much of the regulatory domain
sequence is divergent in these proteins, there exists a well
conserved FISL/NAF domain, which mediates the interaction with
CBLs (Albrecht et al., 2001). Additionally, a conserved C-terminal
protein–phosphatase interaction (PPi) domain mediates CIPK
interaction with the 2C-type protein phosphatase (PP2C)
group, via phosphorylation (Ohta et al., 2003; Sanchez-Barrena
et al., 2013).
Fig. 1. A cladogram showing a summary of known relationships (Chase, 2004; Kagale et
higher level taxonomic designations to which we commonly refer.

11
A CIPK from the model dicot Arabidopsis thaliana, named
AtCIPK16 is associated with Na+ exclusion in plants (Roy et al.,
2013). Transgenic Arabidopsis constitutively overexpressing
AtCIPK16 showed a significant reduction of shoot Na+ in plants
grown in elevated salt in both soil and hydroponics (Roy et al.,
2013). Moreover, transgenic barley constitutively expressing
AtCIPK16 also exhibited decreased leaf Na+ and increased salinity
tolerance. This implies that AtCIPK16 can be used as a tool in
genetic engineering to improve salinity tolerance in crops. In Roy
et al. (2013), AtCIPK16 was identified using a Bay-0 � Shahdara
mapping population. The Bay-0 accession allele of AtCIPK16 con-
tained a TATA box 65 bp upstream of the start codon and had
higher gene expression under salt stress compared to Shahdara
(which contained no TATA box in this region) (Roy et al., 2013).
However, our understanding of the underlying mechanism of
CIPK16 mediated salt tolerance is still incomplete.

A study on how widespread the CIPK16-associated salinity tol-
erance mechanism is in the plant world could be an initial step
in understanding the functional network associated with CIPK16.
It also may lay the foundation for further experiments such as
screening or editing the genes that boost salt tolerance in plants.
A phylogenetic study on the prevalence of CIPK16 in the plant king-
dom would facilitate the discovery of AtCIPK16 orthologues in
crops important for global food production. Orthologues, by defini-
tion, would have a common ancestor and tend to have similar
functionality (Fulton et al., 2006; Wu et al., 2006). Several phyloge-
netic analyses on CIPKs from different plant species have been con-
ducted (Thoday-Kennedy et al., 2015 and references therein). For
instance, a previous phylogenetic study on 25 A. thaliana CIPKs
revealed that AtCIPK16 resides in close proximity to two other seg-
mentally duplicated CIPKs, namely AtCIPK5 and AtCIPK25
(Kolukisaoglu et al., 2004). However, to our knowledge, a phyloge-
netic analysis detailing the prevalence of CIPK16 across the plant
kingdom has not been conducted so far.

The aim of the current study is to discover the origin of CIPK16
and its closest relatives, CIPK5 and CIPK25, using phylogenetic
approaches, in silico protein analysis and known evolutionary rela-
tionships between terrestrial plants (Fig. 1) (Chase, 2004; Kagale
et al., 2014b; Soltis et al., 2011).
al., 2014b; Soltis et al., 2011) amongst the species used in this study together with

2
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2. Materials and methods

2.1. Molecular phylogenetics of CIPK16

2.1.1. Sequence retrieval
Protein and nucleotide sequences were retrieved from the

sources detailed in Table 1. Species were selected based on the
availability of the full genomic sequences (Cheng et al., 2013;
Michael and Jackson, 2013). Brassicaceae species were targeted as
they are closely related to A. thaliana. Sequences were retrieved
through one of the following methods: (1) sequence similarity to
A. thaliana CIPK gene/protein sequences; and, (2) keyword
searches. Sequences retrieved by sequence similarity were
performed either via the BLAST tool linked to online databases
or by locally indexed databases using the NCBI BLAST+ tool
(V 2.2.29). All blastn, blastp, tblastn, tblastx options were used in
Table 1
Species and resources used from which protein and nucleotide sequences were identified

Sequence acquired
species

Web resource Reference

Arabidopsis thaliana TAIR (http://www.arabidopsis.org/) Lamesch

Arabis alpina
Boechera stricta

NCBI (www.ncbi.nlm.nih.gov/) Coordinat

Leavensworthia
alabamica

CoGe (https://genomevolution.org/CoGe/) Lyons and

Aethionema
arabicum

CoGe (https://genomevolution.org/CoGe/) Haudry et

A. lyrata Phytozome (www.phytozome.net/) Nordberg
Raphanus sativus Raphanus sativus Genome Database (http://

radish.kazusa.or.jp/)
Kitashiba

Capsella rubella Phytozome (www.phytozome.net/) Goodstein
Schrenkiella parvula thellungiella.org (http://thellungiella.org/) Dassanay

Eutrema salsugineum thellungiella.org (http://thellungiella.org/) Yang et a
Sisymbrium irio Brassicadb (http://brassicadb.org/brad/) Haudry et
Brassica rapa (v 1.5)

Brassica napus (v
1.0)

Brassicadb (http://brassicadb.org/brad/) Cheng et

Brassica oleraceae (v
1.0)

Brassicadb (http://brassicadb.org/brad/) Cheng et

Camelina sativa Camelinadb (http://www.camelinadb.ca/) Kagale et
Tarenaya hassleriana CoGe (https://genomevolution.org/CoGe/) Cheng et
Carica papaya NCBI (www.ncbi.nlm.nih.gov/) Coordinat
Theobroma cacao Cacao Genome Database (www.cacaogenomedb.

org/)
Argout et

Gossypium raimondii Phytozome (www.phytozome.net/) Goodstein
Vitis vinifera Genoscope (www.genoscope.cns.fr/externe/

GenomeBrowser/Vitis/)
Jaillon et

Musa acuminate
malaccensis

Banana Genome Hub (banana-genome.cirad.fr/) Droc et al

Fragaria vesca
Malus x domestica
Prunus persica
Pyrus communis

Genome Database for Rosaceae (www.rosaceae.
org/)

Jung et al

Brachypodium
distachyon

Brachypodium database moved to Phytozome Goodstein

Oryza sativa Rice Genome Annotation Project (http://
rice.plantbiology.msu.edu/)

Ouyang e

Triticum aestivum IWGSC (www.wheatgenome.org/) Internatio
Sequencin
(IWGSC) (

Hordeum vulgare BARLEX from IPK (www.ipk-gatersleben.de/en/) Colmsee e
Hordeum vulgare MIPS (http://mips.helmholtz-muenchen.de/plant/

barley/)
Nussbaum

Amborella trichopoda http://www.amborella.org/ Albert et
Picea abies The cogenie.org (http://congenie.org/) Nystedt e
Generic UniProt (www.uniprot.org/) Consortiu

Generic PlantGDB (www.plantgdb.org/) Duvick et
Generic EnsamblePlants (plants.ensembl.org/) Cunningh
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BLAST querying with an expectation value (e-value) 6 1 � 10�5.
Default settings were used for querying with complete sequences.
Settings were changed for queries with partial protein sequence in
order to increase sensitivity; the short query option was dese-
lected, the expect threshold was changed to 5 million, word size
was changed to 2, and the compositional adjustments setting
was set to ‘‘no adjustments”. Sequence retrieval by keyword
searches used the terms ‘‘cipk”, ‘‘cbl interacting protein kinase”,
‘‘cbl interacting” and ‘‘calcineurin b like”. A fasta formatted
sequence file for all the sequences used in this study is in the sup-
plementary materials (S1).

2.1.2. Sequence alignment
Protein multiple sequence alignments (MSAs) were generated

using MUSCLE (default settings) implemented in Jalview (Edgar,
2004; Waterhouse et al., 2009). Manual alignment was carried
for this study.

s Sequence
access method

Identification method

et al. (2012) Online from
TAIR10

BLAST (blastn, blastp), keyword search

ors (2013) Online BLAST (blastn, blastp, tblastn, tblastx)

Freeling (2008) FTP download BLAST (blastn, blastp, tblastn, tblastx)

al. (2013) FTP download BLAST (blastn, blastp, tblastn, tblastx)

et al. (2014) Online BLAST (blastn, blastp, tblastn, tblastx)
et al. (2014) Online BLAST (blastn, blastp, tblastn)

et al. (2012) Online BLAST (blastn, blastp, tblastn, tblastx)
ake et al. (2011) FTP download BLAST (blastn, blastp, tblastn, tblastx)

l. (2013) Online BLAST (blastn, blastp, tblastn, tblastx)
al. (2013) FTP download BLAST (blastn, blastp, tblastn, tblastx)

al. (2011) Online BLAST (blastn, blastp, tblastn, tblastx)

al. (2011) FTP download BLAST (blastn, blastp, tblastn, tblastx)

al. (2014a) FTP download BLAST (blastn, blastp, tblastn, tblastx)
al. (2013) Online BLAST (blastn, blastp, tblastx)
ors (2013) Online BLAST (blastn, blastp, tblastn, tblastx)
al. (2011) FTP download BLAST (blastn, blastp, tblastn, tblastx)

et al. (2012) Online BLAST (blastn, blastp, tblastn, tblastx)
al. (2007) Online BLAST (blastn, blastp, tblastn, tblastx)

. (2013) Online BLAST (blastn, blastp, tblastn, tblastx)

. (2014) Online BLAST (blastn, blastp, tblastn, tblastx)

et al. (2012) Online BLAST (blastn, blastp, tblastn, tblastx)

t al. (2007) Online BLAST (blastn, blastp, tblastn, tblastx)

nal Wheat Genome
g Consortium
2014)

Online BLAST (blastn, blastp, tblastn, tblastx)

t al. (2015) Online BLAST (blastn, blastp, tblastn, tblastx)
er et al. (2013) Online BLAST (blastn, blastp, tblastn, tblastx)

al. (2013) FTP download BLAST (blastn, blastp, tblastn, tblastx)
t al. (2013) Online BLAST (blastn, blastp, tblastn, tblastx)
m (2015) Online BLAST (blastn, blastp, tblastn, tblastx),

keyword search
al. (2008) Online BLAST (blastn, blastp, tblastn, tblastx)
am et al. (2015) Online BLAST (blastn, blastp, tblastn, tblastx)

http://www.arabidopsis.org/
http://www.ncbi.nlm.nih.gov/
https://genomevolution.org/CoGe/
https://genomevolution.org/CoGe/
http://www.phytozome.net/
http://radish.kazusa.or.jp/
http://radish.kazusa.or.jp/
http://www.phytozome.net/
http://thellungiella.org/
http://thellungiella.org/
http://brassicadb.org/brad/
http://brassicadb.org/brad/
http://brassicadb.org/brad/
http://www.camelinadb.ca/
https://genomevolution.org/CoGe/
http://www.ncbi.nlm.nih.gov/
http://www.cacaogenomedb.org/
http://www.cacaogenomedb.org/
http://www.phytozome.net/
http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
http://www.banana-genome.cirad.fr/
http://www.rosaceae.org/
http://www.rosaceae.org/
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://www.wheatgenome.org/
http://www.ipk-gatersleben.de/en/
http://mips.helmholtz-muenchen.de/plant/barley/
http://mips.helmholtz-muenchen.de/plant/barley/
http://www.amborella.org/
http://congenie.org/
http://www.uniprot.org/
http://www.plantgdb.org/
http://www.plants.ensembl.org/


Fig. 2. Molecular phylogenetic analysis for Brassicales–Malvales CIPKs used in this study by Maximum Likelihood method (summarised view). The evolutionary history was
inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 model (Le and Gascuel, 2008). The tree with the highest log likelihood (�65950.5450) is
shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained by applying
the Neighbour-Joining method to a matrix of pairwise distances estimated using a JTT model. A discrete Gamma distribution was used to model evolutionary rate differences
amongst sites (5 categories (+G, parameter = 1.0539)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved
408 amino acid sequences. There were a total of 698 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). The CIPK16, 5 and
25 clade from the intron less group is shown expanded. The other CIPK nodes are collapsed down and named for clarity of presentation. The fully expanded tree is available as
supplementary materials (S14). Sequences from KC310466.1, AAU87882.1, AAU87884.1, KC991147.1, AGO32663.1, KC991149.1 and AEX07321.2 were included in the
analyses as the most closely related non-CIPK-type protein kinases.
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Fig. 3. Summary of the molecular phylogenetic analysis for CIPK16/5/25 group CIPKs used in this study by Maximum Likelihood method (summarised view). The
evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-based model (Jones et al., 1992). The tree with the highest log likelihood
(�32815.7688) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were
obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using a JTT model. A discrete Gamma distribution was used to model
evolutionary rate differences amongst sites (5 categories (+G, parameter = 0.9058)). The tree is drawn to scale, with branch lengths measured in the number of substitutions
per site. The analysis involved 113 amino acid sequences. There were a total of 504 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura
et al., 2013). The nodes are collapsed down and named for clarity of presentation. The tree is rooted on other A. thaliana CIPKs. The fully expanded tree is available as
supplementary materials (S15).
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out to improve the MSAs. Duplicates (defined by 99% identity or
above) were removed from the multiple sequence alignments via
the remove duplicates option in Jalview. Nucleotide alignments
corresponding to the protein MSA were generated using Dialign
2.0 implemented in the RevTrans2.0 server, in order to correctly
align DNA codons with corresponding amino acid residues
(Morgenstern, 1999; Wernersson and Pedersen, 2003). Sequences
were validated to be functional CIPK sequences by screening for
the DF(G/D)L, APE motifs in the N-terminal kinase domain and
the (N/T)AF motif in the C-terminal regulatory domain via a
custom Perl script. Partial sequences and sequences without any
of the DF(G/D)L, APE and (N/T)AF motifs were therefore excluded
from the final refined alignment files. However, these sequences
were not discarded but separated and manually examined.

Additionally, SeqFIRE and GBlock tools were employed to iden-
tify the conserved regions of the alignments, which encompass
important domains (Ajawatanawong et al., 2012; Talavera and
Castresana, 2007). The ‘‘Conserved Block Module – single align-
ment mode” from SeqFire accepted protein MSAs in FASTA format.
The default parameter settings were used for the SeqFire tool. The
online Gblock server was used to extract the well-aligned and con-
served sequence blocks from the MSAs. FASTA formatted protein
sequences were input with all the options for ‘‘less stringent selec-
tion” enabled.

2.1.3. Phylogenetic tree computation
The refined alignment files were used for this step. The phyloge-

netic analysis was conducted in such a way that, initially, bi-
species trees were created using 26 CIPKs of A. thaliana as the ref-
erence. After examining the 137 trees developed this way,
sequences were sequentially joined with the 26 A. thaliana
sequences to generate the final tree including all 47 terrestrial spe-
cies used in our analyses (the known evolutionary relationships
amongst these species are shown in Fig. 1).

MODELGENERATOR v. 0.85 was used to determine the best sub-
stitution model for each dataset (with and without outgroups)
(Keane et al., 2006). We hypothesised that unknown substitution
rate variations exist in the genes of our data sets. Therefore, we
used the gamma distribution for modelling the rate variation (5
categories) (Yang, 1996; Yang and Rannala, 2012). The best model
fit for the phylogenetic tree creation was based on Corrected
Akaike Information Criterion (AICc), Akaike Information Criterion
2 (AIC2) and Bayesian Information Criterion (BIC) (S2).
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Phylogenetic trees were generated using MEGA 6.06 software
using a Maximum Likelihood approach (Mount, 2008; Tamura
et al., 2013). To estimate how well the nodes of the ML tree were
supported, 10,000 bootstrap trees were generated (Felsenstein,
1985). The DOLLOP program from the PHYLIP package imple-
mented in T-REX (http://www.trex.uqam.ca/index.php?ac-
tion=phylip&app=dollop) was used to determine the minimum
gene set for ancestral nodes of the phylogenetic tree (Boc et al.,
2012; Felsenstein, 1996). The generated parsimony tree (Newick
format) was used as the input to Ancestor v 1.1 in order to predict
the ancestral sequences (Diallo et al., 2010). These ancestral
sequences were used as queries for further BLAST searches.
2.2. Identification of unique sequence features

The Prosite (http://prosite.expasy.org/) and Pfam (http://pfam.
xfam.org/) web resources were used to extract known important
residues, motifs and domains of AtCIPK16 and its homologues
(Finn et al., 2014; Sigrist et al., 2013). CIPK homologous sequences
were examined using ScanProsite available through Prosite (v.
20.124) with the option ‘‘high sensitivity”. We queried the Pfam
database (v.27.0) using protein sequences with the default e-
value threshold of 1 � 10�6 (Finn et al., 2014).

