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Abstract 

Newcastle Disease Virus (NDV) has caused significant outbreaks in South-East Asia, 

particularly in Indonesia. Australia is currently free from virulent strains of NDV. However, the 

introduction of virulent NDV strains is a severe risk for the Australian poultry industry. 

Indonesia is the closest country to Australia and spillover might occur through migratory 

birds. Two viral strains from recent outbreaks have been isolated and analyses by full 

genome sequencing and phylogenetic assays.  

This study was conducted to determine the pathogenesis, candidate genes, biological 

pathways and tissue tropism of recently emerged genotype VII of NDV (NDV-GVII) viral 

strains. Chickens were experimentally infected with live NDV-GVII virus. Tissue samples 

were collected after euthanasia of birds. A transcriptomic analysis based on RNA 

sequencing (RNA-Seq) of spleen was performed in chickens challenged with NDV-GVII and 

a control group. Repair Assisted Damage Detection (RADD), and immunohistochemistry 

staining of Viral HN, caspase-3 and MLKL antigens were employed to analyse DNA damage 

levels, viral load, apoptosis and necroptosis markers, respectively. 

Phylogenetic study results revealed that these two strains were identical and belong to 

genotype VII.1, class II cluster of avian paramyxoviruses, and have significant differences in 

amino acid identities with La Sota strain. 

In total, 6361 genes were differentially expressed that included 3506 up-regulated genes 

and 2855 down-regulated genes. Real-time PCR of ten selected differentially expressed 

genes (DEGs) from the RNA-Seq results showed agreement between the two technologies 

in detecting DEGs as the correlation between them is 0.98. Functional and network analysis 

of DEGs showed down regulation of ElF2 signalling, mTOR signalling, the proliferation of 

lymphatic system cells, signalling by Rho family GTPases and synaptogenesis signalling in 

spleen. We have also identified increased expression of IFIT5, PI3K, AGT and PLP1 genes 

in NDV-GVII infected chickens. Bursal atrophy was associated with profound expression of 

MLKL and only patchy distribution of viral antigen, providing evidence that the mechanism of 

lymphoid depletion involved a non-apoptotic pathway of programmed cell death termed 

necroptosis. RADD and oxididative RADD analysis of bursa showed a DNA damage pattern 

consistent with the programmed cell death rather than necrosis, consistent with MLKL stain 

results. MLKL expression in the spleen was less pronounced and largely restricted to the 

central portion of periarteriolar lymphoid sheaths, while other regions of white pulp 

expressed neither MLKL nor caspase-3. A shift in tissue tropism from neurologic and 

gastrointestinal to the immune system compared to previously reported NDV-GVII strains 

was also observed in this strain. 
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Significant differences in amino acid identities of circulation viruses and La Sota strain as the 

most common vaccine strain used in Indonesia shed more light on the probable reason for 

vaccine failure against these NDV strains and highlights the urgent need for updated vaccine 

development strategies in South-East Asia. Our findings in activation of autophagy-mediated 

cell death, lymphotropic and synaptogenesis signalling pathways provide new insights into 

the molecular pathogenesis of this newly emerged NDV-GVII. This study is the first report of 

using RADD assay for DNA damage analysis in NDV infection and revealed the persistence 

of oxidative lesion in the genome after viral challenge. Together with observations of 

karyorhexis, fibrinous inflammation, and RADD analyses, we conclude that necrosis was 

responsible for the majority of lymphoid depletion in the spleen. Therefore, we speculate that 

the progression of NDV infection may deplete various subsets of lymphocytes by different 

mechanisms. 
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Thesis structure:     

This thesis is presented as a 'Thesis by Publication' and includes a combination of published 

and submitted manuscripts under review. Each chapter forms a separate scientific 

manuscript. In consequence, some repetition between the chapters exists in their 

introduction and or methods sections. For consistency, I have standardised chapter 

formatting throughout this thesis. The manuscript's current status in the publication process 

mentioned in the ‘Statement of Authorship' associated with each chapter. All references to 

manuscripts/chapters of this thesis reflect the current status of that manuscript in the 

publication process (in press or in review) at the time of thesis submission. Chapter 1 of this 

thesis (Introduction) reviews the current literature of Newcastle Disease Virus (NDV) and 

particular genotype VII of NDV in Indonesia, RNA-sequencing, and more, including a 

summary of research into the determination of molecular pathogenicity of NDV. Chapter 2, 

entitled “Genome Sequences of Newly emerged Newcastle Disease Virus Strains Isolated 

from Disease Outbreaks in Indonesia”, has been published in Microbiology Resource 

Announcement journal. Chapter 3 entitled “Indicators of the molecular pathogenesis of 

virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen”, 

is currently under revision in Scientific Reports journal. Chapter 4, entitled “Necroptosis, 

necrosis, and oxidative DNA damage in lymphoid tissues of chickens infected with genotype 

VII Newcastle disease virus”, has submitted for publication. Chapter 5 provides the thesis 

with a final discussion, a summary of all research chapters and recommendation for further 

research.  
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1.1 Newcastle disease 

Newcastle Disease (ND) has a worldwide distribution. Because it infects many different 

avian species, it can be considered a permanent threat to all poultry industries and other 

aviculture fields (Miller, Patti J et al. 2015). This virus was described for the first time in the 

island of Java (Indonesia) in 1926, and at the same time in Newcastle (England). Various 

genotypes have been responsible for different ND panzootics around the world. (Doyle 

1927). NDV infects more than 200 bird species (Afonso et al. 2012). Doves, pigeons, and 

Cormorants are NDV reservoirs. This virus can be transmitted by the feces of infected birds 

and aerosols via the reservoir birds, movement of equipment and people, contaminated 

water or feed (Senne 2008). The identification and characterisation of ND are difficult 

because of a wide range of clinical signs. ND is also known as synonyms like: pseudovogel-

pest, pseudo-fowl pest, pseudo-poultry plague, Tetelo disease, avian pest, avian distemper, 

Korean fowl plague, atypische Geflugelpest, avian pneumoencephalitis, and Ranikhet 

disease (Senne 2008).  

Nearly a century since the discovery of ND, it still has a considerable economic impact on 

the poultry industry. ND had a worldwide distribution, South America, North America, Asia, 

Europe, Africa, Oceania and South-East Asia (Palgen et al. 2015), and the high prevalence 

of ND across the world caused a large economic impact. The impact of ND is very 

destructive because it causes a very high mortality rate in chickens, and also because of the 

economic effect from trade restrictions and limitations, The World Organization for Animal 

Health (OIE) has ranked Newcastle Disease as a list-A disease with other critical diseases 

such as Avian Influenza (Alexander, D 2000a; Susta et al. 2014). The cost of consistent and 

effective vaccination is high for the poultry industry. Many smallholder farmers, particularly in 

developing countries, may not be able to afford the vaccination strategy's operation.  

The clinical signs of ND range from asymptomatic to high mortality and are dependent on 

the strain of NDV (Al-Garib et al. 2003).     

1.2 Description of the virus 

Newcastle disease virus (NDV) is a member of the genus Avian orthoavulavirus 1 within the 

new subfamily Avulavirinae of the family Paramyxoviridae within the Mononegavirales order 

(Rima et al. 2019b). The family of Paramyxoviridae contains other important viruses, 

including measles, mumps, Sendai virus, Hendra, Nipah, and parainfluenza viruses (Chang 

& Dutch 2012). NDV has a single-stranded non-segmented negative-sense RNA genome 

with an envelope. The genome of NDV is approximately 15 kb, and includes six genes 3’-

NP-P-M-F-HN-L-5’ (Chambers et al. 1986), that encode NDV proteins. The nucleocapsid 

protein (NP) covers the genomic RNA (Yue et al. 2009). The phosphoprotein (P) and L 
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protein are essential for the synthesis of NDV (Hamaguchi et al. 1983). The P gene also 

encodes two other proteins through RNA editing mechanism, the V and W proteins (Steward 

et al. 1993). The V protein promotes the degradation of STAT1(Parks & Alexander-Miller 

2013). The function of W protein has not been completely discovered, but it is probably not 

involved in the pathogenesis of NDV (Huang, Z et al. 2003). The matrix (M) protein is 

essential for NDV budding and organises other viral proteins at the cell membrane (Pantua 

et al. 2007). Hemagglutinin-neuraminidase (HN) protein located on the surface of NDV 

particles. HN protein has a critical role in attachment and entry of NDV to the host cell and 

consequently, in the virulence (Huang, Z et al. 2003). The Fusion (F) protein is a 

glycoprotein found on the surface of NDV. F protein is the major determinant of NDV 

virulence. The amino acid composition of cleavage site of fusion protein and its susceptibility 

to host trypsin-like proteases play a significant role in pathogenicity, the spread of infection, 

and tissue tropism of NDVs (Nagai 1995). The cleavage of F0 protein into F1 and F2 is the 

initial step of attachment of the virus to the host cell (Senne 2008). Lentogenic NDVs have a 

monobasic amino acid motif in cleavage site, while the cleavage site of mesogenic and 

velogenic strains is a multi-basic amino acid motif (Glickman et al. 1988). The furin-like 

proteases that exist in a wide range of host cells can cleave the F0 protein of mesogenic and 

velogenic strains. Whereas, trypsin like enzymes that are required to cleave the F0 protein of 

lentogenic strains can be found in respiratory and intestinal epithelial cells (Nagai, Klenk & 

Rott 1976).  

NDV isolates may be classified into different genotypes based on full fusion protein 

sequences and the complete genome sequence (Diel et al. 2012). According to the clinical 

signs produced in infected chickens, strains of NDV have been separated into five groups 

(Alexander, D 2000b): (I) Viscerotropic velogenic strains causing acute lethal infections, 

usually causing haemorrhagic lesions in the intestines of dead birds; (II) Neurotropic 

velogenic strains causing high mortality with neurological disease followed by respiratory 

sings without gut lesions; (III) Mesogenic strains causing low mortality with respiratory and 

neurological signs; (IV) Lentogenic strains causing mild infections of the respiratory tract 

without any sings in the intestinal tract; and (V) Avirulent strains that replicate in the intestine 

with no clinical signs; these strains are mainly used as live vaccines. 

1.3 NDV infection and replication 

The virus’s attachment to the host cell is mediated by HN protein, and F protein fuses the 

host cell membrane and the virus (Chang & Dutch 2012). After the virus and the host cell’s 

fusion, the nucleocapsid complex will enter the cell (Senne 2008). A positive-strand mRNA 

will be produced from the negative strand genome in the cytoplasm by RNA-directed RNA-
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polymerase (L protein). The mRNA is translated using host machinery, and M protein 

transports synthesised viral protein to the modified regions of the cell membrane for 

assembly before budding (Dortmans et al. 2011). When a sufficient amount of viral proteins 

have been made, the switch from mRNA to genomic production occurs. 

1.4 Host-pathogen interaction 

The virus interacts with the host for infection production. NDV evades the host immune 

system to establish the infection and viral protein. The fusion of NDV to the host cell by HN 

and F proteins activates complement cascade. Paramyxoviruses include CD46 and CD55 

into the viral envelope to inhibit the complement system (Parks & Alexander-Miller 2013). 

The V protein of NDV blocks interferon signalling by phosphorylating STAT1 to protect the 

virus against interferon proteins’ antiviral effects (Qiu et al. 2016). NDV also incorporates the 

host proteins into the viral particles to evade the immune system and increase the viral 

fusion and replication (Ren, X et al. 2012).  

On the other side, the host utilises many pathways and genes to combat the virus. NP and N 

proteins of NDV induce autophagy that may increase viral proteins’ presentation on MHC 

class I (Cheng et al. 2016). Phosphorylated eIF2α by Protein kinase R (PKR) inhibits 

replication of NDV (Zhang, S et al. 2014). Extracellular matrix molecules like collagen and 

heparin sulfate limit the spread of NDV (Yaacov et al. 2012).  

The innate or cell-mediated immune responses to viral infection aim to help the host to 

survive. However, it is not always clear that the immune response to velogenic NDV is 

beneficial or destructive to the host. Chickens are generally unable to survive velogenic NDV 

without prior vaccination (Miller, Patti J & Koch 2013). Infection caused by velogenic NDV 

induces a strong iNOS response in the spleen (Rue et al. 2011) and triggered apoptosis of 

IgM+ cells in the bursa of Fabricius (Kristeen-Teo et al. 2017a). A strong innate immune 

response does not prevent disease and death caused by velogenic NDV (Rue et al. 2011). 

While the cellular immune response is critical in viral infection control, the cell-mediated 

immune response alone cannot provide adequate protection in velogenic NDV infection, and 

hormonal immunity is also required (Reynolds & Maraqa 2000).         

1.5 Vaccination strategy for managing NDV 

Lentogenic viruses are non-virulent strain and have been used as vaccine for NDV. La Sota 

strain is the commonly used vaccine, isolated in New Jersey, the USA in 1946 from Adam La 

Sota  farm (Goldhaft 1980). Vaccination with La Sota  strain decreased viral shedding, 

increased antibody levels and provided 100% protection against virulent CA/2002 virus 

(Miller, Patti J et al. 2013). If the vaccine and challenge strain are homologous, and enough 
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time is given to vaccinated birds to develop an immune response, the antibody level can be 

increased optimally (Yang et al. 2017). 

Virus shedding, an improper dosage of vaccination or not vaccinating the entire flock and 

early disease outbreaks can challenge vaccination program. Roohani et al. (2015) also 

suggested that lentogenic vaccine strains can produce partial protection against velogenic 

strains (Roohani et al. 2015).  

1.6 Newcastle disease in Indonesia and vaccination 

Different genotypes of NDV have been circulating worldwide since 1950 (Miller, Patti J., 

Decanini & Afonso 2010). The first panzootics from the 1920s to the 1960s were caused by 

genotypes II, III and IV of class II  viruses (Alexander, D 2000a), whilst genotype V isolates 

were responsible for the second epidemic in Europe and Middle-East during the late 1960s 

(Lomniczi et al. 1998).  Genotype VII.1.1 (b, d, e, j, l) and VII.2 (a, h, i, k), caused ND 

panzootic in Africa, Europe, Middle East and Asia (Dimitrov et al. 2019a; Hemmatzadeh 

2017; Xiao, Sa, Paldurai, Anandan, et al. 2012). 

Recent investigations into the phylogenetic analysis of the F and HN genes of NDV isolates 

have revealed that most of the NDV isolates from Indonesia’s clinical cases belong to 

genotype VII in class II (Dharmayanti et al. 2014; Xiao, Sa, Nayak, Baibaswata, et al. 2012). 

Despite the poultry industry’s reliance on vaccination to control the ND since the 1950s, ND 

still represents a major limiting factor for increasing poultry production in this country (Adi et 

al. 2010; Dimitrov et al. 2016). Poultry farms are categorised into four sectors according to 

the flock size and level of the biosecurity. Farms in sector 1 and 2 have acceptable 

biosecurity practices and are considered independent of the government; thus, the national 

and regional veterinary services only look after sector 4 and some sector 3 farms. 

Although NDV vaccination has been widely practised in all Indonesia sectors, NDV 

vaccination’s efficiency remains unknown because of frequent outbreaks (mainly in sectors 

1, 2 and 3). Evidence shows that while there is an overflow of Newcastle disease, sectors 1, 

2, and some of sector 3 are more observant to poultry disease issues. These poultry farms 

work together with private companies to produce new vaccines from viruses isolated from 

recent outbreaks. The most significant impact of NDV in Indonesia has been estimated to 

occur in sector 4 production, including village or backyard chickens. NDV outbreaks are the 

main reason for losses in poultry production in different parts of Indonesia. The most 

common control practices for NDV is vaccination and/or maintaining strict biosecurity 

measures. Indonesia’s government has introduced new biosecurity standards and 

strengthened veterinary services and cross-sectional surveillance to improve control of 
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infectious diseases in poultry. However, vaccination is still considered the best possible long-

term solution for control of ND in Indonesia. 

According to the Indonesian Veterinary Drugs Index 28 vaccine companies, mostly foreign 

companies, distribute 246 types of ND vaccines in Indonesia, and they use various ND 

viruses as their vaccine source. Figure 1.1 shows the type of ND vaccine’s seed used by 

companies in Indonesia(Hemmatzadeh 2017).  

 

Figure 1.1 ND Vaccine virus distribution in Indonesia. 

 (Source; Indonesian veterinary drugs index) 

Most of these companies use La Sota strain, Clone 30 (or La Sota clone), Hitchner B1, and 

Ulster as their ND vaccine seeds. There are only 3 Newcastle Disease vaccine distributors 

from Indonesia that use Ita and G7b local strains from Indonesia as their Newcastle Disease 

vaccine seed. The level of NDV specific antibodies and the degree of immunity in birds can 

be assessed by HIT as the method of choice (Balla et al. 1976). Therefore, HIT is frequently 

used to assess protective immunity after vaccination or as a follow-up test after natural 

infection in vaccinated flocks. There is a lack of evidence indicating that heterologous NDV 

antigens show different HI titres in the same serum samples. There may be significant 

differences between homologous and heterologous NDV antigens in the induction of 

protective immunity in vaccinated flocks that need to be assessed (Miers, Bankowski & Zee 

1983; Miller, Patti J et al. 2007). 

The sequence identity matrices of F and HN proteins in Indonesian isolates compare to B1 

and La Sota vaccine strains showed 87% to 89% similarity in their amino acid components. 

This significant difference between vaccine strains and circulating viruses reveals that the 

circulating strains were substantially different from Indonesia's vaccine strains. These 
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antigenic differences can explain inefficient vaccine protection in the outbreaks caused by 

G7 strains (Xiao, S. et al. 2012) 

ND is endemic to Indonesia. In 2007, 1,500 to 8,000 cases of ND had been monthly reported 

by OIE in 2007 (Adi et al. 2010). Since first discovery of NDV in Indonesia in 1926 (Doyle 

1927), The poultry industry of this country has been heavily affected by NDV. Recently 

emerged NDV-GVII in Indonesia poses a threat to neighbouring countries including 

Australia. Full genome sequencing and phylogenetic analysis and investigation of 

pathogenesis and tissue tropism of recently emerged NDV in Indonesia helps identify the 

exact circulating strains and evaluate vaccination strategies’ effectiveness, not only in 

Indonesia but also worldwide because migratory wild birds are considered as possible 

carriers (Hubálek 2004)Newcastle disease in Australia. Recently emerged NDV started from 

Indonesia in 2015 and now have been reporting from the rest of Asia, Africa and South 

America. It has also been considered a significant biosecurity risk, and sporadic outbreak in 

ND free countries significantly impacts profitability poultry business. 

Australia’s first cases of virulent ND occurred in 1930 and 1932 (Alkiston & Gorrie 1942; 

Gould et al. 2001), and both were eradicated by combination of quarantine and slaughter-out 

policy. Later in mid-1960's, Australian endemic avirulent strains of NDV, was recognized as 

Queensland V4 strain (Alkiston & Gorrie 1942). Australia is currently free from virulent 

strains of NDV. However, the introduction of virulent NDV strains is a severe risk for the 

Australian poultry industry, one of its major industries. ND might occur through spillover from 

migratory birds (Hubálek 2004). Indonesia is the closest country to Australia and has the 

second-largest poultry industry in Asia after China (Adi et al. 2010).  in the case of spillover 

of NDV from Indonesia to Australia, it will almost certainly have substantial economic 

consequences resulting from high death losses of poultry and other birds, mass culling, and 

international embargos. Our $6.6 billion poultry industry could collapse, resulting in 

prolonged poultry shortages (Australia’s favourite meat) and egg products will follow by 

jobless people and social disaster (Wilkinson et al. 2014). 

