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Abstract 54 

This study proposes a time-domain spectral finite element (SFE) method for simulating the second 55 

harmonic generation (SHG) of nonlinear guided wave due to material, geometric and contact 56 

nonlinearities in beams. The time-domain SFE method is developed based on the Mindlin-Hermann 57 

rod and Timoshenko beam theory. The material and geometric nonlinearities are modeled by adapting 58 

the constitutive relation between stress and strain using a second order approximation. The contact 59 

nonlinearity induced by breathing crack is simulated by bilinear crack mechanism. The material and 60 

geometric nonlinearities of the SFE model are validated analytically and the contact nonlinearity is 61 

verified numerically using three-dimensional (3D) finite element (FE) simulation. There is good 62 

agreement between the analytical, numerical and SFE results, demonstrating the accuracy of the 63 

proposed method. 64 

 
1 Corresponding Author  



Numerical case studies are conducted to investigate the influence of number of cycles and 65 

amplitude of the excitation signal on the SHG and its performance in damage detection. The results 66 

show that the amplitude of the SHG increases with the numbers of cycles and amplitude of the 67 

excitation signal. The amplitudes of the SHG due to material and geometric nonlinearities are also 68 

compared with the contact nonlinearity when a breathing crack exists in the beam. It shows that the 69 

material and geometric nonlinearities have much less contribution to the SHG than the contact 70 

nonlinearity. In addition, the SHG can accurately determine the crack location without using the 71 

reference data. Overall, the findings of this study help further advance the use of SHG for damage 72 

detection.  73 

 74 

 75 

Keywords: Nonlinear guided waves, second harmonic, spectral finite element, material nonlinearity, 76 

geometric nonlinearity, contact nonlinearity, breathing crack 77 

 78 

 79 

1 Introduction 80 

Structural health monitoring (SHM) has attracted increasing attention in the last two decades as it has 81 

played a vital role in maintaining the structural safety and serviceability in civil, aerospace and 82 

mechanical engineering. Different techniques were developed to provide early damage detection in 83 

structures. For example, conventional non-destructive evaluation (NDE) techniques, such as visual 84 

inspection, eddy current [1] and ultrasonic technique [2, 3], were developed to provide offline 85 

inspection of the structural integrity. However, the majority of the NDE techniques are not suitable 86 

for online and in-situ monitoring of the structures due to the sustainability of transducers and cost 87 

issues. Most NDE techniques are not applicable to inspect inaccessible location of the structures. 88 

They are costly, time consuming, and under manual operation according to schedule maintenance 89 

cycles. Vibration based approach is the other commonly used damage detection technique [4-6]. This 90 

method concerns the variation in physical properties, such as mass, stiffness and damping. And these 91 

properties directly affect the values of modal parameters, like natural frequencies and mode shapes 92 

[7]. For instance, cracks will be identified if there is an indication of the stiffness reduction. However, 93 

there are two reasons limiting the application of this technique to detect damage in practice. The first 94 

limitation is that significant damage usually causes very small changes in the modal parameters. The 95 

other one is the change of modal parameters caused by damage may be undetected due to the varying 96 

environmental and operational condition. 97 

 98 



1.1 Linear guided waves 99 

The other approach that has attracted significant attention is based on guided waves to evaluate the 100 

integrity of structures. Guided waves are mechanical stress waves which propagate along the structure 101 

are guided by the boundaries of the structures. They propagate at high speeds, up to thousand m/s. 102 

Guided waves could be used for in-situ monitoring of relatively large area of the structure. In other 103 

words, this technique is good for long-range inspection. Different techniques were developed to 104 

employ the guided waves for damage detection of different types of structures, such as beam [8, 9], 105 

pipe [10] and metallic plate [11-13] and composite materials [14, 15]. The damage detection is 106 

achieved by the change of the characteristics of the guided wave responses at the same frequency of 107 

the input signal. But this technique is only effective when the damage size is similar or larger to the 108 

wavelength of the guided waves. The majority of the techniques based on the linear guided waves 109 

require reference (baseline) data when the structure is intact to extract the information of the damage 110 

from the measured signals. However, the stability of the baseline data is significantly affected by the 111 

varying temperature [16] and operational condition [17-19].  112 

To achieve early detection of damage, nonlinear features of guided waves, such as higher 113 

harmonics [20-22], sub-harmonics [23, 24], shift of resonance frequency [25] and mixed frequency 114 

response [26], have been used for damage detection. Specifically, the generation of higher harmonics, 115 

which frequencies are in multiple times of the input signal frequency, has been widely used as an 116 

indicator for early detection of damages. Compared to the linear features of guided waves, the 117 

nonlinear features are more sensitive to the micro-structural change and less influenced by varying 118 

temperature and operational condition of the structures. 119 

 120 

1.2 Nonlinear features of guided waves 121 

Early research into nonlinear guided waves focused on the bulk waves and Rayleigh surface waves 122 

[27]. Different from bulk waves and Rayleigh surface waves [28], the guided waves can be highly 123 

dispersive if it is generated using inappropriate excitation frequency. Guided waves generally contain 124 

multiple wave modes and their group and phase velocities usually vary with frequency. To effectively 125 

utilize the nonlinear guided waves, different studies have investigated the conditions on the 126 

cumulative second harmonic generation (SHG) of guided wave, such as internal resonance, group 127 

velocity matching and guided wave modes interaction [29]. The results showed that under such 128 

conditions the detectability of the higher harmonics in nonlinear guided wave could be improved 129 

significantly.  130 

 Higher harmonic generated [30] due to the nonlinearities existed in the structures, which are 131 

attributed to material behaviour, geometry, structural joints and damage. For an undamaged isotropic 132 

homogeneous solid medium, geometric nonlinearity and material nonlinearity can distort the passing 133 



guided waves to induce the higher harmonics. The geometric nonlinearity is due to the finite 134 

deformation of the structures. The material nonlinearity is mainly generated by the discontinuity of 135 

the medium at lattice level, i.e. imperfections in atomic lattices. The effect of higher harmonic 136 

generation is enhanced when there are additional imperfections in medium, such as distributed micro-137 

cracks. In the literature the higher harmonic generation has been employed to evaluate material 138 

thermal degradation [31], fatigue microstructure [30, 32], micro-corrosive defect [33] and the 139 

dislocation substructures in metals [34, 35]. 140 

The higher harmonics can also be generated due to the contact nonlinearity at the contact-type 141 

damage. When guided waves propagate in a localized fatigue crack, the compressive and tensile 142 

stress at the damaged medium closes and opens the contact interfaces, respectively. This behaviour 143 

alters the stiffness of the structure and generates the higher harmonics. In the literature the contact 144 

nonlinearity has been investigated for a number of contact-type damages, such as fatigue crack [36], 145 

kissing bond [37, 38], debonding [39, 40] and breathing crack[41]. 146 

  147 

1.3 Numerical simulation of nonlinear guided waves 148 

In the literature different numerical simulation methods have been proposed to simulate the nonlinear 149 

guided waves. For example, Shen and Giurgiutiu [42] proposed an analytical and finite element (FE) 150 

method to simulate the nonlinear guided wave propagation induced by a breathing crack. The 151 

piezoelectric wafer active sensor was implemented to generate and receive the guided wave signals. 152 