To identify potential nuclear localisation signals (NLS) within
AtCIPK16 and its homologues, we submitted protein sequences
to cNLS Mapper (http://nls-mapper.iab.keio.ac.jp/) in FASTA format
(Kosugi et al., 2009). The following parameters were used; a cut-off
score of 2.0; long bipartite NLSs were searched in the entire region
of the proteins. Structural (e.g. secondary structure) and biochem-
ical (e.g. solvent accessibility, subcellular localisation) features
were predicted using PredictProtein and NetSurfP (Petersen et al.,
2009; Rost et al., 2004). Default parameters were used.
2.3. Intron–exon architecture analysis of CIPK16 orthologues

To visualise and compare the intron–exon structure of CIPK16
orthologues we used GSDraw, available in PIECE (http://wheat.
pw.usda.gov/piece/) (Wang et al., 2013). The input files contained
the genomic nucleotide sequences and the cDNA sequences (S3).
PIECE is a comparative genomics database named for Plant Intron
and Exon Comparison and Evolution studies.

http://www.trex.uqam.ca/index.php?action=phylip%26app=dollop
http://www.trex.uqam.ca/index.php?action=phylip%26app=dollop
http://prosite.expasy.org/
http://pfam.xfam.org/
http://pfam.xfam.org/
http://nls-mapper.iab.keio.ac.jp/
http://wheat.pw.usda.gov/piece/
http://wheat.pw.usda.gov/piece/
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2.4. AtCIPK16 diversity amongst A. thaliana accessions

VCF files and BAM files were obtained from http://1001gen-
omes.org for the purpose of identifying SNPs within the vicinity
of AtCIPK16 (at2g25090.1) ± 2500 bp (up to but not including any
neighbouring genes). For the identification of SNPs, we used VCF
files for 696 accessions made available under the GMINord-
borg2011, MPICWang2013 and Salk projects. SNPeff was used to
predict the effect (e.g. synonymous, non-synonymous, start codon
gain/loss, stop codon gain/loss and frameshifts) of the identified
SNPs (Cingolani et al., 2012).

Roy et al., 2013 have previously reported a 10 bp deletion in the
promoter region of AtCIPK16 in Bay-0. For this reason, we examined
accessions for which BAM files were available since VCF files are
typically generated by SNP identification pipelines that ignore indel
information. Furthermore,we restricted the selection of BAMfiles to
those accessions for which reads had been mapped to the reference
Col-0 (i.e. Shahdara, Bay-0, Sakata, Ri-0, Oy-0, Jea, blh-1 and Alc-0
under the JGIHazelWood 2008/11 projects). BAM files were visu-
alised in IGV (Robinson et al. 2011) and alignments padded with
gaps to reduce mismatches and achieve perfect gapped alignments.
Fig. 4. Multiple sequence alignment (MSA) of the activation loop domain of CIPK protein
MUSCLE algorithm incorporated in Jalview application. The MSA showing the indel (ALI
(AtCIPKs) were used to support the fact that ALI is only present in the CIPK16 clade pr
DFGLSAL and SSDDLLHTRCGTPAYVAPE). For easy referencing in this text we would nu
clarity. The conservation histogram and normalised consensus logo is shown beneath th
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3. Results

3.1. Molecular phylogenetics of CIPK 16, 5 and 25 protein sequences

Computation of phylogenetic trees allowed us to predict evolu-
tionary relationships between genes. In the first instance, we com-
puted phylogenetic trees for CIPK families from different
Brassicaceae and Cleome species; the evolutionary relationships
between these species is shown in Fig. 1. These species include C.
sativa, C. rubella, A. alpina, B. stricta, B. oleraceae, E. salsugineum, S.
parvula, L. alabamica, A. arabicum and T. hassleriana. The individual
unrooted protein sequence derived phylogenetic trees for these
species are provided in supplementary materials (S4–S13). The
summary of the gene/protein tree for all studied Brassicales species
is shown in Fig. 2 and the fully expanded tree is in S14.

The number of representatives for the CIPK16, 5 and 25 clade
([CIPK16/5/25]) varies amongst Brassicales species (Fig. 2). We
were able to identify a complete or a partial sequence in all core
Brassicales (Brassicaceae and Cleomaceae), which clustered with
AtCIPK16 (Fig. 1), with the exception of L. alabamica, Within the
Brassicaceae we were also able to identify orthologues for both
s. The alignment was developed from the complete sequences of CIPK proteins using
) of proteins in CIPK16 clade (indicated by the shaded box). Other A. thaliana CIPKs
oteins. ALI lies between the conserved regions of the activation loop (i.e. between
mber the activation loop from D1FGLSAL. . .AYVAPE37. AtCIPK16 is underlined for
e MSA.

6

http://1001genomes.org
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Fig. 5. Multiple sequence alignment (MSA) of the junction domain of CIPK proteins. The alignment was developed from the complete sequences of CIPK proteins using
MUSCLE algorithm incorporated in Jalview application. The nuclear localization signal (NLS) unique to CIPK16 junction domain is shown in the shaded box (JDNLS). The NLS
was predicted by the cNLS Mapper (http://nls-mapper.iab.keio.ac.jp/) (Kosugi et al., 2009). CIPK16 orthologues from A. arabicum and T. hassleriana did not predict a NLS in this
region. Other A. thaliana CIPKs were used to show the variability within this region. JDNLS lies in the junction domain in middle of kinase domain and the regulatory domain.
AtCIPK16 is underlined for clarity. The consensus logo for the NLS in CIPK16s, conservation histogram and normalised consensus logo is shown beneath the MSA.
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AtCIPK5 and AtCIPK25. However, the only homologous sequence
we identified in T. hassleriana, (a single representative of Cleo-
maceae) was placed at the base of the CIPK5/CIPK25 clade. For dicot
species outside the core Brassicales (C. papaya, T. cacao and G. rai-
mondii), and monocots, we found only homologues which form
groups basal to [CIPK16/5/25] (Figs. 2 and 3). We could not identify
any AtCIPK16, 5 or 25 orthologues in ‘‘non-core Brassicales” dicots
(NCBs) (Fig. 3). A fully expanded tree for Fig. 3 is available as a sup-
plementary figure (S15). The basal angiosperm Amborella tri-
chopoda is the most distant species to A. thaliana that possesses a
gene that clusters in the basal group for [CIPK16/5/25] (Fig. 3).
We were unable to identify close homologues to [CIPK16/5/25] in
terrestrial plant species outside of angiosperms (data not shown).

3.2. Unique characteristics of CIPK16s

Comparing MSAs and the computed phylogenetic trees revealed
unique regions of CIPK16 orthologues. One such significant charac-
ter is a unique indel (MMPEGLGGRRG) that exists in the activation
loop of the kinase domain of CIPK16 orthologues (ALI) (Fig. 4). ALI-
CIPK16 was not present in any other gene we studied. Additionally,
it was not present in any sequence in any of the sequence
databases we used for our study (Table 1). ALI lies between the
conserved regions of the activation loop. A fragment 100% identical
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to ALI was present in the manually curated database of B. oleraceae
scaffolds (Scaffold000171 FRAGMENT 1092155:1092254). This
sequence was only partial and did not contain the C terminal
NAF domain and the PPi domain (S16).

Another distinguishing feature is a putative nuclear localization
signal in the junction domain of CIPK16 orthologues (JDNLS).
According to cNLS server predictions, AtCIPK16 has monopartite
and bipartite nuclear localization signals (NLS) with the sequence
spanning from 300 to 308 (PPTKKKKKD308) (Fig. 5). A score of 6.5
assigned by the server for this signal suggests that AtCIPK16 can
be partially located to the nucleus. Proteins from other CIPK clades
did not possess an NLS in the junction domain (Fig. 5). However, all
CIPKs possessed a bipartite signal (a score equal to or less than 5.5)
with a tendency to be directed to the cytoplasm.

3.3. Intron–exon architecture of CIPK16 orthologues

The intron–exon study conducted on AtCIPK16 orthologues
from members of the Brassicaceae and Cleomaceae shows that they
all possess two exons separated by an intron (Fig. 6). Exon 1 length
varies amongst species from 692 to 709 nucleotides, whereas Exon
2 length varies from 685 to 742 nucleotides. The indels in exon 1
and exon 2 were analysed separately by a multiple sequence align-
ment of the DNA sequences (S16). We see the presence of many

http://nls-mapper.iab.keio.ac.jp/


Fig. 6. Intron–exon analysis of CIPK16 clade proteins using PIECE web tool (Wang et al., 2013): The species names are shown in a cladogram with the respective intron–exon
architecture of the CIPK proteins. A base pair scale is shown on top. The exons are shown as solid black bars connected by dashed lines representing the introns. The length of
each exon and intron are shown above each region. The phase of the intron is shown below the start of the intron. We deliberately left the intron–exon structure for L.
alabamica blank as we were unable to find a CIPK16 orthologue for this species.
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transitions and transversions compared to the consensus sequence
within both exons of the analysed species (S16). The intron lengths
of the AtCIPK16 orthologues are quite variable (Fig. 6). They vary
from 350 bp in T. hassleriana to 2048 bp in A. lyrata. All introns
except the ones from B. napus, S. parvula, and C. sativa are phase
2 introns (i.e. they interrupt the reading frame of a gene by insert-
ing a sequence between the second and third nucleotide of a
codon). B. napus, S. parvula, and C. sativa contain phase 1 introns
(i.e. they interrupt the reading frame of a gene by inserting a
sequence between the first and second nucleotide of a codon).
AtCIPK5 and AtCIPK25 orthologues are intron-less and therefore
are not shown.

3.4. AtCIPK16 diversity amongst A. thaliana accessions

From the analysis of VCF files from 696 A. thaliana accessions,
we identified 359 positions harbouring SNPs within the vicinity
of AtCIPK16. Of these, 195 (54.3%) were upstream, 4 (1.1%) in the
50-UTR, 17 (4.7%) in the CDS of exon 1, 59 (16.4%) in the intron,
22 (6.1%) in the CDS of exon 2, 10 (2.8%) in the 30-UTR and 52
(14.5%). Twenty-two of the 39 SNPs that fell within the coding
region are silent (synonymous) while 17 cause a change in an
amino acid (non-synonymous) (S17).

Of the 8 accessions for which we had access to BAM files, we
identified two (Bay-0 and blh-1) which contained a 10 bp deletion
within the promoter region (65 bases upstream of the ATG) of
AtCIPK16 compared to the Col-0 reference (Fig. 7). This deletion
has previously been reported only in Bay-0 (Roy et al., 2013), and
results in the creation of a TATA box.

4. Discussion

AtCIPK16 promotes sodium exclusion and salt tolerance (Roy
et al., 2013). Understanding the pervasiveness of CIPK16 in the
plant kingdom would lay the foundation to better understanding
11
its mode of action in plants. Already identified CIPKs from A. thali-
ana, predicted ancestral versions of the AtCIPKs and keywords
were used to mine for CIPK sequences from the plant sequence
databases. We carried out a molecular phylogenetic analysis of
the multigene CIPK family in terrestrial plants to investigate poten-
tial processes in evolution that may have given rise to the modern
day CIPK proteins (Soltis and Soltis, 2003). Additional in silico pro-
tein analysis approaches were used to identify unique regions in
primary protein structures, intron–exon architecture and variation
within the sequences of AtCIPK16 in different accessions of Ara-
bidopsis to strengthen the phylogenetic inferences.

In order to generate the phylogenetic trees, we gathered protein
sequences from all fully sequenced species to minimise the impact
of missing data and evolutionary pressure on domain identification
in AtCIPK16 orthologues and misinterpretation of the analysis
(Haudry et al., 2013; Kagale et al., 2014b).

4.1. Synapomorphic characters define core Brassicales restricted
CIPK16s

Comparison of the phylogenetic data and MSAs show that the
CIPK protein sequences and nucleotide sequences of Brassicaceae
CIPK16 orthologues have a highly conserved synapomorphic char-
acter (Figs. 4 and 5). Indel ALI is one of these, although this
sequence lacks one amino acid in the Cleomaceae species T. hassle-
riana and is slightly dissimilar to those of the Brassicaceae species
(Fig. 4). It is noteworthy that this unique insertion was not found
in any other dicot or monocot species that has been fully
sequenced. Therefore, we hypothesise that ALI can be used as a
unique of CIPK16 orthologues within the Brassicales. The partial
sequence we discovered in B. oleraceae supports this hypothesis,
although given that ambiguity of partial sequences tends to intro-
duce false relationships amongst species in a phylogenetic analysis,
the B. oleraceae sequence was excluded when generating phyloge-
netic trees.

8



Fig. 7. An IGV (Robinson et al. 2011) screenshot of the promoter region of AtCIPK16 previously shown to contain a deletion in Bay-0 (Roy et al., 2013). Read alignments for
both Bay-0 and blh-1 accessions are shown together with their corresponding coverage tracks and indicate both accessions contain a conserved 10 bp deletion (location
indicated above the chromosomal co-ordinates) relative to the Col-0 reference (mismatching bases not shown). The read alignments of the original BAM files were modified
slightly to pad the alignments of reads spanning the deletion. The drop in coverage seen in Bay-0 is indicative of a non-gapped alignment tool being used to generate the BAM
file. The BAM file of blh-1 already contained gapped read alignments, indicating a gapped aligner was used to generate the BAM file. The effect of the deletion in these two
accessions is the creation of a TATA box (location indicated by bars, below the sequence track, spanning the deletion).
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The other important highly conserved character noted was the
junction domain nuclear localisation signal (JDNLS) (Fig. 5). It is
present in all CIPK16 orthologues from Brassicaceae except that
of the basal species A. arabicum. This raises the question of its func-
tional importance for the localization of a CIPK16 orthologue in the
cell. However, this requires further experimental validation.

It is clear from our study that CIPK16 is a lineage-specific gene
for core Brassicales. The consistency in intron–exon studies sup-
ports the CIPK16 orthologues (Fig. 6). The most parsimonious
explanation for CIPK16s to be core Brassicales specific is that CIPK16
arose as a result of a gene duplication event after the speciation of
this group of plants. Genes that are duplicated can evolve through
the acquisition of new or specialised functions at the expression or
protein level (neofunctionalization), the retention of ancestral
functionality or to escape from adaptive conflict (EAC) (Blanc and
Wolfe, 2004; Des Marais and Rausher, 2008; Moghe et al., 2014).
The identification of non-synonymous SNPs (S17) amongst the
696 accessions we analysed warrant closer examination to ascer-
tain whether they are associated with higher or lower tolerance
to salt. Interestingly, we see that Bay-0 and blh-1 accessions share
a common TATA box positioned 65 bp upstream of CIPK16 (Fig. 7).
This is important as Bay-0 has shown higher CIPK16 gene expres-
sion in response to salt stress compared to Shahdara in a previous
study (Roy et al., 2013). Whether the presence of the TATA box
confers a similar increase in CIPK16 expression in blh-1 needs to
be experimentally determined.

Prior research on Brassicaceae gene evolution revealed that the
majority of lineage-specific genes from A. thaliana are stress
responsive (Donoghue et al., 2011). AtCIPK16 has been shown to
interact with shaker-type K+ channels in A. thaliana (AKT1), which
keeps the cellular Na+/K+ ratio low under low K+ stress and confers
salt tolerance when overexpressed (Lee et al., 2007; Roy et al.,
2013). Apart from AKT1, AtCIPK16 has shown interactions with
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CBL1, CBL9 and protein phosphatase 2C type proteins (Lan et al.,
2011; Lee et al., 2007). Moreover, there is experimental evidence
showing AtCIPK5, one of AtCIPK16’s closest relatives, interacts
with CBL1, CBL3, CBL4 and CBL9 (Kim et al., 2000; Kolukisaoglu
et al., 2004; Schlücking et al., 2013). However, very little, if any-
thing is known about the functionality of AtCIPK16s other closest
relative AtCIPK25. There is evidence on [CIPK16/5/25] homologues’
from species such as Chickpea and rice being responsive to plant
abiotic stress (Meena et al., 2015; Yoon et al., 2009). Nevertheless,
we believe that CIPK16, 5 and 25 and identified homologues of
[CIPK16/5/25] should be further pursued to analyse their function
in order to help us understand the drivers of CIPK16 evolution.