1.7 Molecular pathogenesis of NDV 

1.7.1 Value of gene expression analysis 

The study of the transcriptome has been effectively used in RNA biology. RNA-sequencing 

(RNA-Seq) analyse all of the mRNAs within a tissue or even a single cell and revolutionised 

the study of RNA. There is no longer any need to create primers or specific probes for 

analysing the gene expression level. The high-throughput capability of RNA-Seq can 

sequence the transcriptome of hundreds of individuals at once. Advanced applications of 

RNA-Seq such as relative expression, differential expression, RNA editing, alternative 
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splicing, allele-specific expression, transcript and isoform discovery and gene fusion 

discovery, made this technology common (Han et al. 2015). RNA-Seq provided the 

researcher with a more straightforward analysis of gene expression than protein analysis 

and made gene expression analysis common in biology.  

Here, the basic steps of an RNA-Seq experiment are summarised. Extraction of a high-

quality RNA is the critical for RNA-Seq. Extracted RNA will be DNase treated to remove any 

genomic DNA and will be converted into cDNA libraries. The sequencing platform and kit 

indicates the preparation of libraries. Different sequencing machines have different error 

rates, run times, yields and cost (Han et al. 2015). The Illumina protocol purifies and 

fragments the mRNA, syntheses cDNA, and ligates the adaptors to multiplex and uses PCR 

amplification. Validated libraries will normalise for concentration and will pool and add to a 

lane within the flow-cell. Adaptors then bind to oligos on the flow cell, and then amplification 

forms the clusters of double-strand cDNA (Bullard et al. 2010). Nucleotides with 

fluorescence label will be added in cycles in the sequencing machine, and fluorescent signal 

records the added nucleotide. The number of cycles indicates the length of the sequence 

read. The raw reads must go through several steps as quality filtering, mapping the genome 

and genomic feature count of reads. There are several program and packages available for 

each of these steps (Han et al. 2015). The edgeR package has been used in this thesis. The 

number of sequenced reads that map to the gene determines the expression level of that 

gene.  

1.7.2 The impacts of NDV on host gene expression 

The impact of NDV on gene expression has been examined in multiple tissues. The qPCR 

technique has been used to analyse the mRNA expression of key immune genes. Li et al. 

2016 study showed upregulation of TLR3/7/21, MDA5, IL2, IL6, IL1β, IFNβ, CXCLi1, 

CXCLi2, and CCR5 genes in the magnum and uterus of egg-laying hens challenged with 

velogenic NDV (Li, R et al. 2016). Upregulation of CCLi3, CXCLi1, CXCLi2, IFNγ, IL12α, 

IL18, IL1β, IL6, iNOS, TLR7, MHCI, IL17F, and TNFSF13B genes also measured by qPCR 

in the spleen of challenged birds with velogenic NDV (Rasoli et al. 2014). Mucosal immunity 

is heavily involved in the host response to ND infection. Trachea, Harderian glands and lung 

are places for early virus/host contact at points of entry. These tissues are strategic sites to 

examine host-pathogen interaction and early viral shedding. Several studies investigated the 

transcriptome of these tissues infected by NDV (Deist, Gallardo, Bunn, Dekkers, et al. 2017; 

Deist, Gallardo, et al. 2017a; Deist et al. 2018). In order to increase understanding of the 

immune response to NDV, the gene expression profile of other immune organs should also 

be considered.. Recent in vivo studies revealed differential regulation of immune response to 

the lentogenic strain of NDV (La Sota ) by transcriptome analysis in the spleen (Zhang, J et 
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al. 2018; Zhang, J et al. 2020). Another in vitro study compared the transcript profile of highly 

virulent Herts/33 strain and nonvirulent La Sota  strain in spleen cells (Liu, W et al. 2018). 

The transcriptomic analysis of infection caused by newly emerged virulent NDV-GVII has not 

been investigated in previous studies. 

1.7.3 Apoptosis and NDV 

Cell death has been divided into three categories:  (1) type I cell death or apoptosis; (2) type 

II cell death or necrosis; (3) type III cell death or autophagy (Galluzzi et al. 2018). Apoptosis 

is critical in both physiological and pathological conditions and is known as a multi-pathway 

process, leading to programmed cell death. This process relies on the activation of different 

enzymes called caspases, which are proteolytic enzymes that can denature cytoplasmic 

proteins and cause the nucleus to fragment. Production of caspase-3 known as effector 

caspase can be considered as a marker of event that apoptosis is on the point (Robbins & 

Cotran 2009). Apoptosis is a hallmark of cytotoxicity in virus-infected cells with NDV strains 

that can trigger extrinsic and intrinsic apoptotic pathways (Cuadrado-Castano et al. 2015), 

and numerous in-vitro and in-vivo studies have shown that NDV can trigger the apoptosis 

process (Kalid et al. 2010; Kommers, G et al. 2002; Ravindra et al. 2008; Robbins & Cotran 

2009). Different studies have shown that infection with the virulent strains of NDV will 

increase the apoptosis in lymphoid tissue and immune cells (Brown, King & Seal 1999; 

Kommers, G et al. 2002; Kommers, GD et al. 2003; Wakamatsu, King, Kapczynski, et al. 

2006). Severe splenic disruption, massive lymphoid depletion, ulceration of the intestinal 

epithelium and rapid depletion of the bursa of Fabricius have been described in association 

with these strains (Brown, King & Seal 1999; Kommers, G et al. 2002; Kommers, GD et al. 

2001, 2003; Wakamatsu, King, Kapczynski, et al. 2006). Other members of Paramyxoviridae 

family such as Rinderpest (Stolte et al. 2002), canine distemper, measles (Vidalain et al. 

2001) (McCullough, Krakowka & Koestner 1974; Schobesberger et al. 2005), and porcine 

Rubulavirus (Rodrı́guez-Ropón et al. 2003) similarly targeting the host lymphoid tissues. An 

important difference between apoptosis and necrosis is that apoptosis does not incite 

inflammation (Robbins & Cotran 2009). 

1.7.4 Necroptosis and NDV 

Scientists had been considered necrosis as a rapid, passive and unregulated death process 

produced by pathological agent as they couldn't associate it with any fixed signal 

transduction pathway. This was probably the reason that researchers didn't take in to 

account the necroptosis as an indicator in pathogenesis and treatment of diseases. 

However, recently revealed findings has challenged the conventional definition of necrosis 

as purely  unregulated cell death process and sheds more lights on deep understanding of 
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cell death (Galluzzi et al. 2012). Necroptosis or programmed necrosis is the process that  

necrosis of certain cells is triggered by specific signals and is subject to adjustment of  

strictly programmed  process (Galluzzi & Kroemer 2008). The cytopathic effect of necrotic 

cell death involves with different sings like karyolysis with mild chromatin condensation, 

oncosis, loss of integrity of cytoplasmic membrane and cellular swelling. Release of 

cytoplasmic contents of death cells to extracellular space following massive disintegration of 

the cell linked to the necrosis results in crucial pro-inflammatory consequences. The severity 

of Newcastle disease is closely correlated with extensive necrosis. Especially in infections 

caused by neurotropic and viscerotropic velogenic strains (Wakamatsu, King, Seal, et al. 

2006). Velogenic and mesogenic strains of NDV have the capability to induce syncytia that 

leads to necrosis. After infection of host cells with NDV virus, newly synthesised F and HN 

protein and the host cells surface accumulate will result in fusion of cell-to-cell membrane 

(Zeng, Fournier & Schirrmacher 2004). The plasma membrane supports this mechanical 

stress ending with the syncytium disintegration, and cytoplasmic contents of cells will release 

in inflammation. Different cellular death events can activate necrotic cell death as a 

regulated process: such as necroptosis (RIP kinases dependent), parthanatos (PARP 

dependent) pathways or pyroptosis (inflammasime-dependent) (Pasparakis & Vandenabeele 

2015). 

Recent research highlighted necroptosis as a part of the molecular pathway activated in 

infected glioblastoma cells with NDV (Koks et al. 2015). Necroptosis can be activated as an 

alternative form of programmed cell death by different molecular triggers like DNA and RNA 

sensors, TNF members and Toll-like receptors. This happens in a caspase 8 independent 

manner, and the signal activity depends on receptor interacting protein kinase 1(RIPK1)-

RIPK3 complex. Koks et al study (2015) also confirmed that  Necrostatin-1 inhibits this  

signal (Kaczmarek, Vandenabeele & Krysko 2013). They also mentioned that Hitchner B1 

strain of NDV caused necrosis-like morphologic changes like karyolysis and cellular swelling 

in GL2I61 glioma cells that were infected with this strain of NDV. This is the first report of 

programmed necrosis as a result of experimentally infection by NDV highlighting the 

molecular characterisation of cell death. This study showed dispensability activated by 

caspase which is sensitive to Necrostatin-1 and significantly rescued the cytotoxicity caused 

by virulent strain of NDV. There is also an evidence of increased population of Annexin-V(-

)/PI(+) cells during the time course of infection by NDV.  

1.7.5 DNA damage and NDV  

Viruses are obligate intracellular parasites and use the host cell transcriptome machinery to 

replicate viral genome and production of viral protein. This virus-host cell interaction involves 

DNA transactions, including the induction of DNA damage. Viruses have to deal with the 
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host DNA damage machinery, as host cells limit the DNA damage to constrain and localise 

the viruses. The host cell uses DNA damage response (DDR) signalling to induce cell cycle 

arrest to mitigate damage induction, promote repair, or even induce cell death. Significant 

DNA damage levels can lead DDR proteins to start apoptotic programmed cell death to 

preserve host genomic integrity (Luftig 2014).  

The Innate immune system plays a crucial role in the immune response to viral infection, and 

oxidative stress has a crucial impact on the innate immune system. Production of reactive 

oxygen species (ROS) and prooxidant cytokines during activation of innate immune cells in 

viral infection enhances the mononuclear phagocytic system (reticuloendothelial system) 

(Schwarz 1996). Viral infection increases oxidants' production, such as superoxide anion 

(O2
−) and nitric oxide (NO). It prevents the synthesis of antioxidant enzymes, such as 

catalases (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (Reshi, Su 

& Hong 2014). Immune cells need high quantities of antioxidant enzymes compared to other 

cells, and the limited production and activity of these enzymes lead to a weakened immune 

response. Production of ROS during viral infections from granulocytes and macrophages 

exerts antimicrobial action against many pathogens (Fang 2011). ROS also trigger other 

pathways to kill or spread viral infections, including autophagy (Huang, J, Lam & Brumell 

2011) and apoptosis (Skulachev 1998). Virus-induced oxidative stress also causes DNA 

damage by modifying the nucleobases and sugar backbone and results in strand breakages, 

crosslinking and base loss (Cadet & Davies 2017). If unrepaired, these lesions can be 

mutagenic and compromise genome integrity. 

Most current studies have focused on the interface between the cellular DDR pathway and   

DNA virus infection (Schmid et al. 2014). However, only a few studies have investigated the 

RNA viruses and DDR pathway (Ryan, Hollingworth & Grand 2016). No investigation of DNA 

damage levels or DDR signalling has occurred in chickens infected with the newly emerged 

NDV-GVII. 

1.8 Thesis objectives 

This thesis characterises the full genome sequence of two strains caused outbreaks in 

Indonesia. The molecular basis of pathogenesis of newly emerged NDV-GVII will be 

identified using mRNA profiling of spleen tissues in experimentally infected chickens.  The 

tissue tropism and DNA damage associated with oxidative stress, apoptosis and necroptosis 

patterns in different tissues of experimentally infected chickens with virulent strains of NDV 

will also be evaluated. These results will enable the identification of genes and pathways 

related to newly emerged NDV. Additionally, this project's result will shed light on the tissue 

tropism and pathology of massive lymphoid depletion caused by this strain. 
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2.2 Abstract 

Here, we report two genomes of virulent strains of Newcastle disease virus (NDV) 

Tangerang/004WJ/14 and VD/003WJ/11, from disease outbreaks in chickens in Indonesia. 

Phylogenetic study results of Fusion (F) protein’s gene coding sequences of different 

genotypes of NDV revealed that these two strains belong to genotype VII.1, class II cluster 

of avian paramyxoviruses.  

 

2.3 Keywords 

 Newcastle disease virus, Genome Sequences, NDV vaccine, next-generation sequencing  

2.4 Introduction 

 

Newcastle disease (ND) still causes considerable mortality and reduces profitability in South-

East Asia's chicken industry and as an endemic disease in Indonesia. Newcastle disease 

virus (NDV), is a member of the genus Avian orthoavulavirus1 within a new subfamily 

Avulavirinae of the family Paramyxoviridae (Rima et al. 2019a). Genotype VII.1.1 (b, d, e, j, l) 

and VII.2 (a, h, i, k), caused ND panzootic in Africa, Europe, Middle East and Asia (Dimitrov 

et al. 2019a; Hemmatzadeh 2017; Xiao, Sa, Paldurai, Anandan, et al. 2012). This study 

mailto:mohammad.rabiei@adelaide.edu.au
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compared full-length genomes of virulent strains strains of VII NDVs to currently used La 

Sota  vaccine strain. 

2.5  Materials and methods 

      

Chicken/Indonesia/Tangerang/004WJ/14 and Chicken/Indonesia/VD/003WJ/11 strains were 

isolated from brain samples of two NDV vaccinated chicken with the live La Sota vaccine. 

The viruses were isolated from two-layer farms with high mortality in different geographical 

locations in West Java, Indonesia in 2011 and 2014. According to OIE standard protocol, the 

viruses were isolated by inoculation of embryonated Specific Pathogen Free (SPF) chicken 

eggs and harvest of allantoic fluid (Stear 2005). According to the FAO manual, the 

pathogenicity of these strains was measured by Mean Death Time (MDT) assay (Grimes 

2002) at the Indonesian Research Center for Veterinary Sciences (Bbalitvet). A commercial 

Viral RNA Mini Kit (QIAamp Viral RNA Mini Kit, QIAGEN, USA) was used for RNA 

extraction. The extracted RNA was submitted to ACRF (Australian Cancer Research 

Foundation) for RNA sequencing. The cDNA library and sequencing were done by ACRF 

and used a random hexamer approach (KAPA Stranded mRNA-Seq Kit, KAPA Biosystems, 

USA) manufacturer’s recommendations. The Illumina MiSeq platform v3 was used for 

sequencing cDNA libraries and generated 2x300 nt reads. After removing adaptors and low 

quality reads by Trimmomatic 0.36 software (Bolger, Lohse & Usadel 2014), the Unicycler 

v.0.4.4 software was used for de novo assembly of 817,686  reads for sample 1 764,502 

reads for sample 2. Final assembled reads were visualised by Bandage (Wick et al. 2015). 

Contigs were compared to nucleotide collection using NCBI BLAST. Two NDV contigs for 

Tangerang and VD strains were identified with 46.52% and 46.49% genome GC content, 

15096 and 15179 nucleotide length and 818-fold and 534-fold coverage respectively. These 

contigs were compared to the Indonesian genotype VII strain of chicken/Sukorejo/019/10 

(GenBank accession no. HQ697255.1) and showed a similarity of 97.90% and 98.95%. In 

the contig of Tangerang strain some contaminating sequences of Pseudomonas were 

observed after NCBI BLAST at the end of the sequence which was removed by BioEdit and 

RT-PCR (QIAGEN OneStep Ahead RT-PCR, QIAGEN, USA) and Sanger sequencing were 

used to close detected gaps after aligned to Sukorejo (GenBank accession no. HQ697255.1) 

in this sequence. Clustal X(Larkin et al. 2007) and Genious Primer software(Kearse et al. 

2012) programs were used to align and annotate genes. All tools were run with default 

parameters. 
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2.6 Results  

        Both Tangerang/004WJ/14 and VD/003WJ/11strains are associated with severe 

neurological sings in infected chickens and had an MDT of 52 and 33 hours.  These two 

strains are similar at the C terminal of the F protein cleavage site, a key molecular marker for 

NDV pathogenicity (de Leeuw et al. 2005; Panda et al. 2004). The 111RRRKR↓F117 amino 

acid sequence motif is the same as chicken/Sukorejo/019/10 as a reference strain for 

Indonesian genotype VII of NDVs. Phylogenetic analysis of F gene sequences carried out 

using Mega 7 software(Kumar, Stecher & Tamura 2016), suggests that these circulating 

strains in Indonesia belong to genotype VII.1 (Figure 2.1), as the main genotype causing 

recent NDV outbreaks in Indonesia. Notably, the amino acid sequence for viral N, P, M, F, 

HN and L proteins for these two strains were similar and have percentage identities of 92%, 

81%, 88%, 89%, 85% and 94%, to the La Sota strain (GenBank accession no. AF077761.1) 

respectively. 

2.7 Discussion 

These significant differences in amino acid identities of circulation viruses and La Sota strain 

as the most common vaccine strain used in Indonesia shed more light on the probable 

reason for vaccine failure against these NDV strains and highlight the urgent need for 

updated vaccine development strategies in South-East Asia. 

2.8 Data availability 

 The GenBank accession numbers for Tangerang/004WJ/14 and VD/003WJ/11 are 

MN699677 and MN699676, respectively. The BioSample SRA run numbers are 

SRR11593162 for Tangerang and SRR11593166 for VD. 

https://www.ncbi.nlm.nih.gov/nuccore/MN699677
https://www.ncbi.nlm.nih.gov/nuccore/MN699676
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR11593162
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR11593166
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Figure 2.1 Molecular Phylogenetic analysis by Maximum Likelihood method 

The evolutionary history was inferred using the Maximum Likelihood method based on the Tamura-Nei model (Tamura & 

Nei 1993). The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary history of the 

taxa analyzed (Felsenstein 1985). Branches corresponding to partitions reproduced in less than 50% bootstrap replicates 

are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 

replicates) are shown next to the branches (Felsenstein 1985). Initial tree(s) for the heuristic search were obtained 



35 
 

automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the 

Maximum Composite Likelihood (MCL) approach and then selecting the topology with superior log likelihood value. The 

analysis involved 70 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a 

total of 326 positions in the final dataset. Evolutionary analyses were conducted in MEGA7(Kumar, Stecher & Tamura 

2016). Two strains of subgenotype VII.2 highlighted in red are from this study.    
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ABSTRACT Here, we report two genomes of newly emerged strains of Newcastle
disease virus (NDV), Chicken/Indonesia/Tangerang/004WJ/14 and Chicken/Indonesia/
VD/003WJ/11, from disease outbreaks in chickens in Indonesia. Phylogenetic study
results of the fusion (F) protein’s gene-coding sequences of different genotypes of
NDV revealed that these two strains belong to genotype VII.2 in the class II cluster
of avian paramyxoviruses.

Newcastle disease (ND) still causes high mortality and reduces profitability in the
chicken industry in Southeast Asia and is an endemic disease in Indonesia.

Newcastle disease virus (NDV) is a member of the genus Avian orthoavulavirus 1 within
the new subfamily Avulavirinae of the family Paramyxoviridae (1). Genotypes VII.1.1
(subgenotypes b, d, e, j, and l) and VII.2 (subgenotypes a, h, i, and k) caused an ND
panzootic in Africa, Europe, the Middle East, and Asia (2–4). In this study, we compared
the full-length genomes of newly emerged strains of genotype VII NDVs to that of the
currently used vaccine strain, LaSota.

