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Abstract 

Chickpea is a major pulse crop grown in the Australian cropping system. It can fix a substantial 

amount of nitrogen (N) when it forms a symbiotic association with highly effective 

Mesorhizobium spp. Phosphorus (P) is an important nutrient for efficient chickpea-

Mesorhizobium symbiosis. Chickpea exudes large amounts of carboxylates that can mobilise 

P from sparingly soluble P sources. Additionally, a number of bacteria associated with plant 

roots are capable of solubilising P, and these bacteria are generally called phosphate 

solubilising bacteria (PSB). Such bacteria that are able to promote plant growth more generally 

are designated as plant growth-promoting rhizobacteria (PGPR). However, PSB do not always 

enhance the chickpea-Mesorhizobium symbiosis under different P conditions. Additionally, the 

responsible plant growth-promoting (PGP) mechanisms have not always enhanced P 

solubilisation. Therefore, this study was investigated whether efficient PSB could enhance the 

chickpea-Mesorhizobium symbiosis in a widely varied P condition. Firstly, this study was 

tested whether pre-screening methods result in efficient PSB, if selected efficient P solubilisers 

had the ability of PSB to solubilise P from a wide array of P sources, and if the expression of 

PGP characteristics can directly and indirectly affect the plant P nutrition. Additionally, plant-

related factors that may affect chickpea P nutrition were investigated. Accordingly, this study 

was hypothesised that the presence of high carboxylate concentrations and acidic pH in the 

chickpea rhizosphere may affect the efficiency of PSB. 

Seventy-four soil samples collected from major agricultural lands across Australia were used 

in this research. Major soil chemical and physical properties were examined. A total of 743 

isolates of Bacillus- and Pseudomonas-like bacteria were isolated using taxonomically 

selective methods of extraction. Based on 16S rRNA sequences, these isolates were closely 

related to diverse species of Bacillus, Pseudomonas and Burkholderia spp. (formerly classified 

as Pseudomonas spp.). Of 743 isolates, 616 (83%) were able to produce IAA in the presence 

of L-tryptophan. 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was detected 

in 57 isolates (7.7%) in vitro. All isolates were further tested for their ability to promote 

seedling growth. Most of these isolates (71%) were able to promote seedling root elongation. 

The effect of isolates on seedling growth predicted their effect on nodulation and growth of 

chickpea after dual inoculation in aseptic conditions. The effect of rhizobacteria on seedling 

root growth and chickpea-Mesorhizobium symbiosis was associated with their capacity to 

produce IAA and ACC deaminase. The synthesis of IAA along with ACC deaminase activity 
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by rhizobacteria gave an added advantage by promoting the ability of rhizobia to form an 

efficient chickpea-Mesorhizobium symbiosis as measured by biomass production and 

nodulation. Most of the isolates able to express both PGP traits belonged to the genus 

Burkholderia. Hence, the use of a plant-based first-stage screening strategy in combination 

with assays for in vitro production of IAA and ACC deaminase enabled the identification of 

efficient PGPR that were able to enhance the legume-rhizobia symbiosis. 

The influence of soil, climatic and crop management variables on the occurrence of PGPR and 

their PGP characteristics was examined. IAA production by isolates and their beneficial effects 

on chickpea root elongation were associated positively with soil copper, manganese and zinc 

concentrations and the aridity index, and negatively with soil carbon (C), N, C/N ratio, Ca and 

P at the sampling sites from which the PGPR were isolated. Additionally, the P solubilisation 

activity of the isolates was also negatively correlated with C/N ratio, N, P, C and magnesium 

content of the soils. However, none of the investigated soil environment variables were 

correlated with the potential of the isolates to express ACC deaminase. A greater proportion of 

IAA producing PGPR had a greater ability to withstand metal ion toxicity and water stress. 

Therefore, these findings have potential application in designing a strategy for the development 

of efficient PGPR that have ecological traits and plant growth-promoting mechanisms that may 

increase chickpea production. 

An additional 98 novel strains of P solubilising bacteria were isolated through enrichment in 

media with AlO4P, Ca3(PO4)2 or FeO4P. Following enrichment, the proportion of PSB among 

total culturable bacteria was significantly increased compared with the PSB population in the 

original soils. These isolates were assigned into twenty-five bacteria genera based on 16S 

rRNA sequences. The majority of these isolates belonged to Burkholderia, Variovorax, 

Leifsonia, Pantoea and Rhizobium. These isolates had a greater P solubilisation index (PSI) 

than those obtained using the taxonomically selective method. From both isolation methods, 

seven isolates, namely Peribacillus simplex 37F, Bacillus megaterium 8F, Pseudomonas 

fluorescens 27F, Bacillus pumilus 98F, Bacillus cepacia 126F, Burkholderia sp. 12F and 

Burkholderia cenocepacia 127F were proportionally selected, based on their PSI values, to 

investigate their P solubilisation ability in liquid media. Generally, isolates obtained following 

enrichment were able to solubilise between 1.2 to 2.8, 1.2 to 3.1 and 1.5 to 4.5-fold Pi from 

AlO4P, Ca3(PO4)2 or FeO4P than those obtained using the taxonomically selective method. The 

P solubilising efficiency was related to citrate and α-ketoglutarate production in vitro. 
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Enriching rhizobacteria by culture in conditions with sparingly soluble P increased the 

likelihood of isolating elite PSB from bulk soils and plant rhizospheres. 

The relationship between the phosphate solubilising ability of plant growth-promoting 

rhizobacteria and their ability to produce ACC deaminase was analysed. Five isolates, namely 

B. megaterium 8F, B. pumilus 98F, B. cepacia 126F, Burkholderia sp. 12F and B. cenocepacia 

127F were selected based on their potential for P solubilisation and their ability to express ACC 

deaminase. Generally, ACC deaminase had no role in AlO4P and FeO4P solubilisation. 

However, the amount of ACC deaminase produced by PSB was significantly associated with 

the liberation of Pi from Ca3(PO4)2 when ACC was the sole N source. Ca3(PO4)2 solubilisation 

was associated with the extent of acidification of the medium. Additionally, α-ketobutyrate by 

itself was able to solubilise significant amounts of Pi from AlO4P, Ca3(PO4)2 and FeO4P. 

Conversely, the P solubilisation potential of PSB was independent of their ability to express 

ACC deaminase activity when (NH4)2SO4 was the sole N source.  

The ability of efficient PSB isolates, namely Burkholderia sp. 12F, P. fluorescens 27F and B. 

cenocepacia 127F, selected based on their ability to solubilise P from different rock phosphates 

(as above), was investigated. Results showed the highest potential of Burkholderia sp. 12F in 

P solubilisation from Boucraa, Togo, Sechura and Weng Fu rock phosphates. All bacterial 

isolates poorly solubilised Phalaborwa, Peru or Vietnam rock phosphate. The solubilisation of 

these P sources by the PSB was not related to the amount of available and total P, nor to the 

concentration of Al3+, Fe2+ and Cd3+ in the rock phosphate. Additionally, their solubility in 

carboxylates was varied and higher solubility was recorded in di- and tri-carboxylates than for 

mono-carboxylates added separately. The variation in P solubilising activities between 

Burkholderia sp. 12F, B. cenocepacia 127F and P. fluorescens 27F was not associated with 

acidification of their culture media. The highest P solubilising activity of Burkholderia sp. 12F 

was related to its ability to produce citrate, malate and maleate during mineral phosphate 

solubilisation.  

The effect of IAA and its precursor L-tryptophan on the P solubilising activity of rhizobacteria, 

namely B. pumilus 98F, B. cenocepacia 127F, Burkholderia sp. 12F and P. fluorescens 27F, 

was investigated. The ability to produce IAA was related to the improved potential of PSB to 

solubilise P from rock phosphate. The addition of L-tryptophan to growth media improved the 

P solubilising activity of PSB that were able to produce IAA. A remarkable effect of this 

precursor on P solubilisation was observed for B. cenocepacia 127F and Burkholderia sp. 12F, 
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that produced 41.9 and 54.3 µg mL-1 IAA, respectively. Additionally, the potential of 

Burkholderia sp. 12F to solubilise rock phosphate was increased with increasing IAA 

concentration in the media. This effect was connected to the reduction of pH and release of 

high concentrations of carboxylates, comprising α-ketoglutarate, cis-aconitate, citrate, malate 

and succinate.  IAA solution by itself was able to liberate Pi only between 1.45 to 3.00 µg Pi 

L-1 from rock phosphate. Therefore, increased production of organic acids rather than IAA 

production per se may be the possible mechanism by which IAA ultimately resulted in the 

improved capacity of PSB in P solubilisation. 

Based on the above experiments, Burkholderia sp. 12F was selected to examine its P 

solubilising activity in chickpea root exudates and its effect on the chickpea-Mesorhizobium 

symbiosis. The ability of the root exudates obtained from six chickpea cultivars to mobilise P 

was tested in the presence and absence of PSB. In particular, the root exudates were able to 

solubilise Togo rock phosphate but not Peru rock phosphate in vitro. In this case, the amount 

of solubilised P by root exudates was not related to the extent of acidity in the root exudates 

before and after incubation. The presence of PSB significantly increased the amount of 

solubilised P in all root exudates from both rock phosphates. 

The efficiency of Burkholderia sp. 12F to alter the chickpea-Mesorhziobium symbiosis was 

tested using six cultivars. In this experiment, four P sources including Peru and Togo rock 

phosphate, K2HPO4 and the control check (no added P) were used. Inoculation of PSB 

significantly increased shoot and root biomass production, and nodulation of chickpea cvv. 

Genesis-863, PBA-Striker and PBA-Slasher but did not significantly affect Ambar, Genesis-

079 and Genesis-090. Increased nodulation and growth of chickpea following inoculation of 

PSB were not always explained by increasing P nutrition. PSB inoculation significantly 

increased the P concentration in the rhizosphere of plants fertilised with Togo and Peru rock 

phosphate. In this case, P uptake was associated with P concentration in the rhizosphere extract. 

Additionally, P uptake by plants fertilised with K2HPO4 was increased following inoculation 

with PSB. In this case, the PSB did not affect the P concentration in the rhizosphere but 

improved root biomass. An increased P concentration in the rhizosphere following PSB 

inoculation was not related to the extent of acidity in the rhizosphere. More acidity in 

rhizosphere was instead associated with more nodulation. This may suggest that more 

nodulation may have a positive feedback effect on further solubilisation of P, which acidified 

the rhizosphere.  
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In conclusion, the selection of PSB following enrichment and selection of rhizosphere isolates 

from the genera Bacillus, Pseudomonas and Burkholderia provided efficient isolates able to 

solubilise P from diverse P sources. Plant-based screening of these isolates indicated the 

possible PGP traits (ACC deaminase and IAA production) that could affect chickpea growth 

and nodulation. These traits affected the P solubilising activity of efficient PSB in vitro as well. 

Although chickpea releases a large amount of carboxylate and has an acidic rhizosphere pH, 

inoculation of the PSB Burkholderia sp. 12F increased the nodulation, growth and P uptake of 

some cultivars of chickpea. This PSB isolate did not affect the cultivars that by themselves 

produce relatively high carboxylate concentrations. Enhancing the chickpea-Mesorhizobium 

symbiosis was mediated by multiple PGP traits, including P solubilisation and possibly IAA 

and ACC deaminase production. Future research is considered in the final part of this 

document.
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Chapter 1. Introduction 

Chickpea is the third most important cool-season legume after common beans and peas, with 

an approximate production of 17.2 million tons cultivated over 17.8 million ha (FAOSTAT, 

2020). In that same period, about 0.9 million tons of chickpea was produced in Australia over 

1.1 million ha of cultivated land. Chickpea is a good source of protein, energy, minerals, 

vitamins, fiber, and also contains health-beneficial phytochemicals in human diets (Yadav and 

Chen 2007). Chickpea obtains a significant proportion of its N requirement from symbiotic N2 

fixation, and has a high N-fixing efficiency of symbiosis, fixing between 55 to 72% of total 

plant N derived from the air (Mefti 2003). In Australia, the percentage of crop N derived from 

N2 fixation ranged between 0 to 81% and total N2 fixed from 0 to 99 kg ha-1 with net N balance 

between -47 to +46 kg ha-1 (Schwenke et al. 1998). 

The productivity of chickpea and its ability to fix N is affected by abiotic and biotic stresses. 

Of those stresses, phosphorus (P) is one of the most critical nutrients limiting chickpea 

productivity in major chickpea growing areas (Srinivasarao et al. 2006; Ahlawat et al. 2007; 

Korbu et al. 2020). In particular, the legume-rhizobia symbiosis requires more P for maximum 

N2 fixation activity because this process requires energy in the form of adenosine triphosphate. 

P deficiency suppresses N2 fixation through decreased sucrose and hexose supply and energy 

status in nodules, total respiration rate and root ATP concentrations (Liu et al. 2018). In the 

rhizosphere, there are heterogeneous and naturally abundant rhizospheric bacteria that can 

solubilise forms of P otherwise unavailable ot the plant. These bacteria are known as phosphate 

solubilising bacteria (PSB). When PSB are able to promote plant growth, they are generally 

designated as plant growth-promoting rhizobacteria (PGPR) (Swift et al. 2018; Alemneh et al. 

2020). Nodulation and yield of chickpea increased following inoculation of PGPR able to 

solubilise P, although their effect was not always linked with  P nutrition (Zaidi et al. 2003; 

Rudresh et al. 2005; Mittal et al. 2008; Verma et al. 2012; Singh et al. 2014; Verma et al. 2014; 

Imen et al. 2015; Saxena et al. 2015; Israr et al. 2016; Rajwar et al. 2018). Additionally, PGPR 

with high potential P solubilising activity in vitro reported in the literature have not always 

enhanced chickpea-Mesorhizobium symbiosis under controlled environment and field 

conditions. Such a discrepancy in effect between in vitro and in vivo conditions may be due to 

many factors associated with the host plant and the PSB.  
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Phosphorus is assimilated by the soil microbial biomass as an essential component for crucial 

cellular functions. To fulfil this requirement, soil microorganisms solubilise P from sparingly 

soluble P source to satisfy their needs. PSB are thought to solubilise P over and above their 

own needs, and then directly provide P to the plant to serve its growth. Recent studies using 

isotope techniques have indicated that an improved P uptake following PSB inoculation was 

not related to an increase in P concentration in the rhizosphere (Meyer et al. 2017; Sarabia et 

al. 2018), suggesting the involvement of PGP traits other than P solubilising activity. A recent 

review paper has also suggested that P solubilising microorganisms do not solubilise adequate 

P to change to the crops’ nutrient environment under in vivo conditions (Raymond et al. 2021). 

Therefore, the P solubilising activity of PSB to be able to serve plant growth is considered 

uncertain. This indicates the need for selecting the most efficient PSB capable of expressing 

PGP traits besides P solubilising activity that can promote plant growth and enhance 

nodulation. 

The relatively large amount of carboxylates in the root exudate in the chickpea rhizosphere 

compared with other legume plants (Ohwaki and Hirata 1992; Veneklaas et al. 2003; 

Wouterlood et al. 2005; Pearse et al. 2007; Kabir et al. 2015), enables them to use P from 

insoluble soil P reserves and other poorly soluble P sources (Veneklaas et al. 2003; Pang et al. 

2018; Sharma et al. 2020; Wen et al. 2020). This characteristic of chickpea may affect the 

ability of the PSB function in plant P nutrition. The purpose of this thesis is, therefore, to 

address the following questions: (1) does a seedling growth bioassay predict plant growth 

potential of rhizobacteria in chickpea-Mesorhizobium symbiosis? (2) do rhizosphere soils 

incubated in low P conditions become enriched in efficient PSB? (3) do soil and environmental 

factors predict the performance of soil bacteria in promotion of plant growth and their ability 

to produce IAA and ACC deaminase, and to solubilise P? (4) is phosphate solubilising ability 

in plant growth-promoting rhizobacteria linked to their ability to produce ACC deaminase? (5) 

does IAA concentration affect the potential for rhizobacteria to solubilise P in vitro? and (6) 

do the amount of carboxylates and rhizosphere pH in various chickpea cultivars and the ability 

of PSB to express different PGP mechanisms besides P solubilising activity determine the 

efficiency of PSB in improving P concentration in plants, nodulation and growth of chickpea 

co-inoculated with rhizobia? The relationship between these research questions is indicated as 

follows: 
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Fig. 1. Thesis structure highlighting the relationship among specific research questions for the 

experimental chapters  

1.1. Aims  

The purpose of this study was to investigate if effective PSB could enhance the chickpea-

Mesorhizobium symbiosis through improved P nutrition. The specific questions formulated to 

address the overall purposes of the thesis are provided in Fig 1. 

This study hypothesised that novel and efficient PSB with IAA and ACC deaminase activities 

would enhance the chickpea-Mesorhizobium symbiosis through improving P nutrition.  

1.2. Thesis structure 

The thesis is structured according to the questions shown in Fig. 1; each question is addressed 

in the associated chapter. Chapter 1 provides a general introduction, states the purpose of the 

research and outlines the structure of the thesis. Chapter 2 reviews pertinent literature about 

the theoretical background to the research and methodologies of the experiments. Chapter 3 

investigates the comparative value of selecting plant growth-promoting rhizobacteria using in 

vitro or plant-based assays. Chapter 4 examines the soil and environmental factors that might 

predict the capacity of soil and rhizosphere bacteria to promote plant growth. Comparing the 

Do beneficial rhizobacteria enhance the 
chickpea-Mesorhizobium symbiosis?

Introduction (Chapter 1)

Mechanisms in plant growth promoting 
rhizobacteria that enhance legume-

rhizobia symbiosis, a review (Chapter 2)

Does a seedling growth bioassay predict 
plant growth promoting potential of 

rhizobacteria in the chickpea-
Mesorhizobium symbiosis? (Chapter 3)

Do the rhizosphere soils incubated 
in low P conditions become 
enriched in efficient PSB? 

(Chapter 5)

Do soil and environmental factors predict the 
performance of soil bacteria to promote the plant 
growth and their ability to produce IAA and ACC 

deaminase, and to solubilise P? (Chapter 4)

Is phosphate solubilising ability of
plant growth promoting 

rhizobacteria linked to their ability 
to produce ACC deaminase? 