4.2. The evolution of CIPK16, 5 and 25 clade

From our analysis, we are able to propose an evolutionary
model for CIPK16 (Fig. 8). We considered the whole CIPK 16, 5
and 25 clade in explaining the evolution of CIPK16 as well as sister
taxa (Kolukisaoglu et al., 2004). It has been shown that a recent
paleopolyploidization event (At-a) took place, which was
restricted to Brassicaceae (Barker et al., 2010; Schranz and
Mitchell-Olds, 2006). To support this fact, our study shows that
segmental duplication (SD) of intron-less CIPKs in Brassicaceae
are confined to that group. This includes the SD, which gave rise
to CIPK5 and CIPK25. We could not find evidence that Cleomaceae
experienced an independent genome duplication (Cs-a) as sug-
gested previously (Schranz and Mitchell-Olds, 2006). However,
our results indicate that CIPK16 existed before the speciation of
Cleomaceae and therefore before Cs-a. It can be assumed that the
WGD event that took place 124.6 ± 2.57 Mya (At-b) gave rise to
the ancestral version of the CIPK16, 5 and 25 clade from a single
ancestral state (Fig. 8). This is consistent with previous work,
which states that the paleopolyploidization event At-b is shared



Fig. 8. Proposed evolutionary model of CIPK 16, 5 and 25. The model of evolution of CIPK16, 5 and 25 from their last common ancestor in angiosperms. Each oval represents a
gene. The rectangular box represents a group of plants with a common ancestor. The ovals with no fill colour represents inferred ancestral states. The coloured ovals represent
the present day proteins from different groups of terrestrial plants mentioned below each group. Previously recorded evolutionary milestones are mentioned appropriately. A
cladogram shows the known evolutionary relationships amongst the groups.
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between Brassicaceae and Cleomaceae (Barker et al., 2010). Accord-
ing to this hypothesis, and supported by our study, the ancestral
version of CIPK16 and CIPK5 and 25 therefore had to evolve after
the rise of non-core Brassicales species. This agrees with the previ-
ous work which showed species of Carica do not share At-b (Barker
et al., 2010; Kagale et al., 2014b) (Fig. 8).

The fact that NCBs and monocots have no CIPK16, CIPK5 or
CIPK25 orthologues suggests they must possess an ancestral ver-
sion of [CIPK16/5/25] or the gene itself has been made redundant
by evolution (Pérez-Pérez et al., 2009). The most basal species in
our phylogenetic analysis to contain a sequence that clusters with
[CIPK16/5/25] is the angiosperm A. trichopoda. This suggests that
the earliest ancestor of [CIPK16/5/25] evolved after the diversifica-
tion of angiosperms.
4.3. Continuing CIPK16 research for salinity stress

It is clear from our phylogenetic analysis that AtCIPK16 does not
have a clear orthologue in important crops such as barley or wheat.
However, our finding that the last common ancestor of
[CIPK16/5/25] gave rise to CIPK16 after the divergence of dicots
and monocots (more specifically after the diversification of core
Brassicales, a subgroup of dicots), and the previous finding that over-
expressing AtCIPK16 confers salt tolerance in the monocot barley,
poses further questions (Roy et al., 2013). Do the conserved ele-
ments ALI and the JDNLS have functional importance in CIPK16s?
Would it be possible that the functionality of CIPK16, 5 and 25 result
from functional partitioning of the ancestral genes due to selective
pressure? If so, are the functionalities of CIPK16, 5 and 25 still
retained in seemingly ancestral versions we see in NCBs and mono-
cots? This study therefore, highlights the necessity to explore the
functionality of AtCIPK16 in A. thaliana and cereals such as barley.
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Link to Chapter 5 

Barley is amongst the most important crop plants in the world today. It is the fourth most abundant 

cereal in area and tonnage harvested after wheat, maize and rice (Beier et al. 2017). The study by 

Roy et al. (2013) showed that transgenic barley overexpressing AtCIPK16 conferred salt tolerance 

in both glasshouse and field conditions. As we presume if it is due to the existence of a common 

molecular machinery that can be mediated by AtCIPK16 in both transgenic Arabidopsis and barley, 

a comparative transcriptomic analysis could discover common molecular components among the 

transgenic Arabidopsis and barley. 

We had therefore, planned to investigate the transcriptome of barley transgenics overexpressing 

AtCIPK16 as the next step of the project. Unfortunately, the transgene was silenced in the T5 

generation. Transgene silencing is a process through which, transgene expression is inactivated 

translationally or post-translationally after its’ integration into a genome (Marenkova and Deineko 

2010). Initially thought to be anecdotal, researchers subsequently realized that transgene silencing 

is similar to natural epigenetic behaviours, and occurs more frequently (Matzke and Matzke 2004). 

Not only the transgene, but also the host genes can be silenced after the introduction of a transgene 

due to their sequence identity to the  transgene (Vaucheret et al. 1998).  

Several reasons for transgene silencing have been suggested and the frequently discussed are: a) 

position effects: as integration of the transgene to the host genome is a random process, b) 

homology: when multiple copies of a particular sequence are present in a genome, the pairing 

interaction between the homologous or complimentary sequences can result in gene silencing 

(Kooter et al. 1999; Milot and Ellis 2005; Vaucheret et al. 1998), c) GC content bias in monocot 

codon usage; the genome of the monocots have a strong bias towards high GC content compared 

to the dicots that have a bias towards AT content (Batard et al. 2000). Therefore, when an AT rich 

sequence is introduced to a monocot the plant’s innate immunity may identify it as a foreign 

molecule and attempt to eliminate the activity of the gene that leads to gene silencing (Rajeevkumar 

et al. 2015). 

We have taken much care to control positional effects by generating multiple independent 

transformation events and selected transgenics that had single copy integrations and different 

insertion sites. Therefore, the gene silencing in barley could not have taken place due to both these 

reasons. However, a complete CDS codon reengineering approach could be used in future barley 

retransformation approaches. Furthermore, the vector construct should be made with more tissue-

specific promoters to understand whether the effect of the promoter is detrimental and causes the 
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transgene to be silenced. However, a re-transformation experiment would have been beyond the 

scope of my PhD.  

We could nevertheless, learn much from studying the variations within barley genome itself to 

understand how barley could tolerate high levels of salinity (Beier et al. 2017; E.y and G.j 1977; 

Jenks et al. 2009; Maas and Hoffman 1977). Studies based on barley’s salt stress tolerance 

variation are presented but are not limited to the examples in Table 1. 

Table 1 Example studies on barley salinity tolerance 

Type of 
Experiment 

Barley varieties 
under study 

Main findings Reference 

GWAS 2671 genotypes SNPs on barley HKT1;5 that 
are correlated with salt 
tolerance that is related to high 
Na+ accumulation in roots and 
sheath 

Hazzouri et al., 
2018 

Physiological study TX9425 and 
ZUG293 (salt 
tolerant cultivars) 
and Franklin and 
Gairdner (salt 
sensitive cultivars 

Higher in the residual 
transpiration rate in salt tolerant 
cultivars 

Hasanuzzaman 
et al., 2017 

Plant imaging and 
physiological 
measurements 

Twenty-four 
commercial and 
landrace barley 
lines (Hordeum 
vulgare L. 
ssp vulgare and H. 
vulgare L. 
ssp spontaneum) 

Shoot-ion-independent 
tolerance, ion exclusion and ion 
tolerance are needed 
cumulatively for the complete 
salt tolerant phenotype 

Tilbrook et al., 
2017 

De-novo assembly 
and transcriptomic 
study on roots 

Sahara (salt 
tolerant) and 
Clipper (salt 
sensitive) 

There are differences between 
the transcripts related to sugar-
mediated signaling, cell wall 
metabolism and defense 
response of the root meristem, 
elongation and maturation 
zones, respectively 

Hill et al., 2016 

Physiological study Forty-seven barley 
and forty-five 
wheat (25 bread 
wheat, Triticum 
aestivum; and 20 
durum 
wheat, Triticum 
turgidum spp. 
durum) genotypes 
contrasting 
in their salinity 
tolerance 

Barley has more Na+ 
accumulation capacity in the 
leaf mesophyll vacuoles that 
leads to more tissue tolerance 
capacity compared to wheat 

Wu et al., 2015 
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De-novo assembly 
and transcriptomic 
study on leaf 

Wild barley (H. 
spontaneum) 

Involvement of Ethylene, 
flavonoids, ROS, and kinases 

Bahieldin et al., 
2015 

Proteomics of the 
root (MALDI-
TOF/TOF mass 
spectrometry) 

DH14 (salt 
sensitive) and 
DH187 (salt 
tolerant) 

Enhanced salinity tolerance 
of DH187 is due to mainly the 
signal transduction activity 
increase that subsequently 
affects the accumulation of 
stress protective proteins and 
changes in the cell wall 
structure 

Mostek et al., 
2015 

Proteomics (two-
dimensional gel 
electrophoresis and 
mass spectrometry) 

Morex (salt 
tolerant) and 
Steptoe (salt 
sensitive) 

Detoxification pathway and 
terpenoid biosynthesis proteins  
were 
detected as early responses to 
salinity 

Witzel et al., 
2014 

Metabolite analysis Tibetan wild barley 
XZ16 (H. 
spontaneum) and 
cultivated 
barley CM72 (H. 
vulgare) 

Higher chlorophyll content and 
higher 
contents of compatible solutes 
than cultivated barley in wild 
barley, an assumption of 
cultivated barley enhancing its 
salt tolerance mainly 
through increasing glycolysis 
and energy consumption 

Wu et al., 2013 

GWAS 192 spring barley 
accessions 

QTL on 6H and 4H associated 
with salt tolerance 

Long et al. 
2013 

Proteomics ( 
MALDI-TOF-TOF 
MS technique) 

Afzal (salt-tolerant) 
and Line 527 (salt-
sensitive) barley 
cultivars 

Eighteen proteins have been 
found to  respond differently 
between these two cultivars 

Fatehi et al., 
2012 

Physiological study TX9425 (salt-
tolerant) and 
Franklin (salt-
sensitive) barley  
cultivars 

Interaction between polyamines 
and ROS in the roots that 
causes differences in the 
cytosolic K+ homeostasis as a 
contributor of sensitivity to 
salinity in barley 

Velarde-
Buendía et al., 
2012 

Proteomics Afzal (salt tolerant)  
and L-527 ( salt 
sensitive) 

Differences in proteins involved 
in stress defense, metabolism, 
protein synthesis and 
Photosynthesis among the two 
genotypes 

Rasoulnia et 
al., 2011 

HvHKT2;1 
overexpression and 
expressed in 
Xenopus oocyte 

Golden Promise HvHKT2;1  is predominantly 
expressed in the root cortex, 
Over-expression of HvHKT2;1 
led to 
enhanced Na+ uptake, higher 
Na+ concentrations in the xylem 
sap, and enhanced 
translocation of Na+ to leaves 

Mian et al., 
2011 

Association analysis 
and gene 

Wild barley and 
CM72 

Salt tolerance of Tibetan wild 
barley is mainly due to superior 

Qiu et al., 2011 
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expression assay of 
HvHKT1(HvHKT2;1) 
and HvHKT2 
(HvHKT1;2) 

Na+ exclusion and better 
maintenance of tissue K+ 
concentration 

Physiological study Barque73, Clipper, 
Sahara, and 
Tadmor 

The four genotypes had 
different independent Na+ and 
Cl- tolerant mechanisms 
Cl- was mainly responsible for 
the photosynthetic inhibition 
Osmotic potentials in salt stress 
are different among soil and 
hydroponically grown plants 

Tavakkoli et al., 
2011 

Physiological study  Seeds of two 
varieties: ‘Cask’ 
and ‘County’ 
(Cropmark Seeds 
Ltd, Christchurch, 
New 
Zealand) 

Na+ can act as an osmotic 
regulator and allow barley 
seeds to take up more water 
and germinate more rapidly in 
salinity 

Zhang et al., 
2010 

Biophysical  
and physiological 
techniques 

CM72 and Numar 
(salt tolerant),  
Gairdner and 
ZUG403 (salt 
sensitive) 

Salt tolerant traits in barley 
constitute of tissue tolerance 
pin leaves and maintaining high 
xylem K+ and Na+ 
concentrations 

Shabala et al., 
2010 

Metabolomics Sahara (salt 
tolerant) and 
Clipper (salt 
sensitive) 

Sahara has more leaf 
protectant metabolites 
compared to Clipper 

(Widodo et al. 
2009) 

QTL mapping A segregating DH 
population of 93 
lines, developed 
by anther culture of 
the F1 hybrid 
between CM72 
(salt-tolerant) and 
Gairdner (salt 
sensitive) 

13 QTLs which associated with 
salt stress and accumulation of 
Na+ in barley shoots, region of 
the 4H chromosome flanked by 
bPb-1278 and bPb-8437 is 
important in salt tolerance 

Xue et al., 
2009 

Proteomics Morex (salt 
tolerant) and 
Steptoe (salt 
sensitive) 

Proteins involved in ROS 
scavenging were more 
abundant in 
Morex and proteins involved in 
iron uptake were highly 
expressed in Steptoe 

Witzel et al., 
2009 

Physiological study Salt-tolerant 
Numar and 
ZUG293, and salt-
sensitive Gairdner 
and ZUG403 

ROS-induced K+ efflux is 
evident in salt-tolerant cultivars  

Chen et al., 
2007 

Physiological study 6 varieties of 
barley including 
Melusine + 
ISABON3 (high 

The stomatal conductance, 
vigorous growth, osmotic 
potential were some of the 

Katerji et al., 
2006 
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salinity tolerant 
variety from 
Afghanistan) 

traits that differed in ISABON3 
compared to Melusine 

 

According to the examples given in Table 1, we can understand that barley contains a wide inter-

cultivar variation in salt tolerance/response mechanisms. For example, differences in the 

metabolome, tissue tolerance, and photosynthetic capabilities may be responsible for differences 

among the cultivars in salt tolerant responses. These differences are likely to be governed by the 

underlying molecular mechanisms or allelic variations. Therefore, barley presents us with an 

excellent crop germplasm to study the salinity tolerance. 

The study in this chapter used RNA-Seq data from multiple barley cultivars to analyse the natural 

variations and transcriptomic differences underlying the differences in tissue tolerance of barley. 

Aim of this chapter was to improve the knowledge base on the inter-cultivar differences in barley 

tissue tolerance  (Negrão et al. 2017; Roy et al. 2011). We report novel allelic variations on 

transporter genes that may be responsible for the varying leaf sheath Na+ accumulation levels in 

the studied cultivars. This chapter is formatted to be submitted to BMC Plant Biology. 

References 

Bahieldin A, Atef A, Sabir JSM, Gadalla NO, Edris S, Alzohairy AM, et al. RNA-Seq analysis of the 
wild barley (H. spontaneum) leaf transcriptome under salt stress. C. R. Biol. 2015 May;338(5):285–
97.  

Batard Y, Hehn A, Nedelkina S, Schalk M, Pallett K, Schaller H, et al. Increasing Expression of 
P450 and P450-Reductase Proteins from Monocots in Heterologous Systems. Arch. Biochem. 
Biophys. 2000 Jul;379(1):161–9.  

Beier S, Himmelbach A, Colmsee C, Zhang X-Q, Barrero RA, Zhang Q, et al. Construction of a 
map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data. 2017 Apr 
27;4:sdata201744.  

Chen Z, Zhou M, Newman IA, Mendham NJ, Zhang G, Shabala S. Potassium and sodium relations 
in salinised barley tissues as a basis of differential salt tolerance. Funct. Plant Biol. 2007;34(2):150–
62.  

E.y M, G.j H. CROP SALT TOLERANCE CURRENT ASSESSMENT. 1977 Jan 1;103(2):115–34.  

Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC. The proteome response of salt-
resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol. Biol. Rep. 2012 
May;39(5):6387–97.  

Hasanuzzaman M, Davies NW, Shabala L, Zhou M, Brodribb TJ, Shabala S. Residual transpiration 
as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biol. 
2017 Jun 19;17:107.  



132 
 

Hazzouri K, Pauli D, Blake T, Shahid M, Khraiwesh B, Salehi-Ashtiani K, et al. Mapping of HKT1;5 
gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front. Plant 
Sci. [Internet]. 2018 [cited 2018 Feb 11];9. Available from: 
https://www.frontiersin.org/articles/10.3389/fpls.2018.00156/abstract 

Hill CB, Cassin A, Keeble-Gagnère G, Doblin MS, Bacic A, Roessner U. De novo transcriptome 
assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-
specific responses to salt exposure. Sci. Rep. [Internet]. 2016 Aug 16 [cited 2017 Apr 11];6. 
Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985707/ 

Jenks MA, Hasegawa PM, Jain SM. Advances in Molecular Breeding Toward Drought and Salt 
Tolerant Crops. Springer Science & Business Media; 2009.  

Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Fares C, Ceccarelli S, et al. Classification and 
salt tolerance analysis of barley varieties. Agric. Water Manag. 2006 Sep 16;85(1–2):184–92.  

Kooter JM, Matzke MA, Meyer P. Listening to the silent genes: transgene silencing, gene regulation 
and pathogen control. Trends Plant Sci. 1999;4(9):340–347.  

Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RGF, et al. Association mapping of salt 
tolerance in barley (<Emphasis Type="Italic">Hordeum vulgare</Emphasis> L.). Theor. Appl. 
Genet. 2013 Sep 1;126(9):2335–51.  