Strains Chicken/Indonesia/Tangerang/004WJ/14 (Tangerang) and Chicken/Indonesia/
VD/003WJ/11 (VD) were isolated from the brain samples of two chickens vaccinated
against NDV with the live LaSota vaccine. The viruses were isolated from two layer
farms with high mortality located in different geographical locations in West Java,
Indonesia, in 2011 and 2014. The viruses were isolated by inoculating embryonated
specific-pathogen-free (SPF) chicken eggs and harvesting allantoic fluid according to
World Organisation for Animal Health (OIE) standard protocol (5). The pathogenicity of
these strains was measured by mean death time (MDT) assay according to the Food and
Agriculture Organization (FAO) manual (6). A QIAamp viral RNA minikit (Qiagen, USA)
was used for RNA extraction, and the extracted RNA was submitted to the Australian
Cancer Research Foundation (ACRF) for RNA sequencing. The cDNA library and se-
quencing were performed by the ACRF using a random hexamer approach (stranded
mRNA-Seq kit; Kapa Biosystems, USA) as per the manufacturer’s recommendations. The
Illumina MiSeq platform v3 was used for sequencing cDNA libraries and generated 2 �

300-nucleotide (nt) reads. After removing the adaptors and low-quality reads with
Trimmomatic v0.36 software (7), Unicycler v.0.4.4 software was used for de novo
assembly of a total of 817,686 reads for sample 1 and 764,502 reads for sample 2. The
final assembled reads were visualized using Bandage (8). Contigs were compared to the
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FIG 1 Molecular phylogenetic analysis by the maximum likelihood method. The evolutionary history was inferred
by using the maximum likelihood method based on the Tamura-Nei model (14). The bootstrap consensus tree

(Continued on next page)
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nucleotide collection using NCBI BLAST, and two NDV contigs for Tangerang and VD
were identified, with 46.52% and 46.49% genome GC contents, 15,096 and 15,179
nucleotide lengths, and 818-fold and 534-fold coverages, respectively. These contigs
were compared to the Indonesian genotype VII strain Chicken/Sukorejo/019/10 (Suko-
rejo; GenBank accession number HQ697255.1) and showed similarities of 97.90% and
98.95%, respectively. In the contig of Tangerang, some contaminating sequences of
Pseudomonas spp. were observed after an NCBI BLAST search at the end of the
sequence; they were removed with BioEdit, and reverse transcriptase PCR (RT-PCR;
OneStep Ahead RT-PCR, Qiagen, USA) and Sanger sequencing were used to close the
detected gaps in this sequence after alignment to Sukorejo (GenBank accession num-
ber HQ697255.1). The Clustal X (9) and Genious Primer (10) software programs were
used to align and annotate genes. All tools were run with default parameters.

Both Tangerang and VD are associated with severe neurological symptoms in
infected chickens and had a mean death time (MDT) of 60 to 67 h. These two strains
are similar at the C terminus of the F protein cleavage site, which is a key molecular
marker for NDV pathogenicity (11, 12). The 111RRRKR2F117 amino acid sequence motif
is the same as that in Sukorejo, as the reference strain for the Indonesian genotype VII
of NDVs. Phylogenetic analysis of F gene sequences carried out using MEGA7 software
(13) suggests that these strains circulating in Indonesia belong to genotype VII.2 (Fig. 1),
the main genotype causing recent NDV outbreaks in Indonesia. Importantly, the amino
acid sequences for the viral N, P, M, F, HN, and L proteins for these two strains were
similar and have percent identities of 92%, 81%, 88%, 89%, 85%, and 94% to strain
LaSota (GenBank accession number AF077761.1), respectively.

These significant differences in the amino acid identities of circulation viruses and
strain LaSota, as the most common vaccine strain used in Indonesia, shed more light on
the probable reason for vaccine failure against these NDV strains and highlight the
urgent need for updated vaccine development strategies in Southeast Asia.

Data availability. The GenBank accession numbers for Tangerang and VD
are MN699677 and MN699676, respectively. The BioSample SRA run numbers are
SRR11593162 for Tangerang and SRR11593166 for VD.
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3.3 Abstract 

 Newcastle disease virus (NDV) has caused significant outbreaks in South-East Asia, 

particularly in Indonesia. Recently emerged genotype VII NDVs (NDV-GVII) have shifted 

their tropism from gastrointestinal/respiratory tropism to a lymphotropic virus, invading 

lymphoid organs, including spleen and Bursa of Fabricius to cause profound lymphoid 

depletion especially in spleen. This study aimed to identify candidate genes and biological 

pathways that contribute to the disease caused by this neurotropic velogenic NDV-GVII. A 

transcriptomic analysis based on RNA-Seq of spleen was performed in chickens challenged 

with NDV-GVII and a control group inoculated with strile medium. In total, 6361 genes were 

differentially expressed that included 3506 up-regulated genes and 2855 down-regulated 

genes. Real-time PCR of ten selected genes validated the RNA-Seq results as the 

correlation between them is 0.98. Functional and network analysis of differentially expressed 

genes (DEGs) showed down regulation of ElF2 signalling, mTOR signalling, the proliferation 

of cells of the lymphoid system, signalling by Rho family GTPases and synaptogenesis 

signalling in spleen. We have also identified increased expression of IFIT5, PI3K, AGT and 

PLP1 genes in NDV-GVII infected chickens. Our findings in activation of autophagy-

mediated cell death, lymphotropic and synaptogenesis signalling pathways provide new 

insights into the molecular pathogenesis of this virulent strains NDV-GVII.   

3.4 Keywords 

Newcastle disease virus, Gene expression profile, Chicken spleen, Apoptosis, Necroptosis, 

Autophagy 
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3.5 Introduction 

Newcastle disease virus (NDV) has a worldwide distribution. The NDV causes infection in 

many different avian species, and it can be considered a permanent threat to all poultry 

industries and other fields of aviculture (Miller, Patti J et al. 2015). NDV is capable of causing 

devastating infection for over 240 species of birds that can spillover through direct contact 

between healthy and infected birds (Alexander, DJ, Aldous & Fuller 2012; Miller, Patti J., 

Decanini & Afonso 2010). NDV was first reported in Java, Indonesia in 1926 and then 

spread to the rest of the world. Various genotypes have been responsible for different ND 

panzootics (Doyle 1927). Most recent ND outbreaks in Southeast Asia are mainly caused by 

highly virulent NDV-GVII leading to 70-80% mortality in commercial chickens, including 

vaccinated flocks (Adi et al. 2010; Xiao, Sa, Nayak, Baibaswata, et al. 2012). While 

genotype VII NDVs includes a wide variety of sub-genotypes, the fourth and the fifth ND 

panzootic in Africa, Europe, Middle East and Asia were caused by genotype VII.1.1 (b, d, e, 

j, l) and VII.2 (a, h, i, k), respectively (Dimitrov et al. 2019b; Hemmatzadeh 2017; Xiao, Sa, 

Nayak, Baibaswata, et al. 2012).  

NDV is a member of the genus avian orthoavulavirus 1 within a new subfamily Avulavirinae 

of the family Paramyxoviridae (Dimitrov et al. 2019b). NDV has a negative-sense single-

stranded, non-segmented RNA genome that encodes six major structural protein genes in 

the order 3’-NP-P-M-F-HN-L-5’ (Rabiei et al. 2020). According to the clinical signs in infected 

chickens, different strains of NDV have been separated into five groups (Afonso et al. 2012): 

(I) Viscerotropic velogenic strains causing acute lethal infections, usually causing 

haemorrhagic lesions in the intestines; (II) Neurotropic velogenic strains causing high 

mortality with neurological disease followed by respiratory sings without gut lesions; (III) 

Mesogenic strains causing low mortality with respiratory and neurological signs; (IV) 

Lentogenic strains causing mild infections of the respiratory tract without any lesions in the 

intestinal tract; and (V) Avirulent strains that replicate in the intestine with no clinical signs. 

Avirulent strains are often used as live vaccines (Xiao, Sa, Nayak, Baibaswata, et al. 2012). 

Phylogenetic analysis of the fusion protein gene of NDVs indicates that circulating strains in 

Indonesia belong to genotype VII.1 with a mean death time (MDT) from 30 to 33 hour as 

their pathogenicity index (Doan et al. 2020; Pandarangga et al. 2020; Rabiei et al. 2020). 

These findings also indicate that these circulating strains are clinically categorised as 

neurotropic velogenic. In this study, we have used one of these genotype VII NDV strains in 

our challenge experiment to analyse pathogenesis of this virulent strains NDV (Doan et al. 

2020). The amino acid composition of the fusion protein's cleavage site and its susceptibility 

to host trypsin-like proteases play a big role in pathogenicity, the spread of infection, and 

tissue tropism of NDVs (Nagai 1995). Mucosal immunity is heavily involved in the host 
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response to ND infection. Trachea, Harderian glands and lung are places for early virus/host 

contact at points of entry. These tissues are strategic sites to examine host-pathogen 

interaction and early viral shedding. Several studies investigated the transcriptome of these 

tissues infected by NDV (Deist, Gallardo, Bunn, Dekkers, et al. 2017; Deist, Gallardo, et al. 

2017a; Deist et al. 2018). In order to increase understanding of the immune response to 

NDV, the gene expression profile of other immune organs should also be considered. 

Recent in vivo studies revealed differential regulation of immune response to the lentogenic 

strain of NDV (La Sota) by transcriptome analysis in the spleen (Zhang, J et al. 2018; Zhang, 

J et al. 2020). Another in vitro study compared the transcript profile of highly virulent 

Herts/33 strain and nonvirulent La Sota  strain in spleen cells (Liu, W et al. 2018). The 

transcriptomic analysis of infection caused by virulent strains virulent NDV-GVII has not 

been investigated in previous studies.  

Cell death has been divided into three categories:  (1) type I cell death or apoptosis; (2) type 

II cell death or necrosis; (3) type III cell death or autophagy (Galluzzi et al. 2018). Apoptosis 

is critical in both physiological and pathological conditions and is known as a multi-pathway 

process, leading to programmed cell death. Apoptosis is associated with many types of viral 

infections and, depending on the circumstances, can act to increase or decrease viral 

production. Apoptosis is a hallmark of cytotoxicity in virus-infected cells with NDV strains that 

can trigger extrinsic and intrinsic apoptotic pathways (Cuadrado-Castano et al. 2015), and 

numerous in-vitro and in-vivo studies have shown that NDV can trigger the apoptosis 

process (Kalid et al. 2010; Kommers, G et al. 2002; Ravindra et al. 2008; Robbins & Cotran 

2009). Different studies have shown that infection with the virulent strains of NDV will 

increase the apoptosis in lymphoid tissue and immune cells (Brown, King & Seal 1999; 

Kommers, G et al. 2002; Kommers, GD et al. 2003; Wakamatsu, King, Kapczynski, et al. 

2006). Severe splenic disruption, massive lymphoid depletion, ulceration of the intestinal 

epithelium and rapid depletion of the bursa of Fabricius have been described in association 

with these strains (Brown, King & Seal 1999; Kommers, G et al. 2002; Kommers, GD et al. 

2001, 2003; Wakamatsu, King, Kapczynski, et al. 2006). Other members of Paramyxoviridae 

family such as Rinderpest (Stolte et al. 2002), canine distemper, measles (Vidalain et al. 

2001) (McCullough, Krakowka & Koestner 1974; Schobesberger et al. 2005), and porcine 

Rubulavirus (Rodrı́guez-Ropón et al. 2003) similarly targeting the host lymphoid tissues. An 

important difference between apoptosis and necrosis is that apoptosis does not incite 

inflammation (Robbins & Cotran 2009). 

The amino acid sequence motif 112RRQKRF117 of fusion protein has been previously 

indicated as the neuropathogenic genetic markers of virulent NDV (Adi et al. 2010; Hamid, 

Campbell & Parede 1991; Parede & Young 1990). Our previous studies have discovered 
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and reported two different sub-genotypes of NDV GVII that contain RRQKRF motif in Mega 

strain and RRRKRF in Cimanglid and VD strains (Doan et al. 2020; Pandarangga et al. 

2020; Rabiei et al. 2020). The Mega strain used in our challenge experiment carries the 

RRQKRF motif sequence in the fusion protein, and has been reported as neuropathonenicity 

indicator of the NDV even in genetically modified lentogenic strains (Orsi et al. 2009; Panda 

et al. 2004). In addition to these references, the Mega strain has been isolated from a brain 

of a dead chicken (Doan et al. 2020). Based on all of the evidences, we were expecting to 

observe neurological lesions and respiratory symptoms as the classical symptoms of virulent 

NDV strains. Surprisingly, the virus load at the central nervous system of experimentally 

infected chickens was low or even zero in qPCR tests, while massive lymphoid depletion 

and high virus load were observed in studied chickens. In this study, we aimed to identify the 

molecular basis of pathogenesis of newly emerged NDV-GVII using mRNA profiling of 

spleen tissues in experimentally infected chickens.  To do that, we have focused on cell 

death related pathways and functional analysis of genes to reveal their potential roles in 

massive cellular depletion in spleen lymphoid tissues. To our knowledge, this is the first in 

vivo study investigating gene expression profile of this neurotropic velogenic strain. 

3.6 Materials and methods 

3.6.1 Viruses 

The challenge strain used in this study (Mega) has previously been characterised by 

measuring the MDT index according to standard OIE manual procedures10. The mean 

death time (MDT) of the isolate was 30h that classified the isolate as virulent or velogenic 

viruses 11. In brief, ten-fold serial dilution between 10-6 and 10-9 of the virus was made in 

sterile PBS. A hundred microliters of each dilution were inoculated into the allantoic cavity of 

each of five 9-day-old embryonated SPF chicken eggs and incubate at 37°C, monitored 

twice a day for seven days. The time for any embryo deaths was recorded, and the minimum 

lethal dose that caused death in all embryos was calculated. The minimum lethal dose 

(MDT) is the highest dilution of the virus that causes death in all the embryos75. In our case, 

the MDT for the Mega strain of NDV was 30 hours. 

3.6.2 Challenge experiment 

Animal experiments were performed at the Indonesian research centre for veterinary science 

(Bbalitvet), Bogor, Indonesia. The animal ethics was approved by the research and animal 

ethics committee of Bbalitvet institute with the reference number of AH/2015/003. An 

experienced veterinarian managed the challenge experiment in accordance with the National 

Health and Medical Research Council (NHMRC) of Australia and the Animal Research 

Reporting of In Vivo Experiments (ARRIVE) guidelines 2.0. Twenty, 1-day old SPF broiler 
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Ross chickens sourced from Caprifarmindo Laboratories (Bandung, Indonesia) were divided 

into two groups of 10 and raised in isolator units at biosafety level 3 (BLS3) biocontainment 

at Bbalitvet. Chickens were allocated randomly into two isolators and tagged individually. At 

35 days of age, the birds were inoculated by intraocular and intranasal instillation with100µL 

of 100 EID50 (Alexander, DJ, Manvell & Parsons 2006; Miller, Patti J et al. 2013) of live 

Mega strain of NDV (accession number of MN688613) (Doan et al. 2020). One group of 10 

birds was inoculated with srtile medium and kept as a negative control in isolator 2.   

3.6.3 Tissue collection and RNA extraction 

Following the viral challenge, birds were monitored twice a day for clinical signs of ND. Dead 

birds were collected, and those with severe clinical signs of disease were euthanised and 

counted as mortalities for that day. Due to death or severe sickness of chickens in the 

challenged group, the experiment was terminated at 2 day post-infection (2 dpi). The birds in 

all groups were euthanised by cervical dislocation. After the carcass opening, the spleen 

was removed, briefly diced and placed in RNAlater (Ambion, Thermo Fisher, MA, USA) for 

RNA extraction. In total, twenty RNA samples from spleens of challenged and control groups 

were isolated using a mirVana miRNA isolation kit (Ambion, Thermo Fisher, Lithuania). The 

isolated RNA was treated with DNase using a DNA-free kit (Thermo Fisher Scientific, 

Carlsbad, CA, USA). RNA quality was assessed by Agilent 2200 TapeStation instrument, 

(Agilent Technologies, Santa Clara, CA, USA) and confirmed as RNA Integrity Number (RIN) 

>5 for all samples. 

3.6.4 Detection of virus shedding in challenged and control chickens 

From each chicken, a cloacal swab sample was taken, and viral RNA was extracted from 

cloacal swab samples using QIAamp Viral RNA Mini kit (Qiagen, Louisville, KY, USA) and 

quantified using NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Carlsbad, 

CA, USA). Five microliters of extracted RNA was converted to cDNA using a QuantiTect 

Reverse Transcription Kit (Qiagen, Louisville, KY, USA) as per manufacturer’s instruction. 

Absolute quantification for detection of viral load by qPCR was performed using NDV-Fusion 

Forward: 5′ AAAGTGGTGACACAGGTCGG 3′, and NDV-Fusion Reverse primer:  5′ 

CCGATGTATTGCCGCTCAAG 3′, generating a 145 bp amplicon. Real-time polymerase 

chain reaction (RT-PCR) was carried out using the QuantiFast SYBR® Green PCR Kit 

(Qiagen, Louisville, KY, USA). The reaction was run in an Illumina, Eco Real-Time PCR 

machine (California U.S.A.) with initial denaturation at 95°C for 3minutes (min) followed by 

40 cycles of 95°C for 10 seconds (s) and 60°C for 30 s. Each qPCR reaction was repeated 

three times in triplicate. The Ct values greater than 35 in viral samples were considered 

negative (Shirima et al. 2017). One-way analysis of variance (ANOVA) was undertaken to 
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test for mean differences in CT values. The results were analysed in IBM SPSS (v 26.0; 

SPSS Inc., Chicago, IL). 

3.6.5 RNA sequencing 

After the initial assessments and the RNA samples' quality control, three RNA samples from 

the challenged group and three RNA samples from the negative control group with RIN> 5 

were selected for the further analysis. The selected samples were submitted to the 

Australian Genome Research Facility for RNA sequencing. Sequencing libraries were 

prepared with the TruSeq RNA Library Predation kit as per the manufacturer’s protocol and 

sequenced on Illumina NovaSeq 6000 platform.   

3.6.6 Transcriptome analysis 

Raw RNA-Seq paired-end reads were checked for quality using FASTQC v0.11.4 (Andrews 

2010) and trimmed with TrimGalore v0.4.2 (Krueger 2015) to a minimum length of 150 bp 

per read and Phred score of 10. Sequencing adapters were removed with AdapterRemoval 

v2.2.1 (Schubert, Lindgreen & Orlando 2016). Cleaned reads were mapped to the chicken 

reference genome (GRCg6a) using Hisat2 v2.1.0 (Kim, D, Langmead & Salzberg 2015). 