Wan et al. [43] utilized the analytical and FE method to study the higher harmonics induced by the 153 

material nonlinearity in plates. Approximate phase velocity matching condition for the generation of 154 

nonlinear signal was investigated using the low frequency primary mode Lamb waves. Hong et al. 155 

[20] employed the FE method to simulate the nonlinear guided wave in aluminium plates with fatigue 156 

cracks. Zhu et al. [44] utilized the FE method to study the plastic damage in martensite stainless steels. 157 

The nonlinear guided wave due to material and geometric nonlinearities was analyzed by 158 

incorporating a nonlinear constitutive relationship to FE models. Yamanako et al. [45] proposed a 159 

two dimensions (2D) finite difference (FD) method to analysis nonlinear guided wave. The 160 

subharmonic generation at closed stress corrosion cracks was successfully reproduced. Shen and 161 

Cesnik [46] utilized the local interaction simulation approach (LISA) to simulate the nonlinear guided 162 

wave caused by the clapping mechanism of fatigue cracks. Joglekar and Mitra [47] proposed a fast 163 

Fourier transform (FFT) based spectral finite element (SFE) model to study the nonlinear guided 164 

wave in beams due to the breathing crack. He and Ng [48] proposed a time-domain SFE method, 165 

which employed a crack-breathing mechanism to simulate the contact nonlinearity. They investigated 166 

the performance of the fundamental symmetric (S0) and anti-symmetrical (A0) mode and also the 167 

mode conversion in generating the higher harmonics in the breathing crack. 168 



 The existing numerical simulation methods have different advantages and disadvantages. The 169 

FFT based SFE method is computational efficient in modeling guided wave propagation, but it is a 170 

semi-analytical method assuming infinite length of the structure. The FD method can simulate on 171 

large scale model under regular grids. However, it is incapable of simulating the guided wave 172 

propagation in waveguides if material property changes with geometry [49]. The LISA is efficient 173 

and effective in simulating complex geometries but it requires careful discretization to obtain accurate 174 

solutions. The major distinction between FE method and SFE method is the use of shape function. 175 

Although the FE method is suitable to simulate complex structures, the efficiency of computation is 176 

unsatisfied since the shape function is not in a high order. The discretization of the FE elements should 177 

be very small to ensure the accuracy of the simulation. 178 

Overall, it is found that most of the simulation concern only the contact nonlinearity or, to a 179 

less extent, the material and geometric nonlinearities. Very limited papers [20] considered all the 180 

contribution of material, geometric and contact nonlinearities in the second harmonics generation 181 

(SHG), especially for beam structures and time-domain SFE method. In this study, time-domain SFE 182 

model is proposed to study the SHG in beams with a breathing crack with the consideration of 183 

material, geometric and contact nonlinearities. The findings of the study can provide physical insights 184 

into the SHG due to the material, geometric and contact nonlinearities. This can further advance the 185 

development of using SHG for damage detection. 186 

 187 

1.4 Time-domain spectral finite element method 188 

The time-domain SFE has been found to be computationally efficient in the simulation of guided 189 

wave propagation and capable of modeling complicated geometric structures. The time-domain SFE 190 

method is as flexible as the conventional FE method in modeling different geometries of structures. 191 

The computational efficiency is significantly improved by using the high-order approximation 192 

polynomials. Gauss-Lobatto-Legendre (GLL) nodes are applied in a higher-order interpolation. GLL 193 

integration points are used to simulate guided waves since it turns mass matrix into a diagonal form. 194 

The model can efficiently calculate the solution of the dynamic equilibrium using the explicit central 195 

difference method.  196 

 The time-domain SFE method has been widely investigated by a number of studies with 197 

respect to the linear features of guided waves [50] and damage detection [5]. However, there were 198 

limited studies focused on using time-domain SFE method in simulating nonlinear guided waves 199 

induced by material, geometric nonlinearities, and contact nonlinearities. In this paper, the 200 

computationally efficient time-domain SFE method is extended to take into account the effects of the 201 

material, geometric and contract nonlinearities on the SHG. 202 



The arrangement of the paper is as follows. The time-domain SFE method for simulating the 203 

nonlinear guided waves is proposed in Section 2. The nonlinear guided waves resulted from material, 204 

geometric and contact nonlinearities are formulated in this section. The proposed SFE method for 205 

simulating material and geometric nonlinearities, and contact nonlinearity are then validated using 206 

analytical solutions and three-dimensional (3D) FE simulations in Section 3. Section 4 carries out a 207 

series of numerical case studies to investigate the performance of the proposed SFE method in 208 

simulating the SHG at fatigue cracks with the consideration of material, geometric and contact 209 

nonlinearities. Conclusions are drawn in Section 5.  210 

 211 

2 Time-domain Spectral finite element method 212 

The simulation of nonlinear guided waves using time-domain SFE method is presented in this section. 213 

The basic SFE formulation is described first in subsection 2.1. Then the modeling of material and 214 

geometric nonlinearities, and contact nonlinearities using the SFE method are described in 215 

subsections 2.2 and 2.3, respectively. 216 

 217 

2.1 Spectral finite element formulation 218 

The dynamic equilibrium of the time-domain SFE method is the same as the conventional FE method, 219 

which is defined as [48,52] 220 

   (1) 221 

where M, K and  are global mass matrix, global stiffness matrix and global force vector at time 222 

t, respectively. The global damping matrix C is a function of the global mass matrix denoted by 223 

, where is the damping coefficient. ,  and  denote the vector of acceleration, 224 

velocity and displacement response, respectively. The elemental mass matrix , elemental 225 

stiffness matrix  and elemental force vector  that form the corresponding global terms in 226 

Equation (1) are given as  [10] 227 

  (2) 228 

  (3) 229 

  (4) 230 

where  is the local coordinate of the i-th node at the element, , and n is the number of 231 

nodes.   is the Jacobian functions transferring the local coordinate  to the global 232 

coordinate x.  is the weighting function of node i defined as . 233 

   
M!!U +C !U +KU = F t( )

   F(t)

 C = ηM η   !!U   !U  U

Me

K e Fe

   
Me ≈

i=1

n

∑wiNe ξi( )T
reNe ξi( )det J ξi( )( )

   
K e ≈

i=1

n

∑wiBe ξi( )T
EeBe ξi( )det J ξi( )( )

   
Fe t( ) ≈

i=1

n
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fe t( )Ne ξi( )det J ξi( )( )