Maas EV, Hoffman GJ. Crop salt tolerance : evaluation of existing data. Manag. Saline Water Irrig. 
Proc. Int. Salin. Conf. [Internet]. 1977 [cited 2017 Sep 15]; Available from: http://agris.fao.org/agris-
search/search.do?recordID=US201302482113 

Marenkova TV, Deineko EV. Transcriptional gene silencing in plants. Russ. J. Genet. 2010 May 
1;46(5):511–20.  

Matzke MA, Matzke AJM. Planting the Seeds of a New Paradigm. PLOS Biol. 2004 May 
11;2(5):e133.  

Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Véry A-A. Over-expression of an 
Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J. 2011 Nov 
1;68(3):468–79.  

Milot E, Ellis J. Transgene Silencing. Encycl. Ref. Genomics Proteomics Mol. Med. [Internet]. 
Springer, Berlin, Heidelberg; 2005 [cited 2017 Dec 13]. p. 1896–9. Available from: 
https://link.springer.com/referenceworkentry/10.1007/3-540-29623-9_2940 

Mostek A, Börner A, Badowiec A, Weidner S. Alterations in root proteome of salt-sensitive and 
tolerant barley lines under salt stress conditions. J. Plant Physiol. 2015 Feb 1;174:166–76.  

Negrão S, Schmöckel SM, Tester M. Evaluating physiological responses of plants to salinity stress. 
Ann. Bot. 2017 Jan 1;119(1):1–11.  

Qiu L, Wu D, Ali S, Cai S, Dai F, Jin X, et al. Evaluation of salinity tolerance and analysis of allelic 
function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor. Appl. Genet. 2011 Mar 
1;122(4):695–703.  

Rajeevkumar S, Anunanthini P, Sathishkumar R. Epigenetic silencing in transgenic plants. Front. 
Plant Sci. [Internet]. 2015 Sep 10 [cited 2017 Dec 21];6. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564723/ 



133 
 

Rasoulnia A, Bihamta MR, Peyghambari SA, Alizadeh H, Rahnama A. Proteomic response of 
barley leaves to salinity. Mol. Biol. Rep. 2011 Nov 1;38(8):5055–63.  

Roy SJ, Huang W, Wang XJ, Evrard A, Schmöckel SM, Zafar ZU, et al. A novel protein kinase 
involved in Na+ exclusion revealed from positional cloning. Plant Cell Environ. 2013 Mar 
1;36(3):553–68.  

Roy SJ, Tucker EJ, Tester M. Genetic analysis of abiotic stress tolerance in crops. Curr. Opin. Plant 
Biol. 2011 Jun;14(3):232–9.  

Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, et al. Xylem ionic relations and salinity 
tolerance in barley. Plant J. 2010 Mar 1;61(5):839–53.  

Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na+ and Cl– 
ions on barley growth under salinity stress. J. Exp. Bot. 2011 Mar;62(6):2189–203.  

Tilbrook J, Schilling RK, Berger B, Garcia AF, Trittermann C, Coventry S, et al. Variation in shoot 
tolerance mechanisms not related to ion toxicity in barley. Funct. Plant Biol. 2017 Nov 
29;44(12):1194–206.  

Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J-B, et al. Transgene-induced 
gene silencing in plants. Plant J. 1998 Dec 1;16(6):651–9.  

Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I. Salt-sensitive and salt-
tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by 
polyamines. Plant Physiol. Biochem. 2012 Dec;61:18–23.  

Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U. Metabolic responses to salt 
stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity 
tolerance. J. Exp. Bot. 2009 Oct 1;60(14):4089–103.  

Witzel K, Matros A, Strickert M, Kaspar S, Peukert M, Mühling KH, et al. Salinity Stress in Roots of 
Contrasting Barley Genotypes Reveals Time-Distinct and Genotype-Specific Patterns for Defined 
Proteins. Mol. Plant. 2014 Feb;7(2):336–55.  

Witzel K, Weidner A, Surabhi G-K, Börner A, Mock H-P. Salt stress-induced alterations in the root 
proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 2009 Aug 
1;60(12):3545–57.  

Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, et al. Tissue Metabolic Responses to Salt Stress in 
Wild and Cultivated Barley. PLOS ONE. 2013 Jan 31;8(1):e55431.  

Wu H, Shabala L, Zhou M, Stefano G, Pandolfi C, Mancuso S, et al. Developing and validating a 
high-throughput assay for salinity tissue tolerance in wheat and barley. Planta. 2015 May 20;1–11.  

Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, et al. Identification of QTLs associated with 
salinity tolerance at late growth stage in barley. Euphytica. 2009 Sep 1;169(2):187–96.  

Zhang H, Irving LJ, McGill C, Matthew C, Zhou D, Kemp P. The effects of salinity and osmotic 
stress on barley germination rate: sodium as an osmotic regulator. Ann. Bot. 2010 
Dec;106(6):1027–35.  

 



134 
 

Investigating Genetic Variations of Contrasting Na+ Accumulation in 

Barley Genotypes under Salt Stress 

Running title: Transcriptomics of tissue tolerance variations in barley 

Shanika Amarasinghe1,2, Nathan S. Watson-Haigh1,2, Caitlin Byrt,2,3, Stuart Roy1,2, Matthew 

Gilliham2,3, Ute Baumann1,2 

1. Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia 

2. School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, PMB 1 Glen 

Osmond, SA 5064, Australia. 

 3. Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant 

Science, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond SA 5064, 

Australia. 

Correspondence: 

Dr. Ute Baumann, 

Plant Genomics Centre, 

School of Agriculture, Food and Wine, 

The University of Adelaide, 

Urrbrae, 

South Australia,  

5064, AUSTRALIA.



135 
 

Abstract 

Soil salinity causes large productivity losses for agriculture worldwide. Barley, one of the most 

important crops, is identified as salt tolerant compared to other staple crops such as wheat and 

rice. Identification of the genes and allelic variations underlying various salt tolerance mechanisms 

in barley will be a practical contribution towards the development of barley lines with greater salinity 

tolerance. We sequenced the RNA from six barley genotypes with varying leaf sheath Na+ 

accumulation levels in salt stress and examined differential gene expression, variant analysis and 

gene co-regulatory networks to link the phenotypic characteristics to the underlying molecular 

components. We identified novel alleles on barley HKT1;5 that could potentially be responsible for 

the high sheath Na+ accumulation. Furthermore, through statistical modelling of gene expression 

levels a NHX was recognized as a candidate for high sheath Na+ tolerance ability. Through co-

expression networks, we discovered subtle expression pattern variations of genes amongst the six 

genotypes related to terpenoid, phenylpropanoid and flavonoid metabolism. These variations have 

provided us with candidate genes of interest for future characterisation of genetic mechanisms that 

contribute to salt stress tolerance in barley.   
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Introduction 

Salinity is a major abiotic stress that causes productivity loss for agriculture worldwide [1–4]. 

This is exacerbated by the changes in rainfall patterns associated with global warming and by 

human practices, such as irrigation and clearing of vegetation [5, 6]. Surplus NaCl in soil hinders 

water extraction by plant roots and leads to accumulation of Na+ and Cl- within the plant [7, 8]. 

These osmotic and ionic stresses come at a cost in terms of plant energy use, reducing cell, 

tissue and plant growth rates [8–13] and increasing senescence, through damage to metabolic 

processes and ion imbalances [14–17]. 

Plants have various mechanisms to mitigate salinity stress, including mechanisms for detecting 

and signalling salt stress [18–22], maintenance of cell and tissue expansion [23, 24], exclusion 

of toxic sodium (Na+) and chloride (Cl-) ions from the shoot [8, 25–27], accumulation of ions in 

vacuoles [28–30], maintenance of K+ homeostasis [31–34] and synthesis of compatible solutes 

[29, 35]. These mechanisms are typically grouped into three categories; a) shoot ion exclusion 

b) shoot ion tissue tolerance and c) osmotic tolerance [7, 8]. However, the salt tolerant 

capabilities of a plant may vary largely with genetic traits, the environmental factors and the 

development stage [36]. The genes and gene networks involved in salinity tolerance 

mechanisms are of interest as this information can be used to develop crop germplasm that 

produces higher yields in salt affected soil [18]. Once these genes are known, assessment of 

genotypic variation in plant salt tolerance mechanisms will identify the best alleles of important 

genes which can be used to improve crops. 

Barley, the fourth most important crop in the world, is considered a salt-tolerant crop, relative to 

other cultivated cereals, as it can grow on soils with an ECe of 8 dS/m with little reduction in 

growth, and still maintain 50% of its yield potential at 18 dS/m [37, 38]. On the other hand, the 

closest crop relative of barley, bread wheat, can tolerate only up to 6 dS/m in optimal conditions 

and can maintain 50% of the yield potential at 13 dS/m [39]. Relative to bread wheat, barley 

tends to accumulate Na+ and Cl- in leaf blades, combining ion accumulation in plant vacuoles 

and maintenance of cytosolic K+ homeostasis, with the synthesis of compatible solutes that 

assist with ion homeostasis [5, 33, 40–45]. 

A previous study of shoot ion tissue accumulation, that focussed on 50 salt stressed barley 

genotypes revealed differences in leaf blade and sheath Na+ accumulation (James et al. in 

prep.). Preferential sequestration of Na+ in the leaf sheath over the leaf blade may enhance 

salinity tolerance by keeping Na+ away from the photosynthetically active leaf blade [46]. 

Variation was observed in terms of total tissue Na+ concentration as well as differences in the 
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sheath:blade (S:B) Na+ ratio. These data were used to select six barley genotypes which 

differed for tissue Na+ accumulation: Three of the genotypes (Beecher, Fleet and Sloop) showed 

similar levels of Na+ in their sheath and leaf blade tissues, whereas the other three genotypes 

(Alexis, Commander and Maritime) accumulated relatively more Na+ in their sheath than in their 

leaf blade, thus giving them a higher S:B Na+ ratio. In addition, Alexis accumulated at least twice 

as much total Na+ in the leaf blade than the other five genotypes (James et al. in prep.). These 

data indicate that it is likely that the different genotypes vary in their salt tolerance mechanisms. 

For example, Na+ leaf exclusion may contribute to the salt tolerance of the low Na+ accumulating 

lines, higher than to  Alexis. Identification of the genes involved in these different mechanisms 

will help guide future research towards the development of barley lines with greater salinity 

tolerance, through marker assisted selection to incorporate the best allele of the relevant genes.  

The objective of the current study was to test which genes may be relevant. To achieve this we 

analysed the transcriptome of leaf blade, leaf sheath and root tissues from six barley accessions 

using RNA-Seq data. This analysis revealed allelic variations in barley HKTs that we suggest 

may be linked to the differences observed in the Na+ levels in the shoots of different genotypes. 

We observed genotypic differences in the regulation of NHXs, which we hypothesise may play 

a role in Na+ sequestration in higher sheath Na+ accumulating genotypes. In addition, we 

detected transcript differences that we expect would influence the biosynthesis of flavonoids 

and terpenoids, K+ homeostasis and cell wall strengthening, and these differences have 

provided us with candidate genes of interest for future characterisation of genetic mechanisms 

that contribute to salt stress tolerance in barley.   

Methods 

Plant Growth and Stress Treatment 

Six barley (Hordeum vulgare L.) genotypes, Beecher (Australia), Commander (Australia), Fleet 

(Australia), Sloop (Australia), Alexis (Germany) and Maritime (Australia) have differing capacity 

to partition Na+ into leaf sheaths (James et al. unpublished data). Plants were grown in a 

supported hydroponics set up using 40-L trays and quartz gravel as described previously [47]. 

Seeds were germinated on filter paper in Petri dishes over 2 d at 4°C, and seedlings were 

planted into individual hydroponic pots. At approximately 5 d after emergence of the first leaf, 

25 mM NaCl was added twice daily to a final concentration of 200 mM NaCl. Supplemental Ca2+ 

was added as CaCl2 to give a final Na+: Ca2+ of 15:1.  Plants were grown in a controlled 

environment chamber with a 10 h photoperiod and a photosynthetic photon flux density of 1000 

µmol m-2 s-1 at 20°C during the day and 10°C during the night.  Plant tissues (leaf blade, leaf 
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sheath and root) were sampled 18 days after the commencement of NaCl treatment for 

measurement of tissue ion (Na+ and K+) concentration and gene expression. Blade and sheath 

tissues were sampled from leaves three (L3) and four (L4). Roots were washed twice in a cold 

solution of 10 mM Ca(NO3)2 for 10 – 15 s, blotted on absorbent paper to remove excess solution, 

divided in half vertically (half for ion analysis and half for RNA extractions) and weighed before 

proceeding with subsequent steps. 

Physiological Traits of Stressed Plants 

The leaf blade and sheath samples for ion determination were dried at 70°C for 2 days. Samples 

were then weighed, digested in 500 mM HNO3 at 80°C for 1.5 h and analysed for Na+ and K+ 

using an Inductively Coupled Plasma – Atomic Emission Spectrometer (Vista Pro, Varian, 

Melbourne, Australia) following the protocol in [48]. For each genotype Na+ concentrations and 

K+ concentrations of L3 blade and L3 sheath were recorded. 

RNA-Seq library construction, Illumina sequencing and Mapping 

Gene expression in the third leaf blade, third leaf sheath and root of the six barley genotypes 

exposed to 200 mM NaCl was determined by RNA-Seq. Tissue samples were immediately 

frozen in liquid N2 and stored at -80oC; four biological replicates per tissue were taken. RNA was 

extracted using Zymo research Direct-zol™ RNA MiniPrep kit (California, USA) following the 

manufacturer’s suggested protocol, including the in-column DNase I digestion. RNA was 

quantified using a NanoDrop spectrophotometer (Agilent Technologies, Palo Alto, Calif) and 

quality was checked by visualisation of a sample of RNA by gel electrophoresis and on an 

Agilent 2100 Bioanalyzer (Adelaide Microarray Centre, Institute of Medical and Veterinary 

Science). RNA-seq libraries were prepared from total RNA using the TruSeq Stranded Total 

RNA with Ribo-Zero Plant kit according to the manufacturer’s instructions (TruSeq, San Diego, 

CA, USA). Sequencing runs were performed on a HiSeq1500 (San Diego, CA, USA), generating 

paired-end reads with a length of 125 base pairs (bp).  

The Illumina sequencing of the RNA-Seq libraries resulted in 72 sequence files in FASTQ 

format. The read quality was checked using FastQC [49]. FASTX-Toolkit v0.0.14 fastx_clipper 

was used to remove adapter sequences [50]. Read pairs were retained if both reads were ≥ 70 

base pairs (bp) (S1). Reads were aligned to the IBSC 2016 Morex reference genome [51] using 

TopHat v2.1.1 [52], enabling stranded alignment, allowing up to 2bp mismatches, 5 gaps, 5000 

bp of intron length and 250bp of inner distance of mates and no multi-mapping. The resulting 

read alignments (binary alignment/map; BAM files) were indexed using SAMtools v1.4.1 [53]. A 
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total of 3.16 billion reads (65 % of the total reads) were aligned to the IBSC 2016 Morex 

reference which contains 39,734 annotated genes (S2). A quality checking step was performed 

on BAM files to calculate the number of mapped reads, unmapped reads (filtered BAM files on 

-F 4 vs –f 4, respectively) and contamination levels by counting reads mapped to plant rRNA, 

chloroplast and mitochondrial genome sequences using SAMtools v1.4.1[53] (S2).  We 

eliminated one sample (Maritime sheath L2E) with low percentage of mapped reads compared 

to others, which is highlighted in S2 in red, from all further analyses. 

Identifying Genotype Specific Genes 

Aligned reads were normalised (CPM: counts per million) and fitted with a linear model in order 

to identify highly and lowly expressed genes. Feature counting (genes as features)  was 

performed on BAM files using the RSubread package in R [54]. The counts were separated into 

the three tissues (blade, sheath and root) and normalised using calcNormFactors() function 

from edgeR package [55, 56]. Genes with ≤10 CPM were removed prior to fitting the linear 

model using Limma to identify genes that were differentially expressed [57]. The genes were 

considered differentially expressed if they exhibited a difference of at least two-fold change with 

a FDR (BH method) adjusted p value ≤ 0.05.  

We define a gene as having “genotype specific gene expression” if that gene’s expression is: 

a) significantly higher in one genotype compared to all others, which we refer to as “highly 

expressed”; or b) is significantly lower in one genotype compared to all others, which we call 

“lowly expressed”. The comparisons were performed in a pairwise manner. The “highly” and 

“lowly” sets of genes identified for each genotype were subjected to further analyses. 

