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Abstract 

Prostate cancer (PCa) is the second most common cancer worldwide in men and one of the 

major causes of cancer-related death among men in Australia. In PCa cells, the androgen 

receptor (AR) is the key driver of cell proliferation, cell cycle progression, and metabolism; 

thus, blocking AR activity with androgen deprivation therapy (ADT) is a standard-of-care 

treatment for metastatic PCa. However, ADT is never curative, with all patients eventually 

relapsing with lethal castration-resistant prostate cancer (CRPC). In a paradoxical 

phenomenon, potent activation of AR with high doses of androgens can also inhibit the 

growth of PCa tumours. However, the exact mechanism(s) by which activation of AR can block 

PCa growth is poorly understood. Therefore, in my PhD project, I explored the mechanisms 

underlying PCa growth suppression in response to extreme activation of AR using a potent 

androgen, methyltestosterone (MeT).  

 

I have found that methyl-testosterone (MeT), a synthetic androgen, can potently 

transactivate AR and suppress the proliferation of AR-positive prostate cancer cells (LNCaP, 

C42B, MR49F, and 22RV1) but not an AR-negative cell line (PC3) or a PCa model expressing a 

version of the AR lacking the ligand-binding domain (R1-D567), suggesting that the growth-

inhibitory effects of MeT are AR-dependent. Mechanistically, MeT acts much like high-dose 

dihydrotestosterone (DHT) in terms of genome-wide AR binding (evaluated by ChIP-seq) and 

the transcriptional program activated via AR (evaluated by RNA-seq). However, these 

analyses showed that MeT only extends the AR cistrome and enables AR to act as a potent 
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transcriptional repressor of genes associated with cell cycle, DNA replication, and DNA 

damage responses.  

 

Unexpectedly, our RNA-seq data revealed that MeT dysregulates the expression of 

transposable elements, including endogenous retroviruses (ERVs). Mechanistically, we found 

that MeT suppresses the expression of DNA methyl-transferases (DNMTs) and EZH2, which 

are considered to be key factors repressing the expression of transposable elements. 

Consistent with the proposed hypothesis, my PhD work showed that MeT caused global 

hypomethylation of DNA and re-distribution of H3K27me3. More specifically, my research 

supports a model whereby DNA hypomethylation was linked to the induction of endogenous 

retroviruses (ERVs). Interestingly, I found that ERV induction was associated with a “viral 

mimicry” response characterised by activation of pattern recognition receptors RIG-I and 

STING and subsequent activation of interferon (IFN) signalling. Importantly, I also observed 

increased expression of MHC class I genes with MeT treatment, suggesting that it can enhance 

tumour immunogenicity. Validating this finding, co-culture of a murine model of PCa (RM1) 

with tumour-specific CD8+ T cells revealed that MeT promoted enhanced recognition and 

functional cytokine production by T cells.  

 

Collectively, my work has provided a greater understanding of growth-inhibitory effects of 

androgens on PCa tumours and uncovers a potential new role for high-dose androgen therapy 

as an immunosensitisation agent. 
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1.1. Prostate gland structure and function 

The prostate is the largest accessory genital gland that secretes material making up 35-30 % 

of the seminal fluid that protects sperm (Resnick and Thompson 2000). This material includes 

high levels of divalent cations and several proteases, the most abundant being prostate-

specific antigen (PSA or kallikrein-related peptidase-3 (KLK3), encoded by the KLK3 gene). PSA 

is responsible for the degradation of the semenogelins I and II in semen after ejaculation, 

which improves sperm motility (Mattsson, Ravela et al. 2014). 

 

The prostate gland consists of 30 to 50 branched tubule-acinar glands surrounded by a 

capsule. As shown in figure 1.1, this gland can be divided into three zones histologically: the 

peripheral zone (about 70% of the glandular tissue of the prostate), central zone (20–25% of 

the glandular tissue of the prostate), and transition zone (5–10% of the glandular tissue of the 

prostate). The central zone is the entire base of the prostate and includes the ejaculatory 

ducts. In the peripheral zone, acini are round to oval and surrounded by a loose stroma of 

smooth muscle and collagen (Figure 1.2a and 1.2b). Central zone acini are complex and large 

(Figure 1.2c and 1.2d). Transition zone glands are simple, small, and round and set in a 

compact stroma (Figure 1.2e and 1.2f).  

 

 

 

 

 

 



 

12 | P a g e  
 

 

 

 

 

 

 

 
Figure 1.1. Typical anatomy of the prostate gland. The location of prostate zones in the coronal section 
of the prostate gland (Shah and Zhou 2012). 
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Figure 1.2. Normal Prostate histology. 1.2a. simple peripheral zone acini. 1.2b. Columnar epithelium 
of normal peripheral zone. 1.2c. Normal, large, complex with papillary infoldings acini of the central 
zone. 1.2d. Cuboidal to columnar epithelium of normal central zone. 1.2e. Normal and simple acini of 
transition zone with compact stroma. 1.2f. Cuboidal or low columnar epithelium of normal transition 
zone (Bostwick and Cheng 2008).  
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1.2. Androgen receptor (AR) structure and function  

Androgen receptor (AR), a member of the steroid and nuclear receptor superfamily (NR3C4, 

nuclear receptor subfamily 3, group C, gene 4), plays a critical role in the development and 

homeostasis of the prostate gland. The gene encoding the AR protein is located at the locus 

Xq11-Xq12 on chromosome X with 8 exons and introns varying between 0.7 to 2.6 kb. AR 

protein, as a ligand-dependent transcription factor, is a phosphoprotein of 919 amino acids 

and consists of three main functional domains, including an N-terminal domain (NTD), a DNA-

binding domain (DBD), and a C-terminal ligand-binding domain (LBD). A flexible region named 

hinge connects the LBD domain to the DBD (Lorente, Mateo et al. 2015) (Figure 1.3).  

 

The NTD (residues 1–558) encoded by exon 1 of the AR gene, constitutes approximately 60% 

of the 110 kDa AR protein (Imamura and Sadar 2016). This domain consists of two regions 

termed TAU-1 (residues 101–370) and TAU-5 (residues 360–485), which are involved in the 

transcriptional activity of AR (Jenster, van der Korput et al. 1995). Activation function-1 (AF1) 

in the TAU-1 domain mediates the protein-protein interactions between AR and coregulatory 

proteins (Kumar, Betney et al. 2004, Lavery and McEwan 2008, De Mol, Szulc et al. 2018). 

TAU1 and TAU5 can also mediate the inter-domain interactions between NTD and LBD (N/C 

interaction), which is an important regulatory mechanism for the expression of some AR 

target genes (McEwan and Gustafsson 1997, Reid, Murray et al. 2002). 

 

AR exons 5-8 encode the LBD (residues 666–919), consisting of eleven α-helices (H1 to H12) 

and two β-sheets arranged in a three-layer antiparallel helical sandwich. AR LBD is 

characterized by a ligand-binding pocket, in which lipophilic ligands are captured in a 



 

15 | P a g e  
 

hydrophobic cavity (Tan, Li et al. 2015). In response to structurally different AR ligands, 

hydrophobic amino acids in the LBD can adopt different conformations to maintain the ligand 

in the steroid‐binding cavity. Following the hydrophobic interactions, hydrogen bonds 

between AR and ligands are formed, firmly tethering the steroid molecule (Pereira de Jésus‐

Tran, Côté et al. 2006). Structurally, the H12 helix acts as a lid to close the LBP upon ligand 

binding, leading to the formation of a hydrophobic cleft called the activation function 2 

domain (AF2). AF2 acts as a ligand-dependent docking site for AR coactivators such as steroid 

receptor coactivator-3 (SRC3) (He, Kemppainen et al. 2000, Zhou, Suino-Powell et al. 2010, 

Tan, Li et al. 2015). 

 

 

 

 

Figure 1.3. A. The structure of the androgen receptor. AR gene consists of 8 exons, encoding three 
main domains of AR protein including an N-terminal domain (NTD), a DNA-binding domain (DBD), and 
a C-terminal ligand-binding domain (LBD) (Tan, Li et al. 2015). 
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The DBD enables AR to bind the androgen response element (ARE) sequences in promoter 

and enhancer regions of AR-regulated genes. Each ARE consists of two equal, hexameric half-

sites (5′-AGAACA-3′) separated by a three base-pair spacer. Structurally, AR DBD (residues 

556–623) consists of a “core” composed of two Zinc fingers and one carboxyl-terminal 

extension (CTE) region which is encoded by exon 4 (Khorasanizadeh and Rastinejad 2001, 

Gelmann, Sawyers et al. 2013). Formed through hydrophobic interactions, DBD Zinc fingers 

are associated with two zinc ions, leading to the formation of “P-box” and “D-box” in N-

terminal and C-terminal Zinc-fingers, respectively. Molecularly, when AR is liganded with an 

agonist, D-box mediates AR dimerization in a “head-to-head” manner allowing the AR to bind 

as a dimer to the two half-sites of an ARE (Shaffer, Jivan et al. 2004, Lallous, Dalal et al. 2013). 

The N-terminal Zinc-finger, termed the Recognition helix, subsequently inserts into the major 

groove of the chromatin and P-box specifically binds to ARE (Umesono and Evans 1989, 

Khorasanizadeh and Rastinejad 2001). In addition to Zinc fingers, amino acids residues at CTE 

are also involved in AR binding to DNA (Gelmann, Sawyers et al. 2013). 
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1.3. Cellular and molecular phenotypes of prostate epithelial cells 

Based on cellular and molecular phenotypes, the glandular prostate epithelium can be 

categorized into three main cell types including secretory luminal cells, basal cells, and 

neuroendocrine cells (Van Leenders, Gage et al. 2003). Luminal cells, which can be found in 

the luminal layer of prostate epithelium, express a high level of androgen receptor (AR) 

representing the major secretory cells in prostate epithelium. Importantly, in the normal 

prostate gland, luminal cells are androgen-dependent, terminally differentiated with the 

lowest proliferation capability. By contrast, basal cells localised in the basal part of glandular 

epithelium, are androgen-independent, less differentiated, and highly proliferative cells, 

characterized by a low level of AR and without a significant secretory function. Characterized 

as the least terminally-differentiated and androgen insensitive cells, neuroendocrine cells can 

be identified in the prostate epithelium; however, they are less frequent and their function is 

not completely understood (Table 1.1) (Hudson 2004, Lang, Frame et al. 2009).
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Table 1.1. Cellular and molecular phenotypes of prostate epithelial cells

Prostate Epithelial 
cells 

Differentiation/Proliferative status 
Key Morphological  phenotypes in 
normal Prostate tissue 

Key Molecular 
phenotypes 

Reference (s) 

Luminal secretory 

cells 

Terminally-differentiated cells, characterised 

by lowest proliferative activity and high 

secretory function;  accounting for 73% of the 

total epithelium volume;  androgen-

dependent cells 

 

Cuboidal to columnar, with small, 

round nuclei 

High level of AR (+); PSA 

(+); PAP (+); keratins (K) 8 

and 18 (+) 

(Van Leenders, Gage et al. 2003, Bostwick 

and Cheng 2008) 

Basal cells Less common epithelial cells in prostate 

gland;  relatively undifferentiated cells with  

highest proliferative activity; without 

secretory  function;  androgen-independent 

cells 

 

Flattened and elongate cells 

surmounting the basement 

membrane 

Low level of AR (+), BCL-2 

(+); p63 (+); keratins 5 and 

14 (+) 

(Robinson, Neal et al. 1998, Bostwick and 

Cheng 2008) 

Neuroendocrine 

cells 

Terminally differentiated epithelial cells in 

prostate gland;  Androgen-insensitive cells 

infrequent cells with variability in 

their morphology; cannot be 

identified using conventional H&E 

Staining   

Contain both AR-positive 

and AR-negative cell 

populations; Serotonin (+); 

Chromogranin A (+); 

Neuron-specific enolase 

(+)  

(Nakada, di Sant'Agnese et al. 1993, 

Bostwick and Cheng 2008, Grigore, Ben-

Jacob et al. 2015) 
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1.4. Androgen receptor agonists 

AR agonists consist of small molecules which can interact with AR LBD and stimulate AR 

transcriptional activity function. These AR interacting compounds can be categorised based 

on their chemical structure (steroidal versus nonsteroidal) and also the origin of synthesis 

(endogenous versus synthetic agonist) (Gao, Kim et al. 2006). Testosterone (T) and its potent 

metabolite, dihydrotestosterone (DHT), are the major male sex hormones acting as 

endogenous steroidal AR agonists, inducing both androgenic and anabolic effects in a tissue-

specific manner (Pihlajamaa, Sahu et al. 2015, Feng and He 2019). Androgenic effects are 

associated with androgen effects on male sex characteristics and anabolic effects are mainly 

linked to effects of androgens on skeletal muscle and bones (Bhasin, Taylor et al. 2003). 

 

Another group of AR agonists called anabolic-androgenic steroids (AAS) are synthetic 

derivatives of T, developed to modulate the androgenic effects of endogenous steroids. In 

comparison with endogenous androgens, these compounds have improved bioavailability,  

reduced adverse androgenic effects, and enhanced anabolic features and are clinically used 

as testosterone analogues for hormone replacement therapies (Patt, Beck et al. 2020). 

Structurally, AAS hormones are synthesised either through the esterification (e.g. 

testosterone cypionate) or alkylation (e.g. Methyltestosterone) of the testosterone backbone 

(Salerno, Cascio et al. 2018). These chemical modifications are mainly affecting the 

pharmacokinetics of the hormones; for example, alkylation or esterification of testosterone 

structure at 17-alpha position (Figure 1.4), increases the oral bioavailability and decreases the 

hepatic metabolism of the compound (Fragkaki, Angelis et al. 2009). These chemical 
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modifications on steroids may also affect the AR conformation, potentially affecting the AR 

function through the recruitment of different AR-coregulators in a tissue-specific manner 

(Chang, Norris et al. 1999, Chang and McDonnell 2002, Wang, Lawless et al. 2020).  

 

Another group of synthetic androgens are selective androgen receptor modulators (SARMs). 

To reduce the undesirable androgenic effects of T on prostate cells, nonsteroidal AR ligands 

called SARMs have been also developed to help the patients suffering from skeletal muscle 

wasting. Theoretically, while acting as AR agonist in bone and skeletal muscle, SARMs function 

either as an antagonist or mild agonist in the prostate gland (Fonseca, Dworatzek et al. 2020). 

Mechanistically, the exact mechanism(s) involved in tissue-specific activation of AR by SARMs 

are not fully understood; however, the ligand-dependent surface topology of activated-AR 

and tissue-specific recruitments of unique coregulators may explain the different effects of 

DHT and SARMs in prostate cells (Baek, Ohgi et al. 2006, Pihlajamaa, Sahu et al. 2015). 
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Figure 1.4. A) Chemical modifications on Testosterone backbone. B) Chemical structure of synthetic-
androgenic AR agonists (Henderson, Penatti et al. 2006, Fragkaki, Angelis et al. 2009). 
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1.5. AR transcriptional activity 

In normal prostate cells, the AR signalling depends on the presence of AR agonists. The 

inactive form of AR preferentially is located in the cytoplasm while bound to heat shock 

proteins (HSPs). Heat shock proteins prevent AR translocation and support the permissive 

conformation of AR for ligand binding (Heinlein and Chang 2002). Upon ligand binding, AR 

undergoes a conformational change leading to its dimerization in the cytoplasm, followed by 

translocation into the nucleus and binding to AREs. AR subsequently recruits the basic 

transcription machinery and related coregulators to trigger the transcription of androgen-

responsive genes (Xu, Shimelis et al. 2009) (Figure 1.5). 

 

1.6. Regulation of AR function by co-regulators and post-translational 

modifications 

In the prostate cells, AR coregulators including co-activators and co-repressors are the key 

determinants of AR function and their quantity and interactions regulate AR’s transcriptional 

activity (Scher, Buchanan et al. 2004). Coactivators consist of a diverse variety of proteins 

assisting AR in ligand binding, nuclear translocation, DNA binding, and recruitment/stabilizing 

of the transcription machinery (Heinlein and Chang 2002). Some coactivators, such as SRC-1 

from p160/SRC family and CBP/p300, possess a histone modification activity modulating the 

AR signalling through chromatin remodelling (Spencer, Jenster et al. 1997, Aarnisalo, Palvimo 

et al. 1998).  
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Figure 1.5. Activation of AR signalling by Androgens in prostate cancer cells. T: Testosterone; DHT: 
Dihydrotestosterone; AR: Androgen receptor; HSP: Heat shock proteins; p: phosphorylation; CoReg: 
Co-regulator; AREs: Androgen response elements. 
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Corepressors, in contrast, suppress the transcriptional activity of AR. This group of proteins 

can modulate the AR signalling by interfering in mechanisms such as AR N/C interactions, 

translocation, DNA binding, interaction with coactivators, and recruitment of basal 

transcriptional machinery (Wang, Hsu et al. 2005).  

 

Posttranscriptional modifications of AR protein are another regulatory layer in the fine-tuning 

of AR function. Phosphorylation, acetylation, methylation, and ubiquitination can either 

positively or negatively affect AR signalling in response to different signal transduction 

pathways (Wen, Niu et al. 2019). For example, phosphorylation of Serine 81 (S81) in the AF1 

region of the AR NTD domain mediated by different cyclin-dependent kinases (CDKs) 

regulates AR protein stability, localization, and transactivation (Hsu, Chen et al. 2011).  

 

1.7. AR function in normal prostate gland 

Androgens, acting via AR, have a crucial role in male phenotype formation, sexual maturation, 

and reproductive function. Also, non-reproductive tissues such as muscle, bone, skin, and 

adipose tissues are affected by androgens (Heemers and Tindall 2007). In the normal prostate 

gland, AR regulates the homeostasis between cell proliferation and cell death and maintains 

the differentiated phenotype of prostate epithelial cells (Carson and Rittmaster 2003). To this 

end, AR in stromal cells induces the expression of growth factors called Andromedins, 

stimulating the proliferation of epithelial cells in paracrine-manner. By contrast, in luminal 

cells, while androgens activate AR and stimulate KLK3 expression, however, it causes cell 

growth suppression (Figure 1.6) (Isaacs and Isaacs 2004). Mechanistically, the growth 
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inhibitory effect of androgens in normal prostate epithelial cells is linked to AR-mediated 

repression of c-Myc and upregulation of p21, p27, and SKP-2, leading to G0/G1 cell cycle arrest 

(Vander Griend, Litvinov et al. 2014).  
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Figure 1.6. AR signalling in normal luminal and stromal cells regulates homeostasis (Isaacs and Isaacs 
2004). In normal prostate, AR in stromal cells is activated by androgens, which leads to production of 

Andromedins, regulating the growth and maintenance of epithelial cells in a paracrine manner. In 
epithelial cells, however, AR activation by androgens is not associated with growth, but rather 
mediates the production of secretory proteins such as PSA. T: Testosterone; DHT: 
Dihydrotestosterone; AR: Androgen receptor; HSP: Heat shock proteins; p: phosphorylation; CoReg: 
Co-regulator. 
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1.8. Prostate malignancy 

The peripheral zone in the prostate gland is responsible for about 70% to 80% of prostatic 

intraepithelial neoplasia (PIN) and carcinoma cases (6, 8). Figure 1.7 illustrates the 

morphologic features of prostate tissue from normal prostatic epithelium to early invasive 

carcinoma. In low-grade PIN, there is a mild dysplasia which may progress to moderate-to-

severe dysplasia, high-grade PIN, and carcinoma. Malignant cell invasion to the stroma, 

involving disruption of the basal cell layer, is the main feature of early invasive carcinoma (6, 

9).  

 

 

 

Figure 1.7. Morphologic changes of prostate tissue from normal prostatic epithelium towards early 
invasive carcinoma (Bostwick and Cheng 2008).  
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1.8.1. Epidemiology of Prostate cancer: 

Prostate cancer is the second most common cancer worldwide in men after lung cancer (Bray, 

Ferlay et al. 2018) and is one of the major causes of cancer-associated death in men in western 

countries (Rebello, Oing et al. 2021).  

 

The incidence of PCa in developed western countries is higher than developed Asian nations 

(e.g. Japan and South Korea) and also developing countries in the rest of the world (Kimura 

and Egawa 2018). Currently, Australia, New Zealand, North America and Europe, as well as 

regions in South America such as Brazil, have the highest incidence rates of PCa. Incidence 

rates are influenced by many factors, including: awareness of prostate cancer and diagnostic 

screening rates (Loeb, Bjurlin et al. 2014); life expectancy, since risk of prostate cancer is 

strongly associated with age (i.e. more than 85% of patients newly diagnosed with PCa are 

more than 60) (Bray, Ferlay et al. 2018); racial differences, as the development and 

progression of PCa are more likely in African Americans compared to individuals of European 

ancestry (Hur and Giovannucci 2020); and ethnic diets, since saturated fat intake has been 

associated with higher risk of developing the disease (Whittemore, Kolonel et al. 1995). 
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1.9. AR malignancy switch in Prostate Cancer 

Changes in the genetic and environment of prostate epithelial cells mediate the 

carcinogenesis process, which ultimately leads to AR’s signalling outputs shift from pro-

differentiative and anti-proliferative to anti-differentiative and pro-proliferative (Berger, 

Febbo et al. 2004). As part of malignant transformation in prostate cells, therefore, AR is 

switched to an oncogenic factor, considered as a central event in the development and 

progression of both localized and advanced metastatic prostate cancer (Tomlins, Mehra et al. 

2007). The malignancy switch of AR can be characterized by reprogramming of AR cistrome. 

A comparison of AR cistrome between normal and cancerous cells reveals that the pattern of 

genome-wide AR binding sites between normal and cancerous tissues is different, which can 

drive distinct transcriptional programs leading to tumour progression (Pomerantz, Li et al. 

2015). Alteration in AR cistrome can be related to the recruitment of unique coregulators in 

cancerous cells. For example, FOXA1 and HOXB13, only co-expressed in prostate tumour cells, 

are co-localised with AR at tumor-specific AR binding sites (Pomerantz, Li et al. 2015). This 

observation suggests that the association of AR with new coregulators such as ERG, FOXA1 

and HOXB13 can change the AR function through reprogramming the AR cistrome. 

 

Gene fusions between AR-regulated genes and coding regions of oncogenic transcription 

factors is another potential oncogenesis process in prostate epithelial cells (Marx 2005, 

Tomlins, Rhodes et al. 2005). For example, TMPRSS2–ERG is the most common gene-fusion 

occurring in about 50% of all localised prostate cancer, in which promoter region of AR-

regulated gene called TMPRSS2 is fused with the coding region of ERG, an ETS transcription 



 

30 | P a g e  
 

factors (Kumar-Sinha, Tomlins et al. 2008). TMPRSS2–ERG expression is constantly induced by 

androgens, which causes the upregulation of genes associated with cell invasion and 

epithelial-mesenchymal transition (EMT) (Wang, Cai et al. 2008, Adamo and Ladomery 2016).  

 

1.10. Histologic grading of prostate cancer: 

The histologic grade of the tumour is a useful prognostic factor in prostatic adenocarcinoma. 

Although there are different histologic grading systems, the Gleason system is the best 

predictor of survival in men suffering from prostate cancer. The Gleason grade is a measure 

of the level of differentiation in the tumour, ranging from well-differentiated (score 1) to 

poorly differentiated (score 5). The Gleason score (GS), which ranges from 2-10, is the sum of 

the primary and secondary Gleason grades which refer to the dominant and second-most 

frequent pattern of tumour, respectively (Figure 1.8)(Short, Warren et al. 2019). The grading 

system was modified based on the 2014 ISUP consensus conference and Gleason scores were 

assigned to 5 prognostically distinct Grade groups for improved prognostication and to reduce 

overtreatment of indolent cancer (Egevad, Delahunt et al. 2016). The modified ISUP grading 

system includes all Gleason scores of 6 or less in grade I, Gleason 3+4=7 in grade II, Gleason 

4+3=7 in grade III, Gleason 4+4=8 in grade IV, and all Gleason 9 and 10 in grade V (Egevad, 

Delahunt et al. 2016). 
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1.11. Treatment of localized prostate cancer  

PCa has a highly variable prognosis, which mainly depends on tumour grade at primary 

diagnosis time. Generally, the majority (~80%) of patient with PCa are diagnosed with organ-

confined disease. In patient with localized prostate cancer, the survival expectancy can be 

about 99% over 10 years if diagnosed at an early stage (Siegel, Miller et al. 2016). However, 

~15% of patients are diagnosed with metastases within the region of primary tumours or ~5% 

with distant metastases (Siegel, Miller et al. 2016). For men diagnosed with metastatic 

disease, the prognosis is much poorer; indeed, the overall survival rate in PCa patient 

diagnosed with a distant metastasis is only about 30% at 5 years (Siegel, Miller et al. 2016). 

 

Based on a recommendation by the European Association of Urology, there is a wide variation 

in treatment intensity that can be applied for localized prostate cancer (Mottet, Bellmunt et 

al. 2017). Over the last years, active surveillance has been applied as an alternative to 

intensive treatment of low-risk prostate cancer. Active surveillance is described as close 

monitoring of cancer progression using PSA and without intensive therapies such as surgery 

(Haymart, Miller et al. 2017). This strategy is carried on men with low to intermediate grade 

prostate cancer. However, among these patients, 20% to 41% will need definitive treatment 

in the following 5 years to control tumour growth. Radical prostatectomy is one of the most 

common major treatment measures in patients with localized prostate cancer. Mortality and 

risk of local progression and metastasis are decreased by radical prostatectomy (Bill-Axelson, 

Holmberg et al. 2005).  
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Another major treatment method for localised prostate cancer is radiotherapy, comprising 

radioactive isotopes, photons, and particle beams (Bagshaw, Kaplan et al. 1993). In a study by 

Hamdy, Freddie C., et al. (Hamdy, Donovan et al. 2016), the effectiveness of external-beam 

radiotherapy compared to active monitoring and radical prostatectomy was evaluated in 

terms of mortality and the incidence of metastases and disease progression at a median of 10 

years of follow-up. The results of this randomized trial found that radiotherapy (and 

prostatectomy) were associated with lower rates of disease progression and metastases than 

active monitoring (Hamdy, Donovan et al. 2016). 

 

However, while surgery and radiation therapies cure a substantial proportion of men, 

approximately 30% experience recurrence with metastatic disease (Singh, Febbo et al. 2002). 

Additionally, some men are diagnosed with metastatic PCa, which cannot be treated with 

surgery or radiation therapy  (Aus, Robinson et al. 2005). Androgen deprivation therapy is the 

key strategy for men who fail treatment for localised disease or who are diagnosed with 

metastatic disease (see below). 
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Figure 1.8. The Gleason score ranges and pathological features in different clinical stages of prostate 
cancer (Bostwick and Cheng 2008). 
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1.12. Treatment of Metastatic Prostate Cancer 

As described earlier, the growth and progression of prostate cancer rely heavily on AR 

activation by T and DHT. Consequently, androgen deprivation therapy (ADT) has been the 

main therapeutic strategy for metastatic prostate cancer for many decades (Thompson, 

Goodman et al. 2003, Vignozzi, Rastrelli et al. 2014). ADT comprises surgical or medical 

castration, which greatly reduces the levels of circulating testicular androgens and thereby 

reduces prostate cancer growth (Heinlein and Chang 2004). Surgical castration includes 

orchiectomy, in which the testicles are removed, but this approach is very rare now. Medical 

castration is primarily achieved using gonadotropin-releasing hormone (GnRH) agonists 

(Leuprolide and Goserelin) and antagonists (Degarelix), which act through the anterior 

pituitary gland. GnRH agonists cause a decrease in luteinizing hormone (LH) levels by down-

regulation of GnRH receptors, whereas GnRH antagonists inhibit GnRH receptors. In addition 

to medical/surgical castration, ADT can also incorporate the application of antiandrogens (AR 

antagonists), such as cyproterone acetate, bicalutamide, nilutamide, and flutamide, which 

directly bind to the AR LBD and block its activity (Thomas and Neal 2013). More recently, 

chemotherapy has been combined with ADT, which can improve outcomes for some patients 

(Sweeney, Chen et al. 2015). Chemotherapy is a process in which a tumour is treated with 

one or more cytotoxic drugs (Panda, Chakraborty et al. 2017). 

 

Unfortunately, ADT for metastatic PCa, alone or in combination with chemotherapy, is never 

curative (Figure 1.9) and patients will eventually relapse with what is termed castration-

resistant prostate cancer (CRPC). CRPC is defined as an increase in PSA levels or tumour size 

despite castrate levels of circulating androgens (<0.50 ng/ml) (Komiya, Yasuda et al. 2013, 
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Fizazi, Massard et al. 2015). Also, reduction in androgen levels using ADT or antiandrogens 

have some adverse clinical side effects on a patient’s life including a decrease in muscle 

strength, reduced lean and bone mass, higher risk of fracture and unusual lipid profile 

(Galvao, Nosaka et al. 2006). 
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Figure 1.9. The progression pattern of prostate cancer in patients with disease recurrence (Crea, Saidy 
et al. 2015). 
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1.13. Treatment of CRPC 

In recent years, next-generation ADT agents have been introduced which provide a survival 

benefit in CRPC. These agents are apalutamide, darolutamide, enzalutamide, as AR 

antagonists, and abiraterone acetate, a CYP17A1 inhibitor. In CRPC patients and after 

chemotherapy, administration of AR antagonists blocks the AR signalling by binding to the 

LBD of AR and inhibiting the transactivation of AR and also by preventing the AR nuclear 

translocation, which ultimately results in median overall survival by 18.4 months compared 

to placebo (13.6 months) (Scher, Fizazi et al. 2012). Abiraterone acetate functions as an 

irreversible inhibitor of CYP17A1, an enzyme that converts pregnenolone to 

dehydroepiandrosterone (DHEA), a precursor of T and DHT, resulting in a significant decrease 

in androgen synthesis (Chandrasekar, Yang et al. 2015). After chemotherapy, the median 

overall survival benefit of Abiraterone acetate was reported as 14.8 months vs. 10.9 months 

in the placebo group (De Bono, Logothetis et al. 2011). Other therapies for CRPC include the 

chemotherapeutics docetaxel (Sweeney, Chen et al. 2015) and cabazitaxel (Chandrasekar, 

Yang et al. 2015). Both Cabazitaxel and Docetaxel belongs to the same family of taxane 

chemotherapies, however, the TROPIC trial showed that Cabazitaxel was active after 

docetaxel failure and can prolong overall survival (Shiota, Yokomizo et al. 2016). Radium-223 

dichloride is a targeted alpha emitter that can selectively bind to areas of bone with increased 

turnover and emit alpha particles of extremely short range with high energy. Radium-223 is 

considered an effective and well-tolerated treatment in men with CRPC and bone metastases 

(Hoskin, Sartor et al. 2014). However, unfortunately, none of these therapeutic strategies is 

curative, and all only provide a survival benefit in the order of months. Therefore, there is a 

major unmet need for new therapies that can effectively control CRPC.  
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1.14. AR-mediated Therapy Resistance in CRPC: 

Persistent AR signalling following the ADT is the major mechanism driving CRPC growth 

(Coutinho, Day et al. 2016). It has been shown that approximately 80% of CRPC tumours 

demonstrate persistent AR signalling (Ylitalo, Thysell et al. 2017), highlighting the addiction of 

prostate cancer cells to this pathway. Illustrating the importance of AR signalling for prostate 

epithelial cells, therapy-mediated selection pressure causes genomic alterations in genes 

involved in the regulation of AR signalling such as AR gene itself and AR coregulators such as 

FOXA1 (pioneer factor) and  NCOR1/2 (corepressor), aiming to sustain the AR transcriptional 

function in cells (Parolia, Cieslik et al. 2019). 

 

ADT-mediated genomic alterations in the AR gene is one of the most frequent mechanisms, 

leading to the persistent oncogenic function of AR in prostate cancer cells. Despite being 

castrated, the oncogenic activity of AR following the ADT will be sustained by several 

mechanisms including hypersensitivity of cancer cells to low levels of androgens, antagonist-

agonist switching, AR activation by non-canonical ligands, and ligand-independent 

transactivation of AR (Table 2). These mechanisms are mainly associated with overexpression 

or point mutations of the AR gene. AR gene overexpression, which makes cells hypersensitive 

to very low levels of androgens is achieved either through AR gene copy-number amplification 

(DNA level) or transcriptional upregulation of the AR gene (RNA level) (Coutinho, Day et al. 

2016). Genetic analyses of prostate cancer tumours show that AR gene copy-number 

amplification is largely present in CRPC but not in primary tumours, accounting for 50% CRPC 

samples, approximately (Barbieri, Bangma et al. 2013). AR point mutations also can cause 

oncogenic activation of AR, accounting for 20% of CRPC tumours, approximately (Beltran, 
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Yelensky et al. 2013). These mutations have been mainly identified in AR ligand-binding 

domain or AR (AR-LBD) transactivation activity (AR-NTD), which can result in ligand 

promiscuity causing AR transactivation with a very low level of androgens, AR interaction with 

non-specific ligands, and/or an antagonist-to-agonist switch (Table 2)(Coutinho, Day et al. 

2016). ADT-induced selection pressure is also associated with constitutively active AR variants 

including AR-V7, AR-V567es and AR-V3 (Jernberg, Bergh et al. 2017).  

 

As an emerging clinical issue, a subpopulation of CRPC patients (accounting for 20%, 

approximately) can relapse with clinically aggressive variants of prostate cancer, exhibiting an 

AR-independent phenotype, in which AR expression is reduced or absent (Watson, Arora et 

al. 2015, Chen, Dong et al. 2018, Handle, Prekovic et al. 2019). Therefore, they are resistant 

to all current AR signalling inhibitors. Given the continued relevance of AR in the CRPC state 

and the fact that new AR pathway inhibitors only provide minor survival benefits, smarter AR-

targeted therapeutic strategies are needed to treat advanced metastatic prostate cancer. 
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Table 1.2. ADT-mediated resistance mechanism 

ADT-mediated resistance mechanisms  Genetic alteration in the AR gene Outcome Representative  in vitro 

model 

Reference 

Hypersensitivity to low levels of 

androgens 

AR gene amplification Transcriptional upregulation AR 

gene 

VCaP cell line (Korenchuk, Lehr et al. 2001, Liu, 

Xie et al. 2008) 

Antagonist–agonist switching  

T878A gain-of-function mutation   Flutamide and nilutamide act as 

AR agonists 

LNCaP cell line (Veldscholte, Ris-Stalpers et al. 

1990) 

H875Y  gain-of-function mutation   Nilutamide  acts as an  AR agonist 22rv1 cell line (Marcias, Erdmann et al. 2010) 

F877L  gain-of-function mutation   Enzalutamide act as an AR agonist MR49F (Korpal, Korn et al. 2013, 

Coleman, Van Hook et al. 2016) 

W742C/L  gain-of-function mutation   Bicalutamide acts as an  AR 

agonist 

LAPC‐4, 

KuCaP‐1 

(Terada, Shimizu et al. 2010, 

Sugawara, Baumgart et al. 2019) 

S889G gain-of-function mutation   Flutamide and Bicalutamide act as  

AR agonists 

- (Prekovic, Van den Broeck et al. 

2018) 

M896V gain-of-function mutation   Flutamide and Bicalutamide act as  

AR agonists 

- (Prekovic, Van den Broeck et al. 

2018) 

AR activation by non-canonical ligands L702H gain-of-function mutation   Glucocorticoids act as an AR 

agonist  

MDA PCa 2b cell line (Sumiyoshi, Mizuno et al. 2019) 

L701H gain-of-function mutation   Cortisol  act as an AR agonist - (van de Wijngaart, Molier et al. 

2010) 

AR splice variants 

AR-V3 Constitutively-active AR variant - (Kallio, Hieta et al. 2018, Tagawa, 

Antonarakis et al. 2019) AR-V7 Constitutively-active AR variant 22rv1 cell line 

ARv567es Constitutively-active AR variant D567 cell line 
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1.15. Bipolar androgen therapy; a potential strategy for prostate cancer therapy 

As described above, blocking AR signalling is the main therapeutic strategy for the treatment 

of patients with advanced metastatic prostate cancer. While attempts to develop more 

potent AR antagonists are being made, the adaptation mechanisms that lead to the failure of 

AR pathway inhibitors are a major concern. Therefore, there is an unmet need for an “out of 

box” approach avoiding the lethal adaptation stage in the treatment of advanced metastatic 

prostate cancer tumours.  

 

Bipolar Androgen Therapy (BAT) is one of the emerging concepts in the treatment of prostate 

cancer, which can potentially overcome the innate ability of prostate cancer cells to adapt to 

castrate level of androgens. In this strategy, rapid cycling between two polar extremes of 

androgen levels, namely supraphysiologic and castration levels, within a short period can 

avoid the therapy adaptation due to the abrupt changes in androgen levels. More 

importantly, while activating the AR transcriptional activity in prostate cancer cells, high-dose 

of androgens paradoxically inhibits the tumour progression and renders cancer cells 

vulnerable to death (Schweizer, Antonarakis et al. 2015). This unexpected therapy response 

is illustrated in figure 1.10 showing the PSA response of a patient who received 16 cycles of 

BAT having led to a dramatic decrease in tumour progression. 
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Figure 1.10. PSA response in an individual patient (patient 9) receiving a total of 16 cycles of BAT. 
(Schweizer, Antonarakis et al. 2015). 
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Currently, synthetic testosterone derivatives such as Testosterone cypionate and 

Testosterone Enanthate are widely used in clinical trial studies aiming to treat prostate cancer 

with high-dose androgen therapy (e.g. NCT03522064, NCT02090114, NCT03554317, 

NCT03516812, and NCT01750398). 

 

1.16. Proposed Mechanisms for therapeutic effects of high-dose androgens: 

Exposing AR-positive prostate cancer cells to a high dose of androgens can inhibit their 

proliferation (Joly-Pharaboz, Soave et al. 1995). The apparent paradox that AR inhibition and 

potent activation can both exert anti-cancer effects raises the question as to which 

mechanisms are involved in tumour suppression by high-dose androgens in CRPC patients. 

Preclinical studies have proposed some mechanisms for therapeutic effects of high-dose 

androgen (see below); however, regarding the variation in response to BAT in clinical settings 

(Schweizer, Antonarakis et al. 2019), the exact tumour suppressive mechanism(s) remains 

uncertain. Therefore, it is imperative to identify the potential antitumor mechanism following 

the AR activation by high-dose androgens.  

 

1.16.1. High-dose androgen therapy interrupts cell cycle progression 

In prostate cancer cells, liganded-AR has a key role in the progression of the cell cycle either 

through physical interactions with cell cycle-associated proteins or by driving phase-specific 

transcriptional networks. Indeed, the interplay between AR and cell cycle proteins induces a 

phase-specific AR cistrome and transcriptome, governing the proliferation of prostate cancer 
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cell through the cell cycle progression (Murthy, Wu et al. 2013, McNair, Urbanucci et al. 2017). 

However, evidence indicates that AR function in the cell cycle depends on the concentration 

of its agonist. Enigmatically, the proliferative effects of androgens depend on their 

concentration, exhibiting a biphasic response in prostate cancer cells. More specifically, dose-

responses of LNCaP cells treated with R1881 (synthetic androgen) can be divided into 

proliferative and antiproliferative phases (Figure 1.11). Importantly, cell cycle analysis 

revealed that antiproliferative doses of androgens cause cell cycle arrest arrested in the G1 

phase (De Launoit, Veilleux et al. 1991).  

 

 

 

 

 

 

 

 

 

Figure 1.11. Biphasic response of LNCaP cells treated with increasing doses of R1881 for 72h 
(Roediger, Hessenkemper et al. 2014). 

 

 

 



 

45 | P a g e  
 

These observations support the idea that AR liganded with an antiproliferative 

supraphysiologic dose of androgens causes an interruption in the cell cycle progression, 

leading to cell cycle arrest. Although the key mechanism triggering this cell cycle arrest have 

not been precisely determined, several mechanisms have been suggested. First, GSEA analysis 

on transcriptomic data generated from different AR-positive prostate cancer cell lines shows 

that treatment with 10 nM R188 significantly represses the expression of some gene sets 

including Myc and E2F1 target genes (Figure 1.12). Since the integrated function of Myc and 

activated E2F1 is required for S phase entry (Leung, Ehmann et al. 2008), suppression of Myc 

expression by high-dose androgens may lead to repression of E2F1/E2F1 target genes, which 

potentially leads to cell cycle arrest (Roediger, Hessenkemper et al. 2014).  
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Figure 1.12. Results of GSEA analysis showing enriched significant Hallmark genes sets (FDR < 0.05) in 
4 cell lines treated with 10 nM R1881. Red dots: Androgen receptor-related gene sets; Blue dots: cell 
cycle-related gene sets (Nyquist, Corella et al. 2019) 
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Figure 1.13. Model of AR interaction with replication machinery in the cell cycle. High-dose Androgen 
therapy may interrupt the AR dissociation from chromatin avoiding DNA re-licensing. 
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Linked to a non-transcriptional function of AR, another mechanism has been also proposed 

for cell cycle arrest by high-dose androgens. According to the proposed model, AR has a role 

in DNA licensing in androgen-sensitive prostate cancer cells, required for DNA replication in 

the S phase (Litvinov, Vander Griend et al. 2006). This AR function is mediated through the AR 

interactions with some DNA licensing factors such as Orc2, Cdc6 and MCM7 (Shi, Yan et al. 

2008, Jin and Fondell 2009) (Figure 1.13). In this mechanism, liganded-AR binds to the origins 

of replication sites in the G1 phase and forms a complex with other factors, licensing these 

sites for replication within the S phase. In the G2 phase, AR remains bound to DNA, which 

prevents the re-licensing and subsequently re-initiation of DNA replication before the next 

cell cycle. However, following the G2 phase and in mitosis, AR is excluded from DNA and 

degraded, which allows the initiation of a new DNA licensing and re-initiation of DNA 

replication in the next cell cycle (D'Antonio, Vander Griend et al. 2009). Current evidence 

suggests that high-dose androgens may interrupt the DNA licensing role of AR, arresting the 

cell cycle progression from G1 to S. In this model, acute increase in the androgen levels up to 

supraphysiological levels causes insufficient degradation of AR during the mitosis/early G1 

leading to interruption in DNA re-licensing and re-initiation of DNA replication (Figure 1.13).  

 

Mechanistically, the function of cell cycle proteins including licensing factors is precisely 

regulated through the phase-specific cyclin-dependent kinases (CDKs)(Reusswig, 

Zimmermann et al. 2016). For example, CDK1, overexpressed in prostate cancer tumours, is 

an M-phase protein involved in G2-to-M transition (Liu, Kao et al. 2008). Expression of CDK1 

is induced directly by AR and the association of CDK1 with AR tightly binds to increase the AR 

stability, localization, and chromatin binding, which are mainly mediated by AR S81 
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phosphorylation (Lee and Chang 2003, Chen, Xu et al. 2006, Wang, Li et al. 2009, Sharma, 

Yeow et al. 2010, Chen, Gulla et al. 2012). Suppression of AR transcriptional activity following 

CDK1 inhibition supports the importance of this CDK1-AR feedback loop (Liu, Gao et al. 2017). 

Interestingly, a study by Koryakina et al. (Koryakina, Knudsen et al. 2015) demonstrated that 

AR S308 phosphorylation by CDK1 in the nucleus of mitotic prostate cancer cells is crucial for 

AR exclusion from chromosomes and nucleus. Therefore, given the proposed role of AR as a 

licensing factor, high-dose androgens may also, either directly or indirectly, interrupt the 

post-transcriptional regulation of AR by CDKs, leading to insufficient AR 

dissociation/degradation in mitosis.  

 

1.16.2. AR-induced cell cycle arrest accumulates activated-Retinoblastoma protein inducing 

tumour suppressor function to AR 

AR activation by a high dose of androgens can trigger the repression of gene sets required for 

cell cycle progression including DNA repair/replication genes (Niu, Altuwaijri et al. 2008). 

Analysis of AR binding profiles shows that high-dose androgens cause recruitment of AR 

proteins to gene sets involved in DNA replication/repair and integration of AR cistrome with 

transcriptomic data confirms the repression of those gene sets, suggesting a direct tumour 

suppressor function of AR through its transcriptional activity (Figure 1.14) (Gao, Gao et al. 

2016).  

 

AR transcriptional repressor function can be mediated through the recruitment of 

transcriptional repressor proteins (Cai, He et al. 2011). One of the key transcriptional 

repressors, which can be activated as a consequence of androgen-induced cell cycle arrest, is 
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Rb protein. Genomic studies on Rb cistrome revealed that AR and Rb are co-localised on the 

promotor of DNA replication genes suppressed by high-dose androgens. Given that activated 

Rb can bind to the promoter of E2F1 target genes (Sharma, Yeow et al. 2010), current 

evidence suggests that Rb acts as an AR coregulator to repress E2F1 target genes. Importantly, 

although androgen-induced cell cycle arrest seems to be Rb-independent (Vander Griend, 

Litvinov et al. 2014); however, Rb deficiency, which is significantly overrepresented in CRPC 

tumours, may interfere with AR-dependent repression of DNA replication genes (Sharma, 

Yeow et al. 2010). Therefore, coupling the BAT with other therapeutic strategies can 

potentially improve the response of patients with Rb-deficiency to BAT.  

 

 

 

 

 

 

 

Figure 1.14. Rb activation by high-dose androgens leads to co-localisation of AR and Rb on the 
promoter of DNA replication/repair genes leading to the suppression of their expression (Gao, Gao et 
al. 2016). 
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1.16.3. High dose androgen can induce lethal dsDNA breaks  

Chromosomal translocations in prostate epithelial cells is one of the key mechanisms leading 

to the development and progression of prostate cancer. As described in section 1.8, ERG-

TMPRSS2 fusion is the most frequent genomic rearrangements presented in 50%–70% of 

prostate tumours resulting in overexpression of ETS oncogenes in an androgen-dependent 

manner, which can help in the progression of prostate cancer (Carver, Tran et al. 2009, Li, 

Yuan et al. 2020).  

 

Rearrangements of DNA fragments in prostate cancer cells is mediated by inducing site-

specific double-stranded DNA breaks (DSBs)(Kloosterman, Tavakoli-Yaraki et al. 2012). In 

prostate cancer cells, AR has two key roles in inducing the DSBs: 1) binding to specific regions 

on DNA and 2) inducing spatial proximity between DNA fragments. Toward this end, liganded-

AR binds to specific intronic regions mediating intra- and interchromosomal interactions 

through the recruitment of enzymes needed for alterations in local epigenetic markers. Local 

epigenetic remodelling by liganded-AR not only causes chromosomal movement but also 

makes these regions accessible for enzymes generating DSBs (Lin, Yang et al. 2009).  

 

Multiple enzymes can induce DSBs at AR binding sites. For example, Lin et al (Lin, Yang et al. 

2009) reported that exogenous genotoxic stresses can cause the expression of genotoxic-

associated enzymes including activation-induced cytidine deaminase (AID) and LINE-I repeat-

encoded ORF2 endonucleases, which can bind to AR-induced accessible sites on DNA and 

establish DSBs. In this study, the presence of genotoxic stresses has been shown to be crucial 
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for causing the genomic breaks. However, a study by Haffner et al. (Haffner, De Marzo et al. 

2011) supports the notion that intrinsic androgen signalling could also be sufficient to 

generate transient genomic breaks needed for genomic rearrangement in prostate cancer 

cells. Based on this mechanism, androgen stimulation causes the recruitment of TOP2B at 

specific AR binding sites inducing extremely fleeting recombinogenic DSBs. Subsequently, 

androgen-induced DSBs are quickly targeted by DSB repair machinery. More importantly, 

TOP2B-mediated DSBs has been shown to be crucial for AR transcriptional activity since 

targeting TOP2B leads to the interruption in the expression of AR-target genes (Ju, Lunyak et 

al. 2006, Haffner, De Marzo et al. 2011).  

 

In the context of bipolar androgen therapy, current evidence suggests that cyclic activation 

of AR by supraphysiologic levels of an androgen and castration may lead to unrepaired DSBs, 

which can induce cell cycle arrest and cell death (Chatterjee, Schweizer et al. 2019). 

Theoretically, DNA damage could be exacerbated by AR’s ability to down-regulate DNA repair 

gene pathways (see section above) (Gao, Gao et al. 2016). This hypothesis can explain why a 

patient with BRCA2/ATM deficiency showed an extreme response to high-dose androgen 

therapy (Teply, Kachhap et al. 2017). 

 

However, the negative feedback loop between androgen level and AR gene expression and/or 

a lower level of AR protein in a subset of tumours with AR-indifferent phenotype may 

attenuate the DSBs generation (Chatterjee, Schweizer et al. 2019, Handle, Prekovic et al. 