Mapped reads were sorted with SAMtools v1.8 (Li, H et al. 2009). Then, sorted mapped 

reads were summarised using FeatureCounts (Liao, Yang, Smyth & Shi 2014) at the gene 

level using Ensembl annotation version 97. The Voom-limma pipeline (Liu, R et al. 2015; 

Ritchie et al. 2015) was used to analyse samples grouped by infection status using the 

gene-level read counts as input. Briefly, the pipeline involved removing lowly expressed 

genes, i.e. genes meeting the requirement of count per million (CPM) more than one in at 

least three samples. The counts were normalised by log-transforming the counts per million 

to standardise for differences in library size. Counts were also normalised using trimmed 

mean of M values (TMM) method (Robinson & Oshlack 2010) to avoid bias from different 

coverage, and samples and individual observational level of each expressed genes were 

weighted using Voom (Liu, R et al. 2015) to account for heterogeneity in their expression 

level. Moderated t-statistics tests were used to define differential expression levels between 

samples. Differentially expressed genes (DEGs) between groups with different infection 

status were tested and ranked based on the false discovery rate (FDR) less than 0.05.  

3.6.7 Pathway analysis of differentially expressed genes 

Differentially expressed genes (DEGs) with FDR <0.05 were analysed using the Ingenuity 

Pathway Analysis software (IPA, QIAGEN, Redwood City, CA, USA), and pathways or 

functions with z-score >2 were considered to be activated or inhibited (Krämer et al. 2014).  
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3.6.8 Validation of RNA-Seq data 

Applied Biosystems Real-Time PCR System comparative Ct (ΔΔCt) assay was used to 

validate RNA-Seq results. Gene expression measured in all tissues samples in challenged 

and control groups (n =20). For each sample, cDNA was prepared from 1 μg of RNA using 

the QuantiTect Reverse Transcription Kit (Qiagen, Melbourne, Australia) according to the 

manufacturer’s protocols. PowerTrack SYBR Green Master Mix (Thermo Fisher Scientific, 

Australia) was used to prepare PCR master mix in a 20 μL reaction volume as per the 

manufacturer’s protocol, and 2 μL of the cDNA was added into each reaction well (in 

triplicate) using a robot (Ep Motion 5075 Robot system, Eppendorf AG, Hamburg, Germany). 

Thermocycling conditions in ABI Quant StudioTM 6 Flex thermal cycler (Thermo Fisher 

Scientific, Australia) were polymerase activation at 95 °C for 2 min, 40 cycles of denaturation 

at 95 °C for 15 s, annealing at 60 °C for 60 s. A melting curve step from a ramp of 50 to 99 

°C was included to assess amplification specificity. Based on their log2 FC (LFC) in RNA-

Seq analysis, we selected ten genes that cover the full range of LFC in the comparisons 

between treatments and control group, and the functional importance of each gene in cell 

death has also been considered (Galluzzi et al. 2018; Van Herreweghe et al. 2010). These 

primers are listed in Table 3-1. The primers were designed by NCBI primer tool with 

amplicons around 100 bp and spanning multiple exons specified also applied to avoid 

amplification of genomic DNA. uMelt web-based tool used to predict DNA melting curves 

and the denaturation profile of PCR products for assessing specific amplification of primers 

(Dwight, Palais & Wittwer 2011). Amplifications of a series of five, ten-fold dilution of cDNA 

were used to determine PCR amplification efficiencies and correlation coefficients (R) 

(Hellemans et al. 2007; Laboratories 2006; Pfaffl & Hageleit 2001; Rasmussen 2001). The 

geometric mean of Ct values of YWHAZ and TBP housekeeping genes that are more stably 

expressed in the spleen of chicken challenged with pathogens (129, 130) were used to 

normalise the data. Data were analysed using the Quant Studio Real-Time PCR Analysis 

software. Replicates of the same sample showing a shifted peak in melting curves were 

removed. Gene expression was compared between control and treatment groups using the 

2(−ΔΔCt) method. Pearson Correlation Coefficient between LFC in qPCR assay and RNA-

Seq data was calculated using the GraphPad Prism software version 8.4.2 (GraphPad 

Software, LLC, San Diego, CA, USA).  
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Gene Symbol Primer sequence (5'-3') Exon junction (bp) Fragment 

size (bp) 

Annealing 

°C 

PCR 

Efficiency (%) 

Correlation 

coefficient (R) 

Slop NCBI 

accession 

Reference 

APAF1 F: GGTCAATTGCTGCCAGTTCA 2316/2317 (reverse 

primer) 

94 60 129 0.9539 -2.76 XM_416167.6 this study 

R: TCCTTCAAATCCCAAAGTTTGAT 

 CASP3 F: GCAGACAGTGGACCAGATGA 90/91 (reverse primer) 94 60 166 0.9502 -2.349 XM_01527612

2.2 

this study 

R: AGGAGTAGTAGCCTGGAGCA 

 CYCS F: CGTGGGCGCATTTACTGACA 107/108 (forward primer) 81 60 130 0.9650 -2.759 XM_01528145

3.2 

this study 

R: CCGTATGGCACTGGGAACAT 

 CASP9 F: CGGAACCTCAAAGCTCAGGAAA 667/668 (forward primer) 99 60 158 0.9524 -2.425 XM_424580.6 this study 

R: ATGGGAGAGGATGACCACGA 

 PMAIP1 F: GCCTGCAGAGCGGGAC 114/115 (forward primer) 89 60 130 0.9580 -2.756 NM_00130209

7.1 

this study 

R: GGTTCAGGACTTTCTGCTGC 

 TP53INP1 F: ACACTGGCACAACTGGAGG 813/814 (forward primer) 72 60 157 0.9520 -2.429 XM_01528292

5.2 

this study 

R: GGTAGGAAGAGCTGCGACAA 

 TP53INP2 F: ATCGAGCTTGGAGAAGAGCC 527/528 (forward primer) 96 60 181 0.9418 -2.227 XM_01529628

4.2 

this study 

R: GGTGACGTAGACGGACATGC 

 TP53BP2 F: CTGTGCAAGGAACCTGGTGA 326/327 (reverse primer) 74 60 152 0.9469 -2.483 XM_419394.6 this study 

R: TCGGCTATAGGCCGTTCTGA 

 CLTA F: CTAGCAACAGGGTGGCAGAT 615/616 (reverse primer) 79 60 156 0.9495 -2.440 XM_01528041

8.2 

this study 

R: GCTTCTTCAGCTGCCACATAAC 

MLKL F: ATTTGAAGGCTGCCCTCTCC 1216/1217 (forward 

primer) 

121 60 206 0.9524 -2.055 XM_01527923

0.2 

this study 

R: GAAGGCCCGACACTGATTGA 

TBP* F:  CCACGGTGAATCTTGGTTGC 534/535 (reverse primer) 88 60 156 0.9423 -2.447 NM_205103.1 (Khan & 

Chousalkar 2020) R: GCAGCAAAACGCTTGGGATT 

YWHAZ* F: TTGCTGCTGGAGATGACAAG E2/E3 (forward primer) 61 60 120 0.9656 -2.910 NM_00103134

3.1 

(Bagés et al. 

2015) R: CTTCTTGATACGCCTGTTG 

Table 3-1 Primer sequence used in qPCR for RNA-Seq data validation 

For calculating amplification efficiency, a standard curve was generated using a 10-fold dilution of cDNA. The standard curve was created by plotting the Cq values against the log of the 

template's starting quantity for each dilution. *Used as reference genes for relative expression data analysis. Exon junction represents the spanning of exon on genes sequence. 
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3.7 Results 

3.7.1 Detection of virus shed in the challenged group 

To examine effects of the virus on experimentally challenged birds, the Ross broiler chickens 

were inoculated with a genotype VII NDV. Due to the severe sickness caused by the virus in 

the challenged group, the experiment was terminated by euthanising all birds at 2 dpi. A 

cloacal swab has also been taken from all birds, including the control group. The absolute 

quantification results for detecting the viral fusion gene in samples by qPCR confirmed that 

all the birds inoculated with NDV-GVII became infected and shed virus at 2 dpi. The mean 

cycle threshold (Ct) value of the challenge group (16.9, SD=1.22) was lower than the control 

group (41.9 SD=2.92) (F=967.4, df=14, p<0.001), which indicated viral shedding in the 

challenged group while there was no detection of NDV in the control group.  

3.7.2 Gene expression changes induced by NDV infection  

Sequencing of constructed libraries from RNA samples resulted in 400 million 100-bp paired-

end reads. Similar percentages of reads from each sample (on average 76%) were mapped 

to the GRCg6a reference genome in the Ensembl database and could be counted as a gene 

feature by the software Feature Count (Table 3-2). 

 

 

 

 

 
Table 3-2 Summary statistics of RNA-Seq output. 

The mapping percentage was calculated as the number of reads mapped to the reference genome divided by the number 

of cleaned count reads. 

  

Of the 24,362 annotated genes in the reference genome, 14,664 (~60%) genes were 

considered as expressed after our count per million cut-off criteria. By applying the FDR p-

value cut-off of 0.05 and log2 fold change more than 1, our analysis revealed 6361 

differentially expressed genes (DEGs). 3,506 genes were upregulated, and 2,855 genes 

were downregulated DEGs (Supplementary Table S1 in Apendix and Figure 3.1). Non-

coding RNA transcripts are about 90% of the eukaryotic genome and do not follow the 

central dogma for genetic information flow in cells. Although several studies aimed to 

Sample Raw count Cleaned count Mapping %  

Control 1 291,052,64 268,792,54 88.34% 

Control 2 113,657,819 102,102,063 87.89% 

Control 3 413,589,26 387,238,58 88.54% 

Challenged 1 915,321,41 872,570,38 90.42% 

Challenged 2 145,682,503 137,041,556 88.67% 

Challenged 3 140,667,468 125,491,032 90.23% 
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analyse their existence, a significant challenge exists in their molecular functions and 

mechanisms of action (Waldron & Lacroute 1975). One of the rapidly expanding fields of this 

class of transcripts is the long non-coding RNA (lncRNA). A considerable number of 

transcripts (732) of lncRNA has been detected in our analysis, and interestingly, 513 of 

these transcripts had the highest (LFC is <-3 or >3) change in expression (Supplementary 

Table S2 in Apendix). None of the studied genes was included in our analysis due to the lack 

of a chicken-based biological pathway database for gene expression analysis.  

 
Figure 3.1 The volcano plot of differentially expressed genes between challenged and control birds. 

Red dots indicate significantly up-regulated (p < 0.05, log2 fold change ≥ 1) and down-regulated genes (p < 0.05, log2 fold 

change ≤−1). Black dots represent genes. 

Based on functional importance genes known to be involved in cell death (Galluzzi et al. 

2018; Van Herreweghe et al. 2010), ten genes were selected from our DEGs list to validate 

the RNA-Seq data. The selected genes were covered the full range of log2 fold change (log2 

FC) and measured their expression level in qPCRs. The log2 FC obtained from RNA-Seq 

data analysis was compared to the log2 FC obtained in qPCRs. Figure 3.2 shows a 

comparison between the result of qPCR and RNA-Seq data. The expression patterns 

obtained from qPCR results for all ten selected genes were similar to their RNA-Seq analysis 

patterns, with a correlation coefficient (R) of 0.98. These results are confirming the reliability 

of the RNA-Seq data for gene expression patterns. 
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Figure 3.2 Validation of RNA-Seq data using ABI Quant studio qPCR system.  

The mean expression of 10 selected genes was calculated by -ΔΔCT method and normalised by mean of Ct values of 

YWHAZ and TBP YWHAZ as reference genes. The values were converted into log2 fold change (LFC). Each dot point 

represents one gene. Pearson correlation coefficient test used to compare the results and its value labelled as “R”. Plus (+) 

and minus (-) signs indicate log2 FC values for the upregulated and downregulated genes, respectively. 

Functional analysis of 6361 DEGs detected in NDV challenged chickens with IPA indicated 

the immune response roles (specifically in the early stage of splenic response) to the 

infection for most of top DEGs with z-score more than 3 (Table 3-3). Due to the use of 

human- and mouse-based database by IPA for analysis, the types and the functions of some 

of the chicken genes have not been appropriately indicated. Further investigation into the 

functions of these uncharacterised proteins and genes would be useful to provide more 

insight into their contribution to infection. 
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Table 3-3 The list of the genes that significantly (z-score>3) affected at the challenged group. 

a IPA software was used to obtain gene’s function from the transcript identifier 

b LFC, Log 2 fold change.  

c FDR, false discovery rate.   

d HGNC, Human Gene Nomenclature Committee 

A list of DEGs with consistent responses in expression to NDV infection was released by 

Zhang et al. (2020) (Zhang, J et al. 2020). Comparison of DEGs in our study with Zhang et 

al. revealed 23 shared genes (Table 3-4). Thirteen (56%) of these shared genes had 

consistent expression change in our study and study of spleen of Hy-Line Brown birds 

(Zhang, J et al. 2020), spleen (Lan et al. 2010; Rue et al. 2011; Zhang, J et al. 2018), 

Harderian gland (Deist et al. 2018; Saelao et al. 2018), lung (Deist, Gallardo, Bunn, Dekkers, 

et al. 2017), Trachea (Deist, Gallardo, et al. 2017a) or embryo (Schilling, Megan A et al. 

2018) of Fayoumi or Leghorn chickens challenged with lentogenic NDV. Particularly, 

interferon induced protein with tetratricopeptide repeats 5 (IFIT5) was significantly up-

regulated in the spleen of all chickens challenged with virulent and non-virulent NDVs. 

However, 10 (44%) of these shared significant DEGs had opposite regulation in our study, 

suggesting an entirely different response to virulent NDV infections.  

Symbol 
Function of Gene 

a
 LFC 

b
 FDR 

c
 

Type(s) 
HGNC 

d
 

AGT angiotensinogen 14.366 0.0009 growth factor 183 

CAMK2A calcium/calmodulin dependent protein kinase II alpha 10.169 0.0008 kinase 815 

CAMKV CaM kinase like vesicle associated 10.958 0.0101 kinase 79012 

ELOVL2 ELOVL fatty acid elongase 2 10.402 0.0019 enzyme 54898 

GABRA3 gamma-aminobutyric acid type A receptor subunit alpha3 10.432 0.0006 ion channel 2556 

GFAP glial fibrillary acidic protein 12.885 0.0004 other 2670 

GPM6A glycoprotein M6A 12.11 0.0020 ion channel 2823 

IRX1 iroquois homeobox 1 10.723 0.0026 transcription regulator 79192 

MMD2 monocyte to macrophage differentiation associated 2 11.067 0.0016 kinase 221938 

PACSIN1 protein kinase C and casein kinase substrate in neurons 1 10.774 0.0009 kinase 29993 

PADI3 peptidyl arginine deiminase 3 10.267 0.0005 enzyme 51702 

PLP1 proteolipid protein 1 13.157 0.0003 other 5354 

SLC15A2 solute carrier family 15 member 2 10.478 0.0022 transporter 6565 

SLC1A3 solute carrier family 1 member 3 13.277 0.0011 transporter 6507 

SLC6A11 solute carrier family 6 member 11 11.937 0.0014 transporter 6538 

TTLL2 tubulin tyrosine ligase like 2 10.69 0.0016 other 83887 
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Gene 

Name 

Function LFC in this 

study at 2 

dpi 

Comparison with Response in other NDV studies 

PLCXD1 phosphatidylinositol 

specific phospholipase 

C X domain containing 1 

0.47 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Harderian gland of Leghorn at 6 dpi (Deist et al. 2018) 

SLBP stem-loop binding 

protein 

0.85 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Spleen (Zhang, J et al. 2018) and trachea (Deist, Gallardo, et al. 2017a) of Leghorn at 

2 dpi 

OSTM1 osteoclastogenesis 

associated 

transmembrane protein 

1 

1.00 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 2 dpi (Deist, Gallardo, et al. 2017a) 

DRAM1 DNA damage regulated 

autophagy modulator 1 

1.40 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Fayoumi and Leghorn at 2 dpi (Deist, Gallardo, et al. 2017a) 

PARP12 poly(ADP-ribose) 

polymerase family 

member 12 

1.48 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Harderian gland at 2 and 6 dpi (Deist et al. 2018), in spleen at 2 dpi (Zhang, J et al. 

2018) in Leghorn 

SNX10 sorting nexin 10 1.90 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Spleen (Zhang, J et al. 2018) and trachea (Deist, Gallardo, et al. 2017a) of Leghorn at 

2 dpi 

IFIT5 interferon induced 

protein with 

tetratricopeptide repeats 

5 

6.09 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Spleen of Leghorn at 1 (Rue et al. 2011), 2  (Rue et al. 2011; Zhang, J et al. 2018)and 

6 dpi (Zhang, J et al. 2018), and of Fayoumi at 2 dpi (Zhang, J et al. 2018) 

P2RX1 purinergic receptor P2X 

1 

-5.62 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Lung of Fayoumi at 10 dpi (Deist, Gallardo, Bunn, Dekkers, et al. 2017) 

KAZALD1 Kazal type serine 

peptidase inhibitor 

domain 1 

-3.46 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 6 dpi (Deist, Gallardo, et al. 2017a) 

HPSE2 heparanase 2 (inactive) -2.61 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 2 dpi (Deist, Gallardo, et al. 2017a) 

UROC1 urocanate hydratase 1 -2.52 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Harderian gland of Leghorn at 6 dpi (Deist et al. 2018) 

ROR1 receptor tyrosine kinase 

like orphan receptor 1 

-1.66 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Lung of Fayoumi at 2 dpi (Deist, Gallardo, Bunn, Dekkers, et al. 2017) 
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FSHR follicle stimulating 

hormone receptor 

-0.46 Consistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 6 dpi (Deist, Gallardo, et al. 2017a) 

AICDA activation induced 

cytidine deaminase 

-8.98 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 6 dpi (Deist, Gallardo, et al. 2017a) 

P2RY8 P2Y receptor family 

member 8 

-3.24 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Harderian gland at 6 dpi (Deist et al. 2018) and trachea at 2 and 6 dpi (Deist, 

Gallardo, et al. 2017a) in Leghorn 

ARHGAP

15 

Rho GTPase activating 

protein 15 

-1.85 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Fayoumi at 2 dpi and Leghorn at 2 and 6 dpi (Deist, Gallardo, et al. 

2017a) 

ASNS asparagine synthetase 

(glutamine-hydrolyzing) 

-0.58 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and  Harderian gland of Leghorn at 6 dpi (Deist et al. 2018) 

TRIM24 tripartite motif containing 

24 

-0.57 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 6 dpi (Deist, Gallardo, et al. 2017a) 

CDC42SE

2 

CDC42 small effector 2 -0.37 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Fayoumi at 2 dpi (Deist, Gallardo, et al. 2017a) 

BFAR bifunctional apoptosis 

regulator 

-0.36 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Fayoumi and Leghorn at 2 dpi (Deist, Gallardo, et al. 2017a) 

ST3GAL4 ST3 beta-galactoside 

alpha-2,3-

sialyltransferase 4 

0.28 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Harderian gland of Leghorn at 6 dpi under heat stress (Saelao et al. 2018) 

MYH10 myosin heavy chain 10 0.29 Inconsistent with Spleen of Hy-Line Brown at 2 dpi (Zhang, J et al. 2020) and Trachea of Leghorn at 6 dpi (Deist, Gallardo, et al. 2017a) 

EPHB1 EPH receptor B1 0.32 Inconsistent with Spleen of Hy-Line Brown (Zhang, J et al. 2020) and Trachea of Fayoumi at 2 dpi (Deist, Gallardo, et al. 2017a) 

Table 3-4 Comparison of DEGs response to NDV in the present study and other in vivo NDV infection studies. 

LFC stands for log2 fold change. 
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3.7.3 Ingenuity pathway analysis of differentially expressed genes 

The DEGs list created from transcriptome analysis (p < 0.05, log2 fold change ≥ 1), was 

used as input for IPA analysis. IPA uses a Fisher’s exact test p-value cut of 0.05 and an 

absolute z-score cut-off of 2 or greater for pathways to consider them significantly enriched. 