(Chapter 6)

Does IAA concentration affect the 
potential for rhizobacteria to 

solubilise P in vitro (Chapter 7) 

Do the amount of carboxylate and pH values in the rhizosphere of chickpea 
cultivars and the ability to express different PGP mechanisms besides P 

solubilising activity determined the efficiency of PSB in improving plant P 
concentration, nodulation and growth of chickpea (Chapter 8)
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effectiveness of PSB obtained using either enrichment or taxonomically selective methods is 

presented in Chapter 5. Analysing the relationship between phosphate solubilising ability of 

plant growth-promoting rhizobacteria and their ability to produce ACC deaminase is presented 

in Chapter 6. An investigation of the relationship between phosphate solubilising ability of 

plant growth-promoting rhizobacteria with their ability to produce IAA is presented in Chapter 

7. The performance of PSB when inoculated on to chickpea cultivars with contrasting 

rhizosphere carboxylate concentrations and pH and root biomass is investigated in chapter 8. 

In Chapter 9, the significance of the results of the experiments conducted in presented in the 

context of the literature and potential future research activities are suggested.  
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2.2. Introduction 

Biological N2 fixation (BNF) is one of the most important microbiological processes in 

terrestrial ecosystems through which reduced N is introduced into the biosphere. There are 

three major types of BNF: free-living, associative and symbiotic N2 fixation. In terrestrial 

ecosystems, approximately 33 to 46 Tg of N year-1 is obtained through the legume-rhizobia 

symbiosis, which represents about 80% of the total of biologically fixed N (Herridge 2008). N2 

fixation in legume-rhizobia symbioses is facilitated by rhizobia, which are gram-negative, 

facultative aerobic and motile bacteria. At present, 180 nodulating species of bacteria in 21 

genera have been identified as nodule forming endosymbionts (Wang et al. 2019). Among 

them, the major genera of bacteria that can form a symbiotic association with legumes are 

Rhizobium, Bradyrhizobium, Azorhizobium, Mesorhizobium, Ensifer (formerly 

Sinorhizobium), Neorhizobium, Pararhizobium and Allorhizobium, collectively known as 

‘rhizobia’. Moreover, beta-rhizobia belonging to genera Cupriavidus, Paraburkholderia and 

Trinickia are identified; these bacterial genera form mutual interactions with Papilionoideae 

and Caesalpinioideae (LPWG 2017; Sprent et al. 2017).  

The rhizosphere is an important soil chemical and ecological zone close to the roots of plants 

where substantial plant-microbe interactions occur (Zhou et al. 2020). Some of the bacteria in 

the rhizosphere are able to promote plant growth and protect plants from biotic and abiotic 

stresses are known as plant growth-promoting rhizobacteria (PGPR) (Berg 2009). Non-

rhizobial bacteria that specifically improve legume-rhizobia interactions can be termed 

nodulation enhancing rhizobacteria (NER). The beneficial effects of NER are mediated by a 

variety of mechanisms including the production of diverse metabolites and enzymes from 

microbes and those indirectly elicited from plants due to NER activity.  

Among plant growth-promoting (PGP) metabolites and enzymes, indoleacetic acid (IAA) 

and/or 1-aminocyclopropane-1-carboxylate (ACC) deaminase have been frequently suggested 

as important PGPR mechanisms that can promote plant growth (Li et al. 2000; Gravel et al. 

2007; Bal et al. 2013). ACC deaminase is an enzyme that can decrease deleterious amounts of 

ethylene in higher plants. IAA is an important phytohormone that is involved in many plant 

developmental processes. Consequently, IAA and ACC deaminase are both important in 

regulating plant growth. However, plant growth inhibition can occur when plants are exposed 

to a high concentration of IAA in their rhizosphere (Tabatabaei et al. 2016). This inhibition 

effect could be associated with the transcription of ACC synthase (Glick et al. 2007) and 
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increased production of ethylene. This feedback inhibits IAA transport and signal transcription, 

suppressing the effect of IAA on plant growth. However, the presence of ACC deaminase in 

the rhizosphere can reduce the ethylene concentration from the plant through hydrolysis of 

ACC, the immediate precursor for ethylene synthesis, into NH3 and α-ketobutyrate (Glick et 

al. 1998; Glick 2014). In this way, IAA and ACC deaminase work together and promote greater 

plant growth, as suggested in Fig. 1. Considerable progress has been made in our understanding 

of the morphological, molecular and physiological effects of ACC deaminase and IAA on plant 

growth and development under optimal growth and stressed conditions. However, the detailed 

mechanisms by which ACC deaminase and IAA, expressed either individually or 

simultaneously by a PGPR isolate, influence the legume-rhizobia symbiosis, remain elusive. 

Current knowledge of PGPR, their metabolites, and the effect of inoculation of PGPR on plant 

growth and development under stressed and standard growth conditions have been summarized 

in several reviews (Ahemad and Kibret 2014; Pérez-Montaño et al. 2014; Zaidi et al. 2015; 

Forni et al. 2017). This review focuses specifically on the roles played by IAA production and 

ACC deaminase in the enhancement of the legume-rhizobia symbiosis by NER and discusses 

possible modes of action by which these two PGP traits promote nodule induction and nodule 

function under normal and stressed conditions.  

2.3. Legume-rhizobia-PGPR interactions 

Nodule formation and the effectiveness of nitrogen fixation symbioses are partially determined 

by the populations of rhizobia in soils or commercial rhizobia applied at seeding and their 

effectiveness in N2 fixation. Soils that have low rhizobial populations result in insufficient 

nodulation and N2 fixation that can be increased by inoculation with elite rhizobia (Mapfumo 

et al. 2000; Vargas et al. 2000; Furseth et al. 2012; Batista et al. 2015). Legume seed inoculated 

with commercial rhizobial isolates need to out-compete less effective resident rhizobia to form 

nodules (Denton et al. 2002). Inoculation with known strains of effective rhizobia can increase 

rhizobial populations in the rhizosphere and enhance nodulation and N2 fixation (Brockwell et 

al. 1995; Deaker et al. 2004; Denton et al. 2013; Denton et al. 2017). In situations where 

resident soil rhizobia populations are above 100 g−1 soil, they can cause a competitive barrier 

that interfere with the nodule formation by the introduced rhizobia (Thies et al. 1991; 

Brockwell et al. 1995). One alternative strategy to improve the efficacy of introduced and 

resident rhizobia can be through the combined use of NER (Tilak et al. 2006; Hungria et al. 

2013).  
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Nodule enhancing rhizobacteria have the potential to enhance nodule formation and N2 fixation 

of legumes when co-inoculated with elite rhizobia. NER improve nodulation and N2 fixation 

through different direct and indirect mechanisms, including production of one or more 

phytohormones, most often IAA, gibberellic acid and cytokinins (Bottini et al. 1989; Hayashi 

et al. 2014). In addition, they can increase nutrient (mainly P and Fe) availability in the root 

zone (Chebotar et al. 2001; Argaw 2012), inhibit phytopathogens (Tavares et al. 2018) and 

modify rhizosphere chemicals, such as ethylene (Nascimento et al. 2018). The use of NER can 

significantly increase the ability of rhizobia resident in soil to form nodules, fix N and increase 

growth in soybean, Glycine max (Dashti et al. 1998), mung bean (Shaharoona et al. 2006), 

chickpea, Cicer arietinum (Abdiev et al. 2019), and common bean (Chihaoui et al. 2015). 

Likewise, the use of a NER, Azospirillum brasilense, inoculated in combination with elite 

rhizobial strains can increase nodulation and amount of fixed N derived from symbiosis in 

soybean (Hungria et al. 2015), common bean, Phaseolus vulgaris (Remans et al. 2008) and 

lentil, Lens culinaris (Tsigie et al. 2011). In particular, the co-inoculation of Bradyrhizobium 

in combination with A. brasilense on soybean under different soil and climatic conditions in 

Brazil resulted in yield increase up to 11.2% over the rhizobia inoculation alone (Hungria et 

al. 2015; Okon et al. 2015; Galindo et al. 2018). Despite this, the mechanisms by which the 

NER enhance the nodulation potential of inoculant and soil rhizobia remain elusive.  

Environmental factors affect the efficacy of rhizobia-NER-host plant interactions by altering 

the ability of NER and rhizobia to survive and express PGP traits. The level of P in the soils 

determines the efficacy of the introduced NER in nodulation and plant growth (Remans et al. 

2007). In that study, the effect of IAA producing A. brasilense Sp245 and Bacillus subtilis 7135 

on nodulation and growth of common bean was more pronounced in soil supplied with 

sufficient P when inoculated with R. etli CNPAF512 but co-inoculation was detrimental to 

those factors in P deficient soils. Furthermore, soil pH directly affects P dynamics and can 

determine the impact of inoculating an IAA-producing Pseudomonas monteilii on the legume-

rhizobia symbiosis (Sánchez et al. 2014). In this study, bacterial inoculation had a positive 

effect on nodulation at neutral soil pH, but the effect of NER on nodulation and plant growth 

in acidic soils was detrimental. The lethal effect of IAA from NERs under stress conditions is 

related to high ethylene production as a result of P deficient conditions (Persello-Cartieaux et 

al. 2003; Ona et al. 2005) relating to synthesis of more ACC synthase (Xie et al. 1996). This 

result supports the work of Tittabutr et al. (2013), in which Pseudomonas putida UW4 reduced 

ethylene based on the production of ACC deaminase (Glick 2005; Ali et al. 2014). The ethylene 
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reduction occurred more strongly under P deficient than P sufficient conditions. Similar effects 

of ACC deaminase have been observed under a variety of stress conditions including saline 

soils (Ahmad et al. 2012; Chinnaswamy et al. 2018), drought (Belimov et al. 2019), high 

temperatures (Tittabutr et al. 2013) and in metal contaminated soils (Safronova et al. 2012; Ju 

et al. 2019). Salt-tolerant ACC-deaminase producing NER enhanced the nodule formation by 

salt intolerant rhizobia on fodder galega (Egamberdieva et al. 2016). When only rhizobia were 

inoculated, the ability to colonise the plant rhizosphere under salt stress was impaired, 

suggesting that NER can be involved in the survival and persistence of inoculated rhizobia in 

the rhizosphere. A positive influence of ACC deaminase activity under stress can be associated 

with greater production of the enzyme by the NER (Tittabutr et al. 2013) which results in 

further reduction of ethylene, a negative regulator of nodule formation (Guinel and Geil 2002). 

Moreover, ACC deaminase effectively stimulated root growth (Noreen et al. 2012), which 

helps the plant withstand a stressed environment by taking up more nutrients in nutrient-

deficient soils (Barnawal et al. 2014) and can increase water uptake in drought conditions 

(Belimov et al. 2009). The positive influence of NER on nodulation and plant growth under 

stress are also associated with the expression of genes involved in the stress-tolerance of the 

host plant (El-Esawi et al. 2018). In that study, up-regulation of genes encoding four 

antioxidant enzymes (APX, CAT, POD, Fe-SOD), increased the potential to eliminate toxic 

free radicals, and led to the up-regulation of transcripts of six stress-related genes (GmVSP, 

GmPHD2, GmbZIP62, GmWRKY54, GmOLPb, CHS) when soybean was inoculated with 

Serratia liquefaciens KM4. However, the positive influence of PGPR traits, such as ACC 

deaminase, are more important in plant growth promotion under stress conditions, and can be 

impaired when plants are challenged with multiple stresses (Belimov et al. 2019). Under these 

conditions, the use of salt and drought tolerant NER’s able to express multiple PGP traits 

improved the nodulation potential of co-inoculated rhizobia under drought and salt-affected 

soils compared with rhizobia inoculated alone (Noori et al. 2018). This result indicates that the 

ability of both symbiotic partners to tolerate multiple stresses determines the successful 

synergy that ultimately results in improvement in nodulation and growth of the plant. The 

efficacy of NER inoculants in the field has frequently been very low and the literature reviewed 

suggests that understanding how the environmental factors influence the performance of NER 

and the expression of associated PGP traits is important to improve the performance and 

reliability of these beneficial bacteria in field conditions. 
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Fig. 1 overall mechnisms of reduction of ethylene synthesis and accumulation of IAA in the 

nodule induction region by ACC deaminase and IAA producing PGPR. ACC 1-

aminpcyclopropane-1-carboxylic acid; SAM, S-adenosylmethionine 

2.4. ACC deaminase producing NER 

ACC deaminase is a pyridoxal 5-phosphate (PLP)-dependent multimeric enzyme with a 

molecular mass of 35 - 42 kDa and was first reported by Honma and Shimomura (1978). ACC 

deaminase was first described as a PGP molecule by Glick et al. (1998). This enzyme is 

localized within the cytoplasm of the microorganisms that produce it (Jacobson et al. 1994). 

The gene that encodes ACC deaminase is the acdS gene (Honma and Shimomura, 1978) 

although some microbial isolates carrying the acdS gene did not express the enzyme in the 

absence of a host plant (Contesto et al. 2008). Along with this finding, in endosymbiotic 

bacteria such as M. loti, the acdS gene was found in the symbiotic island and its expression 

depends upon the N2 fixation regulator NifA2 (Nukui et al. 2006).  

A broad range of rhizobacteria expresses ACC deaminase (Minami et al. 1998; Shah et al. 

1998; Sterky et al. 1998; Jia et al. 2000). When ACC is produced by a plant and exuded, 

rhizobacteria that express ACC deaminase can take up ACC and degrade it within the bacterial 
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cytoplasm (Glick et al. 1998; Penrose and Glick 2003). ACC deaminase can also degrade 

substrates other than ACC, such as D-serine (Walsh et al. 1981). The enzyme has low Km 

values for degradation of ACC, varying between 1.5 and 17.5 mM (Honma and Shimomura 

1978), that are either constitutively produced or newly synthesised during nodule initiation 

(Ligero et al. 1986; Spaink 1997) and under stressed conditions in plant roots (Saleem et al. 

2007). The bacteria that take up ACC from the rhizosphere can use it as an energy and/or N 

source (Glick et al. 1998). Because ACC is a precursor of ethylene, its degradation by ACC 

deaminase does help to lower ethylene levels, particularly in plants exposed to stress. 

2.4.1. Nodule initiation 

Ethylene is synthesised by the plant in response to biotic and abiotic stresses, and when roots 

initiate the symbiotic association with rhizobia (Ligero et al. 1986; Abeles 1992; Suganuma et 

al. 1995; Spaink 1997). Ethylene inhibits infection of rhizobia and nodulation of various 

legume species including Pisum sativum (Lee and LaRue 1992), Trifolium repens (Goodlass 

and Smith 1979) and Medicago sativa (Peters and Crist-Estes 1989). Ethylene production in 

the legume roots is typically increased after the application of rhizobial cells and this 

phytohormone acts as an autoregulator for nodule formation and development during 

symbiosis (Ligero et al. 1991; Lohar et al. 2009). Ethylene inhibits nodule formation by 

interfering with root hair deformation, elongation of the infection thread into the inner cortex, 

calcium spiking and proliferation of rhizobia (Penmetsa and Cook 1997; Oldroyd et al. 2001; 

Tamimi and Timko 2003). In soybean, up to 8 mmol L-1 ethylene was evolved between 24-48 

hrs after inoculation with Bradyrhizobium (Ligero et al. 1999). Moreover, nodules accumulated 

almost twice as much ethylene per unit weight as roots did (Hunter 1993). An ethylene 

concentration as low as 0.014 mmol L-1 inhibited nodulation in Pisum sativum (Drennan and 

Norton 1972). When soybean was inoculated with Bradyrhizobium and Ag+ (an inhibitor of 

ethylene action), nodule number was markedly increased due to a reduced ethylene synthesis 

compared with inoculation alone (Ligero et al. 1999). 

Nodule reduction at early stage because of ethylene production can be attenuated by NER 

(Nascimento et al. 2016). Reduction of ethylene synthesis by ACC deaminase likely plays an 

important role in directly assisting nodule formation. The co-inoculation of elite rhizobia and 

NER with high ACC deaminase activity has enhanced nodulation in chickpea (Shahzad et al. 

2010) and lentil (Zahir et al. 2011) relative to nodulation in the absence of the NER. Further 

examples of the effects on nodulation of legume plants from ACC deaminase produced either 
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by the endosymbiont or by the NER are shown in Table 1. Ma et al. (2003) delineated the role 

of ACC deaminase from Rhizobium leguminosarum bv. viciae 128Sm in the nodulation 

process; two knockout mutants that did not produce ACC deaminase and one mutant that could 

overproduce this protein were investigated for their ability to nodulate P. sativum L. cv. 

Sparkle. The number of nodules induced by the ACC deaminase negative mutant of rhizobia 

was approximately 25% less than for nodulation induced by the parental strain. In addition, an 

ACC deaminase-producing Sinorhizobium meliloti strain had up to 40% greater efficiency in 

forming nodules in M. sativa than did a mutant of the parent strain lacking ACC deaminase 

activity (Ma et al. 2004). The positive influence of this enzyme on the early stage of nodule 

formation is likely to be achieved through reducing the ethylene concentration in the region 

between the root epidermis and the outermost cortical cell layer where the infection threads 

progress towards the site of nodule primordium formation. This is the main site at which 

ethylene interferes with nodule development (Guinel and Geil 2002). However, a mutant that 

produced over twice the ACC deaminase (3.24 ± 0.24 µmol of α-ketobutyrate. h-1. mg of 

protein-1) did not significantly improve nodulation compared with the ACC deaminase 

producing parent strain (1.56 ± 0.23 µmol of α-ketobutyrate. h-1. mg of protein-1). On the other 

hand, inoculation with S. meliloti (2.26 µmol of α-ketobutyrate. h-1. mg of protein-1) containing 

exogenous acdS as well as co-inoculation with S. meliloti and P. putida UW4 (3.38 µmol of α-

ketobutyrate. h-1. mg of protein-1) in Medicago lupulina, showed a remarkable increase in 

nodule number compared with plants inoculated with wild type S. meliloti under copper stress 

(Kong et al. 2015). This positive influence of overproduction of ACC deaminase on nodule 

initiation indicates the need for higher ACC deaminase activities to alleviate the ethylene-

associated constraint on nodulation.  