2019). More importantly, the highest frequency of Rb deficiency in a patient with CRPC can 

also restrict the repression of DNA repair/replication genes in an Rb-dependent manner 
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(section 1.14.2) (McNair, Xu et al. 2018). Another important point to raise is that, although 

patients with a deficiency in DNA repair pathways are expected to show better response; 

however, there is a considerable variation among patients with different genomic aberrations 

in terms of response to BAT (Figure 1.15) (Schweizer, Antonarakis et al. 2019), indicating that 

genomic deficiency in DNA repair pathways cannot be a reliable index for segregation of 

patients in terms of response to BAT. Therefore, the exact mechanism(s) involved in response 

to high-dose androgen therapy remains imprecise. 
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Figure 1.15. PSA response rate of CRPC patients received BAT (Schweizer, Antonarakis et al. 2019). 
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1.17. Hypothesis and aims 

The preliminary data from high-throughput screening of nuclear receptor ligands by my host 

lab suggests that a synthetic Testosterone analogue, named Methyl-Testosterone (MeT), 

potently suppresses the proliferation of LNCaP cells. Therefore, we hypothesized that MeT 

acts as a potent androgen suppressing cell proliferation. As outlined above, while several 

mechanisms underlying the efficacy of supraphysiological androgen treatment in PCa have 

been described, many questions still remain. We hypothesised that a potent androgen like 

MeT could be a useful tool to gain a more complete understanding of these mechanisms as 

well as having potential as a therapeutic. With this in mind, the specific aims of my project 

are:  

 

Aims: 

1. Characterise the antiproliferative effects of MeT in different prostate cancer models.  

2. Define the AR cistrome and AR-induced transcriptome after activation with MeT. 

3. Further elucidate the major mechanisms involved in the therapeutic efficacy of high-dose 

androgens. 
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Chapter 2: Material and Methods 
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2.1. Material 

Table 2.1: Common chemical and reagents 

Reagents Supplier Catalogue number 

Dulbecco’s Modified Eagle’s 
Medium-high glucose 

Sigma Aldrich  D6429 

RPMI 1640 liquid media  Sigma Aldrich  R8758  

RPMI 1640 phenol red free  Sigma Aldrich  R7509  

Trypsin EDTA solution  Sigma Aldrich  T4049  

Bradford assay reagent BioRad 500-0006 

BSA (bovine serum albumin)  Sigma Aldrich  A9647  

Chloroform  Sigma Aldrich  C2432  

DMSO (dimethyl sulfoxide)  BDG Laboratory Supplies  D2650  

Ethanol, molecular grade  Scharlau  ET00110500  

FBS (fetal bovine serum)  Sigma Aldrich  14M357  

Glycerol  Chem Supply  GA010-2.5L-P  

iScirpt cDNA synthesis kit  BioRad  170-8891  

iQ SYBR Green Supermix  BioRad  170-8885  

Inactivation buffer (supplied 
with Turbo free)  

Ambion Inc.  AM1907  

Methanol  Chem Supply  MA004-2.5L-P  

Nitrocellulose membrane (0.4 
μm)  

Amersham  GEHE10600016  

Nuclease free water  Qiagen  129114  

PBS (phosphate-buffered saline)  Gibco  14190  

Ponceau S  Sigma Aldrich  P3504  

LEGENDplex™ Human Type 
1/2/3 Interferon Panel (5-plex) 
with V-bottom Plate 

Biolegend 740396 
 

SDS (sodium dodecyl sulphate)  Sigma Aldrich  75746  

Triton-X 100  Sigma Aldrich  T8787  

TRIZOL Reagent  Sigma Aldrich  T9424  

100 bp DNA ladder  New England Biolabs  N3231S  

Agarose, analytical grade  Sigma Aldrich  A6013  

Poly(I:C) (LMW) / LyoVec™ Invivogen tlrl-picwlv 

Criterion precast gel (4-12%)  BioRad  567-1084  

DAPI prolong gold mount media  Molecular Probes (Life Tech)  P26935  

17α-Methyltestosterone/ 
Mesterone 

 

Sigma Aldrich  
 

M7252 
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Table 2.2: Commonly Used Buffers and Media 

Buffer/Medium Name  Buffer/Medium Components  

RIPA Buffer for protein 
extraction 

 

1 g SDS; 0.93 g DTT; 1.2 mg Bromophenol blue; 7 mL Tris-Cl/SDS (4x); 
3 mL Glycerol, 10 mL Milli-Q water; Store at -20°C 

Running Buffer (10x) 77.5 g Tris Base; 360g Glycine; 25g SDS; 2.5L RO H2O  

TBS (10x)  151.5 g Tris ; 219 g NaCl ; Volume to 2.5 L with water (pH 7.4)  

TBST (1x)  2.5 mL Tween20 ; 250 mL 10x TBS ; 2.25L RO H2O  

Transfer Buffer (10x)  77.5 g Tris ; 360 g Glycine ; Volume to 2.5 L with water  

Tris-HCl (0.5M), pH 8.0 and pH 
7.6 

12.1 g Tris-HCl; 200 ml Milli-Q water  

HEPES-KOH (0.5M), pH 7.5 59.5 g HEPES; 500 ml Milli-Q water  

NaCl (5M) 29 g NaCl; 100 ml Milli-Q water 

EDTA (0.5M) 9.3 g EDTA; 50 ml Milli-Q water 

EGTA (0.1M) 1.9 g EGTA; 50 ml Milli-Q water 

LiCl (5M) 21.1 g LiCl; 100 ml Milli-Q water 

SDS (10%) 20g SDS; 200 ml Milli-Q water 

Na-Deoxycholate (5%) 10 g Na-Deoxycholate; 200 ml Milli-Q water 

N-laurylsarcosine (5%) 10 g N-laurylsarcosine; 200 ml Milli-Q water 

PBS + PI 1x tablet of Complete Mini Protease Inhibitor Cocktail in 10 ml PBS 

Triton Extraction Buffer (TEB) 0.5% Triton-X 100, 2 mM phenylmethylsulfonyl fluoride (PMSF), and 
0.02% (w/v) NaN3 

NaCl 500mM 2 µl of NaCl 5M ; 18 µl sterile water 

Triton X-100 (10 %) 1 ml of 100 % Triton X-100; 9 ml Milli-Q water 
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Table 2.3: Chromatin immunoprecipitation (ChIP) Buffers 

Solution name Final Conc Stock concentration  Volume 

Solution A 

1% Formaldehyde 40% 2ml 

50mM HEPES-KOH, pH 7.5 0.5M 8ml 

100mM NaCl 5M 1.6ml 

1mM EDTA 0.5M 160ml 

0.5mM EGTA 0.1M 400ml 

water 
 

67.84ml 

Total volume 80ml 

Block Solution 
 

0.5% BSA  250mg 

PBS  to 50ml 

LB1 

50mM HEPES-KOH, pH 7.5 0.5M 10ml 

140mM NaCl 5M 2.8ml 

10% glycerol 100% 10ml 

1mM EDTA 0.5M 200ml 

0.5% NP-40 100% 500ml 

0.25% Triton X-100 100% 250ml 

water  76.25ml 

Total volume 100ml 

LB2 

10mM Tris-HCl, pH 8.0 0.5M 2ml 

200mM NaCl 5M 4ml 

1mM EDTA 0.5M 200ml 

0.5mM EGTA 0.1M 500ml 

water  93.3ml 

TOTAL  100ml 

LB3 

10mM Tris-HCl, pH 8.0 0.5M 1ml 

100mM NaCl 5M 1ml 

1mM EDTA 0.5M 100ml 

0.5mM EGTA 0.1M 250ml 

0.1% Na-Deoxycholate 5% 1ml 

0.5% N-laurylsarcosine 5% 5ml 

water  41.65ml 

Total volume 50ml 

RIPA Buffer 

50mM HEPES-KOH, pH 7.5 0.5M 10ml 

500mM LiCl 5M 10ml 

1mM EDTA 0.5M 200ml 

1% NP40 100% 1ml 

0.7% Na-Deoxycholate 5% 14ml 

water  64.8ml 

Total volume 100ml 

TBS 20mM Tris-HCl, pH 7.6 0.5M 2ml 
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150mM NaCl 5M 1.5ml 

water  46.5ml 

Total volume 50ml 

Elution Buffer 

50mM Tris-HCl, pH 8.0 0.5M 1ml 

10mM EDTA 0.5M 200ml 

1% SDS 10% 1ml 

water  7.8ml 

Total volume 10ml 
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Table 2.4: Primers 

Primer Name  Sequence  Use  

FANCI-RT-Fwd CTGCCCTGGCTACGAAAAAG ChIP-PCR 

FANCI-RT-Rev CATATTGCTGATCCCACCTGC ChIP-PCR 

LMNB1-RT-Fwd TGCCCTTTGTGCTGTAATCG ChIP-PCR 

LMNB1-RT-Rev GACCGTGATAAGGAGGGGAC ChIP-PCR 

MCM7-RT-Fwd CCTACCAGCCGATCCAGTCT ChIP-PCR 

MCM7-RT-Rev CCTCCTGAGCGGTTGGTTT ChIP-PCR 

BLM-RT-Fwd CAGCAGCGGAACATAAGAAGG ChIP-PCR 

BLM-RT-Rev GCCAAGAAGACTGGCATCAC ChIP-PCR 

FANCI-Fwd CTGCCCTGGCTACGAAAAAG qRT-PCR 

FANCI-Rev CATATTGCTGATCCCACCTGC qRT-PCR 

LMNB1-Fwd TGCCCTTTGTGCTGTAATCG qRT-PCR 

LMNB1-Rev GACCGTGATAAGGAGGGGAC qRT-PCR 

MCM7-Fwd CCTACCAGCCGATCCAGTCT qRT-PCR 

MCM7-Rev CCTCCTGAGCGGTTGGTTT qRT-PCR 

CCNA2-Fwd CAGAAAACCATTGGTCCCTC qRT-PCR 

CCNA2-Rev CACTCACTGGCTTTTCATCTTC qRT-PCR 

STING-Fwd AGCATTACAACAACCTGCTACG qRT-PCR 

STING-Rev GTTGGGGTCAGCCATACTCAG qRT-PCR 

ERV3-env-Fwd CCATGGGAAGCAAGGGAACT  qRT-PCR 

ERV3-env-Rev CTTTCCCCAGCGAGCAATAC  qRT-PCR 

HERV‐W-Fwd TGAGTCAATTCTCATACCTG qRT-PCR 

HERV‐W-Rev AGTTAAGAGTTCTTGGGTGG qRT-PCR 

HERVE Fwd GGTGTCACTACTCAATACAC qRT-PCR 

HERVE-Rev GCAGCCTAGGTCTCTGG qRT-PCR 

HERV F-Fwd CCTCCAGTCACAACAACTC qRT-PCR 

HERV F-Rev TATTGAAGAAGGCGGCTGG qRT-PCR 

ERVL-Fwd ATATCCTGCCTGGATGGGGT qRT-PCR 

ERVL-Rew GAGCTTCTTAGTCCTCCTGTGT qRT-PCR 

HERV-K-Fwd ATTGGCAACACCGTATTCTGCT  qRT-PCR 

HERV-K-Rev CAGTCAAAATATGGACGGATGGT qRT-PCR 

DNMT1-Fwd GCGTTCCGGCTGAACAAC qRT-PCR 

DNMT1-Rev GCATCTCCACGTCTCCCT qRT-PCR 

EZH2--RT-fwd GTGGAGAGATTATTTCTCAAGATG qRT-PCR 

EZH2-RT-Rev CCGACATACTTCAGGGCATCAGCC qRT-PCR 

B2M-RT-fwd TGACTTTGTCACAGCCCAAG qRT-PCR 

B2M-RT-Rev AGCAAGCAAGCAGAATTTGG qRT-PCR 

HLA-A-RT-fwd GGCCCTGACCCAGACCTG qRT-PCR 

HLA-A-RT-Rev GCACGAACTGCGTGTCGTC qRT-PCR 

HLA-B-RT-fwd ACTGAGCTTGTGGAGACCAGA qRT-PCR 

HLA-B-RT-Rev GCAGCCCCTCATGCTGT qRT-PCR 

HLA-C-RT-fwd CTGGCCCTGACCGAGACCTG qRT-PCR 

HLA-C-RT-Rev CGCTTGTACTTCTGTGTCTCC qRT-PCR 

IFN-beta-RT-fwd GCCATCAGTCACTTAAACAGC qRT-PCR 

IFN-beta-RT-Rev GAAACTGAAGATCTCCTAGCCT qRT-PCR 
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ISG15-RT-fwd CCTTCAGCTCTGACACC qRT-PCR 

ISG15-RT-Rev CGAACTCATCTTTGCCAGTACA qRT-PCR 

IRF7-RT-fwd GTGGACTGAGGGCTTGTAG qRT-PCR 

IRF7-RT-Rev TCAACACCTGTGACTTCATGT qRT-PCR 

MDA5-RT-fwd GAGCAACTTCTTTCAACCACAG qRT-PCR 

MDA5-RT-Rev CACTTCCTTCTGCCAAACTTG qRT-PCR 

MAVS-RT-fwd AGGAGACAGATGGAGACACA qRT-PCR 

MAVS-RT-Rev CAGAACTGGGCAGTACCC qRT-PCR 

RIG-I-RT-fwd CCAGCATTACTAGTCAGAAGGAA qRT-PCR 

RIG-I-RT-Rev CACAGTGCAATCTTGTCATCC qRT-PCR 
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Table 2.5: Antibodies 

Primary Antibody  Dilution  Application Catalogue 
number/Supplier  

mouse anti-dsRNA  1:1000 IF Scicons English 

MHC class I 1:1000 Flow cytometry BioLegend 

p-STAT1 1:1000 Western Blotting Cell Signalling Technology 

STAT1 1:1000 Western Blotting Cell Signalling Technology 

Phospho-Rb (Ser780) 
Antibody 

1:1000 Western Blotting Cell signalling 

Rb (4H1) Mouse mAb 1:1000 Western Blotting Cell signalling 

TBK1/NAK Antibody 1:1000 Western Blotting Cell signalling (#3013) 

Phospho-TBK1/NAK (Ser172) 
(D52C2) XP® 

1:1000 Western Blotting Cell signalling (#5483) 

Tri-Methyl-Histone H3 
(Lys27) (C36B11) 

1:1000 ChIP, Western 
Blotting 

Cell signalling 

Anti-phospho-Histone H2A.X 1:1000 Western Blotting Merck Millipore  

Tubulin  1:5000 Western Blotting Merck Millipore  

GAPDH  1:5000 Western Blotting MAB374, Merck 
Millipore  

Goat anti-rabbit  1:2000 Western Blotting PO448, DAKO  

Goat anti-mouse  1:2000 Western Blotting PO161, DAKO  
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2.2. Methods  

2.2.1. Reviving, maintaining, passaging and freezing of cell lines 

The human prostate carcinoma cell lines, LNCaP, VCaP, PC3, and, 22Rv1 C4-2B, were obtained 

from the American Type Culture Collection (ATCC). The LNCaP-V16D, LNCaP-MR42D and 

LNCaP-MR49F cell lines were obtained from Dr Amina Zoubeidi’s lab at the Vancouver 

Prostate Centre. WPMY-1 was obtained from Dr Mitchell Lawrence’s lab at Monash University 

and CWR-R1-D567 was obtained from Dr Scott Dehm’s lab at Masonic Cancer Centre of the 

University of Minnesota.  

 

C4-2B, 22Rv1, LNCaP, and LNCaP-V16D cell lines were maintained in RPMI-1640 containing 

10% Fetal Bovine Serum (FBS) and 2 mM L-Glutamine. PC3 and WPMY-1 cell lines were 

cultured in RPMI-1640 containing 5% FBS and 2 mM L-Glutamine. LNCaP-MR42D and LNCaP-

MR49F were maintained in RPMI-1640 containing 10% FBS, 10 uM Enzalutamide and 2 mM 

L-Glutamine. CWR-R1-D567 cells were maintained in RPMI-1640 containing 10% CSS and 2 

mM L-Glutamine. VCaP cells were maintained in DMEM high glucose containing 10% FBS, 2 

mM L-Glutamine, 2 mM Sodium Pyruvate, and 2 mM of non-essential amino acids solution. 

All cell lines were authenticated by short tandem repeat profiling by CellBank Australia and 

were regularly screened for potential mycoplasma contamination. Cell revival was carried out 

through a quick throwing of vials in a 37°C water bath, followed by slowly mixing with 7ml of 

appropriate cell culture media. The cell suspension was centrifuged at 252 g for 5 minutes, 

and then, pellets were resuspended in 2ml of media and transferred into a T25 culture flask 

with 5 ml fresh media. Flasks were incubated at 37 °C and 5% CO2 to be passaged when 70-
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80% confluency was reached. Passaging was initiated by removing the media, washing the 

cells with PBS, and trypsinization with 0.25% trypsin. After a short incubation time after 

trypsinization, trypsin was neutralized with a full medium containing 10% FBS and cell 

suspension were spun down at 252 g for 5 minutes to resuspend and plate the required 

number of cells into flasks or plates. For cryopreserving cultured cells, a flask with about 70-

80% cell confluency was washed and trypsinized, and after trypsin neutralization, the cell 

suspension was centrifuged at 252 g for 5 minutes and cell pellets were suspended in freezing 

media containing 10% DMSO, 40% FBS, 50% culture media at a cell density of 1-2 million 

cells/ml. Finally, 1 ml of cell suspension was added to labelled cryo-vials, and placed in 

isopropanol filled freezing container at -80 °C before transferring the frozen cells into liquid 

nitrogen. 

 

2.2.2. Trypan blue exclusion assay  

Depending on the doubling time and length of proliferation assay, cells were seeded at 

specific densities in multi-well plates. After cell seeding, plates were incubated at 37 °C and 

5% CO2 for at least 24 hours to allow cells to be attached to the plate surface before 

treatment. At the appropriate time-points, cells were treated with androgens prepared 

freshly in cell culture media, followed by incubation at 37 °C and 5% CO2 until the next time-

point. Past studies indicate that for1 nM DHT is considered to recapitulate a physiological 

dose (i.e. a dose replicating normal DHT levels in prostate tumours) whereas 100 nM is used 

to recapitulate a supraphysiological level of DHT (Jaaskelainen, Deeb et al. 2006, Li, Chan et 

al. 2013, Schweizer, Antonarakis et al. 2015, Hedayati, Haffner et al. 2016). We used these 
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studies to guide our dosing of in vitro PCa models to mimic physiological and 

supraphysiological conditions.   

 

At the end of each time-point, cell viability in allocated plates was assessed using the Trypan 

blue exclusion assay. To determine the number of live cells in allocated plates, the culture 

media, and the PBS used for washing were collected followed by treatment of cells with 0.25% 

trypsin. After 2-3 minutes of incubation at 37°C, trypsin was neutralised through adding a 

culture media containing FBS or CSS, and then the cell suspension was added to the previously 

collected media and PBS. Subsequently, the cell suspension was spun down at 252 g for 5 

minutes and after removing the supernatants, cell pellets were re-suspended in an 

appropriate volume of media. The cell suspension was mixed with Trypan Blue at a 1:1 ratio 

and live cells were counted using the haemocytometer. 

 

2.2.3. Cell growth assay using an IncuCyte platform 

IncuCyte is a live-cell imaging and analysis platform, allowing to monitor and quantify the cell 

behaviour over time. For assessment of cell proliferation using the IncuCyte, 50 µl of cell 

suspension at the appropriate cell density was seeded in 96-well plates and plates were 

incubated overnight at 37 °C and 5% CO2.  On day 0, 50 µl of media containing freshly prepared 

drugs and IncuCyte dyes were added to the wells. IncuCyte™ NucLight™ (1:1500) was used 

for labelling the live cells, and Sytox Green dye (1:1000 from 100 nM stock) was used to 

identify the dead cells. Following the treatment at day 0, automated imaging was carried out 

until day 7 as the final time-point. Drug re-treatment was carried out on day 3. Image analysis 

was performed using IncuCyte™ software.  
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2.2.4. Western Blotting  

2.2.4.1. Preparation of Cell Lysates  

To prepare protein lysates, cells were plated at the appropriate seeding density in 6-well 

plates. To collect cells, media was removed and cells were washed with ice-cold PBS and 

subsequently, cells were scrapped on ice into 100 µl of RIPA buffer. Protein lysates were spun 

down at 10,000 g for 10 min and supernatants were stored at -80 °C. 

 

2.2.4.2. Bradford Assay  

The total protein concentration of extracted cell lysates was determined using the Bradford 

assay. The assay was carried out in a 96-well flat-bottomed plate. In this experiment, 1 µl of 

each sample was added in wells contained 159 µl Baxter water for irrigation. To quantify the 

protein concentration in cell lysates, a standard curve was prepared by adding an increasing 

amount of Bovine Serum Albumin (BSA) (1 mg/mL) ranging from 0 to 6 µg in wells allocated 

for standard samples (in duplicate). 40 µl of Bradford reagent was pipetted into each well to 

a total volume of 200 µl. The plate was mixed and incubated at RT for 5 min before being read 

at 595 nm on a PolarStar microplate reader. The quantification of protein in each sample was 

performed using the standard curve. 

 

2.2.4.3. Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

Western immunoblotting was carried out in BioRad precast SDS-PAGE gels (4–12%). 20 µg of 

total protein was mixed with 6x loading dye and heated at 95 °C for 5 minutes, after which 

samples were loaded in the gel to run at a constant 120V for 90 min. Gels were run in an 
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immunoblotting running buffer. 6 µl of Precision Plus Protein Dual Color Standards was used 

as a size marker. 

2.2.4.4. Western Transfer and Immunoblotting  

After running the SDS-PAGE gel, proteins were transferred to a nitrocellulose membrane in a 

1x Transfer Buffer using the BioRad Criterion Blotter at a constant 400 mA for 60 minutes. To 

verify the protein transfer, the membrane was stained with Ponceau S, followed by overnight 

blocking at 4 °C in a blocking buffer containing 1% skim milk powder or 2% BSA dissolved in 

TBST (1x). Subsequently, the membrane was probed using primary and then HRP-conjugated 

secondary antibodies at room temperature (for 2 hours each). HRP-bound antibody-protein 

complex was detected using ECL solution, imaged on a BioRad Chemidoc MP imaging system 

and analysed using Image Lab Software.  

 

2.2.5. Gene expression and transcriptome analysis 

2.2.5.1. RNA isolation from cell lines 

To isolate RNA from cells, they were grown and treated in 6-well plates. At appropriate time 

points, media was removed from wells and cells were harvested in 1 mL Trizol per well and 

collected into 1.5 ml Eppendorf tubes. Following a 15-minutes incubation at 37 °C, 200 µl of 

chloroform was added into each tube which was then vigorously shaken for 15 s before a 3 

min incubation at room temperature. Then, samples were centrifuged at 12,000 g at 4 °C to 

isolate the aqueous phase on the top layer. The supernatant was transferred into a new tube 

containing 2 µl of Glyco-blue (Life Technologies), 2.5 volume 100% ethanol, 10 mM MgCl2, 

and 0.1 volume 5M NaCl. Samples were incubated overnight at -20 ˚C, followed by spinning 
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down at 12,000 g for 30 min at 4 °C. RNA pellets then were washed using 80% EtOH and 

resuspended in 20 µl nuclease-free water. RNA concentration and quality were quantified 

using Thermo Scientific NanoDrop 2000. Samples were stored at -80 ˚C until further use for 

qRT-PCR or sequencing (RNA-seq). 

 

2.2.5.2. DNase Treatment  

To avoid the interference of DNA in downstream applications, RNA samples were treated with 

a TURBO DNA-freeTM DNase Treatment kit according to the manufacturer's instruction 

(Ambion cat#AM1907). For DNase treatment, 2 to 4 ug of RNA dissolved in 44 µl RNase free 

water was mixed with DNase reaction mixture containing 5 µl of 10xTurbo DNAse Buffer and 

1 µl TURBO DNase enzyme, followed by a 30-minutes incubation at 37 °C. Following the 

incubation, 5 µl of DNase inactivation reagent was added to the samples and after a 5-minutes 

incubation at room temperature, samples were spun down at 10000 g for 1.5 minutes. 47 µl 

of supernatant was transferred into new tubes containing 50 µl 75% isopropanol and 2 µl 

Glycoblue and incubated overnight at -80 °C. Samples were centrifuged at 16.1 g for 20 

minutes at 4 °C and RNA pellets were dried after washing with 1 ml of 75% ethanol. Dried 

RNA pellets were re-suspended in 20 µl of TE buffer, and after a 10 minutes incubation at 55 

°C, they were quantified using the Nanodrop. 

 

2.2.5.3. Reverse Transcription  

Using the iScriptTM Reverse Transcription kit, DNase-treated RNA samples were converted 

into cDNA according to the manufacturer's instruction. For a reverse transcriptase (RT) 

reaction, 500 ng of RNA sample (diluted to 15 µl with TE buffer) was mixed with iScript master 
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mix containing 4 µl of iScript reaction mix and 1 µl of reverse transcriptase enzyme. Two 

control samples also were prepared including one “No-RNA” sample and one “No-RT” sample; 

the No-RNA sample contained 15 µl nuclease-free water and 5 µl iScript master mix and the 

No-RT sample contained all components (including RNA) except for reverse transcriptase. RT 

reactions were performed by incubating samples at room temperature for 5 minutes, 42 °C 

for 30 minutes and 85 °C for 5 minutes. The prepared cDNA samples were diluted 1:5 in 

nuclease-free water and stored at -20 °C until running the polymerase chain (PCR) reaction. 

 

2.2.5.4. Quantitative polymerase chain reaction (qRT-PCR) 

Gene expression was examined via quantitative RT-PCR (qRT-PCR) assay using a BioRad C1000 

Thermal Cycler and CFX384TM Real-Time System. The qRT-PCR reaction was performed by 

preparing a mixture of 0.5 µl forward primer (5 pmol/ µl), 0.5 µl reverse primer (5 pmol/ µl), 

5 µl iQ-SYBR Green Supermix, 2 µl RNase free water, and 2 µl cDNA. The qRT-PCR samples 

were prepared in three biological and three technical replicates, followed by a 3-step PCR 

program including 1) 3 minutes in at 95 °C, 2) 40 cycles of 15 sec at 95 °C, 15 sec at 55 °C- 62 

˚C (depending on the annealing temperature of primers used), and 30 sec at 72 °C and 3) 1 

minute at 95 °C, 1 minute at 55 °C and 10 sec 60 °C. Data were analysed using CFX Manager 

Software Version 3.0 (Bio-Rad Laboratories, Inc.). Expression of target genes was calculated 

by the 2-ΔΔCt method relative to the expression of GAPDH (reference gene) as described 

previously (Schmittgen and Livak 2008).   
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2.2.5.5. RNA-seq 

LNCaP cells were seeded at the appropriate seeding density in 6-well plates and treated with 

Vehicle, MeT 1 nM, DHT 1 nM, and a combination of MeT 1 nM + DHT 1 nM and total RNA 

was extracted at 6 hours and 24 hours after treatment as described in section 2.2.5.1. For 

each treatment condition, three biological replicates were used to generate samples for RNA-

seq. RNA concentration was quantified by Nanodrop 2000 (Thermo Fisher Scientific) and total 

RNA (2 µg) was supplied to the South Australian Health and Medical Research Institute 

(SAHMRI) for RNA integrity check, library preparation and high throughput sequencing. The 

integrity of RNA samples was assessed using The 2100 Bioanalyzer system (The Agilent). RNA 

sequencing libraries were constructed with TruSeq® Total RNA HT kit (Illumina) and libraries 

were sequenced on the Illumina NextSeq 500 platform with the stranded, paired-end read of 

80bp.  

 

2.2.6. Immunofluorescence  

LNCaP cells were seeded on glass coverslips in 6-well plates. To improve cell adhesion, glass 

coverslips were coated with 1:8 diluted L-Poly-Lysine. After treating the cells, at appropriate 

time points, cells were fixed in 4% paraformaldehyde for 10 minutes, permeabilized in 0.1% 

Triton X-100 for 15 minutes, and blocked in 2.5% BSA solution for 1 hour. The coverslips then 

were incubated with a primary antibody and incubated overnight at 4 °C, followed by washing 

(twice with 5 min intervals) and then incubation with a fluorescent-tagged secondary 

antibody for 1 hour at room temperature. Cell nuclei were visualised by co-staining the cells 

with 4´-6-Diamidino-2-phenylindole (DAPI; Invitrogen) for 1 min. Imaging was carried out 
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using a confocal microscope (Olympus FV3000 Confocal Microscope) and analysed using the 

Image J software (Schneider, Rasband et al. 2012).  

 

2.2.7. Cell cycle analysis by fluorescence-activated cell sorting (FACS) 

Cells were seeded in 6-well plates and incubated overnight at 37 °C and 5% CO2. At 

appropriate time points, cells were trypsinized after washing with a freshly prepared wash 

buffer containing PBS with 2% FBS. After trypsin treatment, the cells were pipetted to 

resuspend and break up any clumps. The cell suspension was added to a 5 ml FACS tube 

(containing previously collected cell culture media), each well was washed with PBS, and then 

this wash was added to tubes. Tubes were centrifuged at 700 g for 5 min. Cell pellets were 

re-suspended and washed with 1ml PBS, followed by centrifugation at 700 g for 5 minutes. 

After removing supernatants, cell pellets were resuspended in residual liquid by flicking the 

tubes and at the end, 1ml ice-cold 70% EtOH in PBS was added into each tubes containing the 

cell suspension to be fixed overnight at 4 °C. Following cell fixation with ethanol, cells were 

centrifuged at 700 g for 5 minutes and the cell pellets were washed twice with 1 ml HBSS + 

2% FBS. Cells were then stained with 1 ml of DAPI (10 ug/mL). The prepared cell suspension 

was used for cell cycle analysis based on DNA content using BD FACSCanto II flow cytometer 

(Analyser). Following values/options were applied as a Cytometer Settings: FSC (forward 

scatter): 284, linear, signal height (H) and area (A) were measured; SSC (side scatter): 236, log, 

signal height (H) and area (A) were measured; DAPI: 277, linear, signal height (H), width (W) 

and area (A) were measured. FSC threshold was adjusted to 1200. After acquiring 50,000 

events from each tube, the analysis was carried out using the FlowJo software program.  
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2.2.8. LINE-I ELISA assay for assessment of DNA methylation  

The Global DNA Methylation-LINE-I Kit was used to assess the DNA methylation status of Long 

Interspersed Nucleotide Element 1 (LINE-I) repeat elements, which serves as a proxy for global 

DNA methylation level.  

 

2.2.8.1. Extraction of genomic DNA  

Genomic DNA was isolated using the QIAamp® DNA Mini kit according to the manufacturer's 

instruction. Cells were grown and treated in a 6-well plate and at the appropriate time points, 

(see Chapter 3) media was removed. Cells were washed with PBS and then treated with 

trypsin as described above, followed by the addition of media containing FBS to neutralise 

the trypsin. Subsequently, the cell suspension was centrifuged at 300 g for 5 min, and the 

supernatant was removed. Cell pellets were re-suspended in 200 µl PBS and 20 µl proteinase 

K was added into cell suspension. After adding the proteinase K, 200 µl of Buffer AL was added 

and the mixture was mixed by pulse-vortexing for 15 sec, followed by incubation at 56 °C for 

10 minutes. After brief centrifugation, 200 µl of 96–100% ethanol was added to the samples 

and mixed by pulse-vortexing for 15 sec. Samples were then applied to a QIAamp Mini spin 

column and spun down at 6000 g for 1 minute. The tubes containing the filtrates were 

discarded and the spin columns were placed in clean 2 ml collection tubes. 500 µl of Buffer 

AW1 was then added into each column, which was followed by spinning down at 6000 g for 

1 minute, and then replacing the tubes containing the filtrates with clean 2 ml collection 

tubes. 500 µl of Buffer AW2 was then added into the columns, after which they were 

centrifuged at 16.1 g speed for 3 minutes. After replacing the collection tubes with clean 
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tubes, columns were centrifuged at 16.1 g speed for 1 minute and then collection tubes were 

replaced with 1.5 ml microcentrifuge tubes. Finally, 200 µl of AE buffer was added to each 

column and after incubation at room temperature for 1 min the columns centrifuged at 6000 

g for 1 min to elute DNA. DNA yield was assessed by Nanodrop and samples were stored at -

20 °C. 

 

2.2.8.2. MseI Digestion of Genomic DNA 

The methylation status of LINE-I elements is detected through the hybridization of LINE-I 

probes with DNA fragments generated by MseI-mediated digestion reaction. Digestion 

reactions were performed by adding 10 µl of genomic DNA (100 ng/ µl) into a reaction mixture 

consisting of 2 µl reaction buffer (10x), 0.5 µl of MseI enzyme (10U/ µl), and 7.5 µl sterile 

water. Sample tubes were mixed by pipetting and incubated at 37°C. After 4 hours of 

incubation, Msel enzymatic activity was stopped by heating the tubes at 65°C for 20 minutes. 

After digestion, DNA concentration was measured by Nanodrop. Digested DNA samples were 

stored at -20 °C until further use. 

 

2.2.8.3. DNA Sample Hybridization 

For DNA hybridization, 25 µl of digested DNA samples (4 ng/ µl) was added into 0.2 ml PCR 

tubes (in triplicates) followed by adding 25 µl of LINE-I probe solution. For quantification of 

DNA methylation in experimental samples, a standard curve was needed to be prepared using 

standards provided in the kit. Methylated and non-methylated DNA standards were mixed in 

different combinations to prepare seven standard samples with a known DNA methylation 

status. Then, in labelled PCR tubes, 25 µl of each standard sample (100 ng DNA/well) was 
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mixed with 25 µl of LINE-I probe solution. Finally, all samples were placed in a thermal cycler 

and incubated as following: 98 °C for 10 minutes, 68 °C for 1 hour, and a quick ramp to 25 °C. 

 

2.2.8.4. DNA binding to the streptavidin-coated plate and colorimetric detection 

After DNA hybridization, the content of each PCR tube was transferred into an allocated well 

coated with streptavidin and then the plate was incubated at room temperature for 1 hour 

with mild agitation. Subsequently, the contents of each well were removed by quickly 

inverting the plate, followed by washing wells 3x with 200 µl 1X Buffer W (10 minutes each 

wash). After each wash, the contents of wells were removed by pipette and 200 µl of Assay 

Buffer AM3 (blocking buffer) was added to each well and then incubated for 30 minutes. After 

removing the blocking buffer, 100 µl of diluted 5-Methylcytosine antibody was added per well 

and incubated for 1 hour, followed by 3x washes with 200 µl 1X Wash Buffer. 100 µl of diluted 

HRP-conjugated anti-mouse antibody was then added to each well for 1 hour at room 

temperature. Wells were then washed 3x using 200 µl of 1X Wash Buffer before adding 100 

µl developing solution to each well. The reaction was stopped by adding 100 µl of stop 

solution when a medium to dark blue colour was evident in the standard well with the highest 

concentration of methylated DNA. Absorbance was read using a spectrophotometer at 

450nm. The percentage of 5-mC associated with each sample was analysed using the 

prepared standard curve. 
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2.2.9. Chromatin immunoprecipitation (ChIP) 

2.2.9.1. Cell treatment and cross-linking  

LNCaP cells were seeded in 15 cm culture dishes at 5×106/plate (for AR-ChIP; three plates per 

replicate) and ×106/plate (for H3K27me3-ChIP; one plate per replicate) in their normal growth 

medium. For AR-ChIP, phenol-red-free medium supplemented with 5% DCC-stripped FBS was 

used and cells were allowed to grow for 2 days prior to treatment with Vehicle (Ethanol), MeT 

1 nM, and DHT 1 nM for 4 hours. For H3K27me3 ChIP, phenol-red-free medium supplemented 

with 5% FBS was used and cells were allowed to grow for 1 day before treating the cells with 

Vehicle (Ethanol), MeT (1nM and 100nM), and DHT (1nM and 100nM) for 72 hours. To cross-

link, the target protein to DNA, 20ml of pre-warmed Solution A containing freshly added 1% 

formaldehyde was added to each 15cm-cell culture dish. Plates were incubated for 10 

minutes in the fume hood, and then formaldehyde was quenched by adding 2 ml of 1 M 

glycine (pH 7.5) and incubating for 5 minutes. Subsequently, cells were washed twice with 

ice-cold PBS, after which cells were scraped into 500 µl PBS + PI per 15 cm dish. After 

transferring the harvested cells into 2.0 ml Eppendorf tubes, they were centrifuged at 7,168 

g for 3 minutes at 4 ºC and cell pellets were resuspended in 500 µl PBS + PI. Centrifugation 

and removal of the supernatant were repeated and then cell pellets were frozen in liquid 

nitrogen and stored at -80 ºC until further use. 

 

2.2.9.2. Preparation of magnetic beads 

Dynabeads (Protein A, Invitrogen) were used for conjugation with AR antibody (Abcam; 

ab108341) or H3K27me3 antibody (cell Signalling; C36B11). Dynabeads were vortexed to be 

ensured they were fully resuspended. Then, 100 µl per ChIP was added into a 2 ml, round-
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bottomed, Eppendorf tube and put in a magnetic stand, on ice. The supernatant was removed 

and beads were washed and blocked three times with cold 1ml PBS + 5 mg/ml BSA. After 

washing, beads were re-suspended in 500 µl of cold PBS/BSA and 10 µg /IP of AR antibody or 

7.5 µg /IP H3K27me3 antibody was added into the tubes containing the prepared dynabeads. 

Tubes were rotated at 12-20 rpm overnight at 4 °C. 

 

2.2.9.3. Sonication and immunoprecipitation  

Cell pellets were resuspended in 1 ml of Lysis Buffer 1 (LB1) + PI and then tubes were rotated 

at 4 C for 10 minutes, centrifuged at 2,000 g for 5 min at 4 oC, after which supernatants were 

removed. Cell pellets were then resuspended in 1 ml LB2 + PI, rotated at 4 oC for 10 minutes, 

centrifuged at 2000 g for 5 minutes at 4 ºC, after which supernatants were removed. Cell 

pellets were then resuspended in 300 µl of LB3 + PI per each 15 cm plate. 300 µl of cell 

suspension from each replicate were transferred into 1.5 ml TPX sonication tubes (Diagenode) 

and they were sonicated (Bioruptor Plus, Diagenode) as follows: 30s on and 30s off, on high, 

for 10 cycles. Ice was added to water in the sonicator after every round to avoid increasing 

the temperature. Sonicated samples from each replicate were re-pooled and 10 µl aliquot of 

the sonicated chromatin was evaluated by agarose gel electrophoresis as following protocol. 

5 µl of sonicated DNA was transferred into a 250 µl PCR tube containing 2 µl of NaCl 500 mM 

and the final volume was adjusted to 20 µl with sterile water. Samples were heated in a 

thermocycler at 100 oC for 20 minutes, followed by ramping the temperature down to 50 oC. 

Then, tubes were removed from the thermocycler and incubated at room temperature for 5 

minutes. Reverse cross-linked samples were run on 1.2% agarose gel to check the sonication. 

Fragment sizes should be ideally approximately 200-500 bp.  
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After confirming the sonication efficiency on an agarose gel, 10% Triton X-100 dissolved in 

LB3+PI was added into pooled sonicated samples to a final concentration of 1%. Tubes were 

then centrifuged at 20,000 g for 10 minutes at 4 oC. In the meantime, magnetic beads 

prepared in 2.2.9.2 were washed 3x using 1ml ice-cold PBS/BSA using a magnetic stand to 

remove unbound antibodies, followed by re-suspending in 100 µl of LB3+PI+1% triton. 

Sonicated chromatin supernatants were transferred into fresh 2ml tubes and 50 µl from each 

sample was kept as an Input sample. Then, 100 µl of conjugated magnetic beads were added 

to the tubes containing sonicated chromatin and diluted with LB3 (+PI) with a final 

concentration of 1% Triton X-100 to ~1.8 ml. tubes were rotated overnight at 4 ºC.  

 

2.2.9.3. Reverse cross-linking and DNA isolation 

After overnight incubation of beads with chromatin samples, beads were washed 6x with 1ml 

ice-cold ChIP-RIPA buffer using a magnetic stand. 200 µl of elution buffer was then added into 

each tube and incubated on a thermal shaker at 65 °C for 15 min, with a brief vortexing every 

5 min. Reverse crosslinking of samples was performed by 18 hours incubation at 65 °C. At the 

same time, 150 µl of elution buffer was also added to each Input sample which was prepared 

after sonication and had been stored at -80 °C, followed by 18 hours incubation at 65 °C. After 

incubation time, tubes were placed on a magnetic stand and supernatants containing eluted 

antibody: target: DNA complexes were transferred into fresh Eppendorf tubes. 

 

In the next step, 200 µl of TE buffer and 8 µl of 1mg/ml RNAse A were added into each sample, 

and then the tubes were incubated at 37 ºC for 1 hour. Subsequently, 4 µl of 20 mg/ml 

Proteinase K was added per sample and tubes were incubated at 55 ºC for 2 hours. 400 µl of 
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Phenol: Chloroform: Isoamyl alcohol (25:24:1) was added per tube and after mixing for 15 sec 

the suspension was added into pre-spun 5PRIME phase-lock gel column (Quanta Biosciences). 

Phase-lock columns were centrifuged for 5 minutes at 10,000 g at room temperature, 

followed by transferring the upper layer (~ 400 µl) into an Eppendorf tube containing 16 µl of 

5 M NaCl and 2 µl glycogen (20 µg/ µl). 800 µl 100% ethanol was added per tube and samples 

were incubated overnight at -80 ºC. The next day, samples were centrifuged at 4 ºC at 16.1 g 

for 20 minutes. The supernatant was removed and DNA pellets were washed using 500 µl cold 

70% ethanol. After spinning down at full speed for 5 minutes at 4 ºC, ethanol was removed 

and pellets were air-dried at room temperature. After drying the pellets, DNA samples were 

resuspended in 20 µl of 10mM Tris HCl pH 8.0. Samples were stored at -80 ºC until analysis 

by qPCR or Illumina sequencing. 

 

2.2.9.4. Preparing the ChIP DNA samples for next-generation sequencing  

DNA concentration was measured by Qubit dsDNA HS assay, according to the manufacturer's 

instruction (Thermo Fisher Scientific). Briefly, 200 µl of Qubit working Solution for each 

standard and sample was prepared by diluting the fluorescent reagent 1:200 in the kit buffer. 

To prepare the standards, 10 µl of each standard vials (low and high) were mixed with a 190 

µl working solution. Qubit samples were prepared by mixing 1 µl of each sample with 199 µl 

of working solution. Samples were vortexed briefly and incubated for 2 minutes at room 

temperature. Using the standards, DNA concentration in each sample was measured by the 

Qubit Fluorometer. 5 ng of ChIP DNA (ChIP-enriched or input) were used for ChIP-sequencing 

library preparation using an Illumina TruSeq ChIP Library Prep kit (Illumina). Prepared samples 
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were sequenced on the Illumina Nextseq 500 platform using the single-end protocol with a 

read length of 75 bp at the South Australian Health and Medical Research Institute (SAHMRI). 

 

2.2.9.5. PCR analysis of ChIP DNA 

For ChIP–PCR reactions, iQ SYBR Green Supermix (BIO-RAD) and primers as listed in Table 2.5 

were used. For the AR-ChIP PCR experiment, KLK3 was used as a positive control for AR 

binding, and a non-coding region of DNA named NC2 was used as a negative control. PCR was 

performed using the CFX384 Real-Time PCR Detection System (BIO-RAD) and standard cycling 

conditions at the optimised annealing temperature. Enrichment of target factor in ChIP–PCR 

was analysed as the percentage of input. 

 

2.2.10. RNA-seq analysis: 

The quality of raw data was initially assessed using the FastQC platform 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The raw FASTQ files were 

then filtered for short sequences using Cutadapt v1.16.6 (Martin 2011) with the following 

settings:  minimum overlap length in Adaptor options: 3, Minimum length in filter options: 

20, maximum error rate: 0.1, quality cut-off: 20. The quality of filtered FASTQ files (averaging 

30 million read pairs per sample) were checked again using the FastQC program. Reads were 

mapped against the human reference genome (hg38) using the STAR spliced alignment 

algorithm version 2.6.0 b-2 (Dobin, Davis et al. 2013) with default parameters. FeatureCounts 

was used to count and assign the reads in generated BAM files to genomic features (Liao, 

Smyth et al. 2014). Count tables generated by featureCount were used for differential 

expression analysis using DESeq2 (Love, Huber et al. 2014). Statistically, p-adj ≤ 0.05 were 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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used to identify the differentially expressed genes (DEGs). Principal component analysis and 

the gene expression visualisation were performed using ClustVis (Metsalu and Vilo 2015).  

 

2.2.11. ChIP-seq analysis: 

The quality of raw FastQ files was checked using FastQC v0.72 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The poor-quality reads were 

removed using Trimmomatic Galaxy v.0.35 (Bolger, Lohse et al. 2014) and subsequently, raw 

data were aligned to GRCh37 (hg19 ) genome assembly using Bowtie2 version: 2.3.4.3 with 

default parameters (Langmead, Trapnell et al. 2009). SAMtools was used to remove the low-

quality mapped reads (MAPQ < 10), multi-mapping reads, and PCR duplicates (Li, Handsaker 

et al. 2009). Peak calling from alignment results were carried out using MACS2 callpeak v 

2.1.1.20160309.6, with minimum FDR (q-value) cutoff for peak detection 0.05  (Zhang, Liu et 

al. 2008, Feng, Liu et al. 2012). BAMCoverage was used to convert BAM files to bigwig, 

followed by data visualisation using the Integrative Genomics Viewer (Ji, Jiang et al. 2008, 

Robinson, Thorvaldsdóttir et al. 2011). deepTools was used to generate the Heatmaps (Galaxy 

Version 3.3.2.0.0) (Ramírez, Ryan et al. 2016). Peak annotations were performed using 

Cisgenome v2.0 (Ji, Jiang et al. 2008). 

 

2.2.12. Statistical analyses: 

Statistical analyses were done using GraphPad Prism 9. Detailed methods for statistical 

analysis are included in figure legends or the individual Chapter methods. 

 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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ABSTRACT 

Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen 

deprivation therapy is a standard-of-care treatment for metastatic prostate cancer (PCa). 

Paradoxically, recent studies have suggested that “extreme” activation of AR using high doses of 

androgens can - similarly to suppression of AR activity - inhibit the growth of PCa. This study exploited 

a potent synthetic androgen, methyltestosterone (MeT), to investigate the mechanism of action of 

high dose androgen therapy. MeT strongly inhibited the growth of PCa cells expressing AR, but not 

AR-negative models. By integrating ChIP-seq and RNA-seq data, we found that the genes and 

pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT educed 

a quantitatively greater androgenic response. The transcriptomic analysis also revealed that MeT 

caused dysregulation of transposable element expression, with long-term treatment resulting in 

upregulation of endogenous retroviruses (ERVs). Mechanistically, increased expression of ERVs was 

linked to MeT-mediated down-regulation of DNA methyltransferases and global DNA 

hypomethylation. Increased ERV expression was associated with accumulation of double-stranded 

RNA and a “viral mimicry” response that resulted in activation of interferon signalling, upregulation of 

MHC Class I molecules and enhanced tumor cell immunogenicity as measured by enhanced 

recognition by tumour-specific CD8+ T cells. Importantly, we identified positive associations between 

AR activity and ERVs/anti-viral pathways in clinical datasets. Collectively, our study reveals that the 

potent androgen MeT can activate innate immune responses in PCa cells, a finding that has potential 

implications for the development of androgen-mediated strategies to sensitize PCa to 

immunotherapies. 
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INTRODUCTION 

Prostate cancer (PCa) cells are exquisitely dependent on androgens and the androgen 

receptor (AR) for growth and survival, which explains the efficacy of androgen deprivation 

therapy (ADT) as a treatment for advanced PCa. ADT is comprised of hormonal manipulations 

that reduce circulating androgen levels and/or directly block AR activity. While almost all men 

initially respond to ADT, the development of a therapy resistant disease state, referred to as 

castration-resistant prostate cancer (CRPC), is inevitable. In the vast majority of cases, 

resistance to ADT is mediated by adaptive alterations to the AR signalling axis, highlighting 

addiction to this pathway as a hallmark of PCa (Coutinho, Day et al. 2016).   