ξi   i ∈1,...,n

J = ∂x / ∂ξ ξ

wi   wi = 2 / {n(n−1)[Ln−1(ξi )]
2}



 is the mass matrix, where  is the density of the 234 

material, b is the width and h is the height of the beam.  is the material property matrix and  235 

is the external force vector at time t applied to the element, respectively. Different to the conventional 236 

FE method, the SFE method employs the GLL nodes in the element, which results in a more efficient 237 

solution than the FE method [48]. The local coordinate  of the GLL nodes can be determined from 238 

the roots of the given equation 239 

   for   and  (5) 240 

where  denotes the first derivative of (n-1)-th order Legendre polynomial.  is the shape 241 

function of the SFE element, which has the matrix form [15] 242 

        where  (6) 243 

where m is the sequence of the n GLL integration points in the element.  is an identity matrix with 244 

the square size same as the number of the nodal degree of freedom. ‘ ’ denotes the Kronecker 245 

product.  246 

In this paper, the first-order shear deformation theory considering the independent contraction 247 

due to Poisson effect is employed to formulate the beam element. The displacement field is defined 248 

as [15] 249 

                                       and    (7) 250 

where is the longitudinal displacement in x axis direction,  is the transverse displacement,  is 251 

the rotation of the cross section and  is the independent contraction accounts for the Poisson effect. 252 

The Lagrange strain [52] is employed and the strain field in the element is defined as 253 

  (8)  254 

where  and  is strain-displacement operator.  and  account for the first 255 

and second order terms of Lagrange strain and they are defined as 256 

  
re = diag ρbh K2

Mρbh3 /12 ρbh K2
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⎤
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ε e = Beqe = BL

e +BNL
e( )qe

   q
e = [ue ,ψ e ,ve ,ϕ e]T

  B
e

  BL
e

  BNL
e



     and      (9) 257 

 258 

2.2 Modeling of material and geometric nonlinearities 259 

Considering an isotropic homogeneous solid with purely elastic behavior, the material and geometric 260 

nonlinearities can be represented by the constitutive relation between stress and strain using the 261 

second order approximation [54] as 262 

  (10)  263 

where  is the stress tensor.  and  are the strain tensors.  is the second order elastic 264 

tensors, which can be expressed in a matrix form for two-dimensional plane stress situation as 265 

  (11)  266 

where  is the Poisson’s ratio and  is the Young’s modulus 267 

of the material.  and  are the Lamé constants.  is the tensor addresses both the material and 268 

geometric nonlinearities. If  is not considered, Equation (10) can be simplified into the linear 269 

situation following the Hooke’s Law. The form of  is given as [20, 43, 54]. 270 

  (12)  271 

where 272 

  (13)  273 

In Equation (12) and (13),  and its similar forms with different subscript indexes are the Kronecker 274 

delta.  and its similar forms with different index orders are the fourth order identity tensors. 275 
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The material nonlinearity is described by the third order elastic tensor , where the 276 

geometric nonlinearity is addressed by the last three terms in Equation (12). The subscript ij, kl, mn 277 

= 11, 33, 31 in this paper. The third order elastic tensor  is determined by three third order 278 

elastic constants A, B and C. Their values can be measured from experiment for the investigated 279 

materials. Let , the material property matrix  in Equation (3) is expressed 280 

as 281 

  (14) 282 

where , ,  and  are adjustable parameters that 283 

calibrate the accuracy of guided wave propagation simulation [9]. Using the material property matrix 284 

 in Equation (14), the time-domain SFE method can include the effect of the material nonlinearity 285 

in simulating the guided wave propagation. 286 

 287 

2.3 Acoustic nonlinearity parameter 288 

For one-dimensional (1D) longitudinal wave propagation, Equation (10) can be simplified as [21, 43]  289 

   (15)  290 

where  ,   and  are the stress, strain and the second order Young’s modulus accounted for the 291 

nonlinearity of the medium [53].  can be calculated from 292 

  (16)  293 

In order to investigate the nonlinearity of the material, the acoustic nonlinearity parameter  294 

is introduced as the ratio of the second order Young’s modulus to Young’s modulus as [20] 295 

  (17)  296 

Equation (17) shows that the acoustic nonlinearity parameter  is a function of the Young’s modulus, 297 

which accounts for the linear behavior of the medium, and the third order elastic constants A, B and 298 

C, which account for the nonlinear behavior of the medium. This shows that the acoustic nonlinearity 299 

parameter  quantifies the degree of material nonlinearity of the medium without any defect or plastic 300 

deformation. In practice, the relative acoustic nonlinearity parameter  can be employed as an 301 

indicator to study the second order of the medium nonlinearity [55], which is defined as the ratio 302 
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between the spectral amplitude at the second harmonic frequency (A2) and the square of the spectral 303 

amplitude of the fundamental frequency (A1) as 304 

  (18)  305 

According to the reference [56], the relative acoustic nonlinearity parameter  is linearly proportion 306 

to the nonlinear parameter  and the wave propagation distance if the measured guided wave modes 307 

are cumulative. Hence  also has the following expression  308 

  (19)  309 

where x is the distance of propagation. Hence, the relative acoustic nonlinearity parameter  310 

indicates the nature of the nonlinear property of the wave propagation. 311 

 312 

2.4 Modeling of contact nonlinearity 313 

In this paper, the contact nonlinearity induced by a breathing crack in a cracked beam is also simulated 314 

by the proposed SFE model. To achieve this, a SFE cracked element is proposed in this section. 315 

Considering a cracked beam with length L, width b and height h, the breathing crack with depth dc is 316 

modeled at location Lc of the beam. Figure 1(a) shows the SFE discretization of the beam. The intact 317 

part of the beam is modeled using the SFE beam element and the cracked part is modeled by the 318 

proposed SFE cracked element. Eight GLL nodes are used by the SFE beam element while two GLL 319 

nodes are used in the proposed SFE cracked element. The nodes in the crack element consider three 320 

degrees-of-freedom (DoFs) i.e., longitudinal, transverse and rotational DoFs. The length of the crack 321 

element is assumed to be very small, i.e. l ≈ 0.001 mm, in the model. When the proposed cracked 322 

element is connected with the SFE beam element, the lateral contraction DoF induced by the 323 

longitudinal wave propagation is not considered due to the very small length of the proposed SFE 324 

crack element.  325 

 326 

[Figure 1. Schematic diagram of a SFE model for simulating a cracked beam, (a) discretization of 327 

a cracked beam; (b) two-node SFE crack element when the crack is opened and closed] 328 