Identifying Genotype Specific Salt-related Homologous 

A subset of genotype specific genes were identified from a reciprocal BLAST using salt related 

Arabidopsis sequences that were candidates for possibly being involved in the salt response in 

barley based on previous studies in Arabidopsis. Arabidopsis thaliana genes were selected from 

TAIR which had been annotated with various salt-related terms [58]. The TAIR database was 

queried with keywords “salt”, “sodium ion transmembrane transporter activity”, “response to 

osmotic stress”, “sodium ion transport”, “sodium ion homeostasis”, “cyclic nucleotide binding“, 

“cation channel activity”, “cation transmembrane transport”, “antiporter activity”, “potassium ion 

transport”  and  ”anion channel activity” [58]. These genes were then used to identify the putative 

homologues in barley using a reciprocal BLAST approach [59]. For reciprocal hits to be valid, 

we required at least 60% of query coverage and an e-value of 1x10-100. The list of putative barley 
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homologous were then compared with list of genotype specific genes and common genes 

between both lists were identified as genotype specific salt related homologous. 

Assigning Common Names through Molecular Phylogenetics 

A phylogenetic analysis was performed on putative major candidate gene families involved in 

Na+ transport (i.e. HKT, NHX and SOS) [60]. A BLAST search (tBLASTn) was carried out on 

the whole barley genome to identify loci that contained putative orthologues of above said 

candidate genes (>60% of query coverage and an e-value of 1x10-100).   Sequences were then 

manually curated through the following procedure; 1) Alignment refinement through Exonerate 

v 2.4 [61]; 2) use the alignment coordinates produced by Exonerate to define the exon structure 

of the gene and extract the CDS corresponding to the aligned portion of the query protein 

sequence; 3) confirm the structure using the RNA-Seq read alignments. Where the defined CDS 

was still missing the 5′ and/or 3′ end, we extended the 5′ and 3′ ends of the CDS to an in-frame 

start or stop codon respectively, which most closely matched that of the query protein sequence. 

Phylogenetic trees were generated using MEGA 6.06 software using Juke Cantor amino acid 

substitution model using a Maximum Likelihood approach [62, 63]. To determine how well the 

nodes of the ML tree were supported, 10,000 bootstrap trees were generated [64]. The common 

names were then assigned based on the occurrence of the genes within the clades of the 

phylogenetic trees.  

Variant Discovery 

Variant calling for genes of interest was performed for each genotype using all BAM files 

associated with that genotype. BAM files of the four replicates per genotype were merged and 

one pileup file was created for each genotype using SAMtools mpileup function [65]. The 

resulting six pileup files were then used to create a VCF file using SAMtools along with the IBSC 

2016 Morex reference sequence. The VCF file was annotated using SNPEff tool that predicts 

the effect of each variant [66]. An in-house variant calling Java based tool, merutensils.jar 

(Suchecki et al. in prep.), was used to count the number of reads supporting each variant and 

confirm the obtained results. The following parameters to merutensils.jar in order to predict a 

variant with confidence; the coverage of a variant per genotype ≥ 5 reads, at least 1 variant 

needs to be present in at least in 1 sample and the maximum error per allele to be 5%.  

Co-expressed Genes 

In order to identify gene clusters that may work in concert, as well as be linked to ion 

accumulation traits of interest (i.e. modules), we performed a weighted gene co-expression 

network analysis (WGCNA) using genes with normalised reads (CPM values). In a gene co-
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expression network, nodes denote the genes and the edges between the nodes represent a 

significant association between them. The R package Weighted Gene Co-expression Network 

Analysis (WGCNA) v1.49 [67] allowed us to associate modules that are co-expressed based on 

the correlation of their expression patterns, to particular salt traits of interest. Signed co-

expression networks were constructed using the automatic one-step network construction 

method (function cuttreeDynamic()) with the following settings; a signed type of network, an 

unsigned type of topological overlap matrix (TOM), correlations of the network raised to a soft 

thresholding power β (blade: 9, sheath: 9, roots: 8), correlation measures with option ‘bicor’, 

deepSplit value of 2, a minimum module size of 20. 

It was assumed that the expression of a particular module that is highly associated with a trait 

of interest is mainly governed by that particular trait and may not be solely the genotypic 

differences. We used ion ratios as traits to gain a holistic picture of how the tissues behave in 

presence of Na+ (i.e. S:B Na+ ratio; S:B K+ ratio, blade K+:Na+ ratio and sheath K+:Na+ ratio). 

The first principle component of a module (module Eigen gene) value was calculated and used 

to test the association of modules with the above mentioned traits. 

Module gene significance (GS, the correlation between gene expression and physiological 

traits), total network connectivity (kTotal), and module membership (MM) were calculated for 

each gene in the modules for the three tissues. Genes within each module were then ranked 

using the absolute value of MM, in order to identify hub genes as the top 30 genes with highest 

MM. Hub genes are the ones that have the highest connectivity and play a major role for the 

existence of that network. Next genotype specific genes that are also hub genes were identified 

by the overlap of genotype specific gene lists and hub genes of selected modules. Genotype-

specific genes which are also hub genes are biologically interesting as they represent those 

genes which play a major role in the structure/topology of the said network in a genotype specific 

manner.  

Functional Annotation 

In order to predict the putative biological importance of the expressed genes, gene ontology 

(GO) enrichment, functional categorisation, and pathway analysis were used. GO enrichment 

analysis was performed using AgriGO (http://bioinfo.cau.edu.cn/agriGO/analysis.php) with 

Fisher’s exact test and false discovery rate (FDR) correction [68]. GO annotations for barley 

genes were transferred from Arabidopsis and rice through blastx (>60% of query coverage and 

an e-value of 1x10-100). The p- values for each overrepresented annotation was calculated using 

the hypergeometric distribution. The terms were considered significant if the calculated FDR 

corrected p value ≤ 0.05.Mapman bins were obtained using the terms associated with the rice 
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and Arabidopsis homologs of the gene lists [69]. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways were assigned to the barley CDS sequences using the online KEGG 

Automatic Annotation Server (KAAS) using single-directional best hit (SBH) method 

(http://www.genome.jp/kegg/kaas) [70–72]. Transmembrane regions were predicted using 

InterPro web tool [73]. 

Results 

Variations in leaf Na+ and K+ content among barley genotypes 

To determine the extent to which different barley genotypes vary in their accumulation of Na+ 

and K+ in leaf sheath and blade tissues in saline conditions, six commercial barley genotypes 

(Alexis, Beecher, Commander, Maritime, Fleet and Sloop) were grown in 200 mM NaCl. These 

six genotypes were selected based on previous data indicating that they differ in their 

accumulation of Na+ and K+ in leaf tissues (James et al. in prep.). Alexis had the significantly 

high Na+ in both sheath and blade compared to the other five genotypes (Figure 1 a-b) 

(p value ≤ 0.05; TukeyHSD test). Alexis similarly had the lowest K+ in both blade and sheath 

but the difference was only significant in the sheath (Figure 1d). The root Na+ concentration was 

highest in Beecher and Maritime, yet they were not significantly different from the four other 

genotypes (Figure 1e). However, the root K+ levels were significantly higher in Beecher and 

Maritime compared Commander and Sloop (p value ≤ 0.05; TukeyHSD test) (Figure 1f). 

Differences in the accumulation of Na+ and K+ in the genotypes can be represented by plotting 

the Na+ sheath/blade (S:B) ratio against the K+ sheath/blade ratio, and this analysis indicated 

that the genotypes separate  into three clusters. Alexis was assigned to group i, having the 

highest S:B Na+ ratio and the lowest S:B K+ ratio (Figure 1g); Beecher and Sloop  was assigned 

to group ii, as they accumulated more K+ in the sheath than in the leaf blade and more Na+ in 

the leaf blade than in the sheath therefore having the highest S:B K+ ratio to lowest S:B Na+ 

ratio amongst all genotypes (Figure 1g); and Maritime, Fleet and Commander were assigned to 

group iii, as they accumulated more Na+ and K+ in the leaf sheath than in the leaf blade but had 

a higher S:B Na+ ratio than S:B K+ ratio (Figure 1g). The raw data used for the generation of 

Figure 1 is included in S3. 

Genotype Specific Genes 

The tissue specific RNA-Seq data for the six genotypes were analysed in order to identify 

candidate genes that displayed expression patterns consistent with a possible role in 

contributing to the observed tissue ion accumulation phenotypes. The number of genes with ≥ 

10 normalised reads for each tissue was 16,914 (blade), 20,765 (sheath) and 22,831 (root). Of 
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these we were interested in categorising genes that had a genotype-specific level of expression, 

to narrow down the number of genes that can be responsible for the genotype-specific tissue 

ion accumulation phenotypes (Figure 1). The number of genotype specific genes from the three 

tissues are shown in Table 1 with full lists available in S4. 

Using the KEGG pathway information we identified highly expressed genotype specific genes 

in the leaf blades of Alexis that encode proteins which are involved in ethylene formation; and 

we observed peroxidase related genotype specific genes that were relatively lowly expressed 

in Alexis (S5). The GO analysis revealed that both highly expressed and lowly expressed Alexis 

specific genes from leaf sheath and blade tissues were enriched GO term “protein amino acid 

phosphorylation”. It was also noted that lowly expressed Alexis specific genes in roots were 

enriched for transcription. 

The GO analysis revealed a trend in Maritime leaf blade and sheath where highly expressed 

Maritime-specific genes were enriched for ones which encode proteins involved in protein amino 

acid phosphorylation and the same GO enrichment was also seen for the lowly expressed 

Maritime-specific genes as well. Highly expressed Maritime-roots were enriched for cutin, 

suberin and wax biosynthesis related genes (S5). 

The pathway analysis for Beecher leaf blade genes indicated the high expression of genes 

encoding proteins which regulate nucleotide and nucleoside binding processes. Beecher leaf 

blade and leaf sheath both had lowly expressed genes encoding proteins which regulate protein 

amino acid phosphorylation (S5). Beecher sheath tissues had highly expressed genes encoding 

proteins which regulate oxygen binding processes. Highly expressed genes in Beecher roots 

were associated with endocytosis and protein processing in the endoplasmic reticulum and 

lowly expressed genes were associated with sugar metabolism, transport and MAPK signalling 

(S5). Furthermore, highly expressed genes from Sloop sheaths were associated with 

phagosome function and cell wall biogenesis while lowly expressed genes were associated with 

transmembrane transporter activity and transferase activity. We also observed that highly 

expressed genes from roots of all genotypes were enriched for protein modification and protein 

amino acid phosphorylation GO terms. 

Genotype Specific Salt-related Genes 

The TAIR databases were mined and retrieved 1,635 unique loci that are linked to salinity stress 

and salinity tolerance mechanisms in Arabidopsis, and then used a reciprocal BLAST approach 

to identify 609 putative barley homologues using the 1,635 Arabidopsis sequences as query 

sequences (S6).  
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Through this procedure 609 genes were identified and subsequently used as query sequences 

to identify the subsets of genotype specific genes of each tissue that can putatively be involved 

in salinity tolerance mechanisms. The number of genotype specific salt related genes for the 

three tissues are listed in Table 1, and a summary of the genes is included in S4. To compare 

these salt tolerance mechanism associated genes in the six genotypes, the subset of genotype 

specific salt responsive genes were further analysed. In particular, the genes associated with 

ion transport that have previously been linked to plant salinity tolerance were investigated 

(Figure 2, S7).  

There were 21, 38 and 27 genotype specific genes that code for putative transporter proteins 

from blade, sheath and root, respectively (Figure 2 a, b and c respectively). In Alexis relatively 

high expression for several ABC transporter genes was observed in all three tissues. 

Additionally, a sodium-proton exchanger (HORVU2Hr1G021020) was revealed as a highly 

expressed genotype specific gene in Alexis sheath (Figure 2). Several putative potassium 

channel coding genes were relatively highly expressed in Beecher. A K+/H+ antiporter was 

identified as being a highly expressed genotype specific salt responsive gene for all three 

tissues of Beecher (HORVU7Hr1G008600), and this gene contains a KefB/KefC domain 

(retrieved from BLASTP through NCBI). Both Beecher and Sloop had relatively high expression 

of aquaporin like super family proteins in sheath tissue. 

Genotypic Variation of Transporters Known To Be Linked To Salinity Tolerance 

NHX genes 

NHXs (Na+/H+ antiporters) promote Na+ sequestration in the vacuole which allows the cell to 

use Na+ as a cheap vacuole osmoticum and may as a consequence reduce the toxicity of the 

excess Na+ towards the cytosol [29, 74, 75]. Recently it was also suggested that NHXs may 

preferentially transport  K+ over Na+ [5, 76, 77].  The relevance of NHXs in the context of studied 

genotypes and whether their expression patterns and variants can be related to salt response 

variations among the genotypes was therefore, of interest. Using the new barley genome 

reference data, 6 full-length NHX family genes were revealed (S8). A phylogenetic tree using 

identified barley NHX protein sequences and other known NHXs was generated to identify the 

evolutionary relationship between them (S9). 

With the exception of one NHX gene (HvNHX3; HORVU7Hr1G046030), all other NHX genes 

were expressed in at least one of the three tissues for all genotypes (Figure3). HvNHX2 

(HORVU1Hr1G020360) was highly expressed in blade and sheath compared to roots 

(Figure 3). HvNHX4 (HORVU2Hr1G021020) was particularly highly expressed in Alexis sheath 
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compared to expression in other five genotypes and in Alexis blade compared to Beecher, 

Commander and Maritime. HvNHX5;1 (HORVU7Hr1G049400) was highly expressed in roots 

of all genotypes compared to blade and sheath tissues, while the HvNHX5;2 

(HORVU5Hr1G072440) was expressed in Alexis only in sheath tissue. HvNHX6 

(HORVU5Hr1G053720) expression was highest in roots relative to other tissues, and 

expression levels were similar for all genotypes. SNPs were predicted for the four genes 

HvNHX4, HvNHX5;1, HvNHX5;2, and HvNHX6 within the coding region, however, none of them 

were non-synonymous (S10, Figure 4 a-d) HvNHX2, HvNHX3 and HvNHX5;1 were identical in 

all genotypes and also were 100% similar to the reference Morex sequence (Figure 4 e-f).  

HKT genes 

We identified five full-length barley HKT genes (HvHKTs) (S11) through sequence similarity to 

known rice and Arabidopsis HKTs. A phylogenetic tree using manually curated HKT  protein 

sequences from barley was generated including known HKTs form other species to identify the 

evolutionary relationship between them (S9). All HvHKTs except HvHKT1;4 were significantly 

expressed in at least one sample in at least one tissue. HvHKT1;5 (HORVU4Hr1G087960) was 

expressed only in roots, HvHKT1;2 (HORVU2Hr1G100440) expression was higher in sheath 

and blade compared to roots (Figure 5), HvHKT2;1 (HORVU0Hr1G022090) was expressed in 

only roots (Figure 5).Alexis had low expression of HvHKT1;5 when compared to Beecher, 

Commander, Fleet and Maritime. Furthermore HvHKT1;3 (HORVU6Hr1G031360) was highly 

expressed in Alexis blade compared to Commander, Fleet and Sloop and in Alexis sheath 

compared to Beecher, Commander and Sloop. HvHKT1;3 was highly expressed in Maritime 

sheath compared to Sloop sheath (Figure 5). 

We observed that the coding sequence for HvHKT1;5 in Alexis is identical to that of the 

reference Morex sequence (S13). The HvHKT1;5 genes for the other five genotypes differed in 

sequence to both Alexis and the Morex reference sequence but were similar to each other 

(Figure 6a). Allelic variants cause six predicted amino acid differences in Morex/Alexis relative 

to the other genotypes (Figure 6a). HvHKT1;2 has the highest number of missense variants (7) 

relative to the reference sequence, and these differences were observed in Alexis, Beecher and 

Fleet (Figure 6b). The coding sequences of Commander and Maritime HvHKT1;2s are identical 

to the reference Morex sequence. For HvHKT1;3 there is 1 variant (G>A) that causes the amino 

acid change Asp>Asn in Maritime and Beecher relative to Morex (Figure 6c). For HvHKT1;4 

there were 6 non-synonymous variants (Figure 6d). HvHKT2;1 has 3 non-synonymous SNPs 

that causes amino acid changes in Maritime relative to Morex sequence (Figure 6e). The 

identified HvHKT amino acid sequences were aligned with known HKT sequences to identify 
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putative pore forming residues of each HKT. This revealed that the first three residues of pore 

A were conserved among all the HKTs while the HKT1 group had the TVSSM[A|Q|S|S][A|T] 

signature (Figure 6f). ANCGF signature from pore B was conserved in HvHKT1;2, HvHKT1;3 

and HvHKT1;5. Pore C contained R[H|Q][T|A|S]GEXX architecture for all the HvHKTs. 