 

AR is a transcription factor that, upon binding to androgen, translocates from the cytoplasm 

to the nucleus and interacts with specific cis-regulatory elements (termed androgen response 

elements) on chromatin to regulate a gene expression program that promotes growth, 

survival and metabolism of PCa cells. The transcriptional output of AR can be influenced by a 

multitude of parameters, including hundreds of co-regulators (Liu, Kumari et al. 2017), 

epigenetic factors (Gao and Alumkal 2010) and the concentration and composition of the 

androgenic milieu (Auchus and Sharifi 2020). Additional complexity arises from the evolution 

of AR signalling axis components during progression to CRPC. For example, direct changes to 

the AR gene (mutation, amplification and rearrangements that result in AR splicing 

alterations) alter cellular responses to androgens, alternative ligands and anti-androgens, 

collectively enabling high AR activity despite ongoing ADT (Coutinho, Day et al. 2016). 
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Not surprisingly, most work on AR to date has focussed on its oncogenic functions. However, 

it is important to consider that in normal adult prostate epithelial cells AR promotes cellular 

quiescence by preserving luminal differentiation and protein-secretory activity. This 

understanding may explain the decades-old observation that administration of high doses of 

testosterone can result in clinical responses in men with CRPC (Huggins 1965). This apparent 

paradox is supported by pre-clinical studies demonstrating that low androgen levels promote 

growth of PCa whereas high androgen concentrations are growth-inhibitory (Langeler, van 

Uffelen et al. 1993, Kokontis, Hay et al. 1998, Mohammad, Nyquist et al. 2017). The concept 

of therapeutic application of androgens in PCa has culminated in recent clinical trials testing 

supraphysiological levels of testosterone (SupraT), which have yielded promising results in a 

subset of patients (Schweizer, Antonarakis et al. 2015, Teply, Wang et al. 2018, Denmeade, 

Wang et al. 2021, Markowski, Wang et al. 2021, Sena, Wang et al. 2021). In the clinic, SupraT 

is often combined with ADT such that patients are cycled between near-castrate and very 

high serum T levels, a treatment strategy referred to as bipolar androgen therapy (BAT) 

(Schweizer, Antonarakis et al. 2015, Teply, Wang et al. 2018, Denmeade, Wang et al. 2021, 

Markowski, Wang et al. 2021, Sena, Wang et al. 2021). 

 

A detailed understanding of the mechanism(s) by which androgens can inhibit PCa growth is 

important to optimise clinical benefit of SupraT/BTA. Numerous processes have been 

purported to explain the activity of SupraT, including AR transcriptional reprogramming (Gao, 

Gao et al. 2016, Nyquist, Corella et al. 2019) and AR’s effects on the DNA damage response 

(Chatterjee, Schweizer et al. 2019), DNA replication (D'Antonio, Vander Griend et al. 2009) 

and oxidative stress (Bui, Huang et al. 2017), but the relative importance of each and whether 
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or not other anti-cancer effects exist are poorly understood. In this study, we investigated the 

mode of action of a synthetic androgen, 17α-methyl-testosterone (MeT), which can potently 

inhibit PCa growth. By dissecting the transcriptome of MeT-activated AR, we uncovered a 

novel response of PCa cells to potent androgen action. Specifically, we demonstrate that MeT 

down-regulated DNA methyltransferases and hence reduced DNA methylation throughout 

the genome, an effect that was associated with increased expression of endogenous 

retrovirus transcripts, activation of interferon (IFN) signalling and enhanced immunogenicity 

of PCa cells. Thus, our findings demonstrate that potent androgenic action can cause viral 

mimicry in PCa cells, which may provide a basis for new targeted investigations into combining 

androgen therapies with immunotherapies.  

 

RESULTS 

Methyl-testosterone is a potent activator of AR activity and suppressor of prostate cancer cell 

growth 

In studies interrogating the therapeutic potential of AR ligands in PCa, we noted that MeT has strong 

growth-inhibitory activity in LNCaP cells grown in full serum (i.e. androgen replete conditions) at doses 

as low as 1 nM (Fig. 1A). Conversely, DHT only suppressed cell growth only at doses greater than 1 nM 

(Fig. 1A). Growth of the CRPC cell lines C42B, MR49F, and 22Rv1 was also inhibited by MeT at doses 

ranging from 1-100 nM (Fig. 1B). DHT also suppressed the growth of C42B and MR49F cells but had no 

effect on 22Rv1 cells (Supplementary Fig. 1A).  Importantly, neither the AR-negative model PC3 nor 

the R1-D567 model, which expresses an AR variant that lacks the ligand-binding domain (ARv567es), 

were affected by MeT (Supplementary Fig. 1B), indicating that growth suppression was a consequence 

of binding of MeT to AR.  
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To better understand the activity of MeT in PCa cells, we undertook a series of molecular assays.  First, 

we compared MeT and DHT in a classic transcriptional activation assay using a probasin 

promoter:luciferase reporter construct (PB3-luc; (Jia, Kim et al. 2003)).  At lower doses (0.1 nM and 

0.5 nM), MeT more potently activated endogenous AR in LNCaP cells and exogenously-supplied AR in 

PC3 cells AR (Fig. 1C). No difference in transcriptional activity was observed between the 1 nM MeT 

and DHT treatments (Fig. 1C), possibly because of signal saturation, which is known to occur with these 

types of luciferase assays (Rakotondrafara and Miller 2008, Heise, Oppermann et al. 2013, Meliani, 

Leborgne et al. 2015). This experiment provided evidence that MeT could more potently induce the 

transcriptional activity of AR compared to the physiological ligand DHT.   

 

Subsequently, to evaluate MeT regulation of AR at a global level and in a more physiological setting, 

we conducted AR ChIP-seq and RNA-seq in LNCaP cells. The AR-MeT cistrome was ~3-fold larger than 

the equivalent AR-DHT cistrome (Fig. 1D). However, heat maps and density plots of sequencing tags 

(Fig. 1E) revealed that the majority of MeT-induced AR binding sites were also targeted, albeit more 

weakly, by DHT-activated AR; hence, we refer to these as “MeT-enriched” (Fig. 1E). For both ligands, 

AR cistromes were mainly comprised of binding sites distal from gene promoters (Supplementary 

Table 1), which mirrors what has been reported previously (Tewari, Yardimci et al. 2012, Stelloo, 

Bergman et al. 2019). Although we cannot rule out the possibility that MeT creates additional AR 

binding sites in the LNCaP genome, our findings suggest that, in general, MeT did not lead to new AR 

binding events but rather enhanced its interaction with canonical regulatory elements. This concept 

was supported by transcriptomic analysis, which revealed that genes differentially expressed in 

response to MeT (n = 1212, FDR ≤ 0.05) were also altered by DHT in a directionally-consistent manner 

albeit to a lesser degree (Fig. 1F; Supplementary Data 1). This effect was most striking when assessing 

the 285 genes that were differentially expressed by DHT compared to vehicle (FDR ≤ 0.05): 99% 



 

94 | P a g e  
 

(282/285) of these genes were also regulated by MeT, all of those 282 genes were regulated in the 

same direction by both hormones, and 99% (280/282) were more strongly regulated by MeT than by 

DHT (average 1.6-fold stronger downregulated and 1.1-fold stronger upregulated (Supplementary 

Data 1). The majority of genes altered by either hormone were downregulated (Fig. 1F and 

Supplementary Data 1). Collectively, these findings suggest that MeT is a potent activator of canonical 

AR functions that largely exhibits quantitative, rather than qualitative, differences to the endogenous 

ligand DHT.  
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Fig. 1. Methyl-testosterone has potent androgenic and growth suppressive activity in prostate 
cancer cells. (A) MeT potently suppresses the growth of LNCaP cells (left graph), as determined by 
Trypan blue growth assay. The response of cells to DHT is shown on the right. Error bars are ± SEM. P 
values (day 7) were determined using ANOVA and Dunnett’s multiple comparisons tests (*, p < 0.05; 
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001). NS, not significant. (B) MeT inhibits the growth of CRPC 
models of PCa (C42B, MR49F and 22Rv1), as determined by Trypan blue growth assay. Statistical 
analysis was as for (A). (C) Activation of AR transcriptional activity by MeT in PC3 cells (top) and LNCaP 
cells (bottom). PC-3 cells were transfected with plasmids expressing or AR and a probasin-luciferase 
reporter for 4 h prior to a 20 h treatment with 1 nM DHT; LNCaP cells were transfected only with the 
probasin-luciferase reporter. Transcriptional activity values represent the mean of six biological 
replicates; results are representative of three independent experiments. Error bars are SEM. Unpaired 
t tests were used to compare MeT and DHT (***, p < 0.001; ****, p < 0.0001). (D) Venn diagram 
showing the overlap of AR cistromes in LNCaP cells treated with DHT or MeT (1 nM each). (E) Read 
density plots (top panels) and heatmaps (bottom panels) representing AR ChIP-seq peak sets from (D). 
(F) Heatmap of RNA-seq data for genes differentially expressed by 24 hours of MeT treatment 
(compared to Vehicle; FDR < 0.05). The heatmap was generated using ClustVis (Metsalu and Vilo 2015) 
after applying unit variance scaling to each gene.   
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Supplementary Fig. 1. Anti-proliferative effects of MeT and DHT in prostate cancer models. (A) DHT 

inhibits the growth of C42B and MR49F, but not 22RV1, as determined by Trypan blue growth assays. 

Error bars are +SEM. P values were determined using ANOVA and Dunnett’s multiple comparisons 

tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). NS, not significant. (B) Methyl-

testosterone does not affect the growth of PC3 or R1-D567 prostate cancer cells, as determined by 

Trypan blue growth assays. . Error bars are ± SEM.  
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Supplementary Table 1. Genomic distribution of AR cistromes 

 
 MeT-AR peaks DHT-AR peaks MeT and DHT 

Shared AR binding sites 

Total Peak number (FDR < 0.05)  6491 1993 4123 

Intergenic (%)  51.13 51.33 51.30 

Intragenic (%)  48.87 48.67 48.70 

Exon (%)  2.67 2.91 2.67 

Intron (%)  46.50 45.96 46.35 

CDS (%)  0.94 0.75 0.82 

UTR (%)  1.74 2.16 1.89 

5'UTR (%)  0.18 0.25 0.15 

3'UTR (%)  1.57 1.96 1.77 

 
* Peak locations were assessed using the CisGenome software. 
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Methyl-testosterone suppresses DNA replication and repair pathways in prostate cancer cells 

Given its potent growth-inhibitory activity, we hypothesised that further dissecting the 

transcriptomic readouts of MeT-bound AR could yield new insights into mechanisms 

underlying the activity of high-dose androgen therapy in PCa. Gene set enrichment analysis 

(GSEA) (Subramanian, Tamayo et al. 2005) was used to identify ‘Hallmark’ gene sets (Liberzon, 

Birger et al. 2015) altered by treatment with this potent androgen. Providing further evidence 

that MeT regulates a transcriptional program that is highly similar to endogenous androgens, 

the most upregulated hallmarks for both MeT and DHT were ‘androgen response’, ‘protein 

secretion’ and ‘apical junction (Fig. 2A). Hallmarks that were robustly repressed by MeT/DHT 

were related to DNA replication and repair (i.e. E2F targets, MYC targets, G2M checkpoint, 

mitotic spindle, DNA repair; Fig. 2A), analogous to what has been reported for high-dose 

androgen treatment previously (Gao, Gao et al. 2016, Chatterjee, Schweizer et al. 2019, 

Nyquist, Corella et al. 2019). When we examined curated DNA repair (Chatterjee, Schweizer 

et al. 2019) and DNA replication (Gao, Gao et al. 2016) gene sets that were reported to be 

repressed by high-dose androgen treatment, we observed that MeT down-regulated these to 

a considerably greater extent than DHT (Fig. 2B-C). Many of these genes have been purported 

to be directly regulated by AR on the basis of its binding to proximal regulatory elements (Gao, 

Gao et al. 2016). Indeed, we found that AR binding near these genes was strongly stimulated 

by MeT and, to a lesser extent, DHT (Fig. 2D and Supplementary Fig. 2).  

 

A reported consequence of suppression of DNA repair and replication pathways by high-dose 

androgen treatment is cell cycle arrest (Tsihlias, Zhang et al. 2000, Chatterjee, Schweizer et 
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al. 2019). Flow cytometry revealed that MeT caused accumulation of cells in G1 phase and 

consequent reduction of cells in S and G2/M phases (Fig. 2E). The same dose of DHT did not 

have a significant effect on cell cycle (Fig. 2E), providing additional evidence that MeT is a 

more potent, yet canonical, androgen than DHT in terms of PCa cell growth suppression. One 

proposed mediator of G1 arrest by high-dose androgen treatment is increased DNA damage, 

occurring via a combination of AR-mediated double-stranded breaks (DSBs) (Haffner, De 

Marzo et al. 2011) and down-regulation of DNA repair genes (Chatterjee, Schweizer et al. 

2019). However, MeT did not significantly increase the number of γH2AX foci (Fig. 2F), a 

marker of DSBs, suggesting that DNA damage is not a major mechanism underlying its growth-

suppressive activity in PCa cells. Low dose, but not high dose, DHT caused a minor increase in 

the number of γH2AX foci (Fig. 2F), potentially representing a differential mode of action 

between the two androgens in relation to DNA damage and repair. 
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Fig. 2. DNA replication and repair pathways are repressed by potent androgenic stimulation 
of prostate cancer cells. (A) Normalized enrichment scores (NES) for top-ranked Hallmark 
gene sets (Liberzon, Birger et al. 2015) representing RNA-seq data from LNCaP cells treated 
with 1 nM MeT for 24 hours. (B-C) Heatmap of RNA-seq data for androgen-regulated genes 
associated with DNA repair (Chatterjee, Schweizer et al. 2019) and DNA replication (Gao, Gao 
et al. 2016) in LNCaP cells treated with 1 nM MeT or 1 nM DHT for 24 hours. Heatmaps were 
generated using ClustVis (Metsalu and Vilo 2015) after applying unit variance scaling to each 
gene. (D) Average read density plots for AR chromatin binding proximal (<100 kb) to DNA 
repair/replication genes in LNCaP cells treated with 1 nM MeT or 1 nM DHT for 4 hours. (E) 
Cell cycle analysis by DAPI labelling and flow cytometry after 72 hours of treatment with 1 nM 
MeT or 1 nM DHT. Unpaired t tests were used to compare data at different cell cycle phases 
(i.e. G1, S and G2/M) between treatment groups (**, p < 0.01; ****, p < 0.0001). (F) 
Assessment of DNA double-strand breaks after potent androgen treatments. γH2AX foci were 
quantitated in LNCaP cells 6 hours after treatment with MeT, DHT or a positive control (H2O2). 
Error bars are SEM. P values (day 7) were determined using ANOVA and Dunnett’s multiple 
comparisons tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). NS, not 
significant. 
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Supplementary Fig 2. Androgen treatments mediates AR binding to genes involved in DNA 
replication andrepair. Genome browser images showing AR ChIP-seq signals at binding sites 
associated with BARD1, MCM6, LNMB1 and ATM in LNCaP cells treated with Vehicle, 1 nM MeT or 1 
nM DHT for 4 hours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

104 | P a g e  
 

 

Methyl-testosterone causes DNA hypomethylation in prostate cancer cells  

AR has a major role in regulating the epigenome via interplay with and transcriptional 

regulation of chromatin remodelling factors (Cai, Yuan et al. 2013), although little is known 

about how these mechanisms are altered in the context of high-dose androgen treatment. 

Our RNA-seq data revealed that MeT strongly down-regulated the DNA methyltransferases 

DNMT1 and DNMT3b in LNCaP cells (Fig. 3A), which we validated by qRT-PCR (Fig. 3B) and 

Western blotting (Fig. 3C and Supplementary Fig. 3). Gene signatures of response to DNMT 

inhibitors (Missiaglia, Donadelli et al. 2005, Kim, Zhong et al. 2006) were altered by MeT (Fig. 

3D), suggesting that DNA hypomethylation and subsequent effects on transcription were 

occurring downstream of DNMT down-regulation. To directly test this idea, we assayed for 5-

Methylcytosine at long interspersed nuclear elements (LINEs), a proxy for global DNA 

methylation. In support of our expression profiling data, a decrease in global DNA methylation 

levels was observed in response to MeT and, to a lesser extent, DHT (Fig. 3E). 
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Fig. 3. Methyl-testosterone down-regulates DNA methyltransferases and causes DNA 
hypomethylation. (A) Expression of DNMT1, DNTM3A and DNMT3B, as determined by RNA-seq, of 
LNCaP cells following 24 hours of treatment with MeT or DHT (1 nM each) or a vehicle control. CPM, 
counts per million reads. Middle line, mean; above and below, ± SEM. P values (treatment compared 
to vehicle) were determined using ANOVA and Dunnett’s multiple comparisons tests (*, p < 0.05; **, 
p < 0.01; ***, p < 0.001; ****, p < 0.0001). (B) Expression of DNMT1 (top) and DNMT3B (bottom), as 
determined by qRT-PCR, following 24 hours of treatment with MeT or DHT (1 nM each) or a vehicle 
control. Gene expression was normalized to GAPDH; expression for Vehicle was set to 1. Error bars 
are SEM; P values (treatment compared to vehicle) were determined using ANOVA and Dunnett’s 
multiple comparisons tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (C) 
Representative Western blot showing DNMT1 protein levels following treatment of LNCaP cells with 
the indicated doses of MeT or DHT or vehicle control for 24 and 48 hours. GAPDH is shown as a loading 
control; each sample was pooled from two replicates. Quantification of DNMT1 protein (normalised 
to GAPDH) is shown on right. (D) Association between MeT-induced genes and a gene set upregulated 
by TSA and Decitabine (left) (Kim, Zhong et al. 2006) and between MeT-repressed genes and a set of 
genes downregulated following treatment with Decitabine (Missiaglia, Donadelli et al. 2005), as 
demonstrated by GSEA. NES, normalised enrichment score. (E) Global DNA methylation (5 mC; % 
methylation of LINE-I elements) in LNCaP cells treated with indicated doses of MeT or DHT for 6 days. 
Decitabine (1 µM) was used as a positive control. P values (treatment compared to vehicle) were 
determined using ANOVA and Dunnett’s multiple comparisons tests (*, p < 0.05; **, p < 0.01; ***, p < 
0.001; ****, p < 0.0001). 
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Supplementary Fig. 3. Methyl-testosterone down-regulates DNMT1. Western blots showing DNMT1 
protein levels following treatment of C4-2B (top) and V16D (bottom) cells with the indicated doses of 
MeT or DHT or vehicle control for 24 and 48 hours; each sample was pooled from two replicates. 
GAPDH is shown as a loading control. Quantification of DNMT1 protein (normalised to GAPDH) is 
shown on right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

108 | P a g e  
 

Methyl-testosterone induces transcription of transposable elements and causes accumulation 

of dsRNA 

The transcription of transposable elements (TEs), which constitute ~45% of the human 

genome (Criscione, Zhang et al. 2014) and are comprised of distinct families including 

endogenous retroviruses (ERVs), LINEs and Short Interspersed Nuclear Elements (SINEs), is 

heavily influenced by DNA methylation (Reik 2007). Thus, we hypothesised that loss of DNA 

methylation in response to MeT could lead to altered TE expression. To test this hypothesis, 

we first interrogated levels of different TE classes within the ERV/LINE/SINE families in our 

short-term (24 hour) RNA-seq data. Similar to our analyses of the coding transcriptome, MeT 

caused substantial changes to expression of TEs whereas DHT had a less pronounced effect 

(Fig. 4A).  

 

Having established that potent androgen treatment could alter the expression of TEs in 24 

hours, we measured specific transcripts after 3-6 days of treatment, based on the earlier 

observation that loss of DNA methylation occurred over an equivalent period (Fig. 3E). We 

initially focussed our attention on LINEs, since these elements were specifically evaluated in 

the DNA methylation assays. LINE-I was weakly induced by MeT after 6 days of treatment, but 

its expression was not altered by DHT treatment (Supplementary Fig. 4A), a finding that was 

recapitulated in the CRPC cell line C4-2B (Supplementary Fig. 4B). Subsequently, we measured 

the expression of the major family members of ERVs, since these sequences of viral origin are 

known to influence various biological processes in cancer cells, including innate immune 

responses (Bannert, Hofmann et al. 2018). MeT induced ERV3-1 and HERV-K transcripts in 

LNCaP cells (Fig. 4B); HERV-E and HERV-W were not significantly altered but exhibited a trend 
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towards upregulation (Supplementary Fig. 4C). Analogous results – significant induction of 

ERV3-1 and HERV-K but not HERV-E or HERV-W – were observed in the C4-2B model, 

suggesting this is a general response of PCa cells to MeT (Fig. 4C, Supplementary Fig. 4D). As 

for protein-coding transcripts, equivalent doses of DHT caused similar qualitative changes to 

LINE/ERV expression but quantitatively weaker effects (Figs. 4B-C, Supplementary Fig. 4). 

Collectively, these findings demonstrate that the potent synthetic androgen MeT can induce 

expression of transposable elements, including ERVs, in a context-dependent manner in PCa 

cells.   

 

Expression of some ERVs occurs bi-directionally and can thereby result in generation of dsRNA 

(Chiappinelli, Strissel et al. 2015). Since potent androgen treatment led to increased levels of 

the major classes of ERVs over a period of 3-6 days, we speculated that this could cause 

accumulation of dsRNA. Using an immunofluorescent approach with a dsRNA-specific 

antibody (J2), we found that MeT treatment elicited a profound increase in the level of cellular 

dsRNA (Fig. 4D). Indeed, 1 nM MeT resulted in more detectable dsRNA than 100 nM DHT and 

1 µM of Decitabine, a DNMT inhibitor (DNMTi) previously reported to induce dsRNA in other 

cancer cell types (Chiappinelli, Strissel et al. 2015, Roulois, Loo Yau et al. 2015, Topper, Vaz et 

al. 2017) (Fig. 4D). Collectively, these findings reveal that potent androgenic stimulation of 

PCa cells leads to dysregulation of TE transcription that is associated with accumulation of 

ERV transcripts and dsRNA.   
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Fig. 4. Induction of transposable element expression by methyl-testosterone is associated with 
production of dsRNA. (A) Principal component analysis (PCA) of transposable element expression 
(long terminal repeats, LINE and SINE elements) from RNA-seq data following treatment of LNCaP cells 
with MeT or DHT (1 nM each) for 24 hours. The plot was generated using ClustVis (Metsalu and Vilo 
2015) after applying unit variance scaling to each element. (B) Expression of ERV3-1 and HERV-K, as 
determined by qRT-PCR, following 3 or 6 days of treatment with MeT or DHT (1 nM each) or a vehicle 
control. Expression of ERVs was normalized to GAPDH. Error bars are SEM; P values (treatment 
compared to vehicle) were determined using ANOVA and Dunnett’s multiple comparisons tests (*, p 
< 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (C) Expression of ERV3-1 and HERV-K, as 
determined by qRT-PCR, following 3 days of treatment with MeT or DHT (1 nM each) or a vehicle 
control. Expression of ERVs was normalized to GAPDH. Error bars are SEM; statistical testing was as in 
(B). (D) Quantitation of cellular dsRNA by immunofluorescent staining with J2 monoclonal antibody 
following 72 hours of treatment with MeT, DHT or a DNMT inhibitor (DNMTi), Decitabine. Error bars 
are SEM; P values (treatment compared to vehicle) were determined using ANOVA and Dunnett’s 
multiple comparisons tests (****, p < 0.0001). (E) Representative images of J2 immunofluorescence. 
J2 signal, representing cellular dsRNA, is in green. Nuclei were counterstained with DAPI (blue).  
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Supplementary Fig. 4. Induction of transposable element expression by methyl-testosterone. (A-B) 
Expression of LINE-I, as determined by qRT-PCR, following treatment with MeT or DHT in LNCaP (A) 
and C4-2B (B) cells. Expression of LINE-I was normalized to GAPDH. Error bars are SEM; P values 
(treatment compared to vehicle) were determined using ANOVA and Dunnett’s multiple comparisons 
tests (*, p < 0.05; **, p < 0.01). (C) Expression of HERV-E and HERV-W, as determined by qRT-PCR, 
following treatment with MeT or DHT in LNCaP cells. Expression of ERVs was normalized to GAPDH. 
Error bars are SEM; significance (treatment compared to vehicle) was determined using ANOVA and 
Dunnett’s multiple comparisons tests. (D) Expression of HERV-E and HERV-W, as determined by qRT-
PCR, following treatment with MeT or DHT in C4-2B cells. Expression of ERVs was normalized to 
GAPDH. Error bars are SEM; significance (treatment compared to vehicle) was determined using 
ANOVA and Dunnett’s multiple comparisons tests. 
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Methyl-testosterone activates interferon signalling  

Induction of ERV transcription and accumulation of dsRNA can activate cellular responses 

similar to those elicited by infection with an exogenous virus, a phenomenon termed “viral 

mimicry” (Bannert, Hofmann et al. 2018). Given the ability of MeT to modulate ERV 

transcription and induce dsRNA, we speculated that it could cause a viral mimicry response. 

To test this hypothesis, we first measured mRNA levels of the cytosolic pattern recognition 

receptor (PRR) RIG-I (encoded by the DDX58 gene), which is a major sensor of dsRNA 

produced during viral infection. We observed induction of RIG-I in response to MeT and, to a 

lesser extent, DHT (Fig. 5A), which was confirmed by Western blotting (Fig. 5B). Another PRR 

involved in antiviral responses, STING, is best known for its role in sensing of cytosolic DNA 

but also serves as a detector of RNA viruses and can interact with RIG-I (Ni, Ma et al. 2018): 

similarly to RIG-I, STING was strongly upregulated by MeT in PCa cells (Fig. 5C). Downstream 

of PRRs, the mitochondrial antiviral signalling protein (MAVS) and TANK Binding Kinase 1 (TBK-

1) are required to activate innate immune anti-viral responses (Sun, Sun et al. 2006). As 

expected, MeT treatment increased the levels of MAVS mRNA and phosphorylated (active) 

TBK-1; DHT again caused analogous but blunted responses (Figs. 5C-D). Sensing of dsRNA by 

PRRs leads to activation of Type I IFN signalling (Gonzalez-Cao, Karachaliou et al. 2018). MeT 

treatment caused induction of IFN-β (encoded by IFNB1) as well as IRF3 and IRF7, 

transcription factors that can activate IFN expression (Fig. 5E). Upregulation of IFN signalling 

by MeT was also observed in an independent cell line model, C4-2B (Supplementary Fig. 5). 

Collectively, these findings reveal that MeT activates an anti-viral response, likely due to its 

ability to increase cellular levels of dsRNA. 
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Fig. 5. Methyl-testosterone activates an interferon-mediated anti-viral response. (A) Expression of 
RIG-I as determined by qRT-PCR following 3 or 6 days of treatment with the indicated doses of MeT 
or DHT or a vehicle control. Gene expression was normalized to GAPDH. Error bars are SEM; P values 
(treatment compared to vehicle at each time-point) were determined using ANOVA and Dunnett’s 
multiple comparisons tests (**, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (B) Western blot showing 
RIG-I protein levels following treatment of LNCaP cells with the indicated doses of MeT or DHT or 
vehicle control for 3 or 6 days. GAPDH is shown as a loading control. (C) Expression of STING as 
determined by qRT-PCR following 3 or 6 days of treatment with the indicated doses of MeT or DHT or 
a vehicle control. Gene expression was normalized to GAPDH. Error bars are SEM. Statistical analysis 
was as for (A) (***, p < 0.001; ****, p < 0.0001). (D) Expression of MAVS as determined by qRT-PCR 
following 3 or 6 days of treatment with the indicated doses of MeT or DHT or a vehicle control. Gene 
expression was normalized to GAPDH. Error bars are SEM. Statistical analysis was as for (A) (*, p < 
0.05). (E) Western blot showing levels of total and phosphorylated TBK1 following treatment of C4-2B 
cells with the indicated doses of MeT or DHT or vehicle control for 3 or 6 days. GAPDH is shown as a 
loading control. (F) Expression of IFNβ and IRF7 as determined by qRT-PCR following 3 or 6 days of 
treatment with the indicated doses of MeT or DHT or a vehicle control. Gene expression was 
normalized to GAPDH. Error bars are SEM. Statistical analysis was as for (A) (*, p < 0.05; **, p < 0.01; 
***, p < 0.001; ****, p < 0.0001). 
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Supplementary Fig. 5. Induction of IFN signalling by methyl-testosterone in C4-2B cells. Expression 
of IFNβ (encoded by IFNB1), ISG15, IRF3 and IRF7, as determined by qRT-PCR, following treatment 
with MeT or DHT in C4-2B cells. Expression of genes was normalized to GAPDH. Error bars are SEM; P 
values (treatment compared to vehicle) were determined using ANOVA and Dunnett’s multiple 
comparisons tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001).  
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Association between AR activity and anti-viral responses in clinical prostate cancer  

Our mechanistic investigations using PCa cell lines suggested that high AR activity could 

activate a viral mimicry response involving IFN signalling. To gain evidence for this concept in 

a more clinically-relevant setting, we analysed large transcriptomic datasets from patients 

with primary prostate cancer (TCGA) and metastatic CRPC (SU2C). Supporting our pre-clinical 

mechanistic work, we found a significant correlation between AR activity and Reactome’s 

“antiviral mechanism by IFN-stimulated genes” gene set (Fig. 6A). Moreover, by exploiting a 

study in which ERVs were quantitated in TCGA samples (Rooney, Shukla et al. 2015), we 

discovered a strong positive correlation between AR activity and the expression of ERVs in the 

ERV3-1 and HERV-K classes (Fig. 6B). No association between AR signalling and HERV-E (r = 

0.079, p = 0.30) or HERV-W (r = -0.047, p = 0.54) classes was observed, corroborating our 

earlier findings that these classes of ERVs were not robustly induced by high dose androgen 

treatment (Supplementary Fig. 4). 
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Fig. 6. Positive association between AR signalling and anti-viral responses in patient tumours. (A) AR 
activity, based on a 267-gene signature (Sowalsky, Ye et al. 2018), is associated with the Reactome 
“antiviral mechanism by IFN-stimulated genes” gene set in the TCGA (left) and SU2C (right) datasets. 
Activity scores were calculated using ssGSEA. P and r values were determined using Pearson’s 
correlation tests. (B) AR activity is associated with the levels of ERV3-1 (left) and HERVK in the TCGA 
dataset. AR activity scores were calculated using ssGSEA. Counts per million (CPM) reads for ERV3-1 
and HERVK (sum of all HERVK transcripts) were obtained from a published study (Rooney, Shukla et 
al. 2015).  P and r values were determined using Pearson’s correlation tests. 
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Methyl-testosterone can enhance the interaction between prostate cancer cells and T cells 

IFN-mediated anti-viral defense signalling is associated with increased immunogenicity of 

solid tumours and improved responses to immune checkpoint therapy (Chiappinelli, Strissel 

et al. 2015, Stone, Chiappinelli et al. 2017, Topper, Vaz et al. 2017, Sheng, LaFleur et al. 2018, 

Morel, Sheahan et al. 2021). Indeed, we found that MeT treatment caused increased 

expression of MHC class I antigen processing and presentation genes over a period of 3-6 days 

(Fig. 7A). Moreover, AR activity was positively correlated with Class I (but not Class II: r = 0.003 

and p = 0.96 for TCGA; r = 0.174 and p = 0.06 for SU2C) MHC-mediated antigen processing 

and presentation in the TCGA and SU2C cohorts (Fig. 7B). 

 

To determine whether type I IFN-driven modulation of immune signalling in PCa in response 

to MeT influences T cell function, we utilised the murine RM1 model of CRPC (Owen, Gearing 

et al. 2020). We first confirmed that RM1 cells expressed AR (Fig. 7C) and were growth-

inhibited by MeT/DHT (Fig. 7D, Supplementary Fig. 6A), which collectively highlight the 

suitability of this model as a tool to understand the impact of high dose androgens on PCa 

biology. Mirroring the findings from human PCa cell lines, MeT increased expression of ERVs 

(murine ERV-L, MTA, RLTR1B and RLTR45), LINE-I elements, Rig-I and Irf7 in RM1 cells (Fig. 

7E). Despite DHT having equivalent growth-suppressive effects, it did not influence the 

expression of transposable elements, Rig-I or interferon pathway genes (Supplementary Fig. 

6B). We next used an ex vivo co-culture system to assess whether viral mimicry induced by 

MeT could lead to T cell activation. Whilst DHT-treatment had no effect on T cell response, 

MeT-treatment of RM1 cells increased the immunogenicity of RM1 cells, resulting in 

enhanced CD8+ T cell recognition and functional cytokine production (Fig. 7F). 
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Fig. 7. Methyl-testosterone elicits viral mimicry and enhances interferon-γ (IFN-γ) expression in T 
cells in a   mouse model of prostate cancer. (A) Expression of HLA genes and B2M as determined by 
qRT-PCR following 3 or 6 days of treatment with the indicated doses of MeT or DHT or a vehicle 
control. Gene expression was normalized to GAPDH. Error bars are SEM; P values (treatment 
compared to vehicle at each time-point) were determined using ANOVA and Dunnett’s multiple 
comparisons tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (B) AR activity is 
associated with the Reactome “Class I MHC-mediated antigen processing and presentation” gene set 
in the TCGA (left) and SU2C (right) datasets. Activity scores were calculated using ssGSEA. P and r 
values were determined using Pearson’s correlation tests. (C) Western blot showing AR protein 
expression in RM1 cells following treatment with the indicated doses of MeT or vehicle control (in 
both full and charcoal-stripped media). GAPDH is shown as a loading control. (D) MeT suppresses the 
growth of RM1 cells, as determined by Sulforhodamine B colorimetric assay mean absorbance 
(550 nm) is shown at the indicated time-points; error bars are ± SEM. P values were determined using 
unpaired t tests at day 5 (***, p < 0.001; ****, p < 0.0001). (E) Expression of ERVs (Rltr1B, Rltr45, Erv-
L, Erv3 Mta), LINE-I, RIG-I IRF7 and ISG15 in RM1 cells as determined by qRT-PCR following 3 of 
treatment with the indicated doses of MeT. Gene expression was normalized to Hprt. Vehicle for each 
gene was set to 1. Error bars are SEM; P values (treatment compared to vehicle at each time-point) 
were determined using ANOVA and Dunnett’s multiple comparisons tests (*, p < 0.05; **, p < 0.01; 
***, p < 0.001; ****, p < 0.0001). (F) Intracellular cytokine staining (ICS) assay demonstrating IFN‐γ+ in 
CD8+ following activation by RM1 cells treated with indicated doses of MeT or DHT for 3 days. Vehicle 
control for each AR ligand was set to 1. Error bars are SEM; P values (treatment compared to vehicle 
at each time-point) were determined using ANOVA and Dunnett’s multiple comparisons tests (*, p < 
0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).  
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

121 | P a g e  
 

 

 

Supplementary Fig. 6. Effects of DHT on RM1 murine model of prostate cancer. (A) DHT suppresses 
the growth of RM1 cells, as determined by Sulforhodamine B colorimetric assay Mean absorbance 
(550 nm) is shown at the indicated time-points; error bars are ± SEM. P values were determined using 
unpaired t tests at day 5 (***, p < 0.001). (B) Expression of ERVs (Rltr1B, Rltr45, Erv-L, Erv3 Mta), LINE-
I, RIG-I IRF7 and ISG15 in RM1 cells as determined by qRT-PCR following 3 of treatment with the 
indicated doses of MeT. Gene expression was normalized to Hprt. Vehicle for each gene was set to 1. 
Error bars are SEM; P values (treatment compared to vehicle at each time-point) were determined 
using ANOVA and Dunnett’s multiple comparisons tests (no significant differences for any transcripts 
with either dose of DHT).  
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DISCUSSION 

Although the mainstay treatment for advanced prostate cancer relies on suppression of AR 

activity, there is accumulating evidence that potent activation of AR by treating CRPC patients 

with high doses of testosterone can also be of therapeutic benefit. The molecular mechanisms 

underlying this apparent paradox remain to be fully elucidated. Here, by using a synthetic and 

highly potent androgen, MeT, we provide new insights into the consequences of hyper-

activation of AR in PCa.   

 

Molecular dissection of AR activity revealed that MeT elicits remarkably similar activity to DHT 

in terms of qualitative effects on the transcriptome and AR cistrome. Strikingly, however, 

MeT’s effect on transcription was considerably stronger than DHT’s for almost every AR-

regulated gene and when evaluated by transcriptional activation assays using a synthetic 

androgen-responsive reporter gene, the latter observation being consistent with previous 

work (Wolf, Diel et al. 2011). The potency of MeT was manifested by robust regulation of DNA 

damage/repair and replication pathways and gene sets that are known to respond to high 

doses of T and DHT and have been purported to (at least partly) underpin growth suppression 

and cell death caused by high dose androgen treatment (Gao, Gao et al. 2016, Chatterjee, 

Schweizer et al. 2019, Nyquist, Corella et al. 2019). Interestingly, despite strong down-

regulation of DNA repair genes, we did not observe increased staining of the DNA damage 

marker γH2AX in response to MeT. Increased DNA damage has been purported to be a 

mechanism by which high dose androgens cause cell death (Chatterjee, Schweizer et al. 

2019), synergise with agents that inhibit DNA repair (Chatterjee, Schweizer et al. 2019) and 

elicit therapeutic responses in PDXs (Lam, Nguyen et al. 2020) or patients with defective 
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homology-directed repair (HDR) (Teply, Kachhap et al. 2017, Markowski, Shenderov et al. 

2020). This concept has led to a prevailing belief that HDR gene defects could be useful 

predictive biomarkers of BAT (Chatterjee, Schweizer et al. 2019) and that combining BAT with 

DNA damaging therapies, such as radiotherapy (e.g. NCT04704505), is a rational therapeutic 

strategy. By contrast, other studies failed to detect heightened DNA damage in response to 

high doses of physiological or synthetic (i.e. R1881) androgens (Polkinghorn, Parker et al. 

2013), and a recent analysis of BAT clinical trials failed to demonstrate improved progression-

free survival in patients with HDR gene defects (Schweizer, Antonarakis et al. 2019). We 

propose that definitively establishing the relevance of DNA damage, as a mediator of 

therapeutic response to androgen therapies (including MeT) is imperative to maximise clinical 

impact. Interestingly, in our experiments low dose (1 nM) but not high dose (100 nM) DHT 

resulted in a significant increase in DNA damage. Since 1 nM DHT did not substantially impact 

on PCa cell proliferation, this also argues against DNA damage being important in androgen-

mediated growth suppression.      

 

In addition to its effects on DNA replication and repair pathways, our data revealed that MeT 

caused a major shift in the expression profile of TEs, including ERVs such as ERV3-1 and HERV-

K. This occurred concomitantly with down-regulation of DNMT enzymes, including DNMT and 

DNMT3b, and loss of DNA methylation at LINE-I elements. Given the well-established role of 

DNA methylation is suppressing the expression (and mobility) of ERVs and other TEs (Reik 

2007), we propose that inhibition of DNMTs is a key mechanism underlying our observation. 

A negative association between the expression/activity of AR and DNMTs has been reported 

previously (e.g. (Chu, Chang et al. 2014)), but the molecular underpinnings of this 
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phenomenon are not known. One plausible explanation is that hyper-active AR decreases 

DNMT expression via its interplay with Rb and E2F. More specifically, it has been reported 

that high dose androgen treatment leads to AR and Rb binding to, and transcriptionally 

repressing, a series of E2F-regulated genes involved in DNA replication (Gao, Gao et al. 2016), 

a finding that we recapitulated with MeT. Since DNMT1 is a well-established target of E2F 

(Kimura, Nakamura et al. 2003, McCabe, Davis et al. 2005), it is reasonable to expect that it 

would be down-regulated by AR-mediated perturbation of the Rb/E2F1 axis. Such a 

mechanism is reminiscent of an earlier study demonstrating that the CDK4/6 inhibitor 

abemaciclib reduces E2F activity and thereby decreases DNMT1 expression (Goel, DeCristo et 

al. 2017). 

 

Upregulation of ERVs can result in accumulation of cellular dsRNA (Chiappinelli, Strissel et al. 

2015), which is sensed by PRRs (i.e. RIG-I, STING) that signal via MAVS/TBK-1 to activate IFN 

signalling. We propose that this “viral mimicry” response is a key mechanism by which MeT 

activates IFN, although we cannot rule out the possibility that host lncRNAs and/or microRNAs 

induced by MeT play a role in RIG-I activation, as has been described recently (Rehwinkel and 

Gack 2020). Viral mimicry is thought to be an important mediator of tumour innate immunity 

in response to epigenetic therapies such as DNMT inhibitors, histone deacetylate inhibitors, 

CDK4/6 inhibitors and EZH2 inhibitors (Chiappinelli, Strissel et al. 2015, Roulois, Loo Yau et al. 

2015, Goel, DeCristo et al. 2017, Krug, De Jay et al. 2019, Morel, Sheahan et al. 2021). In 

support of this, we demonstrated that MeT enhanced the immunogenicity of murine PCa cells 

leading to increased T cell responses in a co-culture system, providing in vitro evidence that a 

viral mimicry response induced by this androgen could modulate the tumour immune 
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microenvironment. A limitation of this experiment is that we only measured IFN‐γ in T cells, 

and hence it is unknown whether the viral mimicry response induced by MeT leads to cancer 

cell killing by T-cells. We propose to test whether MeT leads to increased cytotoxic T cell 

mediate cancer cell killing using IncuCyte immune cell killing assays in co-culture condition 

(Cichocki, Bjordahl et al. 2020, Granger and Appledorn 2021). 

 

PCa is recognised as an immunologically “cold” cancer type based on its tumour 

microenvironment (i.e. few infiltrating cytotoxic T cells and a predominance of 

immunosuppressive cells, such as regulatory T cells and M2 macrophages), low 

immunogenicity and down-regulation of MHC Class I antigen processing/presenting 

machinery in tumour cells (de Almeida, Fong et al. 2020). These characteristics likely explain 

the limited impact of immunotherapies in this disease to date (de Almeida, Fong et al. 2020). 

A cellular immunotherapy, Sipuleucel-T, is approved for men with mCRPC but only confers a 

survival benefit of ~4 months (Kantoff, Higano et al. 2010). Similarly, multiple trials of immune 

checkpoint inhibitors (ICIs) have failed to demonstrate overall survival benefits (de Almeida, 

Fong et al. 2020), although some patients have experienced extraordinary responses to this 

treatment strategy (Graff, Alumkal et al. 2016, Markowski, Shenderov et al. 2020). With this 

background in mind, there is considerable interest in developing combinatorial treatment 

strategies that would sensitize CRPC tumours to immunotherapy. Our study found that MeT 

enhanced expression of MHC Class I genes and increased T cell cytotoxicity, suggesting that 

this regulator of viral mimicry could increase tumour cell immunogenicity, which is critical to 

improve response to ICIs. In support of this concept, a recent study found that inhibition of 

EZH2 activated a dsRNA–STING–IFN stress response that increased intratumoral trafficking of 
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activated CD8+ T cells and sensitized PCa cells to PD-1 checkpoint blockade (Morel, Sheahan 

et al. 2021). Moreover, there is evidence that both AR activation (i.e. BAT) and AR inhibition 

(i.e. Enzalutamide) could sensitize tumours to PD-1 inhibitors, albeit in very small studies 

(Graff, Alumkal et al. 2016, Markowski, Shenderov et al. 2020). Whether response to ICIs in 

patients previously treated with BAT is a result of viral mimicry is an enticing possibility that 

warrants further investigation, either using pre-clinical models and/or by molecular analysis 

of samples from patients being treated by BAT/ICI in ongoing clinical trials (e.g. COMBAT-

CRPC, NCT03554317). 

 

Immunological priming by BAT has been hypothesised to be a consequence of androgen-

mediated DNA damage, which can be sensed by the dsDNA sensor protein cGAS that can in 

turn activate IFN signalling (Markowski, Shenderov et al. 2020). At least 2 lines from our study 

of evidence suggest that this hypothesis should be modified to consider dsRNA as an 

alternative trigger of IFN signalling. First, MeT (and to a lesser extent DHT) induced ERVs, RIG-

I and MAVS and caused accumulation of dsRNA. Second, we did not observe increased DNA 

damage – using γH2AX as a molecular marker of DNA damage - in response to MeT or high-

dose DHT (100 nM) in LNCaP cells. However, it must be noted that the absence of γH2AX foci 

does not preclude MeT-mediated DNA damage, nor did we specifically measure cytoplasmic 

DNA. Additionally, STING, which is traditionally thought of as a sensor of cytoplasmic DNA, 

was strongly induced by MeT, although it must be noted that emerging evidence suggests 

that this factor also plays a key role in dsRNA-based immune responses (Ni, Ma et al. 2018, 

Morel, Sheahan et al. 2021). In short, it is plausible that the multifactorial impact on 

transcription and genome organisation caused by MeT (or high doses of DHT/T) would result 
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in both dsRNA accumulation and DNA damage, both of which could elicit viral mimicry and 

IFN signalling.  

 

An important question that still needs to be addressed is whether, and to what extent, 

activation of IFN signalling contributes to MeT-mediated suppression of PCa cell growth. Type 

I IFNs can elicit cell cycle arrest and apoptosis in malignant cells (Kotredes and Gamero 2013), 

therefore it is possible that induction of this pathway at least partly explains the efficacy of 

MeT. However, MeT (and high doses of T/DHT) cause growth suppression within 1-2 days, 

whereas we observed induction of IFNβ and IRF7 3-6 days after treatment, an observation 

that is consistent with a stepwise activation of IFN involving epigenomic remodelling, ERV 

transcription and sensing of dsRNA. Moreover, growth suppression of RM1 cells by MeT and 

DHT was equivalent, even though the latter hormone did not induce ERVs or the IFN pathway. 

These observations argue against viral mimicry and IFN pathway activation playing a major 

role in the growth-inhibitory effects of MeT, at least when PCa cells are grown in vitro. Future 

in vivo studies carried out in the context of antagonism or ablation of viral mimicry effectors 

(e.g. RIG-I, IFNβ) could resolve this outstanding question. 

 

A consistent finding throughout our study was that MeT exhibited greater potency – in terms 

of PCa cell growth inhibition, AR DNA binding and transcriptional activity, and viral mimicry 

responses – than DHT. MeT has been reported to have reduced affinity, when compared to 

DHT, for both the rat AR ligand-binding domain (Fang, Tong et al. 2003, Attardi, Hild et al. 

2006) and cytosolic fractions from rat prostate (Saartok, Dahlberg et al. 1984). However, the 

main pathway for metabolism of testosterone and its derivatives in PCa cells is via 
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glucuronidation (Smith, Ballard et al. 1994), and MeT is very poorly glucuronidated by human 

glucuronyl-transferases (Kuuranne, Kurkela et al. 2003). With these early biochemical studies 

in mind, we propose that the stronger androgenic effects elicited by MeT relate to its 

increased stability compared to DHT. Moreover, we hypothesise that the increased potency 

of MeT, as opposed to a differential mode of action, explains why activation of IFN has not 

been observed in previous studies aimed at dissecting the mode of action of high dose DHT 

and other androgens (i.e. R1881) (Chatterjee, Schweizer et al. 2019, Nyquist, Corella et al. 

2019). This hypothesis is supported by the observation that DHT elicited effects on ERVs, 

dsRNA production and IFN signalling that were qualitatively analogous to those mediated by 

MeT but were in almost all cases weaker. In short, we postulate that a certain threshold of AR 

activation, in terms of both strength and duration, is required to activate a viral mimicry 

response and that such a threshold can be more readily reached with stable synthetic 

androgens such as MeT.   

 

Whether MeT could be harnessed as a therapeutic for advanced PCa, either as a monotherapy 

or in combination with immunotherapy, is an intriguing question. PCa is an immunologically 

“cold” cancer but it is possible that a MeT-induced viral mimicry response could increase 

tumour cell immunogenicity, which is critical to improve response to ICIs. In support of this 

concept, it has been shown that a small subset of patients treated with BAT showed an 

extreme response to immune checkpoint blockade (Markowski, Shenderov et al. 2020). 

Further evidence for this concept comes from our observation of a positive association 

between AR activity and anti-viral responses in patients with primary or metastatic tumours. 

As shown in Figure 6A, the correlation between AR activity and IFN response is stronger in 
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localised disease compared to CRPC, which we propose simply reflects the more homogenous 

nature of localised PCa in comparison with CRPC tumours.  

 

Current medical recommendations suggest that MeT should be explicitly avoided in men with 

PCa but these are based on the viewpoint that androgens promote tumour progression, which 

is overly simplistic in the era of SupraT/BAT as a rational, valid treatment for CRPC. As an 

anabolic-androgenic steroid, MeT has a range of medical uses, including to treat delayed 

puberty in males (Bertelloni, Baroncelli et al. 2010), as a component of post-menopausal 

hormone replacement therapy in women (Chiuve, Martin et al. 2004) and, historically, as a 

treatment for breast cancer (Nevinny-Stickel, Dederick et al. 1964); as such, its 

pharmacodynamic, pharmacokinetic and safety profiles are relatively well understood. 