 329 

The contact nonlinearity due to the breathing phenomenon of the crack is modeled by a contact 330 

mechanism indicated in Figure 1(b). The nodal longitudinal displacements  and   at the SFE 331 

cracked element are examined to determine the status of the crack at each time step of the simulation: 332 

  when the crack is opened (20) 333 

  when the crack is closed (21) 334 

  
′β =

A2

A1
2

¢b

β

′β

 ′β ∝βx

′β

  u1   u2

  u1 − u2 < 0

  u1 − u2 >= 0



Based on the status of the crack, the stiffness matrix  of the SFE crack element can be determined. 335 

When the crack is opened, the stiffness matrix  of the SFE crack element is calculated as [48] 336 

  (22) 337 

where  is the spatial transformation matrix as a function of the crack element length  338 

  (23) 339 

 is the flexibility matrix for the open crack given as follows 340 

  (24) 341 

with 342 

,      ,      , 343 

 ,     ,      (25) 344 

where  is the shear coefficient for rectangular shape of the beam cross section. 345 

, ,  and  are the functions of the crack depth defined as 346 

 ,   ,   ,    (26) 347 

where  is the crack location in the SFE crack element. . ,  and  are the empirical 348 

boundary calibration factors accounted for tension, bending and shear of the surface crack, 349 

respectively. According to [57], the factors ,  and  produce less than 0.5% errors for the 350 

simulation of the crack with any depth . Their formulations are given as [48]  351 
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   (29) 354 

 355 

When the crack is closed, the crack element is considered as an intact beam element. The SFE crack 356 

element stiffness matrix  in Equation (22) becomes 357 

  (30) 358 

where  is the flexibility matrix for the closed crack and is defined as  359 

  (31) 360 

with 361 

,      ,      , 362 

 ,       (32) 363 

 364 

3 Model validation 365 

The effectiveness of the proposed model is validated in this section. The validation is conducted in 366 

two situations. First, the model of material and geometric nonlinearities is verified similar to the 367 

approach in reference [43]. It compares the ratio of the relative nonlinear parameter  between two 368 

different materials calculated using SFE and the analytical approach. After that, the conventional FE 369 

simulation is used to verify the contact nonlinearity generated due to the interaction between the 370 

guided wave and the breathing crack. The results of validations are presented in the following 371 

subsections. 372 

 373 

3.1 Validation of material and geometric nonlinearities  374 

The aluminium beams with the two different material properties, e.g., Al 6061-T6 and Al 7075-T651 375 

are considered, where the material properties [43] are shown in Table 1. The beams have the same 376 

geometric dimensions, where the length L, width b and height h of the beams are 1 m, 12 mm and 5 377 

mm, respectively. The schematic diagram of the SFE model is indicated in Figure 2(a). The excitation 378 
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signal is an f0 = 100 kHz, narrow-band, 16-cycle sinusoidal tone burst modulated by a Hanning 379 

window. The S0 guided wave is excited by applying the in-plane displacement at the left end of the 380 

beam, in which the maximal amplitude of the input displacement is 1×10-6 m. The displacement 381 

response is calculated by the SFE simulation at Lm= 0.5 m and the FFT is then employed to determine 382 

the spectral amplitude of the first harmonic (A1) and the second harmonic (A2) generated by both 383 

material and geometric nonlinearities.  384 

 385 

[Table 1. Material properties of Al-6061-T6 and Al-7075-T651] [43] 386 

 387 

[Figure 2. Schematic diagram of the SFE beam with (a) material and geometric nonlinearities; and 388 

(b) material, geometric and contact nonlinearities] 389 

 390 

The spectral amplitudes of the SHG A2 with propagation distance for Al 6061-T6 and Al 7075-391 

T651 are calculated in Figure 3. It shows that the magnitude of the SHG increases until it reaches the 392 

maximum cumulated propagation distance (504 mm for Al 6061-T6), after which it decreases due to 393 

dissatisfaction of the cumulative condition, i.e., the non-synchronization of the phase velocity 394 

between the harmonics at f0 =100 kHz and 2f0 =200 kHz. It also shows that the spectral amplitude of 395 

the SHG A2 does not increase linearly. In order to use Equation (18) to determine the relative 396 

nonlinearity parameter  effectively, the linear regression analysis is utilized to determine the 397 

maximum linear cumulative propagation distance, where the coefficient of determination R2 is set 398 

larger than 0.99 in the analysis [43]. Based on the analysis, the maximum linear cumulative 399 

propagation distance is calculated (376 mm for Al 6061-T6) and within this distance the higher 400 

harmonics are considered ‘cumulated’. 401 

 402 

[Figure 3. Spectral amplitude of second harmonic against propagation distance for Al 6061-T6 and 403 

Al 7075-T651] 404 

 405 

The calculated relative nonlinear parameter  with propagation distance x and the 406 

corresponding linear regression are shown in Figure 4. k is the slope of the line, which is proportional 407 

to the nonlinear parameter . As shown in Figure 4, the slope k for the material Al 6061-T6 is larger 408 

than that of Al 7075-T651. Also, it is shown that the nonlinear parameter  increases linearly, which 409 

indicates that the SHG of S0 guided wave is cumulated in this propagation distance. Hence, the ratio 410 

of the nonlinear parameter of Al 6061-T6 to Al 7075-T651 is 411 

, which is closed to the analytical result, i.e., 412 
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1.12, calculated using Equation (17). This shows that the SFE simulation is able to take into account 413 

the material and geometric nonlinearities in the guided wave simulations.  414 

 415 

[Figure 4. The relative nonlinear parameter  calculated from the measured displacement against 416 

the wave propagation distance for the S0 incident guided wave at 100 kHz] 417 

 418 

3.2 Validation of contact nonlinearity 419 

This subsection validates the contact nonlinearity of the SFE simulation by comparing the SFE results 420 

with those calculated by conventional 3D FE simulations. The material of the beam is Al 6061-T6 421 

and the properties are shown in Table 1. The length L, width b and height h of the beam are 1 m, 6 422 

mm and 12 mm, respectively. The crack is located at Lc = 0.5 m and the crack depth is dc =3 mm. The 423 

excitation signal is an f0 = 50 kHz, narrow-band, 5-cycle sinusoidal tone burst modulated by a 424 

Hanning window [Error! Reference source not found.]. The S0 guided wave is generated by 425 

applying the in-plane displacement at the left end of the beam. The displacement response is 426 

calculated at the same location as the excitation location. The simulation duration is long enough to 427 

cover the incident S0 guided wave propagates from the excitation location to the right end of the beam, 428 

and then reflects back to the left end of the beam (the excitation and measurement location). 100 SFE 429 

beam elements are used to model the beam to ensure the convergence of simulation and each of SFE 430 

beam element has eight GLL nodes. The damping coefficient  is assumed to be 200 s-1. The time 431 

step of the simulation is chosen at 2.5×10-8 s.  432 

The conventional 3D FE simulations are carried out using the commercial FE software, 433 