ACC deaminase produced by endophytic bacteria improves nodule development besides 

inducing more nodules. The endophytic Serratia grimesii BXF1 overproduced ACC deaminase 

(12.0 µmol of α-ketobutyrate h-1. mg of protein-1) when co-inoculated with R. tropici CIAT899 

and led not only to increased nodulation when co-inoculated with Rhizobium, but also enhanced 

nodule development, with the nodules appearing larger and with a more pronounced pink tone 

(indicative of greater N2 fixation) (Tavares et al. 2018). This suggests a role of ACC deaminase 

in promoting nodule development when the enzyme is present in the nodule. Leucaena 

leucocephala was co-inoculated with a strain of Rhizobium sp. TAL1145 and a mutant of the 

strain Sinorhizobium sp. BL3 that, because of the presence of multiple copies of plasmids 

containing acdS, produced more ACC deaminase (5.4 mmol of α-ketobutyrate mg-1 protein h-
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1) than the wild type strain. The co-inoculation resulted in a greater number and size of nodules 

than on plants inoculated with the wild type Sinorhizobium sp. BL3 strain which produced less 

ACC deaminase (Tittabutr et al. 2008). These studies clearly indicate that the expression of 

ACC deaminase by endosymbiont and endophytic bacteria in the nodule tissue can determine 

the degree of enhancement of nodulation.  

2.4.2. Rhizobial competitiveness for nodulation 

NER can improve the competitiveness and nodule occupancy by introduced elite rhizobia 

relative to the indigenous rhizobia (Tilak et al. 2006). Many rhizosphere microbial 

communities that enhance plant growth and provide protection from stresses are also able to 

increase the competitiveness of effective rhizobia for nodulation. In this regard, a study on the 

competitiveness of Bradyrhizobium diazoefficiens (formerly B. japonicum USDA110) and B. 

japonicum USDA 118 to form nodules on soybean revealed that out of 17 NER that were co-

inoculated with these strains, 3 increased nodulation potential of B. diazoefficiens USDA 110 

(Polonenko et al. 1987). This positive effect was not observed with B. diazoefficiens USDA 

110 inoculated alone. Another study reported an increase in the proportion of nodules occupied 

by inoculant Rhizobium from 50% (with Rhizobium alone) to 85% on pigeonpea through co-

inoculation with Pseudomonas putida (Tilak et al. 2006). Greater colonisation of nodules by 

the introduced Rhizobium strain is likely to enhance N2 fixation. The mechanisms by which 

NER influence the survival and establishment of introduced rhizobia in the soil, rhizosphere, 

rhizoplane and endorhizosphere needs further investigation to better exploit these traits for 

improvement of N fixation. 

Rhizobial strains vary in their ability to compete against background rhizobia populations in 

the soil for nodule formation (Brockwell et al. 1995). The ability to compete for nodule 

formation may in part be associated with the expression of PGP traits, in particular, ACC 

deaminase with chickpea (Nascimento et al. 2012), Lotus spp. (Conforte et al. 2010), mung 

bean, Vigna radiata (Shaharoona et al. 2006) and pea (Ma et al. 2003). To identify whether the 

constitutive expression of ACC deaminase by rhizobia influenced their competitive advantage 

to induce nodules, two Mesorhizobium loti MAFF acdS mutants that produced more ACC 

deaminase than the wild type strain were constructed (Conforte et al. 2010). More than 67% of 

L. japonicum and Lotus tenuis nodules were induced by the engineered strain at 28 days after 

inoculation (DAI), even though the engineered strain only represented a quarter of the bacterial 

suspension in the inoculant. Moreover, the mutant had 50% more viable cells colonizing the 
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plant's roots than did the wild type strain after 21 days. This study also confirms that rhizobial 

ACC deaminase production in the free-living state confers a competitive advantage to the 

mutant bacteria over the wild type strain. This supports a model from Glick et al. (1998) who 

postulated that the greater competitiveness of a modified strain expressing more ACC 

deaminase can be due to a greater capacity to use ACC from the root exudate as C and N 

sources. Further studies on the impact of ACC deaminase activity on the expression of genes 

related to stress tolerance and the physiological response in the free-living condition in the soils 

and rhizosphere is required for the development of effective multiple strain-based inoculant 

that can be applied in a wide range of environments including under stress conditions.  

2.4.3. Nodule function 

Ethylene is strongly involved in nodule senescence and consequently impairs N2 fixation in 

nodules (Guinel 2015). The gene PvACS encoding ACC synthase, an enzyme involved in 

ethylene synthesis, was upregulated in senescent nodules (Nascimento et al. 2018). The 

transcription of this gene was specifically increased in the senescent zone of nodules (Serova 

et al. 2017; Serova et al. 2018). In the senescent nodules, PvGS(n-1), a gene controlling the 

transcription of glutamine synthetase, that is crucial for ammonium assimilation (Hungria and 

Kaschuk 2014), was down-regulated (da Silva et al. 2019). The expression of this gene is linked 

with increased nitrogenase activity and leghaemoglobin (Lara et al. 1983). This suggests a 

negative effect of senescence on ammonia assimilation and N2 fixation. Moreover, Uricase II, 

coding an enzyme crucial for exporting the N assimilated from nodules to the shoot, decreased 

in senescent nodules (Papadopoulou et al. 1995; Capote-Mainez and Sánchez 1997). 

Leghaemoglobin, an important physiological marker for nodule senescence (Loscos et al. 

2008) and required to protect the oxygen-sensitive nitrogenase (Ott et al. 2005), was also 

degraded in nodules undergoing senescence (da Silva et al. 2019).  

Beneficial bacteria that are ACC deaminase producers can enhance the amount of N2 fixation 

by extending the lifespan of functional nodules. Interestingly, some PGPR can stimulate plant 

growth through the synthesis and activity of the ACC deaminase that potentially reduces 

ethylene levels in the plant (López et al. 2018). In legume-rhizobia interactions, transcription 

of the acdS gene in Mesorhizobium loti occurred in root systems with mature nodules but this 

was not observed in roots without mature nodules (Nukui et al. 2006). The accumulation of 

ACC deaminase protein in effective nodules occurs in N2 fixing bacteroids. To investigate the 

physiological function of ACC deaminase in bacteroids, a transformed Mesorhizobium 
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expressing ACC deaminase and its parental type strain without this activity were inoculated on 

to chickpea; nitrogenase activity was detected at 31 days in nodules of the mutant but not in in 

nodules of the wild type rhizobia (Nascimento et al. 2012). Moreover, inoculating 

Sinorhizobium able to express ACC deaminase increased nitrogenase activity in mung bean up 

to 5-fold when compared with plants inoculated with the wild-type strain (Tittabutr et al. 2015). 

However, the highest production of ACC deaminase (16.3 µmol of α-ketobutyrate. h-1. mg of 

protein-1) by a modified strain of rhizobia containing multiple copies of acdS did not contribute 

more to the symbiosis than the wild type rhizobia that produced low level of ACC deaminase 

(4.5 µmol of α-ketobutyrate. h-1. mg of protein-1). On the other hand, a mutant rhizobia unable 

to express ACC deaminase resulted in nodules entering the senescent phase earlier. Later, at 7 

weeks after inoculation, a modified strain of rhizobia lacking ACC deaminase produced 

nodules with smaller symbiosomes and greater bacteroid mortality than nodules induced by the 

wild type isolate (Tittabutr et al. 2015). This indicates that the loss of ACC deaminase 

production from rhizobia may accelerate nodule senescence. Taken together, ACC deaminase 

extended the duration of nitrogenase activity by lowering ethylene around the bacteroids, 

although the detailed physiological effect of ACC deaminase on bacteroids is not yet clear. So 

far, studies have revealed that ACC deaminase prolongs the time that nodules are functional 

and fixing N2. However, the impact of ACC deaminase on the expression of rhizobial genes 

directly and indirectly associated with of N2 fixation in both free-living conditions and in 

bacteroids requires greater investigation. 
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Table 1. Effect of rhizobia and/or PGPR with ACC deaminase activity on nodulation and yield of legume plants 

Plant species PGPR species Rhizobia species Amount of 

ACC 

deaminase 

activity 

(μmole α-

ketobutyrate 

mg–1 protein h–

1) 

Experimental 

conditions 

Effects/mechanisms References 

Cicer 

arietinum 

- Mesorhizobium 

ciceri LMS-

1(pRKACC) mutant 

2,035  Greenhouse, non-

sterile soil 

Inoculation increased the 

nodule number and nodule 

weight up to 180% and 147% 

respectively, compared with 

those inoculated with parental 

strain. 

Nascimento 

et al. (2012) 

Serratia 

proteamaculans 

J119* 

 0.440  Pouch, 

greenhouse, and 

field conditions 

PGPR inoculation increased 

root biomass by 83% over 

uninoculated plants under 

axenic conditions and 

inoculation increased grain 

yield, nodule number and 

Shahzad et 

al. (2010) 
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weight by 60%, 75% and 63% 

over uninoculated, respectively, 

under field conditions. 

- Salt tolerant and salt 

sensitive 

Mesorhizobium 

containing acdS gene 

mutant 

0.768 - 0.398  Growth chamber  acdS-transformed 

Mesorhizobium strains 

promoted increases in shoot dry 

weight and nodule number of 

54% and 120%, respectively, in 

plants under salinity stress 

compared with those inoculated 

with the wild type strain. 

Brígido et 

al. (2013) 

P. sativum  Arthrobacter 

protophormiae 

 0.241  Greenhouse  ACC deaminase producing 

PGPR inoculated with 

Rhizobium in P. sativum 

increased the nodule number by 

2%, 24% and 67% over plants 

inoculated with Rhizobium 

alone. 

Barnawal et 

al. (2014) 

- R. leguminosarum 

with ACC deaminase 

activity and it's 

1060  Growth chamber The number of nodules induced 

on plants inoculated with an 

engineered strain lacking the 

Ma et al. 

(2003) 
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mutant lacking this 

activity 

acdS gene was 25% less than 

nodule number on plants 

inoculated with the parent 

strain. 

Pseudomonas 

putida PSE3  

R. leguminosarum 

RP2 

625.6  Greenhouse and 

field conditions  

Co-inoculation increased the 

nodule number and weight up to 

16.7% and 9%, respectively, 

over inoculated with Rhizobium 

alone under greenhouse 

conditions. Under field 

conditions, NN and NDW 

increased due to co-inoculation 

were 32.5% and 62.8% over 

those inoculated with 

Rhizobium alone.  

Ahmad et al. 

(2013) 

Vigna 

radiata 

- Sinorhizobium sp. 

containing ACC 

deaminase 

16.34  Leonard jar Nodule occupancy increased 

from 34% to 66% due to 

increasing the ACC deaminase 

production ability of inoculated 

rhizobia by 2.6 times over the 

parental strain.  

Tittabutr et 

al. (2015) 
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Pseudomonas 

putida, 

Pseudomonas 

fluorescens 

producing ACC 

deaminase  

Bradyrhizobium sp. 207 - 333  Greenhouse in 

unsterile sandy 

clay loam soil 

Dual inoculation with PGPR 

and Bradyrhizobium resulted in 

11-times more nodule number 

than uninoculated control and 

48% than Bradyrhizobium 

alone. 

(Shaharoona 

et al., 2006) 

Pseudomonas sp. 

containing ACC 

deaminase activity  

Rhizobium sp.  - Growth room, 

pouch experiment  

Co-inoculation increased 

nodule number by 19% and 

62.8% and nodule dry weight 

by 12% and 12.5% over 

Rhizobium alone under normal 

and 4 dS m-1, respectively. 

Ahmad et al. 

(2011) 

L. japonicum 

and L. tenuis 

- Mesorhizobium loti 

mutant containing 

ACC deaminase 

12  Autoclaved 

Leonard jars filled 

with vermiculite 

Inoculation with recombinant 

Mesorhizobium increased 

nodules and nodule occupancy 

by 37% and 80% over the wild-

type strain. 

Conforte et 

al. (2010) 

Leucaena 

leucocephala 

- Recombinant 

Rhizobium sp. strain 

TAL1145 mutant 

containing acdS gene 

0.817  Leonard jar 

containing sterile 

sand 

Mutant with ACC deaminase 

production increased nodule 

number and dry weight 64% 

Tittabutr et 

al. (2008) 
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and 60% over inoculation with 

the wild-type strain.  

Lentil Pseudomonas and 

Serratia 

containing ACC 

deaminase activity  

R. leguminosarum 537  Greenhouse and 

field conditions 

Co-inoculation of Rhizobium 

with ACC deaminase producing 

bacteria increased nodulation 

and grain yield up to 98% and 

82% over uninoculated, 

respectively, under field 

conditions. 

Zahir et al. 

(2011) 

Medicago 

lupulina 

Pseudomonas 

putida mutant 

Genetically 

engineered S. meliloti 

strain overproducing 

ACC deaminase 

3.38  Greenhouse 

experiment in 

sterile growth 

medium  

Engineered rhizobia increased 

nodule number and nitrogenase 

activity up to 18.2% and 10.7% 

under copper stressed 

conditions and 0% and up to 6% 

under normal conditions over 

those inoculated with wild-type 

strain. 

Kong et al. 

(2015) 

M. sativa - Engineered ACC 

deaminase producing 

insertion derivative 

of S. meliloti 

6.5  Growth chamber 

in Leonard jar in 

vermiculite 

ACC deaminase-producing 

Sinorhizobium sp. increased 

nodulation up to 40% over the 

wild-type strain.  

Ma et al. 

(2004) 

*- Opportunistic human pathogen 
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2.5. Indoleacetic Acid Producing NER 

Auxins are well-recognized plant growth hormones that affect all aspects of plant growth and 

development. Besides the plant itself, more than 80% of rhizosphere bacteria, including 

rhizobia, are able to produce the auxin indole acetic acid (IAA) (Badenoch-Jones et al. 1984; 

Glick et al. 1998; Khalid et al. 2004; Ahemad 2015). So far, five different pathways of IAA 

synthesis have been identified in bacteria. Of these, the indole-3-pyruvate and indole-3-

acetamide pathways are the two major IAA biosynthesis pathways (Khalid et al. 2004). IAA 

production by different rhizobacteria including rhizobial species can lead to beneficial effects, 

both in free-living bacteria, host plants, and during their symbiotic interaction.  

2.5.1. Nodule primordium development  

Nodule initiation and development requires high levels of IAA to initiate cell division and 

establish the nodule primordium. The effects of IAA produced either by the rhizobia or by the 

NER on the nodulation of legume plants are shown in Table 2. To investigate the influence of 

IAA on nodulation, an experiment was conducted using a B. elkanii strain able to synthesise 

and secrete IAA in culture, and a mutant derivative, lacking IAA production (Fukuhara et al. 

1994). The IAA negative mutant induced fewer nodules in soybean compared with inoculation 

by the parent strain. Exogenous IAA application restored the number of nodules formed on 

soybean inoculated with the modified strain to the original level. This positive influence of 

IAA was associated with facilitating root cortical cell division that is important for nodule 

primordium development (Benková et al. 2003; Roudier et al. 2003; Suzaki et al. 2012). Active 

root cortical cell division as a result of IAA was evidenced by a 61.5% higher nodule dry weight 

7 weeks after infection, and an enlarged and more active nodule meristem induced by a 

modified strain of Rhizobium leguminosarum bv. viciae LPR1105 contained an IAA 

biosynthetic pathway not present in the wild-type parental strain (Camerini et al. 2008). The 

role of the IAA produced by the modified strain in this study was evidenced by the levels of 

IAA in the nodule being up to 60-fold higher than in nodules initiated by the parent strain. 

Likewise, IAA concentrations in roots with nodules induced by an IAA over-producing mutant 

of rhizobia were more than threefold higher than in those inoculated with wild type strains 

(Defez et al. 2019). Increased IAA during symbiosis was positively correlated with the higher 

expression of IAA biosynthesis genes under free living conditions (Bianco et al. 2014).  

Elevated IAA in nodules derived either from the above-ground plant parts through polar 

transport (Fedorova et al. 2005) and/or directly from the prokaryotic microsymbiont 
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(Lambrecht et al. 2000) induces the development of more nodules (Pii et al. 2007). When the 

plant root is exposed to increased IAA levels from NER, endogenous IAA concentrations can 

be elevated (Figueiredo et al. 2008). The endogenous IAA synthesised in the shoot and 

transported to nodules and roots is facilitated by auxin efflux transporters such as those encoded 

by the PUN gene (Prayitno et al. 2006). To investigate the role of accumulated endogenous 

IAA in the nodulation region on nodule development, a mutant line of L. japonicus containing 

the auxin-reporter GH3 fused to β-glucuronidase (GUS) was generated (Takanashi et al. 2011). 

When rhizobia were inoculated, the GUS signal was detected in actively dividing outer cortical 

cells, during initiation of nodule primordia and was later detected in the vascular tissues of 

mature nodules. Moreover, such elevated endogenous IAA induced a few pseudonodules in 

common bean in the absence of any Rhizobium (Srinivasan et al. 1997). Such spontaneous 

nodules in the presence of IAA devoid of Rhizobium has been reported in alfalfa (Caetano-

Anollés et al. 1990) and white clover (Trifolium repens) (Blauenfeldt et al. 1994). However, a 

Rhizobium mutant lacking IAA production did not abolish nodule formation (Hirsch and Fang 

1994). Another study also reported that IAA was not involved in root hair curling, an important 

early stage of nodule initiation (Mulligan and Long 1985). Moreover, in indeterminate nodules, 

such as those in L. japonicus, an IAA inhibitor did not alter the process of nodule development 

but interfered with the formation of lenticels on the nodule surface (Takanashi et al. 2011).  

IAA enhances the formation of more nodules by altering the physiology and expression of 

genes associated with rhizobia and those involved in nodule initiation in plant cells. The 

transcription of noeA and noeB genes involved in the early nodule initiation process in S. 

meliloti were also up-regulated in the engineered strain RD64 producing IAA (Defez et al. 

2016). Moreover, transcription of the Glyma17g07330 gene, encoding MYB transcription 

factor functions, was upregulated 7 days after inoculating an IAA-expressing NER in soybean 

but was strongly disrupted at later stages of plant growth. This suggests that the main role of 

this gene is in developing nodules rather than mature nodules. The role of this gene in rhizobial 

infection or early steps of nodule development was also observed by Libault et al. (2009). 

During nodule induction, the production of short fatty acids, such as caproic acid, which 

facilitates plant cell membrane fluidity and is essential for rhizobia colonization on the plant 

surface, was also increased when IAA producing NER were used for co-inoculation 

(Brechenmacher et al. 2010; Cagide et al. 2018).  
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2.5.2. Rhizobial survival and competitiveness for nodulation 

Successful nodulation of legumes by inoculant rhizobia is a complex process that depends on 

many factors associated with the environment, the host plant and the soil microbiomes. Among 

the factors associated with soil microorganisms, the ability for the rhizobia or their nearby 

associated bacteria to produce active biomolecules affects their ability to induce nodules 

(Menéndez et al. 2017). IAA is one biomolecule that can affect the legume-rhizobia interaction. 