In this study, we focused on the pathways engaged in cell death and injury pathways. 

Overall canonical pathways, upstream regulators, disease and biological functions that were 

predicted by IPA to be activated are shown in Figure 3.3. Inhibition of IL2 and 

downregulation of EIF2 signalling as an upstream regulator, resulted in the inhibition of B 

lymphocytes, the number of cells of the lymphoid system, mononuclear leukocytes and 

proliferation of cells of the lymphoid system. Inhibition of these processes may deplete 

immune cells, and lymphatic tissue destruction in spleen observed in the spleen in 

challenged chicken with virulent NDV-GVII. IPA predicted upregulation of ATF4 that resulted 

in activation of the synaptogenesis signalling pathway, CREB signalling in neurons and 

neuropathic pain signalling in dorsal horn neurons in our analysis. Several pathways were 

significantly impacted by the challenge with virulent NDV as predicted by IPA. Top pathways 

are shown in Figure 3.4 and a list of all altered pathways provided in supplementary Table 

S3 in appendix. Overall, many of these pathways lead to cell death and immune response to 

infection. In particular, Elf2 and mTOR signalling were on top of our downregulated 

pathways. mTOR signalling activates autophagy and increased autophagy assistances NDV 

replication (Sun et al. 2014). ElF2 pathway results in viral replication inhibition through the 

inhibition of translation of viral proteins and increased apoptosis in infected cells (Zhang, S et 

al. 2014). Reduced autophagy and increased apoptosis would help infected cells with the 

virus. IPA also predicted activation of signalling by Rho family GTPases, CREB signalling in 

Neurons and synaptogenesis pathway that are mainly related to this strain's 

neuropathogenesis.   
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Figure 3.3 Major biological themes  

(Pathways, upstream regulators, disease and biological functions) obtained from mapping the significantly upregulated 

DEGs in the spleen of chicks post-infection. In IPA, only significantly enriched entities that passed a Fisher’s exact test p-

value cut of 0.05 and passed an absolute z-score cut-off of 2 or greater were visualised. Orange nodes are predicted to be 

activated (z-score ≥2), while blue nodes are predicted to be inhibited (z-score ≥2). Blue line: leads to inhibition, orange line: 

leads to activation. Green lines: decreased measurement.    

 

 

Figure 3.4 Top pathways of differentially expressed genes (FDR < 0.05). 

Pathways [Z-score >0.05, -log (p-value) >1.3] in orange predicted to be activated and pathways in blue predicted to be 

inhibited.  The more intensity of the colours, the higher absolute z-score. The orange line indicates the proportion of genes 

within the pathways that were differentially expressed as ratios. The height of each bar refers to the –log (p-value). 
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Table 3-5 Comparison of predicted pathways by IPA in the current study with other studies investigating the 
response to NDV infection. Minus z-Score means inhibition and positive z-Score means activation. 

 

 

 

 

zPathways z-Score 

(current study) 

IPA prediction in other studies using non-virulent NDV 

Inhibition Activation 

TNFR2 Signalling -3.00 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

TNFR1 Signalling -2.32 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

GP6 Signalling Pathway -2.23 Spleen (Zhang, J et al. 2020) Harderian gland (Deist et al. 2018) 

Leukocyte Extravasation Signalling -2.21 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

Production of Nitric Oxide and 

Reactive Oxygen Species in 

Macrophages 

-2.02 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

Fcγ Receptor-mediated 

Phagocytosis in Macrophages and 

Monocytes 

-1.54 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

Tec Kinase Signalling -1.50 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017), trachea 

(Deist, Gallardo, et al. 2017a) 

B Cell Receptor Signalling -1.13 Spleen (Zhang, J et al. 2020) trachea (Deist, Gallardo, et al. 

2017a) 

Integrin Signalling -0.92 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017) 

IL-8 Signalling -0.53 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017), trachea 

(Deist, Gallardo, et al. 2017a) 

CD40 Signalling -0.42 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

Thrombin Signalling -0.12 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017) 

IL-6 Signalling 0.18 Spleen (Zhang, J et al. 2020) Trachea (Deist, Gallardo, et al. 

2017a) 

P2γ Purigenic Receptor Signalling 

Pathway 

0.88 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017) 

Relaxin Signalling 1.00 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017) 

Ephrin Receptor Signalling 1.76 Spleen (Zhang, J et al. 2020) Lung (Deist, Gallardo, Bunn, 

Dekkers, et al. 2017) 
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Zhang et al. (2020) study has recently reported 31 pathways with consistent expression 

response to non-virulent strains of NDV(Zhang, J et al. 2020). Comparison of predicted 

pathways in our study with impacted pathways by lentogenic NDVs revealed 16 shared 

pathways (Table 3-5). Significant downregulation (z score < -2) of 5 (31%) of the shared 

pathways in our study was in agreement with a study of NDV infection caused by a 

lentogenic strain in spleens of Hy-Line Brown chickens(Zhang, J et al. 2020). However, 

significant activation of these pathways has been reported in the lung(Deist, Gallardo, Bunn, 

Dekkers, et al. 2017), Harderian gland (Deist et al. 2018) and trachea (Deist, Gallardo, et al. 

2017a) of Fayoumi and Leghorn chicken challenged with a lentogenic strain of NDV. Eleven 

(68%) of these shared pathways also haven’t been significantly impacted (z score > -2 or < 

2) by virulent NDV in our study. In contrast, Zhang et al. (2020) and Deist et al. (2017) 

reported significant activation and inhibition of these pathways, respectively in the response 

of lentogenic NDV. These findings suggest a different response of the immune system to 

virulent and non-virulent NDV in different tissues. 

Analysis of disease biomarkers in our results revealed functions associated with virulent 

NDV (Table 3-6). A decrease in proliferation of cells of the lymphoid system, the quantity of 

B lymphocytes and quantity of mononuclear leukocytes are predicted by IPA using Ingenuity 

Knowledge Base approach (Krämer et al. 2014). Inhibition of these pathways together may 

contribute to the massive depletion of lymphoid cells in spleen observed in experimentally 

infected birds. However, an increase in microtubule dynamics is also predicted to be 

associated with NDV infection. Upregulation of critical genes such as angiotensinogen (AGT) 

and proteolipid protein 1 (PLP1) contributed to activated and inhibited pathways.  

Table 3-6 Top disease and biological function predicted by IPA to be associated with NDV infection. 

Bold italic and italic text indicate upregulated and downregulated DEGs, respectively. Genes are sorted ascendingly from 
left to right based on their fold change. No. means the number of DEGs in our data contributed to disease production.  

 

Disease and biofunctions Contributed DEGs for prediction z-Score No. 

Proliferation of cells of the 

lymphoid system 

PLP1, SOX2, GAD2, UNC119, APOH, GAD1, MBP, ADCYAP1, 

FOXJ1, TYR 

-3.571 168 

Quantity of B lymphocytes SLCO1A2, F3, ST6GALNAC2, FZD9, HGF, PLCD1, ESR1, BST1, 

ABL1, STAT1 

-2.769 93 

Quantity of lymphocytes tissue GAD2, NPY, SLC4A4, FADS2, FOXC2, PCSK1, YES1, ESR1 

ABL1, MXI1 

-2.402 89 

Quantity of mononuclear 

leukocytes 

AGT, PLP1, GAD2, MBP, ADCYAP1, SLCO1A2, F3 

SNCA, NPY, SLC4A4 

-2.785 172 

Microtubule dynamics AGT, GPM6A, PACSIN1, CAMK2A, SOX2, PHGDH, RFX4, 

SLC39A12, GRIN1, SNCB 

4.311 245 
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3.8 Discussion 

Understanding the molecular basis of pathogenesis of virulent strains NDVs will provide 

more reliable information on how these viruses produce unique pathological features in 

infected chickens, even in vaccinated flocks (Hemmatzadeh 2017). Gene expression pattern 

analysis helps to understand the virus and host interactions. Several in vivo and in vitro 

studies investigated gene expression in different tissues from experimentally infected 

chickens with different genotypes of NDV (Deist, Gallardo, Bunn, Dekkers, et al. 2017; Deist, 

Gallardo, et al. 2017a; Deist et al. 2018; Liu, W et al. 2018; Zhang, J et al. 2018; Zhang, J et 

al. 2020). However, the molecular pathogenesis of genotype VII of NDVs has not been well 

described mainly through in vivo studies. Herein, RNA-Seq and bioinformatics analyses 

were employed to study spleen transcriptome in experimentally infected birds with highly 

virulent NDV-GVII. 

Gene expression profile analysis of spleen provides insights into host immune defence. 

Splenic cells produce alpha and beta interferon and interleukin 6 (IL‐6) within the first six 

hours of chickens exposure to virulent NDV (Schroder et al. 2004). Spleen also has a vital 

role in T cell immune response and lymphocyte transformation in the immune response to 

NDV infection (Sachan et al. 2015).  

In this study, a higher number of differentially expressed genes (>6000) were found when 

compared to in vivo studies of nonvirulent NDV (Deist, Gallardo, Bunn, Dekkers, et al. 2017; 

Deist, Gallardo, et al. 2017b). Liu et al. (2018) reported 8433 DEGs in chick embryo 

fibroblasts (CEFs) infected with virulent Herts/33 strain(Liu, W et al. 2018). Regardless of the 

fundamental differences with our study, both studies showed similar gene expression 

patterns with a high number of DEGs in response to virulent NDVs. 

IPA predicted mTOR and EIF2 signalling inhibition and placed them on top 10 pathways 

altered by NDV infection in our list. mTOR signalling regulates CD8 T cell differentiation 

(Araki et al. 2009),  and induces Toll-like receptor-mediated IFNA1 in plasmacytoid dendritic 

cells and has a negative control role in autophagy-mediated cell death after viral infection 

(Ma et al. 2011; Shrivastava et al. 2012). mTOR signalling activates autophagy and an 

increased autophagy benefits NDV replication (Sun et al. 2014). EIF2 signalling has been 

known as a viral replication inhibitor and proinflammatory cytokine expression regulator 

(Shrestha et al. 2012). EIF2 pathways inhibit translation of virus and increase apoptosis in 

infected cells, resulting in viral replication inhibition (Zhang, S et al. 2014). Downregulation of 

these pathways indicates the host’s immune response in preventing of viral replication in 

infected cells. Deist et al. (2017) reported downregulation of EIF2 pathway in lung of 

challenged Fayoumis with lentogenic NDV at 10 dpi (Deist, Gallardo, Bunn, Dekkers, et al. 
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2017). However, different activation patterns of the EIF2 signalling pathway were reported in 

trachea and spleen of challenged birds with non-virulent NDV at 2 dpi (56), and Viral 

shedding not reported in these studies. Considering the crucial role of these pathways in 

inhibition of viral replication, downregulation of these pathways along with a considerable 

virus shedding in our challenged group may indicate altered strategies used by the host to 

defend itself from the virulent NDVs. 

Our IPA analysis also indicated the downregulation of some shared immune pathways with 

other in vivo NDV infections (Zhang, J et al. 2020). IL-8 signalling has a vital role during 

infectious disease by regulating chemotaxis and activation of neutrophils (Zeilhofer & Schorr 

2000). IL-15 production also facilitates homeostasis, development of natural killer cells and 

CD8 T cells during the anti-viral response (Verbist & Klonowski 2012). Tec kinase signalling 

pathway has a critical role in response to viral infection and is essential for differentiation and 

development of CD4+ (146) and CD8+ T cells (Broussard et al. 2006). IL-2 has a critical role 

in NK cells’ activation, lymphocyte proliferation and clearance of intracellular pathogens in 

chickens (Staeheli et al. 2001; Stepaniak et al. 1999). Inhibition of these share pathways and 

especially IL-2, as a critical upstream regulator in our study, suggests a suppressed immune 

response caused by this virulent strains NDV-GVII.  

Most of the top upregulated genes indicated in our RNA transcriptome were involved in the 

immune response to the infection in spleen. AGT and PLP1 both are associated with an 

increased quantity of cytotoxic CD8+ T-cell (Yu et al. 2005). GPM6A has a role in the 

expression of human GPM6A mRNA in marginal-zone B lymphocytes expressing human 

CD27 protein and human IgD complex (Descatoire et al. 2014). Upregulation of AGT and 

PLP1 in our study contributed to disease production, resulting in massive depletion of the 

spleen. 

Previous studies reported tissue-specific immune response (Deist et al. 2020) and breed-

specific immune gene expression in chickens (Schilling, Megan Ann et al. 2019). Our results 

indicate a small portion and the opposite regulation of shared significant DEGs with previous 

in vivo studies of lentogenic NDV. These differences emphasise virulence as an indicator of 

the immune response during viral infection. 

Our result shows activation of pathways that regulate cellular actin such as signalling by Rho 

family GTPases resulting in an activated microtubule dynamics pathway. The critical role of 

this pathway in cell-cell fusion and syncytium formation in the pathogenesis of 

paramyxoviruses that helps virus entry to the host cell has been reported by Gower et al. 

(2015) (Gower et al. 2005). These results suggest that NDV, as a paramyxovirus, facilitates 

viral replication and infection by activating this pathway.  
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IPA analysis also pointed out the activation of synaptogenesis signalling in our results. This 

pathway plays a critical role in developing the nervous system by regulating synapse 

formation between neurons (Martı́nez et al. 1998). Our results also indicate a decreased 

quantity of lymphoid tissue and inhibited proliferation of cells of the lymphoid system. This 

result contrasts with Zhang et al. ( 2020) that used lentogenic NDV in their challenge 

experiment (Zhang, J et al. 2020). Activation of pathways that result in the development of 

synapses in the nervous system and depletion of lymphoid tissue suggests a possible shift in 

tissue tropism of this strain from a neurotropic velogenic pathogen to a lymphotropic virus. 

More in situ detection and analysis of viral antigens in different tissues of infected birds is 

necessary to comprehensively understand the tissue tropism of this virulent strains NDV. 

On the other hand, our results indicate genes with consistent expression regulation in 

different studies with many varied experimental factors such as virulence of virus, tissue and 

breed and time point sampling. This suggests a universal role of these genes in immune 

response to NDV. One of the most significant genes is IFIT5, an interferon-stimulated gene, 

that its critical role for innate immune defence against the virus has been confirmed (Zhang, 

B et al. 2013). IFIT5 recognises and inhibits translation of viral RNA bearing a 5'-

triphosphate (Abbas et al. 2013). It also has a key regulator role in activating B-cells by 

positive regulation of nuclear factor kappa-light-chain-enhancer in NF-кB signalling pathway 

(Zheng et al. 2015). Overexpression of IFIT5 in transgenic chickens showed significantly 

enhanced resistance to avian influenza and velogenic NDV (Rohaim et al. 2018). Consistent 

up-regulation of IFIT5 in the spleen of all chickens challenged with virulent and non-virulent 

NDV indicates this gene's critical role in the splenic immune response to viral infections.  

Compared to the great importance of NDV to the poultry industry and its effects on 

international trade, there is a relatively modest number of published infectious challenge 

experiments in which virulent virus has been administered to chickens.  In vivo experiments 

using virulent NDV require specialised animal PC3 facilities which are expensive to build and 

operate.  Rapid progression of the induced disease can make it difficult to sample birds over 

multiple days post-infection.  In the present study, we had intended to sample birds at 48 

and 72 hours post-inoculation. However, we decided to humanely kill them all at 48 hours 

post-challenge due to severe clinical signs of disease and high mortality that were already 

increasing within 24 hours. The reduced quality of RNA extracted from infected birds 

compared with healthy birds was another limitation of this study that was an unavoidable 

consequence of the destruction of the host transcriptome during the acute phase of 

paramyxovirus infection (Suarez et al. 2020).  
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3.9 Conclusion 

This thesis is the first study of gene expression profiling of spleen tissue of experimentally 

infected chickens with a virulent NDV-GVII. In conclusion, we observed extensive alteration 

of gene expression in response to this strain in chickens' spleen. Multiple comparisons of the 

gene expression profile of spleen between this study and previous studies of lentogenic NDV 

infections indicate differences between DEGs and activation pathway patterns, indicating the 

role of virus virulence in immune responses.  Activation of autophagy-mediated cell death, 

lymphotropic and synaptogenesis development pathways after viral infection suggest a new 

tissue tropism for genotype VII NDVs. Further in vivo study of these virulent NDV strains in 

chickens is needed to comprehensively reveal the molecular pathogenesis of these virulent 

strains virulent strains of NDV.  
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 Necroptosis, necrosis, and oxidative DNA damage 

in lymphoid tissues of chickens infected with 

genotype VII Newcastle disease virus 
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4.2 Abstract 

This study was conducted to examine the pathogenesis of virulent genotype VII strains of 

Newcastle Disease Virus (GVII-NDV), which predominate in Asia and have international 

importance. Mortality commenced in chicken poults within 1 day of infection, and all birds 

had to be euthanized by day 2 due to severe clinical illness. The most prominent lesion was 

massive depletion of all lymphoid tissues. Formalin fixed paraffin-embedded specimens 

were examined using Immunohistochemistry (IHC) for markers of apoptosis (caspase-3), 

necroptosis (MLKL), and NDV antigen, and Repair Assisted Damage Detection (RADD) was 

used to assess DNA damage profiles in the bursa of Fabricius and spleen. Bursal atrophy 

was associated with profound expression of MLKL, providing evidence that the mechanism 

of lymphoid depletion involved a non-apoptotic pathway of programmed cell death termed 

necroptosis. RADD and oxidative RADD analysis of bursa showed a DNA damage pattern 

consistent with programmed cell death rather than necrosis, in concordance with MLKL 

expression.  In the spleen, MLKL expression was restricted to the central portion of 

periarteriolar lymphoid sheaths that are closer to the arterioles, while other regions of white 

pulp expressed neither MLKL nor caspase-3; together with observations of karyorrhexis, 

fibrinous inflammation, and RADD analyses, we conclude that necrosis was responsible for 

the majority of lymphoid depletion in the spleen. We speculate that NDV infection may 

deplete various subsets of lymphocytes by different mechanisms. In addition, the striking 

occurrence of brown breast muscle in NDV infected birds is suggested to be a result of 

severe oxidative injury or inhibition of metmyoglobin reductase activity. 

mailto:mohammad.rabiei@adelaide.edu.au
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4.4 Introduction 

Newcastle disease virus (NDV) has a worldwide distribution. Because it infects many 

different avian species, it can be considered a permanent threat to all poultry industries and 

other aviculture fields (Miller, Patti J et al. 2015). The impact of Newcastle Disease (ND) is 

very destructive because it causes a very high mortality rate in chickens. Due to ND's 

economic effect from trade restrictions and limitations, The World Organization for Animal 

Health (OIE) has ranked ND as a list-A disease with other critical diseases such as Avian 

Influenza (Alexander, D 2000a; Susta et al. 2014). Virulent NDV is a member of the genus 

avian orthoavulavirus1 within a new subfamily Avulavirinae of the family Paramyxoviridae 

(Dimitrov et al. 2019b; Rima et al. 2019a). This virus was described for the first time in the 

island of Java (Indonesia) in 1926 and at the same time in Newcastle (England)  (Doyle 

1927). Various genotypes and strains have been responsible for different ND panzootic 

outbreaks around the world. Genotype VII.1.1 (b, d, e, j, l) and VII.2 (a, h, i, k) caused ND 

panzootics in Africa, Europe, Middle East and Asia (Dimitrov et al. 2019a; Hemmatzadeh 

2017; Xiao, Sa, Paldurai, Anandan, et al. 2012). Phylogenetic analysis of the F and HN 

genes of NDV isolates indicated that most of the NDVs isolated from Indonesia's clinical 

cases belong to genotype VII in class II (Berhanu et al. 2010; Dharmayanti et al. 2014; 

Rabiei et al. 2020; Xiao, Sa, Nayak, Baibaswata, et al. 2012). According to the conventional 

method based on the clinical signs of NDV infection, strains of NDV have been categorised 

into five groups (Afonso et al. 2012): (I) Viscerotropic velogenic strains cause acute lethal 

infections, usually including haemorrhagic lesions in the intestines; (II) Neurotropic velogenic 

strains causing high mortality with neurological disease followed by respiratory sings without 

gut lesions; (III) Mesogenic strains causing low mortality with respiratory and neurological 

signs; (IV) Lentogenic strains causing mild infections of the respiratory tract without any 

sings in the intestinal tract; and (V) Avirulent strains that replicate in the intestine with no 

clinical signs; these strains are mainly used as live vaccines (Afonso et al. 2012).  