Drawbacks of MeT include high estrogenicity, due to its efficient aromatization into the 

potent and stable estrogen 17α-methylestradiol (El-Desoky el, Reyad et al. 2016) and 

hepatotoxicity (Sanchez-Osorio, Duarte-Rojo et al. 2008). Of course, other AR ligands may be 

even more effective than MeT in terms of growth suppression and modulation of immune 

responses. In this respect, selective AR modulators (SARMs) are of interest (Christiansen, 

Lipshultz et al. 2020) since it is conceivable that some may possess the requisite androgenic 

anti-growth and immunomodulatory activities in prostate cancer cells and favourable 

anabolic properties in other tissues. In short, we propose that investigation beyond the 

physiological androgens testosterone and DHT is required to maximise the therapeutic 

potential of AR activation in PCa.  
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In summary, our investigations have revealed a novel consequence of potent activation of AR 

in PCa cells. We propose that this work will expose new avenues of research aimed at 

elucidating interplay between androgenic and immune responses in the prostate and 

facilitate the development of new hormonal strategies to sensitize PCa to immunotherapies. 

 

MATERIALS AND METHODS 

Cell lines and cell culture 

The human prostate carcinoma cell lines LNCaP, VCaP, PC3, 22Rv1 and C4-2B were obtained 

from the American Type Culture Collection (ATCC). LNCaP-V16D, LNCaP-MR49F and CWR-R1-

D567 have been described previously (Nyquist, Li et al. 2013, Bishop, Thaper et al. 2017). C4-

2B, 22Rv1, LNCaP, and LNCaP-V16D cells were maintained in RPMI-1640 (Sigma Aldrich) 

containing 10% fetal bovine serum (FBS) and 2 mM L-Glutamine. PC3 cells were cultured in 

RPMI-1640 containing 5% FBS and 2 mM L-Glutamine. LNCaP-MR42D and LNCaP-MR49F were 

maintained in RPMI-1640 containing 10% FBS, 10 µM Enzalutamide and 2 mM L-Glutamine. 

CWR-R1-D567 cells were maintained in RPMI-1640 containing 10% charcoal-stripped serum 

(CSS) and 2 mM L-Glutamine. VCaP cells were maintained in DMEM (high glucose) containing 

10% FBS, 2 mM L-Glutamine, 2 mM Sodium Pyruvate, and 2 mM of non-essential amino acids 

solution (Sigma Aldrich). All cell lines were authenticated by short tandem repeat profiling by 

CellBank Australia in 2017-2020 and were regularly screened for potential mycoplasma 

contamination. 
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Cell viability assays 

Cells were seeded at varying densities (depending on the doubling time of cell lines and length 

of the proliferation assay) in 6-well plates and incubated at 37 °C and 5% CO2 for at least 24 

hours to allow cells to be attached to the plate surface before treatment. At the appropriate 

timepoints, cells were treated with freshly prepared drugs (as indicated in Fig. legends), 

followed by incubation at 37 °C and 5% CO2 until next time-point. Treatments were refreshed 

every 2–3 days. At the end of each time-point, cell viability was assessed using Trypan blue 

exclusion assays. The impact on MeT (1 nM and 100 nM) on the proliferation of RM1 cells was 

assessed in a 96-well format using the sulforhodamine B-binding assay over 5 days with a 

seeding density of 500 cells per well, as described previously (Houghton, Fang et al. 2007). 

Treatment commenced 24 hours post-seeding. Endpoint absorbance was measured at 550 

nm. 

 

Transactivation assays 

AR transactivation assays were performed in 96-well plates essentially as previously described 

(Buchanan, Yang et al. 2004). LNCaP cells were used to test the transactivation of endogenous 

AR, whereas PC-3 cells were used to test the transactivation of exogenous AR. Cells were 

transfected with 1 ng of pcDNA-AR (PC3 only) and 100 ng of a reporter construct containing 

3 copies of the Probasin enhancer (pGL4.14-PB3-luc) using LipofectAMINE 2000 (GIBCO-BRL), 

according to the manufacturer's instructions. Following transfection, cells were treated for 24 

h in phenol-red free medium supplemented with the different doses of MeT and DHT, and 

luciferase activity was determined in cell lysates using the Luciferase™ Reporter Gene Assay 

Kit (Promega) and a plate reading luminometer (Top Count). 
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Chromatin immunoprecipitation (ChIP)-sequencing 

LNCaP cells were seeded at 5 × 106 cells/plate in 15 cm plates phenol-red-free medium 

supplemented with 5% DCC-stripped FBS and allowed to grow for 2 days prior to treatment 

with Vehicle (Ethanol), MeT 1nM, and DHT 1nM on 3 biological replicates each for 4 hours. 

Subsequently, cells were fixed with formaldehyde and chromatin immunoprecipitation (ChIP) 

was performed essentially as described previously (Paltoglou, Das et al. 2017) using an Abcam 

AR antibody (ab108341). For each treatment condition, 2 biological replicates were 

generated. After DNA quantification with Qubit dsDNA HS assay (Thermo-Fisher Scientific), 5 

ng of ChIP DNA (ChIP-enriched or input) was used for library preparation using a TruSeq ChIP 

Library Prep kit (Illumina). Sequencing was performed on an Illumina Nextseq 500 platform 

(single-end protocol, 75 bp read length) at the South Australian Genomics Centre (SAGC). 

Mapping and processing of fastq files were performed as described previously (Chan, Selth et 

al. 2015). Deeptools (Ramírez, Ryan et al. 2016) was used to convert BAM files to bigwig and 

for visualizing ChIP-seq data as heatmaps. Peak annotations were performed using Cisgenome 

v2.0 (Ji, Jiang et al. 2008). HOMER (Heinz, Benner et al. 2010) was used to generate histograms 

of tag density at specific sets of peaks. Alignments were visualised and interrogated using the 

Integrative Genomics Viewer v2.3.80 (Thorvaldsdóttir et al., 2013). 

 

RNA sequencing 

LNCaP were seeded at the 2x105 cells/well in 6-well plates and treated with vehicle, 1 nM 

MeT or 1 nM DHT. Total RNA was extracted at 6 hours and 24 hours after treatment using 

Trizol. For each treatment condition, 3 biological replicates were generated. The integrity of 
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RNA was first assessed using a 2100 Bioanalyzer system (Agilent). RNA concentration were 

quantified by Nanodrop 2000 (Thermo Fisher Scientific) and total RNA (2 µg) was supplied to 

the South Australian Genomics Centre (SAGC). RNA sequencing libraries were constructed 

using a TruSeq Total RNA HT kit (Illumina) and libraries were sequenced on the Illumina 

NextSeq 500 platform (stranded, paired-end 75 bp reads).  

 

The quality of raw data was initially assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw FASTQ files were then 

filtered for short sequences using Cutadapt v1.16.6 (Martin 2011) with the following settings:  

minimum overlap length in Adaptor options: 3, Minimum length in filter options: 20, 

maximum error rate: 0.1, quality cut-off: 20.  

 

To evaluate expression of protein-coding genes, reads were mapped against the human 

reference genome (hg19) using STAR version 2.6.0b-2 (Dobin, Davis et al. 2013) with default 

parameters. FeatureCounts was used to count and assign the mapped reads to genomic 

features (Liao, Smyth et al. 2014). Count tables generated by featureCounts were used for 

differential expression analysis using R version 3.2.3 and edgeR version 3.3 (Robinson, 

McCarthy et al. 2010) as described previously (Lun, Chen et al. 2016). Heatmaps summarising 

RNA-seq data were generated  using ClustVis (Metsalu and Vilo 2015).  

 

To evaluate expression of transposable elements (TEs), reads were re-mapped against the 

human reference genome (hg19) using STAR version 2.6.0b-2 (Dobin, Davis et al. 2013) with  

parameters that retained multiply mapped reads (--runThreadN 4 --outSAMtype BAM 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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SortedByCoordinate --runMode alignReads --outFilterMultimapNmax 1000 --

outFilterMismatchNmax 3 -- outMultimapperOrder Random --winAnchorMultimapNmax 

1000 --alignEndsType EndToEnd --alignIntronMax 1 --alignMatesGapMax 350). HOMER was 

used to count and assign the mapped reads to different families of TEs (LTR, LINE and SINE). 

Count tables generated by HOMER were used to make a PCA plot with ClustVis.  

 

Gene set enrichment analysis 

Genes were ranked according to expression using the Signal2Noise metric. Gene Set 

Enrichment Analysis (Preranked analysis) (Subramanian, Tamayo et al. 2005) was 

implemented using the Broad Institute’s public GenePattern server with default parameters.  

 

Flow cytometry for cell cycle analysis 

LNCaP cells were seeded in 6-well plates and incubated overnight at 37°C and 5% CO2. Three 

days after treatment, cells were washed with a freshly prepared wash buffer containing PBS 

with 2% FBS, followed by trypsinization. The cell suspension was added to a 5 ml FACS tube 

containing cell culture media that had been collected earlier. Tubes were centrifuged at 700 

g for 5 min and cell pellets were re-suspended and washed with 1ml PBS, followed by 

centrifugation at 700 g for 5 minutes. After removing supernatants, cell pellets were 

resuspended in residual liquid by flicking the tubes. Subsequently, 1ml ice-cold 70% EtOH in 

PBS was added into tubes containing the cell suspensions and fixed overnight at 4°C. 

Following cell fixation, cells were centrifuged at 700 g for 5 minutes and the cell pellets were 

washed twice with 1 ml Hanks' Balanced Salt Solution + 2% FBS. Cell were then stained with 

1 ml of DAPI (10 µg/mL). The prepared cell suspension was used for cell cycle analysis based 
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on DNA content using a BD FACSCanto II flow cytometer (Analyser); analysis was carried out 

using FlowJo software. 

 

Quantitative RT-PCR (qRT-PCR) analysis of mRNA from human cells 

Total RNA from human cell lines was extracted using TRI Reagent (Sigma), as described 

previously (Das, Gregory et al. 2017). Total RNA was treated with Turbo DNA-free kit 

(Invitrogen), and reverse transcribed using iScript Reverse Transcriptase Supermix kit (Bio-

Rad). PCR was done in triplicate using a CFX384TM Real-Time System, as described previously 

(Moore, Buchanan et al. 2012). Levels of GAPDH were used for normalization of qRT-PCR data. 

Primer sequences are listed in Table S1. 

 

Quantitative RT-PCR (qRT-PCR) analysis of mRNA from mouse cells 

mRNA was extracted using the Qiagen Rneasy Plus Mini Kit (Qiagen) according to the 

manufacturer’s instructions and reverse transcribed using iScript Reverse Transcriptase 

Supermix cDNA for qRT-PCR kit (Bio-Rad). qRT-PCR was performed using PowerUp SYBR 

Green Master Mix (applied biosystems) to quantify gene expression on the CFX384TM Real-

Time System (Bio-Rad) as described previously (Owen, Gearing et al. 2020). Gene expression 

(arbitrary units) was calculated as mean relative transcript abundance (RTA) by methods 

outlined previously (Bidwell, Slaney et al. 2012) and expressed relative to a housekeeping 

gene, Hprt. Primer sequences are listed in Table S1. 
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Western blotting  

Protein extraction from cells using RIPA buffer (human cell lines) or hypotonic lysis buffer (RM1) and 

Western blotting was done essentially as described previously (Moore, Buchanan et al. 2012). Primary 

antibodies used in human Western blotting were: TBK1 Antibody (Cell Signalling; 3013); phospho-

Ser172-TBK1 (Cell Signalling; D52C2); RIG-I (Santa Cruz; SC-376845); and GAPDH (Millipore, MAB374). 

Primary antibodies used in murine Western blotting were: AR (N-20; Santa Cruz; SC-816) and GAPDH 

XP (Cell Signaling; D16h11). HRP conjugated anti-rabbit and anti-mouse IgG secondary antibodies 

(Dako) were used and immunoreactive bands visualized using Clarity Western ECL Substrate (Bio-Rad). 

 

Immunofluorescence  

LNCaP cells were seeded on glass coverslips in 6-well plates. To improve cell adhesion, glass 

coverslips were coated with 1:8 diluted L-Poly-Lysine. After treatment, cells were fixed in 4% 

paraformaldehyde for 10 minutes, permeabilized in 0.1% Triton X-100 for 15 minutes, and 

blocked in 2.5% BSA (for phospho-Histone H2A.X) or 5% BSA (for J2) solution for 1 hour. The 

coverslips then were incubated with anti-γH2AX primary antibody (Millipore; 05-636) or J2 

antibody (both used at 1:1000) overnight at 4 °C, followed by washing (twice with 5 min 

intervals) and then incubation with a fluorescent-tagged secondary antibody for 1 hour at 

room temperature. Cell nuclei were visualised by co-staining the cells with 4´-6-Diamidino-2-

phenylindole (DAPI; Invitrogen) for 1 min. Imaging was carried out using a confocal 

microscope (Olympus FV3000 Confocal Microscope). To quantify the number of γH2AX foci 

per nucleus, images were analysed using Image J software: i) the number of cells (i.e. DAPI-

stained nuclei) were counted in each image by Analyze Particles tool; ii) the number of γH2AX 

foci in each image was quantified using the Find Maxima tool, which was performed using the 
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noise tolerance parameter adjusted for positive control; iii) the average number of foci per 

nucleus for each treatment was calculated by counting γH2AX foci from 70-150 cells per 

treatment across multiple microscope fields.  To quantify J2 signal, Image J (Schneider, 

Rasband et al. 2012) was used to measure signal intensity at regions of interest (ROI); total 

signal intensity was normalised to cell counts at each ROI.  

Quantification of LINE-I DNA Methylation  

Cells were grown and treated in 6-well plates and genomic DNA was isolated using QIAamp 

DNA Mini kits, according to the manufacturer's instructions. To quantify the DNA methylation 

in DNA samples, Global DNA Methylation-LINE-I Kits (Active Motif) were used to assess the 

methylation of 5-mC status at Long Interspersed Nucleotide Element 1 (LINE-I) elements, as 

specified by the manufacturer. 

 

Intracellular cytokine staining for T‐cell specificity 

For assessment of androgen effects on antigen presentation in cancer cells, RM1 cells were 

treated with MeT, DHT or vehicle control as previously described. Following 72 hrs, RM1 cells 

(5×104) were co-cultured with in vitro expanded RM1‐specific CD8+ T cells for 5 hrs in the 

presence of 10 µg/mL Brefeldin A. Intracellular cytokine staining assays for production of IFN‐

γ were carried out as previously described (Owen, Gearing et al. 2020). 

 

 

Analysis of prostate cancer clinical transcriptomic data 

Clinical transcriptomic datasets (TCGA (Abeshouse, Ahn et al. 2015) and SU2C (Robinson, Van 

Allen et al. 2015)) were downloaded from cBioportal (Gao, Aksoy et al. 2013). The activity of 



 

138 | P a g e  
 

AR signalling and other pathways (i.e. antiviral mechanism by IFN-stimulated genes, MHC 

class I antigen processing and presentation) in these datasets was estimated by single sample 

GSEA (ssGSEA) (Barbie, Tamayo et al. 2009); ssGSEA was implemented using the Broad 

Institute’s public GenePattern server, using rank normalisation and default parameters.  

 

Statistical analysis 

Statistical analyses for grouped quantitative data were carried out using two-tailed unpaired 

t-test or ANOVA (GraphPad Prism 9). The relationships between activity scores were 

determined using Pearson’s correlation coefficient (Graphpad Prism 9). Further details of 

statistical tests are provided in the figure legends. Statistical significance was defined as p< 

0.05. 
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Supplementary Data1.  
A) MeT vs Vehicle 
 

No gene_id logFC logCPM LR PValue FDR 

1 KLK3 1.102505 12.20737 308.6007 4.41E-69 1.87E-67 

2 DHCR24 1.013861 11.28665 246.4704 1.53E-55 4.95E-54 

3 TUBB -1.14484 11.22334 344.2626 7.53E-77 3.77E-75 

4 KRT8 2.755782 10.91338 1419.69 1.10584753499914e-
310 

3.14E-
307 

5 TUBA1B -1.02658 10.47486 150.4516 1.38E-34 2.46E-33 

6 KRT18 1.933156 10.33859 567.1592 2.33E-125 2.39E-
123 

7 ABHD2 1.056565 10.32729 165.8682 5.91E-38 1.16E-36 

8 SORD 1.524395 10.12226 722.6912 3.48E-159 5.81E-
157 

9 TMPRSS2 1.9133 10.07856 889.5421 1.84E-195 5.66E-
193 

10 ODC1 1.919991 9.933507 959.7237 1.02E-210 3.52E-
208 

11 BRP44 1.025034 9.9108 132.7389 1.03E-30 1.61E-29 

12 ATP1A1 1.083749 9.856039 378.8471 2.22E-84 1.34E-82 

13 FKBP5 2.826146 9.752285 1374.943 5.85E-301 9.50E-
298 

14 SLC45A3 1.794352 9.685641 692.9592 1.02E-152 1.44E-
150 

15 ACSL3 2.530338 9.582629 990.3053 2.30E-217 9.01E-
215 

16 SPDEF 1.81474 9.384326 542.9447 4.31E-120 4.15E-
118 

17 CENPN 1.577379 9.320023 686.6329 2.41E-151 3.30E-
149 

18 ELOVL5 1.175085 9.248209 224.8435 7.94E-51 2.31E-49 

19 KLK2 1.68128 9.239738 551.3755 6.32E-122 6.25E-
120 

20 ABCC4 1.138322 9.135198 170.3646 6.16E-39 1.27E-37 

21 UAP1 1.075357 9.142776 369.5943 2.29E-82 1.32E-80 

22 COPG1 1.079653 9.135934 351.0871 2.46E-78 1.28E-76 

23 DBI 1.346483 9.101579 226.7449 3.06E-51 9.05E-50 

24 PEX10 1.45545 9.027251 442.5256 3.05E-98 2.21E-96 

25 SSR2 1.130174 9.028995 167.2236 2.99E-38 5.99E-37 

26 GDF15 1.246685 8.914849 279.276 1.08E-62 3.96E-61 

27 PPAP2A 1.767033 8.874552 822.3957 7.29E-181 1.97E-
178 

28 HM13 1.006956 8.816252 257.3113 6.62E-58 2.24E-56 

29 MIA3 1.093211 8.716466 242.8354 9.47E-55 3.02E-53 
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30 SLC41A1 2.693377 8.666302 1377.688 1.48E-301 2.81E-
298 

31 NDRG1 3.390736 8.62771 2448.34 0 0 

32 RRBP1 1.016748 8.673835 219.8926 9.55E-50 2.68E-48 

33 C17orf28 1.257265 8.646756 316.6161 7.91E-71 3.48E-69 

34 APP 1.034228 8.639645 174.5952 7.34E-40 1.54E-38 

35 TRPM4 1.215836 8.641616 243.4252 7.04E-55 2.26E-53 

36 SLC39A7 1.04882 8.640004 305.2606 2.35E-68 9.76E-67 

37 MAP7D1 1.082256 8.637467 229.6355 7.16E-52 2.14E-50 

38 SMS 2.166353 8.558071 1116.133 1.03E-244 6.50E-
242 

39 NCAPD3 2.267871 8.563809 785.0907 9.41E-173 2.15E-
170 

40 ABCC1 1.147796 8.538649 182.54 1.35E-41 2.99E-40 

41 PMEPA1 1.11535 8.391103 342.0117 2.33E-76 1.14E-74 

42 CORO1B 1.425981 8.376904 447.3255 2.76E-99 2.01E-97 

43 H2AFX -2.20271 8.459112 653.4829 3.91E-144 4.99E-
142 

44 SCAP 1.273117 8.345523 332.9503 2.19E-74 1.03E-72 

45 SLC9A3R2 1.002723 8.347771 192.8273 7.68E-44 1.82E-42 

46 ARF4 1.032718 8.209469 223.9967 1.22E-50 3.49E-49 

47 CREB3L4 1.261963 8.198118 334.1976 1.17E-74 5.57E-73 

48 PACS1 1.984219 8.161179 785.0768 9.48E-173 2.15E-
170 

49 TBRG1 1.002711 8.188979 329.6456 1.15E-73 5.30E-72 

50 CAPZB 1.40817 8.153803 400.5794 4.12E-89 2.72E-87 

51 MLPH 1.392538 8.15998 431.327 8.36E-96 5.97E-94 

52 TPD52 1.212396 8.161516 161.0796 6.57E-37 1.25E-35 

53 SERP1 1.173807 8.131943 203.6154 3.40E-46 8.59E-45 

54 MCM7 -2.19755 8.226906 1113.188 4.49E-244 2.69E-
241 

55 MBOAT2 1.139948 8.12853 357.0327 1.25E-79 6.71E-78 

56 SLC50A1 1.091445 8.081225 197.1609 8.70E-45 2.11E-43 

57 BAIAP2 1.104676 8.073449 281.5848 3.39E-63 1.26E-61 

58 ECI2 1.115146 8.068436 275.6245 6.75E-62 2.42E-60 

59 PRKDC -1.1474 8.09885 125.4546 4.05E-29 5.94E-28 

60 MICAL1 3.059149 8.011749 1554.8 0 0 

61 SAT1 2.303927 7.935712 1025.171 6.07E-225 2.55E-
222 

62 SSR3 1.011443 7.960082 177.1866 1.99E-40 4.26E-39 

63 GLUD1 1.262113 7.952331 417.6326 7.99E-93 5.51E-91 

64 B2M 1.47189 7.95434 233.8719 8.53E-53 2.64E-51 

65 HMGXB3 1.139274 7.964506 299.9471 3.38E-67 1.36E-65 

66 TMED9 1.202777 7.943769 335.741 5.40E-75 2.58E-73 
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67 SERINC2 1.072148 7.951807 202.9951 4.64E-46 1.17E-44 

68 NANS 1.015961 7.925586 215.8399 7.31E-49 1.99E-47 

69 ANKH 1.285997 7.921012 535.9416 1.44E-118 1.38E-
116 

70 TACC3 -1.35228 7.958916 356.1131 1.98E-79 1.05E-77 

71 VPS26B 1.615397 7.865412 616.6265 4.05E-136 4.47E-
134 

72 CHPF 1.246516 7.86973 230.7004 4.19E-52 1.26E-50 

73 HERC3 1.180985 7.824053 150.1779 1.59E-34 2.82E-33 

74 KPNA2 -1.66235 7.896057 632.5545 1.39E-139 1.68E-
137 

75 TNFRSF10B 1.020375 7.780281 233.4449 1.06E-52 3.26E-51 

76 HEBP2 1.10033 7.754269 227.2638 2.36E-51 7.01E-50 

77 MYC -1.56335 7.759253 519.0624 6.77E-115 6.11E-
113 

78 TPM1 1.073725 7.72101 302.3249 1.03E-67 4.20E-66 

79 MKI67 -2.67576 7.768959 714.567 2.03E-157 3.16E-
155 

80 MTOR 1.122382 7.6254 138.3406 6.14E-32 1.01E-30 

81 FN1 -1.19125 7.680013 156.4909 6.61E-36 1.23E-34 

82 SEC11C 1.23395 7.613902 153.3484 3.21E-35 5.85E-34 

83 RHOU 2.167109 7.623098 804.5011 5.67E-177 1.43E-
174 

84 NCAPD2 -1.80916 7.689602 606.4034 6.78E-134 7.34E-
132 

85 GFM1 1.338574 7.593172 256.3054 1.10E-57 3.69E-56 

86 PAK1IP1 2.387798 7.594383 1117.176 6.11E-245 4.08E-
242 

87 FOXM1 -1.63477 7.674485 716.9346 6.21E-158 9.94E-
156 

88 SYVN1 1.000653 7.593092 203.8742 2.98E-46 7.58E-45 

89 CSE1L -1.35737 7.623052 365.7079 1.61E-81 9.06E-80 

90 AIDA -1.10573 7.598071 140.4468 2.13E-32 3.55E-31 

91 RBMX -1.0122 7.594585 288.9231 8.53E-65 3.23E-63 

92 PPAPDC1B 1.110143 7.50677 233.6865 9.36E-53 2.89E-51 

93 CBWD1 1.778387 7.492296 510.5037 4.93E-113 4.34E-
111 

94 TBC1D1 1.357368 7.505586 486.5281 8.11E-108 6.40E-
106 

95 HMGB2 -1.92992 7.56376 551.252 6.72E-122 6.59E-
120 

96 SAPCD2 -1.20272 7.481292 303.6156 5.37E-68 2.21E-66 

97 MYBL2 -2.2685 7.505904 777.8938 3.45E-171 7.55E-
169 

98 C1orf21 1.443016 7.405648 450.1608 6.65E-100 4.88E-98 
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99 HIST2H2BE 1.478518 7.37175 488.6229 2.84E-108 2.26E-
106 

100 NASP -1.54286 7.471485 513.7376 9.75E-114 8.66E-
112 

101 MDC1 -1.96038 7.471565 527.8025 8.49E-117 7.98E-
115 

102 RANBP1 -1.13948 7.46558 148.3011 4.08E-34 7.17E-33 

103 LMNB2 -1.38575 7.447536 328.1175 2.47E-73 1.13E-71 

104 DNMT1 -1.84248 7.449779 530.912 1.79E-117 1.69E-
115 

105 SEC61B 1.012905 7.358126 128.9505 6.95E-30 1.05E-28 

106 RRM1 -1.70327 7.388294 592.5655 6.93E-131 7.29E-
129 

107 TPX2 -2.55077 7.409799 1190.686 6.45E-261 5.23E-
258 

108 ELL2 1.290407 7.311118 217.7268 2.83E-49 7.78E-48 

109 ARRDC1 1.224093 7.306428 191.5759 1.44E-43 3.38E-42 

110 TSC22D1 1.504501 7.305186 624.1406 9.40E-138 1.08E-
135 

111 SPAG5 -1.96586 7.378592 1009.157 1.84E-221 7.45E-
219 

112 MCM2 -3.25425 7.370048 1314.99 6.25E-288 7.10E-
285 

113 CTBP1 -1.73532 7.339669 691.7332 1.88E-152 2.63E-
150 

114 LRIG1 1.541028 7.277218 281.3816 3.75E-63 1.39E-61 

115 AZGP1 1.55445 7.246189 294.3881 5.50E-66 2.15E-64 

116 HERPUD1 1.178085 7.267212 376.2176 8.29E-84 4.93E-82 

117 RPA1 -1.00348 7.292358 257.4977 6.03E-58 2.05E-56 

118 PCNA -2.29076 7.316584 775.344 1.24E-170 2.66E-
168 

119 TK1 -2.40243 7.319267 690.508 3.47E-152 4.80E-
150 

120 CHRNA2 1.634173 7.192927 371.8103 7.55E-83 4.40E-81 

121 C1orf85 1.194064 7.180633 307.9533 6.10E-69 2.58E-67 

122 C1orf122 1.067236 7.18229 95.62431 1.39E-22 1.54E-21 

123 PRKD1 -1.05385 7.215452 233.2838 1.15E-52 3.52E-51 

124 CCNB1 -1.73838 7.235568 454.2172 8.72E-101 6.47E-99 

125 ATAD2 -1.20414 7.210836 233.0338 1.30E-52 3.96E-51 

126 SEPP1 1.597374 7.116772 412.4631 1.07E-91 7.26E-90 

127 SMC1A -1.02717 7.173127 116.4915 3.71E-27 5.06E-26 

128 ZG16B 1.157092 7.107736 169.2795 1.06E-38 2.16E-37 

129 BIRC5 -1.81075 7.177067 346.1707 2.89E-77 1.45E-75 

130 ELOVL7 1.139251 7.068933 170.6596 5.31E-39 1.10E-37 
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131 PLK1 -2.34233 7.175124 981.4612 1.92E-215 6.83E-
213 

132 PPFIBP2 1.405403 7.071177 421.265 1.29E-93 8.97E-92 

133 CENPF -2.65802 7.146804 669.8106 1.10E-147 1.45E-
145 

134 PSAT1 -1.31278 7.101152 233.2423 1.17E-52 3.58E-51 

135 IGF1R 1.227603 7.023089 154.2994 1.99E-35 3.64E-34 

136 WFS1 1.091063 6.993063 148.7446 3.26E-34 5.76E-33 

137 MCM4 -3.26059 7.062613 1688.681 0 0 

138 CBX5 -1.05325 7.02122 196.7588 1.06E-44 2.57E-43 

139 RABEP2 1.136575 6.971847 210.3371 1.16E-47 3.08E-46 

140 LMNB1 -2.84859 7.04996 1317.988 1.39E-288 1.76E-
285 

141 CDC20 -2.513 7.066853 1110.524 1.70E-243 9.68E-
241 

142 MEAF6 1.205925 6.967128 272.7044 2.92E-61 1.04E-59 

143 SLC35F2 1.672322 6.930858 492.3402 4.41E-109 3.58E-
107 

144 TIMELESS -1.19271 7.011181 207.5162 4.78E-47 1.24E-45 

145 MCM3 -2.56895 7.015346 1027.143 2.26E-225 9.89E-
223 

146 RRM2 -2.97438 7.018513 1415.994 7.02808146803033e-
310 

1.60E-
306 

147 F5 2.045852 6.905314 503.1163 1.99E-111 1.69E-
109 

148 PGM3 1.560865 6.89683 450.1969 6.54E-100 4.82E-98 

149 DAPK3 1.178791 6.929353 233.1573 1.22E-52 3.73E-51 

150 WHSC1 -1.47703 6.966715 324.6563 1.40E-72 6.37E-71 

151 RAB4A 1.049846 6.913361 200.7618 1.42E-45 3.53E-44 

152 NUSAP1 -2.61455 6.984579 1181.569 6.18E-259 4.68E-
256 

153 SRP19 1.161849 6.897063 190.4124 2.58E-43 6.04E-42 

154 ZWINT -1.73203 6.975172 708.0898 5.21E-156 7.89E-
154 

155 MYO19 -1.31371 6.942265 382.666 3.27E-85 2.02E-83 

156 GTF2E2 1.04861 6.859239 183.7858 7.23E-42 1.62E-40 

157 LRRFIP2 1.137049 6.884022 201.6501 9.11E-46 2.28E-44 

158 TCOF1 -2.34301 6.936038 735.5391 5.59E-162 9.93E-
160 

159 RAD21 -1.11169 6.892567 165.618 6.70E-38 1.31E-36 

160 RCC2 -1.34572 6.904302 348.6003 8.55E-78 4.38E-76 

161 SLC22A23 1.021756 6.835524 193.8476 4.60E-44 1.10E-42 

162 NAMPT 1.123835 6.822034 207.5622 4.67E-47 1.22E-45 

163 TP53 -1.60033 6.865286 381.0834 7.23E-85 4.44E-83 
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164 PRC1 -2.3849 6.878806 865.6275 2.91E-190 8.48E-
188 

165 TYMS -2.70844 6.875414 1343.805 3.42E-294 4.86E-
291 

166 MKLN1 1.048939 6.782135 202.5771 5.72E-46 1.44E-44 

167 FEN1 -2.36599 6.856174 1088.94 8.37E-239 4.32E-
236 

168 OTUD7B 1.258978 6.767622 203.7774 3.13E-46 7.94E-45 

169 RCC1 -1.78013 6.813997 618.4277 1.64E-136 1.85E-
134 

170 HMGCS1 1.447633 6.7105 321.2542 7.72E-72 3.46E-70 

171 HMGCS2 2.068509 6.651636 700.2602 2.62E-154 3.87E-
152 

172 ATP1B1 -1.13926 6.753034 200.1631 1.92E-45 4.74E-44 

173 CDK1 -2.71822 6.77637 913.291 1.27E-200 4.00E-
198 

174 HES6 1.384235 6.654255 133.4881 7.07E-31 1.11E-29 

175 NUP205 -1.23592 6.725211 152.3077 5.43E-35 9.77E-34 

176 ZYX 1.042066 6.690777 145.4572 1.71E-33 2.91E-32 

177 PPM1A 1.279608 6.66174 331.077 5.60E-74 2.61E-72 

178 GFPT1 1.01855 6.660885 189.0691 5.08E-43 1.17E-41 

179 MCM5 -2.67709 6.75905 789.0616 1.29E-173 3.12E-
171 

180 NUCB2 1.701794 6.625689 350.1536 3.92E-78 2.03E-76 

181 SEC24D 1.449741 6.633217 232.7447 1.50E-52 4.57E-51 

182 PPAPDC2 1.37501 6.634727 397.833 1.63E-88 1.07E-86 

183 POLE3 -1.299 6.692208 307.3153 8.40E-69 3.52E-67 

184 APPBP2 1.575724 6.61907 392.7653 2.07E-87 1.34E-85 

185 ACP2 1.066957 6.624005 213.283 2.64E-48 7.11E-47 

186 FAM177A1 1.03761 6.615524 185.9647 2.42E-42 5.48E-41 

187 DNAJC10 1.078406 6.596172 175.0401 5.87E-40 1.24E-38 

188 TMPO -2.52112 6.683045 726.7627 4.53E-160 7.80E-
158 

189 ALDH1A3 1.523543 6.573224 338.8383 1.14E-75 5.53E-74 

190 SELM 1.054759 6.605823 77.05903 1.66E-18 1.49E-17 

191 TMEM97 -1.46271 6.653461 472.8102 7.84E-105 5.98E-
103 

192 TSKU 1.551399 6.582456 385.3147 8.67E-86 5.50E-84 

193 TMEM125 1.5613 6.532456 339.3559 8.81E-76 4.28E-74 

194 FANCI -2.15162 6.62416 787.3054 3.11E-173 7.35E-
171 

195 DNAJC3 1.097632 6.536444 181.2118 2.64E-41 5.77E-40 

196 DHFR -1.08106 6.583575 180.1067 4.59E-41 1.00E-39 

197 CAD -1.19815 6.577752 148.4543 3.77E-34 6.66E-33 

198 RHBDF1 1.231231 6.520357 215.7936 7.48E-49 2.03E-47 
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199 H1F0 1.184458 6.514215 315.3405 1.50E-70 6.55E-69 

200 CHTF18 -1.10213 6.5864 203.456 3.68E-46 9.29E-45 

201 TP53I11 1.001571 6.524923 166.8999 3.52E-38 7.00E-37 

202 NUDT9 1.297071 6.493919 357.4887 9.92E-80 5.37E-78 

203 ARFGAP3 1.03879 6.483907 218.693 1.74E-49 4.85E-48 

204 ST6GALNAC1 1.778908 6.465627 545.0317 1.52E-120 1.47E-
118 

205 FXYD3 1.594635 6.456788 166.4964 4.31E-38 8.49E-37 

206 TONSL -2.7993 6.54392 761.4106 1.33E-167 2.69E-
165 

207 ERRFI1 2.396972 6.449845 625.5226 4.71E-138 5.46E-
136 

208 CYP2U1 2.382067 6.438611 752.9833 9.01E-166 1.74E-
163 

209 STARD10 1.065298 6.46205 90.23963 2.11E-21 2.24E-20 

210 LPAR3 1.164568 6.392414 171.2806 3.89E-39 8.04E-38 

211 CHAF1A -2.07606 6.47708 564.767 7.72E-125 7.83E-
123 

212 KIF20A -2.47709 6.495192 989.6868 3.13E-217 1.19E-
214 

213 FAM105A 2.156335 6.395164 636.382 2.05E-140 2.53E-
138 

214 CREB3 1.330188 6.382446 238.3737 8.90E-54 2.80E-52 

215 GMPPA 1.192689 6.389208 240.3809 3.25E-54 1.03E-52 

216 ST7 -1.25679 6.434559 243.1134 8.24E-55 2.63E-53 

217 RNASEH2A -1.92643 6.46065 362.4873 8.09E-81 4.46E-79 

218 CDC25B -1.71029 6.455418 414.9696 3.04E-92 2.08E-90 

219 C12orf44 1.112789 6.378276 183.236 9.53E-42 2.13E-40 

220 SEC61G 1.028399 6.360787 69.52986 7.53E-17 6.10E-16 

221 Mar-02 1.094852 6.346342 185.3067 3.36E-42 7.60E-41 

222 SMC4 -2.10645 6.403634 425.6532 1.44E-94 1.02E-92 

223 MT2A -1.12949 6.412637 100.5581 1.15E-23 1.35E-22 

224 TFDP1 -1.04138 6.384332 209.8179 1.51E-47 3.98E-46 

225 REEP4 -1.40724 6.402221 236.9455 1.82E-53 5.72E-52 

226 SHMT1 -1.02091 6.384896 219.8868 9.57E-50 2.68E-48 

227 POLD4 1.483001 6.301807 234.5942 5.94E-53 1.85E-51 

228 CYTH1 1.114964 6.307986 189.9782 3.21E-43 7.49E-42 

229 CKS2 -1.83259 6.377009 321.9099 5.56E-72 2.50E-70 

230 WDR90 -1.10826 6.328975 160.1325 1.06E-36 1.99E-35 

231 ERBB2IP 1.010267 6.249908 62.56129 2.58E-15 1.90E-14 

232 TMEM79 1.537379 6.25542 499.5023 1.22E-110 1.02E-
108 

233 WNT7B 1.149858 6.280866 276.8787 3.60E-62 1.31E-60 

234 CNN2 1.05879 6.259797 224.2268 1.08E-50 3.11E-49 
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235 PCDH1 1.607217 6.239676 248.7152 4.95E-56 1.63E-54 

236 TSPYL2 1.123337 6.260646 153.1687 3.52E-35 6.39E-34 

237 TELO2 -1.01961 6.287891 131.3721 2.05E-30 3.17E-29 

238 UBE2T -2.08563 6.302109 509.9576 6.48E-113 5.66E-
111 

239 CBX2 -1.35803 6.268047 300.6352 2.40E-67 9.69E-66 

240 MCM6 -1.95161 6.277195 721.3881 6.68E-159 1.10E-
156 

241 GNMT 2.439455 6.163692 664.9697 1.24E-146 1.60E-
144 

242 SLC16A6 1.925227 6.220973 366.6904 9.84E-82 5.59E-80 

243 UGT2B11 3.381715 6.119025 878.6553 4.29E-193 1.28E-
190 

244 PTTG1 -1.13815 6.281529 82.99068 8.24E-20 7.97E-19 

245 PIK3R3 -1.00472 6.23804 165.9614 5.64E-38 1.11E-36 

246 IGBP1 1.009105 6.187094 211.8651 5.38E-48 1.44E-46 

247 RECQL4 -2.44567 6.257349 735.0075 7.30E-162 1.28E-
159 

248 YIPF1 1.350027 6.149532 289.4761 6.47E-65 2.46E-63 

249 TCF19 -3.17297 6.252116 1086.997 2.21E-238 1.09E-
235 

250 ZCCHC6 1.274969 6.147848 222.7858 2.23E-50 6.34E-49 

251 GEMIN4 -1.61516 6.20047 372.4269 5.54E-83 3.28E-81 

252 CDCA5 -3.10287 6.238124 1261.541 2.58E-276 2.66E-
273 

253 GADD45G 2.928615 6.156119 1031.987 2.00E-226 9.48E-
224 

254 MTMR9 1.228813 6.139286 201.2752 1.10E-45 2.74E-44 

255 RFC2 -1.66704 6.199762 305.9512 1.66E-68 6.93E-67 

256 GREB1 1.294012 6.120287 198.2542 5.02E-45 1.23E-43 

257 SMPD2 1.172216 6.124848 167.983 2.04E-38 4.13E-37 

258 DEK -1.93842 6.168683 409.6557 4.36E-91 2.93E-89 

259 NEU1 1.000617 6.103164 208.6205 2.75E-47 7.18E-46 

260 HLTF -1.06762 6.134986 100.1209 1.43E-23 1.67E-22 

261 SELS 1.197415 6.093093 230.9763 3.65E-52 1.10E-50 

262 CRLS1 1.012555 6.076245 129.3629 5.65E-30 8.54E-29 

263 DERL2 1.100616 6.086523 93.39008 4.29E-22 4.66E-21 

264 TOP2A -3.27268 6.159168 710.8513 1.31E-156 2.01E-
154 

265 DDAH2 1.075739 6.082459 185.7827 2.65E-42 6.00E-41 

266 DSEL -1.17527 6.103658 218.1113 2.34E-49 6.47E-48 

267 UBE2C -2.70921 6.167261 695.3527 3.06E-153 4.46E-
151 

268 Mar-05 1.037374 6.063772 179.1387 7.47E-41 1.61E-39 

269 CORO2A 1.020624 6.027818 151.8501 6.83E-35 1.23E-33 



 

148 | P a g e  
 

270 SASH1 1.207238 6.020806 91.74808 9.84E-22 1.06E-20 

271 POLD1 -1.70165 6.096017 268.312 2.65E-60 9.37E-59 

272 LONRF1 1.681935 5.992754 378.0212 3.36E-84 2.01E-82 

273 EFCAB4A 1.17597 6.025514 167.7012 2.35E-38 4.74E-37 

274 PTPRM 1.231821 6.012084 161.7762 4.63E-37 8.80E-36 

275 FAM214B 1.221125 6.022107 189.8395 3.45E-43 8.01E-42 

276 CCNB2 -2.3793 6.098181 742.9113 1.40E-163 2.52E-
161 

277 TROAP -1.69885 6.095553 383.1854 2.52E-85 1.57E-83 

278 ACAD8 1.607501 5.987761 323.4961 2.51E-72 1.14E-70 

279 PKP4 -1.31 6.026131 206.9198 6.46E-47 1.66E-45 

280 EXOSC2 -1.03818 6.02918 209.0109 2.26E-47 5.91E-46 

281 RACGAP1 -2.25328 6.047303 631.398 2.48E-139 2.94E-
137 

282 LRRC45 -1.54626 6.026365 262.478 4.95E-59 1.73E-57 

283 SNHG3 -1.12506 6.010091 176.4108 2.95E-40 6.26E-39 

284 LSM2 -1.12572 6.01861 97.2629 6.07E-23 6.86E-22 

285 MTHFD2 -1.04098 5.985797 131.1138 2.34E-30 3.61E-29 

286 CCNF -2.25008 6.00093 639.0337 5.42E-141 6.77E-
139 

287 KIFC1 -2.9716 6.000929 1098.194 8.16E-241 4.41E-
238 

288 XRCC3 -1.43163 5.971976 295.0115 4.02E-66 1.58E-64 

289 E2F1 -3.03618 5.996343 1132.469 2.90E-248 2.06E-
245 

290 RNF185 1.015195 5.888818 145.5135 1.66E-33 2.83E-32 

291 KIF2C -2.92428 5.981083 1030.185 4.93E-226 2.24E-
223 

292 DTYMK -1.087 5.963959 86.3344 1.52E-20 1.53E-19 

293 CCDC53 1.220078 5.883705 119.2415 9.27E-28 1.30E-26 

294 PKMYT1 -3.17892 5.970537 724.0308 1.78E-159 3.02E-
157 

295 CDC6 -2.71456 5.945206 956.275 5.74E-210 1.92E-
207 

296 KANK2 -1.39431 5.903333 195.9566 1.59E-44 3.84E-43 

297 HMMR -2.1397 5.923096 390.2568 7.28E-87 4.67E-85 

298 NCAPG -2.75675 5.917118 851.3649 3.67E-187 1.04E-
184 

299 SNHG1 -1.66199 5.894013 337.8273 1.90E-75 9.13E-74 

300 KCNMA1 1.048287 5.817175 92.86631 5.59E-22 6.06E-21 

301 NCAPH2 -1.04697 5.901586 146.5628 9.78E-34 1.68E-32 

302 KIF4A -2.00257 5.899307 514.496 6.67E-114 5.97E-
112 

303 NDFIP2 1.28736 5.815608 166.6536 3.98E-38 7.87E-37 
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304 CDCA3 -2.43805 5.893867 508.1527 1.60E-112 1.39E-
110 

305 MLF1IP -2.59502 5.883664 774.1869 2.21E-170 4.65E-
168 

306 PARP2 -1.536 5.878172 297.0701 1.43E-66 5.69E-65 

307 HJURP -2.82867 5.888758 816.9411 1.12E-179 2.89E-
177 

308 IQGAP3 -2.15928 5.881633 558.399 1.87E-123 1.89E-
121 

309 RWDD2A 1.144425 5.800116 183.9652 6.60E-42 1.48E-40 

310 RPA2 -1.20334 5.852203 173.6675 1.17E-39 2.45E-38 

311 POLA2 -2.16493 5.857153 617.5233 2.58E-136 2.88E-
134 

312 C15orf23 -1.11599 5.854737 204.6946 1.97E-46 5.04E-45 

313 MCMBP -1.2245 5.828437 265.1596 1.29E-59 4.53E-58 

314 CDK2 -1.50778 5.841479 299.9445 3.39E-67 1.36E-65 

315 MESP1 1.055936 5.748554 78.99119 6.24E-19 5.74E-18 

316 INCENP -2.03569 5.835241 378.6788 2.41E-84 1.45E-82 

317 DNAJC9 -1.31581 5.825465 206.7788 6.93E-47 1.78E-45 

318 FAM83D -2.45341 5.838418 720.8671 8.67E-159 1.41E-
156 

319 FOXD4 1.583442 5.745258 364.0671 3.66E-81 2.05E-79 

320 FZD5 1.203639 5.723739 129.8697 4.38E-30 6.65E-29 

321 AURKA -2.26681 5.788678 499.3343 1.33E-110 1.10E-
108 

322 PSIP1 -1.20329 5.755688 162.085 3.96E-37 7.56E-36 

323 SNX25 1.518669 5.693395 280.8462 4.91E-63 1.81E-61 

324 ASRGL1 1.333319 5.700826 296.8215 1.62E-66 6.43E-65 

325 LRRC20 -1.07583 5.746568 178.1508 1.23E-40 2.63E-39 

326 MSH6 -1.34492 5.735659 222.0121 3.29E-50 9.31E-49 

327 TOPBP1 -1.2495 5.727987 166.7894 3.72E-38 7.38E-37 

328 ZNF350 1.54278 5.671632 314.3957 2.41E-70 1.05E-68 

329 CBLL1 1.436619 5.675176 221.5112 4.23E-50 1.19E-48 

330 C9orf152 1.30564 5.658872 176.9403 2.26E-40 4.81E-39 

331 BUB1B -3.03646 5.738795 753.0286 8.81E-166 1.73E-
163 

332 CADPS2 2.250906 5.627089 423.0305 5.34E-94 3.73E-92 

333 DLGAP5 -2.21023 5.726486 329.2605 1.39E-73 6.41E-72 

334 NCAPG2 -1.90439 5.713099 350.935 2.65E-78 1.38E-76 

335 C14orf80 -1.35272 5.711237 247.3248 9.95E-56 3.24E-54 

336 ASF1B -3.8302 5.735445 1225.607 1.66E-268 1.45E-
265 

337 UNG -1.42818 5.672245 277.2868 2.93E-62 1.07E-60 

338 NUP85 -1.46517 5.692248 291.8036 2.01E-65 7.78E-64 
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339 TMEM201 -1.33915 5.678676 172.2282 2.41E-39 5.01E-38 

340 SLC29A1 -2.77261 5.661481 778.4889 2.56E-171 5.72E-
169 

341 MAF 2.932162 5.575168 507.8834 1.83E-112 1.58E-
110 

342 LIFR 2.752187 5.555242 489.2013 2.13E-108 1.70E-
106 

343 FANCD2 -2.13342 5.646963 494.3288 1.63E-109 1.33E-
107 

344 PNMA1 1.241846 5.553088 265.5523 1.06E-59 3.73E-58 

345 CCNA2 -2.98941 5.643516 695.3065 3.14E-153 4.51E-
151 

346 CAMK2N1 -2.14393 5.616474 459.8053 5.30E-102 3.99E-
100 

347 CAP2 1.783524 5.53728 276.5103 4.33E-62 1.56E-60 

348 MAP9 1.153307 5.546306 115.2109 7.08E-27 9.58E-26 

349 ANLN -2.7275 5.608306 472.6704 8.41E-105 6.37E-
103 

350 CDT1 -2.6894 5.617058 592.6203 6.74E-131 7.16E-
129 

351 TFPT 1.03312 5.547885 99.8895 1.61E-23 1.87E-22 

352 CHAF1B -1.83884 5.603972 347.9958 1.16E-77 5.90E-76 

353 GALK2 1.006977 5.504204 102.635 4.03E-24 4.83E-23 

354 RAD51C -1.15301 5.562171 138.3002 6.27E-32 1.03E-30 

355 WDR62 -2.89153 5.586252 525.3029 2.97E-116 2.77E-
114 

356 UGT2B17 -1.49002 5.547899 224.8046 8.10E-51 2.35E-49 

357 ACPP 1.065064 5.482185 182.4516 1.41E-41 3.12E-40 

358 PRR11 -1.93725 5.569425 386.2358 5.46E-86 3.49E-84 

359 MELK -2.7595 5.576693 666.8211 4.91E-147 6.41E-
145 

360 STC2 -1.45317 5.527638 194.9093 2.70E-44 6.45E-43 

361 TTC39A 1.531964 5.457682 308.8245 3.94E-69 1.68E-67 

362 CKAP2 -1.2193 5.532953 141.2153 1.44E-32 2.43E-31 

363 DDC -1.59046 5.532478 148.0825 4.55E-34 7.97E-33 

364 NDC80 -2.66059 5.558103 634.4423 5.40E-140 6.60E-
138 

365 PRPF4 -1.12161 5.51558 140.7936 1.79E-32 3.00E-31 

366 LRRC16A 1.282402 5.462036 166.5632 4.17E-38 8.22E-37 

367 TCEAL3 1.027348 5.460493 126.2593 2.70E-29 4.00E-28 

368 TMEM48 -1.79609 5.505487 320.863 9.40E-72 4.19E-70 

369 ERLEC1 1.236214 5.424797 154.3849 1.91E-35 3.50E-34 

370 AURKB -2.99083 5.525203 569.7318 6.42E-126 6.63E-
124 

371 SLC2A12 1.710115 5.413684 343.7637 9.67E-77 4.80E-75 
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372 HAUS5 -1.60938 5.507433 236.6324 2.13E-53 6.68E-52 