A reduction in nodule occupancy by a mutant of B. elkanii that lacked the capacity to express 

IAA as compared to the parent strain (Fukuhara et al. 1994) was observed. Moreover, 

nodulation was reduced by up to 60% due to lack of IAA production by a modified strain of 

Rhizobium tropici relative to inoculation with the parent strain (Martinez et al. 1993). These 

studies suggested that IAA production by rhizobia assists in inducing and sustaining 

meristematic activity, which in turn enhances nodulation.  

The ability of inoculant rhizobia to withstand stress conditions that reduce their survival in the 

root zone could be one factor determining their competitiveness to induce nodules in the 

competition with the background rhizobia (Howieson and Ballard 2004). For example, 

introduced rhizobia that are sensitive to salinity in vitro had low competitiveness for inducing 

nodulation compared with the natural rhizobial population in a saline soil (Ventorino et al. 

2012). Adaptation to environmental stresses is a complex phenomenon involving many 

biochemical and physiological processes that are accompanied by changes in regulation and 

expression of genes and genetic pathways (Djordjevic et al. 2003; Wei et al. 2004). There is 

evidence that IAA production by E. coli is able to coordinate bacterial behaviour to enable 

protection against damage by stresses (Bianco et al. 2006) and that IAA induces the 

coordinated expression of genes related to survival under stress conditions. Moreover, with a 

modified strain of S. meliloti RD64 that overproduced IAA, the level of gene expression 

associated with stress tolerance was upregulated to a greater extent than that of its wild 

derivative (Defez et al. 2016). In that study, transcript levels of rpoH1, coding for one of the 

two alternative s32 factors, which operate under heat shock and oxidative stress, and proline 

biosynthesis genes (proB2, and SMc03253), required for effective nitrogen-fixing symbiosis 

were significantly increased in a modified strain (Mitsui et al. 2004). Furthermore, many genes 

induced during a stress response (ibpA, htpG, clpB, groES5, groEL, dnaK) and belonging to 

the rpoH regulon in different rhizobia (Mitsui et al. 2004; Martínez-Salazar et al. 2009; de 

Lucena et al. 2010) were upregulated. Another gene, ocd, that converts L-ornithine to L-

proline, in many bacteria (Soto et al. 1994; Sleator and Hill 2002) was upregulated during 
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stress. The presence of transcriptional products of the aforementioned genes in the modified 

strain, but not in its parent strain, is evidence for the role of IAA in better survival and 

persistence of bacteria in stressed environments (Defez 2006). This could, in turn, result in 

long-time survival and persistence in the soil of introduced rhizobia positively associated with 

competent nodule induction (Narożna et al. 2015).  
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Table 2. Effect of IAA production by PGPR on the nodulation and N2 fixation of different legumes  

Plant species Source of IAA Bacterial species IAA 

concentrations 

Experimental 

condition 

Effects/mechanisms References 

Vicia sativa spp. 

nigra 

rhizobacteia Azospirillum 

brasilense and a 

mutant derivative 

lacking IAA 

production 

 Greenhouse 

in sterile 

vermiculite 

Increased secretion of nod-gene-

inducing flavonoid species in a 

wild Azospirillum compared to a 

mutant of the same strain lacking 

IAA resulted in more nodule 

formation 

(Star et al. 

2012) 

M. sativa L.  rhizobacteria Micromonospora 22.5 µg ml-1 Greenhouse 

in sterile soil  

Selected endophytic 

Micromonospora significantly 

increased the nodulation of 

alfalfa by Ensifer meliloti 1021. 

(Martínez-

Hidalgo et al. 

2014) 

M. truncatula rhizobia IAA overproducing S. 

meliloti mutant 

0.068 µg ml-1 Greenhouse  IAA over-producing S. meliloti 

mutant increased nitrogenase 

activity per nodule and stem dry 

weight of six week old plants by 

35% and 28%, respectively, over 

the value obtained from plants 

inoculated with the parental 

strain at 6 weeks after planting. 

Imperlini et al. 

(2009) 
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rhizobia IAA overproducing S. 

meliloti mutant 

0.068 µg ml-1 Greenhouse  Higher nodule and lateral root 

system growth were found in 

plants inoculated with IAA 

overproducing modified strain 

than those inoculated with the 

wild-type strain. 

Bianco and 

Defez (2009) 

Glycine max rhizobia B. japonicum IAA 

producing mutant 

1. 60 µg ml-1 in 

the presence of 8 

mg ml-1 of L-

tryptophan 

2. 5.5 µg ml-1 in 

the absence of L-

tryptophan 

Pouch 

experiment  

High IAA producing B. 

japonicum reduced nodule mass 

and N fixed per gram of nodule 

by 81.8% and 160% over the 

plants inoculated with the wild-

type strain. 

Hunter (1987) 

rhizobia B. elkanii USDA 31 

mutant lacking IAA 

synthesis 

The mutant 

produced half 

the IAA 

produced by the 

parent strain 

Greenhouse  Plants inoculated with mutant 

produced 157% less nodules 

compared with those inoculated 

with the wild-type strain. 

Fukuhara et al. 

(1994) 

Vetch rhizobia IAA overproducing R. 

leguminosarum bv. 

0.963 + 0.122 

and 13.314 + 0.7 

µg ml-1, 

Greenhouse, 

in sterile 

soils 

The mutant increased the IAA 

level in the nodule 60-fold 

compared with plants inoculated 

Camerini et al. 

(2008) 
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viciae LPR1105 

mutant  

respectively, for 

the wild-type 

strain and the 

engineered 

strains 

with wild-type parent. The 

mutant also increased the nodule 

weight by 61.5% over that 

obtained from plants inoculated 

with the parent strain. 

V. radiata L. Exogenous IAA  10-6 M IAA Greenhouse 

in non-sterile 

soil-farm 

yard manure 

Nodule number, nodule dry 

weight, leghemoglobin content 

and nitrogenase activity 

increased by 18.2%, 19.05%, 

13.4% and 15.8%, in plants 

treated with IAA compared to 

untreated plants.  

Ali et al. 

(2008) 

M. sativa rhizobia S. meliloti IAA 

overproducing strains 

9.987-11.036 µg 

IAA ml-1  

Greenhouse  Plants nodulated by IAA 

overproducing strain 

upregulated the nitrogenase 

gene, nifH and increased number 

of nodules by 26% compared 

with plants nodulated by the 

wild-type strain. 

Bianco et al. 

(2014) 
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rhizobacteria Azospirillum 

brasilense strain Cd 

 Large petri 

dishes on 

sterile agar 

Combined inoculation of 

rhizobia and A. brasilense Cd 

increased the number of nodules 

but reduction of nodules was 

observed at higher concentration 

(>104 CFU/mL) of Azospirillum 

sp. 

Schmidt et al. 

(1988) 

P. sativum  synthetic Exogenous IAA 

application,  

- Petri dish 

assay  

Functional nodules which fix N 

had higher IAA accumulation 

than nodules that could not fix N 

Badenoch-

Jones et al. 

(1983) 

C. arietinum  rhizobacteria IAA producing 

Pseudomonas sp.  

Up to 40 µg IAA 

ml-1  

Chillum jar, 

sterile sand 

culture 

Co-inoculation of 

Mesorhizobium with PGPR 

increased the nodule number and 

dry weight and nitrogenase 

activity by 140%, 260% and 

45% over those inoculated with 

Mesorhizobium alone 

Malik and 

Sindhu (2011) 

Peanut rhizobacteria IAA producing 

Bacillus muralis 

 Pot 

experiments  

Increase in root length, plant 

fresh weight, and height of 

peanuts, by 186%, 3%, and 13% 

respectively, due to inoculation 

Jiang et al. 

(2016) 
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of B. muralis, compared with 

non-inoculated control 

Phaseolus 

vulgaris L. 

rhizobacteria IAA producing A. 

brasilense Sp245 

ACC deaminase 

producing 

Pseudomonas putida 

UW4 

4 µg ml-1 in the 

presence of 200 

µg ml-1 

Pots 

containing 

perlite-

matrix 

Under low P conditions, IAA 

producing bacteria reduced NN 

by 75% while ACC deaminase 

producing bacteria enhanced NN 

by 12.5%. Under high P 

conditions, both ACC deaminase 

and IAA producing PGPR 

enhanced NN by 12% and 8%, 

respectively. 

Remans et al. 

(2007) 

Exogenous IAA 

application 

- - Low concentration IAA (below 

15 nM IAA) enhanced nodules 

while high IAA (beyond 15 nM 

IAA) inhibited nodulation, 

regardless of P in the growing 

medium. 

At 100 nM IAA, the NN in low 

P conditions was reduced by 

42% compared with nil IAA but 



45 
 

did not reduce NN in high P 

conditions.  

rhizobacteria A. brasilense Cd 

(ATCC 29729) 

 Pots 

containing 

volcanic 

gravel 

Co-inoculation of rhizobia with 

A. brasilense increased the 

number of nodules up to 29.5% 

over the Rhizobium inoculated 

alone  

Burdman et al. 

(1996) 

rhizobacteria Bacillus spp.  0.40-4.8 µg ml-1 

in the presence 

of L-tryptophan 

(100 pg L-1) and 

0.3-0.89 in the 

absence of L-

tryptophan 

1:1 v/v of 

sterile 

planting 

medium of 

industrial 

sand and 

TurfaceTM 

Co-inoculation of R. etli TAL 

182 with Bacillus spp. producing 

4.88 µg/ml promoted the nodule 

number (NN), nodule fresh 

weight (NFW), leghemoglobin 

and acetylene reduction assay 

(ARA) by 87%, 83%, 136% and 

91%, respectively, compared 

with Rhizobium single 

inoculation. α -

methyltryptophan-resistant 

mutants Bacillus producing 13 

µg/ml of IAA inoculated with 

Srinivasan et 

al. (1996) 
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rhizobia significantly reduced 

NN, NFW, and ARA. 

white clover Exogenous α-

napthaleneacetic 

acid (NAA), a 

synthetic IAA 

- - Rapid-plate-

screening 

method 

Nodule formation was inhibited 

at 10-4 and  

10-5 M NAA while nodulation 

was enhanced at 10-7 to 10-10 M 

NAA 

Plazinski and 

Rolfe (1985) 

Co-inoculaion of 

rhizobia and 

rhizobacteria 

Rhizobium trifolii 

ANU794 and 

ANU1030 and A. 

brasilense SP245 

4 µg ml-1 IAA in 

the presence of 

200 µg ml-1 L-

tryptophan 

2000 to 1 ratio of Azospirillum-

Rhizobium trifolii mixed culture 

resulted in complete inhibition 

of nodule formation  

Key: NN- nodule number; NFW- Nodule fresh weight, ARA- acetylene reduction assay 
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2.5.3. N2 fixation and their associated gene expression 

IAA can enhance N2 fixation through increasing the activities of enzymes and metabolites 

directly involved in bacteroid activity in the nodules. Increases in nitrogenase and 

leghaemoglobin content up to 32% and 45% were observed at 45 days after sowing when plants 

were treated with 10-8 M exogenous IAA as compared with untreated plants (Ali et al. 2008). 

Greater nitrogenase and leghaemoglobin production in the nodules resulted in higher N2 

fixation as measured by acetylene reduction activity in nodules induced by IAA overproducing 

rhizobia compared with the wild type strain (Kaneshiro and Kwolek 1985). Likewise, 

nitrogenase activity and leghaemoglobin synthesis in nodules that undertake N2 fixation were 

increased when the plants were inoculated with rhizobia able to produce IAA and when co-

inoculated with NER also producing IAA (Yahalom et al. 1990; Chakrabarti et al. 2010; 

Egamberdieva et al. 2010). Furthermore, a engineered strain of rhizobia that overproduced IAA 

showed a significant increase in acetylene reduction activity compared to those nodulated by 

the parental strain (Defez et al. 2019).  

IAA enhances effective nodule formation and promotes a delay in nodule senescence by 

increasing the viability of bacteroids inside nodules. Effective nodules have been increased 

when inoculated with IAA-producing rhizobia in Cajanus cajan (Ghosh et al. 2013), Glycine 

max (Hunter 1987) and Lupinus luteus (Kretovich et al. 1972). Higher IAA in the nodules 

directly related to IAA production in vitro by inoculated rhizobia suggested that much of the 

IAA produced in the nodules can be derived from the transformed rhizobia (bacteroids) in the 

nodules (Hunter 1987). Furthermore, this association is also strengthened by the presence of a 

higher IAA in effective nodules than in ineffective nodules (Badenoch-Jones et al. 1983). 

Effective nodules induced by IAA-producing rhizobia had higher IAA concentration in the 

bacteroids, larger nodules, higher nitrogenase activity and delayed nodule senescence (Hunter 

1989; Camerini et al. 2004). Nodules induced by the modified strain of rhizobia able to produce 

IAA had an extended nitrogen-fixing zone and a reduction of the senescent zone in 45-day old 

nodules, as compared with plants nodulated by a wild type strain (Defez et al. 2016). The 

actively dividing cells in the meristematic region of nodules induced by IAA producing 

rhizobia were observed at a late stage of plant growth 52 days after infection (Camerini et al. 

2008). In this study, active bacteroids were present in the nitrogen-fixing region of nodules but 

were not observed in senescent parts of nodules, suggesting the role of IAA in enhancing N2 

fixation through delaying early nodule senescence.  



48 
 

One mechanism by which IAA can delay nodule senescence is via the formation of poly-3-

hydroxybutyrate (PHB) granules in bacteroids inside root nodules. PHB granules can act as a 

reserve source of energy and carbon in free-living rhizobia, particularly under carbon-starved 

conditions, and can improve bacteroid fitness, multiplication and survival inside the senescing 

nodules and in soils (Wong and Evans 1971; Prakamhang et al. 2014; Cagide et al. 2018). 

Moreover, PHB accumulation in the cells can function as a carbon sink for the TCA cycle 

operating in the microaerobic conditions required for N2 fixation in nodules (Dunn 1998). This 

prolongs nodule functioning and can provide more fixed N to the host plant, which in turn can 

supply suitable carbon sources to be used as energy for bacteroids in the nodules.  

In legume-rhizobia interactions, IAA production either by the rhizobia or by NER triggers the 

expression of genes closely associated with the symbiosis. The expression of N2 fixation genes 

and the activity of the nitrogenase enzyme was significantly increased in nodules induced by 

the modified strain of Ensifer (Sinorhizobium) meliloti RD64 which was able to overproduce 

IAA as compared with the wild type strain (Defez et al. 2017; 2019). Among the N2 fixation 

genes upregulated within mutant induced nodules, fixJ, which codes for the response regulator 

that turns on N2 fixation genes during plant development, reached the highest level of 

transcription at 42 DAI, when the plant fixed the highest amount of N. A similar trend in 

transcription was observed for the genes nifA, fixK1 and fixK2, which are directly regulated by 

the FixJ protein, and for nifH, which codes for the nitrogenase enzyme. The gene fixA, which 

is part of the fixABCX transcriptional unit involved in the electron transport to nitrogenase 

(Fischer 1994) and fdxB, coding for the ferredoxin, which acts as an electron donor for 

nitrogenase reductase (Barnett et al. 2001), were highly upregulated in nodules induced by 

strain RD64, a mutant of Ensifer meliloti (Defez et al. 2019). Likewise, in legume-rhizobia-

NER interactions in mature nodules where N2 fixation occurs, nifH was upregulated in plants 

co-inoculated with Bradyrhizobium and IAA producing NER compared with those inoculated 

with Bradyrhizobium alone (Prakamhang et al. 2014).  

IAA can enhance N2 fixation by altering the expression of genes that indirectly influence the 

efficacy of N2 fixation by bacteroids in the nodules. In nodules induced by IAA producing 

rhizobia, the fixNOQP1,2 operon genes, coding for haem-copper cbb3-type oxidases that have 

high affinity for oxygen, was increased and reached a maximum induction at 40 DAI (Defez et 

al. 2019). In this study, the expression of gltA, icd and sucA, coding for the main TCA cycle 

enzymes, was significantly upregulated in bacteroids. Another gene, otsA, encoding trehalose 

6-phosphate synthase, which facilitate nodule formation and nitrogenase production under 
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stress (Suárez et al. 2008) and also has a role in nodule respiration (Bargaz et al. 2013) was 

upregulated when soybean was inoculated with IAA-producing NER. Furthermore, soybean 

co-inoculated with Bradyrhizobium and IAA-producing NER resulted in increased 

transcription of the dctA gene, encoding the dicarboxylate transport protein DctA, a transporter 

of carbon sources from the host plant to the bacteroids to sustain their functions, as compared 

with plants inoculated with Bradyrhizobium alone (Batista et al. 2009). For all the genes 

described above, IAA can improve the efficacy of legume-rhizobia interactions in fixing more 

N through upregulation of genes involved in carbon transport to the nodules and metabolism 

by bacteroids.  

IAA increases the amount of N2 fixation in the legume-rhizobia interaction by increasing the 

amount of photosynthetic products provided to bacteroids in root nodules (Tsikou et al. 2013; 

Erice et al. 2014). To confirm the role of IAA in photosynthetic activity of the plant and 

consequently on the N2 fixation potential of bacteroids in nodules, a wild rhizobial strain that 

produced very low levels of IAA and its derivative overproducing IAA were used to inoculate 

M. sativa plants (Defez et al. 2019). At 42 DAI, the leaves of plants inoculated with the 

overproducing mutant had an increase of 37% in chlorophyll a (the major pigment) and of 84% 

in chlorophyll b (the accessory pigment), which allows the plants to more efficiently use the 

light spectrum (Porra 1997). Moreover, plants inoculated with a modified strain had higher 

concentration of carotenoid (light-harvesting pigment). Plants inoculated with a mutant had a 

higher quantity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), the enzyme 

widely considered as the rate-limiting step in photosynthetic carbon fixation (Carmo‐Silva et 

al. 2015). Although the stress conditions reduced the Rubisco content in the plants, the level 

of this molecule in stressed plants inoculated with the IAA-overproducing rhizobial strain was 

still 25% higher than in the non-stressed plants inoculated with the wild strain (Defez et al. 

2017). Other metabolites including the free amino acids (valine, alanine, aspartic acid and 

glutamic acids) significantly increased in plants inoculated with a modified strain compared 

with those inoculated with the wild type strain under normal conditions (Defez et al. 2019). 