The clinical signs and gross or microscopic lesions are not pathognomonic for ND (Senne 

2008). Host related factors such as species, age and immune status as well as virus strain 

factors such as pathotype, route of infection and dosage can influence the severity of 

disease and distribution of lesions, and clinical disease might range from subclinical infection 

to 100% mortality (Alexander, D 1997; Kaleta & Baldauf 1988). 
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Apoptosis is a hallmark of cytotoxicity in human tumour cell lines infected in vitro with NDV, 

by triggering extrinsic and intrinsic apoptotic pathways (Cuadrado-Castano et al. 2015). In 

vitro and in vivo research have shown that NDV can also trigger apoptosis in chicken cells 

(Kalid et al. 2010; Kommers, G et al. 2002; Ravindra et al. 2008; Robbins & Cotran 2009).  

Apoptosis occurs both in physiological and pathological conditions and is a multi-pathway 

process that can lead to programmed cell death. This process relies on the activation of 

proteolytic caspase enzymes, which denature cytoplasmic proteins and cause the nucleus to 

fragment. Production of caspase-3, known as effector caspase, is a definitive marker of 

apoptosis (Robbins & Cotran 2009). 

There is another programmed cell death pathway, termed ‘necroptosis’, that is independent 

of caspase (Galluzzi et al. 2018). To our knowledge, there have not been any investigations 

of necroptosis in NDV-infected chickens, but use of NDV in viral oncolytic experiments using 

human tumour cells has induced cell death by this pathway (Koks et al. 2015; Liao, Ying et 

al. 2017). The severity of ND is closely correlated with extensive necrosis, especially in 

infections caused by neurotropic and viscerotropic velogenic strains (Hu et al. 2012). 

Viruses are obligate intracellular parasites and use the host cell transcriptome machinery to 

replicate the viral genome and produce viral protein. This virus-host cell interaction involves 

DNA transactions, including the induction of DNA damage. Viruses have to deal with the 

host DNA damage machinery, as host cells limit the DNA damage to constrain and localise 

the viruses. The host cell uses DNA damage response (DDR) signalling to induce cell cycle 

arrest to mitigate damage, promote repair, or even induce cell death. Significant DNA 

damage levels can lead DDR proteins to start apoptotic programmed cell death to preserve 

host genomic integrity (Ryan, Hollingworth & Grand 2016). 

The Innate immune system plays a crucial role in the immune responses to viral infection, 

and oxidative stress has a crucial impact on the innate immune system. Production of 

reactive oxygen species (ROS) and prooxidant cytokines during activation of innate immune 

cells in viral infection enhances the mononuclear phagocytic system (reticuloendothelial 

system)(Schwarz 1996). Viral infection increases production of oxidants, such as superoxide 

anion (O2
−) and nitric oxide (NO). It prevents the synthesis of antioxidant enzymes, such as 

catalases (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (Reshi, Su 

& Hong 2014). Immune cells need high quantities of antioxidant enzymes compared to other 

cells, and the limited production and activity of these enzymes lead to a weakened immune 

response. Production of ROS from granulocytes and macrophages exerts antimicrobial 

action against many pathogens (Fang 2011). ROS also trigger other pathways to kill or 

spread viral infections, including autophagy (Huang, J, Lam & Brumell 2011), and apoptosis 
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(Skulachev 1998). Virus-induced oxidative stress also causes DNA damage by modifying the 

nucleobases and sugar backbone and results in strand breakages, crosslinking and base 

loss (Cadet & Davies 2017).  If unrepaired, these lesions can be mutagenic and compromise 

genome integrity. Velogenic and mesogenic strains of NDV have the capability to induce the 

formation of syncytia. The synthesis of viral HN and F protein at the host cell's surface 

facilitates syncytia formation (Zeng, Fournier & Schirrmacher 2004).  

Most studies have focused on the interface between cellular DDR pathways and infection 

with DNA viruses (Schmid et al. 2014). However, only a few studies have investigated RNA 

viruses and DDR (Ryan, Hollingworth & Grand 2016). A recent study investigated DDR in 

human tumour cells infected with two lentogenic and velogenic strains of NDV (Ren, S et al. 

2020). No investigation of DNA damage levels or DDR signalling has occurred in chickens 

infected in vivo with NDV. Our study aimed to investigate highly virulent NDV and evaluate 

DNA damage associated with oxidative stress and apoptosis and necroptosis patterns in 

tissues of experimentally infected chickens.  

4.5 Material and methods 

4.5.1 Challenge experiment 

Chicken: The source of chickens was the Caprifarmindo Laboratories (Bandung, Indonesia). 

Nineteen 1-day old specific-pathogen-free (SPF) broiler Ross chickens were divided into two 

groups (of 9 or 10) and raised in negative-pressure isolators units at biosafety level 3 (BLS3) 

biocontainment at the Indonesian Research Center for Veterinary Sciences (Bbalitvet).  

Viruses: The genotype VII strains of NDV used in this study (VD and Mega) have previously 

been characterised as high virulence viruses by OIE criteria (Doan et al. 2020; Rabiei et al. 

2020), with mean death-time (MDT) of 33 and 30 hours and accession number of MN699676 

and MN688613 respectively. These two strains were both isolated from Indonesia in 2011 

and 2013. Virus was propagated in 9-day-old SPF embryonated chicken eggs according to 

standard OIE manual procedures (OIE 2012). In brief, 0.2 ml of prepared sample was 

inoculated into the allantoic cavity of three 9-day-old embryonated chicken eggs incubated at 

37°C and monitored for 5 days. Embryos died in 24 hours were discarded and, after five 

days, all eggs were chilled at 4°C for five hours. Allantoic fluid from the dead embryos (after 

72 hours) or after 5 days of incubation was tested in Haemagglutination (HA) test. HA 

positive amnioallantoic fluids were diluted in Brain–heart infusion (BHI) broth and prepared 

for inoculation. 
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4.5.2 Pathogenesis experiment 

Animal experiments were performed at the Indonesian research centre for veterinary science 

(Bbalitvet), Bogor, Indonesia. The animal ethics was approved by the research and animal 

ethics committee of Bbalitvet institute with reference number of AH/2015/003. An 

experienced veterinarian managed the challenge experiment in accordance with the National 

Health and Medical Research Council (NHMRC) of Australia and the Animal Research 

Reporting of In Vivo Experiments (ARRIVE) guidelines 2.0. Chickens were allocated 

randomly into two isolators and tagged individually. At 35 days of age, 9 birds were 

inoculated with 102 Mean Embryo Infectious Doses (EID50) of either of the previously 

mentioned strains of live Genotype VII NDV (4 for one and 5 for the other), in 100 μl volume 

that was divided equally between intraocular and intratracheal sites. Following viral 

challenge, birds were monitored twice a day for clinical signs of ND.  The original plan was to 

euthanize birds on the third day after inoculation, however due to severe clinical signs and 

mortality, all remaining birds in the infected group were euthanized by cervical dislocation on 

the second day.  Necropsy examinations were performed on the day of death and tissue 

specimens for histopathology, immunohistology, and RADD analyses were placed in 10% 

neutral buffered formalin. 

4.5.3 Site detection of NDV in chickens' tissues 

From each chicken, tissue samples were taken from spleen, bursa of Fabricius, brain, liver 

and lung. Viral RNA was extracted from tissue samples using QIAamp Viral RNA Mini kit 

(Qiagen, Louisville, KY, USA) and quantified using NanoDrop 1000 Spectrophotometer 

(Thermo Fisher Scientific, Carlsbad, CA, USA). 5 μL of extracted RNA was converted to 

cDNA using a QuantiTect Reverse Transcription Kit (Qiagen, Louisville, KY, USA) as per the 

manufacturer's instructions. A conventional PCR method was performed for detection of the 

NDV-Fusion protein using Forward: 5′ ATGGGCYCCAGACYCTTCTAC 3′, and Reverse:  5′ 

CTGCCACTGCTAGTTGTGATAATCC 3′ primers, generating a 535 bp amplicon (Liu, H et 

al. 2011). 

4.5.4 Hematoxylin & Eosin staining and Immunohistochemistry 

Tissue samples of the spleen, bursa of Fabricius, brain, kidney, lung, cecum, small intestine, 

pancreas, and proventriculus from negative control and NDV challenged birds were collected 

in 10% neutral buffered formalin (Sigma-Aldrich, Sydney, NSW, Australia) and within a week 

of fixation, processed routinely before being embedded in paraffin wax. Thymus was 

collected when visualised but was not always apparent. Sections (5 μm) were stained by 

Hematoxylin and eosin (HE) or were subjected to immunohistochemical (IHC) staining for 

NDV HN antigen, caspase-3 and MLKL antigens using a Dako Omnis Autostainer system. 
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The Dako machine heat-induced method was applied for antigen retrieval using EnVision 

FLEX Target Retrieval Solution pH 6.0 for 30 minutes. Antigens were labelled with primary 

anti-NDV HN monoclonal antibody (Table 4-1) and visualised using DAKO EnVision 

FLEX/HRP (DAB). Double staining was performed using Anti-Caspase-3 antibody ab4051 or 

Anti-MLKL antibody MABC604 of tissue samples and visualised by EnVision FLEX Magenta 

Red. Sections were counterstained with Mayer haematoxylin for 30 seconds, before applying 

coverslips on DPX mounting media.  

Table 4-1 Antibodies used for immunohistochemistry. 

Antibody Clone pH Dilution Pos. Control 

Anti Newcastle Disease Virus 

antibody  

8H2, mouse, monoclonal 9.0 1:500 Spleen 

Anti- Caspase-3 antibody 

ab4051 

Rabbit polyclonal 6.0 & 9.0 1:250 Tonsil 

Anti-MLKL antibody 

MABC604 

3H1 mouse monoclonal  7.4 1:500 Tonsil 

 

4.5.5 Lesion scoring of lymphoid tissues 

H&E slides of spleen, bursa of Fabricius, cecal tonsils or other areas of gut-associated 

lymphoid tissue (GALT) and thymus were examined and analysed by a single veterinary 

pathologist and scored according to the following scale: 1 = normal dense lymphoid tissue, 3 

= normal less dense lymphoid tissue, 5 = equivocal lymphoid lesion suggestive of lymphoid 

depletion or increased apoptotic bodies, 7 = obvious lymphoid depletion with numerous 

apoptotic or karyolytic cells, and 9 = massive lymphoid depletion with apoptotic appearance 

and / or necrotic appearance with karyolysis, often with fibrinous exudate. 

4.5.6 DNA assessment using Rapid Assisted Damage Detection (RADD) 

RADD and oxRADD assays were used to detect DNA damage within virally infected tissues. 

FFPE tissues were sectioned and assessed for a broad-spectrum of DNA lesions, i.e., 

abasic sites, oxidative lesions, pyrimidine dimers, deamination events, and strand breaks, 

which were labelled using a RADD cocktail (Table 4-2). Additionally, oxidative lesions were 

specifically examined using a cocktail of FPG, EndoIV, and EndoVIII (oxRADD). Both RADD 

and oxRADD signals occur predominantly within the nuclei of cells, indicating genomic DNA 

damage.  

Bursa of Fabricius was chosen to investigate RADD for its suitability to analyze types of DNA 

damage associated with NDV infection.  Because histopathological and IHC procedures 
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were performed before RADD procedures, some of the tissues had been consumed, but 

enough bursal specimens remained to compare 8 infected with 7 uninfected birds by RADD 

and then 7 infected with 7 uninfected birds by oxRADD. 

Tissues were sectioned in 5 μm thick slices and mounted on poly-lysine coated glass slides. 

Slides were placed on a heat block set for 65°C and incubated for 8 min to melt the paraffin. 

Slides were then placed directly in 100% xylene and incubated twice for 10 min each. Slides 

were rehydrated in water through sequential incubations in ethanol and water mixtures. 

Specifically, slides were incubated for 5 min each in sequential order of 100% ethanol-0% 

water; 70% ethanol-30% water; 50% ethanol-50% water; 30% ethanol-70% water; 0% 

ethanol-100% water. Rehydrated slides were then placed in glass Coplin jars with 200 mL of 

10 mM sodium citrate in water and microwaved twice for 2.5 min at 120 watts until the 

solution reaches 47°C for antigen retrieval. Slides were allowed to cool in water for 2 min. 

Slides were briefly dried, and tissue samples were outlined with a hydrophobic barrier using 

a PAP pen. A lesion removal cocktail (Table 4-2) was added to each tissue sample and 

incubated for 1 h at 37°C. For the full RADD broad-spectrum lesion removal cocktail, all 

enzymes in Table 4-2 were included. For oxidative lesions only (oxRADD), T4 PDG and 

UDG were omitted from the lesion removal cocktail and replaced with water. A gap-filling 

solution (Table 4-2) was then added directly on top of the lesion removal solution and 

incubated for another hour at 37°C. Slides were washed three times in phosphate-buffered 

saline (PBS) for 5 min each and blocked in 2% BSA in PBS for 30 min at room temperature 

(RT). Anti-Digoxigenin (Dig) antibody (Abcam; #ab420 clone 21H8) was incubated at a 

dilution of 1:250 in 2% BSA in PBS at 4°C overnight. As a negative control for the Dig 

antibody, an extra slide processed with the full RADD enzyme cocktail was incubated with 

mouse IgG isotype control antibody (Cell Signaling 5415, clone G3A1) at a dilution of 1:625 

at 4°C overnight. This dilution factor matched the µg of anti-Dig antibody used per 100 µL. 

The next day slides were washed three times in PBS for 5 min each, and Alexa Fluor 546 

goat anti-mouse secondary antiserum (Invitrogen) was incubated at a dilution of 1:400 in 2% 

BSA in PBS for 1 h at R.T. Hoescht 33342 was added at a final dilution of 1:1000 for 15 min 

at RT to stain the nuclei. Slides were washed three times in PBS for 5 min each, briefly 

dried, and mounted with coverslips using ProLong Gold Antifade reagent. Slides were 

allowed to dry overnight in the dark at RT and visualised using a Nikon A1R confocal 

microscope or stored at 4°C until analysis. The RADD assay was used to detect DNA 

damage within tissues. A broad-spectrum of DNA lesions, i.e., abasic sites, oxidative 

lesions, pyrimidine dimers, deamination events, and strand breaks, were detected using the 

full RADD cocktail. Additionally, a subset of oxidative lesions were specifically examined 

using an oxRADD cocktail of FPG, EndoIV, and EndoVIII. Both the RADD and oxRADD 
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signals occur predominantly within the nuclei of cells, indicating genomic DNA damage (Lee 

et al. 2019).  

Table 4-2. RADD sequential reaction conditions.  

RADD is performed in two sequential reactions without aspirating reagents between reactions. The lesion processing mix 

(Left) is placed on prepared tissues and placed in a humidified incubator. The gap filling mix (Right) is added directly to the 

lesion processing mix and incubated for an additional hour. The reagents are then aspirated and the cells are washed and 

incubated with anti-digoxigenin antibody. 

Lesion Processing Mix 100 µL total reaction 
volume 

Gap Filling Mix 100 µL total reaction 
volume 

UDG (NEB M0280) 2.5 U Klenow exo- (Thermo 
Fisher EP0422) 

1.0 

FPG (NEB M0240) 4 U Digoxigenin dUTP 
(Sigma Aldrich 
11093088910) 

0.1 

T4 PDG (NEB M0308) 5 U Thermo Pol Buffer  
(NEB B9004) 

10 µL 

EndoIV (NEB M0304) 5 U 

EndoVIII (NEB M0299) 5 U 

NAD+ (100x, NEB B9007) 500 µM 

BSA (Sigma Aldrich) 200 µg/mL 

Thermo Pol Buffer  
(NEB B9004) 

10 L 

 

4.5.7 RADD Image acquisition 

Following protocols established by Lee et al. (2019), all images for RADD were acquired 

using a Nikon A1r scanning confocal microscope with a Plan-Apochromat 10x/0.5 

objective.(Lee et al. 2019) Image acquisition settings were obtained by imaging the full 

RADD samples for tissues and identifying gain settings that limited the number of saturated 

pixels. These imaging conditions were then used for all tissue imaging allowing for direct 

comparisons and analysis between tissues. For large tissue sections, images were first 

mapped using the Acquire Large Image acquisition tool in the Nikon Elements software 

(NIS-Elements AR 4.51.00), acquired using the 10x objective, and stitched post-acquisition. 

The tool maps the X-Y-Z positions of individual images within the tissue slice, which are then 

acquired individually at 10x, 1024x1024 resolution for further analysis. The fluorescent 

intensity for each 1024x1024 segment is recorded after a binary threshold is applied. Each 

tissue section required between 4 and 10 1024x1024 section images to cover it completely, 

depending on the area of the sectioned tissue (Figure 4.1). 
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Figure 4.1. RADD assay of DNA adducts within uninfected and infected groups tissues. 

RADD (red) and cell proliferation, H&E stain of adjacent tissue slice. Bursa means bursa of Fabricius. 

4.5.8 RADD Image analysis 

The individual images which make up the large-stitched images, between 9 and 70 images 

depending on tissue section size, were used for analysis. Each image is 1024 x 1024. The 

Nikon Elements software was used to create a binary mask of the RADD signal intensity, 

and the fluorescence intensity was then exported. Gating for the binary mask was defined by 

the lowest intensity image, and these settings were used for all images. The fluorescence 

intensity for each individual 1024 x 1024 pixels segment is then averaged over the entire 

tissue slice to provide the mean fluorescent intensity for the examined tissue section in 

arbitrary units ± standard error of mean (SEM), and then these values are compared 

between infected and uninfected groups using Student's t-test. 

 

4.6  Results 

In the first instance, tissues from control (N = 10) and challenged (N = 9) birds were 

histologically processed, embedded in paraffin, and sectioned for histopathology.  Additional 

sections were prepared for immunohistological procedures. Following those procedures, 

remaining blocks containing bursa were sectioned and examined using full RADD and 

oxRADD procedures. 