373 SNAPC4 -1.04952 5.472485 112.4805 2.80E-26 3.69E-25 

374 POLR1E -1.49621 5.46638 245.2165 2.87E-55 9.23E-54 

375 NR4A1 1.671129 5.435144 289.9536 5.09E-65 1.94E-63 

376 PFAS -1.32278 5.45572 113.5676 1.62E-26 2.16E-25 

377 ESPL1 -3.35512 5.494887 823.629 3.93E-181 1.09E-
178 

378 NUP155 -1.28387 5.441691 134.8934 3.48E-31 5.55E-30 

379 FANCG -1.86435 5.473524 361.5053 1.32E-80 7.23E-79 

380 PRKCA 2.027003 5.384767 343.0186 1.40E-76 6.94E-75 

381 NRARP -1.16411 5.441732 162.6872 2.93E-37 5.62E-36 

382 KIAA0513 1.392395 5.380875 211.8561 5.41E-48 1.45E-46 

383 PLXNA3 1.091541 5.397839 66.45759 3.58E-16 2.78E-15 

384 TRIP13 -1.96282 5.45135 479.7892 2.37E-106 1.86E-
104 

385 RRAS 1.256704 5.388401 126.1676 2.83E-29 4.18E-28 

386 CDKN3 -1.23991 5.455793 106.8736 4.74E-25 5.97E-24 

387 GMNN -1.74604 5.450182 366.4446 1.11E-81 6.29E-80 

388 DDX11 -1.61283 5.438654 192.4068 9.48E-44 2.24E-42 

389 C5orf4 1.226262 5.38173 93.28493 4.53E-22 4.91E-21 

390 ITPKC 1.012044 5.381158 125.0619 4.93E-29 7.23E-28 

391 BCAP29 1.127326 5.365335 111.3899 4.86E-26 6.32E-25 

392 RABAC1 1.299533 5.358938 90.53673 1.82E-21 1.93E-20 

393 WIPI1 3.085675 5.320718 715.7274 1.14E-157 1.79E-
155 

394 CENPE -2.55539 5.416865 398.9942 9.12E-89 5.99E-87 

395 SMAP1 1.128774 5.354387 180.4406 3.88E-41 8.47E-40 

396 OAZ3 1.101403 5.338351 70.90724 3.74E-17 3.09E-16 

397 RAP1GAP 1.973047 5.301951 290.4567 3.95E-65 1.52E-63 

398 EZH2 -1.82731 5.393788 342.9186 1.48E-76 7.26E-75 

399 CDCA8 -2.75916 5.409472 817.8243 7.19E-180 1.90E-
177 

400 SMC2 -1.93674 5.364923 247.6822 8.31E-56 2.71E-54 

401 ZBTB24 1.112941 5.319554 155.8564 9.10E-36 1.68E-34 

402 NETO2 -1.08871 5.353325 181.9619 1.81E-41 3.98E-40 

403 EMP2 -1.2952 5.364514 157.3889 4.21E-36 7.82E-35 

404 CENPO -1.63327 5.363486 303.6638 5.24E-68 2.17E-66 

405 YWHAH -1.00771 5.334659 129.9422 4.22E-30 6.43E-29 

406 EDEM2 1.234739 5.287493 149.0135 2.85E-34 5.04E-33 

407 TECPR1 1.002065 5.270997 95.51449 1.47E-22 1.63E-21 

408 PBK -2.07243 5.352495 361.7017 1.20E-80 6.59E-79 

409 NCAPH -3.25505 5.350564 989.5939 3.28E-217 1.20E-
214 
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410 RFC4 -1.93463 5.343251 371.91 7.18E-83 4.21E-81 

411 LOC150776 -1.07254 5.331821 92.46693 6.85E-22 7.39E-21 

412 NUP160 -1.42056 5.301647 134.1115 5.17E-31 8.21E-30 

413 ADAM7 1.202614 5.265882 222.1598 3.06E-50 8.66E-49 

414 NOTCH1 -1.23504 5.292124 74.77103 5.29E-18 4.57E-17 

415 CDC45 -3.02432 5.344925 626.7053 2.60E-138 3.05E-
136 

416 RGS3 -1.12618 5.30241 166.0001 5.53E-38 1.09E-36 

417 BUB1 -2.40453 5.320551 457.2626 1.89E-101 1.42E-99 

418 PHF1 1.034168 5.262987 87.6755 7.71E-21 7.94E-20 

419 PIAS1 1.229291 5.251054 129.4538 5.40E-30 8.17E-29 

420 SLC7A5 -1.38152 5.277115 164.1857 1.38E-37 2.67E-36 

421 GTSE1 -2.46696 5.299098 672.4993 2.86E-148 3.82E-
146 

422 SLC25A20 1.181722 5.2054 195.5404 1.96E-44 4.72E-43 

423 MDN1 -1.04446 5.224759 57.79713 2.91E-14 1.98E-13 

424 BHLHA15 1.509403 5.167879 142.853 6.33E-33 1.07E-31 

425 POC1A -1.59785 5.245995 225.6205 5.38E-51 1.57E-49 

426 CKS1B -1.54118 5.228513 135.1903 3.00E-31 4.81E-30 

427 BRCA1 -3.09521 5.210567 524.7953 3.83E-116 3.54E-
114 

428 HLA-DMA 1.88914 5.125523 210.2816 1.19E-47 3.16E-46 

429 PTPN21 2.308262 5.107155 294.9429 4.16E-66 1.63E-64 

430 SLC39A8 -1.38282 5.177939 211.3398 7.01E-48 1.87E-46 

431 PODXL -1.29161 5.175001 152.7887 4.26E-35 7.72E-34 

432 AFF3 1.782135 5.101864 226.5547 3.36E-51 9.93E-50 

433 KIF11 -2.75344 5.181224 380.6875 8.82E-85 5.39E-83 

434 BTG2 -1.39522 5.161335 189.0626 5.09E-43 1.17E-41 

435 ARID5B 1.397515 5.090399 133.0787 8.69E-31 1.36E-29 

436 PGC 2.199557 5.097379 383.2945 2.39E-85 1.49E-83 

437 FAM64A -2.30997 5.174444 407.6541 1.19E-90 7.94E-89 

438 MAD2L1 -2.46985 5.137843 307.9156 6.21E-69 2.62E-67 

439 TBC1D8 1.127747 5.102788 104.3703 1.68E-24 2.05E-23 

440 C4orf34 1.345178 5.04361 139.8938 2.81E-32 4.67E-31 

441 PPP2R5B 1.027742 5.075568 107.2249 3.97E-25 5.02E-24 

442 CENPM -1.42535 5.135223 112.4281 2.88E-26 3.78E-25 

443 EAF2 2.160754 5.067209 286.3176 3.15E-64 1.18E-62 

444 TFAP4 -1.15115 5.088297 159.2153 1.68E-36 3.14E-35 

445 PSRC1 -2.30736 5.139266 497.618 3.14E-110 2.58E-
108 

446 CDC25A -1.00609 5.098526 101.1647 8.46E-24 9.98E-23 

447 BCL2L12 -1.34974 5.126352 129.9842 4.13E-30 6.30E-29 

448 ECT2 -1.9274 5.101833 273.0659 2.44E-61 8.68E-60 
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449 FANCA -2.6372 5.118483 522.419 1.26E-115 1.15E-
113 

450 WRAP53 -1.46638 5.10507 223.492 1.57E-50 4.47E-49 

451 CXCR7 -2.41898 5.08734 473.6052 5.26E-105 4.04E-
103 

452 FN3KRP -1.12619 5.078632 117.5823 2.14E-27 2.95E-26 

453 KIAA1731 -1.00206 5.066189 86.95609 1.11E-20 1.13E-19 

454 SLC10A7 1.739501 5.006378 230.9897 3.63E-52 1.10E-50 

455 UGT2B15 -1.58315 5.06843 205.6687 1.21E-46 3.10E-45 

456 ARHGAP19 -1.43039 5.083822 169.5721 9.18E-39 1.88E-37 

457 EXOSC8 -1.59109 5.079829 251.7733 1.07E-56 3.55E-55 

458 MCM8 -1.40254 5.061522 170.138 6.90E-39 1.42E-37 

459 SLC44A1 -1.12636 5.041781 103.331 2.84E-24 3.43E-23 

460 KIAA0101 -1.34067 5.069066 124.7198 5.86E-29 8.56E-28 

461 EML1 1.08568 5.004544 122.2279 2.06E-28 2.96E-27 

462 TFAM -1.0786 5.03236 98.67487 2.98E-23 3.41E-22 

463 DEPDC1 -2.58639 5.061649 323.2672 2.81E-72 1.27E-70 

464 METTL7A -1.13267 5.040264 114.7384 8.98E-27 1.21E-25 

465 NET1 -1.0463 5.030003 83.96344 5.04E-20 4.93E-19 

466 ARHGAP11A -2.7988 5.052337 337.3679 2.39E-75 1.15E-73 

467 CIT -3.02174 5.062757 791.295 4.21E-174 1.04E-
171 

468 NUP107 -1.49223 5.022358 183.0315 1.06E-41 2.35E-40 

469 GINS1 -2.84708 5.043659 771.3359 9.21E-170 1.90E-
167 

470 ZWILCH -1.62127 5.026318 281.7203 3.17E-63 1.18E-61 

471 LIG1 -1.91338 5.034235 286.6422 2.68E-64 1.01E-62 

472 RAD54L -3.46275 5.045544 704.0766 3.88E-155 5.81E-
153 

473 TYMP 1.257953 4.937592 138.6267 5.32E-32 8.74E-31 

474 C20orf72 -1.84753 5.008939 287.6562 1.61E-64 6.08E-63 

475 DDB2 -2.00279 5.021673 351.6334 1.87E-78 9.78E-77 

476 CDKN2C -1.84896 5.018923 262.1932 5.71E-59 1.99E-57 

477 CEP55 -2.71222 4.997699 490.714 9.96E-109 8.03E-
107 

478 LBR -1.38069 4.970888 127.4202 1.50E-29 2.24E-28 

479 CCDC14 -1.51614 4.983164 163.7695 1.70E-37 3.29E-36 

480 ZNF395 -1.03166 4.954544 106.0548 7.17E-25 8.92E-24 

481 C2orf76 1.034981 4.903542 57.65162 3.13E-14 2.12E-13 

482 C10orf47 1.017365 4.910119 95.87337 1.22E-22 1.37E-21 

483 CLSPN -3.80621 4.974504 746.4599 2.36E-164 4.47E-
162 

484 KNTC1 -2.78784 4.965225 618.9634 1.26E-136 1.43E-
134 
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485 DNAJB9 1.724768 4.8996 247.8891 7.49E-56 2.45E-54 

486 HIST1H2AC 1.196452 4.885308 91.65938 1.03E-21 1.10E-20 

487 PRKCH 1.275291 4.868928 132.4279 1.21E-30 1.88E-29 

488 RFC5 -2.38398 4.949173 368.6632 3.66E-82 2.09E-80 

489 BCHE -2.25651 4.92801 361.2371 1.51E-80 8.23E-79 

490 USP1 -1.47739 4.921063 167.0937 3.19E-38 6.37E-37 

491 LYAR -1.50544 4.932251 181.5964 2.17E-41 4.77E-40 

492 CDCA7L -2.18438 4.924996 521.7968 1.72E-115 1.56E-
113 

493 C9orf100 -2.58737 4.944562 502.9781 2.14E-111 1.80E-
109 

494 DSN1 -1.64178 4.924662 228.1293 1.53E-51 4.55E-50 

495 HIST1H2BD 1.566302 4.834448 146.6505 9.36E-34 1.61E-32 

496 GINS2 -2.26059 4.922295 331.6574 4.19E-74 1.97E-72 

497 SYNJ1 1.018524 4.845336 60.85368 6.15E-15 4.40E-14 

498 ATP11A -1.44176 4.870624 102.0676 5.37E-24 6.39E-23 

499 STEAP4 6.927834 4.757507 1233.643 2.98E-270 2.82E-
267 

500 LUZP2 -1.56074 4.866457 188.7955 5.82E-43 1.34E-41 

501 SOCS2 2.464368 4.823498 333.6941 1.51E-74 7.14E-73 

502 POLH -1.43982 4.871978 146.7418 8.94E-34 1.54E-32 

503 TNFRSF19 1.533254 4.816737 209.0766 2.18E-47 5.73E-46 

504 CDYL2 1.046766 4.821179 70.01139 5.90E-17 4.81E-16 

505 MVP 1.144575 4.810926 133.6722 6.44E-31 1.02E-29 

506 MYNN -1.19668 4.842375 120.8719 4.08E-28 5.78E-27 

507 NR2C2AP -1.3963 4.865353 155.1469 1.30E-35 2.39E-34 

508 CCDC99 -1.96585 4.875761 290.7999 3.33E-65 1.28E-63 

509 ELOVL6 -1.48167 4.847384 200.1887 1.90E-45 4.70E-44 

510 E2F3 -1.01918 4.843824 87.62695 7.90E-21 8.12E-20 

511 UGT2B28 3.893655 4.738447 744.1228 7.61E-164 1.39E-
161 

512 FAM101B -1.3925 4.84779 201.9817 7.72E-46 1.93E-44 

513 ZNF18 1.154333 4.817943 146.4863 1.02E-33 1.74E-32 

514 MCM10 -4.32466 4.855 744.3193 6.90E-164 1.28E-
161 

515 FAM198B -1.66277 4.815321 146.1116 1.23E-33 2.10E-32 

516 TRADD 1.31002 4.778269 105.8736 7.86E-25 9.71E-24 

517 RAI14 -1.22035 4.817695 105.8037 8.14E-25 1.00E-23 

518 UHRF1 -3.61134 4.827836 758.5996 5.41E-167 1.08E-
164 

519 INPP4B 1.779542 4.737244 206.9816 6.26E-47 1.62E-45 

520 C16orf59 -1.75965 4.835931 290.2952 4.29E-65 1.64E-63 

521 RAD1 -1.02587 4.794676 98.62368 3.05E-23 3.49E-22 
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522 KIF18B -3.75678 4.830277 596.9025 7.90E-132 8.47E-
130 

523 CDCA2 -2.75471 4.817123 439.4649 1.42E-97 1.02E-95 

524 NAT1 2.105876 4.757416 251.384 1.30E-56 4.30E-55 

525 LIN7B 1.602485 4.752415 181.8536 1.91E-41 4.20E-40 

526 C17orf96 -1.26239 4.767808 111.6182 4.33E-26 5.64E-25 

527 MANEA -1.21951 4.745592 111.0307 5.83E-26 7.56E-25 

528 TTF2 -1.38898 4.759101 162.1472 3.84E-37 7.34E-36 

529 C21orf58 -2.35905 4.785925 507.6473 2.06E-112 1.76E-
110 

530 WDHD1 -2.5941 4.763399 611.5602 5.12E-135 5.60E-
133 

531 ACOX3 1.074054 4.689627 61.81209 3.78E-15 2.75E-14 

532 ZNF812 2.544403 4.648766 584.373 4.20E-129 4.38E-
127 

533 MTHFD1L -1.11124 4.7318 97.74967 4.75E-23 5.42E-22 

534 PUS7 -1.00813 4.693314 68.98917 9.90E-17 7.97E-16 

535 MEX3D -1.08268 4.704777 98.24086 3.70E-23 4.24E-22 

536 MEX3A -1.35255 4.700962 101.3829 7.58E-24 8.95E-23 

537 SHCBP1 -2.76888 4.72046 423.2217 4.86E-94 3.41E-92 

538 NAT8L -1.28146 4.682233 73.65812 9.29E-18 7.92E-17 

539 MXD3 -1.73475 4.718974 215.1305 1.04E-48 2.82E-47 

540 HAUS6 -1.36579 4.67344 131.8728 1.60E-30 2.47E-29 

541 BAHCC1 -1.01076 4.676828 61.13839 5.32E-15 3.83E-14 

542 POLA1 -1.59616 4.684699 200.1805 1.91E-45 4.71E-44 

543 TUBGCP3 -1.17059 4.680888 117.0667 2.78E-27 3.81E-26 

544 SUV39H1 -1.65967 4.690893 231.6669 2.58E-52 7.82E-51 

545 RFWD3 -2.07941 4.677295 226.5095 3.44E-51 1.01E-49 

546 KIF23 -2.97371 4.685966 651.689 9.59E-144 1.21E-
141 

547 BMPR1A 1.150621 4.60637 92.87615 5.57E-22 6.03E-21 

548 ORC6 -3.34711 4.683425 674.5864 1.01E-148 1.36E-
146 

549 PIGW -1.24672 4.638507 130.511 3.17E-30 4.87E-29 

550 PLK2 -1.41448 4.671327 128.4041 9.16E-30 1.37E-28 

551 POLQ -3.26326 4.655492 385.0002 1.01E-85 6.41E-84 

552 RBBP8 -1.76981 4.640005 216.371 5.60E-49 1.53E-47 

553 NUF2 -2.40672 4.651253 301.1723 1.83E-67 7.45E-66 

554 NEK2 -2.46444 4.648609 341.503 3.00E-76 1.46E-74 

555 PRIM2 -1.14901 4.629397 81.60635 1.66E-19 1.58E-18 

556 PSMC3IP -2.44706 4.631968 347.0801 1.83E-77 9.30E-76 

557 DTL -4.49669 4.61236 954.0361 1.76E-209 5.71E-
207 
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558 CDCA4 -2.9533 4.610723 479.5007 2.74E-106 2.12E-
104 

559 CDC7 -2.0867 4.595561 309.8759 2.32E-69 9.97E-68 

560 MRE11A -1.08835 4.584518 75.07879 4.52E-18 3.92E-17 

561 TUBA3D 2.335066 4.537442 380.21 1.12E-84 6.81E-83 

562 SKA3 -2.30676 4.585329 330.5552 7.28E-74 3.37E-72 

563 STIL -2.05411 4.582942 248.6831 5.03E-56 1.65E-54 

564 LAMA1 2.261857 4.505519 404.8368 4.88E-90 3.24E-88 

565 VRK1 -1.63239 4.572572 256.6143 9.39E-58 3.17E-56 

566 TARBP1 -1.0655 4.544414 89.33701 3.33E-21 3.50E-20 

567 CABLES2 -1.25456 4.561123 133.9291 5.66E-31 8.98E-30 

568 OAS3 -2.25464 4.56786 240.3174 3.35E-54 1.06E-52 

569 PCTP 1.26239 4.519361 134.8077 3.64E-31 5.79E-30 

570 TMEM194A -2.42661 4.547988 352.4024 1.27E-78 6.72E-77 

571 UACA -1.14131 4.536448 68.28635 1.41E-16 1.13E-15 

572 CCDC34 -1.26032 4.551422 70.07553 5.71E-17 4.66E-16 

573 PVT1 -1.13798 4.528861 86.51544 1.39E-20 1.40E-19 

574 MAPK11 1.126087 4.475094 84.29218 4.27E-20 4.19E-19 

575 PRKX -1.16917 4.511738 68.34921 1.37E-16 1.09E-15 

576 SEC14L2 2.358778 4.44341 309.6495 2.60E-69 1.11E-67 

577 PAQR6 1.064693 4.495225 64.28098 1.08E-15 8.16E-15 

578 NDE1 -1.15307 4.505692 91.76889 9.74E-22 1.05E-20 

579 DUSP1 1.116623 4.459056 81.90146 1.43E-19 1.36E-18 

580 SLC25A19 -1.84023 4.490555 291.9924 1.83E-65 7.10E-64 

581 RIF1 -1.18942 4.470228 77.44654 1.36E-18 1.23E-17 

582 ANP32E -1.16421 4.482062 68.30151 1.40E-16 1.12E-15 

583 SKP2 -2.16685 4.483818 276.831 3.68E-62 1.33E-60 

584 ACD -1.00083 4.491429 57.18785 3.96E-14 2.67E-13 

585 KRT19 1.52064 4.433102 106.5317 5.64E-25 7.06E-24 

586 CD3EAP -1.20903 4.461233 106.5053 5.71E-25 7.14E-24 

587 ID2 1.114766 4.451093 86.96935 1.10E-20 1.12E-19 

588 DCK -1.36039 4.467973 79.68538 4.39E-19 4.07E-18 

589 ADCY3 -1.26148 4.462304 71.77503 2.41E-17 2.02E-16 

590 CEP57 -1.02447 4.45679 63.1173 1.95E-15 1.45E-14 

591 CHEK1 -2.67607 4.48128 307.0872 9.41E-69 3.93E-67 

592 HAUS1 -1.45359 4.484391 152.0858 6.07E-35 1.09E-33 

593 TARP 2.0082 4.394865 293.1411 1.03E-65 4.00E-64 

594 BTG3 -1.44741 4.458835 139.2849 3.82E-32 6.29E-31 

595 ORAI3 1.406972 4.385888 129.0624 6.57E-30 9.92E-29 

596 GUSBP1 -1.70377 4.420452 204.5126 2.16E-46 5.51E-45 

597 RCCD1 -1.22891 4.442964 125.0822 4.88E-29 7.16E-28 

598 FAM107B -1.1013 4.418613 72.64276 1.55E-17 1.31E-16 
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599 YEATS4 -1.37125 4.4016 89.13679 3.68E-21 3.87E-20 

600 GINS4 -2.83117 4.410119 370.9958 1.14E-82 6.59E-81 

601 LOC100132247 -1.22548 4.371449 5.883853 0.01528 0.027177 

602 FANCC -1.8619 4.390391 189.7382 3.63E-43 8.41E-42 

603 DBF4B -2.06223 4.401455 256.8599 8.30E-58 2.81E-56 

604 CCDC141 2.787908 4.324552 174.0387 9.71E-40 2.04E-38 

605 SH2D3A 1.225514 4.317489 91.76856 9.74E-22 1.05E-20 

606 DBF4 -1.85695 4.362105 207.1958 5.62E-47 1.45E-45 

607 RAD18 -1.16233 4.356835 86.0776 1.73E-20 1.73E-19 

608 CSPG5 -1.06289 4.354519 90.54889 1.80E-21 1.92E-20 

609 SH3BP1 -1.06124 4.359435 70.7006 4.16E-17 3.42E-16 

610 MIR22HG 1.593397 4.321499 179.503 6.22E-41 1.34E-39 

611 DEPDC1B -2.69309 4.373182 344.0621 8.32E-77 4.15E-75 

612 PRSS16 1.029776 4.309015 57.0447 4.26E-14 2.86E-13 

613 BMPR1B 1.288273 4.299067 90.54056 1.81E-21 1.93E-20 

614 GCNT2 1.101548 4.295841 61.31621 4.86E-15 3.50E-14 

615 HAUS7 -1.16574 4.337564 42.28691 7.88E-11 4.11E-10 

616 FGD4 1.577784 4.287323 111.3836 4.88E-26 6.33E-25 

617 TEAD4 -1.08412 4.32635 68.56459 1.23E-16 9.84E-16 

618 ORC1 -2.92149 4.352869 384.9004 1.07E-85 6.70E-84 

619 TRIM52 1.313995 4.273618 112.1945 3.24E-26 4.24E-25 

620 RMI1 -1.514 4.316916 102.4814 4.35E-24 5.21E-23 

621 SPC24 -2.63448 4.336883 372.2121 6.17E-83 3.64E-81 

622 ZFAND2A 1.068566 4.277248 72.57435 1.61E-17 1.36E-16 

623 POLD3 -1.93025 4.315872 212.8788 3.23E-48 8.69E-47 

624 WEE1 -2.12736 4.312252 174.0315 9.74E-40 2.04E-38 

625 IL10RB 1.10843 4.257556 97.425 5.59E-23 6.33E-22 

626 DST -1.04814 4.306202 32.04447 1.51E-08 6.38E-08 

627 NRM -1.93358 4.31834 198.1546 5.28E-45 1.29E-43 

628 EME1 -3.06517 4.314727 346.9957 1.91E-77 9.66E-76 

629 RFC3 -2.85784 4.302175 320.0803 1.39E-71 6.18E-70 

630 TMEM237 -1.63188 4.288242 191.3249 1.63E-43 3.83E-42 

631 TRERF1 -1.22385 4.251048 74.02023 7.73E-18 6.64E-17 

632 FIGNL1 -2.51617 4.277732 225.5112 5.68E-51 1.66E-49 

633 ASPM -3.05577 4.279402 223.4129 1.63E-50 4.64E-49 

634 CCNE1 -1.48767 4.267012 166.8232 3.66E-38 7.26E-37 

635 ZNF43 -1.08378 4.256483 75.80417 3.13E-18 2.76E-17 

636 ZNF385B 1.068493 4.22953 69.82443 6.48E-17 5.28E-16 

637 CDC25C -2.27893 4.290442 264.1282 2.16E-59 7.58E-58 

638 URB2 -1.11889 4.236503 38.19154 6.41E-10 3.10E-09 

639 ANKRD37 2.81022 4.170971 283.5484 1.27E-63 4.73E-62 

640 DIAPH3 -2.22925 4.25633 369.7869 2.08E-82 1.20E-80 
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641 TTK -2.90284 4.256631 311.6591 9.50E-70 4.11E-68 

642 ANO7 1.582033 4.185993 108.8021 1.79E-25 2.30E-24 

643 ERN1 1.068375 4.156414 25.92961 3.54E-07 1.29E-06 

644 G2E3 -1.24851 4.193824 60.09737 9.03E-15 6.40E-14 

645 CHEK2 -2.14126 4.214408 301.1367 1.86E-67 7.56E-66 

646 AJUBA -1.16244 4.188373 94.40761 2.57E-22 2.81E-21 

647 TNFRSF21 -1.02892 4.174664 66.25842 3.96E-16 3.06E-15 

648 FICD 1.800882 4.140731 199.2631 3.02E-45 7.41E-44 

649 APLN -1.2229 4.181197 96.93863 7.15E-23 8.06E-22 

650 ISG20 1.287618 4.128919 78.58197 7.67E-19 7.03E-18 

651 MFHAS1 -1.02568 4.160037 58.37976 2.16E-14 1.49E-13 

652 HNRNPU-AS1 -1.19214 4.163327 101.998 5.56E-24 6.61E-23 

653 C1orf112 -1.62682 4.174699 153.3047 3.29E-35 5.98E-34 

654 LRR1 -1.19925 4.168088 114.8618 8.44E-27 1.14E-25 

655 RAB27A 1.065875 4.133523 59.69147 1.11E-14 7.81E-14 

656 AGR2 1.385475 4.086989 87.89266 6.91E-21 7.15E-20 

657 MIS18A -1.9019 4.160942 175.9537 3.71E-40 7.84E-39 

658 GPSM2 -2.34426 4.158148 244.1555 4.88E-55 1.57E-53 

659 PARVA 1.101712 4.083544 73.80191 8.64E-18 7.37E-17 

660 SGK1 2.090041 4.126749 152.5369 4.84E-35 8.72E-34 

661 ERCC6L -2.15891 4.124497 131.4457 1.98E-30 3.06E-29 

662 SGOL2 -2.27281 4.126562 258.6919 3.31E-58 1.14E-56 

663 KDM5B-AS1 1.06292 4.077932 57.56826 3.26E-14 2.21E-13 

664 CEP78 -1.87971 4.117113 172.2264 2.41E-39 5.01E-38 

665 PHTF2 -1.2045 4.090515 59.43018 1.27E-14 8.87E-14 

666 PDSS1 -1.36548 4.099026 128.4645 8.88E-30 1.33E-28 

667 MERTK 2.4027 4.034444 217.7853 2.75E-49 7.57E-48 

668 PSCA 1.005194 4.080927 60.38523 7.80E-15 5.54E-14 

669 KIF20B -2.91237 4.10426 356.1447 1.95E-79 1.04E-77 

670 CENPH -1.60544 4.09512 154.3255 1.97E-35 3.60E-34 

671 EXO1 -4.22236 4.094591 631.448 2.42E-139 2.90E-
137 

672 NEDD1 -1.27383 4.062327 68.38542 1.34E-16 1.07E-15 

673 MASTL -1.77061 4.07329 161.707 4.79E-37 9.10E-36 

674 TMEM150A 1.039055 4.032263 77.84202 1.12E-18 1.01E-17 

675 A1BG 1.398434 4.026405 41.66666 1.08E-10 5.57E-10 

676 HSPG2 -1.09465 4.046511 77.21183 1.54E-18 1.38E-17 

677 ACACB -1.32703 4.04808 62.16556 3.16E-15 2.31E-14 

678 SLC5A3 -1.34694 4.027646 47.76811 4.80E-12 2.78E-11 

679 NEURL1B -1.66536 4.042715 126.2141 2.76E-29 4.08E-28 

680 SKA1 -2.95702 4.036338 348.6993 8.14E-78 4.18E-76 

681 C1orf96 -1.62557 4.011396 118.7362 1.20E-27 1.67E-26 
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682 QSER1 -1.19693 3.992907 76.32404 2.41E-18 2.15E-17 

683 C11orf82 -2.4944 4.00667 188.4001 7.11E-43 1.63E-41 

684 TIPARP 2.133877 3.963071 165.3256 7.77E-38 1.51E-36 

685 PIF1 -2.52455 4.027417 217.1512 3.78E-49 1.04E-47 

686 C15orf42 -3.64515 4.010447 410.3408 3.09E-91 2.09E-89 

687 SLITRK3 -2.73803 3.984061 351.9018 1.63E-78 8.59E-77 

688 RELL2 1.165997 3.956934 56.75353 4.94E-14 3.30E-13 

689 CEP85 -1.24208 3.990531 54.28541 1.73E-13 1.11E-12 

690 C9orf40 -1.6649 3.979057 142.6632 6.96E-33 1.18E-31 

691 FAM123B -1.16898 3.947375 50.20149 1.39E-12 8.42E-12 

692 PLK4 -2.60187 3.956852 219.7499 1.03E-49 2.86E-48 

693 KIF15 -3.3208 3.955213 424.9456 2.05E-94 1.44E-92 

694 HERC5 1.284517 3.886767 130.0925 3.91E-30 5.97E-29 

695 DCLRE1B -2.14993 3.928038 234.2715 6.98E-53 2.17E-51 

696 RASD1 2.236472 3.863466 169.5251 9.40E-39 1.92E-37 

697 PLEKHA7 -1.03048 3.912357 43.92 3.42E-11 1.85E-10 

698 FBXO5 -2.25191 3.919201 200.8726 1.35E-45 3.35E-44 

699 DFFB -1.03534 3.895758 42.13086 8.54E-11 4.44E-10 

700 DEFB132 1.299497 3.856532 81.5667 1.69E-19 1.61E-18 

701 SERTAD1 1.155962 3.876137 62.81318 2.27E-15 1.68E-14 

702 C17orf107 1.615546 3.823275 156.3913 6.95E-36 1.29E-34 

703 CDH26 -1.22118 3.859626 70.65852 4.25E-17 3.49E-16 

704 MYCL1 1.088066 3.837652 56.65464 5.19E-14 3.46E-13 

705 CCP110 -1.34822 3.860193 80.912 2.36E-19 2.22E-18 

706 HIST1H2BC 1.438715 3.811325 76.83254 1.86E-18 1.67E-17 

707 SDC4 -1.41598 3.854239 124.185 7.67E-29 1.12E-27 

708 STXBP5L -1.379 3.84011 118.6546 1.25E-27 1.73E-26 

709 NCOA7 -1.06508 3.840618 52.72481 3.84E-13 2.42E-12 

710 PRIM1 -2.7987 3.862068 274.9707 9.37E-62 3.35E-60 

711 FANCE -1.44336 3.857833 118.6963 1.22E-27 1.70E-26 

712 RAD51AP1 -3.10514 3.858318 311.8686 8.55E-70 3.71E-68 

713 TIPIN -1.37836 3.843579 73.74915 8.87E-18 7.57E-17 

714 SLC7A2 -1.75815 3.830496 86.37052 1.49E-20 1.50E-19 

715 KIF24 -2.95619 3.858929 303.4058 5.97E-68 2.45E-66 

716 OIP5 -2.26235 3.853208 230.1571 5.51E-52 1.65E-50 

717 FAM176B 1.516353 3.800912 89.7365 2.72E-21 2.87E-20 

718 DUSP9 -1.16083 3.809888 58.29823 2.25E-14 1.55E-13 

719 HAUS8 -2.79464 3.827204 310.7765 1.48E-69 6.37E-68 

720 TRAIP -2.20067 3.817425 180.5902 3.60E-41 7.87E-40 

721 TTN 2.614608 3.775705 258.7871 3.15E-58 1.09E-56 

722 WNT10B -1.14977 3.778618 90.63025 1.73E-21 1.84E-20 

723 SUV39H2 -1.60642 3.784435 135.8789 2.12E-31 3.42E-30 
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724 B3GALT4 2.832441 3.720288 328.9995 1.59E-73 7.27E-72 

725 SMC6 -1.5804 3.776707 82.32832 1.15E-19 1.10E-18 

726 DPYSL2 -1.26224 3.758385 59.14969 1.46E-14 1.02E-13 

727 IQCC -1.51402 3.759863 116.9337 2.97E-27 4.07E-26 

728 FLJ41484 -1.5235 3.741278 84.19088 4.49E-20 4.40E-19 

729 GINS3 -1.73824 3.756026 119.3809 8.64E-28 1.21E-26 

730 RAD51 -2.98367 3.756982 395.1846 6.15E-88 4.00E-86 

731 MNS1 -2.44062 3.749475 184.9116 4.10E-42 9.25E-41 

732 LOC728554 -1.30577 3.73998 107.1871 4.05E-25 5.11E-24 

733 LOC219347 -1.01781 3.749536 48.77995 2.86E-12 1.69E-11 

734 E2F2 -3.57466 3.755456 479.6686 2.52E-106 1.96E-
104 

735 CTDSPL2 -1.27314 3.720102 44.89663 2.08E-11 1.14E-10 

736 SLC27A2 -1.61449 3.725654 128.8359 7.37E-30 1.11E-28 

737 SH3D21 2.647745 3.671158 234.1186 7.54E-53 2.34E-51 

738 KIAA1524 -2.11234 3.73011 165.4529 7.28E-38 1.42E-36 

739 SPC25 -2.5445 3.737694 215.2429 9.86E-49 2.67E-47 

740 GSTCD -1.99654 3.706872 143.8889 3.76E-33 6.39E-32 

741 LRCH1 1.206261 3.675248 44.32163 2.79E-11 1.51E-10 

742 SYBU -1.16677 3.678905 66.81248 2.99E-16 2.33E-15 

743 HIST1H4H 1.486856 3.628909 48.00753 4.25E-12 2.47E-11 

744 KIF14 -2.71377 3.700978 226.7791 3.00E-51 8.92E-50 

745 PRKD3 -1.19138 3.679304 69.00198 9.84E-17 7.93E-16 

746 TBX15 2.031142 3.649352 186.9746 1.45E-42 3.31E-41 

747 ESCO2 -3.55128 3.678045 255.0783 2.03E-57 6.78E-56 

748 ORM1 4.646724 3.584169 558.3566 1.91E-123 1.91E-
121 

749 CASC5 -3.54596 3.668182 281.3416 3.83E-63 1.41E-61 

750 ZFP36L2 -1.40277 3.646974 107.2857 3.85E-25 4.87E-24 

751 BRI3BP -1.04553 3.644973 38.75384 4.81E-10 2.35E-09 

752 CA12 -1.41513 3.646291 119.7792 7.07E-28 9.95E-27 

753 CCNE2 -3.26585 3.647541 258.1389 4.37E-58 1.49E-56 

754 NRGN -1.17895 3.657298 49.72338 1.77E-12 1.07E-11 

755 JDP2 -1.15876 3.63517 58.98903 1.59E-14 1.10E-13 

756 CSGALNACT1 3.40068 3.570962 363.437 5.03E-81 2.80E-79 

757 KHK -1.37881 3.631483 61.99874 3.44E-15 2.51E-14 

758 ERI1 -1.72734 3.606816 160.2264 1.01E-36 1.91E-35 

759 MMP16 -2.2333 3.620427 137.2339 1.07E-31 1.75E-30 

760 CHML -1.2323 3.599155 44.99648 1.97E-11 1.09E-10 

761 HPGD 2.109722 3.546501 143.4881 4.60E-33 7.81E-32 

762 WDR67 -1.25399 3.621995 55.63943 8.71E-14 5.72E-13 

763 PARPBP -2.4475 3.618575 156.3664 7.04E-36 1.30E-34 

764 NUP35 -1.19488 3.598997 66.57558 3.37E-16 2.62E-15 
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765 DSCC1 -2.13346 3.614539 182.6449 1.28E-41 2.85E-40 

766 SLC15A2 1.385816 3.573008 87.0846 1.04E-20 1.06E-19 

767 KLF5 1.288376 3.562063 62.57721 2.56E-15 1.89E-14 

768 IL17RB -1.99178 3.581358 160.1375 1.06E-36 1.99E-35 

769 ENPP1 -1.21258 3.559328 62.39313 2.81E-15 2.06E-14 

770 SPTBN4 1.395943 3.522144 108.7891 1.81E-25 2.31E-24 

771 LAT2 2.427611 3.494342 149.5321 2.19E-34 3.90E-33 

772 ORM2 4.097867 3.458973 353.356 7.88E-79 4.18E-77 

773 SNHG12 -1.30454 3.53138 75.89123 3.00E-18 2.65E-17 

774 CENPL -1.79845 3.539967 99.88182 1.62E-23 1.88E-22 

775 HSPA4L -1.67534 3.524468 59.37183 1.31E-14 9.13E-14 

776 LRRN1 -1.61001 3.495236 76.19264 2.57E-18 2.29E-17 

777 BARD1 -2.55148 3.507466 129.8716 4.37E-30 6.65E-29 

778 KCNQ4 -1.01167 3.498545 33.61509 6.72E-09 2.94E-08 

779 CAMK2B -1.14934 3.51744 58.65534 1.88E-14 1.30E-13 

780 CKAP2L -2.74072 3.497197 218.0685 2.39E-49 6.58E-48 

781 EXPH5 -1.15146 3.457627 52.61518 4.06E-13 2.55E-12 

782 CECR6 2.186917 3.43316 78.76437 7.00E-19 6.42E-18 

783 LOC100128191 -2.64894 3.508863 224.3989 9.93E-51 2.86E-49 

784 HS3ST1 1.066131 3.47225 54.76213 1.36E-13 8.81E-13 

785 NT5C3 -1.00783 3.470744 34.14562 5.11E-09 2.27E-08 

786 OSGEPL1 -1.16074 3.469654 51.25061 8.13E-13 5.03E-12 

787 C14orf132 -1.01481 3.467186 35.43416 2.64E-09 1.20E-08 

788 HAUS3 -1.43001 3.459513 101.3935 7.54E-24 8.91E-23 

789 CDC14B 1.323304 3.421135 65.15301 6.93E-16 5.31E-15 

790 TAF5 -1.16492 3.458455 55.89393 7.65E-14 5.05E-13 

791 SGOL1 -2.76634 3.475341 261.1823 9.48E-59 3.29E-57 

792 KLF10 -1.1361 3.443025 62.58935 2.55E-15 1.88E-14 

793 ADCY1 -1.64174 3.444643 130.4402 3.28E-30 5.03E-29 

794 ZNF107 -1.66983 3.428667 96.52452 8.81E-23 9.90E-22 

795 RNF43 -1.28268 3.445817 63.50381 1.60E-15 1.19E-14 

796 RMI2 -3.02067 3.453655 276.6049 4.13E-62 1.49E-60 

797 ZAK -1.94421 3.440323 118.3677 1.44E-27 1.99E-26 

798 CENPA -2.92953 3.460974 297.4671 1.17E-66 4.68E-65 

799 APOBEC3B -1.35257 3.444421 85.66577 2.13E-20 2.13E-19 

800 DDX12P -2.2256 3.44998 158.0284 3.05E-36 5.68E-35 

801 KLF4 1.189636 3.388472 52.24152 4.91E-13 3.07E-12 

802 TRIM59 -1.45269 3.408551 122.5707 1.73E-28 2.50E-27 

803 VLDLR 1.481824 3.381713 115.8754 5.06E-27 6.88E-26 

804 DONSON -2.00066 3.413257 158.1582 2.86E-36 5.33E-35 

805 SWT1 1.644071 3.366704 73.42668 1.04E-17 8.88E-17 

806 DNA2 -2.76689 3.405734 150.8371 1.14E-34 2.03E-33 
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807 LIN54 -1.04281 3.402325 31.36063 2.14E-08 8.94E-08 

808 GEN1 -1.9078 3.395221 136.0877 1.91E-31 3.08E-30 

809 EPB41L2 -1.04174 3.39408 52.91812 3.48E-13 2.19E-12 

810 FAM134B -1.29243 3.367858 58.6655 1.87E-14 1.29E-13 

811 E2F8 -3.81998 3.392733 317.5903 4.85E-71 2.15E-69 

812 ZNF367 -4.32813 3.380485 299.4173 4.41E-67 1.77E-65 

813 NNMT 1.047581 3.347602 41.63383 1.10E-10 5.66E-10 

814 ZNF100 -1.04783 3.352851 24.02709 9.50E-07 3.32E-06 

815 ABCG1 1.105241 3.311829 28.89807 7.63E-08 3.02E-07 

816 BLM -3.41356 3.366816 279.0465 1.21E-62 4.43E-61 

817 SPATA5 -1.32015 3.348486 71.99 2.16E-17 1.81E-16 

818 GSG2 -3.4629 3.364504 362.7189 7.20E-81 3.99E-79 

819 SNHG4 -1.14853 3.330395 57.11487 4.11E-14 2.77E-13 

820 SLC6A6 -1.40983 3.336926 52.14168 5.16E-13 3.23E-12 

821 PRKY -1.60872 3.323492 99.28248 2.19E-23 2.53E-22 

822 CENPJ -1.85117 3.341224 63.57473 1.54E-15 1.15E-14 

823 NKPD1 1.02814 3.292974 34.08192 5.28E-09 2.34E-08 

824 ANKRD32 -1.16676 3.32541 38.79946 4.70E-10 2.29E-09 

825 ZIK1 -1.29188 3.317349 87.37181 8.99E-21 9.22E-20 

826 SCLT1 -1.33599 3.308964 73.59365 9.60E-18 8.18E-17 

827 CRISPLD2 2.077797 3.259313 107.2989 3.83E-25 4.85E-24 

828 C17orf48 1.018594 3.271453 37.04864 1.15E-09 5.42E-09 

829 SASS6 -1.95293 3.282375 115.6829 5.58E-27 7.56E-26 

830 LRRCC1 -1.39311 3.277272 51.58085 6.87E-13 4.26E-12 

831 COLEC12 -1.32371 3.262694 86.10465 1.71E-20 1.71E-19 

832 MND1 -3.12209 3.307658 199.8417 2.26E-45 5.55E-44 

833 DNMT3B -1.44814 3.284436 76.21404 2.55E-18 2.27E-17 

834 PKIB -1.07747 3.267757 49.06057 2.48E-12 1.48E-11 

835 C18orf56 -1.22464 3.292778 39.3162 3.60E-10 1.78E-09 

836 CDH24 -1.19277 3.281354 44.90404 2.07E-11 1.14E-10 

837 ADAT2 -1.02294 3.251893 37.47591 9.25E-10 4.41E-09 

838 TRNP1 -1.25211 3.254968 44.57074 2.45E-11 1.34E-10 

839 CCDC15 -1.00268 3.260078 33.55018 6.94E-09 3.04E-08 

840 SLC2A3 4.014408 3.21207 331.2792 5.06E-74 2.37E-72 

841 KIAA1656 1.186426 3.234862 50.09021 1.47E-12 8.89E-12 

842 NEIL3 -3.04605 3.264715 255.398 1.73E-57 5.80E-56 

843 MAPRE2 -1.00429 3.23097 49.70027 1.79E-12 1.08E-11 

844 LRRC37A4 -1.16917 3.225988 40.99446 1.53E-10 7.78E-10 

845 LOC401431 -1.08407 3.196361 38.23166 6.28E-10 3.04E-09 

846 C4orf46 -3.12073 3.184868 187.1242 1.35E-42 3.07E-41 

847 WDR76 -2.68684 3.182243 224.8671 7.85E-51 2.29E-49 

848 ANG 1.814142 3.110239 102.8918 3.54E-24 4.26E-23 
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849 OPTN 1.691043 3.098588 105.9395 7.60E-25 9.41E-24 

850 CEP152 -2.1307 3.15379 94.95323 1.95E-22 2.15E-21 

851 RBL1 -2.58173 3.150147 110.088 9.37E-26 1.21E-24 

852 TMEM107 -1.16554 3.156484 43.78547 3.66E-11 1.97E-10 

853 TRPV1 -1.04874 3.148863 34.01874 5.46E-09 2.41E-08 

854 NOC3L -1.00389 3.126805 58.27829 2.28E-14 1.56E-13 

855 ARMC12 2.123023 3.118034 143.9772 3.59E-33 6.12E-32 

856 RELL1 -1.27884 3.118836 50.25672 1.35E-12 8.23E-12 

857 SNAI2 2.481717 3.122005 204.8473 1.83E-46 4.68E-45 

858 TEX30 -1.4719 3.122972 64.3744 1.03E-15 7.80E-15 

859 XRCC2 -3.57366 3.10956 315.5248 1.37E-70 6.00E-69 

860 BEND3 -1.3985 3.096632 64.15968 1.15E-15 8.66E-15 

861 PTPRN2 2.082654 3.083282 176.1122 3.42E-40 7.26E-39 

862 BRCA2 -3.54997 3.112857 295.2399 3.59E-66 1.42E-64 

863 POLR3G -1.45319 3.092283 70.21691 5.31E-17 4.35E-16 

864 HELLS -3.3891 3.100935 162.3502 3.47E-37 6.64E-36 

865 PART1 1.712935 3.060102 77.45019 1.36E-18 1.23E-17 

866 CDCA7 -3.07772 3.091576 202.5467 5.81E-46 1.46E-44 

867 SLC45A1 1.032657 3.046409 39.69559 2.97E-10 1.48E-09 

868 KIAA1211 -1.41924 3.092965 57.84276 2.84E-14 1.93E-13 

869 LOC642846 -2.5479 3.100182 114.2246 1.16E-26 1.57E-25 

870 NR1D1 -1.21055 3.063159 49.29168 2.21E-12 1.32E-11 

871 SLC31A2 1.143838 3.039866 39.33853 3.56E-10 1.76E-09 

872 PER2 -1.27893 3.059703 42.4396 7.29E-11 3.82E-10 

873 CASP8AP2 -1.132 3.045985 34.18097 5.02E-09 2.23E-08 

874 FAM178A -1.261 3.030438 44.4955 2.55E-11 1.39E-10 

875 CLDN8 1.161157 3.026854 59.4506 1.25E-14 8.79E-14 

876 ODF3B 1.054682 3.018693 45.6125 1.44E-11 8.00E-11 

877 LOC100129480 1.568523 2.993878 57.22885 3.88E-14 2.62E-13 

878 CEP128 -2.23337 3.035504 123.0141 1.38E-28 2.00E-27 

879 C16orf55 -1.27736 3.024729 51.41188 7.49E-13 4.64E-12 

880 CHRNA5 -1.24955 3.008231 57.56419 3.27E-14 2.22E-13 

881 CEP68 -1.2034 2.994158 46.65497 8.47E-12 4.79E-11 

882 ABTB1 1.586115 2.970268 107.5077 3.45E-25 4.38E-24 

883 RNASE4 1.730216 2.948282 60.43789 7.59E-15 5.40E-14 

884 S100P 2.105736 2.925508 96.50694 8.89E-23 9.98E-22 

885 MMS22L -2.38191 3.000201 117.5078 2.22E-27 3.06E-26 

886 FANCM -1.23901 2.987179 49.32213 2.17E-12 1.30E-11 

887 NHSL1 -1.06838 2.98745 34.67221 3.90E-09 1.75E-08 

888 SPATA18 -1.43826 2.974484 69.01939 9.75E-17 7.86E-16 

889 ZNF704 -1.00002 2.96406 28.36926 1.00E-07 3.90E-07 

890 PTGER4 1.524584 2.933251 54.94859 1.24E-13 8.03E-13 
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891 C1QTNF9B-
AS1 