Greater production of amino acids in the plants indicates the presence of greater N2 fixation 

that is associated with the presence of more energy sources for the bacteroids from improved 

photosynthesis (Vauclare et al. 2010). Therefore, increased amino acids indicate a connection 

between high levels of Rubisco, increased photosynthetic products and enhanced nitrogenase 

activity in the nodules. In addition to the above, the production of organic acids, mainly malate 

and citrate, was higher in plants inoculated with modified strains than those inoculated with 
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the wild type strain. An increase of malate, a primary source of carbon for bacteroids 

metabolism to generate ATP (Schulze et al. 2002), indicate that IAA also increases the usable 

form of carbon for bacteroids in the root nodules. Moreover, an increase in total carbon and 

organic acids in plants was associated with a higher PHB content, which accumulated in the 

Interzone II-III of their root nodules (Imperlini et al. 2009), the region in which the majority 

of N2 fixation occurs. This is one of the mechanisms by which IAA production in the nodules 

extends Interzone II-III and prolongs its ability to fix N (Oldroyd and Downie 2008; Defez et 

al. 2019). 

2.6. Transcriptional changes in free-living rhizobia  

Some key genes associated with N2 fixation in rhizobia are induced by IAA production under 

free-living conditions that resemble those that occur in nodule bacteroids. The overproduction 

of IAA by S. meliloti mutant (RD64) in the free-living state positively affect the expression of 

the nifA and fixK genes that encode the two main intermediate regulators and that in turn induce 

the expression of nif and fix structural genes involved in respiration and N2 fixation (Defez et 

al. 2016). Furthermore, IAA induced the expression of the major regulator of N2 fixation, fixJ 

and the intermediate regulators nifA and fixK in S. meliloti mutant (RD64). In the same 

modified strain, higher expression of N2 fixation genes (fixK1, fixK2, and fixT2) was 

determined than in the wild type strain producing very low levels of IAA (Defez et al. 2016). 

Moreover, in the modified strain the fixNOQP operon genes encoding the bb3-type cytochrome 

c oxidase, which has a high affinity for O2 and is required to support bacteroid respiration in 

root nodules (Fischer 1994; Dixon and Kahn 2004), were highly upregulated. Enhanced 

expression of genes having high affinity for O2 may lead to low O2 concentration around the 

cells, thus allowing the transcription of aforementioned N2 fixation genes (Reyrat et al. 1993). 

Moreover, genes related to denitrification (nosD, nosF, nosY and nosZ) and which prevent early 

nodule senescence and maintain an efficient symbiosis, were also upregulated (Bobik et al. 

2006; Cabeza et al. 2014). In S. meliloti mutant (RD64), genes encoding components involved 

in motility and flagellar biosynthesis (flhA and flaD) were repressed. A reduction in motility of 

rhizobia near the root surface increases its ability to invade the root cells and induce nodules 

(Vercruysse et al. 2011; Li et al. 2013). When an analysis of gene expression was carried out 

in nodules, a down-regulation of flagella and chemotaxis genes was also observed. The 

suppression of the aforementioned two genes consequently affect the formation of effective 

nodules (Barnett et al. 2001; Capela et al. 2006). Taking into account the overall findings, the 
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overproduction of IAA by free living S. meliloti cells induced many of the transcriptional 

changes that normally occur in N2 fixing root nodules. 

2.7. Suggested future research 

Despite research on PGPR over the last few decades, PGPR inoculants have not been 

commercialised efficiently. Both basic and applied research is needed to unlock the potential 

of PGPR. The following are some key research areas that need to be investigated to identify 

efficient NERs to improve the legume-rhizobia symbiosis under field conditions.  

1. Determine the level of ACC deaminase expression and IAA production and its effect 

on the survival of the NER and co-inoculated rhizobia in diverse environments and 

soils. 

2. Examine the expression of the aforementioned PGP traits by NER, either endophytic 

bacteria or transformed rhizobia (bacteroids) in the rhizosphere soil and inside the 

nodule environment, and determine the associated effect on the legume-rhizobia 

symbiosis.  

3. Define the concentrations at which ACC deaminase expression and IAA production, 

alone and in combination, result in the highest beneficial effect on the legume-rhizobia 

symbiosis. Moreover, identify the major interactions among multiple traits including 

those mentioned above and others such as the potential for phosphate solubilisation, 

and the net outcome of these interactions on the legume-rhizobia symbiosis.  

4. Identify the underlying molecular mechanisms relating to how these two traits affect 

the ability of rhizobia to induce nodules, to compete with the background rhizobia for 

nodule induction, and to increase the effectiveness in N2 fixation.  

2.8. Conclusions 

The amount of N derived from symbiotic N2 fixation can potentially be improved by the 

additional use of non-rhizobial PGPR. PGPR, and, specifically, NER, could improve 

nodulation and N2 fixation by enhancing the effectiveness of both inoculant and soil rhizobia. 

We suggest that NER increase nodulation and N2 fixation through the following mechanisms: 

1) upregulating the production of root exudate components involved in the legume-rhizobia 

symbiosis; 2) enriching beneficial rhizosphere microbial communities around the root zone; 3) 

inducing the transcription of genes in the plant; 4) directly stimulating nodules to increase 

symbiotic efficiency. The effect of NER on the symbiosis is determined by the prevailing 
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environmental conditions that affect survival and competitiveness in the microbial 

communities in the root zone and influence the contribution of various PGP traits for nodule 

promotion. Among several identified PGP traits of NER, ACC deaminase and IAA production 

are two main mechanisms that enhance the legume-rhizobia symbiosis. These traits enhance 

the legume-rhizobia symbiosis through increasing nodulation and nodule function, and the 

competitiveness of the rhizobial inoculant. When both traits are expressed simultaneously by 

NER, ACC deaminase can reduce the deleterious effect of very high IAA and thus improve 

nodulation and the potential N2 fixation. In general, the use of rhizobial inoculants containing 

multiple NER can be developed by investigating the legume plant-rhizobia-NER-

environmental conditions that can enhance the effectiveness of inoculated rhizobia across a 

wide range of environments. Understanding the molecular and physiological mechanisms of 

NER production of either IAA and/or ACC deaminase can influence the entire process of the 

legume-rhizobia association, and therefore warrants further consideration. Therefore, the use 

of rhizobial inoculants containing NER, with IAA and ACC deaminase (among other 

mechanisms), may provide the greatest benefits for legume-rhizobia symbiosis in diverse 

environments, even in soils containing an abundance of naturalised rhizobia. 
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3.3. Introduction 

The rhizosphere is the soil habitat close to the plant root with intensified biological and 

chemical properties relative to bulk soil and a major focus of sustainable agricultural research 

(Young, 1998). In the rhizosphere, there is enormous interaction between plant and microbe 

facilitated by plant root exudation (McCully, 1999; Read et al., 2003). Microbes associated 

with plants can be harmful, beneficial or neutral to the plant. Beneficial bacteria that can 

promote plant growth by colonizing plant roots are generally called plant growth-promoting 

rhizobacteria (PGPR) (Lugtenberg and Kamilova, 2009). In particular, genera closely related 

to Bacillus and Pseudomonas are the bacteria most commonly studied and exploited as PGPR 

(Santoyo et al., 2012; Gouda et al. 2018; Saxena et al., 2019). These PGPR express various 

plant growth-promoting (PGP) properties that benefit the plant either directly or indirectly, 

resulting in increased plant growth (Swift et al., 2018). 

The use of PGPR inoculation in chickpea has been frequently failed to enhance the growth and 

nodulation under controlled and field conditions (Wani et al., 2007; Hynes et al., 2008; Patel 

et al., 2012; Verma et al., 2012; Baliyan et al., 2018; Mahmood Aulakh et al., 2020). Most of 

these isolates have been selected based on their ability to express multiple plant growth-

promoting (PGP) traits in vitro conditions. Additionally, their deleterious and beneficial effect 

of rhizobacteria on plant growth has been unrelated to their ability to express various types and 

concentrations of PGP traits in vitro conditions. For instance, rhizobacteria able to express 

multiple beneficial PGP traits occasionally performed poorly as compared to other isolates 

inefficient in vitro condition (Wani et al., 2007; Baliyan et al. 2018). In this regard, the isolate 

able to express, IAA, ACC deaminase, P solubilisation, N2 fixation and biocontrol activities in 

vitro was inferior in plant growth promotion as compared to those with IAA and P 

solubilisation (Oteino et al. 2013). However, the later isolates were most efficient in root 

colonisation than the former ones. The main reason behind the inconsistent results between 

laboratory and in planta can be related to the ability of the isolates to colonisation and 

persistence in the rhizosphere. Recently, investigation of microbial root colonisation related 

traits, including formation of biofilm and flagella, resistance to hydrogen peroxide and 

utilisation of carbon substrates, could assist the selection of more competent and best root 

coloniser strains to be tested in planta (Amaya-Gómez et al. 2020). However, the identification 

and selection of PGPR based on PGP and root colonisation related traits and their metabolic 

activities can be time-consuming, laborious, costly and frequently unreliable. Therefore, the 
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pre-screening strategy that ultimately results in the most reliable rhizobacteria in plant growth 

promotion would be extremely important.  

With the consideration of high amount of carboxylates and more acidic pH in the exudate in 

chickpea rhizosphere compared to other legume plants (Ohwaki and Hirata, 1992; Veneklaas 

et al., 2003; Wouterlood et al., 2005; Pearse et al., 2007; Kabir et al., 2015), we hypothesised 

that plant-based pre-screening may predict the efficiency of rhizobacteria in plant growth 

promotion in N2 fixing chickpea. Hence, the objective of this study was to screen rhizobacteria 

that would enhance the chickpea-Mesorhizobium symbiosis using a plant-based bioassay. 

3.4. Materials and methods 

3.4.1. Description of sampling sites  

Seventy-four soil samples were collected across the major agricultural lands of Australia 

(Appendix Fig. 1). Sampling sites were selected based on their cropping history. Crop rotation 

was the main cropping system at all the sampling sites. Wheat was cultivated in rotation with 

legumes (chickpea, faba bean, field pea, lentil, lupin or vetch) and other non-leguminous crops 

(barley, canola, oats or sorghum) at the majority of the sampling sites. Of the 74 sites, forty 

one had a legume grown in the previous 5 years. The remaining sites had no history of legume 

cultivation. Eleven sampling sites had a chickpea cropping history within the last five years.  

The long-term average rainfall at the study sites ranged from 289 to 695 mm (Bureau of 

Meteorology 2019). The potential evapotranspiration (PET) varied within the range 1,168 to 

1,358 mm. The aridity index was calculated using P/PET, where P is the average annual 

precipitation (UNEP 1992). Aridity index values of the study sites varied between 0.23 and 

0.53. 

The physicochemical properties of soils were analysed following the methods described in 

Rayment and Lyons (2011). Soil C was determined following the Walkley Black method. A 

modified Kjeldahl method was used to determine total soil N. Total P in the soil was analysed 

by a colorimetric method after extracting elemental P by perchloric acid digestion. Soil pH in 

CaCl2 was determined from a water suspension containing a 1:2.5 of soil to CaCl2 mixture. 

The electrical conductivity of the water extract from a 1: 2.5 soil: water suspension was 

determined. The textural composition of the soils was analysed by dispersal and hydrometric 

readings. Ammonium acetate extractable Ca, K and Mg in soils were determined using atomic 

absorption spectrophotometry. Diethylene triamine pentaacetic acid (DTPA) extractable 
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concentrations of Cu, Mn and Zn in soils was determined. The physico-chemical properties of 

soils are presented in Appendix Table 1.  

3.4.2. Collection of rhizosphere soils 

One hundred g of soil from each sample was placed in pots (4.5 cm diameter, 10 cm high) to 

grow chickpea cv. HatTrick in a growth chamber with light supplied by fluorescent and 

incandescent lamps with an intensity of 1000 µmol m-2s-1 for a 16 h photoperiod, with a 

constant temperature of 20 oC and relative humidity at 70%. The soil closely adhering to the 

root system (approximately 1 - 5 mm from the root surface) was considered to be ‘rhizosphere 

soil’ and was carefully collected from chickpea seedlings four weeks after germination in 

sterile specimen containers and immediately kept at 4 oC. The samples were processed within 

24 h of collection. 

3.4.2. Isolation of Pseudomonas- and Bacillus-like rhizobacteria  

Pseudomonas and Bacillus are relatively easily cultured in vitro and can be preliminary 

dentified using phenotypic characteristics. Additionally, they are commonly used in 

commercial products. In the present study, Pseudomonas and Bacillus were selectively isolated 

from soils because most of PGPR belong to the same genera (Swift et al., 2018, Alemneh et al. 

2020). Each rhizosphere soil was serially diluted from 10-1 - 10-6 in sterile water. One g of 

rhizosphere soil was placed in a test tube containing 9 mL of sterile MilliQ water. A 100 µL 

soil suspension from 10-5 or 10-6 was taken and spread in duplicate onto Petri dishes containing 

15 mL of 10% tryptone soya agar (TSA) (OXOID LTD, Basingstoke, Hampshire, England), 

supplemented with 50 µg mL-1 of ampicillin (99%, Sigma Aldrich Chemie GmbH, Steinheim, 

Germany), 12.5 µg mL-1 of chloramphenicol (99%, Sigma Aldrich) and 75 µg mL-1 of 

cycloheximide (Sigma Aldrich) to inhibit non-Pseudomonas and fungal growth (Simon and 

Ridge, 1974). The remaining aliquots from 10-5 and 10-6 were incubated (15 min, 80 oC) in a 

water bath to kill the non-endospore-forming bacterial cells. Then, 100 µL of the diluted 

suspension was spread onto TSA media to obtain aerobic endospore-inducing bacteria 

(Bacillus). Plates were incubated for 5 days at 28 oC. Bacterial colonies were selected according 

to their morphological characters such as colony size, colony edge appearance, and colony 

colour. The selected colonies were purified through subsequent sub-culture on fresh TSA 

medium. A total of 743 purified isolates was kept at 4 oC on slant cultures for immediate use 

and additionally at -80 oC for long-term storage.  
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3.4.3. Seedling growth bioassay  

A plant growth experiment with chickpea cv. HatTrick inoculated with bacterial isolates was 

carried out in a growth chamber in the aforementioned conditions. A pure colony of each isolate 

was inoculated into 10 mL of tryptone soya broth (TSB). Seeds of chickpea were surface-

disinfected by washing in 1% hypochlorite for 3 min followed by thorough washing with sterile 

MilliQ water. The treated seeds were germinated in a sterile Petri dish containing moistened 

filter paper and kept in an incubator until the radicle was approximately 5 mm long. The 

germinating seeds were transferred into a large Petri dish (10 cm diameter) containing 1% 

water agar and inoculated with 1 mL suspension of a 48-h bacterial culture. Each Petri dish 

contained ten seedlings. A control (non-inoculated) treatment was included and treated with a 

sterilised broth. Treatments were laid out in a Complete Randomized Design with two 

replications. After 7 days, root length was recorded. 

3.4.4. IAA production  

The potential of isolates to produce IAA in the presence and absence of L-tryptophan. IAA 

production was determined using colorimetric analysis (Patten and Glick, 2002). Rhizobacteria 

were grown in 10 mL of DF-minimal medium (Dworkin and Foster, 1958) containing (L-1) 4.0 

g KH2PO4, 6.0 g Na2HPO4, 0.2 g MgSO4.7H2O, 2.0 g glucose, 2.0 g gluconic acid and 2.0 g 

citric acid with trace elements: 1mg FeSO4.7H2O, 10 mg H3BO3, 11.19 mg MnSO4.H2O, 124.6 

mg ZnSO4.7H2O, 78.22 mg CuSO4.5H2O, 10 mg MoO3, pH=7.0 supplemented with L-

tryptophan (500 µg mL-1) in 20 mL test tubes. This culture solution was incubated on a shaker 

(48 h, 28 oC, 160 rpm). A non-inoculated treatment was included for comparison. All test was 

done in triplicate. After incubation, a subsample of 5 mL of culture solution was centrifuged 

(10 min, 10,000 ×g). One mL of the supernatant was mixed with 2 mL of Salkowski reagent 

(50 mL, 35% of perchloric acid, 1 mL 0.5 M FeCl3 solution) and the mixture was kept for 1 h 

in the dark. The development of pink colour in the mixture indicated that the isolate was 

positive for IAA production and the intensity of the colour was measured at 520 nm using a 

spectrophotometer (Implen GmbH, München, Germany). The concentration of IAA was 

interpolated using a standard curve. Isolates unable to produce pink colour in the mixed 

solution were considered to be negative for IAA production. 

3.4.5. ACC deaminase production 

Qualitatively, bacteria able to utilise ACC as sole N source were identified based on their 

growth in DF minimal medium supplemented with 3 mM ACC (TCE, Tokyo Chemical 
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Industry Co. LTD, Toshima, Kita-Ku, Tokyo).   ACC was added to sterile DF-minimal medium 

after filter-sterilisation through a 0.22 µm pore size membrane. Bacterial isolates unable to 

grow on this medium were considered to be negative for ACC deaminase activity. Those 

isolates able to grow on this medium (72 rhizobacteria) were further investigated for their 

ability to express ACC deaminase activity in DF minimal medium containing 3 mM ACC as 

the sole N source. A pure colony was inoculated into the broth and the culture was incubated 

on a shaker (3 h, 28 oC, 160 rpm). The supernatant was separated from the culture solution by 

centrifugation (10 min, 10,000 ×g). The determination of ACC deaminase activity was carried 

out following the procedure described by Penrose and Glick (2003). All ACC deaminase 

determinations were made in triplicate. 

Besides the in vitro identification of ACC deaminase activity, the presence of this capability in 

the PGPR was confirmed by sequencing of the acdS gene using consensus-degenerate hybrid 

oligonucleotide primers (CODEHOP) (Li et al., 2015).  The partial sequences of acdS genes 

with an expected amplicon size of ~760 bp was amplified using acdSf3 

(ATCGGCGGCATCCAGWSNAAYCANAC) (Sigma-Aldrich) and acdSr3 

(GTGCATCGACTTGCCCTCRTANACNGGRT) (Sigma-Aldrich). Amplification reactions 

contained 25 µL containing 1 µL of each of 10× diluted reverse and forward primer, 12.5 µL 

of 2x master mix (Sigma-Aldrich) and 10.5 µL MilliQ water.  The PCR conditions were as 

follows: an initial denaturation at 95 oC for 15 s, followed by 35 cycles of 95 oC for 30 s, 

annealing at 53 oC for 1 min and extension at 72 oC for 1 min and a final extension at 72 oC for 

5 min. 