4.6.1  Clinical signs and gross lesions 

All birds in the challenged group showed severe clinical signs of ND and were severely 

depressed. Reddened and swollen conjunctiva occurred but this may have been secondary 
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to ocular instillation of virus due to the local reaction of immune system.  Clinical signs 

included dehydration, ruffled feathers, pale comb, weight loss, anorexia, hunched posture, 

reduced activity, squinting or closed eyelids, recumbency and death (Figure 4.2). Three of 

the infected birds were found dead one day after inoculation, and two others were found 

dead on the second day, when it was decided to euthanize the remaining infected cohort 

ahead of schedule. All birds in the uninfected control group were euthanized on day 3. All 

carcasses were necropsied on the day of death in a glovebox using BCL3 procedures; this 

limited our ability to take quality photographs of gross lesions. Gross lesions were observed 

only in infected birds.  The most pronounced and consistent gross lesions were bursal 

atrophy and indistinct mottling of spleen.  Other gross lesions included thymic atrophy and 

small numbers of petechial hemorrhages in the mucosa of the proventriculus.  An 

unexpected gross lesion, which occurred in all 9 infected but none of the uninfected birds, 

was dark discoloration of breast muscle, often with a distinct brown tinge (Figure 4.3).   

 

Figure 4.2 Chicken poults in BSL3 isolators. 1: Healthy birds. 2: Clinically ill birds 1 day post infection with GVII 

Newcastle Disease Virus 
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.  

Figure 4.3. 1: Breast muscle of an uninfected bird, 2: Dark breast muscle from an NDV infected bird, 3: Dark 
brown breast muscle from an NDV infected bird. 

 

4.6.2 Detection of virus in tissues 

PCR detection of NDV DNA was positive in 9 of 9 infected birds from spleen, bursa, liver and 

lung, and in 1 of 9 brains, while PCR results were uniformly negative in all 10 uninfected 

control birds. Comparable IHC results for viral antigen are reported below. (Figure 4.5 - 4.7).  

4.6.3 Histopathology 

The 10 birds in the uninfected control group had no significant histopathological lesions.  

Average lesion scores for total lymphoid tissues of each bird in this group ranged between 

1.33 and 2 on a 9 point scale.  All 9 infected birds had severe lesions in lymphoid tissues in 

bursa, spleen, thymus, cecal tonsil and other GALT and Bronchial Associated Lymphoid 

Tissues (BALT).  Spleens had profound lymphoid depletion in white pulp with a combination 

of nuclear pyknosis and karyorrhexis (Figure 4.4, 4-6, 4-7). Most spleens also had moderate 

to abundant pink lakes of fibrin that prevented tissue collapse secondary to loss of white 

pulp.  The bursa of Fabricius of infected birds were visibly atrophied and had severe 

lymphoid depletion with almost complete loss of medullary lymphocytes, moderate to severe 

loss of cortical lymphocytes, notable reduction in size of follicles and plicae, and relative 

visual enhancement of the unaffected internal epithelium (Figure 4.4b).  In contrast with the 

spleen, lymphocytes in the bursa only showed pyknotic-like nuclear condensation without 
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any evidence of karyorrhexis, and there was no fibrinous exudate or other evidence of 

inflammation.  Thymus was often difficult to observe and collect in infected birds due to the 

subsequent reduction in its substance by age (Kendall 1980) , so only 3 infected thymus 

were examined.  Lymphoid depletion with nuclear karyorrhexis and fibrinous exudate 

occurred in medullary centres and extended well into lobule cortices, with sparing of about 

20% of lymphoid tissue located at the periphery of cortical regions. (Figure 4.4a). Cecal 

tonsils and other GALT in the proventriculus, small intestine, and colon were also profoundly 

depleted in all 9 of the NDV infected birds, often associated with vascular congestion or mild 

mucosal or submucosal haemorrhage.  BALT was depleted or necrotic in lungs. Average 

lesion scores for total lymphoid tissues of the 9 NDV infected birds ranged between 7.5 and 

9 on a 9 point scale. 

Apart from lymphoid depletion, the most consistently observed lesion was atrphy and 

depletion and degeneration of fat (Figure 4.8). Lesions in other tissues were variable. 

Lesions that were observed in some tracheas, lungs, and conjunctiva may have been 

caused or made worse by intraocular and intra-tracheal routes of viral inoculation.  The 

conjunctiva of the inferior palpebra of some eyes showed hyperaemia or mucosal 

haemorrhage, up to the inclusion of epithelial erosion, edema, fibrin, heterophilic exudate, 

and thrombosis.  A few tracheas (2) showed oedema in lamina propria, reduction or loss of 

epithelial cilia, foci of epithelial necrosis, and exocytosis of heterophils. The lung of one 

infected bird appeared normal, but mild to moderate lesions occurred in other birds including 

peracute periarterial and intra-airway haemorrhage, periarterial oedema, degeneration and 

necrosis of BALT, focal attenuation and erosion of bronchiolar epithelium, sloughed cellular 

debris in airway lumens, scattered degeneration or necrosis of respiratory macrophages, 

and fibrin thrombi in vascular capillaries of the air capillaries. 

Apart from depletion of BALT, gastrointestinal lesions were inconsistent and minor, 

consisting of congestion or haemorrhage associated with lymphoid depletion. Mild to 

moderate lesions were observed in the liver of all 9 birds, variably including scattered 

individual necrotic hepatocytes, small scattered foci of necrosis, patchy vacuolar 

degeneration of hepatocytes, vascular thrombosis, focal fibrin exudate, and bile stasis.  Two 

birds had small foci of necrosis in exocrine pancreas. 

Histopathological lesions were observed in two hearts, including one with a cellular thrombus 

and one with diffuse myocardial edema.  In kidneys, focal tubular epithelial necrosis or 

autolysis was observed in two birds that were found dead on the second day after infection, 

and one bird had ectasia of scattered renal tubules which contained droplets and cell debris 
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in their lumens. Only one bird had brain lesions, consisting of focal venous thrombosis and 

mild scattered edema. 

Skeletal muscles were not included in the experiment’s tissue collection protocol, which was 

created prior to our observation of gross discoloration of breast muscles.  Only one 

specimen of breast muscle was collected and examined (Figure 4.8). Scattered myocytes 

had condensed hyalinized sarcoplasm or granular disruption and fine vacuolation of 

sarcoplasm, and small numbers of scattered individual myofibres had nuclear pyknosis. 
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Figure 4.4. Histopathological lesions in spleen and Bursa of Fabricious of control and challenged birds. 

A1: Normal spleen from an uninfected chicken poult. Hematoxylin and eosin (HE). Inset: Higher magnification reveals 

healthy nuclei. A2: Spleen from a chicken poult 2 days after infection with virulent genotype VII Newcastle Disease Virus 

(GVII-NDV). Lymphoid tissue is severely depleted and contains small scattered lakes of pink fibrin. Inset: Higher 

magnification reveals dark condensed nuclei and nuclear remnants amidst a proteinacious background exudate. B1: 

Normal bursa of Fabricius from an uninfected chicken poult. Hematoxylin and eosin (HE). B2: Bursa of Fabricius from a 

chicken poult 2 days after infection with virulent genotype VII Newcastle Disease Virus (GVII-NDV). HE. B2: Identical 

magnification as Figure B1, showing profound lymphoid atrophy with reduced size of follicles and plicae, and enhanced 

visibility of internal epithelium. B3: Higher magnification of the same tissue, showing almost complete absence of 

medullary lymphocytes and greatly decreased density of cortical lymphocytes in a bursal follicle. Inset: Remnant 

lymphocytes have condensed pyknotic nuclei without karyorrhexis.. 
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Figure 4.5. IHC result of MLKL and caspase-3 antigens for spleen and Bursa. 

A1. Normal bursa of Fabricius from an uninfected chicken poult. Immunohistologic (IHC) stain is negative for expression of 

MLKL protein. A2: Bursa of Fabricius from a chicken poult 2 days after infection with virulent genotype VII Newcastle 

Disease Virus (GVII-NDV). Immunohistologic (IHC) stain for MLKL protein (pink) reveals abundant diffuse expression, with 

scattered follicles staining much darker than others. Inset: Higher magnification showing the staining pattern within the 

cytoplasm of cells.  A3: Dual IHC of the same infected specimen for NDV antigen (brown) and caspase 3 protein (pink, 

nearly negative). Viral antigen in the bursa is densely expressed in a minority of scattered follicles, with most follicles 

expressing little or no viral antigen, even though there is a similar degree of profound lymphoid depletion in all follicles. 

Upper inset: Low magnification shows follicular pattern of viral staining. Lower inset: Higher magnification shows detail of 

cellular staining.  B1: Normal spleen from an uninfected chicken poult. IHC stain for MLKL protein (pink). MLKL is being 

expressed in a proportion of cells surrounding arteries of the white pulp. B2: IHC stain for MLKL protein in spleen from a 

chicken poult 2 days after infection with GVII-NDV. In comparison with the uninfected spleen, the amount of cells 

expressing MLKL antigen is markedly increased. Inset: Higher magnification showing the staining pattern within cells. B3: 

IHC stain of same infected specimen for caspase 3 protein, showing only minimal expression. 
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Figure 4.6. Histopathology and IHC of lesions of Thymus in infected and control birds.  

A: Normal thymus from an uninfected chicken poult Hematoxylin and eosin (HE).  B. Thymus from a poult 2 days after 

infection with virulent genotype VII Newcastle Disease Virus (GVII-NDV). There is widespread depletion of lymphocytes. HE. 

Inset: Dark pyknotic nuclei and nuclear remnants of lymphoid cells are visible, with relative sparing of the stellate reticular 

epithelium.  C. Same specimen as in B. Dual immunohistologic (IHC) stain shows NDV antigen (brown) and abundant 

expression of MLKL protein (pink). Inset: Identical IHC stain of an uninfected control bird, showing absence of viral antigen 

and a small amount of MLKL expression within scattered lymphoid cells. D. Same specimen as Figs. B and C. Dual IHC stain 

revealing NDV antigen (brown) and scattered expression of caspase 3 protein (pink). Inset: Identical IHC stain of an 

uninfected control bird, showing absence of both viral antigen and caspase 3 protein. 

 

Figure 4.7. Histopathology and IHC of Kidney of infected and control birds. 

A: Kidney from a chicken poult 2 days after infection with virulent genotype VII Newcastle Disease Virus (GVII-NDV). Renal 

tubular epithelium appears morphologically normal. Hematoxylin and eosin (HE).  B. A dual immunohistologic stain (IHC) 

for NDV antigen (brown) and caspase 3 protein (pink) reveals marked expression of caspase in renal tubular epithelium, 

even though there was no morphological appearance of apoptosis. Inset: Higher magnification shows dark staining of 

scattered brown viral antigen in blood vessels, renal tubular lumens, and epithelium, indicates viremia and the possibility 

of renal shedding of virus. In comparison, IHC of kidneys of uninfected control birds (not depicted) did not reveal 

expression of caspase 3 protein.      
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Figure 4.8. Adipose tissue from a chicken poult 2 days after infection with virulent genotype VII Newcastle 
Disease Virus (GVII-NDV). 

A: Showing degenerative changes characterized by uneven reduction in the size of adipocytes and thickening of cell 

membranes. Hematoxylin and eosin (HE).  B and C. Skeletal muscle from a chicken poult 2 days after infection with GVII-

NDV. Many myocytes have condensed to hyalinized sarcoplasm, and scattered myocytes have granular degeneration of 

sarcoplasm, interpreted to be acute diffuse myodeneration. HE. 

 

4.6.4 Immunohistochemical results  

Immunohistologic staining for NDV HN antigen was negative in all tissues of all 10 

uninfected control birds, but all 9 infected birds had some degree of NDV HN antigen 

staining in lymphoid and other tissues.  The pattern observed in the bursa of Fabricius was 

dark viral antigen staining of entire follicles that were unevenly distributed among negatively 

staining follicles (Figure 4.5b), despite the fact that histopathological lesions appeared 

similar throughout each bursa.  The most diffuse and dark staining for viral antigen was 

observed in the only three thymuses that were collected from infected birds (Figure 4.6).  

The spleen appeared to have less dense staining for viral antigen than did thymus and 

bursa.  Five kidneys were examined by IHC for NDV HN antigen, and all showed dark 

staining of scattered foci in blood vessels, renal tubular lumens, and epithelium, suggestive 

of viremia and the possibility of renal shedding of virus.  No evidence of NDV HN antigen 

was detected in 9 lung, 9 brain, 7 gastrointestinal tract, 7 pancreas, 9 liver or 8 heart of 

infected birds. 

MLKL protein was detected by IHC in tissues of both uninfected and infected birds, however 

the pattern and amount of staining varied between groups.  Uninfected birds had mild 

background levels of MLKL staining of scattered individual lymphocytes in the bursa of 

Fabricius (Figure 4.5).  In contrast, NDV infected birds had profoundly intense and diffuse 
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staining for MLKL affecting all bursal follicles (Figure 4.5).  MLKL staining of spleens from 

uninfected birds revealed a light band of staining restricted to the central portion of 

periarteriolar lymphoid sheaths (PALS) (Figure 4.5), while NDV infected birds had much 

wider and darker staining with MLKL that often extended and bridged between PALS (Fig. 

20a). The thymus of uninfected birds had scattered individual lightly MLKL positive cells, 

while infected thymus had large dark patches of MLKL positive cells (Figure 4.6).  MLKL 

positive cells in the kidney were rare in both uninfected and infected birds. 

Only minor differences, if any, for IHC of caspase-3 protein occurred in lymphoid tissues of 

uninfected and NDV infected birds, with only modest expression detected in these tissues.  

Caspase-3 staining of uninfected kidneys showed no expression, but there was nuclear 

staining of renal tubular epithelial cells in the infected birds, despite the normal appearance 

of the epithelium and their nuclei (Figure 4.7). 

4.6.5 RADD results 

RADD procedures were sensitive enough to detect normal background levels of DNA 

damage in bursal tissues of the uninfected control chickens.  Bursas from 7 uninfected 

chickens had a mean broad spectrum DNA damage level of 5.0 ± 1.1 x 107 measured by full 

RADD with oxidative DNA damage levels at 2.7 ± 0.73 x 106 (n=7) as measured by 

oxRADD.  In comparison, bursal tissue from NDV infected birds had significant increases in 

broad spectrum DNA damage levels (1.5 ± 0.35 x 108, n=8, p = 0.027) and in oxidative DNA 

damage (2.6 ± 0.92 x 107, n=7, p= 0.044) (Figure 4.9).   

As a consequence of performing RADD analyses on specimens of bursa, variable numbers 

of other tissues that were contained in the same tissue blocks were consequently also 

subjected to RADD procedures, allowing us to opportunistically examine RADD in other 

representative tissues, but without statistical power.  We examined a small cohort of spleens 

from uninfected control and NDV infected birds. The full RADD analysis of these spleens 

showed a higher level of broad spectrum DNA damage within the healthy control birds (1.6 ± 

0.19 x 108, n=4) than in the ill NDV infected birds (6.7 ± 2.2 x 107, n=7). The oxRADD 

showed that oxidative lesions only make up a small portion (< 2%) of the DNA damage 

observed in the control birds (2.9 ± 0.090 x 106, n=3), indicating that non-oxidative lesions 

such as deamination events and crosslinks are more prominent in the control tissues. The 

infected birds showed higher levels of oxidative DNA damage in the oxRADD (2.1 ± 0.50 x 

107, n=6) in comparison to the uninfected birds, and when this is compared to the full RADD, 

oxidative lesions account for approximately 30% of the DNA lesions remaining in the spleens 

of infected birds.  
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Figure 4.9. RADD and oxRADD result of Bursa of Fabricius in uninfected and infected birds. 

Bars represent mean and standard deviation. Bursa means bursa of Fabricius. 

4.7 Discussion 

Profound lymphoid necrosis was the main lesion induced by infection in our study, and this is 

in agreement with prior statements about NDV GVII (Hu et al. 2012). We sought evidence to 

distinguish between different types of programmed cell death (apoptosis or necroptosis) and 

necrosis in various lymphoid organs. Histopathology of the bursa of Fabricius revealed dark 

condensed pyknotic lymphocyte nuclei, suggestive of programmed cell death.  

Immunohistology revealed a very high level of expression of MLKL without caspase-3, which 

identifies the mechanism of cell death as necroptosis.  Histopathological lesions in the 

spleen of infected birds revealed nuclear changes of lymphocytes ranging between pyknosis 

and karyorrhexis (nuclear disruption), suggestive of a combination of programmed cell death 

and necrosis.  Spleens also contained fibrinous exudate, indicative of an acute inflammatory 

process that would be more typical of necrosis than of programmed cell death.  

Immunohistology of spleens revealed a pattern of increased expression of MLKL in regular 

narrow bands within PALS, but elsewhere neither MLKL nor caspase-3 had increased 

expression.  These findings in splenic white pulp suggest a larger component of lymphocyte 

necrosis, admixed with lymphocyte necroptosis in a regional pattern.  Lymphoid depletion in 

the thymus of 3 infected birds was primarily associated with the MLKL marker for 

necroptosis. 

From the above observations, we conclude that lymphoid depletion caused by NDV infection 

results from a combination of necroptosis (i.e. non-caspase dependent programmed cell 
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death) and necrosis, with bursal atrophy caused purely by necroptosis.  Lymphocyte 

populations in the spleen are more heterogeneous and include a mixture of mature 

differentiated cells, in comparison with bursa and thymus which are expected to contain 

predominant populations of immature or young B or T cells, respectively.  It seems likely that 

different lymphocyte population subsets are more susceptible to either necroptosis or 

necrosis, but these responses do not appear to divide simply between B and T cells.  Further 

studies are needed to tease out how the different lymphocyte subpopulations are affected by 

NDV and why these differences occur. 

We sought further information about depletion of lymphoid organs using Repair Assisted 

Damage Detection.  Both full RADD (p < 0.03) and oxRADD (p < 0.05) demonstrated 

increased DNA lesions within the bursa of Fabricius of infected birds. Viral infection 

increased the DNA damage load in bursas, and these lesions remained unrepaired, 

consistent with rapid programmed cell death induced in this tissue, in concordance with the 

pathological and immunohistochemical findings. The changes observed in both oxRADD and 

full RADD demonstrate that oxidative lesions increase specifically after viral infection as do 

non-oxidative lesions such as deamination events, DNA crosslinks and strand breaks.  NDV 

infection has previously been shown to upregulate expression of inducible Nitric Oxide 

Synthase (Rue et al. 2011), which is an example of a pro-oxidant host response that could 

contribute to oxidative DNA damage. 

RADD and oxRADD patterns in splenic tissue appear to have greater complexity. It is 

unclear why non-oxidative damage such as uracils and crosslinked DNA lesions were 

reduced in tissues of infected birds.  This finding may suggest viral upregulation of host DNA 

Damage Response pathways in infected birds, which can benefit replication of RNA viruses 

(Ryan, Hollingworth & Grand 2016). More work is needed to probe the changes in genomic 

integrity in spleen and other tissues. Similar to findings in the bursa of Fabricius, oxidative 

repair pathways of infected birds appear to be compromised in the spleen.  This pattern of 

change is consistent with the possibility of necrosis, tending to support the conclusions of 

histopathology and IHC.  