2.154137 2.922719 113.8169 1.43E-26 1.92E-25 

892 CCDC18 -1.80017 2.956273 63.77814 1.39E-15 1.04E-14 

893 MTMR11 1.026313 2.937255 21.65315 3.27E-06 1.06E-05 

894 E2F7 -4.91385 2.942007 247.2552 1.03E-55 3.34E-54 

895 AKAP12 2.532329 2.863866 121.4501 3.05E-28 4.36E-27 

896 CENPI -3.01173 2.932829 251.4544 1.25E-56 4.16E-55 

897 ALOXE3 -1.08352 2.913425 36.00663 1.97E-09 9.07E-09 

898 CAMK2D -1.55716 2.911014 80.60872 2.75E-19 2.58E-18 

899 ZNF551 -1.54863 2.898383 62.83916 2.24E-15 1.66E-14 

900 CENPK -3.0927 2.918185 154.9931 1.41E-35 2.58E-34 

901 ALG10B -1.09698 2.904789 31.75831 1.75E-08 7.35E-08 

902 SORL1 -1.73064 2.907479 82.575 1.02E-19 9.78E-19 

903 AZGP1P1 1.403957 2.87277 58.04092 2.57E-14 1.75E-13 

904 DOK3 -1.19857 2.904108 26.44425 2.71E-07 1.01E-06 

905 ZNF850 -1.43981 2.877071 58.69405 1.84E-14 1.27E-13 

906 HIST1H2BG 1.137454 2.850955 14.86339 0.000116 0.000304 

907 PAG1 -1.88583 2.895752 81.31123 1.93E-19 1.82E-18 

908 FAM40B -1.56009 2.899425 66.90838 2.84E-16 2.23E-15 

909 POLE2 -2.15642 2.88688 67.75599 1.85E-16 1.46E-15 

910 C16orf7 1.233663 2.858755 45.09093 1.88E-11 1.04E-10 

911 SCML2 -2.04179 2.881585 117.5708 2.15E-27 2.97E-26 

912 ADAM22 -1.36209 2.873116 45.25893 1.73E-11 9.55E-11 

913 CEP57L1 -1.37994 2.870672 46.51872 9.07E-12 5.11E-11 

914 TMCC3 2.885206 2.843765 167.1876 3.04E-38 6.09E-37 

915 LIN9 -2.98293 2.863285 172.5152 2.09E-39 4.35E-38 

916 AUTS2 -1.69129 2.864932 86.86803 1.16E-20 1.18E-19 

917 SORBS2 -1.56091 2.85289 78.51926 7.92E-19 7.25E-18 

918 LOC730101 -1.37135 2.832468 75.19295 4.27E-18 3.72E-17 

919 SNX16 1.058401 2.809404 25.65605 4.08E-07 1.48E-06 

920 SOX8 -1.52318 2.821924 63.5696 1.55E-15 1.16E-14 

921 CENPQ -2.06973 2.832032 102.4547 4.41E-24 5.27E-23 

922 PLXDC2 1.159774 2.807117 47.19046 6.44E-12 3.68E-11 

923 KIF18A -2.58675 2.830089 132.4496 1.19E-30 1.86E-29 

924 BRIP1 -3.62238 2.817232 209.6381 1.65E-47 4.34E-46 

925 KDELC1 -1.19361 2.78665 47.68966 4.99E-12 2.89E-11 

926 HSD17B11 1.36911 2.747794 53.85517 2.16E-13 1.38E-12 

927 PTPRCAP 1.180093 2.765529 15.88675 6.72E-05 0.000183 

928 ZMYM1 -1.20525 2.77071 26.19817 3.08E-07 1.13E-06 

929 SERPINI1 -1.30872 2.778014 44.85772 2.12E-11 1.16E-10 

930 LOC100288637 -2.51647 2.787301 95.18491 1.73E-22 1.92E-21 

931 FAM86B1 -1.08404 2.747808 39.62318 3.08E-10 1.53E-09 
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932 DPYSL5 -1.27905 2.748075 30.95906 2.64E-08 1.09E-07 

933 NANP -1.35702 2.750439 40.8687 1.63E-10 8.28E-10 

934 ZNF530 -1.69082 2.748085 75.36687 3.91E-18 3.42E-17 

935 FAM69A 1.22512 2.717053 32.20534 1.39E-08 5.89E-08 

936 KLF11 -1.54491 2.741484 46.76429 8.01E-12 4.55E-11 

937 AMACR 2.005658 2.704537 66.28415 3.90E-16 3.03E-15 

938 SRCIN1 -1.58181 2.725143 84.74002 3.40E-20 3.37E-19 

939 ZNF124 -1.45314 2.735325 47.93472 4.41E-12 2.56E-11 

940 ENO2 -1.49626 2.725995 49.35197 2.14E-12 1.28E-11 

941 LOC100506469 -1.02567 2.717116 28.40661 9.83E-08 3.83E-07 

942 RELT -2.53494 2.732905 65.19319 6.79E-16 5.20E-15 

943 RTKN2 -2.06478 2.716191 94.11113 2.98E-22 3.26E-21 

944 RNF219 -1.00003 2.694821 23.15978 1.49E-06 5.07E-06 

945 DPF1 -1.24215 2.71074 47.67369 5.03E-12 2.91E-11 

946 GLDC -1.13095 2.691858 39.18088 3.86E-10 1.90E-09 

947 NUAK2 -1.70525 2.692936 62.80441 2.28E-15 1.69E-14 

948 DENND5B -1.17903 2.673064 37.88917 7.49E-10 3.60E-09 

949 PLK3 -1.45445 2.672837 73.33306 1.10E-17 9.30E-17 

950 SLMO1 -1.08521 2.67575 37.99684 7.09E-10 3.42E-09 

951 ZNF93 -1.11103 2.671161 34.28057 4.77E-09 2.12E-08 

952 KHDRBS3 -1.15034 2.672515 25.4356 4.57E-07 1.65E-06 

953 LIMD2 1.271281 2.63981 49.16096 2.36E-12 1.41E-11 

954 CEP97 -1.05388 2.653911 24.20318 8.67E-07 3.04E-06 

955 RTTN -1.63953 2.656886 71.61399 2.62E-17 2.18E-16 

956 ESPN -1.08073 2.646307 32.31347 1.31E-08 5.59E-08 

957 IER5 -1.89334 2.65326 84.15907 4.57E-20 4.47E-19 

958 TAF4B -1.32777 2.630413 39.20987 3.81E-10 1.87E-09 

959 C17orf53 -2.47448 2.658987 124.9219 5.29E-29 7.74E-28 

960 HLF -1.60576 2.636684 95.70296 1.33E-22 1.49E-21 

961 EPS8L1 2.620432 2.587459 90.74023 1.64E-21 1.75E-20 

962 CBLN2 -1.92761 2.632524 96.20168 1.04E-22 1.16E-21 

963 CPEB3 1.213971 2.58833 36.86618 1.27E-09 5.92E-09 

964 FCHSD1 1.253142 2.608096 33.80884 6.08E-09 2.67E-08 

965 ZNF136 -1.01757 2.620838 21.04429 4.49E-06 1.44E-05 

966 NPPC 2.723005 2.599821 139.9337 2.75E-32 4.58E-31 

967 THBS1 -1.83254 2.637855 52.05617 5.39E-13 3.37E-12 

968 RASSF5 -1.12099 2.597728 43.365 4.54E-11 2.41E-10 

969 EGLN3 -1.57213 2.609625 68.63082 1.19E-16 9.53E-16 

970 SFTPA2 -1.00607 2.601936 39.58828 3.14E-10 1.56E-09 

971 FERMT2 1.690235 2.570251 39.15683 3.91E-10 1.92E-09 

972 WLS -1.03426 2.598078 25.16743 5.26E-07 1.88E-06 

973 MYBPC1 1.523943 2.566469 58.62965 1.90E-14 1.31E-13 
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974 NOVA1 -1.0091 2.59571 32.33856 1.30E-08 5.53E-08 

975 IL1RN -2.1615 2.568722 102.6374 4.02E-24 4.83E-23 

976 ZNF738 -1.45842 2.59568 50.2456 1.36E-12 8.27E-12 

977 PPARGC1B -1.6331 2.565518 42.67018 6.48E-11 3.41E-10 

978 FAM72D -2.61545 2.584525 112.6984 2.51E-26 3.32E-25 

979 CDH15 1.391528 2.543718 48.69188 3.00E-12 1.77E-11 

980 KCNH2 1.106511 2.54331 23.42814 1.30E-06 4.44E-06 

981 LOC100289019 -1.28144 2.565203 39.2761 3.68E-10 1.81E-09 

982 GSN 1.332322 2.527229 59.26114 1.38E-14 9.64E-14 

983 DOK4 1.13866 2.530696 47.32529 6.01E-12 3.45E-11 

984 MYL9 2.356212 2.49094 176.7636 2.47E-40 5.25E-39 

985 PBX1 -1.37297 2.539773 32.30585 1.32E-08 5.61E-08 

986 DMBX1 -3.31864 2.55599 187.633 1.04E-42 2.38E-41 

987 C4orf21 -2.70675 2.540547 118.6437 1.25E-27 1.74E-26 

988 SFR1 -1.56724 2.538136 47.53869 5.39E-12 3.11E-11 

989 SPIN4 -1.75798 2.517004 53.11968 3.14E-13 1.98E-12 

990 PMAIP1 -2.07863 2.526016 99.02954 2.49E-23 2.87E-22 

991 PPP1R14C -1.86232 2.519561 66.34634 3.78E-16 2.94E-15 

992 SLC16A10 -1.49963 2.5063 54.31323 1.71E-13 1.10E-12 

993 PRSS53 -1.1251 2.485032 28.66805 8.59E-08 3.37E-07 

994 STON2 -2.096 2.486208 91.17675 1.31E-21 1.40E-20 

995 HES2 1.223881 2.445505 52.51301 4.27E-13 2.68E-12 

996 KAZN -1.26518 2.447172 37.58481 8.75E-10 4.18E-09 

997 MAP1A -1.09005 2.453251 23.67543 1.14E-06 3.94E-06 

998 DGKA 1.866233 2.423003 94.02393 3.12E-22 3.41E-21 

999 LPCAT4 -1.10384 2.449361 40.44437 2.02E-10 1.02E-09 

1000 EPS8 -1.72946 2.417679 74.86677 5.04E-18 4.36E-17 

1001 GCFC1-AS1 1.288144 2.399184 50.20985 1.38E-12 8.39E-12 

1002 CEP72 -1.9532 2.416237 79.32761 5.26E-19 4.85E-18 

1003 ARPM1 -1.6938 2.400956 61.32243 4.85E-15 3.49E-14 

1004 SLITRK6 1.716986 2.375405 56.18784 6.59E-14 4.36E-13 

1005 SPOCK1 1.862883 2.378154 75.15071 4.36E-18 3.79E-17 

1006 PAX1 -1.15955 2.383393 25.69356 4.00E-07 1.45E-06 

1007 LOC388588 1.114402 2.351305 22.85323 1.75E-06 5.90E-06 

1008 FLJ43663 2.383105 2.350449 103.4788 2.63E-24 3.19E-23 

1009 PCDH11Y -1.0438 2.346546 15.69972 7.42E-05 0.000201 

1010 ANK1 1.231433 2.307912 32.85622 9.92E-09 4.28E-08 

1011 KANK1 1.113171 2.305604 26.79755 2.26E-07 8.44E-07 

1012 FAM54A -2.9195 2.328249 126.3087 2.63E-29 3.90E-28 

1013 C1orf135 -3.51417 2.327583 195.0289 2.54E-44 6.09E-43 

1014 FAM72B -3.14189 2.327372 182.0249 1.75E-41 3.86E-40 

1015 NAV3 -2.87294 2.307982 173.5452 1.24E-39 2.60E-38 
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1016 RPP25 -2.247 2.319348 73.56585 9.73E-18 8.28E-17 

1017 FAM110C 1.266511 2.277315 36.74183 1.35E-09 6.30E-09 

1018 FERMT1 -1.62606 2.296089 37.68478 8.32E-10 3.98E-09 

1019 CCPG1 1.103146 2.264724 16.39262 5.15E-05 0.000143 

1020 TLN2 -1.32066 2.295772 41.96012 9.32E-11 4.83E-10 

1021 NUP62CL -1.23328 2.266863 52.39818 4.53E-13 2.84E-12 

1022 ATAD5 -3.02111 2.251379 163.2787 2.17E-37 4.20E-36 

1023 C18orf54 -3.36421 2.27838 120.4654 5.00E-28 7.07E-27 

1024 LRIG3 -1.68613 2.253936 63.85011 1.34E-15 1.01E-14 

1025 TUBA3E 1.549677 2.242307 34.19097 5.00E-09 2.22E-08 

1026 S1PR3 -2.1669 2.257376 86.43685 1.44E-20 1.46E-19 

1027 RGS16 1.144013 2.23219 22.22318 2.43E-06 8.05E-06 

1028 FLJ27352 1.440643 2.215473 43.63146 3.96E-11 2.13E-10 

1029 RDH12 1.17123 2.198395 28.03445 1.19E-07 4.58E-07 

1030 WWTR1 1.395273 2.20958 40.19173 2.30E-10 1.16E-09 

1031 SPRY1 -1.39013 2.229203 40.37813 2.09E-10 1.05E-09 

1032 HIST1H3E 1.072551 2.199202 24.40843 7.79E-07 2.75E-06 

1033 C19orf57 -1.48688 2.232643 39.45573 3.36E-10 1.66E-09 

1034 ATG16L2 -1.04803 2.229414 18.44324 1.75E-05 5.17E-05 

1035 ABCA12 -2.10961 2.211496 79.61031 4.56E-19 4.22E-18 

1036 FAM81A -2.04924 2.201616 74.27069 6.81E-18 5.86E-17 

1037 BAI2 -2.08205 2.210137 67.83247 1.78E-16 1.41E-15 

1038 SLC35G1 -1.1792 2.189683 30.6818 3.04E-08 1.25E-07 

1039 DOC2A -1.18475 2.18977 23.712 1.12E-06 3.87E-06 

1040 CEL -1.57992 2.20338 55.45546 9.56E-14 6.25E-13 

1041 TNFAIP3 1.815204 2.169242 49.47055 2.01E-12 1.21E-11 

1042 MIR210HG 1.020706 2.177146 19.53759 9.86E-06 3.02E-05 

1043 ARL6IP6 -1.51766 2.183627 40.6177 1.85E-10 9.37E-10 

1044 ACSM1 1.127692 2.158517 34.81551 3.62E-09 1.63E-08 

1045 EML5 -1.33987 2.166066 30.82732 2.82E-08 1.17E-07 

1046 SPTLC3 -1.13605 2.163615 23.00166 1.62E-06 5.48E-06 

1047 SPTB 3.032926 2.147878 135.5347 2.52E-31 4.05E-30 

1048 NTNG1 1.119156 2.142932 19.52801 9.91E-06 3.03E-05 

1049 ACTA2 2.44597 2.1205 156.0955 8.07E-36 1.49E-34 

1050 C3orf67 -1.29347 2.155856 37.66297 8.41E-10 4.03E-09 

1051 BORA -1.72587 2.176648 37.17712 1.08E-09 5.09E-09 

1052 B4GALT6 -1.2244 2.154657 25.74113 3.90E-07 1.42E-06 

1053 ALG10 -1.39232 2.136098 24.05594 9.36E-07 3.27E-06 

1054 RDM1 -1.56178 2.141119 45.98921 1.19E-11 6.63E-11 

1055 RPS6KA5 -1.07954 2.128145 21.25958 4.01E-06 1.29E-05 

1056 LOC100128361 -2.17419 2.14019 44.19524 2.97E-11 1.61E-10 

1057 MAP2K6 -1.53591 2.121205 42.30775 7.80E-11 4.07E-10 
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1058 DGKH -1.62531 2.105578 48.41111 3.46E-12 2.03E-11 

1059 TMEM198 1.231294 2.101973 25.52855 4.36E-07 1.57E-06 

1060 IL36RN -1.1089 2.081946 20.08638 7.40E-06 2.31E-05 

1061 DOCK8 1.663145 2.079418 32.76555 1.04E-08 4.48E-08 

1062 FHOD3 -1.31769 2.096363 37.30608 1.01E-09 4.79E-09 

1063 C1orf95 -1.35075 2.078048 41.48846 1.19E-10 6.08E-10 

1064 C5orf34 -2.76075 2.086564 114.4972 1.01E-26 1.37E-25 

1065 CARTPT 1.052406 2.075935 21.50327 3.53E-06 1.15E-05 

1066 OSBPL3 -2.34789 2.079187 85.02476 2.95E-20 2.92E-19 

1067 FAM83E 2.570063 2.024604 107.6969 3.13E-25 3.99E-24 

1068 CENPP -1.77688 2.063449 54.67616 1.42E-13 9.20E-13 

1069 CEP135 -1.27049 2.048791 29.50725 5.57E-08 2.24E-07 

1070 HIST1H3D 1.690032 1.974339 49.53411 1.95E-12 1.17E-11 

1071 KDELR3 1.558803 1.967166 28.79817 8.03E-08 3.17E-07 

1072 FRK 1.02276 1.974574 15.75645 7.20E-05 0.000195 

1073 SLCO5A1 -1.09875 1.979989 19.63936 9.35E-06 2.87E-05 

1074 FAM72A -2.5642 1.984398 93.7363 3.60E-22 3.93E-21 

1075 KCNRG 1.069423 1.965047 21.55398 3.44E-06 1.12E-05 

1076 NKD1 -1.47093 1.974114 37.45952 9.33E-10 4.44E-09 

1077 TERT -4.1561 1.971424 246.2368 1.72E-55 5.55E-54 

1078 NDUFA4L2 1.904308 1.937276 41.22357 1.36E-10 6.93E-10 

1079 GLS2 -1.38334 1.960414 36.6204 1.44E-09 6.68E-09 

1080 C8orf37 -1.2345 1.947375 25.65078 4.09E-07 1.48E-06 

1081 VASH2 -1.26784 1.942977 31.99667 1.54E-08 6.53E-08 

1082 FAM184A -1.31369 1.932584 23.43671 1.29E-06 4.43E-06 

1083 SPRY4 1.809711 1.907563 58.10853 2.48E-14 1.70E-13 

1084 SNORD96A -1.09602 1.933839 15.86783 6.79E-05 0.000185 

1085 FOXN4 -2.57939 1.923733 80.97104 2.29E-19 2.15E-18 

1086 LRFN2 -1.52234 1.906427 34.05736 5.35E-09 2.37E-08 

1087 FAM86HP -1.49703 1.901182 24.93247 5.94E-07 2.12E-06 

1088 ZPLD1 -1.30848 1.89286 23.56633 1.21E-06 4.16E-06 

1089 TACSTD2 1.237194 1.870662 28.80697 8.00E-08 3.16E-07 

1090 TLL1 -2.60858 1.876395 108.2262 2.40E-25 3.06E-24 

1091 SYP 1.090691 1.866526 23.87587 1.03E-06 3.57E-06 

1092 CHAC2 -1.83655 1.881431 41.94793 9.37E-11 4.86E-10 

1093 IL1RAP -1.20648 1.875948 21.87642 2.91E-06 9.55E-06 

1094 TNS4 2.242506 1.830132 62.23311 3.05E-15 2.23E-14 

1095 BMX -2.1776 1.871175 64.00359 1.24E-15 9.34E-15 

1096 CNKSR2 -1.27943 1.850409 21.95448 2.79E-06 9.20E-06 

1097 LOC399815 -1.48621 1.850908 43.12363 5.14E-11 2.72E-10 

1098 PLS1 -1.06651 1.836253 22.50702 2.09E-06 7.01E-06 

1099 CYP2E1 1.235881 1.832136 23.47648 1.26E-06 4.34E-06 
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1100 RPL36A -1.00276 1.831481 19.38397 1.07E-05 3.25E-05 

1101 GRID2IP 1.011762 1.81248 21.0586 4.45E-06 1.43E-05 

1102 ZNF670 -1.21212 1.826519 24.04651 9.40E-07 3.29E-06 

1103 PDE4A -1.3815 1.818773 31.52318 1.97E-08 8.26E-08 

1104 MREG -1.03493 1.818472 22.39408 2.22E-06 7.40E-06 

1105 ZNF273 -1.77619 1.823732 43.52925 4.18E-11 2.23E-10 

1106 RIMS4 -1.81132 1.806549 67.9084 1.71E-16 1.36E-15 

1107 SP4 -1.38909 1.795308 19.90012 8.16E-06 2.53E-05 

1108 SOBP -1.4504 1.793005 28.3486 1.01E-07 3.94E-07 

1109 SCARA3 -2.28258 1.78656 64.34631 1.04E-15 7.90E-15 

1110 SSTR5 -2.0986 1.760856 78.42893 8.29E-19 7.58E-18 

1111 LTB4R2 -1.07409 1.765178 14.40708 0.000147 0.000382 

1112 LOC100505633 -1.34983 1.774233 20.58555 5.70E-06 1.80E-05 

1113 SNCG 2.141418 1.739804 86.96288 1.11E-20 1.12E-19 

1114 FHIT 1.638182 1.726672 42.47578 7.16E-11 3.75E-10 

1115 APCDD1 -1.0052 1.741211 19.11834 1.23E-05 3.71E-05 

1116 IRX5 -1.26884 1.752793 23.92784 1.00E-06 3.48E-06 

1117 TMOD2 -1.15865 1.73486 21.77992 3.06E-06 1.00E-05 

1118 ASPHD2 1.504459 1.715996 35.25951 2.89E-09 1.31E-08 

1119 PTCRA 1.930257 1.688935 46.68008 8.36E-12 4.73E-11 

1120 CNIH2 -1.21141 1.724738 18.62461 1.59E-05 4.73E-05 

1121 BEST1 -2.16933 1.710968 46.46788 9.31E-12 5.25E-11 

1122 MTBP -2.65029 1.698324 89.12618 3.70E-21 3.88E-20 

1123 TNNT1 1.092825 1.675933 10.44822 0.001228 0.002736 

1124 ZNF695 -2.35394 1.697929 60.84913 6.16E-15 4.41E-14 

1125 TG 4.1646 1.638793 192.4292 9.38E-44 2.22E-42 

1126 CCDC75 -1.1721 1.673007 20.37489 6.37E-06 2.00E-05 

1127 SMYD2 -1.28818 1.677318 19.0658 1.26E-05 3.81E-05 

1128 LOC100335030 -1.32428 1.667135 22.52934 2.07E-06 6.93E-06 

1129 CADM2 1.0948 1.648612 21.68954 3.21E-06 1.05E-05 

1130 LINC00176 -1.03309 1.656477 9.771892 0.001772 0.003834 

1131 GJC1 -1.68402 1.651347 42.66762 6.49E-11 3.41E-10 

1132 ITIH4 -1.02405 1.640978 17.01973 3.70E-05 0.000104 

1133 FAM161A -1.11544 1.621317 20.49142 5.99E-06 1.89E-05 

1134 PLCH1 -2.49368 1.627385 79.40895 5.05E-19 4.66E-18 

1135 LOC100507424 -1.33874 1.618079 23.18715 1.47E-06 5.01E-06 

1136 C14orf28 1.065 1.604954 17.60773 2.71E-05 7.83E-05 

1137 TMEM51 -1.10643 1.60531 13.86745 0.000196 0.0005 

1138 GLI3 -1.10048 1.602994 16.66514 4.46E-05 0.000125 

1139 LRP4 1.181704 1.564273 24.0128 9.57E-07 3.34E-06 

1140 SLC38A4 1.956431 1.574071 45.79123 1.32E-11 7.32E-11 

1141 LOC100130522 -1.32239 1.573387 23.25106 1.42E-06 4.85E-06 



 

170 | P a g e  
 

1142 RIN2 -1.08761 1.548226 17.88452 2.35E-05 6.83E-05 

1143 SNORA61 -1.62578 1.560059 37.53262 8.99E-10 4.29E-09 

1144 FGD1 -1.40586 1.558773 23.68611 1.13E-06 3.91E-06 

1145 RUNX1 2.734274 1.545251 95.17885 1.74E-22 1.92E-21 

1146 CDKN1C 1.32803 1.533424 30.07559 4.16E-08 1.69E-07 

1147 SLC22A1 1.779197 1.531084 57.15464 4.03E-14 2.72E-13 

1148 SERPINB8 1.398553 1.529914 30.32696 3.65E-08 1.49E-07 

1149 CHRNB1 1.758455 1.526782 32.44972 1.22E-08 5.23E-08 

1150 SLA2 2.549826 1.518812 62.54033 2.61E-15 1.92E-14 

1151 FAS -1.18092 1.527157 12.94238 0.000321 0.000794 

1152 MIR17HG -1.13688 1.521143 17.41567 3.00E-05 8.60E-05 

1153 ZC3HAV1L -1.12874 1.515464 13.74072 0.00021 0.000532 

1154 FAM18B2 1.1073 1.510544 23.12508 1.52E-06 5.16E-06 

1155 RELB 1.22223 1.485984 32.33023 1.30E-08 5.55E-08 

1156 NINL -2.23201 1.505842 72.21464 1.93E-17 1.62E-16 

1157 KSR2 -1.78497 1.505379 53.33565 2.81E-13 1.78E-12 

1158 FMNL3 -1.70245 1.509285 46.8384 7.71E-12 4.39E-11 

1159 RUNX2 -1.42959 1.497007 26.20327 3.07E-07 1.13E-06 

1160 MAP3K8 -1.39547 1.48672 34.76635 3.72E-09 1.67E-08 

1161 LOC646862 1.650769 1.44402 33.6782 6.50E-09 2.85E-08 

1162 SYCE2 -1.60112 1.472849 29.53277 5.50E-08 2.21E-07 

1163 MYB -2.79468 1.464304 81.6063 1.66E-19 1.58E-18 

1164 TMEM92 2.267773 1.424565 72.64822 1.55E-17 1.31E-16 

1165 FAM49A -1.01656 1.446769 12.24935 0.000465 0.00112 

1166 OSMR 1.089576 1.42196 9.5673 0.001981 0.004243 

1167 KLHL11 -1.75409 1.424296 39.23119 3.76E-10 1.85E-09 

1168 CERS1 -1.31818 1.430794 18.26135 1.93E-05 5.66E-05 

1169 C1QTNF6 -1.15064 1.413993 12.90532 0.000328 0.000807 

1170 NWD1 -1.18629 1.414917 14.98437 0.000108 0.000286 

1171 HIST1H1E 2.96548 1.355928 68.5934 1.21E-16 9.71E-16 

1172 DNALI1 1.244847 1.363986 26.14563 3.17E-07 1.16E-06 

1173 ELOVL2 3.171632 1.352361 88.97125 4.01E-21 4.18E-20 

1174 LOC100505815 -1.07858 1.359125 11.0402 0.000892 0.002031 

1175 C21orf63 -1.19031 1.366243 12.63672 0.000378 0.000924 

1176 LOC728558 -1.17439 1.361073 13.9122 0.000192 0.000489 

1177 FAM189A2 2.41436 1.351339 55.57986 8.97E-14 5.88E-13 

1178 PBX4 -1.25146 1.340035 18.90357 1.37E-05 4.12E-05 

1179 KCNK5 -2.61271 1.321363 80.26566 3.27E-19 3.05E-18 

1180 CDC14A -1.28691 1.317279 17.64996 2.66E-05 7.67E-05 

1181 SCNN1G 1.762162 1.303017 45.01709 1.95E-11 1.07E-10 

1182 DSE -1.10457 1.327406 13.21516 0.000278 0.000693 

1183 LOC100507634 1.303284 1.305097 22.51538 2.08E-06 6.98E-06 
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1184 ZNF726 -1.79213 1.314377 51.1638 8.50E-13 5.25E-12 

1185 CCDC150 -2.97812 1.32368 69.58955 7.30E-17 5.92E-16 

1186 COL5A2 -1.40336 1.313311 22.99794 1.62E-06 5.49E-06 

1187 C1QL1 -1.28244 1.30253 24.14731 8.92E-07 3.13E-06 

1188 SIX1 -1.78416 1.29539 46.08767 1.13E-11 6.33E-11 

1189 STARD9 -1.82016 1.287747 33.36004 7.66E-09 3.34E-08 

1190 ODAM -1.1372 1.276016 18.70473 1.53E-05 4.55E-05 

1191 FLT4 -2.63701 1.275186 85.31737 2.54E-20 2.53E-19 

1192 GAS2L3 -2.46385 1.266427 57.97387 2.66E-14 1.81E-13 

1193 LOC144481 3.840201 1.240202 91.85196 9.34E-22 1.00E-20 

1194 FANCB -3.29328 1.266418 118.7223 1.20E-27 1.68E-26 

1195 LOC100507266 -1.69659 1.252319 26.94533 2.09E-07 7.85E-07 

1196 ZNF519 -1.76136 1.252172 46.55266 8.92E-12 5.04E-11 

1197 BRDT -2.04241 1.227013 40.47631 1.99E-10 1.00E-09 

1198 EDN2 -1.14199 1.204857 10.46637 0.001216 0.002712 

1199 REP15 3.918908 1.16051 171.0062 4.46E-39 9.22E-38 

1200 FRMPD2 -1.79538 1.173007 30.37788 3.56E-08 1.46E-07 

1201 HEY1 -1.22813 1.167951 12.96696 0.000317 0.000784 

1202 RADIL -2.09897 1.161073 56.7567 4.93E-14 3.30E-13 

1203 MYBL1 -2.58499 1.132487 53.42557 2.69E-13 1.70E-12 

1204 ANTXR1 -1.86435 1.103571 34.02184 5.45E-09 2.41E-08 

1205 BCL2 -2.22535 1.09301 36.63148 1.43E-09 6.65E-09 

1206 KCNG3 1.628505 1.072403 34.5463 4.16E-09 1.86E-08 

1207 ANGPT2 2.571655 1.058679 78.00937 1.03E-18 9.34E-18 

1208 NLRC5 -1.43576 1.079631 23.12287 1.52E-06 5.16E-06 

1209 TGM3 -3.30533 1.063226 96.72651 7.96E-23 8.97E-22 

1210 OXTR -1.74428 1.004629 27.00498 2.03E-07 7.62E-07 

1211 LGI2 -4.03209 0.985462 101.5434 6.99E-24 8.27E-23 

1212 HHIPL2 2.978962 0.623952 98.79176 2.80E-23 3.22E-22 
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B) DHT vs Vehicle 
 

No gene_id logFC logCPM LR PValue FDR 

1 KRT8 1.045876 10.91338 226.5447 3.38E-51 1.48E-48 

2 TMPRSS2 1.034806 10.07856 270.9375 7.09E-61 4.74E-58 

3 FKBP5 1.332703 9.752285 334.1801 1.18E-74 4.48E-71 

4 ACSL3 1.3599 9.582629 306.3878 1.34E-68 1.69E-65 

5 SLC41A1 1.300349 8.666302 342.749 1.61E-76 9.14E-73 

6 NDRG1 1.023857 8.62771 244.7676 3.59E-55 1.94E-52 

7 SMS 1.157277 8.558071 330.8652 6.23E-74 1.77E-70 

8 H2AFX -1.03003 8.459112 154.8721 1.49E-35 2.00E-33 

9 MCM7 -1.06535 8.226906 286.1939 3.36E-64 2.54E-61 

10 MICAL1 1.500391 8.011749 399.6633 6.52E-89 7.41E-85 

11 MKI67 -1.19786 7.768959 161.078 6.58E-37 9.97E-35 

12 CBWD1 1.060669 7.492296 184.4621 5.14E-42 1.22E-39 

13 HMGB2 -1.16852 7.56376 214.2192 1.65E-48 5.68E-46 

14 MYBL2 -1.03923 7.505904 181.4944 2.29E-41 5.09E-39 

15 TPX2 -1.21605 7.409799 309.4635 2.86E-69 4.64E-66 

16 SPAG5 -1.01596 7.378592 295.3601 3.38E-66 3.20E-63 

17 MCM2 -1.21199 7.370048 223.1899 1.82E-50 7.14E-48 

18 PCNA -1.04151 7.316584 177.9997 1.32E-40 2.64E-38 

19 TK1 -1.06191 7.319267 151.2888 9.06E-35 1.20E-32 

20 CHRNA2 1.328367 7.192927 246.8557 1.26E-55 7.15E-53 

21 PLK1 -1.02222 7.175124 213.2254 2.72E-48 9.08E-46 

22 CENPF -1.15946 7.146804 144.8989 2.26E-33 2.85E-31 

23 MCM4 -1.20808 7.062613 290.5878 3.70E-65 3.24E-62 

24 LMNB1 -1.0847 7.04996 229.8125 6.55E-52 3.10E-49 

25 CDC20 -1.14647 7.066853 267.8045 3.42E-60 2.16E-57 

26 MCM3 -1.03623 7.015346 194.0438 4.17E-44 1.13E-41 

27 RRM2 -1.27669 7.018513 315.908 1.13E-70 2.14E-67 

28 F5 1.193323 6.905314 174.4316 7.97E-40 1.44E-37 

29 NUSAP1 -1.26706 6.984579 321.8234 5.80E-72 1.32E-68 

30 TCOF1 -1.06926 6.936038 171.7099 3.13E-39 5.56E-37 

31 PRC1 -1.1647 6.878806 234.0694 7.73E-53 3.82E-50 

32 TYMS -1.18347 6.875414 306.6155 1.19E-68 1.69E-65 

33 FEN1 -1.16776 6.856174 302.1943 1.10E-67 1.25E-64 

34 CDK1 -1.1056 6.77637 178.0335 1.30E-40 2.64E-38 

35 MCM5 -1.07627 6.75905 149.1362 2.68E-34 3.50E-32 
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36 TMPO -1.12552 6.683045 164.5448 1.15E-37 1.84E-35 

37 FANCI -1.08779 6.62416 224.3811 1.00E-50 4.07E-48 

38 ST6GALNAC1 1.035249 6.465627 183.1555 9.92E-42 2.25E-39 

39 TONSL -1.04372 6.54392 125.7227 3.54E-29 3.46E-27 

40 CHAF1A -1.00718 6.47708 146.5049 1.01E-33 1.29E-31 

41 KIF20A -1.16897 6.495192 260.3395 1.45E-58 8.66E-56 

42 SMC4 -1.09011 6.403634 123.7541 9.54E-29 9.18E-27 

43 GNMT 1.219482 6.163692 167.4938 2.61E-38 4.36E-36 

44 UGT2B11 1.518936 6.119025 186.6543 1.71E-42 4.22E-40 

45 RECQL4 -1.0609 6.257349 161.6995 4.81E-37 7.49E-35 

46 TCF19 -1.29178 6.252116 228.2471 1.44E-51 6.54E-49 

47 CDCA5 -1.28337 6.238124 277.8941 2.16E-62 1.53E-59 

48 TOP2A -1.40947 6.159168 161.6144 5.02E-37 7.71E-35 

49 UBE2C -1.25634 6.167261 177.2288 1.95E-40 3.76E-38 

50 CCNB2 -1.08107 6.098181 179.9488 4.97E-41 1.07E-38 

51 RACGAP1 -1.06619 6.047303 160.3922 9.29E-37 1.34E-34 

52 CCNF -1.04616 6.00093 158.4234 2.50E-36 3.47E-34 

53 KIFC1 -1.3823 6.000929 297.1907 1.35E-66 1.39E-63 

54 E2F1 -1.17503 5.996343 220.3052 7.76E-50 2.94E-47 

55 KIF2C -1.24228 5.981083 236.2581 2.57E-53 1.33E-50 

56 PKMYT1 -1.16667 5.970537 123.9963 8.44E-29 8.20E-27 

57 CDC6 -1.12952 5.945206 202.602 5.65E-46 1.69E-43 

58 HMMR -1.07546 5.923096 108.5231 2.06E-25 1.59E-23 

59 NCAPG -1.16227 5.917118 185.3473 3.30E-42 7.97E-40 

60 CDCA3 -1.09271 5.893867 118.705 1.22E-27 1.10E-25 

61 MLF1IP -1.12605 5.883664 175.5714 4.49E-40 8.37E-38 

62 HJURP -1.32201 5.888758 217.7788 2.76E-49 1.01E-46 

63 POLA2 -1.07986 5.857153 174.5567 7.48E-40 1.37E-37 

64 FAM83D -1.20972 5.838418 204.0482 2.73E-46 8.39E-44 

65 AURKA -1.05393 5.788678 123.5456 1.06E-28 1.01E-26 

66 BUB1B -1.24551 5.738795 157.6552 3.68E-36 5.04E-34 

67 CADPS2 1.363656 5.627089 156.1036 8.04E-36 1.09E-33 

68 DLGAP5 -1.12252 5.726486 93.95554 3.23E-22 2.03E-20 

69 ASF1B -1.25257 5.735445 197.7686 6.41E-45 1.87E-42 

70 MAF 1.508879 5.575168 137.4348 9.69E-32 1.06E-29 

71 FANCD2 -1.16644 5.646963 164.0542 1.47E-37 2.32E-35 

72 CCNA2 -1.22092 5.643516 143.9444 3.65E-33 4.51E-31 

73 CAMK2N1 -1.13657 5.616474 143.1641 5.41E-33 6.61E-31 

74 ANLN -1.15084 5.608306 98.83844 2.74E-23 1.90E-21 

75 CDT1 -1.08162 5.617058 115.3649 6.55E-27 5.55E-25 

76 WDR62 -1.05034 5.586252 85.81977 1.97E-20 1.10E-18 

77 MELK -1.21792 5.576693 158.7707 2.10E-36 2.95E-34 
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78 NDC80 -1.35382 5.558103 194.5612 3.21E-44 8.90E-42 

79 AURKB -1.10044 5.525203 97.75995 4.72E-23 3.20E-21 

80 ESPL1 -1.37699 5.494887 183.9924 6.51E-42 1.51E-39 

81 PRKCA 1.122294 5.384767 103.5093 2.59E-24 1.89E-22 

82 WIPI1 1.393275 5.320718 140.8564 1.73E-32 1.99E-30 

83 CENPE -1.15521 5.416865 94.29366 2.72E-22 1.73E-20 

84 CDCA8 -1.147 5.409472 179.8694 5.18E-41 1.09E-38 

85 PBK -1.1895 5.352495 131.122 2.33E-30 2.38E-28 

86 NCAPH -1.1707 5.350564 176.9506 2.25E-40 4.25E-38 

87 RFC4 -1.03248 5.343251 117.288 2.48E-27 2.17E-25 

88 ADAM7 1.02902 5.265882 159.1141 1.77E-36 2.51E-34 

89 CDC45 -1.26503 5.344925 138.8939 4.65E-32 5.23E-30 

90 BUB1 -1.08608 5.320551 108.5805 2.01E-25 1.56E-23 

91 GTSE1 -1.00121 5.299098 138.2256 6.50E-32 7.25E-30 

92 BRCA1 -1.32938 5.210567 118.8537 1.13E-27 1.03E-25 

93 AFF3 1.025491 5.101864 74.22527 6.97E-18 3.25E-16 

94 KIF11 -1.24269 5.181224 91.5732 1.08E-21 6.57E-20 

95 PGC 1.437474 5.097379 160.5865 8.42E-37 1.23E-34 

96 PSRC1 -1.00039 5.139266 112.9466 2.22E-26 1.85E-24 

97 UGT2B15 -1.0213 5.06843 89.53838 3.01E-21 1.78E-19 

98 DEPDC1 -1.08531 5.061649 66.14444 4.19E-16 1.62E-14 

99 ARHGAP11A -1.09129 5.052337 61.27484 4.96E-15 1.73E-13 

100 CIT -1.30978 5.062757 194.8121 2.83E-44 8.04E-42 

101 GINS1 -1.21617 5.043659 180.5777 3.62E-41 7.92E-39 

102 RAD54L -1.33744 5.045544 144.1264 3.33E-33 4.16E-31 

103 DDB2 -1.1311 5.021673 125.9661 3.13E-29 3.12E-27 

104 CDKN2C -1.02241 5.018923 88.19348 5.94E-21 3.41E-19 

105 CEP55 -1.16941 4.997699 111.4567 4.70E-26 3.87E-24 

106 CLSPN -1.32154 4.974504 129.0052 6.76E-30 6.86E-28 

107 KNTC1 -1.20081 4.965225 142.1741 8.91E-33 1.05E-30 

108 RFC5 -1.06755 4.949173 86.16157 1.66E-20 9.33E-19 

109 BCHE -1.00441 4.92801 81.65234 1.62E-19 8.50E-18 

110 CDCA7L -1.05264 4.924996 141.3639 1.34E-32 1.55E-30 

111 C9orf100 -1.11235 4.944562 114.9189 8.20E-27 6.90E-25 

112 GINS2 -1.02608 4.922295 79.16132 5.72E-19 2.87E-17 

113 STEAP4 3.740503 4.757507 286.9926 2.25E-64 1.83E-61 

114 SOCS2 1.298868 4.823498 90.77711 1.61E-21 9.72E-20 

115 UGT2B28 2.151729 4.738447 224.7092 8.50E-51 3.58E-48 

116 MCM10 -1.39635 4.855 117.8871 1.84E-27 1.63E-25 

117 UHRF1 -1.24869 4.827836 127.3368 1.57E-29 1.58E-27 

118 INPP4B 1.037968 4.737244 69.23793 8.73E-17 3.58E-15 

119 KIF18B -1.24701 4.830277 94.5038 2.45E-22 1.57E-20 
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120 CDCA2 -1.19934 4.817123 102.1822 5.06E-24 3.64E-22 

121 C21orf58 -1.02692 4.785925 116.885 3.04E-27 2.64E-25 

122 WDHD1 -1.09878 4.763399 137.4265 9.73E-32 1.06E-29 

123 ZNF812 1.188918 4.648766 118.1696 1.59E-27 1.42E-25 

124 SHCBP1 -1.21918 4.72046 101.3271 7.80E-24 5.57E-22 

125 KIF23 -1.15958 4.685966 133.2985 7.78E-31 8.11E-29 

126 ORC6 -1.41043 4.683425 164.9222 9.51E-38 1.54E-35 

127 POLQ -1.45569 4.655492 95.53963 1.45E-22 9.52E-21 

128 NUF2 -1.2725 4.651253 96.92885 7.19E-23 4.78E-21 

129 NEK2 -1.2653 4.648609 104.8892 1.29E-24 9.66E-23 

130 PSMC3IP -1.06282 4.631968 79.07517 5.98E-19 2.98E-17 

131 DTL -1.46799 4.61236 167.9618 2.06E-38 3.50E-36 

132 CDCA4 -1.0423 4.610723 78.2652 9.01E-19 4.43E-17 

133 CDC7 -1.00613 4.595561 82.09577 1.30E-19 6.90E-18 

134 TUBA3D 1.154626 4.537442 86.83625 1.18E-20 6.70E-19 

135 SKA3 -1.19007 4.585329 101.1734 8.43E-24 5.99E-22 

136 TMEM194A -1.07667 4.547988 81.32644 1.91E-19 9.88E-18 

137 PAQR6 1.09006 4.495225 66.83885 2.95E-16 1.16E-14 

138 TARP 1.388336 4.394865 135.0885 3.16E-31 3.35E-29 

139 GINS4 -1.29491 4.410119 95.70459 1.33E-22 8.81E-21 

140 CCDC141 1.189939 4.324552 32.11229 1.46E-08 2.44E-07 

141 DEPDC1B -1.1672 4.373182 79.50803 4.80E-19 2.42E-17 

142 ORC1 -1.19596 4.352869 81.79847 1.51E-19 7.97E-18 

143 SPC24 -1.05033 4.336883 74.50119 6.06E-18 2.85E-16 

144 POLD3 -1.01666 4.315872 65.33273 6.33E-16 2.40E-14 

145 NRM -1.03433 4.31834 63.31645 1.76E-15 6.45E-14 

146 EME1 -1.26083 4.314727 75.8949 2.99E-18 1.42E-16 

147 RFC3 -1.18466 4.302175 67.80551 1.80E-16 7.27E-15 

148 FIGNL1 -1.01857 4.277732 43.21601 4.90E-11 1.13E-09 

149 ASPM -1.4306 4.279402 58.03575 2.57E-14 8.31E-13 

150 CDC25C -1.12305 4.290442 75.37873 3.89E-18 1.84E-16 

151 DIAPH3 -1.24199 4.25633 132.5798 1.12E-30 1.15E-28 

152 TTK -1.24649 4.256631 70.54799 4.49E-17 1.90E-15 

153 ANO7 1.119116 4.185993 53.57236 2.49E-13 7.23E-12 

154 C1orf112 -1.11931 4.174699 76.51285 2.19E-18 1.05E-16 

155 GPSM2 -1.13496 4.158148 67.0086 2.70E-16 1.07E-14 

156 SGOL2 -1.1287 4.126562 73.64056 9.37E-18 4.31E-16 

157 CEP78 -1.16272 4.117113 71.18209 3.26E-17 1.41E-15 

158 KIF20B -1.15605 4.10426 71.55151 2.70E-17 1.19E-15 

159 EXO1 -1.36995 4.094591 109.6295 1.18E-25 9.45E-24 

160 SKA1 -1.24075 4.036338 79.7189 4.32E-19 2.18E-17 

161 C15orf42 -1.24883 4.010447 67.63497 1.97E-16 7.90E-15 
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162 SLITRK3 -1.02532 3.984061 62.39063 2.82E-15 1.01E-13 

163 PLK4 -1.37775 3.956852 71.42752 2.88E-17 1.26E-15 

164 KIF15 -1.54313 3.955213 122.2659 2.02E-28 1.85E-26 

165 FBXO5 -1.19666 3.919201 64.46982 9.80E-16 3.69E-14 

166 PRIM1 -1.21125 3.862068 63.49777 1.61E-15 5.92E-14 

167 RAD51AP1 -1.15768 3.858318 58.05566 2.55E-14 8.25E-13 

168 KIF24 -1.36447 3.858929 81.48532 1.77E-19 9.20E-18 

169 OIP5 -1.14958 3.853208 69.36202 8.20E-17 3.41E-15 

170 HAUS8 -1.02802 3.827204 56.10902 6.86E-14 2.11E-12 

171 TRAIP -1.07542 3.817425 50.27131 1.34E-12 3.64E-11 

172 TTN 1.077946 3.775705 38.66438 5.03E-10 1.01E-08 

173 B3GALT4 1.182619 3.720288 50.97522 9.35E-13 2.57E-11 

174 RAD51 -1.07935 3.756982 72.57113 1.61E-17 7.21E-16 

175 MNS1 -1.09502 3.749475 43.99635 3.29E-11 7.73E-10 

176 E2F2 -1.23445 3.755456 85.18558 2.72E-20 1.49E-18 

177 SH3D21 1.282619 3.671158 51.82665 6.06E-13 1.69E-11 

178 SPC25 -1.07155 3.737694 46.94391 7.30E-12 1.84E-10 

179 GSTCD -1.03503 3.706872 42.86711 5.86E-11 1.32E-09 

180 KIF14 -1.36197 3.700978 68.26926 1.43E-16 5.79E-15 

181 ESCO2 -1.45165 3.678045 55.81356 7.97E-14 2.44E-12 

182 ORM1 2.68578 3.584169 160.9633 6.97E-37 1.04E-34 

183 CASC5 -1.26326 3.668182 48.37091 3.53E-12 9.28E-11 

184 CCNE2 -1.11895 3.647541 39.64711 3.04E-10 6.31E-09 

185 CSGALNACT1 1.467457 3.570962 59.99358 9.52E-15 3.23E-13 

186 HPGD 1.189323 3.546501 44.59851 2.42E-11 5.74E-10 

187 PARPBP -1.0267 3.618575 32.07735 1.48E-08 2.47E-07 

188 LAT2 1.808413 3.494342 81.74352 1.55E-19 8.15E-18 

189 ORM2 2.277915 3.458973 103.6533 2.41E-24 1.78E-22 

190 CKAP2L -1.37663 3.497197 66.26921 3.93E-16 1.53E-14 

191 LOC100128191 -1.10586 3.508863 50.82687 1.01E-12 2.76E-11 

192 SGOL1 -1.285 3.475341 71.60043 2.63E-17 1.17E-15 

193 CENPA -1.16333 3.460974 63.32866 1.75E-15 6.43E-14 

194 DNA2 -1.07637 3.405734 27.57142 1.51E-07 2.12E-06 

195 E2F8 -1.45672 3.392733 66.72104 3.13E-16 1.22E-14 

196 ZNF367 -1.26754 3.380485 38.95944 4.33E-10 8.69E-09 

197 BLM -1.44642 3.366816 68.87758 1.05E-16 4.27E-15 

198 GSG2 -1.15996 3.364504 60.92601 5.93E-15 2.04E-13 

199 MND1 -1.27578 3.307658 44.33562 2.77E-11 6.55E-10 

200 SLC2A3 1.635052 3.21207 43.81152 3.62E-11 8.47E-10 

201 NEIL3 -1.23068 3.264715 57.13893 4.06E-14 1.28E-12 

202 C4orf46 -1.09017 3.184868 29.63386 5.22E-08 8.04E-07 

203 WDR76 -1.40378 3.182243 74.41954 6.32E-18 2.95E-16 
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204 RBL1 -1.17563 3.150147 26.45176 2.70E-07 3.67E-06 