GNVG[F|Y|L|]S[T|L|M] was the architecture for the pore D (Figure 6f). 

Co-expression analysis of expressed genes 

In order to identify gene clusters that may work in concert, as well as  linked to ion accumulation 

traits of interest, a weighted gene co-expression network analysis (WGCNA) was performed. 

Co-expression networks can identify genes that are potentially important members of a 

biological process by acting in similar regulatory pathways.  

The analysis identified 52, 48 and 52 modules for blade, sheath and root, respectively. A co-

expression network module represents a group of genes which are tightly connected to each 

other based on correlation, as measured by the Pearson correlation coefficient. The hypothesis 

being that the genes within a module are under some common regulatory control. These 

modules are referred to by various colours (Figure 7). The modules were then correlated with 

traits of interest (see Methods) based on leaf sheath and blade ion content measurements. This 

was to identify the modules that were positively and negatively correlated with these traits (i.e. 

modules with highest absolute correlation) (Figure 7 a, b, c).  We also looked at the Eigen gene 

for the modules. Eigen gene is the first principle component of the expression profiles of the 

genes making up a module. It provides a means to summarise the gene expression profiles of 

all the constituent genes in a given module. 

Blade 

The modules from blade that had the highest positive or negative correlation to the selected 

traits were darkolivegreen, coral4, darkorange2, orangered1, yellow2, darkgrey and pink4 

(Figure 7a). Darkolivegreen and coral4 modules were positively and negatively correlated to 

S:B Na+ ratio, respectively (Figure 7a).  Darkolivegreen module was highly expressed in 

Maritime (Figure 7 d i). Coral4 module was highly expressed in Beecher (Figure 7 d ii). 

Darkorange2 and orangered1 modules were positively and negatively correlated to S:B K+ ratio, 

respectively (Figure 7a). Darkorange2 module was highly expressed in Beecher, Fleet and 

Maritime and lowly expressed in Alexis (Figure 7 d iii). Furthermore, orangered1 module was 

highly expressed in Alexis and lowly expressed in Commander Fleet and Maritime (Figure 7 d 

iv). Darkorangered2 and yellow2 modules were positively and negatively correlated to blade 

K+:Na+ ratio, respectively (Figure 7a). Yellow2 module was highly expressed in Alexis (Figure 7 
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d v). Darkgrey and pink4 modules were positively and negatively correlated to sheath K+:Na+ 

ratio, respectively (Figure5a).  Darkgrey module was highly expressed in Beecher and Sloop, 

while lowly expressed in Alexis (Figure 7 d vi). Pink4 module was highly expressed in Alexis 

(Figure 7 d vii).All blade modules except pink4 were enriched for the GO term small molecule 

metabolic process catalytic activity or nucleotide binding (S14). Pink4 module was enriched 

mainly for glycoprotein biosynthetic process and protein transporter activity. KEGG pathways 

revealed that all blade modules contain metabolic pathway related genes (S14). According to 

Mapman all of the above mentioned modules except darkolivegreen, yellow2 and pink4 contain 

phenylpropanoid metabolism related genes (S15). Coral4, darkorange2 and darkgrey modules 

show genes involved in terpenoid metabolism. All except darkolivegreen and pink4 contain 

Flavonoid metabolism related genes (S15).  

In the overlap of hub genes from the blade modules with genotype-specific genes, we saw that 

genotype specific genes from Beecher blade were dominating the hub genes from coral4 

module, which includes a K+/H+ antiporter (HORVU7Hr1G008600) (S16). There was a hub gene 

from the darkorange2 module (HORVU7Hr1G100570: glutathione synthetase 2) that is highly 

expressed in Maritime while lowly expressed in Alexis (S16).   

Sheath 

The modules from sheath that had the highest positive or negative correlation to the selected 

traits were firebrick2, navajowhite3, firebrick and yellow4 (Figure 7b). Firebrick2 and 

navajowhite3 modules were positively and negatively correlated with S:B Na+ ratio, respectively 

(Figure 7b). Firebrick2 module was highly expressed in Alexis and lowly expressed in Beecher 

and Sloop (Figure 7 e i). Navajowhite3 module was highly expressed in Sloop (Figure 7 e ii). 

Firebrick and yellow4 modules were positively and negatively correlated respectively, with 

several traits (S:B K+ ratio, blade K+:Na+ ratio and sheath K+:Na+ ratio) (Figure 7b). Firebrick 

module was lowly expressed in Alexis (Figure 7 e iii) whereas yellow4 module was highly 

expressed in Alexis (Figure 7 e iv).The firebrick2 module was enriched for terms involved in 

epigenetic modifications such as histone methylation, nucleobase-containing small molecule 

metabolic process, and negative regulation of gene expression (S14). While genes from the 

navajowhite3 module were enriched for cell wall biosynthesis and catalytic activity related GO 

terms, yellow4 genes were enriched for defence and stress responses (S14). All four sheath 

modules contain phenylpropanoid and flavonoid metabolism related genes (S15). Navajowhite3 

and firebrick modules contain wax related genes. Firebrick and yellow4 modules include 

terpenoid metabolism related genes (S15). 
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A hub gene from the navajowhite3 module (HORVU3Hr1G058810; TRICHOME 

BIREFRINGENCE-LIKE 38) is a highly expressed gene from Sloop. Interestingly, except one 

hub gene from firebrick module, all the genes from both firebrick and yellow4 modules were 

lowly and highly expressed genes in Alexis, respectively (S16). 

Root 

The modules from root that had the highest positive or negative correlation to the selected traits 

were darkgoldenrod4, paleturquoise4, blueviolet and coral4 (Figure 7c). Darkgoldenrod4 and 

paleturquoise4 modules were positively and negatively correlated with S:B Na+ ratio, 

respectively (Figure 7c). Darkgoldenrod4 module was highly expressed in Alexis, Commander, 

Fleet and Maritime, while lowly expressed in Beecher and Sloop (Figure 7 f i).  Paleturquoise4 

module was highly expressed in all except Commander and Maritime (Figure 7 f ii). Blueviolet 

and coral4 modules were positively and negatively correlated respectively, with several traits 

(S:B K+ ratio, blade K+:Na+ ratio and sheath K+:Na+ ratio) (Figure 7 c). Blueviolet module was 

lowly expressed in Alexis (Figure 7 f iii). In contrast, coral4 module was highly expressed in 

Alexis (Figure 7 f iv).The darkgoldenrod4 module was enriched for metabolic processes such 

as tetrapyrrole metabolic process (S14). The paleturquoise4 module was enriched for terms 

related to stress responses. The blueviolet module was enriched for terms associated with root 

morphogenesis and growth (S14). Similarly to blade and sheath, Mapman shows that all root 

modules also contain phenylpropanoid and flavonoid metabolism related genes (S15). 

Interestingly, however, except for one gene from darkgoldenrod4 module, no other genes from 

root modules are categorised as being involved in terpenoid metabolism (S15).  

Many unknown or undescribed genes were identified as hub genes for the darkgoldenrod4 

module (S16). However, we see a NRT1/ PTR FAMILY 4.3 protein coding gene 

(HORVU2Hr1G085260), which is a highly expressed gene from the roots of Alexis and a lowly 

expressed gene from Sloop root be a hub gene in this module (S16). There was a high affinity 

nitrate transporter coding gene (HORVU6Hr1G005600) and several Glutathione S-transferase 

family protein coding genes as hub genes of the paleturquoise4 module (S16).  

Discussion 

Regulation of tissue ion content is an important component of salinity tolerance. In particular, 

maintaining high leaf blade K+/Na+ ratio is necessary, and retention of Na+ in roots or even in 

sheath may be beneficial to avoid accumulation in leaf blades. We compared the molecular 

machinery of six barley genotypes with varying sheath and blade Na+ accumulation levels. In 

particular, we were interested in transcriptomics and genetic variations in genes that are known 
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to be influential in controlling ion transport. Analysis of tissue specific transcript differences 

between genotypes varying in leaf ion accumulation has revealed possible candidate genes 

implicated in this trait. 

Alexis Possesses Specific Genetic Variations in HvHKT1;5  

HKT1s are well known for mediating Na+ unloading from the xylem to reduce excessive Na+ 

accumulation in leaves [26, 78, 79]. Here we observed that there were differences in the 

sequence of HvHKT1;5 within the genotypes. The HvHKT1;5 sequence in Alexis was identical 

to the Morex reference genome (IBSC 2016), however, all the other five genotypes were 

different with non-synonymous variants that gave rise to 6 amino acid substitutions (Figure 6a). 

Alexis is a higher leaf Na+ accumulating phenotype, compared to the other barleys in this study. 

It has been shown that Morex is also a genotype with high leaf Na+ accumulation ability [80]. 

Therefore, it would be of interest to test whether the differences in the Alexis/Morex HvHKT1;5 

protein alter the capacity to retrieve Na+ from the transpiration stream, relative to genotypes with 

differing HvHKT1;5 sequence. The amino acid sequences which make up the pore regions of 

the gene, and therefore determine which ions are transported by the protein, were similar 

between the barley genotypes, but they are different to those in the same region in the well 

characterised wheat HKT1;5 transporters [81, 82]. Interestingly, a recent Genome-Wide 

Association Study (GWAS) on the region with HvHKT1;5 reports polymorphisms related to salt 

tolerance, yet not finding any polymorphisms on the coding region of HvHKT1;5 contradicts our 

findings [83]. The genotypes used in Hazzouri et. al (2018) for a follow-up study from GWAS 

are currently unavailable but could be different to ours [84]. Therefore, heterologous expression 

assays, such as expressing the two different alleles of the gene identified in this study in yeast 

or Xenopus oocytes, may reveal whether the transport and/or regulation properties of the two 

proteins differ, and this could shed light on how such subtle variations affect HvHKT1;5 activity. 

This encourages researchers to expand these findings to a large diversity panel through 

techniques such as KASP™ genotyping. 

HvNHXs are Candidates Implicated in High shoot Na+ Accumulation 

The NHX gene families have been previously reported as being of interest as candidates for 

mediating Na+ sequestration in the vacuole or regulating cellular pH and/or regulating K+ [85–

90]. Higher expression levels of HvNHX4 were observed in the leaf blade and especially sheath 

of Alexis compared to the other genotypes, and these tissues of Alexis accumulated significantly 

more Na+ than the other genotypes tested. Based on these results, we speculate that HvNHX4 

could have a role in tissues with a high Na+ content. Based on previous characterisation of these 
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proteins, this role might be in sequestrating Na+ into the vacuole or in maintenance of K+ 

homeostasis [85, 88, 91–93]. 

In addition to different HvNHX4 regulation, Alexis also had higher HvNHX5;2 expression in the 

sheath compared to the other 5 genotypes (Figure 3). These two sequences are evolutionarily 

quite distant (S9). Co-expression analysis revealed that another NHX (HvNHX2) is a hub gene 

from a module (yellow2) that is negatively correlated with blade K+:Na+ ratio and the genes in 

this module tend to have higher expression in Alexis compared to the other genotypes (Figure 

7 e Iv, S15). Na+ sequestration in older leaves as a means of salt tolerance is well established, 

especially in salt tolerance halophytes [30]. Previous studies have raised the possibility that Na+ 

sequestration in the vacuole is important for more salt tolerant barley genotypes such as Morex 

and K305, when compared to less salt tolerant genotypes such as Steptoe and genotype I743 

[80, 99]. The functionality of HvNHX4 and its role in salinity tolerance needs to be investigated 

further, along with the differences in the protein function between the alleles of Alexis, 

Commander and Maritime. 

Inter-Genotype Transcript Co-expression Patterns in Saline Conditions 

The co-expression modules for comprehensive analysis were selected based on their highest 

and lowest correlation to the measured physiological traits. Genes with differing expression 

profiles between genotypes were related to their putative functionality in an attempt to 

understand the differing mechanisms of salinity tolerance that might be present in the six 

genotypes of interest.  

Halophytic species that are well adapted to salinity environments accumulate high levels of 

antioxidants such as polyphenols [100]. With this in mind we analysed the expression of   genes 

involved in related metabolic pathways (S15). Genes relating to regulating secondary 

metabolism, particularly phenylpropanoid and flavonoid metabolism related genes were found 

to be present in all three tissues. phenylpropanoids and flavonoids have been reported to be 

oxidised by peroxidase and are involved in reactive oxygen species (ROS) scavenging 

phenolic/AsA/POD system [101]. The accumulation of Na+ inside a cell leads to formation of 

ROS that damages the cell  through plasma membrane lipid peroxidation and protein and DNA 

degradation [102, 103]. Synthesis of phenolic compounds such as phenylpropanoids and 

flavonoids in salt stressed plants is therefore, a likely mechanism employed by plants to remove 

ROS that are generated by excessive cytosolic Na+ [104, 105]. 

We observed that terpenoid metabolism genes were mostly restricted to the leaf tissues. 

Terpenoids are the most abundant chemical in plants that are known to be involved in normal 
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growth and development, as well as being involved in abiotic and biotic stress responses [106]. 

Halophytic mangroves have been found to produce high concentrations of terpenoids under 

salinity stress [107]. Contrary to our findings, a previous proteomic study on salinity stressed 

roots of two barley genotypes Steptoe and Morex, reported that the involvement of terpenoid 

biosynthesis proteins is part of the early response to salinity in the roots of these two genotypes 

[80]. However, there could be various reasons for this contradiction including differences in the 

timing of sampling (10 vs 18 days) and dissimilarities in the experimental conditions (final 

exposed salt concentrations of 150 mM vs 200 mM, proteomic study vs a transcriptomic study, 

etc). However, terpenoids were shown to be involved in other stress responses, such as in 

cotton plants under herbivore attack, and in roots of salt tolerant mangroves [107, 108]. 

Sheath navajowhite3 module was annotated as being involved in wax synthesis and cell wall 

organisation and biogenesis (S14) [109]. Eigen-gene from this module indicates that genes from 

navajowhite3 module tend to have higher expression in Sloop and Beecher. A gene coding for 

a TRICHOME BIREFRINGENCE (TBR) gene family is a key driver (i.e. hub gene) of the module 

that is also highly expressed in the sheath tissue of Sloop (S16). Although not conclusive, TBR 

family proteins have being suggested to be involved as “bridging proteins” that bind various 

polysaccharides in a cell wall [110]. The role of cell wall and extracellular changes in barley 

tolerance to salt stress is a key area for future research [111]. 

Epigenetic regulation of the gene expression and plants’ ability to memorise the stress 

responses via histone modification has been shown previously [112–114]. In the current study, 

a sheath module that had positive association to sheath:blade Na+ in Alexis, Commander and 

Maritime show GO enrichment related to epigenetic modifications. Interestingly, these three 

genotypes accumulate more Na+ in leaf sheath compared to Beecher and Sloop (Figure 1). 

Could there be a mechanism in Alexis, Commander and Maritime to “train” the tissue to tolerate 

the salt stress [113]? This is a question that needs further validation.  

Conclusion 

Tissue specific gene expression variations in six barley genotypes varying in shoot Na+ 

accumulation levels was assessed in this study. Our results indicate that allelic variations in 

HvHKT1;5 may be a key factors in determining the level of Na+ that accumulates in the shoots 

of barley. We hypothesise that in high shoot Na+ accumulating genotypes such as Alexis, 

successful adaptation to excess Na+ is likely to involve genes such as HvNHXs and that in 

particular, higher expression of HvNHX4 may play a role in sequestrating Na+ into the vacuole 

or K+ homeostasis in Alexis. 
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We suggest that the expression of genes involved in terpenoid, phenylpropanoid and flavonoid 

metabolism in response to salt stress is of interest in relation to further understanding how barley 

tolerates the accumulation of Na+. We also identify genes of interest in relation to cell wall 

modification and wax synthesis, particularly in the genotype Sloop, which are of interest in 

relation to future studies of mechanisms for tolerating salt stress. Enrichment of genes related 

to epigenetic modifications that may possibly aid plants to memorise the stress experience were 

evident in Alexis, Commander and Maritime, that accumulate more sheath Na+ in the sheath 

than the other studied genotypes.
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Tables and Figures 

Table 1 Genotype Specific genes 

Total number of genotype specific genes highly (H) and lowly (L) expressed in three tissues of Na+ stressed 

barley genotypes. The number of genes annotated as being putatively involved in a salt response are in 

parenthesis. 