Other unusual lesions provide evidence of severe metabolic disruption that probably 

contributed to rapid mortality in the chickens used in this study.  Infected birds were thin and 

had degeneration of fat (Figure 4.8) which is consistent with severe metabolic stress and 

rapid weight loss.  An unexpected observation was the finding of brownish to dark brown 

breast muscles in the infected birds (Figure 4.3).  Muscle can turn brown as a result of 

oxidation of heme iron in myoglobin to form the brown pigment metmyoglobin, but this 

occurrence is more commonly observed in stored meats.  In living animals the level of 
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metmyoglobin is normally insignificant, because metmyoglobin is reduced back to myoglobin 

by metmyoglobin reductase in combination with NADH.(Hagler, Coppes Jr & Herman 1979)  

The occurrence of brown muscle in living birds is suggestive of the occurrence of severe 

oxidative injury, either of systemic origin, or perhaps from viral effects upon skeletal 

myocytes, or possibly secondary to energy depletion and loss of reduced NADH that is 

necessary for metmyoglobin reductase function.  There was no evidence of inflammation in 

the single histological specimen of breast muscle, although acute myodegeneration was 

apparent. 

Several viruses have been shown to modulate different DNA repair pathways directly, and it 

appears NDV down-regulates the repair of oxidative DNA lesions specifically. XRCC1, 

PARP1, and DNA polymerase β are all base excision repair proteins affected by other viral 

infections. Similarly, nucleotide excision proteins DDB1, XPB, XPC, and XPD are also 

influenced by viral infections (Hollingworth & Grand 2015). Whether the viral agents act to 

down-regulate expression, reduce DDR signalling, or alter chromatin structure to limit 

oxidative lesion removal needs to be determined. Our study demonstrates the persistence of 

oxidative lesions in the genome of bursa and spleen after viral challenge.  

Mesogenic and velogenic NDV infection cause oxidative stress in the brain, liver (Rehman et 

al. 2018; Subbaiah et al. 2011), and Bursa of Fabricius (Kristeen-Teo et al. 2017b) of 

chickens. Our results indicate a significant increase in oxidative stress and broad spectrum 

DNA damage in Bursa of Fabricius induced by NDV infection that is consistent with Kristeen-

Teo et al (2017) (Kristeen-Teo et al. 2017b).    

Infiltration of T cells, especially CD8+ T cells, from spleen to Bursa of Fabricius has been 

reported following ND (Kristeen-Teo et al. 2017b; Rasoli et al. 2014), Marek's disease 

(Abdul-Careem et al. 2008), and Infectious Bursal Disease infection (Kim, I-J et al. 2000; 

Rauf et al. 2011). The different lymphocytic populations in lymphoid organs and infiltration 

and migration of T cells induced by NDV infection may cause variation in the DNA damage 

and other DNA damage tolerance profiles across these organs. Infected bursa of Fabricius 

and thymus accumulate various types of DNA lesions that remain unrepaired at the time of 

death.  

The only organ that showed a substantial increase in apoptosis was kidney, in which tubular 

epithelium expressed caspase-3, however the histological appearnce of the kidney was 

normal. These findings may be evidence of systemic shock leading to early renal hypoxia 

and the onset of caspase expression.  There was concurrent uneven distribution of viral 

antigen within the renal cortex as detected by IHC, so more direct viral mechanisms of 

apoptosis induction could also be considered.    
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4.8  Conclusion 

This study of NDV infection in chickens convincingly demonstrates that the mechanism 

responsible for rapid and profound bursal atrophy is necroptosis rather than apoptosis, at 

least for genotype VII strains, which is a novel observation.  Necroptosis also appears to be 

prominent in the thymus, but depletion of splenic white pulp appears to result primarily from 

necrosis with a lesser regularly distributed component of necroptosis.  We also report the 

first use of RADD and oxRADD procedures for the study of ND pathogenesis, which reveals 

increases of oxidative DNA damage in both the bursa and spleen, but with a curious 

decrease in non-oxidative DNA damage in the spleen.  Lastly, we report the unexpected 

occurrence of dark or brown breast muscle in all NDV infected birds, which is suggestive of 

profound oxidative injury with excessive in vivo formation of metmyoglobin.   
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5.1 Introduction 

 

Virulent strains of NDV started from Indonesia in 2012 and now have been reported in the 

rest of Asia, Africa and South America. It has also been considered a significant biosecurity 

risk, and sporadic outbreak in ND free countries, including Australia, significantly impacts 

profitability poultry business.  Australia is currently free from virulent strains of NDV. 

However, the introduction of virulent NDV strains is a severe risk for the Australian poultry 

industry, one of its major industries. Indonesia is the closest country to Australia and has the 

second-largest poultry industry in Asia after China (Adi et al. 2010). Wild birds are the 

natural reservoir of Newcastle disease viruses and ND might occur through spillover from 

migratory birds from Indonesia (Hubálek 2004). Virulent NDV infection in Australia will 

almost certainly have substantial economic consequences resulting from high death losses 

of poultry and other birds, mass culling, and international embargos. Australian poultry 

industry that worth $6.6 billion per year could collapse, resulting in prolonged poultry 

shortages (Australia’s favourite meat) and egg products will follow by jobless people and 

social disaster (Wilkinson et al. 2014). This study was funded by the Australian Centre for 

International Agricultural Research to investigate the molecular pathogenesis of virulent 

strains of NDV to prepare and support Australia against the possible outbreak. 

This thesis has investigated the molecular pathogenesis of virulent genotype VII of NDV in 

Indonesia. This project's uniqueness is that analysis of this strain's pathogenesis has been 

investigated through an in vivo experiment for the first time. This thesis also has shown that 

circulating strains in Indonesia are different from vaccine strains, which might be the reason 

for outbreaks in vaccinated flocks.  

 

5.2 Summary of findings 

This thesis examined the molecular pathogenesis of NDV-GVII, divided into two parts: firstly, 

the full genome sequence of two strains from recent outbreaks have been reported, and 

secondly, molecular pathogenesis of these strains was investigated in experimentally 

infected chicken with these strains. 

The first research question was “what is the genotype of NDV strains that caused recent 

outbreaks in Indonesia?” This question has been addressed and investigated in chapter 2 of 

this thesis. 
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Tangerang/004WJ/14 and VD/003WJ/11strains have been fully sequenced and reported. 

Our findings indicated that both strains are similar at the C terminal of the F protein cleavage 

site. These strains are associated with severe neurological sings in infected chickens with a 

mean death time (MDT) of 52 and 33 hours, respectively.  Phylogenetic analysis of F gene 

sequences suggests that these circulating strains in Indonesia belong to genotype VII.1 

(Figure 2.1). Notably, the amino acid sequence for viral N, P, M, F, HN and L proteins for 

these two strains have percentage identities of 92%, 81%, 88%, 89%, 85% and 94%, to the 

La Sota strain (GenBank accession no. AF077761.1) respectively. The significant 

differences in amino acid identities of circulation viruses and La Sota vaccine strain suggest 

the probable reason for vaccine failure and outbreaks in vaccinated flocks. This thesis's 

findings highlight the urgent need for an update of vaccine development strategies in South-

East Asia.  

The second research question was “what is the molecular pathogenesis of virulent strains of 

NDV and which genes and pathways are involved in disease production?”  

Chapter 3 addressed this research question using transcriptomic analysis based on RNA-

Seq of spleen of chickens challenged with NDV-GVII. Most of the top upregulated genes 

indicated in our RNA transcriptome were involved in the immune response to the infection in 

spleen. AGT and PLP1 both are associated with an increased quantity of cytotoxic CD8+ T-

cell (Yu et al. 2005). GPM6A has a role in the expression of human GPM6A mRNA in 

marginal-zone B lymphocytes expressing human CD27 protein and human IgD complex 

(Descatoire et al. 2014). Upregulation of AGT and PLP1 in our study contributed to disease 

production, resulting in massive depletion of the spleen. The microscopic findings observed 

in infected birds in chapter 4 supports gene expression profile analysis and showed profound 

depletion in spleens of infected birds with NDV-GVII. 

This thesis's results also revealed the universal role of IFIT5 gene in the immune response 

to NDV. The regulation profile of IFIT5 in this thesis was consistent with different studies that 

tested a variety of experimental factors such as virulent of the virus, tissue type and 

chicken’s breed at different time points after infection. IFIT5 is an interferon-stimulated gene, 

and its critical role for innate immune defence against the virus has been confirmed (Zhang, 

B et al. 2013). IFIT5 recognises and inhibits translation of viral RNA bearing a 5'-

triphosphate (Abbas et al. 2013). It also has a key regulator role in activating B-cells by 

positive regulation of nuclear factor kappa-light-chain-enhancer in NF-кB signalling pathway 

(Zheng et al. 2015). Overexpression of IFIT5 in transgenic chickens showed significantly 

enhanced resistance to avian influenza and velogenic NDV (Rohaim et al. 2018). Consistent 
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up-regulation of IFIT5 in the spleen of all chickens challenged with virulent and non-virulent 

NDV indicates this gene's critical role in the splenic immune response to viral infections.     

IPA analysis of DEGs in this thesis indicated inhibition of CD8 cell differentiation pathways 

such as mTOR signalling, autophagy and viral replication inhibitor such as EIF2 pathway in 

challenged chickens. mTOR signalling activates autophagy and an increased autophagy 

benefits NDV replication (Sun et al. 2014). EIF2 signalling has been known as a viral 

replication inhibitor and proinflammatory cytokine expression regulator (Shrestha et al. 

2012). EIF2 pathways inhibit the translation of viruses and increase apoptosis in infected 

cells, resulting in viral replication inhibition (Zhang, S et al. 2014). The result of viral antigen 

detection in spleen tissue compared to Bursa of Fabricious of infected chickens in chapter 4, 

also indicated non-significant viral distribution in the spleen of infected birds, and supported 

inhibition of viral replication in spleen. 

Our IPA analysis also indicated the downregulation of some shared immune pathways with 

other in vivo NDV infections (Zhang, J et al. 2020). IL-8 signalling has a vital role during 

infectious disease by regulating chemotaxis and activation of neutrophils (Zeilhofer & Schorr 

2000). IL-15 production also facilitates homeostasis, development of natural killer cells and 

CD8 T cells during the anti-viral response (Verbist & Klonowski 2012). Tec kinase signalling 

pathway has a critical role in response to viral infection and is essential for differentiation and 

development of CD4+ (145) and CD8+ T cells (Broussard et al. 2006). IL-2 has a critical role 

in activating NK cells, lymphocyte proliferation and clearance of intracellular pathogens in 

chickens (Staeheli et al. 2001; Stepaniak et al. 1999). Inhibition of these share pathways, 

especially IL-2, as a critical upstream regulator in our study, suggests a suppressed immune 

response caused by this virulent strains NDV-GVII. The viral antigen detection results in 

chapter 3 and RNA-Seq result suggest a shift in pathogenesis and tissue tropism of this 

virulent strains NDV. 

RNA-Seq results also show activation of pathways that regulate cellular actin such as 

signalling by Rho family GTPases resulting in an activated microtubule dynamics pathway. 

The critical role of this pathway in cell-cell fusion and syncytium formation in the 

pathogenesis of paramyxoviruses that helps virus entry to the host cell has been reported by 

Gower et al. (2015) (Gower et al. 2005). Profound lymphoid necrosis was the main lesion 

induced by infection in our study (chapter 4), and this is in agreement with prior statements 

about NDV GVII (Hu et al. 2012). 

The third research question was” what is the tissue tropism and DNA damage associated 

with oxidative stress, apoptosis and necroptosis patterns in different tissues of 

experimentally infected chickens with virulent strains of NDV?”  
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Velogenic and mesogenic strains of NDV have the capability to induce the formation of 

syncytia. The synthesis of viral HN and F protein at the host surface facilitates syncytia 

formation. Syncytia has pro-necrotic potential as leads to a cell-to-cell membrane fusion with 

the neighbouring cells and cell death (Zeng, Fournier & Schirrmacher 2004).  

Histopathological lesions in the spleen of infected birds (chapter 4) revealed nuclear 

changes of lymphocytes ranging between pyknosis and karyorrhexis (nuclear disruption), 

suggestive of a combination of programmed cell death and necrosis, and supports activation 

of syncytia formation in RNA-Seq results. 

Recent research highlighted necroptosis as a part of the molecular pathway activated in 

infected glioblastoma cells with NDV (Koks et al. 2015). Immunohistology of spleens 

revealed a pattern of increased expression of MLKL in regular narrow bands within PALS, 

but elsewhere neither MLKL nor caspase-3 had increased expression.  These findings 

suggest a larger component of lymphocyte necrosis, admixed with lymphocyte necroptosis in 

a regional pattern. 

Chapter 3 reported detection of a considerable number of transcripts (732) of lncRNA in our 

analysis, and interestingly, 513 of these transcripts had high (log2 Fold Change is <-3 or >3) 

change in expression (Supplementary Table S2). The induction of lncRNA upon DNA 

damage has been shown (Sharma et al. 2015).  The result of oxidative RADD in chapter 4 

reports unrepaired oxidative lesions in the spleen of challenged chicken. This results support 

each other, indicating the role of LncRNAs in DNA damage. Unfortunately, due to the lack of 

a chicken-based pathway analysis database, none of these critical lncRNA transcripts were 

included in our analysis.    

Chapter 4 also provided further information about depletion of lymphoid organs using Repair 

Assisted Damage Detection.  Both full RADD (p < 0.03) and oxRADD (p < 0.05) 

demonstrated increased DNA lesions within the bursa of Fabricius of infected birds. Viral 

infection increased the DNA damage load in bursas, and these lesions remained unrepaired, 

consistent with rapid programmed cell death induced in this tissue, in concordance with the 

pathological and immunohistochemical findings. The changes observed in both oxRADD and 

full RADD demonstrate that oxidative lesions increase specifically after viral infection as do 

non-oxidative lesions such as deamination events, DNA crosslinks and strand breaks.  NDV 

infection has previously been shown to upregulate expression of inducible Nitric Oxide 

Synthase (Rue et al. 2011), which is an example of a pro-oxidant host response that could 

contribute to oxidative DNA damage. 

RADD and oxRADD patterns in splenic tissue appear to have greater complexity. It is 

unclear why non-oxidative damage such as uracils and crosslinked DNA lesions were 
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reduced in tissues of infected birds.  More work is needed to probe the changes in genomic 

integrity in spleen and other tissues. Similar to findings in the bursa of Fabricius, oxidative 

repair pathways of infected birds appear to be compromised in the spleen.  This pattern of 

change is consistent with the possibility of necrosis, tending to support the conclusions of 

histopathology and IHC.  

Full RADD assay indicated a different pattern of DNA damage in bursa of Fabricius and 

spleen. The viral infection increased the single and double-strand break in Bursa of Fabricius 

and remained unrepaired after infection. The differential repair results indicate the viral 

infection suppresses some DNA repair pathways in bursa while up-regulating in spleen. 

The different cell population of chicken immune organs and infiltration and migration of T 

cells induced by NDV infection (Rasoli et al. 2014),  may cause variation in the DNA damage 

and other DNA damage tolerance profiles across these organs. Infected Bursa of Fabricius 

and thymus accumulate various types of DNA lesions that remain unrepaired at the time of 

death. In contrast, the kidney and spleen get only oxidative DNA damage and suggesting 

that survivable infections could promote mutation and consequently cancer within these 

tissues long-term. 

  

5.3 Study limitations  

Compared to the great importance of NDV to the poultry industry and its effects on 

international trade, there is a relatively modest number of published infectious challenge 

experiments in which virulent virus has been administered to chickens.  In vivo experiments 

using virulent NDV require specialised animal PC3 facilities which are expensive to build and 

operate.  Rapid progression of the induced disease can make it difficult to sample birds over 

multiple days post-infection.  In the present study, we had intended to sample birds at 48 

and 72 hours post-inoculation. However, we decided to humanely kill them all at 48 hours 

post-challenge due to severe clinical signs of disease and high mortality that were already 

increasing within 24 hours. The reduced quality of RNA extracted from infected birds 

compared with healthy birds was another limitation of this study that was an unavoidable 

consequence of the host transcriptome's destruction during the acute phase of 

paramyxovirus infection (Suarez et al. 2020). 

The well-accepted techniques for measuring DNA strand break and adduct, including comet 

assays, enzymatic detection, and antibody-based strategies have clear limitations. One 

significant limitation is that they are often not compatible with archival tissue samples due to 

the risk of introducing DNA lesions during fixation procedures. In this study, we had only 
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access to formalin-fixed paraffin-embedded (FFPE) tissue samples. Recently introduced 

Repair Assisted Damage Detection (RADD) (Lee et al. 2019) system can measure the DNA 

damage within formalin-fixed paraffin-embedded (FFPE) tissue samples. This study is the 

first use of the RADD detection system for DNA damage associated with NDV infection. 

   

5.4 Way forward 

This thesis has provided an in-depth analysis of the molecular pathogenesis of newly 

emerged NDV. Chapters 3 and 4 have identified the genes and pathways contributing to 

disease production. Comparing the transcriptome of time point sampled RNA from different 

tissues in challenged birds with these strains will shed more light on disease progress and 

host response. Further studies are also needed to tease out how the different lymphocyte 

subpopulations in different tissues are affected by NDV and why these differences occur. 

We have identified a considerable number of lncRNA transcripts in our analysis. Due to the 

lack of a chicken-based biological pathway database for gene expression analysis, we 

couldn’t analyse the role of these high expressed transcripts in our study. Developing a 

database to analyse chicken biological pathways will help further gene expression analysis. 

Further research is needed to investigate direct correlation of neurovirulence genetic marker 

and pathogenesity and tissue tropism. Viral isolates from different tissues can also be 

analysed for possible sequence polymorphism. This thesis's findings on the significant 

differences in amino acid identities of circulation viruses and vaccine strain highlights the 

urgent need for an update of vaccine development strategies in South-East Asia. The results 

of this project has a potential implication for better control strategies, improved vaccines and 

advanced diagnostic tools.  

   

5.5 Conclusion 

Full genome sequence of two strains causing the recent outbreak in vaccinated chicken 

indicated that the circulation viruses has substantially separated from vaccine strains and 

highlights the urgent need for updated vaccine development strategies in South-East Asia.  

This thesis is the first study of gene expression profiling of spleen tissue of experimentally 

infected chickens with a virulent NDV-GVII. In conclusion, we observed extensive alteration 

of gene expression in response to this strain in chickens' spleen. Multiple comparisons of the 

gene expression profile of spleen between this study and previous studies of lentogenic NDV 

infections indicate differences between DEGs and activation pathway patterns, indicating the 
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role of virus virulence in immune responses.  This study of NDV infection in chickens 

convincingly demonstrates that the mechanism responsible for rapid and profound bursal 

atrophy is necroptosis rather than apoptosis, at least for genotype VII strains, which is a 

novel observation.  Necroptosis also appears to be prominent in the thymus, but depletion of 

splenic white pulp appears to result primarily from necrosis with a lesser regularly distributed 

component of necroptosis.  We also report the first use of RADD and oxRADD procedures 

for the study of ND pathogenesis, which reveals increases of oxidative DNA damage in both 

the bursa and spleen, but with a curious decrease in non-oxidative DNA damage in the 

spleen.  Lastly, we report the unexpected occurrence of dark or brown breast muscle in all 

NDV infected birds, which is suggestive of profound oxidative injury with excessive in vivo 

formation of metmyoglobin.   

NDV has been widely used in cancer therapy as an apoptosis inducer oncolytic virus (Tayeb, 

Zakay-Rones & Panet 2015). This study's finding for potential induction of mutation in 

tissues also alerts and suggests wisely consideration of NDV in cancer therapy.   
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