ABAQUS v6.12-1, to simulate the wave propagating in the cracked beam. The eight-noded 3D solid 434 

brick elements (C3D8I) with the incompatible mode are used to model the cracked beam. The option 435 

of second-order accuracy is enabled in the incompatible mode in the simulations. The mesh size of 436 

the elements is 0.4mm×0.4mm×0.4mm to ascertain the stability of the FE simulations. The crack is 437 

modeled by duplicating the nodes at the crack interfaces [59, 60]. The contact nonlinearity due to the 438 

breathing phenomenon is simulated by assigning the ‘frictionless hard contact’ property to the crack 439 

interfaces. The S0 guided wave is excited by applying the in-plane nodal displacement at the vertical 440 

surface of the left beam end. The excitation signal is the same as the SFE simulations. The explicit 441 

solver, ABAQUS/Explicit, is used to solve the dynamic problem. The time step is automatically 442 

controlled by ABAQUS/Explicit in the simulations. 443 

The simulation results are shown in Figure 5. Figure 5(a) shows the response displacement in 444 

time-domain, which is normalized to the peak amplitude of the incident wave. There is good 445 

agreement between the results of the SFE and FE simulations. Figure 5(b) shows the FFT of the 446 

displacement response. The figure shows that the results of the SFE and FE have the same spectral 447 
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amplitude of the second harmonic at 2f0 = 100 kHz. This demonstrates the accuracy of the proposed 448 

SFE method in simulating the nonlinear guided wave induced by the contact nonlinearity at the 449 

breathing crack. 450 

 451 

[Figure 5. Comparison of SFE and FE simulated results in (a) time-domain; (b) frequency-domain]  452 

 453 

3.3 Three-dimensional finite element validation 454 

A material subroutine developed in ABAQUS/Explicit is used to ensure the accuracy of the proposed 455 

time-domain SFE model. The subroutine applies Murnaghan’s energy function [61] in order to model 456 

the So guided wave in Aluminium beams. The material nonlinearity in ABAQUS VUMAT is 457 

formulated by a set of constitutive equation. The deformation gradient F links the reference 458 

configuration X (material) to the current configuration x (spatial) and is written as [62] 459 

                                                                             𝐅 = !𝐱
!𝐗

                                                                               (33) 460 

The Green-Lagrange strain tensor is employed in this study and is defined as 461 

𝐄 = $
%
(𝐂 − 𝐈)                                                                   (34) 462 

where C is the right Cauchy-Green deformation tensor and I is the identity tensor. C is related to the 463 

deformation gradient F  464 

𝐂 = 𝐅&𝐅 = 𝐔𝟐                                                              (35) 465 

where U is the right stretch tensor. 466 

The nonlinear strain energy function of Murnaghan is given as 467 

𝑊(𝐄) = $
%
(𝜆 + 2𝜇)𝑖$% − 2𝜇𝑖% +

$
(
(𝐵 + 𝐶)𝑖$% − 2𝐶𝑖$𝑖% + 𝐴𝑖(                           (36) 468 

where 𝜆 and 𝜇 are the Lamé elastic constants; A, B and C are the third order elastic constants. 𝑖! = 𝑡𝑟𝐄, 469 

𝑖" =
!
"
[𝑖!" − 𝑡𝑟(𝐄)"], 𝑖# = 𝑑𝑒𝑡𝐄, respectively. 470 

User material subroutine VUMAT in ABAQUS/Explicit can define the mechanical 471 

constitutive behaviour for material nonlinearity in modeling guided wave. The Green-Naghdi rate of 472 

the Cauchy stress tensor is utilized in VUMAT.   473 

𝛔4 = 𝐑&𝛔𝐑                                                                        (37) 474 

where R is rotation tensor, and R is a proper orthogonal tensor, i.e., 𝐑$! = 𝐑%. The terms F, U and R 475 

are related as follow  476 

𝐅 = 𝐑𝐔                                                                         (38) 477 



The relationship of the second Piola-Kirchhoff (PK2) stress T and the strain energy function in 478 

Equation (36) is given by 479 

𝐓 = )*(,)
),

                                                                         (39) 480 

The Cauchy stress and the PK2 stress are interrelated and written as 481 

𝛔4 = J$.$𝐅𝐓𝐅& = J$.$𝐅
!*(𝐄)
!𝐄

𝐅&                                                     (40) 482 

where J$ = det	(𝐅). 483 

By substituting Equations (38)-(40) into Equation (37) 484 

𝛔4 = J$.$𝐑&𝐅𝐓𝐅&𝐑 = J$.$𝐑&𝐑𝐔𝐓𝐔&𝐑&𝐑 = J$.$𝐔
!*(𝐄)
!𝐄

𝐔&                         (41) 485 

Depending on the values of F and U provided in the user subroutine at the end of previous 486 

time step (𝑡), the updated stress equation at the end of an integration step (𝑡 + ∆𝑡) is stored in 487 

stressNew(i).  488 

 489 

3.4 Comparison of the proposed SFE model and FE model using subroutine 490 

The material properties of 6061-T6 aluminium beam are used for both the SFE and FE models. The 491 

length L, width b and height h of the beam are 1m, 5mm and 12mm, respectively. A 3D eight-node 492 

linear brick with reduced integration (C3D8R) are used to model the beam. The dimension of an 493 

element is 0.4×0.4×0.4mm3. The excitation signal is a 𝑓0 =  100kHz, narrow-band, 12 cycles 494 

sinusoidal tone burst modulated by a Hanning window. The excitation signal of the So guided wave 495 

is applied to the in-plane nodal displacement on the vertical surface of the left end beam end.  496 

 For the SFE model, 8 GLL nodes with 0.01m long in each SFE element are used. The time 497 

step is selected at 5×10-8 s to ensure the simulation to be converged. The So guided wave is loaded by 498 

applying the in-plane displacement at the left end of the beam. The excitation signal is the same as 499 

the FE model with VUMAT subroutine. The displacement response for both of the SFE simulation 500 

and the FE model are measured at Lm = 0.5m.  501 

 502 

 503 

[Figure 6 Comparison of SFE and FE simulations for linear and nonlinear perspective in terms of 504 

(a) time-domain; (b) frequency domain, and (c) the triggered signal in frequency domain] 505 

  506 

The solid lines represent the signal in nonlinear response while the dashed lines refer to linear 507 

response. The SFE signals are shown in red color and the FE signals are labeled in blue color. The 508 

amplitude of each time-domain displacement response in Figure 6(a) is normalized. Figure 6(b) 509 

shows the corresponding signals in frequency domain. It is shown that the linear signals of both the 510 