Genotype Level of 

expression 
Blade Sheath Root 

Alexis H 88 (37) 90 (21) 104 (32) 

L 107  (16) 106 (16) 108 (21) 

Beecher H 92 (25) 206 (60) 173 (43) 

L 140 (38) 207 (44) 218 (62) 

Commander H 23 (3) 38 (10) 15 (3) 

L 46 (18) 44 (15) 33 (9) 

Fleet H 37 (8) 53 (13) 71 (9) 

L 39 (10) 65 (13) 83 (21) 

Maritime H 81 (27) 107 (38) 76 (27) 

L 76 (26) 117 (34) 87 (16) 

Sloop H 9 (0) 159 (57) 56 (16) 

L 28 (4) 106 (25) 62 (11) 
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Figure 1 Physiological traits’ relationship to the genotypes 

a. Na+ concentration in leaf blade; b. Na+ concentration in leaf sheath; c. K+ concentration in blade; 

d. K+ concentration in sheath; e. Na+ concentration in root; f. K+ concentration in root for the studied 

six genotypes. All ion measurements are in μmol/g-1 DW;  mean values of genotypes which share 

the same letter are not significantly different (p > 0.05) from each other; g. log2 ratio of sheath:blade 

Na+ vs sheath:blade K+ for the studied genotypes. The grey circles show the three distinct genotype 

clusters comprised of  i. Alexis, ii. Beecher and Sloop, iii. Maritime, Commander and Fleet. 
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Figure 2 Expression heat map of the expressed genotype specific transporter genes 

The expression values are measured in CPM (counts per million). The mean values of the four independent replicates are shown per genotype (X axis). The 

mean log expression values for a gene per genotype is shown in each tile. The transporter genes are along the Y axis. The HORVU id and the common name 

retrieved from the IBSC2016 annotations are included as identifiers of the genes. The colour gradient is across each gene (row). The highest expression value 

per gene is coloured khaki and the lowest is coloured steel blue, colour white denotes no expression. The genes are assigned to tissues a. blade, b. sheath and 

c. root. The mean expression pattern of these genes across all tissues are in S7. 
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Figure 3 Expression heatmaps of identified HvNHX genes 

The expression values are plotted as heatmaps. The genes are assogned to tissues blade, sheath 

and root (top). The mean expression values of the four independent replicates are shown per 

genotype (columns). Each row represent the expression values for a particular transporter gene. If 

a particular gene is not expressed in a tissue, the row is coloured white. The HORVU id and the 

common name retrieved from the IBSC2016 annotations are included as identifiers of the genes. 

The log mean expression values for a gene per genotype is shown in each tile (counts per million, 

CPM). The colour gradient is across each gene (row). The highest expression value per gene is 

coloured khaki and the lowest is coloured steel blue, colour white denotes no expression.  
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Figure 4 Schematic drawing depicting transmembrane domains of HvNHXs and locations of 

amino acid substitutions resulted through identified non-synonymous Single Nucleotide 

Polymorphisms (SNPs) 

The predicted domains for the HvNHX proteins are based on InterPro predictions. a-i the 

hypothetical models of the HvNHXs. The red numbered stars on the structures indicate the location 

of the allelic variations caused by the non-synonymous SNPs relative to the reference Morex 

sequence (IBSC 2016).The allelic variation corresponding to each numbered star is at the bottom 

of each figure. The genotype/s with the variation is/are shown below each allelic variation. TMD: 

Transmebrane domain  
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Figure 5 Expression heatmaps of identified HvHKT genes  

The expression values are plotted as heatmaps. The genes are assigned to tissues blade, sheath 

and root (top). The mean expression values of the four independent replicates are shown per 

genotype (columns). Each row represent the expression values for a particular transporter gene. If 

a particular gene is not expressed in a tissue, the row is coloured white. The HORVU id and the 

common name retrieved from the IBSC2016 annotations are included as identifiers of the genes. 

The log mean expression values for a gene per genotype is shown in each tile (counts per million, 

CPM). The colour gradient is across each gene (row). The highest expression value per gene is 

coloured khaki and the lowest is coloured steel blue, colour white denotes no expression.  
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Figure 6 Schematic drawing depicting transmembrane domains of HvHKTs and the 

locations of amino acid substitutions resulted through non-synonymous Single Nucleotide 

Polymorphisms (SNPs) 

The predicted domains for the HvHKT proteins are based on InterPro predictions. a-e the 

hypothetical models of the HvHKTs with full sequence. The red numbered stars on the structures 

indicate the location of the allelic variations caused by the non-synonymous SNPs relative to the 

reference Morex sequence (IBSC 2016).The allelic variation corresponding to each numbered star 

is at the bottom of each figure. The genotype/s with the variation is/are shown below each allelic 

variation. f. The multiple sequence alignment (MUSCLE with default settings) of barley HvHKT pore 

region amino acid sequences to known HKTs. Corresponding sequence regions that are likely to 

be in pore forming areas are denoted by circles with A, B C and D. The residues are coloured 

based on CLUSTAL color scheme.  TMD: Transmembrane domain. 
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Figure 7 Relationship between co-expression modules of interest and ion ratios, and 

their Eigen-gene expression profiles 

The modules were selected based on their correlation to the selected traits. Modules that had 

highest positive and negative correlation to the ion ratios were selected as “interesting” modules. 

Module-trait relationship are shown for the selected modules in the a. blade b. sheath and c. 

root tissues. Traits (ion ratios) are as follows; SB_Na: sheath:blade ratio of Na+, SB_K: 

sheath:blade ratio of K+,  blade_K_Na: K+:Na+ ratio of the blade, sheath_K_Na: K+:Na+ ratio of 

the sheath. The scatterplot matrices have a diagonal histogram of all the variables. The 

correlation coefficients are in the upper part of the matrix and a loess curves for each plot in the 

scatterplot matrix are shown in the lower part of the matrix. Red stars denote the level of 

significance; 0.05(.), 0.01(*), 0.001(**), 0(***). The Eigen-gene patterns of the selected modules 

for each tissue are beneath each tissue scatterplot d(i-vii) : blade modules, e(i-iv): sheath 

modules, f(i-iv): root modules. The top row shows the heat map of the genes in the module and 

the bar graph below shows the Eigen-gene pattern of the module (y axis; Eigen-gene 

expression, x axis; genotype).
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Supplementary Material  

(Available at https://doi.org/10.4225/55/5aa116ab810bd) 

S1: Shell script used for length filtering of the FastQ data 

S2: Mapping statistics 

S3: Physiological data measured in the present study 

S4: Information on the identified genotype specific genes and salt responsive genotype 

specific genes. 

S5. Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) information mining 

for the Genotype specific genes (gsGs) in each tissue using the KAAS portal option 

(http://www.kegg.jp/) 

S6: FASTA sequences of the 609 barley genes identified as salt responsive 

The genes were identified through a reciprocal BLAST salt related Arabidopsis sequences. The 

Arabidopsis sequences were mined using a keyword search in TAIR (www.tair.org/). The 

sequences of the Arabidopsis genes were used for reciprocal BLAST on the barley genome 

(refer to materials and methods). 

S7: Expression heat map of the all expressed genotype specific transporter genes 

The expression values are measured in CPM (counts per million). The mean values of the four 

independent replicates are shown per genotype (x axis). The mean log expression values for a 

gene per genotype is shown in each tile. The transporter genes are along the y axis. The 

HORVU id and the common name retrieved from the IBSC2016 annotations are included as 

identifiers of the genes. The homologs from Arabidopsis for each transporter is shown within 

brackets. The colour gradient is across each gene (row). The highest expression value per gene 

is coloured khaki and the lowest is coloured steel blue. The genes are separated to the tissues 

blade, sheath and root. In instances where the gene was not expressed, it is shown as a white 

space. 

S8: Barley NHXs (HvNHXs) identified in this study 

S9: Phylogenetic tree showing the relationship between the protein sequences of 

identified HvNHXs and NHXs previously identified. 

The amino acid sequences of identified NHXs and previously known NHXs were used in this 

analysis. The evolutionary history was inferred by using the Maximum Likelihood method based 

on the Whelan And Goldman model [113]. The tree with the highest log likelihood (-15347.7036) 

https://doi.org/10.4225/55/5aa116ab810bd
http://www.kegg.jp/
http://www.tair.org/
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is shown. The percentage of trees in which the associated taxa clustered together is shown next 

to the branches. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-

Joining method to a matrix of pairwise distances estimated using a JTT model. A discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 categories 

(+G, parameter = 1.3046)). The tree is drawn to scale, with branch lengths me101asured in the 

number of substitutions per site. The analysis involved 17 amino acid sequences. There were 

a total of 1313 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 

[62]. 

S10: Identified single nucleotide polymorphisms (SNPs) on HvNHXs and their locations 

on the amino acid sequence 

S11: Barley HKTs (HvHKTs) identified in this study 

S12: Phylogenetic tree showing the relationship between the protein sequences of 

identified HvHKTs and previously identified plant HKTs.  

Identified and previously known HKT amino acid sequences were used in this analysis. The 

evolutionary history was inferred by using the Maximum Likelihood method based on the 

Whelan And Goldman model [113]. The tree with the highest log likelihood (-23564.9681) is 

shown. The percentage of trees in which the associated taxa clustered together is shown next 

to the branches. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-

Joining method to a matrix of pairwise distances estimated using a JTT model. A discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 categories 

(+G, parameter = 1.6315)). The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site. The analysis involved 32 amino acid sequences. There were 

a total of 1268 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 

[62]. 

S13: Identified single nucleotide polymorphisms (SNPs) on HvHKTs and their locations 

on the amino acid sequence, genomic sequence and the CDS sequence. 

S14: Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) information mining 

for the selected modules (gene clusters) of each tissue through the weighted gene-co-

expression analysis (WGCNA) in each tissue using the KAAS portal option 

(http://www.kegg.jp/). 

S15: Hub genes of the selected modules of weighted gene co-expression analysis 

(WGCNA).  

http://www.kegg.jp/
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S16 MapMan allocated secondary metabolism categories for WGCNA modules 

a- g: blade modules; a. darkolivegreen, b. coral4, c. darkorange2, d. orangered1, e. yellow2, f. 

darkgrey, g. pink4. h-k: sheath modules; h: firebrick2, i: navajowhite3, j: firebrick, k: yellow4. l-

o: root modules; l: darkgoldenrod4, m: paleturquoise4, n: blueviolet, o: coral4.
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Review of Thesis Aims 

Salinisation is a challenge to global agriculture and affects some parts of the world more extensively 

than others, including Australia (Martinez Beltran and Licona Manzur, 2005; Rengasamy, 2006). 

Approximately 69% of the area used for agriculture in Australia is susceptible to high salinity 

(Rengasamy, 2002). The ability of crop plants to survive and perform in high salinity is therefore, 

important to improve yield stability and overall contribution to global food security as well as 

financial stability of farmers (FAOSTAT, 2014; Gilliham et al., 2017; Takeda and Matsuoka, 2008). 

The generation of transgenic material is currently been used as a pre-breeding strategy to explore 

the use of unknown gene networks that underlie high salinity tolerant crop phenotypes. One such 

attempt has  revealed that  overexpression of a gene coding for a kinase in Arabidopsis, AtCIPK16, 

leads to enhanced salinity tolerant phenotypes in both Arabidopsis and barley (Roy et al., 2013). 

The knowledge available on the downstream molecular mechanism mediated by AtCIPK16 as well 

as the ubiquity of CIPK16s is scarce. The potential natural genetic variations underlying salinity 

tolerance related traits in elite salt tolerant cultivars are beneficial for pre-breeding strategies that 

could be exploited to enhance salinity tolerance in related salt-sensitive cultivars (Negrão et al., 

2017). 

The aim of this PhD project therefore was to generate knowledge to answer the following: 

1. What are the underlying molecular mechanisms of AtCIPK16 overexpression conferred 

salinity tolerance in Arabidopsis? (Chapter 3) 

2. What is the prevalence of CIPK16s in the terrestrial plant kingdom? (Chapter 4) 

3. What are the main genetic variations among the barley genotypes with varying tissue 

tolerance levels? (Chapter 5) 

Main experimental findings are specific to each chapter but will be briefly mentioned here. This 

chapter mainly discusses the importance of outcomes from this PhD project and suggests 

consideration for future research directions. 

Summary of the Main Findings 

Findings presented in Chapter 3 demonstrated that the salinity tolerance elicited through the 

expression of AtCIPK16 (Roy et al., 2013) is related to activation of multiple transcription factors, 

several of which are involved in phytohormone regulation  One of the conspicuous transcription 

factors  is a CCCH Zinc finger AtTZF1 that has previously been shown to be involved in alleviating 

salinity shock responses when over-expressed (Han et al., 2014).  

With transgenic plants exhibiting enhanced salt tolerance (Roy et al., 2013), an approach was taken 

to find the orthologs of AtCIPK16 in other plants species, particularly crop species, as a first step 
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to identifying a non-GM approach to enhancing salt tolerance of crops by manipulating native 

CIPK16 expression. CIPKs like AtCIPK16s are confined to a very specific group of dicots called 

the core Brassicales (Amarasinghe et al., 2016; Chapter 4). Unique characteristics of CIPK16s 

(NLS and ALI) were identified only in them. These synapomorphic characters can be used to screen 

for potential CIPK16 orthologues in any genome sequence. We assume that the function of 

AtCIPK16 is at least partially dependent on the synapomorphic characters that are unique to 

CIPK16s. For monocots on the other hand, orthologues to CIPK16 were absent. Nevertheless, in 

monocots one homologue to AtCIPK16 and two other segmentally duplicated gene paralogues of 

AtCIPK16; AtCIPK5 and AtCIPK25 was present. 

Chapter 5 includes a study on transcriptome of six barley cultivars, namely Alexis (Germany), 

Beecher, Commander, Maritime, Fleet and Sloop (Australia) which show varying capacity for 

sheath leaf Na+ accumulation. Our study presents in silico evidence on the potential role of barley 

HKT1;5 allelic variations on the ability of leaf sheath to accumulate Na+. 

Implications of the Main Findings 

Salinity tolerance is a complex trait that associates with tolerance to other stresses caused by  

extreme temperatures, dehydration, deficiency of important minerals as well as biotic stress (Suzuki 

et al., 2014; Wang et al., 2003; Wani et al., 2016). Complex traits tend to be influenced by many 

genes simultaneously (Ismail and Horie, 2017; Roy et al., 2014; Yamaguchi and Blumwald, 2005). 

This would most likely account for only a few successful salt stress-tolerant commercial crops 

having been developed, despite more than 20 years of research on individual gene manipulation 

in salinity stress tolerance (Bhatnagar-Mathur et al., 2007; Møller et al., 2009). Furthermore, 

reduced genetic diversity through domestication of elite cultivars has made them more susceptible 

to drastic environmental conditions than their wild relatives. Efficient alternative methods to 

incorporate the desired traits into crops therefore is imperative to breed salinity tolerant crops.  

The primary objective of crop breeding for salinity tolerance is to reduce the yield penalty that is 

caused by the high toxicity of salt. Selection of crop plants directly from the field for salinity tolerance 

is impractical due to variability in environmental factors. Identification of quantitative trait loci (QTL) 

for breeding programmes is carried out by plant performance typically under controlled 

environments, in relation to properties such as low tissue ion content, high K+/Na+ ratio, high water 

potential, high water-use efficiency, high chlorophyll content, high sugar content etc. that enhance 

crop production in salinity. Marker assisted selection (MAS) enables the introgression of these 

QTLs linked to markers into an appropriate genetic background (Ashraf and Foolad, 2013; Collard 

and Mackill, 2008). AtCIPK16 was identified underlying a QTL on the chromosome 2 of Arabidopsis 
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through fine mapping, and has the potential to be used to improve crops 1) through a genetic 

modification approach and 2) finding the crop equivalent of the Arabidopsis gene and identifying 

the best allele for it. The former approach of translating the QTL linked to a marker to the field 

requires confirmation of the benefits of AtCIPK16 transgenics, and any detrimental effects the 

transgene has either directly or indirectly on growth. The latter approach requires the 

characterisation of crops with different alleles of the native CIPK16 gene. 

The findings from the current study are important in the context of understanding the biological 

mechanisms underlying the conferred salt tolerance. Findings presented in Chapter 3 show that 

there are numerous pathways in action in transgenics to tolerate salt stress. This host of genes and 

their associated biological significance undoubtedly provide valuable resources for researchers and 

breeders to understand the molecular basis of AtCIPK16 mediated salinity tolerance. Transcription 

factors such as AtTZF1 that were revealed through the present study may play an important role 

downstream of AtCIPK16 mediated salinity tolerance in Arabidopsis hence deserve further 

investigation.  