3.4.6. The sequence of 16S rRNA and phylogenetic analysis 

Isolates that represented a cross-section of the best, moderate and poor performing isolates in 

seeding vigor test were selected to examine their molecular diceisty using 16S rRNA sequence. 

To amplify the 16S rRNA, the reverse primer rP2 (5'-ACGGCTACCTTGTTACGACTT-3') 

(Sigma‐Aldrich) and forward primer fD1(5'-AGAGTTTGATCCTGGCTCAG-3') (Sigma‐

Aldrich) were used (Weisburg et al., 1991). Amplification was performed with the following 

PCR conditions: initial denaturation at 95 oC for 30 s, 35 cycles of denaturation at 95 oC for 30 

s, annealing at 57 oC for 30 s, extension at 72 oC for 1 min, and a final extension at 72 oC for 5 

min. Purified PCR products were sequenced by Sanger sequencing (Australian Genome 

Research Facility, Adelaide, Australia) with an expected amplicon size of ~1500 bp. The purity 

of PCR products was checked by gel electrophoresis. Sequences homologous to 16S rRNA 
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were retrieved from the National Centre for Biotechnology Information (NCBI) GenBank 

database using the BLASTn tool. The sequences were submitted to NCBI and assigned 

accession number (MW692202 - MW692329). The phylogenetic analysis was conducted using 

the neighbour-joining method and the tree was generated using molecular evolutionary genetics 

analysis (MEGA) software version 7 (Institute of Molecular Evolutionary Genetics, 

Pennsylvania State University, University Park, PA 16802, USA). The stability of the clades 

in the phylogenetic tree was assessed using a bootstrap value with 1000 replications.  

3.4.7. Growth pouch experiment 

Based on the seedling growth bioassay, 167 isolates that represented a cross-section of the best, 

moderate and poor performing isolates were selected to examine their effect on the chickpea-

Mesorhizobium symbiosis. Moistened CYG germination pouch bags (Mega International of 

Minneapolis 1800 Kolff St. Newport, MN; 55055 USA), each 36 X 16.5 cm, were used after 

sterilisation (20 min, 121 oC). Surface-sterilised chickpea cv. HatTrick seeds were germinated 

in Petri dishes containing moist filter papers. Forty-eight-h germinating seeds were transferred 

to the sterile and moistened growth pouch. M. ciceri strain CC1192 and the rhizobacteria were 

grown in TSB medium on a shaker (48 h, 28 oC, 160 rpm). One mL of culture solution 

containing approximately 108 colony-forming unit (CFU) mL-1 was added per seedling. Two 

control treatments, non-inoculated and plants inoculated only with strain CC1192, were 

included. All treatments were replicated three times. Pouches were placed upright in a rack. 

Ten mL of McKnight N free nutrient solution per growth pouch was supplied every week 

(McKnight, 1949). The experiment was harvested seven weeks after bacterial inoculation. 

Nodule and shoot dry weight were determined.  

3.4.8. Data analysis 

The regression analyses and box plots were prepared using SigmaPlot ver. 14. The correlation 

analysis among the plant growth and nodulation parameters was analysed using Genstat ver. 

18. Data were also subjected to analysis of variance and the difference between treatment 

means were determined by Fisher’s protected least significant difference (P <0.05). Before 

analysis, the normal distribution of the data was checked using the Shapiro-Wilk test (Shapiro 

and Wilk, 1965). Homogeneity of variances was evaluated using Bartlett’s tests (Bartlett and 

Kendall, 1946). 
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3.5. Results 

3.5.1. Plant growth-promoting characteristics 

The rhizobacteria were found to produce a wide range of ACC deaminase activities and IAA 

concentrations. Out of 743 isolates, 616 (83%) secreted IAA in the presence of L-tryptophan 

and the amount varied between 4.1 and 67.2 µg mL-1. One Bacillus isolate produced 22.2 µg 

mL-1 of IAA in the absence of its precursor.  

Although 94 isolates (12.6%) were qualitatively identified as ACC utilising bacteria, the 

quantitative investigation identified that only 57 isolates were found to produce ACC 

deaminase, with activities between 0.335 and 8.12 µmol α-ketobutyrate h-1. The acdS gene was 

also detected in these isolates. Among 37 isolates unable to express ACC deaminase activity, 

only 15 were able to grow in N-free media. A total of 35 isolates possessed both PGP traits, 

i.e. IAA and ACC deaminase production. M. ciceri CC1192 also produced 7 µg mL-1 of IAA 

but did not show ACC deaminase activity. 

3.5.2. Seedling vigour test 

A total of 743 rhizobacteria isolated from the chickpea root zone were investigated for their 

efficacy in seedling growth promotion in aseptic conditions. A majority of isolates (525) 

significantly increased seedling root length compared to the control check. Plants inoculated 

with the remaining (218) isolates had shorter roots than non-inoculated plants. Based on these 

results, 167 isolates that represented a cross-section of the best (55), moderate (56) and poor 

(55) performing isolates were selected for further investigation. 

Regression analysis between seedling root elongation and ACC deaminase activity or IAA 

production by inoculated isolates was carried out to identify the underlying mechanisms in 

seedling growth promotion. A significant and polynomial relationship between seedling root 

length and IAA production was observed in plants inoculated with isolates regardless of their 

ability to produce ACC deaminase (Fig 1a and b). A similar association was observed between 

root length and ACC deaminase production in plants inoculated with PGPR that were unable 

to produce IAA (Fig. 1c). However, none of the ACC deaminase-producing bacteria suppressed 

root elongation (Fig. 1a and c). In addition, seventeen isolates able to produce IAA greater than 

30 µg mL-1 and below 10 µg mL-1 suppressed seedling root growth as compared to non-

inoculated plants.  These isolates were unable to produce ACC deaminase. The association 
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between ACC deaminase activity and seedling root length was non-significant in plants 

inoculated with PGPR possessing both PGP traits (Fig. 1d). 

3.5.3. Phylogenetic diversity  

Phylogenetic analysis of the selected isolates identified diverse species of bacteria belonging 

to Bacillus, Burkholderia and Pseudomonas (Fig. 2). Interestingly, Burkholderia (previously 

classified as Pseudomonas)-like bacteria were obtained using a medium semi‐selective for 

Pseudomonas. The dominant isolates were closely related to Paraburkhoderia phenoliruptrix, 

Paraburkholderia terricola, Burkholderia caledonica, Burkholderia cepacia, and 

Burkholderia cenocepacia. Additionally, isolates with high similarity to Pseudomonas 

corrugata, Pseudomonas fluorescens, Pseudomonas frederiksbergensis, Pseudomonas 

geniculata, Pseudomonas jessenii and Pseudomonas putida were identified. The majority of 

the isolates (98%) of these genera were able to express ACC deaminase and/or IAA in vitro 

(Appendix Table 2). Of these, 41.7% were able to express both mechanisms.  

Fig. 2b shows that nineteen species of Bacillus were identified. The dominant species were 

Bacillus megaterium, Bacillus flexus, Bacillus amyloliquefaciens, Bacillus toyonensis, Bacillus 

niacini and Peribacillus simplex. Additionally, few isolates closely related to Bacillus cereus, 

Bacillus cucumis, Bacillus bataviensis, Bacillus pumilus, Bacillus subtilis, Bacillus 

atrophaeus, Bacillus tequilensis, Bacillus mycoides and Bacillus thuringiensis were identified. 

An isolate that showed 97% similarity to Bacillus endophyticus NM3E6 was also identified. 

The majority of these isolates (85.4%) produced IAA. About 11% of tested isolates lacked both 

mechanisms (Appendix Table 2). The remaining isolates expressed ACC deaminase activity 

alone. 

3.5.4. Coinoculation experiment 

Plants inoculated with M.  ciceri strain CC1192 in combination with PGPR had the highest 

nodulation and growth, compared to those plants inoculated with either PGPR or CC1192 

separately (Fig. 3a, b, c and d). In this case, the effect on nodulation was associated with the 

capacity of PGP isolates to produce ACC deaminase and IAA. The highest response to 

coinoculation was observed in plants inoculated with PGPR able to produce both ACC 

deaminase and IAA. Plants inoculated with PGPR able to produce ACC deaminase had greater 

nodulation and biomass production than plants inoculated with PGPR producing IAA. The 

lowest nodulation and plant growth was obtained in plants coinoculated with PGPR producing 
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neither IAA nor ACC deaminase. However, these plants had better nodulation and growth than 

control non-inoculated plants.  

The mean values of plant growth and nodulation were plotted against the in vitro production 

of IAA and ACC deaminase by inoculated PGPR to investigate their mechanisms of action on 

the chickpea-Mesorhizobium symbiosis. Regardless of their ability to produce ACC deaminase, 

the amount of IAA production across all rhizobacteria was significantly and non-linearly 

associated with the effect on nodule dry weight (NDW) and shoot dry weight (SDW) of 

chickpea (Fig. 4a, b, c and d). No further promotion of the NDW and SDW of chickpea was 

observed with increasing IAA concentration beyond 20 µg mL-1 produced by ACC deaminase 

negative rhizobacteria. Beyond 35 µg mL-1 IAA, nodulation and biomass production was lower 

than for non-inoculated plants. Both plant parameters were also significantly and positively 

correlated with ACC deaminase activity produced by PGPR that lacked IAA production (Fig. 

4e and f). However, these associations were not observed in plants inoculated with isolates able 

to produce IAA (Fig. 5g and h).  

We further analysed the results to determine whether the seedling growth bioassay test was the 

best predictor of the PGPR effect on the chickpea-Mesorhizobium symbiosis. Seedling root 

length was linearly and significantly associated with SDW (r = 0.59, P < 0.01) and NDW (r = 

0.81, P < 0.01) (Figures 5a and b). In this association, inoculated PGPR possessed the capability 

to produce IAA and ACC deaminase. Likewise, seedling root length promotion was directly 

and significantly associated with SDW (r = 0.82, P < 0.01) and NDW (r = 0.82, P < 0.01) in 

plants inoculated with IAA-producing PGPR (Figures 5c and d). In plants inoculated with 

PGPR producing only ACC deaminase activity, seedling root length promotion was weakly 

associated with SDW (r = 0.17, P < 0.01) and NDW (r = 0.27, P < 0.01) (Fig. 5e and f). When 

plants inoculated with PGPR unable to express either beneficial PGP trait, the association 

between seedling root growth and NDW (r = 0.30, P < 0.01) was significant but the association 

between seedling root growth and SDW was non-significant (Fig. 5g and h).  

We did further analysis to determine whether plant growth promotion following inoculation of 

PGPR was associated with enhanced nodulation. A significant and linear association was 

observed between SDW and NDW when plants were co-inoculated with isolates able to 

produce IAA and/or ACC deaminase (Fig 6a, b and c). However, plant growth promotion was 

not linked with enhanced nodulation in plants inoculated with isolates that lacked both 

beneficial PGP traits (Fig. 6d).  
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3.6. Discussion 

The performance of rhizobacteria in stimulating seedling root elongation, together with their 

ability to produce IAA and ACC deaminase in vitro predicted their efficacy in enhancing the 

chickpea-Mesorhizobium symbiosis.  Most of the PGPR that resulted in better growth and 

nodulation of chickpea belonged to the genus Burkholderia. 

Seedling vigour test predict the potential effect of rhizobacteria in chickpea-

Mesorhizobium symbiosis 

Plant-related factors in the rhizosphere, particularly the production of organic compounds in 

root exudates, could affect the survival and colonisation of PGPR and their ability to express 

various PGP properties (Drogue et al., 2012). Taking this into consideration, we used a plant-

based strategy for PGPR development. Rhizobacterial isolates significantly differed in their 

potential to promote seedling root elongation. Rhizobacteria which promoted seedling root 

elongation also enhanced nodulation and growth of chickpea. Therefore, the results of the 

seedling root elongation test predicted the potential effect of rhizobacteria on the nodulation 

and growth of chickpea seedlings in aseptic conditions.  

Plant growth promotion and nodulation increase following inoculation of PGPR solely or in 

combination with rhizobia have been shown in several studies (Molla et al., 2001; Vessey, 

2003; Dey et al., 2004; Malik and Sindhu, 2011; Nascimento et al., 2012; Zaheer et al., 2016; 

Korir et al., 2017). However, the underlying mechanisms that triggered the growth-promoting 

effects of rhizobacteria in these studies remained unexplored. In the present study, the positive 

influence of rhizobacteria in chickpea-Mesorhizobium symbiosis was related to their ability to 

express ACC deaminase and IAA.  ACC deaminase might act to stimulate plant growth and 

nodulation in particular by hydrolysing ACC released from germinating seed during nodule 

initiation (Glick, 2014; Guinel, 2015). This would decrease the ACC concentration and 

consequently the ethylene production in the rhizosphere (Nascimento et al., 2018). However, 

if the level of ethylene remains high in the rhizosphere after seed germination and nodule 

induction, legume root growth and nodulation are inhibited (Guinel, 2015). This might also be 

the reason for no further increase in nodulation and growth of plants inoculated with isolates 

that produced IAA above 20 µg mL-1 in this study; this is attributed to the stimulation of 

ethylene synthesis by IAA (Glick, 2014).  

Rhizobacteria able to produce IAA and ACC deaminase in vitro resulted in greater growth and 

nodulation of chickpea than isolates positive for either of the two traits individually. Inhibition 
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of plant growth and nodulation following inoculation of rhizobacteria producing IAA greater 

than 40 µg mL-1 were attenuated by the presence of ACC deaminase activity. This may be 

mediated by the decreasing the ethylene synthesis, which permits IAA activity that can 

continue to stimulate plant growth (Glick, 2014; Kang et al., 2019). Consequently, ACC 

deaminase appears to facilitate plant growth stimulation by IAA. Most of the isolates 

expressing both PGP traits in the present study were closely related to Burkholderia spp. We 

can, therefore, confirm that IAA along with ACC deaminase produced by rhizobacteria gives 

an added advantage in promoting the ability of rhizobia to form an efficient chickpea-

Mesorhizobium symbiosis, as determined by nodule weight.  

Association between plant growth and nodulation was dependent on the ability of 

inoculated rhizobacteria to express ACC deaminase and/or IAA  

Rhizobacteria improve the growth of various legume plants but this effect is not always 

associated with enhancing nodulation (Molla et al., 2001; Dey et al., 2004; Korir et al., 2017). 

The association between plant growth and nodulation in the present study was significant when 

plant inoculated with rhizobacteria able to express ACC deaminase and/or IAA in vitro.  This 

may indicate the importance of ACC deaminase and IAA to enhance nodulation per se that 

ultimately results in plant growth promotion. Recently, we reviewed that ACC deaminase and 

IAA can enhance legume-rhizobia symbiosis by enhancing nodule induction, prolonging 

functional nodules and upregulating genes associated with N2 fixation (Alemneh et al., 2020).  

Although isolates were unable to express ACC deaminase and IAA, most isolates belonging to 

Bacillus spp. improved the growth and nodulation of chickpea. In this case, the plant growth 

promotion was not related nodulation.  Therefore, the effect of Bacillus in plant growth might 

be related to their ability to express PGP traits other than IAA and ACC deaminase.  

Unidentified PGP mechanism determined the potential of few PGPR 

Some rhizobacteria, which did not possess any of the PGP traits tested in vitro increased 

seedling root elongation as well as the growth and nodulation of chickpea. Why these isolates 

are also a PGPR is unclear. The efficacy of these isolates may be associated with some other 

PGP activities for which we did not test. However, these isolates poorly performed in plant 

growth promotion as compared to other PGPR that were able to produce ACC deaminase and 

IAA. Other studies have also found PGPR or deleterious rhizobacteria capable of expressing a 

wide array of PGP traits, without ACC deaminase or IAA production (Cattelan et al., 1999). 

This effect may be related to the ability of rhizobacteria to express other PGP properties 



 

83 
 

including cytokinin, gibberellic acids, and volatile compounds (Lorteau et al., 2001; Mirza et 

al., 2007), but we did not carry out any assays to confirm this. Most of these deleterious isolates 

were closely related to Bacillus spp. few rhizobacteria, which showed the closest sequence 

similarity with B. thuringiensis, B. cucumis, P. simplex, B. muralis and P. frederiksbergensis 

in this study inhibited the nodulation and growth of chickpea. The deleterious effect of 

rhizobacteria on nodulation and plant growth has been previously reported (Cattelan et al. 

1999; Mirza et al. 2007; Valverde et al. 2007; Malik and Sindhu 2011; Smyth et al. 2011). 

However, the underlying mechanisms that cause harm in these studies have not been 

investigated. Antibiotics, siderophore, hydrogen cyanide and other inhibitory substances 

produced by inoculated rhizobacteria can negatively affect the survival of rhizobia in the root 

zone and also interfere initial infection process during nodule induction (Li and Alexander, 

1990; Berggren et al., 2001; Camacho et al., 2001; Chebotar et al., 2001; Gowtham et al., 2017).  

 Burkholderia were more efficient plant growth promotion than Bacillus and 

Pseudomonas 

Rhizobacteria belonging to Pseudomonas and Bacillus are known to be efficient in plant 

growth promotion (Baliyan et al., 2018; Pandey et al., 2019). However, Burkholderia spp. in 

the present study were identified as the most efficient PGPR in enhancing chickpea-

Mesorhizobium symbiosis as compared to Bacillus spp. Most of Burkholderia spp. were able 

to express ACC deaminase and IAA in vitro. Therefore, PGP potential of Burkholderia spp. 

can be related to their ability to produce ACC deaminase and IAA. Most of Burkholderia spp. 

including P. phenoliruptrix, P. terricola, B. caledonica, B. cepacia, and B. cenocepacia have 

been endophytic bacteria in different plant species including chickpea and recognised as 

effective symbiont associate (Lu et al., 2012; Rasolomampianina et al., 2005; Tapia-García et 

al., 2020). Endophytic Burkholderia spp. facilitated infection of plant root through deforming 

root hair, and increasing nodules and their efficiency in N2 fixation (Compant et al., 2008). 

Based on their ability to colonise the nodules and roots of different plants (Dong et al., 2019; 

Kim et al., 2019; Putrie et al., 2020), further study is required to identify whether the 

Burkholderia in the present study can colonise internal nodules and subsequently their role in 

nodule induction and functioning. 