SFE and FE models does not carry any second harmonic information. After implementing material 511 



nonlinearity, both the SFE and FE simulations generate second harmonic at 2𝑓0 = 200kHz with 512 

similar second harmonic peak.  513 

 514 

4 Numerical case studies and discussions 515 

A series of numerical case studies are carried out in this section to investigate the performance of the 516 

proposed SFE model. The performance of the SFE model in simulating the material and geometric 517 

nonlinearities is studied first, which investigates the influences of different numbers of cycles and 518 

amplitudes of the excitation signal on the SHG in Section 4.1. After that, the contribution of the 519 

material and geometric nonlinearities, and the contact nonlinearity to the SHG is studied in Section 520 

4.2. The beam with length L= 1 m, depth d=5 mm and width b=12 mm is simulated in this study and 521 

the material is assumed to be Al 6061-T6 and the material properties are shown in Table 1.  522 

 523 

4.1 Second harmonic generation (SHG) due to material and geometric nonlinearities 524 

In this part, the influence of the geometric and material nonlinearities on the SHG is studied in Section 525 

4.1.1. The influences of different numbers of cycles and the amplitudes of excitation signal on the 526 

SHG due to geometric and material nonlinearities are studied in Sections 4.1.2 and 4.1.3, respectively. 527 

 528 

4.1.1 Influence of material and geometric nonlinearities 529 

This section studies the influence of the material and geometric nonlinearities on the SHG. The 530 

excitation signal is a 100 kHz, narrow-band, 16-cycle sinusoidal tone burst modulated by a Hanning 531 

window. The S0 guided wave is generated by applying the in-plane displacement with the maximum 532 

amplitude of 1×10-6 m to the left end of the beam, and the displacement response is measured at Lm= 533 

0.5 m. Based on Equation (12), the first term on the right hand side of the equation accounts for the 534 

material nonlinearity and the other three terms address the geometric nonlinearity. This section 535 

considers three different situations: 1) linear, 2) only geometrically nonlinear, and 3) nonlinear with 536 

both material and geometric nonlinearities. In the linear situation, the term  in Equation (10) is 537 

not considered in the simulation. For the geometrically nonlinear situation, the first term of right hand 538 

side of Equation (12), i.e. , is neglected. For the nonlinear situation that considers both material 539 

and geometric nonlinearities, all the terms at the right hand side of Equation (12) are considered in 540 

the simulations. The calculated time-domain displacement responses of these three situations are 541 

shown in Figure 7. 542 

 543 
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[Figure 7. The calculated time-domain displacement response at Lm= 0.5 m for linear situation, 544 

and situations consider only geometric nonlinearity, and both material and geometric 545 

nonlinearities in the SFE simulation] 546 

 547 

From the time-domain signal shown in Figure 7, the difference between the nonlinear 548 

situations and the linear situation is hardly distinguished. Figure 8 shows the FFT of the calculated 549 

displacement responses at Lm= 0.5 m for the three aforementioned situations. Compared with the 550 

time-domain signal, the SHG in the nonlinear situation (with geometric and material nonlinearities) 551 

is clearly observed. Furthermore, the results show that the spectral amplitude of the SHG for the 552 

situation considering both material and geometric nonlinearities is about 10 times greater than that of 553 

the situation considering only the geometric nonlinearity. This demonstrates that the SHG is mainly 554 

due to the material nonlinearity. 555 

 556 

[Figure 8. FFT of the calculated displacement responses at Lm= 0.5 m for linear situation, and 557 

situations consider only geometric nonlinearity, and both material and geometric nonlinearities in 558 

the SFE simulation] 559 

 560 

4.1.2 Influence of the numbers of cycles of the excitation signal 561 

The influence of the numbers of cycles of the excitation signal on the SHG due to material and 562 

geometric nonlinearities is studied in this section. The excitation signals with 8, 12, 16 and 20 cycles 563 

are considered in this study. The signal is a 100 kHz narrow-band sinusoidal tone burst modulated by 564 

a Hanning window. The S0 guided wave is excited by applying the in-plane displacement with the 565 

maximal amplitude 1×10-6 m at the left end of the beam. The displacement responses are measured 566 

at Lm = 0.5 m. The FFT of the displacement responses for the cases considering different numbers of 567 

cycles of the excitation signals are shown in Figure 9. The results show that the bandwidth of the 568 

fundamental and second harmonic become wider for excitation signal with less numbers of cycles 569 

and the amplitude of the SHG increases with the number of cycles.  570 

 571 

[Figure 9. FFT of the calculated displacement responses at Lm= 0.5 m for different excitation 572 

cycles] 573 

 574 

Figure 10 shows the SHG amplitude versus the fundamental amplitude for different numbers 575 

of cycles of the excitation signal. Analytically, because the relative nonlinear parameter  is a 576 

constant within the cumulated wave propagation distance x as shown in Equation (19), the ratio of 577 

the SHG amplitude to the square of the fundamental harmonic is also a constant from Equation (18). 578 
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Therefore, the result is a straight line in Figure 10. There are good agreements between the analytical 579 

results and the SFE simulated results for different numbers of cycles. Overall, it is found that the 580 

magnitude of the SHG induced due to the material and geometric nonlinearities increases with the 581 

numbers of cycles of the excitation signal. 582 

 583 

 [Figure 10. The second harmonic amplitude versus the fundamental amplitude for varying number 584 

of cycles of the excitation signal (solid line: analytical results; markers: SFE simulation results)] 585 

 586 

4.1.3 Influence of the amplitude of the excitation signal 587 

The influence of the amplitude of the excitation signal on the SHG due to geometric and material 588 

nonlinearities is studied in this section. The excitation signal applied at the left end of the beam is a 589 

100 kHz narrow-band 16-cycle sinusoidal tone burst modulated by a Hanning window. Eight different 590 

amplitudes of the excitation signal are considered and magnitude increases from 1×10-6 m to 8×10-6 591 

m with the step of 1×10-6 m. The displacement response is calculated at Lm = 0.5 m and the measured 592 

time duration is the same as that in Subsection 4.1.2. The amplitudes of the fundamental harmonic 593 

and SHG are extracted from the FFT of displacement responses. Figure 11 shows the SHG amplitude 594 

versus the fundamental amplitude for different excitation amplitudes, in which the asterisks denote 595 

the numerical results. The results in Figure 11 show that there is good agreement between results of 596 

SFE and the analytical results obtained from Equation(18). It is found that the SHG amplitude 597 

increases with the excitation amplitude. 598 

 599 

[Figure 11. The second harmonic amplitude versus the fundamental amplitude for varying 600 

excitation amplitude (solid line: analytical results; markers: SFE simulation results)] 601 