We have established that AtCIPK16 has no equivalent in monocots (Chapter 4). However, we 

cannot ignore the fact that transgenic barley expressing AtCIPK16 had enhanced salt tolerance 

due to high shoot Na+ exclusion, similar to transgenic AtCIPK16 Arabidopsis. Barley attain its salt 

tolerance ability mainly owing to efficient tissue tolerant mechanisms. However, showing salt 

tolerant phenotypes mainly due to high Na+ exclusion in transgenic barley implies that barley 

possesses the components of regulatory pathways that can be activated to exclude Na+. If the 

synapomorphic characters do not define the function of AtCIPK16 as we hypothesise and propose 

to test through a) deleted NLS, b) deleted ALI, c) deleted NLS+ALI (Figure 1a), another hypothesis 

that can be tested is whether the barley homologue to AtCIPK16, AtCIPK5 and AtCIPK25, namely 

HvCIPK5, is able to confer salt tolerance (Figure 1b). If transgenic barley with constitutively 

expressed HvCIPK5 also could confer salt tolerance, it enables us to refine the expression of 

HvCIPK5 using specific promoters (e.g. stress induced, tissue-specific) in future experiments. Gene 

networks of transgenics with Constitutive HvCIPK5 expression could be directly compared to those 

of transgenic 35S::AtCIPK16 transgenics to identify common pathways activated in both systems.  

Furthermore, similar phenotype to 35S::AtCIPK16 elicited by 35S::HvCIPK5 would suggest a 

possible functional redundancy amongst AtCIPK16, AtCIPK5 that could be tested through 

transformation of plants with AtCIPK5.  
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A way to identify whether the downstream pathway regulated by CIPK16 is conserved across dicots 

and monocots would be to conduct a comparative transcriptomic study and determine if similar 

genes were differentially regulated in Arabidopsis and barley, when compared to non-GM controls. 

A study was designed to examine the transcriptome of transgenic expressing AtCIPK16 and 

determine if the gene was activating similar pathways in barley as it did in Arabidopsis, however, it 

was found that the transgene was being silenced in offspring from the barley plants used in Roy et 

al. (2013). While this is unfortunately a common occurrence in transgenic plants, it would require 

new AtCIPK16 expressing barley to be generated. This is planned to take place in near future, 

however, it is out of the scope of my PhD study. Findings of this subsequent transgenic barley 

transcriptomic study would potentially reveal any overlaps of the regulatory networks with 

Arabidopsis expressing AtCIPK16 and whether the downstream network include orthologues of 

any of the identified candidate transcription factors (TFs).  

Figure 1 Hypotheses put forward related to AtCIPK16, based on the current study 
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TFs are an excellent source for gene manipulation because they can regulate a range of genes 

potentially involved in numerous pathways which are regulated under stress conditions (Wang et 

al., 2016). However, there could be unwanted downstream effects that are associated with gene 

targets of altered TF activity. For example, it has been shown previously that transgenic wheat and 

barley plants constitutively overexpressing wheat TFs, TaDREB2 and TaDREB3, caused 

development and yield penalties despite being drought tolerant (Morran et al., 2011). Altering TF 

binding affinity to their targets and their cell/tissue-specific expression may allow further fine-tuning 

of its downstream function to elicit the advantageous and minimise the potentially damaging traits. 

An alternative approach would be to control the expression of the TF using a salt stress-specific 

promoter. The use of a drought-inducible promoter made the wheat plants from Morran et. al. 

(2011) more drought tolerant, and eliminated the undesired negative effects associated with growth 

and yield.  

If the AtTZF1 is indeed involved in salinity tolerance mediated by AtCIPK16, overexpression of 

AtCIPK16 will not confer salt tolerance in Attzf1 knockout/knockdown mutants (Figure 1c). Y2H 

interaction assays would be a possible method to determine whether AtTZF1 is a direct interactor 

of AtCIPK16. If this is the case, finding the AtTZF1 orthologue from barley (HvTZF1) could lead to 

investigations on using HvTZF1 as a potential genetic tool for enhancing salinity tolerance (Lata et 

al., 2011; Seo et al., 2012; Wang et al., 2016). When we conducted a quick BLAST search (tblastn 

with default settings) using the AtTZF1 protein on the current barley genome (IBSC, 2016) the top 

hit (HORVU3Hr1G019510) obtained showed low protein similarity (~60%) and sequence identity 

(~60%) to AtTZF1. This raises the question whether more of the machinery of the AtCIPK16 elicited 

salt tolerance mechanism is missing in barley. One needs to consider though that transcription 

factors tend not to be highly conserved across distant species. Therefore, a comprehensive 

phylogenetic analysis on zinc finger proteins would be required to confirm the indicated absence of 

AtTZF1 orthologue/s in barley. 

If any conserved downstream regulatory pathways are identified among transgenic Arabidopsis 

and barley, the next important aspect will be to identify whether the involved key components of 

transgenic barley regulatory network are involved in native barley salinity tolerance. Since barley 

is considered naturally a salt tolerant crop in which, multiple processes with variations, are involved 

in salinity tolerance (Chapter 5), it is possible that more pathways are existent that contribute to 

salt tolerance which are yet to be explored and discovered. In a circumstance where comparative 

studies reveal that overexpression of AtCIPK16 in barley gives rise to novel pathways that do not 

exist naturally in barley, one could further explore the key components of the particular networks 

that may or may not be part of the identified transgenic Arabidopsis network. The gene clusters 



184 
 

from the comparative regulatory networks of barley and Arabidopsis can be further analysed 

through evolutionary genomics such as phylogenetics, to reveal the extent to which conservation 

of variability of the differentially expressed genes exist across species (Ruprecht et al., 2017b, 

2017a; Schaefer et al., 2017). Further exploration of key downstream drivers of transgenic 

AtCIPK16 barley is possible by using approaches such as gene overexpression, knockout lines 

and knockdown lines.  

It is noteworthy that, even though transgenic AtCIPK16 barley lines performed well under salinity 

stress conditions, there are some field data to suggest that 35S:CIPK16 wheat and barley have 

poor yield in absence of salt (SJ Roy, unpublished data). We also observed a considerable amount 

of unwanted AtCIPK16 expression in the shoots of transgenic Arabidopsis under non-stressed 

conditions. Therefore, there is a need of fine-tuning AtCIPK16 expression suggested by the results 

of the current study. Native AtCIPK16 has root stellar cell specific expression, so negative effects 

could be diminished by cell specific expression of AtCIPK16 under a stress-induced promoter 

regulation in barley. A United States Agency for International Development (USAID, USA) funded 

research project “Abiotic stress tolerant bio-engineered cereals (AID-OAA-A-12-000013) has 

developed lines of wheat and rice expressing AtCIPK16 under the control of salt inducible 

promoters – these plants are currently being phenotyped to determine if they have improved salt 

tolerance and no detrimental phenotype in control conditions. 

As barley is considered a salt-tolerant crop, examining its natural genetic variations within the well-

known genes involved in salinity tolerance is an alternative method to identifying transcriptomic 

changes. Possible functional implications of the allelic variations are presented in Chapter 5 (e.g. 

on HvHKT1;5 and HvNHX4). They may provide plant breeders an opportunity to improve plants 

with enhanced capacity to tolerate salinity. If these alleles are related to high tissue tolerance, these 

variations could be introgressed into more salt-sensitive cultivars. Such an experiment has already 

been conducted for wheat (Munns et al., 2012) where the Nax2 locus containing the wild wheat 

Triticum monococcum HKT1;5 (TmHKT1;5-A) was introgressed to modern day durum wheat that 

lacks this locus. This led to increase in grain yield by 25% in salinized field at least partly owing to 

the enhanced ability of shoot Na+ exclusion. Similar studies where tolerance alleles have been 

introduced in to crops from near wild relatives have been done for crops subjected to other stresses 

such as flooding, drought, boron toxicity, etc. to improve their survival under these stresses 

(Mickelbart et al., 2015). Such breeding strategies are ideal to make malting cultivars such as 

Commander or high protein containing cultivars such as Gairdner adaptable to high salinity as 

much as Alexis and Morex are (Grains Research and Development Corporation, 2010; Tilbrook et 

al., 2017).  
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Another use of transcriptomics was demonstrated in this thesis, and that is the use of such studies 

to aid in the deregulation of GM crops. Prior to a genetically modified crop being released for 

farmers to use, the crop has to be proven to have no deleterious effects on the environment or on 

those organisms that would consume or interact with the crop. In Australia, the Office of Gene 

Technology Regulator (OGTR; www.ogtr.gov.au) assesses GM plants for a number of different 

parameters, such as the plant’s fitness (in regards to parameters not targeted by modification), 

weediness, invasiveness and effects on non-target organisms (Warwick et al., 2009). While these 

evaluations have to determined experimentally, the use of transcriptomics can assist in clarifying 

whether the plant may have unforeseen advantages which could enhance its weediness, resistance 

to pathogens and pests, invasiveness and effect on the animals which consume them by 

uncovering if there are alterations in known genes in these pathways. Herbicide resistance can 

occur through changes in regulatory pathways such as shikimate pathways (Funke et al., 2006). 

Proteins involved in the shikimate pathway could either produce phenylproponoids, the most 

common and beneficial secondary metabolites in plants or tocopherols (vitamin E) that would 

confer herbicide resistance (Rippert et al., 2004). Results from AtCIPK16 transgenics indicate the 

presence of genes that are related to phenylpropanoid metabolism. These could be used to suggest 

that those involved in the deregulation of GMOs should focus on establishing whether AtCIPK16 

expressing plants may have altered herbicide resistance. Surveys such as Australia Weed Risk 

Assessment (WRA) could be used to further evaluate the traits of invasiveness. Potential toxicity 

that is harmful for humans or animals is another undesirable trait that OGTR framework would 

assess in transgenics. There are possibilities that transgene may promote the uptake of toxic 

substances such as arsenic (As) or production of substances such as cyanides through altered 

pathways. By examining the transcriptome of the transgenic plants, the expression of known genes 

involved in the uptake of toxic ions could be determined and if so, measurements of ion 

concentrations in the shoot could be performed to determine whether or not the plants were indeed 

accumulating too much toxic ions. In this study there was no evidence to support that production 

of toxins or allergens that could be harmful to humans or animals through the introduction of the 

transgene. The cost of deregulation of one transgenic event is in the range of $10M-$50M. Being 

able to speed up the deregulation of a crop using transcriptomics to identify areas to focus on would 

reduce the incurred time and cost could be considerably beneficial to make the translation of 

research findings to agricultural application efficiently. This could be tested on lines currently going 

through the deregulation process and results could be presented to the OGTR for consideration in 

future deregulation events. 

http://www.ogtr.gov.au/
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Future Work for Salinity Research in Crops 

In this study it was seen that after 3 hours of initial salt application, there was an array of genes 

that were differentially expressed dependent on the presence of both the transgene AtCIPK16 and 

salinity stress. However, this effect has completely diminished by the second time point that was 

sampled to evaluate the late salt stress response. Additionally, the number of genes differentially 

expressed due to salt stress in transgenics were less in the late response compared to the late 

response in wild type and the early response in transgenics. It indicates that the transgenics have 

the capacity to adapt quickly to the new homeostasis. This needs to be validated by sampling, at 

least one more time point in between 3 hours and 51 hours. In order to study the diurnal effects of 

salt application, that have a large impact on the regulation of stress related genes of the plants 

(Grundy et al., 2015), another time point 48 hours later from the new sampling point, which then 

can be compared to study variation of gene expression  due to circadian rhythms. Based on the 

results we also assume that it is possible to see the osmotic tolerance effects if the plants were 

sampled immediately after (30 minutes to 1 hour) exposure to salt (Brinker et al., 2010), again 

which needs to have a sample 48 hours later to complement the diurnal effects. Experiments can 

be designed to observe the temporal changes and tested through differential gene expression 

analysis. The analysis requires a multifactorial design. For example, a design matrix with 2 

(treatment: salt, control) × 2 (genotype: transgenic, wildtype) × 6 (time: 1 hr, 3 hr, 30 hr, 49 hr, 51 

hr, 78hr) could be used. 

In the scenario where the HvCIPK5 transgenics confer salinity tolerance, there are novel 

approaches that can increase the level of expression without exogeneous promoter enhancers. It 

is appropriate to use the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 

and the CRISPR associated protein 9 (Cas9) system for RNA guided transcriptional activation of 

HvCIPK5 which will mimic the overexpression phenotypes without a foreign promoter driving its 

expression (Park et al., 2017; Perez-Pinera et al., 2013; Russa and Qi, 2015; Waltz, 2016). This 

has been adopted recently for Arabidopsis, to enhance the expression of two genes namely, AVP1 

and PAP1 (Park et al., 2017). They have modified the CRISPR/Cas9 system through the addition 

of p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF) activation domain to 

VP64 (tetramer of VP16) activation domain bound dCas9 (deactivated Cas9 Endonuclease). This 

alternative method can be employed to study expression of AtCIPK16 in barley, but the use of a 

cell specific activation domain to VP64-dCas9 is important in this respect.   

A successful retransformation should lead to AtCIPK16 being tested in multiple adaptable 

genotypes for the Australian climate, such as Commander and Maritime, as well as for other 

globally cultivated barley varieties. Furthermore, it could be tested for the ability to confer salinity 
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tolerance through transgenesis in a variety of other important crop species such as wheat and 

maize. 

Transcriptomics studies however are inadequate in exemplifying the post-translational 

modifications that occur in vivo which are concealed  from the transcriptome level (Haider and Pal, 

2013; Mittler et al., 1998). Due to the uncertainty associated with the mode of action of AtCIPK16, 

if it is phosphorylation, it could be identified through Multiplex Substrate Profiling by Mass 

Spectrometry (MSP-MS) (O’Donoghue et al., 2012). There are also studies which have adopted an 

integrated approach to use both proteomics and transcriptomics that produce better information 

than using the two types of methods separately. (Batista et al., 2017; Hahne et al., 2010; Kohler et 

al., 2015; Kosová et al., 2011, 2013; Zhang et al., 2018). Mass spectrometry (MS) analysis such 

as Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) 

study is one of the ways of conduct a proteomic study in presence of salinity (Passamani et al., 

2017). 

It is also required to functionally characterise the two novel barley HKT1;5 and HvNHX4 alleles 

discovered through this study using heterologous expression in Xenopus oocytes to examine ion 

specificity and transport activity (Liu and Luan, 2001) and in Saccharomyces cerevisiae to examine 

the level of salt tolerance associated with the two alleles (Figure 2a) (Henderson et al., 2018). 

Furthermore, HvNHX4 possesses an allelic variation on the N-terminal of the CDS that leads to an 

amino acid change in the high leaf sheath Na+ accumulating variety (i.e. Alexis) that could also be 

Figure 2 Hypothesis put forward based on allelic variations observed in barley 
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characterised by the above methods (Figure 2b). If the identified HvHKT1;5 and HvNHX4 alleles 

could be characterised as being involved in high Na+ accumulation tolerance, the 3D modelling of 

the proteins coded by the alleles could be useful to determine whether any structural changes are 

caused by them. It would also be needed to know whether the presence of both the alleles, and 

enhanced expression of HvNHX4, as seen in our study are required for enhanced tissue tolerance. 

After these validations, these variants should need to be further interrogated for the stability under 

various genetic backgrounds, as well as under non-stressed conditions.  

HvHKT1;5 and HvNHX4 alleles thereafter could be further tested through KASP™ genotyping 

assays (LGC, UK) on an available proprietary barley diversity panel (SJ Roy, unpublished data). If 

these alleles are verified as strong candidates for tissue tolerance in barley, they would provide 

breeders with a strong marker for MAS. Furthermore, allele-specific PCR assays can be developed 

to facilitate the selection of elite HvHKT1;5 and HvNHX4 alleles in marker assisted trait 

introgression and breeding to less tissue tolerant cultivars. CRISPR/Cas9 systems could be 

employed to introduce certain mutations on the coding sequence, which has been previously 

successful in such research with wheat (Li et al., 2017; Shan et al., 2014).  

Concluding Remarks 

Findings of this PhD project improves the current knowledge on the genetic basis of salt tolerance 

in crops through identifying molecular components of salinity tolerance in Arabidopsis and barley. 

Identification of these components was possible because of the global perspective of the 

transcriptome that is enabled by techniques such as RNA-Seq. Methods that are focussed on one-

gene-at-a-time approach to elucidate the salt stress tolerance need to be reconsidered in the light 

of knowledge on synergistic action of more than one gene or even more than one pathway that is 

responsible for salinity tolerance in plants, a concept that this study also supports. 

It has to be emphasised that unquestionably, salinity tolerance based research is a timely 

requirement for the world with the decrease of arable land and increase of food demand. 

Cooperation of research that involves plant molecular and cell biology, transcriptomics and genetic 

variation studies with conventional plant breeding strategies undoubtedly will speed up the 

development of salinity tolerance in crops.
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However, for ease of access the supplementary materials were uploaded to FigShare and the links for 

each supplementary material set are denoted as appropriate in each chapter. For easy reference, they 
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