3.7. Conclusion 

The results of the seedling root elongation test predicted the potential effect of rhizobacteria on 

the nodulation and growth of PGPR and rhizobia co-inoculated chickpea in aseptic conditions. 
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PGPR may have more than one mechanism for enhancing nodulation and plant growth and the 

experimental evidence indicated that increased nodulation and plant growth were the net results 

of ACC deaminase and IAA production by PGPR. The best performing PGPR were closely 

related to Burkholderia. Hence, the use of a seedling growth bioassay as a first stage screening 

strategy for PGPR development appeared to integrate the impact of IAA and ACC deaminase 

activities on growth and nodulation. Rhizobacteria able to produce high concentrations of IAA 

in combination with ACC deaminase activity are suitable PGPR candidates for inclusion in a 

second stage screening program using non-sterile soil in the greenhouse and/or field conditions. 
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Fig. 1. The association between seedling root length promotion (at 7 days after germination) following inoculation of PGPR and their capacity to 

produce IAA and ACC deaminase in vitro. Data from three replications were combined after confirming homogeneity of variances with Bartlett’s 

test. Each point represents an average of three replications within an experiment. The continuous line within each frame is a best-fit regression line 

with the respective significance level and strength of association. The vertical red line in Fig 1b indicates the critical maximum level of IAA 

production for stimulation of seedling root elongation. Beyond this point, no further increase in seedling root elongation was observed. The broken 

red horizontal line indicates seedling root length with no inoculation of rhizobacteria. ACCd: ACC deaminase, +VE: Positive and –VE: negative.   

P < 0.01- highly significant, P = ns- non-significant. 
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Fig. 2. Dendrogram showing the genetic relationships among the 16S rRNA gene sequences 

(1500 bp) of strains of (a) Burkholderia and Pseudomonas, and (b) Bacillus isolated from 

chickpea rhizospheric soils and their related type strains. The tree was created by the 

neighbour-joining method. The numbers on the tree indicate the percentages of bootstrap 

sampling derived from 1000 replications. PSI: phosphate solubilisation index, *- PSI value <2, 

**- 2-3, ***>3-4, ****>4.0. IAA (µg mL-1) concentration * < 10, ** 10 - 20, *** 20 – 30, 

****30 – 40, ***** 40 – 50, ****** 50 – 60 and ******* 60 – 70.  ACCd: ACC deaminase, 

‘+’ isolates positive for ACC deaminase activity and ‘-‘ isolates negative for ACC deaminase 

activity.  
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Fig. 3. Box plots showing the overall effect of PGPR inoculation on shoot dry weight and 

nodule dry weight based on the number of isolates inoculated (PGPR + CC1192: plants co-

inoculated with PGPR and Mesorhizobium ciceri CC1192, CC1192: plants inoculated only 

with Mesorhizobium sp. and uninoculated: plants not inoculated. IAA + ACCd: plant co-

inoculated with ACC deaminase and IAA producing PGPR and CC1192, ACCd: plants 

inoculated with ACC deaminase-producing PGPR + CC1192, IAA: plants inoculated with 

IAA-producing PGPR + CC1192, None: plants co-inoculated with PGPR lacking both traits + 

CC1192 and No rhizobacteria: plants inoculated with only CC1192. Each treatment was 

replicated three times. Data from the three replications were combined after confirming the 

homogeneity of variances with Bartlett’s test. The dots on each side of the box plot represent 

the 95% confidence interval of the data distribution. The broken line in the box plot indicates 

the mean value. PGPR: Plant growth-promoting rhizobacteria, ACCd: ACC deaminase, 

CC1192: M. ciceri strain CC1192.  n = number of isolates. P < 0.01- highly significant.
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Fig. 4. Relationship (regression analysis) between plant parameters (nodule and shoot dry weight) and the level of IAA production by ACCd 

positive PGPR (a and b), level of IAA produced by ACC deaminase-negative PGPR (c and d), ACC deaminase activity expressed by IAA-negative 

PGPR (e and f) and ACC deaminase production by IAA positive PGPR (g and h). All seedlings were co-inoculated with M. ciceri CC1192.  Data 

from the three replications were combined after confirming the homogeneity of variances with Bartlett’s test. Each point represents an average of 
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three replications within an experiment. The continuous line within each frame is a best-fitted regression line with the respective significance level 

and strength of association. The red line indicates the shoot and nodule dry weight obtained from plants without rhizobacteria inoculation. -VE: 

negative and +VE: positive. P < 0.01- highly significant, P < 0.05- significant, P = ns- non-significant. 

ACCd: ACC deaminase, PGPR: Plant growth promoting rhizobacteria



 

97 
 

 

 

Fig. 5. Association between seedling root elongation after 7 days in aseptic conditions and shoot and nodule dry weight in plants co-inoculated 

with M. ciceri CC1192 and IAA- and ACC deaminase-producing PGPR (a and b); IAA producing PGPR (c and d), ACC deaminase producing 
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PGPR in the presence of L-tryptophan (e and f) and PGPR with neither capability (g and h). Each treatment was replicated three times. Data from 

the three replications were combined after confirming the homogeneity of variances with Bartlett’s test. Each point represents an average of three 

replications within an experiment. The continuous line within each frame is a best-fitted regression line with the respective significance level and 

strength of association. ACCd: ACC deaminase, PGPR: Plant growth promoting rhizobacteria.  P < 0.01- highly significant, P = ns- non-significant.
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Fig. 6. The association between shoot dry and nodule dry weight of chickpea inoculated with 

PGPR able to produce (a) ACC deaminase and IAA, (b) IAA alone, (c) ACC deaminase alone 

and (d) neither of the two traits. Data from three replications were combined after confirming 

the homogeneity of variances with Bartlett’s test. Each point represents an average of three 

replications within an experiment. The continuous line within each frame is a best-fitted 

regression line with the respective significance level and strength of their association.  P < 

0.01- highly significant, P = ns- non-significant. 
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4.2. Abstract 1 

Plant growth-promoting rhizobacteria (PGPR) occur naturally in the rhizosphere, but still little 2 

is understood regarding the soil and climatic variables that influence the occurrence of 3 

beneficial bacteria. Here, we examined the effects of environmental factors on the occurrence 4 

of PGPR in the chickpea rhizosphere soils. A total of 743 rhizobacteria were isolated from the 5 

chickpea rhizosphere collected from 74 sampling sites across Australia. Results revealed that 6 

the ability of isolates to produce indole acetic acid (IAA) and 1-aminocyclopropane-1-7 

carboxylate (ACC) deaminase were positively correlated with the potential of rhizobacteria to 8 

promote root growth. The amount of IAA production was positively correlated with soil 9 

copper, manganese and zinc concentrations, electric conductivity and the aridity index, but 10 

negatively correlated with soil carbon (C), nitrogen (N) and phosphorus (P) at the sampling 11 

sites from which the PGPR were isolated. Additionally, the ability of PGPR to tolerate metal 12 

ion toxicity and water stress was related to their ability to express IAA.  The potential of isolates 13 

to solubilise P was negatively correlated with the C/N ratio, N, P, C and magnesium content of 14 

the soils but none of the soil environmental factors was correlated with the ACC deaminase 15 

activity of the isolates. In a principal component analysis, these environmental variables 16 

explained 53% of the variation in the ability of the rhizobacteria to produce IAA and ACC 17 

deaminase and/or to solubilise P. These findings could be applied to the design of an efficient 18 

PGPR development strategy that incorporates ecological traits and plant growth-promoting 19 

mechanisms to increase chickpea production. 20 

Keywords: Aridity index, chickpea, cropping history, IAA, metal ions, plant growth-21 

promoting rhizobacteria  22 
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4.3. Introduction 23 

Soils contain diverse communities of microorganisms that interact with plants, and respond to 24 

specific physical and chemical characteristics of soils. These microbial communities contribute 25 

to essential ecosystem services in soils, including soil organic matter decomposition, nutrient 26 

cycling, disease control and plant nutrition (Van Elsas et al., 2006). Soil microbial communities 27 

are not randomly distributed but exhibit spatial aggregation (Bardgett 2005; Martiny et al., 28 

2006; Katsalirou et al., 2010; Oh et al., 2012; Zhou et al., 2020). Aggregation of soil microbial 29 

communities in particular microenvironments can develop as a result of long-term stress, 30 

through adaptive evolution (Wu and Hahn, 2006; Feingersch et al., 2012; Gubry-Rangin et al., 31 

2015; Zhao et al., 2016) that leads to the selection of soil microbes with distinct genetic and 32 

metabolic features (Chase, 2005; Bursy et al., 2008; Oh et al., 2012). This adaptive evolution 33 

mediates biodiversity in soils (Gómez and Buckling, 2013). Soil microbial communities can 34 

express diversity in a wide variety of traits including light-, temperature-, and pH-tolerance, 35 

nutrient assimilation, carbon substrate usage, biofilm formation and antibiotic resistance 36 

(Larkin and Martiny, 2017). 37 

Plant growth-promoting rhizobacteria (PGPR), a subset of the soil microbial community, can 38 

be isolated from soils, cultured and used to improve plant growth in a wide range of climatic 39 

conditions. Rhizobacteria belonging to the genera Bacillus, Burkholderia and Pseudomonas 40 

are very well-known PGPR (Alves et al., 2016; Hu et al., 2017; Batista et al., 2018; Cardoso et 41 

al., 2018; Tagele et al., 2018; Sharma et al., 2019). PGPR promote plant growth through direct 42 

and indirect plant growth-promoting (PGP) mechanisms (Swift et al., 2019). Of these, indole 43 

acetic acid (IAA) production, ACC deaminase activity and P solubilisation are desirable traits 44 

that are often suggested as mechanisms to promote plant growth by effective PGPR (Alemneh 45 

et al., 2020). ACC deaminase activity can improve plant growth by reducing the concentration 46 

of ethylene that is synthesised by plants under stress conditions (Saleem et al., 2018; Singh et 47 

al., 2015).  ACC deaminase and IAA can promote root growth, thereby potentially improving 48 

nutrient and water uptake in soils of low fertility and low moisture content (Bal et al., 2013; 49 

Chandra et al., 2018; Mpanga et al., 2018). P solubilising activity can improve P availability 50 

for plants growing in soils of low fertility (Mpanga et al., 2018; Panhwar et al., 2014).  51 

Since the aforementioned PGP traits can play a role in host plant ability to withstand stress 52 

conditions, we hypothesised that the environmental conditions at the sampling sites would be 53 

associated with the types and expression levels of different PGP traits of the isolated bacteria, 54 
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and influence their potential to promote plant growth. Accordingly, we addressed the following 55 

question: how are the performance and plant growth promoting mechanisms of rhizobacteria 56 

associated with the environmental conditions of their source soils?. 57 

4.4. Material and methods 58 

4.4.1. Soil samples and physio climatic conditions of the sampling sites 59 

Soil samples were collected from 74 sites across major agricultural lands of Australia during 60 

the cropping season in 2017 (Supplementary Fig. 1). Sampling sites were selected based on 61 

their cropping history in South Australia, Victoria, New south Wales, Western Australia and 62 

Queensland. The latitude and longitude coordinate of the sampling sites were ranged between 63 

(-23.17'46.6'' to -36.18'58.2'') and (115.17'26.3'' to 151.29'42.3''), respectively.  64 

Crop rotation is the main cropping system in the sampling sites. Wheat was cultivated in 65 

rotation with legumes (chickpea, faba bean, field pea, lentil, lupin and vetch) and other non-66 

leguminous crops (barley, canola, oat and sorghum) at the majority of the sampling sites.  67 

In this study, seven sites were excluded due to lack of cropping history. Of 67 sites, thirty-68 

seven had the legume cultivation history within the last five years. Among them, chickpea was 69 

cultivated at eleven sampling sites. The remaining locations had no history of legume growth.  70 

The long-term average rainfall at the study sites ranged from 289 to 695 mm (Bureau of 71 

Meteorology, 2019). The potential evapotranspiration (PET) varied within the range 1,168 to 72 

1,358 mm. The aridity index was calculated using P/PET, where P is the average annual 73 

precipitation (UNEP, 1992). Aridity index values of the study sites varied between 0.23 and 74 

0.53. 75 

Soil samples were taken from 0 to 15 cm depth and were kept in the refrigerator at 4 oC until 76 

analysed. Samples were air-dried and passed through a 2 mm sieve. The physicochemical 77 

properties of soils were analysed following the methods described in Rayment and Lyons 78 

(2011). Soil C was determined following the Walkley Black method. A modified Kjeldahl 79 

method was used to determine total soil N. Total P in the soil was analysed by a colorimetric 80 

method after extracting elemental P by perchloric acid digestion. Soil pH in CaCl2 was 81 

determined from a water suspension containing a 1:2.5 of soil to CaCl2 mixture. The electrical 82 

conductivity (EC) of the water extract from a 1: 2.5 soil: water suspension was determined. 83 

The textural composition of the soils was analysed by dispersal and hydrometric readings. 84 
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Ammonium acetate extractable Ca, K and Mg in soils were determined using atomic absorption 85 

spectrophotometry. Diethylene triamine pentaacetic acid (DTPA) extractable concentrations of 86 

Cu, Mn and Zn in soils was determined. The physicochemical properties of soils are presented 87 

in Supplementary Table 1.  88 

4.4.2. Isolation of rhizobacteria 89 

Chickpea seedlings were grown in pots containing soil collected from various sampling sites 90 

to obtain rhizosphere soils. Seedlings were harvested four weeks after germination. The soils 91 

adhering strongly to the roots of chickpea seedlings were collected. The rhizosphere soil was 92 

serially diluted up to 10-6 in sterile MilliQ water. A 0.1 mL aliquot from 10-5 and 10-6 was taken 93 

and spread on semi-selective tryptone soya agar (TSA) for isolation of Pseudomonas-like 94 

bacteria. The semi-selective medium contained 50 µg ml-1 of ampicillin (99%, Sigma-Aldrich, 95 

Darmstadt, Germany), 12.5 µg ml-1 of chloramphenicol (99%, Sigma-Aldrich,) and 75 µg mL-96 
1 of cycloheximide (Sigma-Aldrich) to inhibit the growth of non-Pseudomonas bacteria and 97 

fungi, respectively (Simon and Ridge, 1974). This medium also recovered bacteria of the 98 

closely related genus Burkholderia (formerly classified as Pseudomonas). The above-99 

mentioned aliquots, diluted to 10-5 and 10-6, were heated for 10 min at 80 oC to promote the 100 

selection of aerobic endospore-producing bacteria (Bacillus spp.) (Travers et al. 1987). Heat-101 

treated aliquots were spread on TSA. Plates were incubated for 5 days at 28 oC. Based on the 102 

colony morphologies, 7 to 12 colonies were transferred to the same medium for further 103 

purification of the strains. Pure colonies were preserved on slant cultures at 4 oC and in 20% 104 

glycerol at -80 oC for further study.  105 

4.4.3. Determination of PGP potential of strains  106 

The effect of strain inoculation on seedling vigour in large Petri dishes (20 cm diameter) was 107 

investigated. Seeds of chickpea cv. HatTrick was surface sterilised in 70% ethyl alcohol for 3 108 

min and 5% sodium hypochlorite for 3 min, followed by five rinses with sterile MilliQ water. 109 

Surface sterilised seeds were germinated in Petri dishes (10 cm diameter) containing moistened 110 

sterile sand. After 48 h, ten healthy seedlings were transferred into disinfected 20-cm Petri 111 

dishes containing 1% water agar. Liquid inoculant was prepared using a single colony of each 112 

strain in a 10 mL test tube containing tryptone soya broth (TSB). The cultures were incubated 113 

at 28 oC on a shaker agitated at 180 rpm for 48 h. An aliquot (1 mL) of the culture was pelleted 114 

by centrifugation at 10,000 ×g for 10 min. The pellet was suspended in 1 mL of sterile water. 115 

The number of viable cells in the culture suspension (108 cells mL-1) was optimised based on 116 
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their optical density estimated using a spectrophotometer (Implen GmbH, Schatzbogen, 117 

München, Germany). Then, 0.1 mL of cell suspension was inoculated per seedling. The 118 

experiment included three replicates. Seven days after inoculation, root length was measured. 119 

Rhizobacteria were further investigated for their potential to produce IAA and ACC deaminase, 120 

and to solubilise P.  121 

The potential of isolates to produce IAA and ACC deaminase and to solubilise mineral 122 

phosphate were investigated in vitro. The control treatment with an uninoculated medium was 123 

processed in the same way to account for the effect of any residual nutrients from the medium. 124 

After a 48-h incubation in a DF-minimal medium containing 0.5 g L-1 of L-tryptophan, the 125 

culture solution was centrifuged at 10,000 ×g for 10 min. DF-minimal medium (Patten and 126 

Glick, 2002). One mL of supernatant and 4 mL of Salkowski’s reagent were mixed and kept in 127 

the dark at room temperature for 30 min before measuring absorbance at 535 nm using 128 

spectrophotometer. The IAA concentration in the supernatant was calculated relative to a 129 

standard curve of IAA (Glentham LIFE SCIENCES, Ingoldmells Court Corsham, United 130 

Kingdom) ranging from 1 to 100 µg mL-1.  131 

Preliminary screening of bacterial strains for ACC deaminase production was performed based 132 

on their ability to utilise ACC as a sole N source in DF minimal medium (Penrose and Glick 133 

2003). A filter-sterilised solution of ACC (3 mM) was added to the autoclaved DF agar medium 134 

instead of (NH4)2SO4. Each strain was streaked on a DF-minimal agar medium and incubated 135 

for 5 days at 28 oC. Strains able to grow on this medium were further assessed for their 136 

quantitative production of ACC deaminase in liquid DF-minimal medium in the presence of 137 

ACC. Quantitatively, ACC deaminase activity was determined following the procedure 138 

indicated in Penrose and Glick (2003). A 48-h culture was inoculated into DF-medium and the 139 

solution was incubated in a shaker incubator (3 h, 28 oC, 160 rpm). The culture solution was 140 

centrifuged at 10,000 ×g for 10 min. The ACC deaminase activity was estimated from the 141 

supernatant. 142 

The ability to dissolve sparingly soluble inorganic phosphate [AlO4P, Ca3(PO4)2 and 143 

FeO4P.2H2O] was investigated using the National Botanical Research Institute's phosphate 144 

growth medium (NBRIP) (Nautiyal 1999). In this medium, 5 g L-1 of either Ca3(PO4)2 (>96%, 145 