205 ARMC12 1.379683 3.118034 55.38136 9.93E-14 3.00E-12 

206 XRCC2 -1.3023 3.10956 59.86127 1.02E-14 3.42E-13 

207 BRCA2 -1.41478 3.112857 66.44681 3.59E-16 1.40E-14 

208 HELLS -1.53223 3.100935 42.13719 8.51E-11 1.89E-09 

209 CEP128 -1.24395 3.035504 43.14315 5.09E-11 1.17E-09 

210 MMS22L -1.29335 3.000201 39.26095 3.71E-10 7.57E-09 

211 C1QTNF9B-AS1 1.100726 2.922719 27.94559 1.25E-07 1.78E-06 

212 E2F7 -1.58824 2.942007 43.0215 5.41E-11 1.23E-09 

213 AKAP12 1.100638 2.863866 21.66297 3.25E-06 3.62E-05 

214 CENPI -1.10423 2.932829 46.9114 7.43E-12 1.86E-10 

215 CENPK -1.01082 2.918185 22.05818 2.65E-06 3.01E-05 

216 POLE2 -1.12344 2.88688 20.44972 6.12E-06 6.47E-05 

217 LIN9 -1.27168 2.863285 40.22044 2.27E-10 4.75E-09 

218 CENPQ -1.09655 2.832032 32.19487 1.39E-08 2.34E-07 

219 KIF18A -1.30277 2.830089 40.64214 1.83E-10 3.88E-09 

220 BRIP1 -1.41776 2.817232 44.91719 2.06E-11 4.94E-10 

221 LOC100288637 -1.25103 2.787301 27.35663 1.69E-07 2.36E-06 

222 AMACR 1.097843 2.704537 19.25968 1.14E-05 0.000114 

223 RTKN2 -1.08436 2.716191 29.59898 5.31E-08 8.17E-07 

224 RTTN -1.08787 2.656886 33.65603 6.58E-09 1.16E-07 

225 C17orf53 -1.05357 2.658987 29.12903 6.77E-08 1.02E-06 

226 EPS8L1 1.487662 2.587459 28.84377 7.85E-08 1.16E-06 

227 NPPC 1.455035 2.599821 36.19989 1.78E-09 3.35E-08 

228 MYBPC1 1.509729 2.566469 56.84312 4.72E-14 1.48E-12 

229 MYL9 1.044808 2.49094 29.31107 6.16E-08 9.37E-07 

230 DMBX1 -1.30436 2.55599 42.3223 7.74E-11 1.73E-09 

231 C4orf21 -1.11661 2.540547 25.10183 5.44E-07 7.01E-06 

232 SPOCK1 1.424415 2.378154 41.58222 1.13E-10 2.47E-09 

233 FAM54A -1.55824 2.328249 44.20212 2.96E-11 7.00E-10 

234 C1orf135 -1.33165 2.327583 42.16507 8.39E-11 1.86E-09 

235 FAM72B -1.00685 2.327372 27.98112 1.23E-07 1.76E-06 

236 NAV3 -1.30885 2.307982 47.05214 6.91E-12 1.75E-10 

237 ATAD5 -1.30778 2.251379 40.39695 2.07E-10 4.36E-09 

238 C18orf54 -1.37064 2.27838 27.43676 1.62E-07 2.27E-06 

239 TUBA3E 1.058685 2.242307 15.49707 8.26E-05 0.000678 

240 WWTR1 1.058971 2.20958 22.2506 2.39E-06 2.74E-05 

241 FAM81A -1.05907 2.201616 22.58194 2.01E-06 2.34E-05 

242 BAI2 -1.04187 2.210137 19.65704 9.27E-06 9.44E-05 

243 SPTB 1.789417 2.147878 42.50964 7.03E-11 1.58E-09 

244 BORA -1.08328 2.176648 15.66585 7.56E-05 0.000627 

245 RDM1 -1.23917 2.141119 29.91662 4.51E-08 7.02E-07 
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246 LOC100128361 -1.14282 2.14019 13.99811 0.000183 0.001348 

247 DOCK8 1.214777 2.079418 17.03475 3.67E-05 0.000327 

248 C5orf34 -1.24434 2.086564 30.32367 3.66E-08 5.77E-07 

249 FAM83E 1.045876 2.024604 15.80158 7.03E-05 0.000588 

250 FAM72A -1.14168 1.984398 23.18369 1.47E-06 1.75E-05 

251 TERT -1.04564 1.971424 29.50947 5.56E-08 8.52E-07 

252 TLL1 -1.43159 1.876395 39.11432 4.00E-10 8.08E-09 

253 TNS4 1.09081 1.830132 13.78198 0.000205 0.001496 

254 DKFZP586I1420 -1.20672 1.767396 27.97644 1.23E-07 1.76E-06 

255 SCARA3 -1.17827 1.78656 20.50021 5.96E-06 6.33E-05 

256 SNCG 1.540067 1.739804 40.4059 2.06E-10 4.35E-09 

257 CNIH2 -1.14487 1.724738 16.27522 5.48E-05 0.000471 

258 BEST1 -1.11194 1.710968 14.15187 0.000169 0.001258 

259 MTBP -1.01201 1.698324 17.09664 3.55E-05 0.000319 

260 TG 1.618921 1.638793 20.00753 7.71E-06 8.00E-05 

261 PLCH1 -1.60649 1.627385 37.55753 8.88E-10 1.73E-08 

262 SLC38A4 1.052922 1.574071 12.12558 0.000497 0.003258 

263 RIN2 -1.02774 1.548226 15.7213 7.34E-05 0.00061 

264 SLC22A1 1.201327 1.531084 23.64649 1.16E-06 1.41E-05 

265 MIR29C 1.252847 1.517626 14.419 0.000146 0.001116 

266 TMEM92 1.375662 1.424565 24.06239 9.33E-07 1.15E-05 

267 HIST1H1E 1.763121 1.355928 23.05116 1.58E-06 1.87E-05 

268 ELOVL2 1.376338 1.352361 14.32076 0.000154 0.001166 

269 FAM189A2 1.085025 1.351339 9.386104 0.002186 0.011536 

270 LOC100507634 1.070315 1.305097 14.40869 0.000147 0.00112 

271 ZNF726 -1.51561 1.314377 37.2321 1.05E-09 2.01E-08 

272 CCDC150 -1.68177 1.32368 27.76753 1.37E-07 1.93E-06 

273 FLT4 -1.7364 1.275186 43.6101 4.01E-11 9.31E-10 

274 LOC144481 2.239074 1.240202 28.52418 9.25E-08 1.36E-06 

275 FANCB -1.22628 1.266418 24.93974 5.92E-07 7.58E-06 

276 ZNF519 -1.09469 1.252172 19.82199 8.50E-06 8.71E-05 

277 BRDT -1.30824 1.227013 18.47476 1.72E-05 0.000166 

278 REP15 1.131996 1.16051 8.149773 0.004307 0.020351 

279 MYBL1 -1.18515 1.132487 14.21853 0.000163 0.001221 

280 ANTXR1 -1.00703 1.103571 11.32855 0.000763 0.004684 

281 BCL2 -1.31481 1.09301 14.37067 0.00015 0.001139 

282 KCNG3 1.095702 1.072403 14.55977 0.000136 0.00105 

283 LEF1 -1.31681 1.076696 17.32408 3.15E-05 0.000286 

284 TGM3 -1.13365 1.063226 17.29202 3.21E-05 0.00029 

285 LGI2 -1.23654 0.985462 17.02595 3.69E-05 0.000329 
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C) MeT vs DHT 
 

No gene_id 
logFC 

(DHT_vs_Vehicle) 

Direction of change 
(TRUE= Up-

reg/FALSE=Down-
reg) 

logFC 
(MeT_vs_Vehicle) 

Direction of change 
(TRUE= Up-

reg/FALSE=Down-
reg) 

Direction of change for 
DHT and MeT (TRUE= 

similar/FALSE=diferent) 

Potency of 
MeT vs DHT 
(TRUE= Yes 
/FALSE=No) 

1 KRT8 1.045876342 TRUE 2.755781922 TRUE TRUE TRUE 

2 TMPRSS2 1.034805517 TRUE 1.913299628 TRUE TRUE TRUE 

3 FKBP5 1.332702783 TRUE 2.826146249 TRUE TRUE TRUE 

4 ACSL3 1.359899873 TRUE 2.530338335 TRUE TRUE TRUE 

5 SLC41A1 1.300348613 TRUE 2.693377322 TRUE TRUE TRUE 

6 NDRG1 1.023857137 TRUE 3.390736204 TRUE TRUE TRUE 

7 SMS 1.1572766 TRUE 2.166352624 TRUE TRUE TRUE 

8 H2AFX -1.030028221 FALSE -2.202710294 FALSE TRUE TRUE 

9 MCM7 -1.065352573 FALSE -2.197546713 FALSE TRUE TRUE 

10 MICAL1 1.500391067 TRUE 3.059148889 TRUE TRUE TRUE 

11 MKI67 -1.197863921 FALSE -2.675758539 FALSE TRUE TRUE 

12 CBWD1 1.060669375 TRUE 1.778386773 TRUE TRUE TRUE 

13 HMGB2 -1.168522187 FALSE -1.92991569 FALSE TRUE TRUE 

14 MYBL2 -1.039232839 FALSE -2.268501325 FALSE TRUE TRUE 

15 TPX2 -1.216047638 FALSE -2.550768441 FALSE TRUE TRUE 

16 SPAG5 -1.015957159 FALSE -1.965860952 FALSE TRUE TRUE 

17 MCM2 -1.211990237 FALSE -3.254253329 FALSE TRUE TRUE 

18 PCNA -1.04151328 FALSE -2.290764524 FALSE TRUE TRUE 

19 TK1 -1.061913876 FALSE -2.402434733 FALSE TRUE TRUE 

20 CHRNA2 1.32836714 TRUE 1.634172626 TRUE TRUE TRUE 

21 PLK1 -1.022220803 FALSE -2.342325954 FALSE TRUE TRUE 

22 CENPF -1.159461023 FALSE -2.65802473 FALSE TRUE TRUE 

23 MCM4 -1.208081784 FALSE -3.260585881 FALSE TRUE TRUE 

24 LMNB1 -1.084695629 FALSE -2.848586399 FALSE TRUE TRUE 
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25 CDC20 -1.14647327 FALSE -2.512996723 FALSE TRUE TRUE 

26 MCM3 -1.036232211 FALSE -2.568954992 FALSE TRUE TRUE 

27 RRM2 -1.276686341 FALSE -2.974381993 FALSE TRUE TRUE 

28 F5 1.193322934 TRUE 2.045851997 TRUE TRUE TRUE 

29 NUSAP1 -1.267055087 FALSE -2.614549279 FALSE TRUE TRUE 

30 TCOF1 -1.069263668 FALSE -2.34301276 FALSE TRUE TRUE 

31 PRC1 -1.164698178 FALSE -2.384901748 FALSE TRUE TRUE 

32 TYMS -1.183465165 FALSE -2.708440284 FALSE TRUE TRUE 

33 FEN1 -1.167763126 FALSE -2.365989503 FALSE TRUE TRUE 

34 CDK1 -1.105601811 FALSE -2.718216424 FALSE TRUE TRUE 

35 MCM5 -1.076269501 FALSE -2.677088667 FALSE TRUE TRUE 

36 TMPO -1.125515723 FALSE -2.521116016 FALSE TRUE TRUE 

37 FANCI -1.087788642 FALSE -2.151618351 FALSE TRUE TRUE 

38 
ST6GALNA

C1 
1.035248874 TRUE 1.77890807 TRUE TRUE TRUE 

39 TONSL -1.043724519 FALSE -2.799302478 FALSE TRUE TRUE 

40 CHAF1A -1.007177729 FALSE -2.076061462 FALSE TRUE TRUE 

41 KIF20A -1.168971285 FALSE -2.477091628 FALSE TRUE TRUE 

42 SMC4 -1.090109412 FALSE -2.106454983 FALSE TRUE TRUE 

43 GNMT 1.219481919 TRUE 2.439455122 TRUE TRUE TRUE 

44 UGT2B11 1.518935699 TRUE 3.381715294 TRUE TRUE TRUE 

45 RECQL4 -1.060902593 FALSE -2.445665156 FALSE TRUE TRUE 

46 TCF19 -1.291775954 FALSE -3.172965797 FALSE TRUE TRUE 

47 CDCA5 -1.283365986 FALSE -3.102866954 FALSE TRUE TRUE 

48 TOP2A -1.409466435 FALSE -3.272675299 FALSE TRUE TRUE 

49 UBE2C -1.256344145 FALSE -2.709209166 FALSE TRUE TRUE 

50 CCNB2 -1.081067384 FALSE -2.379299888 FALSE TRUE TRUE 

51 RACGAP1 -1.066187692 FALSE -2.253279945 FALSE TRUE TRUE 

52 CCNF -1.04615908 FALSE -2.250083003 FALSE TRUE TRUE 
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53 KIFC1 -1.382295762 FALSE -2.971603879 FALSE TRUE TRUE 

54 E2F1 -1.175034137 FALSE -3.036178507 FALSE TRUE TRUE 

55 KIF2C -1.242277497 FALSE -2.924284205 FALSE TRUE TRUE 

56 PKMYT1 -1.16667173 FALSE -3.178917271 FALSE TRUE TRUE 

57 CDC6 -1.129516281 FALSE -2.71456379 FALSE TRUE TRUE 

58 HMMR -1.075463041 FALSE -2.13970401 FALSE TRUE TRUE 

59 NCAPG -1.162266101 FALSE -2.756747891 FALSE TRUE TRUE 

60 CDCA3 -1.09270978 FALSE -2.438049997 FALSE TRUE TRUE 

61 MLF1IP -1.12604774 FALSE -2.595021465 FALSE TRUE TRUE 

62 HJURP -1.322013259 FALSE -2.828667295 FALSE TRUE TRUE 

63 POLA2 -1.079861112 FALSE -2.164926123 FALSE TRUE TRUE 

64 FAM83D -1.209719625 FALSE -2.453405967 FALSE TRUE TRUE 

65 AURKA -1.05393423 FALSE -2.26681424 FALSE TRUE TRUE 

66 BUB1B -1.245511491 FALSE -3.036462965 FALSE TRUE TRUE 

67 CADPS2 1.363656093 TRUE 2.250906321 TRUE TRUE TRUE 

68 DLGAP5 -1.122519594 FALSE -2.210231158 FALSE TRUE TRUE 

69 ASF1B -1.252574853 FALSE -3.830201677 FALSE TRUE TRUE 

70 MAF 1.50887869 TRUE 2.93216193 TRUE TRUE TRUE 

71 FANCD2 -1.166438719 FALSE -2.133415414 FALSE TRUE TRUE 

72 CCNA2 -1.220920171 FALSE -2.989407496 FALSE TRUE TRUE 

73 CAMK2N1 -1.136569859 FALSE -2.143932843 FALSE TRUE TRUE 

74 ANLN -1.150842319 FALSE -2.727502835 FALSE TRUE TRUE 

75 CDT1 -1.081618517 FALSE -2.689396398 FALSE TRUE TRUE 

76 WDR62 -1.050337128 FALSE -2.891531589 FALSE TRUE TRUE 

77 MELK -1.217921829 FALSE -2.759500497 FALSE TRUE TRUE 

78 NDC80 -1.353819497 FALSE -2.660586973 FALSE TRUE TRUE 

79 AURKB -1.100437683 FALSE -2.990827496 FALSE TRUE TRUE 

80 ESPL1 -1.376994473 FALSE -3.355118415 FALSE TRUE TRUE 

81 PRKCA 1.122294464 TRUE 2.027002763 TRUE TRUE TRUE 
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82 WIPI1 1.393274809 TRUE 3.085674519 TRUE TRUE TRUE 

83 CENPE -1.15520954 FALSE -2.555391363 FALSE TRUE TRUE 

84 CDCA8 -1.1470038 FALSE -2.759158596 FALSE TRUE TRUE 

85 PBK -1.189499367 FALSE -2.072426546 FALSE TRUE TRUE 

86 NCAPH -1.170698346 FALSE -3.25505236 FALSE TRUE TRUE 

87 RFC4 -1.03248118 FALSE -1.934632068 FALSE TRUE TRUE 

88 ADAM7 1.029019992 TRUE 1.202613578 TRUE TRUE TRUE 

89 CDC45 -1.265032209 FALSE -3.024323883 FALSE TRUE TRUE 

90 BUB1 -1.086081406 FALSE -2.404529709 FALSE TRUE TRUE 

91 GTSE1 -1.001211741 FALSE -2.466957332 FALSE TRUE TRUE 

92 BRCA1 -1.329380022 FALSE -3.095206837 FALSE TRUE TRUE 

93 AFF3 1.02549085 TRUE 1.782135488 TRUE TRUE TRUE 

94 KIF11 -1.24269003 FALSE -2.75344164 FALSE TRUE TRUE 

95 PGC 1.437473724 TRUE 2.199557138 TRUE TRUE TRUE 

96 PSRC1 -1.000392831 FALSE -2.307361535 FALSE TRUE TRUE 

97 UGT2B15 -1.021296841 FALSE -1.583153089 FALSE TRUE TRUE 

98 DEPDC1 -1.085305957 FALSE -2.58639383 FALSE TRUE TRUE 

99 
ARHGAP11

A 
-1.091290913 FALSE -2.798800982 FALSE TRUE TRUE 

100 CIT -1.309782345 FALSE -3.021738838 FALSE TRUE TRUE 

101 GINS1 -1.216166047 FALSE -2.8470779 FALSE TRUE TRUE 

102 RAD54L -1.337438916 FALSE -3.462746647 FALSE TRUE TRUE 

103 DDB2 -1.131098339 FALSE -2.002790306 FALSE TRUE TRUE 

104 CDKN2C -1.022411823 FALSE -1.848961771 FALSE TRUE TRUE 

105 CEP55 -1.169409436 FALSE -2.712221536 FALSE TRUE TRUE 

106 CLSPN -1.321541214 FALSE -3.806210426 FALSE TRUE TRUE 

107 KNTC1 -1.200814389 FALSE -2.787840551 FALSE TRUE TRUE 

108 RFC5 -1.067554271 FALSE -2.383980383 FALSE TRUE TRUE 

109 BCHE -1.004408418 FALSE -2.256506198 FALSE TRUE TRUE 
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110 CDCA7L -1.052642899 FALSE -2.184383218 FALSE TRUE TRUE 

111 C9orf100 -1.112348742 FALSE -2.587372724 FALSE TRUE TRUE 

112 GINS2 -1.026078761 FALSE -2.260594946 FALSE TRUE TRUE 

113 STEAP4 3.740503079 TRUE 6.927834265 TRUE TRUE TRUE 

114 SOCS2 1.298868135 TRUE 2.464368219 TRUE TRUE TRUE 

115 UGT2B28 2.151729029 TRUE 3.893654774 TRUE TRUE TRUE 

116 MCM10 -1.396353967 FALSE -4.324655992 FALSE TRUE TRUE 

117 UHRF1 -1.24868542 FALSE -3.611338214 FALSE TRUE TRUE 

118 INPP4B 1.037968163 TRUE 1.779542035 TRUE TRUE TRUE 

119 KIF18B -1.247012844 FALSE -3.756783914 FALSE TRUE TRUE 

120 CDCA2 -1.19933997 FALSE -2.754714744 FALSE TRUE TRUE 

121 C21orf58 -1.026924267 FALSE -2.359051929 FALSE TRUE TRUE 

122 WDHD1 -1.098778331 FALSE -2.5940982 FALSE TRUE TRUE 

123 ZNF812 1.18891817 TRUE 2.544402562 TRUE TRUE TRUE 

124 SHCBP1 -1.219179322 FALSE -2.768879626 FALSE TRUE TRUE 

125 KIF23 -1.159581868 FALSE -2.973708564 FALSE TRUE TRUE 

126 ORC6 -1.410427813 FALSE -3.347110046 FALSE TRUE TRUE 

127 POLQ -1.45569072 FALSE -3.263259538 FALSE TRUE TRUE 

128 NUF2 -1.272495917 FALSE -2.406721166 FALSE TRUE TRUE 

129 NEK2 -1.265302279 FALSE -2.464440633 FALSE TRUE TRUE 

130 PSMC3IP -1.062822576 FALSE -2.447064317 FALSE TRUE TRUE 

131 DTL -1.467991792 FALSE -4.496685228 FALSE TRUE TRUE 

132 CDCA4 -1.042297429 FALSE -2.953304223 FALSE TRUE TRUE 

133 CDC7 -1.006128916 FALSE -2.086704676 FALSE TRUE TRUE 

134 TUBA3D 1.154626031 TRUE 2.335065764 TRUE TRUE TRUE 

135 SKA3 -1.190066862 FALSE -2.306758982 FALSE TRUE TRUE 

136 TMEM194A -1.076674222 FALSE -2.426610686 FALSE TRUE TRUE 

137 PAQR6 1.090060223 TRUE 1.064693465 TRUE TRUE FALSE 

138 TARP 1.388336182 TRUE 2.008199636 TRUE TRUE TRUE 
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139 GINS4 -1.294914823 FALSE -2.831174567 FALSE TRUE TRUE 

140 CCDC141 1.189938719 TRUE 2.787907738 TRUE TRUE TRUE 

141 DEPDC1B -1.167203464 FALSE -2.693087157 FALSE TRUE TRUE 

142 ORC1 -1.195958423 FALSE -2.92148973 FALSE TRUE TRUE 

143 SPC24 -1.050331491 FALSE -2.634475094 FALSE TRUE TRUE 

144 POLD3 -1.016659061 FALSE -1.930249025 FALSE TRUE TRUE 

145 NRM -1.034326925 FALSE -1.933576918 FALSE TRUE TRUE 

146 EME1 -1.260826713 FALSE -3.065169405 FALSE TRUE TRUE 

147 RFC3 -1.184657999 FALSE -2.857837015 FALSE TRUE TRUE 

148 FIGNL1 -1.018572707 FALSE -2.516167238 FALSE TRUE TRUE 

149 ASPM -1.430598464 FALSE -3.05576722 FALSE TRUE TRUE 

150 CDC25C -1.123047229 FALSE -2.27892595 FALSE TRUE TRUE 

151 DIAPH3 -1.241987969 FALSE -2.229247879 FALSE TRUE TRUE 

152 TTK -1.2464924 FALSE -2.902844566 FALSE TRUE TRUE 

153 ANO7 1.119115697 TRUE 1.582032662 TRUE TRUE TRUE 

154 C1orf112 -1.119308744 FALSE -1.626819576 FALSE TRUE TRUE 

155 GPSM2 -1.134960417 FALSE -2.344259362 FALSE TRUE TRUE 

156 SGOL2 -1.128698025 FALSE -2.272806317 FALSE TRUE TRUE 

157 CEP78 -1.162716799 FALSE -1.879714778 FALSE TRUE TRUE 

158 KIF20B -1.156046882 FALSE -2.91237426 FALSE TRUE TRUE 

159 EXO1 -1.369954807 FALSE -4.222356158 FALSE TRUE TRUE 

160 SKA1 -1.240749167 FALSE -2.957023834 FALSE TRUE TRUE 

161 C15orf42 -1.248834863 FALSE -3.645150154 FALSE TRUE TRUE 

162 SLITRK3 -1.02532286 FALSE -2.738033774 FALSE TRUE TRUE 

163 PLK4 -1.377753449 FALSE -2.601874761 FALSE TRUE TRUE 

164 KIF15 -1.543127387 FALSE -3.320802452 FALSE TRUE TRUE 

165 FBXO5 -1.196655444 FALSE -2.251912723 FALSE TRUE TRUE 

166 PRIM1 -1.211248231 FALSE -2.798704947 FALSE TRUE TRUE 

167 RAD51AP1 -1.157676361 FALSE -3.10514468 FALSE TRUE TRUE 
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168 KIF24 -1.364466375 FALSE -2.956187902 FALSE TRUE TRUE 

169 OIP5 -1.14958276 FALSE -2.262354289 FALSE TRUE TRUE 

170 HAUS8 -1.02802212 FALSE -2.794636226 FALSE TRUE TRUE 

171 TRAIP -1.075419141 FALSE -2.200671601 FALSE TRUE TRUE 

172 TTN 1.077945902 TRUE 2.614607718 TRUE TRUE TRUE 

173 B3GALT4 1.182618545 TRUE 2.83244062 TRUE TRUE TRUE 

174 RAD51 -1.079353332 FALSE -2.983667145 FALSE TRUE TRUE 

175 MNS1 -1.095024374 FALSE -2.440617519 FALSE TRUE TRUE 

176 E2F2 -1.234452908 FALSE -3.574660124 FALSE TRUE TRUE 

177 SH3D21 1.282618699 TRUE 2.647745216 TRUE TRUE TRUE 

178 SPC25 -1.071551589 FALSE -2.544504359 FALSE TRUE TRUE 

179 GSTCD -1.03502589 FALSE -1.996536631 FALSE TRUE TRUE 

180 KIF14 -1.361971458 FALSE -2.713772216 FALSE TRUE TRUE 

181 ESCO2 -1.451654145 FALSE -3.551278606 FALSE TRUE TRUE 

182 ORM1 2.685780251 TRUE 4.646724223 TRUE TRUE TRUE 

183 CASC5 -1.263255053 FALSE -3.545964195 FALSE TRUE TRUE 

184 CCNE2 -1.118945868 FALSE -3.265852377 FALSE TRUE TRUE 

185 
CSGALNAC

T1 
1.467457205 TRUE 3.400679736 TRUE TRUE TRUE 

186 HPGD 1.189322791 TRUE 2.10972209 TRUE TRUE TRUE 

187 PARPBP -1.026696093 FALSE -2.44749604 FALSE TRUE TRUE 

188 LAT2 1.808412928 TRUE 2.427610918 TRUE TRUE TRUE 

189 ORM2 2.277914574 TRUE 4.097867053 TRUE TRUE TRUE 

190 CKAP2L -1.376627724 FALSE -2.740723603 FALSE TRUE TRUE 

191 
LOC100128

191 
-1.105860761 FALSE -2.648944929 FALSE TRUE TRUE 

192 SGOL1 -1.285003552 FALSE -2.766338523 FALSE TRUE TRUE 

193 CENPA -1.163331502 FALSE -2.929527833 FALSE TRUE TRUE 

194 DNA2 -1.076365642 FALSE -2.766893559 FALSE TRUE TRUE 
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195 E2F8 -1.456717266 FALSE -3.819975362 FALSE TRUE TRUE 

196 ZNF367 -1.267542181 FALSE -4.328131999 FALSE TRUE TRUE 

197 BLM -1.446418778 FALSE -3.413560967 FALSE TRUE TRUE 

198 GSG2 -1.159958704 FALSE -3.462901799 FALSE TRUE TRUE 

199 MND1 -1.275780661 FALSE -3.12209387 FALSE TRUE TRUE 

200 SLC2A3 1.635051806 TRUE 4.014407892 TRUE TRUE TRUE 

201 NEIL3 -1.23067546 FALSE -3.046048434 FALSE TRUE TRUE 

202 C4orf46 -1.090166037 FALSE -3.120734289 FALSE TRUE TRUE 

203 WDR76 -1.403783484 FALSE -2.686839002 FALSE TRUE TRUE 

204 RBL1 -1.175630515 FALSE -2.581728216 FALSE TRUE TRUE 

205 ARMC12 1.379682894 TRUE 2.123023084 TRUE TRUE TRUE 

206 XRCC2 -1.302298458 FALSE -3.573656338 FALSE TRUE TRUE 

207 BRCA2 -1.414784046 FALSE -3.54997446 FALSE TRUE TRUE 

208 HELLS -1.532231649 FALSE -3.389096455 FALSE TRUE TRUE 

209 CEP128 -1.243949596 FALSE -2.23337467 FALSE TRUE TRUE 

210 MMS22L -1.293353731 FALSE -2.381910095 FALSE TRUE TRUE 

211 
C1QTNF9B-

AS1 
1.10072601 TRUE 2.154136878 TRUE TRUE TRUE 

212 E2F7 -1.588243565 FALSE -4.913846077 FALSE TRUE TRUE 

213 AKAP12 1.100637771 TRUE 2.532328524 TRUE TRUE TRUE 

214 CENPI -1.104227625 FALSE -3.011729362 FALSE TRUE TRUE 

215 CENPK -1.010823327 FALSE -3.092695248 FALSE TRUE TRUE 

216 POLE2 -1.123439223 FALSE -2.156420233 FALSE TRUE TRUE 

217 LIN9 -1.271678646 FALSE -2.982933162 FALSE TRUE TRUE 

218 CENPQ -1.096545173 FALSE -2.069731859 FALSE TRUE TRUE 

219 KIF18A -1.30277165 FALSE -2.58675416 FALSE TRUE TRUE 

220 BRIP1 -1.41776079 FALSE -3.622375724 FALSE TRUE TRUE 

221 
LOC100288

637 
-1.251034885 FALSE -2.516472719 FALSE TRUE TRUE 
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222 AMACR 1.097842667 TRUE 2.005658133 TRUE TRUE TRUE 

223 RTKN2 -1.084364609 FALSE -2.064782461 FALSE TRUE TRUE 

224 RTTN -1.087868503 FALSE -1.639532367 FALSE TRUE TRUE 

225 C17orf53 -1.053568236 FALSE -2.474477853 FALSE TRUE TRUE 

226 EPS8L1 1.487662116 TRUE 2.620431689 TRUE TRUE TRUE 

227 NPPC 1.455035342 TRUE 2.723004788 TRUE TRUE TRUE 

228 MYBPC1 1.509729064 TRUE 1.523942741 TRUE TRUE TRUE 

229 MYL9 1.044807814 TRUE 2.356211967 TRUE TRUE TRUE 

230 DMBX1 -1.304358586 FALSE -3.318635318 FALSE TRUE TRUE 

231 C4orf21 -1.116614217 FALSE -2.706746464 FALSE TRUE TRUE 

232 SPOCK1 1.424415309 TRUE 1.86288276 TRUE TRUE TRUE 

233 FAM54A -1.558239219 FALSE -2.919502267 FALSE TRUE TRUE 

234 C1orf135 -1.331645648 FALSE -3.514170836 FALSE TRUE TRUE 

235 FAM72B -1.006851967 FALSE -3.141893991 FALSE TRUE TRUE 

236 NAV3 -1.308845358 FALSE -2.872938246 FALSE TRUE TRUE 

237 ATAD5 -1.307776291 FALSE -3.021105108 FALSE TRUE TRUE 

238 C18orf54 -1.370639646 FALSE -3.364205193 FALSE TRUE TRUE 

239 TUBA3E 1.058685319 TRUE 1.54967697 TRUE TRUE TRUE 

240 WWTR1 1.058971357 TRUE 1.395273429 TRUE TRUE TRUE 

241 FAM81A -1.059074227 FALSE -2.049243476 FALSE TRUE TRUE 

242 BAI2 -1.041866526 FALSE -2.082050513 FALSE TRUE TRUE 

243 SPTB 1.789417358 TRUE 3.032925756 TRUE TRUE TRUE 

244 BORA -1.083276266 FALSE -1.725870742 FALSE TRUE TRUE 

245 RDM1 -1.239172797 FALSE -1.561782172 FALSE TRUE TRUE 

246 
LOC100128

361 
-1.14281644 FALSE -2.174185642 FALSE TRUE TRUE 

247 DOCK8 1.214777253 TRUE 1.663145353 TRUE TRUE TRUE 

248 C5orf34 -1.244339471 FALSE -2.760752528 FALSE TRUE TRUE 

249 FAM83E 1.045875529 TRUE 2.570062662 TRUE TRUE TRUE 
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250 FAM72A -1.141683692 FALSE -2.564204856 FALSE TRUE TRUE 

251 TERT -1.045640638 FALSE -4.156096455 FALSE TRUE TRUE 

252 TLL1 -1.431590211 FALSE -2.608579968 FALSE TRUE TRUE 

253 TNS4 1.090810064 TRUE 2.242506408 TRUE TRUE TRUE 

254 
DKFZP586I

1420 
-1.206721235 FALSE na na na na 

255 SCARA3 -1.178270901 FALSE -2.282576928 FALSE TRUE TRUE 

256 SNCG 1.540067338 TRUE 2.141418164 TRUE TRUE TRUE 

257 CNIH2 -1.144865495 FALSE -1.211409805 FALSE TRUE TRUE 

258 BEST1 -1.111941307 FALSE -2.169326688 FALSE TRUE TRUE 

259 MTBP -1.012011262 FALSE -2.650291204 FALSE TRUE TRUE 

260 TG 1.618921061 TRUE 4.164600171 TRUE TRUE TRUE 

261 PLCH1 -1.606490775 FALSE -2.493679618 FALSE TRUE TRUE 

262 SLC38A4 1.052921933 TRUE 1.956430774 TRUE TRUE TRUE 

263 RIN2 -1.027735094 FALSE -1.087612492 FALSE TRUE TRUE 

264 SLC22A1 1.201327452 TRUE 1.779196776 TRUE TRUE TRUE 

265 MIR29C 1.252846758 TRUE na na na na 

266 TMEM92 1.375662294 TRUE 2.26777347 TRUE TRUE TRUE 

267 HIST1H1E 1.763121375 TRUE 2.965480185 TRUE TRUE TRUE 

268 ELOVL2 1.376338484 TRUE 3.171632272 TRUE TRUE TRUE 

269 FAM189A2 1.085025011 TRUE 2.414360391 TRUE TRUE TRUE 

270 
LOC100507

634 
1.070314585 TRUE 1.30328445 TRUE TRUE TRUE 

271 ZNF726 -1.515607382 FALSE -1.792125284 FALSE TRUE TRUE 

272 CCDC150 -1.681765513 FALSE -2.978122952 FALSE TRUE TRUE 

273 FLT4 -1.736401302 FALSE -2.637010841 FALSE TRUE TRUE 

274 LOC144481 2.239074443 TRUE 3.840201325 TRUE TRUE TRUE 

275 FANCB -1.226284941 FALSE -3.293278214 FALSE TRUE TRUE 

276 ZNF519 -1.094688579 FALSE -1.761359961 FALSE TRUE TRUE 
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277 BRDT -1.308242704 FALSE -2.042411341 FALSE TRUE TRUE 

278 REP15 1.131995532 TRUE 3.918908125 TRUE TRUE TRUE 

279 MYBL1 -1.18514824 FALSE -2.584986562 FALSE TRUE TRUE 

280 ANTXR1 -1.007032067 FALSE -1.864352091 FALSE TRUE TRUE 

281 BCL2 -1.314809671 FALSE -2.225353599 FALSE TRUE TRUE 

282 KCNG3 1.095702456 TRUE 1.628504918 TRUE TRUE TRUE 

283 LEF1 -1.316811997 FALSE na na na na 

284 TGM3 -1.133649271 FALSE -3.30532901 FALSE TRUE TRUE 

285 LGI2 -1.236536649 FALSE -4.032093846 FALSE TRUE TRUE 
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Supplementary Table S1. Primer sequences for qRT-PCRs 

Primer  Sequence Application 

STING-Fwd AGCATTACAACAACCTGCTACG qRT-PCR 

STING-Rev GTTGGGGTCAGCCATACTCAG qRT-PCR 

ERV3-env-Fwd CCATGGGAAGCAAGGGAACT  qRT-PCR 

ERV3-env-Rev CTTTCCCCAGCGAGCAATAC  qRT-PCR 

HERV‐W-Fwd TGAGTCAATTCTCATACCTG qRT-PCR 

HERV‐W-Rev AGTTAAGAGTTCTTGGGTGG qRT-PCR 

HERVE Fwd GGTGTCACTACTCAATACAC qRT-PCR 

HERVE-Rev GCAGCCTAGGTCTCTGG qRT-PCR 

HERV F-Fwd CCTCCAGTCACAACAACTC qRT-PCR 

HERV F-Rev TATTGAAGAAGGCGGCTGG qRT-PCR 

ERVL-Fwd ATATCCTGCCTGGATGGGGT qRT-PCR 

ERVL-Rew GAGCTTCTTAGTCCTCCTGTGT qRT-PCR 

HERV-F-Fwd CCTCCAGTCACAACAACTC  qRT-PCR 

HERV-F-Rev TATTGAAGAAGGCGGCTGG qRT-PCR 

HERV-K-Fwd ATTGGCAACACCGTATTCTGCT  qRT-PCR 

HERV-K-Rev CAGTCAAAATATGGACGGATGGT qRT-PCR 

DNMT1-Fwd GCGTTCCGGCTGAACAAC qRT-PCR 

DNMT1-Rev GCATCTCCACGTCTCCCT qRT-PCR 

EZH2--RT-fwd GTGGAGAGATTATTTCTCAAGATG qRT-PCR 

EZH2-RT-Rev CCGACATACTTCAGGGCATCAGCC qRT-PCR 

B2M-RT-fwd TGACTTTGTCACAGCCCAAG qRT-PCR 

B2M-RT-Rev AGCAAGCAAGCAGAATTTGG qRT-PCR 

HLA-A-RT-fwd GGCCCTGACCCAGACCTG qRT-PCR 

HLA-A-RT-Rev GCACGAACTGCGTGTCGTC qRT-PCR 

HLA-B-RT-fwd ACTGAGCTTGTGGAGACCAGA qRT-PCR 

HLA-B-RT-Rev GCAGCCCCTCATGCTGT qRT-PCR 

HLA-C-RT-fwd CTGGCCCTGACCGAGACCTG qRT-PCR 

HLA-C-RT-Rev CGCTTGTACTTCTGTGTCTCC qRT-PCR 

IFN-β-RT-fwd GCCATCAGTCACTTAAACAGC qRT-PCR 

IFN-β-RT-Rev GAAACTGAAGATCTCCTAGCCT qRT-PCR 

ISG15-RT-fwd CCTTCAGCTCTGACACC qRT-PCR 

ISG15-RT-Rev CGAACTCATCTTTGCCAGTACA qRT-PCR 

IRF7-RT-fwd GTGGACTGAGGGCTTGTAG qRT-PCR 

IRF7-RT-Rev TCAACACCTGTGACTTCATGT qRT-PCR 

MAVS-RT-fwd AGGAGACAGATGGAGACACA qRT-PCR 

MAVS-RT-Rev CAGAACTGGGCAGTACCC qRT-PCR 

RIG-I-RT-fwd CCAGCATTACTAGTCAGAAGGAA qRT-PCR 

RIG-I-RT-Rev CACAGTGCAATCTTGTCATCC qRT-PCR 
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Mouse-IRF7-fwd CCACACCCCCATCTTCGA qRT-PCR 

Mouse-IRF7-Rev CCTCCGAGCCCGAAACTC qRT-PCR 

Mouse-psmb9-fwd TAGTAGCTGGCTGGGACCAA qRT-PCR 

Mouse-psmb9-Rev GATGGTAAAGGGCTGTCGAA qRT-PCR 

Mouse-HPRT-fwd GGCCAGACTTTGTTGGATTT qRT-PCR 

Mouse-HPRT-Rev ACTGGCAACATCAACAGGACT qRT-PCR 

Mouse-STING-Fwd GGTCACCGCTCCAAATATGTAG qRT-PCR 

Mouse-STING-Rev CAGTAGTCCAAGTTCGTGCGA qRT-PCR 

Mouse-DDX58(RIG-I)-Fwd AAGAGCCAGAGTGTCAGAATCT qRT-PCR 

Mouse-DDX58(RIG-I)-Rev AGCTCCAGTTGGTAATTTCTTGG qRT-PCR 

Mouse-DNMT1-Fwd CCAGGCATTTCGGCTGAA qRT-PCR 

Mouse-DNMT1-Rev CGTTGCAGTCCTCTGTGAACA qRT-PCR 

Mouse-LINE1-fwd GGACCAGAAAAGAAATTCCTCCCG qRT-PCR 

Mouse-LINE1-rev CTCTTCTGGCTTTCATAGTCTCTGG qRT-PCR 

Mouse-ERV-MTA-fwd TCTGTGGGATGTTGTGTAGGAG qRT-PCR 

Mouse-ERV-MTA-Rev CCACAGATCTTCACAATCCAAA qRT-PCR 

Mouse-ERV-RLTR1B-fwd GGTCCACACAAACACCTACCTT qRT-PCR 

Mouse-ERV-RLTR1B-Rev  TTTGAGATACACCCTTCGAGGT qRT-PCR 

Mouse-ERV-RLTR45-fwd ACCTTGGACCTTTCTCAATACAT qRT-PCR 

Mouse-ERV-RLTR45-Rev GACCTCCTCCTAATAACCAAATG qRT-PCR 

Mouse-ERV-IAPEZ-fwd AAATCAATCTGTTGTGTTTCCAC qRT-PCR 

Mouse-ERV-IAPEZ-Rev  ACCACATAACAGGAATCTGACAC qRT-PCR 



 

Supplementary Data2. GSEA report for top enriched Hallmark genesets (p ≤ 0.05) with a 

positive NES 

 Name NES FDR q-val 

1 HALLMARK_ANDROGEN_RESPONSE 2.8952408 0 

2 HALLMARK_PROTEIN_SECRETION 2.3557687 0 

3 HALLMARK_APICAL_JUNCTION 1.8830771 0.02535794 

4 HALLMARK_CHOLESTEROL_HOMEOSTASIS 1.7936019 0.03255346 

5 HALLMARK_ESTROGEN_RESPONSE_EARLY 1.788912 0.02765674 

6 HALLMARK_XENOBIOTIC_METABOLISM 1.7781266 0.02561309 

7 HALLMARK_COAGULATION 1.7351228 0.02783313 

8 HALLMARK_FATTY_ACID_METABOLISM 1.7211664 0.02772199 

9 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.6315349 0.0438025 

 

 

 

 

Supplementary Data3. GSEA report for top enriched Hallmark genesets (p ≤ 0.05) with a 
Negative NES 
 

 Name NES FDR q-val 

1 HALLMARK_E2F_TARGETS -3.283671 0 

2 HALLMARK_G2M_CHECKPOINT -3.0368714 0 

3 HALLMARK_MYC_TARGETS_V1 -2.536929 0 

4 HALLMARK_MITOTIC_SPINDLE -2.4192386 0 

5 HALLMARK_MYC_TARGETS_V2 -2.110342 0 

6 HALLMARK_DNA_REPAIR -1.8421776 8.29E-04 

7 HALLMARK_SPERMATOGENESIS -1.8274815 8.81E-04 
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4.1. Introduction  

Enhancer of Zeste Homolog 2 (EZH2) is a histone methyl-transferase that forms the catalytic 

subunit of Polycomb Repressive Complex 2 (PRC2). As part of the canonical function of PRC2, 

EZH2 mediates tri-methylation of histone H3 lysine 27 (H3K27me3), which causes compaction 

of chromatin and transcriptional silencing of target genes (Jiao, Shubbar et al. 2020). In 

proliferative cells, the interplay between Rb and E2Fs govern EZH2 function and thereby 

regulate the inheritance of H3K27me3 patterns during DNA replication and cell proliferation 

(Bracken, Pasini et al. 2003, Lanzuolo, Sardo et al. 2011, Mu, Starmer et al. 2018). For example, 

it has been shown that in skeletal muscle cells, Rb-mediated EZH2 binding to cell cycle genes 

leads to irreversible cell cycle exit and cell differentiation (Blais, van Oevelen et al. 2007). 

Additionally, it has been reported that RB protein can recruit PRC2 complex to repress the 

expression of genes associated with repetitive elements (Ishak, Marshall et al. 2016) and 

pluripotency (Kareta, Gorges et al. 2015) by tri-methylation of histone H3 at lysine 27. EZH2 

can also regulate the expression of genes involved in stem cell differentiation and tumour 

immunogenicity by altering the ratio of H3K27me3 to H3K4me3; these are referred to as 

bivalent genes because their promoters harbour histone marks associated with both positive 

(H3K4me3) and negative (H3K27me3) transcriptional outcomes (Ezhkova, Pasolli et al. 2009, 

Blanco, González-Ramírez et al. 2020). In short, the canonical function of EZH2 and 

subsequently the level of H3K27me3 is an important determinant of the balance between cell 

differentiation and proliferation (Ezponda and Licht 2014).  
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Dysregulation in the expression and function of EZH2 can lead to carcinogenesis and cancer 

progression in multiple tumour types. For example, overexpression of EZH2 in prostate cancer 

tumours is associated with the progression of clinically localized solid tumours to a lethal, 

therapy-resistant state (Varambally, Dhanasekaran et al. 2002, Yu, Yu et al. 2007). 

Mechanistically, several mechanisms can cause dysregulation of both the expression and 

function of EZH2 in prostate cancer: TMPRSS2-ERG fusion genes can cause the overexpression 

of EZH2, inducing a stem-cell-like dedifferentiation program (Yu, Yu et al. 2010), while SOX4 

overexpression in cancer cells can directly upregulate the expression of EZH2, which 

subsequently leads to re-distribution of H3K27me3 and de-repression of genes required for 

epithelial-mesenchymal transition, a key process in tumour metastasis (Tiwari, Tiwari et al. 

2013). Interestingly, overexpression of EZH2 in castration-resistant prostate cancer has been 

associated with lower global levels of H3K27me3 suggesting that EZH2 has activity beyond 

histone modification; indeed, it was found that EZH2 interacts with AR and in this context can 

act as a transcriptional activator (Xu, Wu et al. 2012). Consistent with this notion, 

phosphorylation of partially disordered transactivation domain (TAD) in EZH2 causes the 

recruitment of P300, leading to gene activation rather than repression (Jiao, Shubbar et al. 

2020). However, these findings were not supported by mass spectrometry-based analysis of 

the EZH2 interactome, which recovered all PRC2 related components but did not identify an 

interaction with AR (Wassef, Luscan et al. 2019). In short, the precise function of EZH2 in PCa 

cells remains to be fully elucidated. 
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Other studies of EZH2 have potentially important implications for this project and the results 

presented in Chapter 3. First, a CRISPR/CAS9 screen revealed that EZH2 depletion can make 

prostate cancer cells sensitive to high-dose androgen therapy (Nyquist, Corella et al. 2019), 

suggesting that it has a role in mediating resistance to this therapeutic strategy. Moreover, it 

has been shown that EZH2 inhibition can lead to the enhanced immunogenicity of tumours 

through de-repression of ERVs and activation of a viral mimicry response (Deblois, 

Tonekaboni et al. 2020, Janin and Esteller 2020, Ishiguro, Kitajima et al. 2021). EZH2 inhibition 

can also directly increase tumour immunogenicity by enhancing the expression and 

presentation of major MHC-I molecules (Burr, Sparbier et al. 2019, Zhou, Mudianto et al. 

2020). Consistent with this idea, we showed in Chapter 3 that Decitabine-induced dsRNAs are 

less strong than MeT 1 nM, suggesting that dsRNA induction by MeT is also amplified by 

another mechanism. With this background in mind, I hypothesised that the viral mimicry 

response elicited by MeT (as described in Chapter 3) could at least in part be mediated via 

reduced expression and/or activity of EZH2. In this Chapter, I tested this hypothesis by 

characterizing the expression and activity of EZH2 in response to MeT treatment. 
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4.2. Materials and Methods 

Details of cell lines, Western blotting, q-RT-PCR and RNA-seq are described in Chapters 2 and 

3. 

4.2.1. Histone extraction 

Total nucleoplasmic histones were extracted using the acid extraction protocol 

recommended by Abcam. Briefly, after harvesting the cells, they were washed twice with ice-

cold PBS and cell pellets were re-suspended in Triton Extraction Buffer (TEB) (please see 

Chapter 2), at a cell density of 107 cells per ml for 10 min with gentle stirring on ice. Then, the 

lysate was centrifuged at 6,500 × g for 10 min at 4°C to spin down the nuclei. After discarding 

the supernatant, cell pellets were washed in half the volume of TEB and centrifuged at 6,500 

× g for 10 min at 4°C. Subsequently, cell pellets were re-suspended in 0.2 N HCl at a density 

of 4 ×107 nuclei per ml overnight. Samples were centrifuged at 6,500 × g for 10 min at 4°C and 

the supernatant containing total nucleoplasmic H3K27me3 was moved into a new tube. 

Finally, HCl in samples was neutralised with 2M NaOH at 1/10 of the volume of the 

supernatant. Protein concentration was measured using the Bradford assay described in 

Chapter 2 and samples were kept at -80 °C.  