 602 

4.2 Contribution of material and geometric nonlinearities, and contact nonlinearity in second 603 

harmonic generation (SHG) 604 

The contribution of the material and geometric nonlinearities, and contact nonlinearity in the SHG is 605 

studied in this subsection. The excitation signal is a 100 kHz, narrow-band, 5-cycle sinusoidal tone 606 

burst modulated by a Hanning window. The S0 guided wave is excited by applying the in-plane 607 

displacement with the maximum amplitude of 1×10-6 m to the left end of the beam, and the 608 

displacement response is measured at Lm =0 m. The breathing crack is located at Lc = 0.5 m. Because 609 

the crack location Lc < 0.504 m, it allows a simulation of the cumulated SHG from material and 610 

geometric nonlinearities as discussed in Section 3.1.   611 

Two situations are considered: 1) only contact nonlinearity and 2) both material and geometric 612 

nonlinearities, and contact nonlinearity in the SFE simulation. The spectral amplitudes of the SHG as 613 



a function of normalized crack depth (dc/h) are investigated for both situations. The short-time Fourier 614 

transformed (STFT) is used to obtain the spectral amplitude of the SHG induced by the crack. Figure 615 

12(a) shows an example of the spectrogram obtained from STFT, and the corresponding time-domain 616 

displacement is shown in Figure 12(b). The data is obtained from a beam model with a crack having 617 

dc =2.5 mm. It should be noted that the amplitude of second harmonic guided wave reflected from the 618 

breathing crack is labelled as A2 in Figure 12(a), which is normalized by amplitude of the fundamental 619 

harmonic A1 of the incident guided wave. 620 

 621 

[Figure 12. (a) Spectrogram obtained by STFT and (b) the corresponding time-domain 622 

displacement response for a beam model with a crack having dc =2.5 mm and Lc = 0.5 m] 623 

 624 

Figure 13 shows the ratio of the SHG amplitude of the wave reflected from the crack (A2) to 625 

the fundamental harmonic amplitude of the incident wave (A1) as a function of normalized crack 626 

depth to beam depth ratio (dc/h). The results show that the amplitudes of the SHG calculated by the 627 

SFE model with the effect of both material and geometric nonlinearities, and contact nonlinearity are 628 

in general greater than the results calculated by the SFE model considering only the contact 629 

nonlinearity. In the case when the crack size is small, the SHG amplitude is mainly contributed by 630 

the contact nonlinearity. This can be explained by the fact that the amplitude of the wave reflected 631 

from the small size of the crack is small. Figure 11 shows that the contribution to the SHG amplitude 632 

by the material nonlinearity is linear proportional to the wave amplitude. As the amplitude of the 633 

reflected wave is small, the material nonlinearity has only a very limited contribution to the SHG. In 634 

the case when the crack size is large, although the contribution of the material nonlinearity to the 635 

SHG is larger (because the amplitude of the reflected wave is larger), the SHG amplitude is still 636 

mainly contributed by the contact nonlinearity. The largest difference of the ratio of the SHG 637 

amplitude of the wave reflected from the crack to the fundamental harmonic amplitude of the incident 638 

wave is less than 3%. 639 

 640 

[Figure 13. Normalized second harmonic amplitude of the displacement responses as a function of 641 

normalized crack depth (dc/h)] 642 

 643 

4.3 Determination of breathing crack location using second harmonic generation (SHG) 644 

This section demonstrates the use of the SHG to determine the location of the breathing crack in the 645 

beam. In the numerical case studies, the SHG due to the effect of material and geometric 646 

nonlinearities, and contact nonlinearity are considered to simulate a practical situation. Since the 647 

proposed method relies on the SHG, which can be extracted at the second harmonic frequency, the 648 



proposed method can determine the existence and the location of the crack without using the reference 649 

data. This means that it is feasible to be used as a reference-free damage detection method. 650 

When the incident wave is excited, it propagates from the actuator to the breathing crack. The 651 

SHG from the contact nonlinearity is generates when incident wave interacts with the breathing crack. 652 

The generated second harmonic wave then propagates and then reaches the sensor. First of all, the 653 

appearance of the second harmonic wave in the time-frequency spectrum (spectrogram) can indicate 654 

the existence of the breathing crack. The arrival time and the group velocity of the second harmonic 655 

wave can be determined at the second harmonic frequency from the spectrogram and from the 656 

material properties of the beam, respectively. Thus, the crack location (Lc) of the crack can be 657 

calculated by   658 

   (42) 659 

where  and  are the group velocity of the incident and reflected guided wave at the 660 

excitation frequency (  ) and second harmonic frequency (  ), respectively.  is the 661 

time difference between the arrival time of incident wave at the excitation frequency ( ) and the 662 

arrival time of the scattered wave at second harmonic frequency . Using Figure 12 as an example, 663 

 and  are the arrival time of the peak amplitude for the incident wave at the excitation frequency 664 

A1 and scattered wave from the breathing crack at the second harmonic frequency A2, respectively.  665 

A beam made by Al 6061-T6 with length L= 1 m, depth d=5 mm and width b=12 mm is 666 

considered in this section. The material properties of the beam are show in Table 1. The S0 guided 667 

wave is used as the incident wave in the damage detection. The S0 guided wave is excited at the left 668 

end of the beam using the in-plane displacement with maximum amplitude of 1×10-6 m. The 669 

excitation signal is a 100 kHz, narrow-band, 5-cycle sinusoidal tone burst modulated by a Hanning 670 

window, which is the same as Section 4.2. The group velocity dispersion curve of the beam is shown 671 

in Figure 14. The group velocity at the excitation frequency (100 kHz) and second harmonic 672 

frequency (200 kHz) are = 4848.5 m/s and = 4585.1 m/s, respectively. Since pulse-echo 673 

approach is used to collect the guided wave for the damage detection purpose, the measurement 674 

location is assumed to be the same as the excitation location, i.e. Lm = 0 m. To take into account the 675 

effect of the measurement noise, it is assumed that the measured time-domain guided wave signals 676 

contain 5% root mean square (RMS) white noise.  677 

 678 

[Figure 14. Group velocity dispersion curve for AI 6061-T6 beam] 679 
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In the numerical case studies, there are three damage cases and they consider the beam having 681 

a breathing crack at different locations and different crack depths. A summary of the damage cases is 682 

shown in Table 2. Case 1 considers the breathing crack is located at = 0.8 m and the normalized 683 

crack depth ratio is 0.4. Case 2 considers the breathing crack with the same normalized crack depth 684 

ratio but the crack is located at = 0.92 m, which is closer to the beam end. Case 3 considers the 685 

most challenging situation, in which the normalized crack depth ratio is 0.2. The crack is located very 686 

close to the beam end at = 0.95 m. 687 

Figure 15 shows the measured signal in each damage case. For Case 1, the first wave package 688 

is the incident S0 guided wave. The second wave package is the scattered wave from the crack and 689 

the last wave package is the reflected incident wave from the beam end. For Case 2, since the crack 690 

is closer to the beam end, part of the scattered wave is mixed with the boundary reflection. For Case 691 

3, the scattered wave is completely mixed with the reflection incident wave from the beam end. 692 