 

4.2.2. H3K27me3 ChIP-seq experiment, analysis and DATA 

H3K27me3 ChIP-seq experiment was carried out as described in Chapter 2. Peak calling in 

Galaxy was performed essentially as described in Chapter 2, except that the “broad” peak 

parameter was used, with a cutoff for the broad region of 0.1. H3K27me3 ChIP-seq data are 
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from Augello, M. A et al. (Augello, Liu et al. 2019): GEO accession GSE117430, and Xu K et al. 

(Xu, Wu et al. 2012): GEO accession GSM969571. 

 

4.2.3. Integrating RNA-seq and H3K27me3 ChIP-Seq data 

Integration of H3K27me3 ChIP-seq data with transcriptomic analyses was carried out using 

the CisGenome software system (Ji, Jiang et al. 2008). The CisGenome software and hg19 

genome build were used to annotate H3K27me3 peaks to proximal (+/- 10kb from TSS) genes. 

Genes marked with H3K27me3 were compared with the list of log normalized counts of 

genes, generated from the RNA-seq experiment described in Chapter 3.  

 

4.2.4. GO analysis 

The PANTHER online platform version 16.0 (Released 2020-12-01) (http://geneontology.org/) 

was used for gene ontology (GO) analysis (Mi, Muruganujan et al. 2019). 

 

4.2.5. Tag density analysis using HOMER software. 

BAM files from the ChIP-seq experiment were converted to bed files using bedtools (version 

2.18 (Quinlan and Hall 2010)); “bamToBed.” Bed files were converted to tag directories using 

HOMER (version 4.11 (Heinz, Benner et al. 2010)); “makeTagDirectory.pl.” Tag density plots 

were generated using HOMER “annotatePeaks.pl.” (-size 5000 - hist 20). 

 

 

 

http://geneontology.org/
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4.2.6. DiffReps 

DiffReps (version 1.55.4) (Shen, Shao et al. 2013) was run according to the developer’s 

protocol using bed files from the androgen-treated samples as the --treatment group and bed 

files from the vehicle-treated samples as the --control group. The G-test method was used for 

differential analysis (--meth gt). 

 

4.2.7. H3K27me3 deposition on repetitive elements 

To measure H3K27me3 at repetitive elements, genomic coordinates of these elements were 

directly downloaded from The UCSC Table Browser (Karolchik, Hinrichs et al. 2004). More 

specifically, after specifying the February 2009 human reference sequence (GRCh37) as a 

reference genome, RepeatMasker was applied in the annotation track to filter the 

coordinates of different families (repFamily) of repetitive elements. HOMER (Heinz, Benner 

et al. 2010) was used to generate histograms of tag density at repetitive elements. 

 

4.2.8. Visualisation of H3K27me3 deposition  

The density of H3K27me3 deposition at previously reported coordinates associated with 

H3K27me3 modification was visualised using deepTools2 (Ramírez, Ryan et al. 2016). 

Reported gene sets in LNCaP was from Hawkins RD et al. (Hawkins, Hon et al. 2010) and Xu K. 

et al (Xu, Wu et al. 2012). ComputeMatrix was used to prepare an intermediate Matrix file 

containing the scores for the signal distribution associated with the centre of genomic regions 

(reference point). The generated Matrix file was used with plotProfile to plot the signal 

distributions across genomic regions.  
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4.2.9. Venn diagram generation for comparing the intervals of two datasets 

To compare the overlapping of H3K27me3 ChIP-seq peaks, The Galaxy/Cistrome Venn 

diagram (version 1.0.0) tool (Liu, Ortiz et al. 2011) was used to compare the overlapping of 

peaks. 

 

4.2.10. Upset plots 

UpSet diagram tool (Galaxy Version 0.6.4) (Conway, Lex et al. 2017) was used to illustrate the 

unique intersection of genomic regions between different treatment groups as an upset plot 

based on the order of intersections frequency. 

 

4.2.11. Pairwise intervention analysis  

Pairwise intersection tool (Galaxy Version 0.6.4) was used to compute and visualize 

intersections of multiple sets of genomic regions (Khan and Mathelier 2017). Calculation of 

overlapping fraction was applied as the metric for the generated heatmap containing the 

overlapping fraction number. Coordinates associated with H3K27me3 peaks were generated 

by DiffReps and TSS-associated coordinates were downloaded from UCSC table browser 

(Karolchik, Hinrichs et al. 2004) as follows: “February 2009 human reference sequence 

(GRCh37)” was specified as a reference genome, “Regulation” was applied in the group, 

“SwitchGear TSS” was applied in track,  and BED file was generated after adding 100, 1000, 

and 10,000bp to the upstream. CpG islands coordinates were similarly downloaded from the 

UCSC Table Browser (26). 
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4.2.12. Number and location of H3K27me3 deposition 

CisGenome software system (Ji, Jiang et al. 2008) was used to assess the genome-wide 

location of H3K27me3 peaks after specifying the hg19 as a reference genome build. 

 

4.3. Results 

4.3.1. Potent activation of AR repressed EZH2 expression in prostate cancer cells 

To assess the hypothesis that antiproliferative effects of high-dose androgens could be 

mediated by altered EZH2 expression and/or activity, we first checked the expression status 

of PRC2 subunits including EZH2/1, SUZ12, EED, and RBBP4/7 in our RNA-seq data (described 

in Chapter 3). The analysis of differentially expressed genes in LNCaP cells shows that EZH2, 

EED, SUZ12, and RBBP4/7 were all significantly repressed by both androgens, whereas EZH1 

was not changed significantly (Figure 4.1A to F). This suggests that androgens modulate the 

function of the PRC2 complex. EZH2 downregulation in RNA-seq analysis was confirmed using 

qRT-PCR (Figure 4.2A). Consistent with PRC2 downregulation, GSEA analysis shows that 

expression of EZH2 target genes (Liao, Chen et al. 2020) was downregulated by MeT (1 nM) 

and DHT (1 nM) (Figure 4.2B). Also, RNA-seq results showed that the expression of genes 

associated with growth inhibitory effects of EZH2 inhibitor was repressed by MeT (Figure 

4.2C), indicating that MeT caused the repression of genes activated by EZH2.  

 

Mechanistically, overexpression of EZH2 is reported to be caused by the transcription factors 

E2F1 or SOX4 (Bracken, Pasini et al. 2003, Tiwari, Tiwari et al. 2013, Mu, Starmer et al. 2018). 

To test whether these known associations could explain EZH2 downregulation by high-dose 
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androgens in our experiments, we examined our RNA-seq data. This revealed that MeT 1 nM 

and DHT 1nM significantly repressed the expression E2F1; however, significant repression of 

SOX4 was only mediated after MeT 1 nM treatment (Figure 4.2D). These observations suggest 

that E2F1 repression may explain androgen-mediated down-regulation of EZH2.  
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Figure 4.1. Androgens repress the expression of the PRC2 complex in LNCaP cells. A. The expression 

level of PRC2 complex subunits was assessed based on normalised read counts generated from the 

RNA-seq experiment described in Chapter 3; in this experiment, the expression of EZH2 (A), SUZ12 (B), 

EED (C), RBBP4 (D), RBBP7 (E), and EZH1 (F) were examined 24 hours after treatment. ANOVA with 

Dunnett multiple comparison test was used to determine significant changes in expression (∗p < 0.05; 

∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001). 
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To validate the repressive effects of MeT on the expression of EZH2 in other prostate cancer 

models, a panel of prostate cancer cell lines (LNCaP, VCaP, C42B, MR49F, and V16D) were 

treated with different doses of MeT and DHT and expression of EZH2 was examined at the 

protein level. We found that potent activation of AR using MeT (1 and 100 nM) or high-dose 

DHT (100 nM) caused down-regulation of EZH2 in the LNCaP, VCaP and V16D models, but not 

C4-2B or MR49F (Figure 4.3), revealing that androgen-mediated repression of EZH2 is context-

dependent.  
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Figure 4.2. Hyper-activation of AR leads to the suppression of EZH2 in LNCaP cells. A. A. Validation 

of EZH2 suppression using qRT-PCR in LNCaP cells treated with MeT or DHT. RNA was extracted 24 

hours after treatment. p values were determined using ANOVA with Dunnett multiple comparison 

tests (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001); B. MeT and DHT treatments caused 

significant repression of EZH2 target genes in LNCaP cells as determined by GSEA analysis, using a 

published EZH2-regulated gene set (Kamminga, Bystrykh et al. 2006). C. MeT repressed the expression 

of genes crucial for growth inhibitory effects of EZH2 inhibitor. Heatmap generated based on 

normalised read counts from RNA-seq experiments described in Chapter 3 (24h time-point). Gene set 

has been reported previously by Liao, Yiji, et al. (Liao, Chen et al. 2020); D. The expression level of 

SOX2 and E2F1 were assessed based on normalised read counts generated from RNA-seq experiment 

described in Chapter 3; in this experiment, gene expression was examined 24 hours after treatment. 

ANOVA with Dunnett multiple comparison test was used to determine significant changes in 

expression (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001). 
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Figure 4.3. Potent activation of AR represses the expression of EZH2 in prostate cancer cell lines. A. 

Assessment of EZH2 expression was carried out using Western blotting in a panel of prostate cancer 

models including LNCaP, VCaP, C42B, MR49F, and V16D, which were treated with different doses of 

MeT or DHT doses; each sample was pooled from two replicates. B. Quantification of detected bands 

was carried out using the ImageLab software. Signal intensity in the Vehicle sample at 24h time-point 

was set to 1. 
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4.3.2. Androgen treatment alters H3K27me3 distribution in LNCaP cells 

Current evidence suggests that the oncogenic activity of EZH2, either through canonical and 

non-canonical functions, can lead to prostate cancer progression (Kim, Lee et al. 2018, Liao, 

Chen et al. 2020). To identify the consequence of EZH2 repression by androgens, we first 

assessed H3K27me3 protein levels - as a read-out for the canonical activity of EZH2-by 

Western blotting in LNCaP cells. Consistent with decreased EZH2, androgens reduced the 

global level of H3K27me3 at 24 and 72 hours post-treatment (Figure 4.4 A and B). These 

findings suggest that the canonical activity of EZH2 is affected by high-dose androgens in 

LNCaP cells. Subsequently, to evaluate H3K27me3 status at specific loci, we undertook ChIP-

seq as a means to examine the genome-wide deposition of this histone mark. The LNCaP cell 

line, which was the most sensitive model to MeT/high-dose DHT in terms of growth-inhibitory 

effects, repression of EZH2, and viral mimicry response (Chapter 3), was chosen for this 

experiment. A 72-hour treatment of LNCaP cells cultured in 10% FBS supplemented RPMI-

1640 was chosen for the ChIP-seq experiment since MeT-induced loss of H3K27me3 (Figure 

4.4) and viral mimicry response (Chapter 3) was detected at this time-point. Following the 

preparation of nuclear lysate for the ChIP experiment, we checked the status of EZH2 

expression and H3K27me3 in the nuclear lysates that were to be used for ChIP, which 

confirmed repression of EZH2 and a decrease in H3K27me3 level by MeT and high-dose DHT 

(100 nM) (Figure 4.4C). We subsequently performed H3K27me3 immunoprecipitation and 

sequenced the co-precipitating DNA.  
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Figure 4.4. Androgen treatments alter the global level of H3K27me3 in LNCaP cells. A. Total 

nucleoplasmic level of H3K27me3 histone modification and histone H3 24 hours and 72 hours after 

treatment with MeT or DHT; each sample was pooled from two replicates. B. Quantification of 

detected bands detected in the assessment of global H3K27me3 level using the western blotting. 

Quantification was carried out using ImageLab software. Quantification of detected bands was carried 

out using the ImageLab software. Signal intensity in the Vehicle sample at 24h time-point was set to 

1. C. Western blotting-based assessment of EZH2 expression and H3K27me3 histone modification 

status using the nuclear lysates that were to be used for ChIP experiment 72h after androgen 

treatments. 
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In vehicle-treated LNCaP cells, 40,367 consensus H3K27me3 peaks were identified. 

Surprisingly given the loss of bulk H3K27me3, treatment with DHT 1 nM led to an increase in 

the number of peaks to 46,288. To confirm whether our data was consistent with other 

reported studies, we first compared the number and locations of H3K27me3 peaks in vehicle 

and DHT 1 nM treatment groups with two publicly available H3K27me3 ChIP-seq data, 

GSM969571 and GSE117430. The GSM969571 dataset was generated from LNCaP cells 

treated with DHT 10 nM (for 24h) in Charcoal DCC-FBS-supplemented media and GSE117430 

data was generated from LNCaP cells treated with DHT 10 nM (for 3h) in FBS-supplemented 

media (Table 4.1). Overall, our H3K27me3 cistrome was more similar to that from GSE117430 

in terms of the number of peaks (Table 4.1) but overlapped more strongly with GSM969571 

(Table 4.1; Figure 4.5). Notably, the overlap between GSM969571 and GSE117430 was 

minimal (Table 4.1; Figure 4.5). Collectively, these studies suggest that our H3K27me3 data is 

robust and can be used to evaluate the effects of high dose androgen therapy on this histone 

mark.  
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Table 4.1. Comparison of H3K27me3 distribution in LNCaP cells  

 

 

 

 

H3K27me3 peaks Vehicle DHT 1 nM 
GSE117430 

(Augello, Liu et 
al. 2019) 

GSM969571  
(Xu, Wu et al. 2012)  

Number of identified peaks 40,367 46,288 51,556 16,459 

Media 
10% 

FBS/RPMI 
10% FBS/RPMI 5% FBS/RPMI 10% DCC-FBS/RPMI 

Treatment - DHT 1 nM (72h) DHT 1 nM (3h) DHT 1 nM (24h) 

Overlapped peaks with Vehicle - 
31,233 

(68.66%) 
8,873 

(19.55%) 
5,586 

(45.88%) 

Overlapped peaks with DHT 1nM 
31,233 

(81.12%) 
- 10,338 

(23.76%) 
6,043 

(51.77%) 

Intergenic (%) 
61.58 61.88 65.93 57.58 

Intragenic (%) 
38.41 38.11 34.06 42.41 

Exon (%) 
6.43 5.83 2.78 7.49 

Intron (%) 
32.60 32.82 31.47 35.65 

CDS (%) 
4.17 3.76 1.92 5.31 

UTR (%) 
2.34 2.13 0.89 2.30 

5'UTR (%) 
1.49 1.29 0.26 1.40 

3'UTR (%) 
0.86 0.84 0.63 0.89 

     



 

222 | P a g e  
 
 

 

 

Figure 4.5. Cell growth condition can change the deposition pattern and distribution of H3k27me3 

histone modification. Venn diagrams illustrating the overlap of consensus H3K27me3 peaks with 

other LNCaP H3M27me3 ChIP-seq datasets ((Augello, Liu et al. 2019), GEO accession GSE117430; (Xu, 

Wu et al. 2012), GEO accession GSM969571). Peaks from GSM969571 were lifted over to the hg19 

reference genome. 
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Having used published data to provide confidence in our H3K27me3 ChIP-seq experiment, we 

next evaluated the effect of DHT and MeT treatments on this histone mark in LNCaP cells.   

Androgen treatment did not dramatically alter the level of chromatin-bound H3K27me3, as 

determined by a relatively consistent number of H3K27me3 peaks detected in each of the 

different treatment groups (Table 4.2). Figure 4.6 shows the deposition status of H3K27me3 

on FOXC1 and LHX6 genes, two genes reported being regulated by EZH2 and H3K27me3 

(Boshans, Factor et al. 2019, Zheng, Li et al. 2020). Evaluation of the H3K27me3 signal 

proximal to genes reported to be marker by this histone mark in LNCaP cells (Hawkins, Hon 

et al. 2010) and hESCs (Xu, Wu et al. 2012) (Figure 4.7) provided further evidence that 

androgen treatment had minimal effect on this histone mark. Although H3K27me3 did not 

dramatically change with any of the treatments, we did observe a slight decrease in terms of 

peak number and signal with the higher dose treatments (Table 4.2 and Table 4.3). In all 

treatment groups, the vast majority of peaks were in intergenic regions and introns, with only 

on average ~37% found at intragenic regions (Table 4.2). Overall, these findings suggest that 

H3K27me3 is not significantly altered, either at a qualitative or quantitative level, by 

MeT/DHT, which was unexpected due to significant repression of EZH2 at RNA and protein 

level and bulk levels of H3K27me3 measured by Western blotting.  
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Table 4.2. Number and location of H3K27me3 deposition 72 hours after treatment with MeT 

and DHT 

 

* Peak locations were assessed using the CisGenome software. 

 

 

 

 

 

 

 

 

 

 

Consensus H3K27me3 peaks* Vehicle MeT 1 nM MeT 100 nM DHT 1 nM DHT 100 nM 

Total Peak number (FDR < 0.05) 40367 43389 37351 46288 40138 

Intergenic (%) 61.5825 61.7161 62.1001 61.8821 63.2493 

Intragenic (%) 38.4175 38.2839 37.8999 38.1179 36.7507 

Exon (%) 6.4384 6.5961 6.3666 5.8309 4.2304 

Intron (%) 32.6058 32.3146 32.0928 32.8228 32.9513 

CDS (%) 4.1717 4.2522 4.1123 3.7634 2.4864 

UTR (%) 2.341 2.4223 2.3293 2.1345 1.7863 

5'UTR (%) 1.4913 1.5672 1.5662 1.2984 1.293 

3'UTR (%) 0.8646 0.8666 0.7711 0.8447 0.5008 
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Figure 4.6. Androgen treatments did not attenuate the level of chromatin-bound H3K27me3 

deposition at key EZH2 target genes. Genome browser images showing H3k27me3 ChIP-seq signals 

at binding sites associated with FOXC1 and LHX6 in two replicates of LNCaP cells treated with Vehicle, 

MeT (1 and 100nM) and DHT (1 and 100nM). 
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Figure 4.7.  Androgen treatments did not change the genome-wide binding profile of H3K27me3. 

Heatmaps show the enrichment of H3K27me3 around the TSS (+/-6kb) of previously reported gene 

sets associated with H3K27me3 in LNCaP (Hawkins, Hon et al. 2010) and hESCs cells (Xu, Wu et al. 

2012).  
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Table 4.3. Overlapped H3K27me3 peaks after androgen treatments 

 

 

 

 

 

 

 

 

 

 

Consensus H3K27me3 peaks Vehicle MeT 1 nM MeT 100 nM DHT 1 nM DHT 100 nM 

Shared with Vehicle (%) 100 71.43 75.06 68.66 57.27 
Shared with MeT 1 nM (%) 75.83 100 78.57 66.22 57.36 

Shared with MeT 100 nM (%) 67.07 66.12 100 58.52 56.85 

Shared with DHT 1 nM (%) 81.12 73.16 76.80 100 61.73 

Shared with DHT 100 nM (%) 54.66 51.50 59.97 50.56 100 
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4.3.3. Functional analysis of genes associated with H3K27me3 histone mark  

Although our ChIP-seq data did not identify any major quantitative change to genome-wide 

H3K27me3 in response to MeT or DHT, we did observe a certain level of re-distribution with 

androgen treatments (Figure 4.8). To measure loss and gain of H3K27me3 more 

quantitatively, we used the Diffreps (Shen, Shao et al. 2013), which identified 1,502, 2,031, 

1,446, and 7,681 regions with differential levels of H3K27me3 after treatment with MeT 1 

nM, MeT 100 nM, DHT 1 nM, and DHT 100 nM, respectively. Analysis of intersections between 

gained or lost H3K27me3 sites revealed that the vast majority were treatment-specific (Figure 

4.9). We annotated the lost/gained sites to genomic regions known to be associated with 

H3K27me3: CpG islands, transcriptional start sites (TSSs), and promoters (100 to 10,000bp 

from TSS) (Deblois, Tonekaboni et al. 2020). This analysis reinforced that most H3K27me3 

sites were distal from genes and only a small proportion was in CpG islands (Figure 4.10). 

More importantly, this analysis revealed that in cells treated with a low dose (1 nM) of MeT 

or DHT, there were more gained H3K27me3 peaks relative to lost peaks at intergenic DNA 

regions, suggesting that low-dose androgens caused an enrichment of H3K27me3 peaks at 

regulatory regions of DNA. Inversely, treatment with a high-dose of androgens caused more 

lost H3K27me3 peaks relative to gained peaks at the same regions. Collectively, these findings 

suggest that androgens exerts a dose-dependent effect on re-distribution of H3K7me3 at 

intergenic regions.  

 

We then annotated the differentially marked regions with proximal genes and determined 

whether specific gene ontology (GO) groups were particularly associated with re-distributed 
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H3K27me3 (Mi, Muruganujan et al. 2019). This functional analysis strategy showed significant 

enrichment of genes involved in development (the nervous system, differentiation, and 

embryogenesis) having “re-distributed” H3K27me3 (Figure 4.11), a finding consistent with 

other studies suggesting the role of H3K27me3 in the development of the nervous system 

and anatomical structures (Hawkins, Hon et al. 2010, Zeng, Zhang et al. 2019).  
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Figure 4.8. Androgen treatments changed the genome-wide distribution of H3k27me3 histone 

modification. UpSet plots illustrated the overlap of consensus H3K27me3 peaks in LNCaP cells treated 

in vitro with Vehicle, MeT (1 and 100 nM) or DHT (1 and 100 nM). 
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Figure 4.9. The difference in type and doses of androgens causes unique differentially modified DNA 

regions by H3K27me3. The overlapping of differentially gained or lost H3K27me3 by MeT and DHT 

was illustrated using the UpSet plots.  
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Figure 4.10. Treatment with high-dose androgens causes an increase in differentially lost peaks at 

intergenic regions. A pairwise plot was used to compare the overlapping of differentially gained or 

lost H3K27me3 peaks with each other and also with some regulatory regions including TSS, upstream 

of TSS, and CpG islands. The fraction of regions in the X-axis which is shared with regions in the Y-axis 

was shown as a fraction of 1, which is equal to 100% overlapping.  
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Figure 4.11. Gene ontology enrichment analysis showed the significant enrichment of 

developmental pathways for regions marked by H3K27me3. The heatmap shows significantly 

overrepresented biological processes in different treatment groups, which was analysed using online 

PANTHER overrepresentation platform (Mi, Muruganujan et al. 2019). Enrichment test was performed 

using Fisher’s exact test; FDR p-values were calculated as -log10 FDR.  
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4.3.4. No evidence for altered H3K27me3 at endogenous retrovirus elements  

As shown in Chapter 3, MeT and high-dose androgens caused hypo-methylation of DNA and 

dysregulation of repetitive elements, resulting in activation of a viral mimicry response in 

prostate cancer cells. The repressive histone mark H3K27me3 has also been linked to 

repression of ERV transcription (Walter, Teissandier et al. 2016). Therefore, we examined 

H3K27me3 at different repetitive elements. Surprisingly, the analysis of the different class of 

repetitive elements including DNA class, Long interspersed nuclear elements (LINEs), long 

terminal repeat (LTR), Short interspersed nuclear elements (SINEs), and SINE-VNTR-Alus (SVAs) 

revealed two distinct shapes of H3K27me3 signals (Figure 4.12). Interestingly, in DNA, LINE, 

and LTR classes, the peak densities were very low, exhibiting a peak-valley-peak signal pattern 

with depletion of H3K27me3 towards the centre of these elements. By contrast, in SVA and 

SINE classes, which are generally enriched with GC content (Gu, Jin et al. 2016), H3K27me3 

formed sharp peaks at the centre. Similar to SINEs and SVAs, H3K27me3 was also enriched in 

CpG islands with sharp peaks at the centre, suggesting that the distribution pattern of 

H3K27me3 in LNCaP cells depends on the GC content of the targeted region. Interestingly, in 

the majority of regions with H3K27me3 peaks, the H3K27me3 signal from the MeT 1 nM 

treatment group was higher than other treatments, which is consistent with the results of 

pairwise analysis. Treatment with higher doses of MeT or DHT did not cause any substantial 

decrease to the level of H3K27me3 deposition at these elements, which is consistent with our 

earlier analyses but inconsistent with the hypothesis that altered distribution of this histone 

mark at repetitive elements results in changes to their transcription.  
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Figure 4.12. Deposition status of H3K27me3 at repetitive elements. HOMER was used to visualise the 

deposition status of H3K27me3 at repetitive elements in LNCaP cells treated with vehicle, MeT (1 nM 

and 100 nM) or DHT (1 nM and 100 nM) for 72h. Average read density plots were generated for 

H3K27me3 binding to DNA class, LINE class, LTR class, SINE class, CpG islands, SVA family members, 

Alu family members (AluSq, AluSq, and AluYb8), ERVL, HERVK-int, HERV3-int (ERV3-1), and HERVH-int. 

The coordinates of repetitive elements were downloaded from the UCSC Table Browser (Karolchik, 

Hinrichs et al. 2004). 
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4.3.5. Deposition pattern of H3K27me3 was not associated with enhanced expression of MHC-I 

and MHC-II  

As demonstrated in Chapter 3, MeT and high-dose DHT increased the expression of MHC-I 

proteins. Previous studies demonstrated that the expression of HLA genes in colorectal cancer 

cells can be induced by decreasing the levels of H3K27me3 by pharmacological inhibition of 

EZH2 (Burr, Sparbier et al. 2019). Therefore, we speculated that androgen-mediated 

repression of EZH2 may be a reason for observed up-regulation of MHC-I and MHC-II genes 

(refer to Chapter 3, Figure 7A). Therefore, we examined the distribution of H3K27me3 at the 

promoter of gene sets associated with MHC-I and MHC-II (Reactome). However, as shown in 

Figure 4.13, we did not observe a loss of H3K27me3 signal at the promoters of MHC-I and 

MHC-II genes in response to androgen treatments. Figure 4.14 shows an example of the 

deposition pattern of H3K27me3 at the HLA-B gene following androgen treatment. 
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Figure 4.13. Promoter analysis showed that androgens did not change the deposition pattern of 

H3K27me3 at the promoter of genes associated with MHC-I and MHC-II. Average read density plots 

for H3K27me3 to genes associated with MHC-I and MHC-II in LNCaP cells treated with vehicle, MeT (1 

nM and 100 nM) or DHT (1 nM and 100 nM) for 72h. 
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Figure 4.14. Androgen treatment did not change the deposition pattern of H3K27me3 at HLA-B in 

LNCaP cells. Genome browser image showing H3k27me3 ChIP-seq signals at binding sites associated 

with HLA-B in two replicates of LNCaP cells treated with Vehicle, MeT (1 and 100 nM) and DHT (1 and 

100 nM). 
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4.4. Discussion 

Epigenetic modifications, including DNA methylation and histone modifications, regulate the 

accessibility of chromatin for gene expression (Adam and Fuchs 2016). One of the 

mechanisms underlying chromatin compaction is the deposition of H3K27me3 by the PRC2 

complex, which has EZH2 and EZH1 as its catalytic subunits (Rizq, Mimura et al. 2017). 

Overexpressed in CRPC tumours, EZH2 is considered a bona fide oncogene in PCa and CRPC, 

with its primary oncogenic function thought to be silencing of tumour suppressor genes 

(Varambally, Dhanasekaran et al. 2002).  

 

Given the notion that EZH2 inhibition can make prostate cancer cells vulnerable to high-dose 

androgens (Nyquist, Corella et al. 2019), we were therefore intrigued to understand how EZH2 

suppression by androgens affects prostate cancer cell growth. In this study, we have shown 

that hyper-activation of AR causes down-regulation of EZH2 in different prostate cancer cell 

lines. Also, we found that down-regulation of EZH2 was associated with reduced total levels 

of nucleoplasmic H3K27me3 (as shown by Western blotting of histone acid extracts) but did 

not have a substantive effect on the level and distribution of chromatin-associated H3K27me3 

(as shown by ChIP-seq). This finding indicates that EZH2 repression by high-dose androgens 

caused a reduced level of H3K27me3 in soluble nucleoplasmic fraction rather than insoluble 

chromatin compartments. We envision a number of possible explanations for this apparently 

contradictory finding. Given that methylation of pre-deposition H3 soluble histones has been 

described for H3K9 histones (Loyola, Bonaldi et al. 2006), one possibility is that in LNCaP cells, 
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non-DNA bound H3K27 histones may be targeted by EZH2. However, this hypothesis is not 

consistent with previous findings in mouse embryonic stem cells (Ferrari, Scelfo et al. 2014, 

Juan, Wang et al. 2016), indicating that H3K27 histones are not methylated before 

nucleosome assembly. Therefore, in future studies, I propose that high-dose androgens 

effects on methylation of H3K27 should be examined in cytoplasmic, nucleoplasmic, and 

chromatin-bound fractions of PCa cells.  

 

Second, the disparity between total H3K27me3 and chromatin-bound H3K27me3 may relate 

to DNA methylation status.  Mechanistically, it has been shown that in the absence of DNA 

methylation, the canonical activity of EZH2 underlies a compensation mechanism, 

reallocating H3K27me3 to maintain the repressive chromatin state (18). With this background 

in mind, we showed in Chapter 3 that androgens affect the global methylation level of DNA, 

so it is possible that this leads to a re-distribution of H3K27me3 to compensate for DNA 

hypomethylation. Demonstrating the importance of this compensation mechanism in 

sustaining the repression of repetitive elements, Deblois G, et al., (Deblois, Tonekaboni et al. 

2020) showed that in taxane-resistant triple-negative breast cancer cells, inhibiting 

H3K27me3 deposition through pharmacologic inhibition of EZH2 can re-activate the 

expression of hypo-methylated transposon elements through viral mimicry response. 

Supporting this possibility, we found that H3K27me3 was gained at GC rich regions such as 

CpG islands and SVA elements, which can be potentially related to their low DNA methylation 

level. In future studies, the deposition pattern of H3K27me3 should be examined after DNA 

hypomethylation with DNA demethylating agents in the presence and/or absence of EZH2, 



 

245 | P a g e  
 
 

which would determine how the canonical activity of EZH2 changes in hypo-methylated DNA 

condition. Also, genome-wide DNA methylation should be investigated to more precisely 

determine the interplay between H3K27me3 deposition pattern and DNA methylation status.  

 

Finally, the simplest explanation for the apparent disparity between H3K27me3 levels in 

soluble nuclear fractions versus chromatin-bound could relate to experimental conditions i.e. 

time-point and growth conditions. It is known that the interaction of PRC2 with chromatin 

and deposition of H3K27me3 is a highly dynamic process that is influenced by growth 

conditions (Adriaens, Prickaerts et al. 2016).  To overcome this issue, in future work I propose 

to carefully tailor the experimental conditions to decrease variability resulting from the 

mechanism of action of EZH2/PRC2. 

 

The basis for the work in this chapter was that modulation of EZH2 and H3K27me3 could 

explain the induction of ERVs. This hypothesis was based on previous studies in other cancer 

models showing that this histone mark plays a key role in repressing ERV transcription 

(Deblois, Tonekaboni et al. 2020). Unexpectedly, we found that ERVs in this model were not 

marked by H3K27me3. This suggests that DNA methylation could be the key mechanism 

controlling the expression of ERVs, as described in Chapter 3. Other reports are consistent 

with this hypothesis:  for example, low-resolution analysis of chromosome 17 in a mouse 

model revealed that H3K27me3 is depleted at ERVs, but enriched at broad localized regions 

termed BLOCs that were found primarily within SINEs (Pauler, Sloane et al. 2009). This study 

also revealed that repressive H3K27me3 BLOCs were distributed over genes and intergenic 
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regions and H3K27me3 peaks rarely marked the gene promoters, accounting for only 10%–

15% of the promoters, which is also consistent with our findings. Another study also 

demonstrated that PRC2 complex / H3K27me3 is not involved in silencing repetitive elements 

in spermatocytes (Mu, Starmer et al. 2014) showed. Taken together, our findings do not 

support H3K27me3 playing a major role in ERV transcription in PCa cells. Notably, other 

histone modifications, such as H3K9me3 and/or H4K20me3, have been reported to play a role 

in the transcription of repetitive elements (Mikkelsen, Ku et al. 2007); I propose that a more 

comprehensive analysis of the epigenome is required to accurately determine how MeT leads 

to de-repression of ERVs and other repetitive elements (e.g. LINEs).  

 

It is important to note that both catalytic (canonical) and non-catalytic (non-canonical; i.e. 

collaboration with AR) activities of EZH2 have been identified in PCa cells (Kim, Lee et al. 

2018). Given that MeT repressed the expression of genes that are activated by EZH2; this 

supports the hypothesis that high-dose androgens may primarily disrupt the non-canonical 

activity of EZH2, as opposed to the canonical function. To test this hypothesis, I propose that 

assessing EZH2 interaction with AR and also its genome-wide DNA binding profile (i.e. using 

ChIP-seq) could be examined in response to MeT treatment. 

 

Gene ontology analysis suggested a significant overrepresentation of biological processes 

involved in development, differentiation, and lineage-specification process, which are 

consistent with the proposed role of H3K27me3 in regulating the expression of genes involved 

in of nervous system and anatomical structures (Hawkins, Hon et al. 2010, Zeng, Zhang et al. 



 

247 | P a g e  
 
 

2019). However, in future studies, to examine any association between H3K27me3 re-

distribution and alteration in the function of a pathway, matched transcriptomic data is 

needed. Unfortunately, the RNA-seq we carried out (see Chapter 3) was done at a much 

earlier time-point compared to the H3K27me3 ChIP-seq, which precluded integration of these 

datasets.  

 

Overall, our study showed that potent activation of AR caused down-regulation of EZH2 and 

a concomitant decrease in the global H3K27me3 level. However, the lack of substantial impact 

on the level and distribution of chromatin-associated H3K27me3 means that it is not possible 

to know whether repression of EZH2 has any role in mediating the growth-suppressive or 

immunomodulatory effects of MeT. Since EZH2 inhibitors are being developed to treat PCa 

(Morel, Sheahan et al. 2021), this remains an important question to definitively answer.    
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5. General Discussion  

Prostate cancer is the second most common cancer worldwide in men and has one of the 

highest age-standardized incidence and mortality rates of all cancers in Australian men 

(Organization 2012). Current treatment strategies for patients with localized prostate cancer, 

including radical prostatectomy and radiotherapy, are curative in a substantial proportion of 

men; however, approximately 30% experience recurrence with metastatic disease (Singh, 

Febbo et al. 2002). As described in chapter 1, ADT is a standard-of-care treatment for 

metastatic PCa, which aims to inhibit the activity of a major oncogenic driver of this disease, 

AR. However, ADT is never curative, with all patients eventually acquiring resistance to 

therapy and relapsing with lethal castration-resistant prostate cancer (CRPC). Enigmatically, 

recent studies have suggested that potent activation of AR using high doses of androgens can, 

similarly to AR suppression, also inhibit the growth of CRPC (Schweizer, Antonarakis et al. 

2015). However, the exact tumour suppressive effect(s) of high-dose androgen therapy 

remain largely uncharacterised. This study aimed to investigate the mechanisms underlying 

PCa growth suppression in response to hyperactivation of AR by a potent androgen, 

methyltestosterone (MeT). 

 

5.1. MeT potently suppresses the growth of PCa cells  

Investigation into the effects of MeT on prostate cancer cell growth revealed that MeT 

suppressed the growth of AR-positive PCa cell line models more potently than the 

physiological androgen DHT. Consistent with this finding, transcriptional activation assays 

showed that MeT is a more potent transcriptional activator of AR, an observation supported 
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by earlier studies (Sonneveld, Jansen et al. 2005, Wolf, Diel et al. 2011, Wang, Lawless et al. 

2020), indicating that MeT shows more AR agonistic effects in comparison with DHT. Given 

the higher AR binding affinity of DHT relative to MeT (Liao, Liang et al. 1973, Saartok, Dahlberg 

et al. 1984, Fang, Tong et al. 2003), this was an unexpected result. However, it has been 

reported that MeT cannot be metabolised by Glucuronyl-transferase enzymes, which are the 

major mediators of androgen inactivation in prostate cancer cells (Smith, Ballard et al. 1994, 

Kuuranne, Kurkela et al. 2003, Chouinard, Barbier et al. 2007). Thus, I propose that MeT’s 

greater androgenic potency is largely related to its increased stability in the models used in 

my project. However, in future studies, I propose that MeT and DHT should be measured in 

PCa cells to validate this hypothesis. Toward this end, the androgen levels can be measured 

in cell culture media by liquid chromatography tandem mass spectrometry (LC-MSMS), which 

is considered the gold standard method (Matsumoto and Bremner 2004, Harwood and 

Handelsman 2009).  

 

Using an integrated genomic approach that includes ChIP-seq and RNA-seq, I found that MeT 

regulates a canonical set of AR-regulated genes and leads to a similar genome-wide AR DNA 

binding profile, but it does so much more potently than DHT. Molecularly, extreme activation 

of AR with MeT is linked to the repression of previously reported AR target genes that are 

associated with cell cycle, DNA replication, and DNA repair (Gao, Gao et al. 2016, Chatterjee, 

Schweizer et al. 2019, Lam, Nguyen et al. 2020). Supporting the idea that these are direct 

target genes, I found that MeT-activated AR was strongly recruited to the promoter of these 

genes. Mechanistically, repression of genes associated with cell cycle and DNA replication is 
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linked to cell cycle arrest (Engeland 2018), which we confirmed with FACS analysis following 

treatment of cells with MeT.  

 

Preclinical studies have proposed that AR-mediated repression of genes associated with DNA 

damage response is linked to the therapeutic effects of high-dose androgens (Chatterjee, 

Schweizer et al. 2019, Lam, Nguyen et al. 2020). Consistent with this idea, some clinical studies 

also suggested that patients with deficiency in DNA repair genes may exhibit a better 

response to high-dose androgen therapies (Teply, Kachhap et al. 2017). Indeed, a prevailing 

dogma posits that AR-induced DNA damage is the major therapeutic mediator of high-dose 

androgen treatment and hence that deficiency in the DNA repair system can enhance 

therapeutic benefit (Chatterjee, Schweizer et al. 2019, Nyquist, Corella et al. 2019). However, 

we did not observe an increased level of γH2AX in response to MeT treatment. This 

observation aligns with other studies indicating that AR activation by androgens cannot 

induce persistent dsDNA breaks (Lin, Yang et al. 2009, Polkinghorn, Parker et al. 2013, Nyquist, 

Corella et al. 2017). Moreover, genomic analysis of circulating-tumour DNA isolated from 

CRPC patients who were treated with high-dose androgen therapy revealed that there was 

no significant association between baseline AR and DNA repair alterations with PSA response 

(Chatterjee, Schweizer et al. 2019, Moses, Koksal et al. 2020). Regarding the relevance of AR-

induced DNA damage to BAT response in CRPC patients, next-generation sequencing of 

samples from patients who received BAT revealed an enormous variation among patients 

with different genomic aberrations (Schweizer, Antonarakis et al. 2019). Overall, the question 

as to whether AR-induced DNA damage is the key mechanism exerting anti-proliferative 
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effects in prostate cancer cells remains unanswered. Therefore, in future studies, DNA repair 

defects should be measured in much larger cohorts of men treated with BAT to provide 

definitive evidence that such defects could be used to predict response. Also, DNA damage 

should be examined more directly (eg using a COMET assay) in both cells and patient tumours 

treated with high-dose androgens. 

 

5.2. Hyper-activation of AR triggers viral mimicry response in PCa cells 

Prostate cancer is immunologically characterised as a “cold tumour”, indicating that tumour 

cells cannot be effectively killed by immune cells. Mechanistically, the immunological 

“coldness” of PCa tumours, which mediates resistance to immunotherapies, can be induced 

by a network of different but intertwined factors including the presence of 

immunosuppressive cells in the tumour microenvironment, low expression of tumour-

associated antigens, and dysfunctional antigen presentation system in cancer cells (Bronte, 

Kasic et al. 2005). Immunosuppressive cells that are enriched in prostate tumours include 

cancer-associated fibroblasts (CAFs), regulatory T cells, tumour-associated macrophages 

(TAMs), and myeloid-derived suppressor cells (MDSCs), all of which can induce immune 

evasion phenotypes by impeding the differentiation, activation, and interaction of cytotoxic 

T cells against tumour cells (Lu, Rong et al. 2019, Zhao, Lehrer et al. 2019, Li, Jiang et al. 2020). 

Another important immune evasion mechanisms in prostate cancer cells is loss of major 

histocompatibility complex (MHC) expression, which can be potentially impaired either by 

tumour microenvironment or intrinsic factors such as genetic/epigenetic aberrations (Sanda, 

Restifo et al. 1995, Bander, Yao et al. 1997, Dhatchinamoorthy, Colbert et al. 2021). It has 
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been reported that in primary prostate cancer tumours, low expression of MHC-I genes was 

associated with high Gleason score, bone metastasis, and short cancer-specific survival 

(Ylitalo, Thysell et al. 2017). Expression of MHC-I genes can be induced by different 

mechanisms including IFN signalling, which can cause a robust immune response by CD8+ T 

cells (Martini, Testi et al. 2010). However, it has been demonstrated that in metastatic 

prostate cancer cells tumour‐intrinsic type I IFN and associated immune signalling is 

epigenetically suppressed (Owen, Gearing et al. 2020).  

 

In my PhD studies, RNA-seq data revealed that MeT treatment induced the expression of 

interferon-stimulated genes (ISGs), suggesting that extreme activation of AR leads to the 

activation of IFN signalling pathways. Indeed, I found in multiple in vitro prostate cancer 

models that potent activation of AR induced expression of IFN-β and ISGs concomitantly with 

dysregulation in the expression pattern of repetitive elements. More specifically, my PhD 

work demonstrated that potent activation of AR triggers the activation of a viral mimicry 

response in prostate cancer cells, which was characterised by upregulation of ERVs, 

accumulation of viral dsRNAs in cells, activation of interferon signalling, upregulation of MHC 

Class I and activation of T cells (Figure 5.1).  
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Figure 5.1. Schematic depicting the role of AR in immunosensitizing of PCa cells 

 

Mechanistically, the expression of repetitive elements is primarily regulated by epigenetic 

modifications, and DNA methylation is a key mechanism conferring long-term epigenetic 

silencing of transposons (Yoder, Walsh et al. 1997, Reik 2007). We were therefore intrigued 

to discern whether high-dose androgen-mediated ERVs expression is associated with 

epigenetic changes in prostate cancer cells. In my PhD studies, I showed that treatment with 

MeT repressed the expression of key enzymes involved in the maintenance (DNMT1) and de 

novo methylation (DNMT3b) of DNA. Following this finding, we also demonstrated that 

treatment with androgens leads to DNA hypomethylation. Although to the best of my 

knowledge this is the first report of androgen-mediated hypomethylation, it should be noted 
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that a negative correlation between AR activity and DNA methylation status has been 

reported previously (Dhiman, Attwood et al. 2015). Therefore, we postulate that androgen-

induced hypomethylation of DNA is the key mechanism dysregulating the expression of 

repetitive elements, leading to activation of viral mimicry response in prostate cancer cells. 

However, with current data, we cannot conclude the exact mechanism of epigenetic 

alterations by AR. To verify the role of DNMTs in the MeT-mediated viral mimicry response, a 

powerful experiment would be to treat prostate cancer cells over-expressing DNMTs with 

MeT and see whether ERV induction and viral mimicry response is lost or weakened. 

Additionally, examining whether MeT can synergise with DNA de-methylating agents such as 

Decitabine could provide more evidence of the importance of DNMTs in these processes. 

Understanding how androgens suppress DNMTs could also shed light on these questions. 

DNMT1 is an E2F1 target genes and our transcriptomic data showed that E2F1 and its target 

genes were strongly repressed by MeT (33, 34). Demonstrating loss of E2F1 binding to the 

DNMT1 gene (e.g. by ChIP) would provide further evidence for its role in MeT-mediated 

alterations to DNA methylation. Importantly, if this hypothesis could be confirmed, it would 

suggest that MeT could be applied in combination with CDK4/6 inhibitors, which also 

inactivate E2F1 and can cause a viral mimicry response (Goel, DeCristo et al. 2017). 

 

As reported in previous studies, detection of viral dsRNA by intracellular dsRNA sensors (TLR3, 

RIG-I and MDA5) or dsRNA/dsDNA sensor (STING) is the trigger of innate immune response 

activation (Liu, Ohtani et al. 2016, Goel, DeCristo et al. 2017, Liu, Thomas et al. 2018). In 

prostate cancer cells, we showed that that potent activation of AR leads to the induction of 
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RIG-I and STING, which potentially detect the androgen-induced dsRNAs leading to activation 

of viral mimicry response. However, proving that dsRNA sensing is required for MeT-mediated 

viral mimicry is a crucial mechanistic experiment that I was unable to complete during my 

PhD. In the future, I propose to use genetic methods (i.e. siRNA, CRISPR) or pharmacological 

methods (i.e. STING inhibitor) for inhibition of STING/RIG-I to determine whether these 

factors are required for induction of innate immune responses by MeT.   

 

Activation of innate interferon signalling in tumours cells can enhance the expression of MHC-

I expression and cause the infiltration of tumour-specific cytotoxic CD8+ T cells (Corrales, 

Matson et al. 2017). My PhD studies identified a similar mechanism whereby potent 

activation of AR in cancer cells caused induction of MHC-I molecules (i.e. HLA-B and HLA-C), 

led to enhanced tumour cell immunogenicity as demonstrated by enhanced recognition of 

cancer cells by tumour-specific CD 8+ T cells. This is an important finding suggesting potential 

clinical implications, which was supported by a case report study suggesting that bipolar 

androgen therapy may have immune activation effects on prostate cancer tumours 

(Markowski, Shenderov et al. 2020). To confirm that immunomodulatory effects of MeT are 

mediated by activation of IFN signalling, I propose that future studies should conduct 

equivalent studies using genetically engineered models that are deficient for IFN signalling 

(e.g C57BL/6 Ifnar1 -/- (Owen, Gearing et al. 2020)). Specifically, loss of immune response in 

such a model can confirm the role of the proposed mechanism for IFN signalling. More 

broadly, the tumour microenvironment’s role in immune evasion is critical and the lack of in 

vivo studies in my study was a major limitation. Therefore, to determine whether high-dose 
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androgen therapy can exert the proposed immunomodulatory effects in the presence of 

immunosuppressive prostate tumour microenvironment in vivo studies (e.g B6-Hi-MYC model 

(Morel, Sheahan et al. 2021)) are essential. Finally, given the reported anticancer and 

immunomodulatory effects of IFN-γ on tumour cells and also on tumour microenvironment, 

it would be worth considering whether a combination treatment comprising MeT and IFN-γ 

may cause an additive benefit in terms of immune surveillance (Selleck, Canfield et al. 2003, 

Cheon, Borden et al. 2014, Galon and Bruni 2019, Jorgovanovic, Song et al. 2020). 

 

5.3 Androgen treatments modulate EZH2 function and re-distribute H3K27me3  

In Chapter 4, I reported that potent activation of AR caused repression of the histone 

methyltransferase EZH2 in prostate cancer cells, suggesting that EZH2 repression by high-

dose androgens could induce epigenetic alterations beyond DNA hypomethylation. 

Interestingly, genome‐wide studies have shown that there is an anti‐correlated relationship 

between DNA methylation level and H3K27 methylation enrichment (Fu, Bonora et al. 2020). 

Given that potent activation of AR with androgens induces a global DNA hypomethylation 

(please see Chapter 3), we were therefore intrigued to examine the consequence of EZH2 

repression by androgens on the deposition of H3K27me3. Interestingly, H3K27me3 ChIP-seq 

showed a minor re-distribution of H3K27me3 by MeT and DHT but not an overall loss of 

chromatin-bound H3K27me3. Possible explanations for this unexpected finding were 

described in Section 4.4.  
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As shown in Chapter 3, androgen-induced DNA hypomethylation causes the activation of the 

viral mimicry response in prostate cancer cells. More interestingly, we showed that 

Decitabine-induced dsRNA are less strong than MeT 1nM, suggesting that dsRNA formation 

by MeT is also amplified by another mechanism. We postulated that the strong induction of 

dsRNAs by MeT could be potentially related to the modulation of the EZH2-associated 

compensation mechanism. Analysis of H3K27me3 deposition at different classes of repetitive 

elements, however, revealed that androgen (MeT or DHT) did not cause a significant 

difference in H3K27me3 profile. Despite this result, I propose that future work should 

evaluate how a DNA de-methylating agent (e.g. Decitabine) influences H3K27me3 to 

determine if a compensation mechanism is active in prostate cancer and influences 

expression of transposable elements. 

 

5.4. Overall conclusion 

Collectively, the work described in this thesis sheds new light on the anti-tumour mechanism 

of action of high dose androgens in prostate cancer cells. Most importantly, the concept for 

immunosensitisation of prostate tumours using MeT is pioneering and warrants further pre-

clinical and clinical investigation.  
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