Without the reference data, it is very difficult for the linear guided wave based damage detection 693 

methods to detect the crack. Figure 16 shows the corresponding spectrogram of the measured signal 694 

for each damage case, which provides the time-frequency information of the measured wave signal. 695 

As shown in Figure 16, the second harmonic wave can be extracted at the second harmonic frequency. 696 

In each damage case, the arrival time of the scattered wave at second harmonic frequency  and the 697 

arrival time of the incident wave at excitation frequency can be determined from the spectrogram. 698 

Therefore,  can be calculated and the crack location  can be estimated using Equation (42). The 699 

predicted crack location and the percentage error are shown in the fourth and fifth column of Table 700 

2. Overall, the all predicted crack locations are very close to the true crack location and the maximum 701 

percentage error is 0.95%. 702 

 703 

[Figure 15. Measured time domain signal for a) Case 1, b) Case 2 and c) Case 3] 704 

 705 

[Figure 16. Spectrogram of the measured signals for a) Case 1, b) Case 2 and c) Case 3] 706 

 707 

[Table 2. Summary of damage cases] 708 

 709 

5 Conclusions 710 

This study has proposed a time-domain SFE modeling of SHG of nonlinear guided wave in beam 711 

structures, which takes into account material and geometric nonlinearities, and contact nonlinearity. 712 

Specifically, the material and the geometric nonlinearities have been modeled by adapting the 713 

constitutive relation between strain and stress using a second order approximation, and the contact 714 

Lc

Lc

Lc

t2 fc

t fc

 Δt Lc



nonlinearity resulted from a breathing crack has been simulated by a bilinear SFE crack model. The 715 

time-domain SFE simulations of the SHG due to material and geometric nonlinearities, and contact 716 

nonlinearity have been validated using analytical results and 3D FE simulations, respectively. The 717 

results show that the time-domain SFE method is able to provide an accurate prediction in the SHG.  718 

A series of numerical case studies have been carried out to investigate the influence of the 719 

material and geometric nonlinearities and contact nonlinearity on the SHG using the proposed SFE 720 

model. The numerical case studies have considered the SHG due to the material and geometric 721 

nonlinearities. The results have shown that the material nonlinearity in the contribution to the SHG 722 

is much greater than geometric nonlinearity. In addition, the amplitude of the SHG increases with the 723 

number of cycles and amplitude of the excitation signal. The numerical case studies have also 724 

investigated the amplitude of the SHG at a breathing crack, in which the time-domain SFE model 725 

takes into account both material and geometric nonlinearities and contact nonlinearity. The spectral 726 

amplitude of the SHG has been studied as a function of the normalized crack depth. The results have 727 

shown that the contribution of the material and geometric nonlinearities to the SHG is generally 728 

smaller than the contact nonlinearity. It has also shown that as the crack size becomes smaller, the 729 

SHG due to the material and geometric nonlinearities become smaller. In Figure 13, the material and 730 

geometric nonlinearities contributed a very little effect on the SHG, and most of the response came 731 

from contact nonlinearity. The material and geometric nonlinearities can be potentially ignored in the 732 

practice of damage identification. In addition, a series of numerical case studies have been presented 733 

to show that the second harmonic wave can be used to accurately determine the crack location without 734 

using the reference data. Overall, the numerical case studies have gained insights into the SHG due 735 

to the material and geometric nonlinearities and contact nonlinearity. The findings of this study could 736 

further advance the development of damage detection using SHG of nonlinear guided wave. 737 
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Tables 882 

 883 

Table 1. Material properties of Al-6061-T6 and Al-7075-T651 [41] 884 

Material ρ (kg m-3) λ (GPa) μ (GPa) A (GPa) B (GPa) C (GPa) 

Al-6061-T6 2704 67.6 25.9 -416 -131 -150.5 

Al-7075-T651 2810 70.3 26.96 -351.2 -149.4 -102.8 

 885 
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Table 2. Summary of damage cases 887 

Case Actual Predicted Percentage 
error Crack depth dc (m) Crack location Lc (m) Crack location (m) 

Case 1 0.002 0.8 0.7924 0.95% 
Case 2 0.002 0.92 0.9191 0.10% 
Case 3 0.001 0.95 0.9426 0.78% 

 888 
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Figures 891 

 892 

 893 

 894 

Figure 1. Schematic diagram of a SFE model for simulating a cracked beam, (a) discretization of a 895 

cracked beam; (b) two-node SFE crack element when the crack is opened and closed 896 

  897 



 898 

Figure 2. Schematic diagram of the SFE beam with (a) material and geometric nonlinearities; and 899 

(b) material, geometric and contact nonlinearities 900 
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 902 

Figure 3. Spectral amplitude of second harmonic against propagation distance for Al 6061-T6 and 903 

Al 7075-T651 904 
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 906 

Figure 4. The relative nonlinear parameter  calculated from the measured displacement against 907 

the wave propagation distance for the S0 incident guided wave at 100 kHz 908 
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 910 

Figure 5. Comparison of SFE and FE simulated results in (a) time-domain; (b) frequency domain 911 

912 



 913 

             914 

Figure 6 Comparison of SFE and FE simulations for linear and nonlinear perspective in terms of (a) 915 

time-domain; (b) frequency domain, and (c) the triggered signal in frequency domain 916 
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 921 

 922 

Figure 7. The calculated time-domain displacement response at Lm= 0.5 m for linear situation, and 923 

situations consider only geometric nonlinearity, and both material and geometric nonlinearities in 924 

the SFE simulation 925 
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 927 

Figure 8. FFT of the calculated displacement responses at Lm= 0.5 m for linear situation, and 928 

situations consider only geometric nonlinearity, and both material and geometric nonlinearities in 929 

the SFE simulation 930 
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 932 

Figure 9. FFT of the calculated displacement responses at Lm= 0.5 m for different excitation cycles 933 
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 935 

 Figure 10. The second harmonic amplitude versus the fundamental amplitude for varying number 936 

of cycles of the excitation signal (solid line: analytical results; markers: SFE simulation results) 937 
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 939 

Figure 11. The second harmonic amplitude versus the fundamental amplitude for varying excitation 940 

amplitude (solid line: analytical results; markers: SFE simulation results) 941 
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 943 

Figure 12. (a) Spectrogram obtained by STFT and (b) the corresponding time domain displacement 944 

response for a beam model with a crack having dc =2.5 mm and Lc = 0.5 m 945 
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 947 

Figure 13. Normalized second harmonic amplitude of the displacement responses as a function of 948 

normalized crack to beam depth ratio (dc/h) 949 
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 951 

Figure 14. Group velocity dispersion curve for AI 6061-T6 beam 952 
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 954 

Figure 15. Measured time domain signal for a) Case 1, b) Case 2 and c) Case 3 955 

 956 

  957 



 958 

Figure 16. Spectrogram of the measured signals for a) Case 1, b) Case 2 and c) Case 3 959 