Sigma-Aldrich), FeO4P.2H2O (Sigma-Aldrich) or AlO4P (Sigma-Aldrich) was supplied. A 48-146 

h culture was streaked onto NBRIP medium and incubated at 28 oC for 7 days. The colony 147 

diameter and total diameter of halo (clearing) zone plus colony diameter were measured from 148 
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randomly selected colonies. Solubilisation index was calculated following the method 149 

described in Nguyen et al. (1992). 150 

4.4.4. Phylogenetic analysis of Bacillus-, Burkholderia- and Pseudomonas-like 151 

bacteria 152 

Bacterial isolates (167) that represented a cross-section of the best (55), moderate (56) and poor 153 

(56) performing isolates in seedling vigour test were selected for taxonomic identification using 154 

16S rRNA.   A standard PCR methodology was used for presumed taxonomic identification of 155 

rhizobacteria. In brief, amplification of 16S rRNA was performed from 48-h-old pure colonies, 156 

using universal reverse primer rP2 (5′-ACGGCTACCTTGTTACGACTT-3′) (Sigma‐Aldrich) 157 

and forward primer fD1 (5′-AGAGTTTGATCCTGGCTCAG-3′) (Sigma‐Aldrich) as 158 

described by Weisburg et al. (1991). The 25 µL PCR reaction comprised: 12.5 µL of 2× Taq 159 

polymerase MiFi mix (Sigma‐Aldrich), 10.5 µL of water and 1 µL of each primer. The PCR 160 

cycling conditions were as follows: 1 min at 95 oC followed by 35 rounds of thermal cycling 161 

conditions [95 oC for 30 s, 57 oC for 30 s and 72 oC for 1 min] and a final extension at 72 oC 162 

for 5 min. The PCR products were visualised in a 1.5% agarose gel under a UV 163 

transilluminator. PCR products were sequenced by Sanger sequencing (Australian Genome 164 

Research Facility, Adelaide, SA, Australia). Homologous sequences in the National Centre for 165 

Biotechnology Information GenBank databases were identified from BLAST searches. A 166 

phylogenetic tree was constructed using the neighbour-joining method. Tree topologies were 167 

evaluated by performing bootstrap analysis of 1,000 resamplings using the latest version of 168 

Molecular Evolutionary Genetics Analysis (MEGA-7) (Institute of Molecular Evolutionary 169 

Genetics, The Pennsylvania State University, University Park, PA, USA) (Kumar et al., 2016).  170 

4.4.5. Effect of stress on IAA production and PGPR viability  171 

The effect of metal ion concentration and water stress on cell viability and IAA production 172 

were assayed. For this experiment, four PGPR efficient at promoting chickpea seedling growth, 173 

putatively identified as Bacillus pumilus 98F, Burkholderia cenocepacia 127F, Burkholderia 174 

sp. 12F and Pseudomonas fluorescens 27F were selected (Alemneh et al. 2021a). These isolates 175 

were able to solubilise phosphate from various inorganic P sources including rock phosphate. 176 

All these strains also produced IAA in the presence of L-tryptophan as well as ACC deaminase 177 

in vitro (Supplementary Table 2). However, they were unable to produce IAA in the absence 178 

of L-tryptophan (Alemneh et al. 2021a). Strains were purified on TSA. Plates were incubated 179 

at 28 oC for 72 h. A pure colony was transferred into TSB and the culture solution was 180 
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incubated at 28 oC for 48 h.  For each isolate, the optical density (OD) of cell suspension was 181 

measured using spectrophotometer at 2h time interval. From the same cell suspension, the 182 

number of viable cells were counted by culturing the solution on TSA medium after 48h 183 

incubation at 28 oC. Later, the relationship between the OD and number of viable cells was 184 

determined in linear regression analysis. Based on regression equation, number of viable cells 185 

in the cell suspension were determined and adjusted to 108 per mL for next experiment. 186 

The cell viability and potential for IAA production by the four selected rhizobacteria in TSB 187 

containing different levels of Cu, Mn and Zn were investigated. The metal ions were supplied 188 

in the form of CuSO4.7H2O, MnSO4 and ZnSO4.5H2O after filter sterilisation using a 0.22-µm 189 

microfilter, at four concentrations (0, 0.5, 1 and 2 mM) in DF-minimal medium containing 500 190 

µg L-1 of L-tryptophan (AppliChem GmbH, Darmstadt, Germany). The concentration was 191 

designed based on metal ion concentrations present in soils from the sampling sites and data 192 

reported in the literature (Smolders et al., 2004; Oorts et al., 2006; Carlos et al., 2016). The 193 

literature reported that these concentrations can suppress the growth and activity of bacteria in 194 

soils. Additionally, the effect of water potential gradient on cell viability and IAA production 195 

was investigated by supplying PEG-6000 to simulate drought in the medium (Michel and 196 

Kaufmann, 1973). Five PEG-6000 concentrations (0, 10, 20, 30 and 45%) inducing water 197 

potentials of 0, -0.07, -0.17, -0.28 and -0.49 megapascals (Mpa), respectively, in growing 198 

media were used. Treatments were replicated three times. The culture solution without 199 

rhizobacteria and metal ions was used as a control. After incubating for 48 h at 28 oC in a 200 

shaker incubator, 0.1 mL of culture solution was serially diluted in 0.9 mL of sterile MilliQ 201 

water to 10-5. Twenty µL from the 10-4 to 10-5 dilutions were spread on plates containing TSA 202 

and incubated for 72 h at 28 oC. District colonies were counted and the number of colonies 203 

were converted into number of viable cells per unit mL. From the same cell suspension, IAA 204 

and ACC deaminase were analysed as described above.  205 

4.4.6. Statistical analysis 206 

All statistical analyses were performed using Genstat 18th edition statistical software (VSN 207 

International Limited, Hertfordshire, United Kingdom). Data were analysed by two-way 208 

analysis of variance, followed by Tukey HSD (P < 0.05). The association between the effect 209 

of rhizobacteria on seedling root elongation and the edaphic and climatic conditions at the soil 210 

sampling sites from which the PGPR were isolated was tested using linear regression analysis. 211 

Principal Component analysis (PCA) was performed to examine how combined soil and 212 
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environmental characteristics influenced the biological attributes of the isolates, and to 213 

determine which inter-related parameters most influenced the PGP potential of the isolates. 214 

Sixteen environmental and soil characteristics were used as explanatory variables, and PGP 215 

traits (ACC deaminase, IAA and P solubilisation) and seedling root length were the response 216 

variables. Pearson’s correlation between the explanatory variables was done and the variables 217 

with high autocorrelation were removed from the PCA analysis. Accordingly, C/N ratio, Ca 218 

and Zn were excluded from PCA.  The normality of the data was evaluated using Shapiro-219 

Wilk’s test. Bartlett’s test was used to test the homogeneity of variances.  220 

4.5. Results  221 

A total of 743 isolates was obtained from the rhizosphere of chickpea grown in soils collected 222 

from 74 sampling locations across major agricultural lands in Australia (Supplementary Table 223 

1). The efficacy of these isolates in seedling root elongation in vitro condition was investigated. 224 

The association between the performance of isolates in seedling root elongation and the 225 

environmental and soil conditions of their sources were also investigated. 226 

4.5.1. Correlation between PGP potential of rhizobacteria with the soil 227 

environment  228 

The association between the performance of rhizobacteria in seedling root growth promotion 229 

and the environmental conditions prevailing at the soil sampling sites from which the strains 230 

were isolated, are presented in Table 1. Root growth promotion by rhizobacteria was 231 

significantly and positively correlated with the aridity index (r = 0.35, P < 0.01), potential 232 

evapotranspiration (r = 0.56, P < 0.01), EC (r = 0.35, P < 0.01) and the concentration of Cu (r 233 

= 0.39, P < 0.01), Mn (r = 0.35, P < 0.05) and Zn (r = 0.34, P < 0.01) in the soils. Conversely, 234 

the effect of rhizobacteria on root length was negatively and significantly correlated with total 235 

soil N (r = -0.22, P < 0.05), P (r = -0.21, P < 0.05), Ca (r = -0.39, P < 0.01), organic C (r = -236 

0.30, P < 0.01) and the C/N ratio (r = -0.21, P < 0.05).  237 

Correlation between root growth promotion and the PGPR strains’ ability to express PGP traits 238 

was tested. The ability of isolates to promote root length was positively correlated with their 239 

potential to express IAA and ACC deaminase activity. Their potential to solubilise P was not 240 

correlated with root growth promotion.   241 
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4.5.2. Correlation between plant growth-promoting traits and soil environment 242 

Correlation between the ability of isolates to (a) produce IAA and ACC deaminase in vitro or 243 

(b) to solubilise phosphate on NBRIP medium and selected environmental conditions 244 

prevailing at the locations from which soils were sourced was investigated. The capacity of 245 

IAA production by PGPR was positively correlated with aridity index (r = 0.24, P < 0.01) and 246 

the concentration of Cu (r = 0.12, P < 0.05), Mn (r = 0.17, P < 0.05) and Zn (r = 0.1, P < 0.05) 247 

in the soils but negatively correlated with soil N (r = -0.13, P < 0.05), C (r = -0.13, P < 0.05) 248 

and Ca (r = -0.14, P < 0.05) (Supplementary Table 2). Likewise, the potential of rhizobacteria 249 

to solubilise P was negatively correlated with soil pH (r = -0.40, P < 0.01), C (r = -0.40, P < 250 

0.01), C/N ratio (r = -0.48, P < 0.01) and Mg (r = -0.46, P < 0.01), but positively correlated 251 

with Ca (r = 0.42, P < 0.01). The soil environmental variables tested showed no correlation 252 

with the ability of isolates to express ACC deaminase.  253 

4.5.3. Multivariate coordination 254 

The association between the ability of rhizobacteria to express PGP traits and to promote 255 

seedling growth, and soil and environmental variables were predicated by PCA (Table 2, Fig. 256 

1). There were 6 PC with eigenvalues > 1 (Fig 1b).  Environmental and soil properties 257 

explained the 53% of the total variation of rhizobacteria to produce IAA alone and in 258 

combination with ACC deaminase and P solubilisation (Fig 1a and c). Of which, 31.1% of the 259 

variability was accounted for primarily by Cu, Mn, EC, aridity index, and clay. These 260 

characteristics were positively correlated with the ability of rhizobacteria to promote root 261 

growth. Soil Cu content was significantly correlated with Zn (r = 0.81, P < 0.01) (Table 1). 262 

The remaining 21.8% of the variance was primarily explained by soil C, N and P.  These 263 

variables were negatively correlated with IAA production and the potential of rhizobacteria to 264 

promote plant growth. Soil C content was were significantly correlated with the C/N ratio (r = 265 

0.77, P < 0.01) and Ca content (r = 0.93, P < 0.01) (Table 1). The PCA showed that the isolates 266 

able to express IAA, ACC deaminase and P solubilisation were loaded on the PC1 (Fig 1b). 267 

Most isolates that could not express the three PGP traits were clustered in the PC2.  268 

4.5.4. Phylogenetic diversity of isolates  269 

One hundred and sixty-seven out of 743 that represented a cross-section of the best, moderate 270 

and poor performing isolates were selected for phylogenetic analysis (Fig. 2a and b). 271 

Phylogenetic analysis was based on a ~1500 bp sequence of the 16S rRNA gene to identify the 272 
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diversity of bacteria belonging to the genera Bacillus, Burkholderia and Pseudomonas. Among 273 

Bacillus-related bacteria, five phylogenetic groups related to distinct genera and species of 274 

Bacillus spp. were identified. The dominant PGPR belonging to Bacillus were Bacillus muralis 275 

followed by Peribacillus simplex, Bacillus flexus and Bacillus niacini. A few isolates belonging 276 

to species of Bacillus affiliated to Bacillus bataviensis, Bacillus cucumis, Bacillus 277 

endophyticus, Bacillus pumilus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus 278 

atrophaesus, Bacillus mycoides, Bacillus cereus, Bacillus pacificus, Bacillus toyonensis and 279 

Paenibacillus endophyticus were also identified.  280 

The PGPR among Burkholderia- and Pseudomonas-like bacteria were predominantly assigned 281 

to Burkholderia spp., Burkholderia graminis, Paraburkholderia phenoliruptrix, Burkholderia 282 

cepacia and Pseudomonas frederiksbergensis. In this study, promising PGPR assigned to 283 

Burkholderia caledonica, Pseudomonas putida, P. fluorescens and P. corrugata were also 284 

identified. The results showed that the most effective Burkholderia spp. in promoting seedling 285 

growth and the chickpea-Mesorhizobium symbiosis were isolated from dry environments with 286 

aridity index > 0.35 (Supplementary Table 2). These isolates were efficient in P solubilisation 287 

and produced high concentrations of IAA in vitro.  288 

Taxonomic position for the genera Pseudomonas and Bacillus was not associated with the 289 

environmental conditions of their source. Compared to the Burkholderia spp., Bacillus isolates 290 

produced lower concentrations of IAA. 291 

4.5.5. The response of PGPR strains to metal ions and water stress in vitro 292 

Four efficient PGPR strains were selected to study their response to metal ions and water stress 293 

in vitro. Results showed the differences in the performance of strains in IAA production and 294 

their viability when exposed to metal ions and water stress (Fig. 3). A significant reduction in 295 

IAA production with B. pumilus 98F and P. fluorescens 27F subjected to increasing levels of 296 

Cu was observed (Fig. 3a and d). The presence of Zn did not affect the IAA production of B. 297 

pumilus 98F but at 1 mM caused a significant increase in IAA production from P. fluorescens 298 

27F. In the case of Burkholderia sp. 12F, IAA production increased with Cu and Zn 299 

concentration up to 1 mM (Fig. 3b and c). Regardless of the PGPR used, Mn enhanced their 300 

IAA production but slightly reduced IAA production at 1 mM from B. pumilus 98F.  301 

The addition of L-tryptophan to the culture medium improved cell viability. In the presence of 302 

L-tryptophan, cell viability of selected PGPR showed varying responses to metal ion 303 
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concentration (Fig. 4a-d). A significant reduction in the viable cell population was found for 304 

B. pumilus 98F and P. fluorescens 27F in the presence of Cu beyond 0.5 mM. A slight increase 305 

in cell viability of these strains was observed at 0.5 mM Mn compared with the control 306 

treatment. However, the cell viability was significantly reduced at 2 mM Zn. In the case of 307 

Burkholderia sp. 12F and B. cenocepacia 127F, viability were increased up to 1 mM of all 308 

metal ions, excluding Cu, for which viable cells were increased up to 0.5 mM. At 2 mM, their 309 

viability was suppressed. Increased viability of Burkholderia sp. 12F was observed at 0.5 mM 310 

Cu compared to the control treatment. 311 

The four tested isolates did not produce IAA in the absence of L-tryptophan supply in the 312 

medium. When L-tryptophan was supplied, cell viability of the selected strains was 313 

significantly reduced beyond 0.5 mM metal ion concentration compared with the control 314 

treatment (Fig. 4e-h). At 0.5 mM Zn and Mn, cell viability was not affected.  315 

The osmotic stress induced by PEG-6000 in the culture medium significantly influenced IAA 316 

production (Fig. 5a - d). There was a significant increase in IAA production by Burkholderia 317 

sp. 12F at -0.07 Mpa. Compared with the control treatment, a lower amount of IAA production 318 

was recorded at -0.07 Mpa from P. fluorescens 27F. Beyond -0.07 Mpa osmotic stress, the IAA 319 

production ability of this strain was strongly inhibited. In the case of B. pumilus 98F, IAA 320 

production was not significantly affected by water potential up to -0.17 Mpa as compared to 321 

the control check treatment. Beyond this level, IAA production was significantly (P < 0.01) 322 

reduced. 323 

Cell viability was improved in the presence of L-tryptophan under water stress conditions (Fig. 324 

6). In the presence of L-tryptophan, there was a significant variation in cell proliferation among 325 

tested strains along water potential gradients (Fig. 6a). The viable cell populations for B. 326 

pumilus 98F and P. fluorescens 27F were not significantly affected by water potential up to -327 

0.17 Mpa.  Beyond this level, the cell viability was significantly reduced compared to the 328 

control check. The viability of B. cenocepacia 127F and Burkholderia sp. 12F was slightly 329 

increased up to -0.17 Mpa. In the absence of L-tryptophan, cell viability declined significantly 330 

in the presence of osmotic stress (Fig. 6b).  331 
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4.6. Discussion 332 

4.6.1. Association between source environmental conditions and PGPR performance 333 

Soil organic C, P, Ca and N are important nutritional factors affecting soil microbial abundance 334 

(Navarro-Noya et al., 2013) and activities (Lori et al., 2017).  In the present study, rhizobacteria 335 

isolated from high C and N containing soils performed poorly in root length promotion as 336 

compared to strains isolated from soils with lower levels of C and N. Additionally, most isolates 337 

incapable of producing IAA or ACC deaminase and solubilising P clustered in the direction of 338 

soil C, N, P, Mg, pH and Ca in PCA. The correlation of these soil properties was also highly 339 

significant at P < 0.01 (Table 1). These results suggest that isolates that were obtained from 340 

fertile soils with high soil C, N, P, and cations, may be less efficient in expressing IAA and 341 

solubilising P. The PGP traits are important to the plant growth, particularly the plant growing 342 

in areas with low soil fertility and low water availability. Therefore, the bacteria were able to 343 

develop adaptive traits that could improve the plant's fitness under biotic and abiotic stresses 344 

when bacteria coevolved with plant roots in harsh environments over many millions of years 345 

(Denison 2012). Additionally, P solubilising activity, ACC deaminase and IAA production 346 

may also important for bacteria themselves to adapt to environmental stress. When a plant is 347 

exposed to stress, it releases relatively high ACC concentration (Singh et al., 2015). This 348 

substrate can act as an alternative N source for the bacteria under low fertile soils if isolates are 349 

able to express ACC deaminase (Alemneh et al., 2021b). In low fertile soils, the bacteria can 350 

easily acquire their P needs through P solubilisation. In the present study, the effect of IAA in 351 

bacteria stress tolerance was investigated in detail in vitro conditions here below.  352 

4.6.2. Environmental conditions associated with the capacity of the rhizobacteria to 353 

produce IAA  354 

Among three PGP traits, the capacity of PGPR to produce IAA was positively correlated with 355 

metal ion concentration and aridity index but negatively correlated with C, N, P and Ca contents 356 

and C/N ratio of the soils and sampling sites from which the strains were isolated. This result 357 

suggests the occurrence of high IAA-producing bacteria in soils of low fertility and with higher 358 

metal ion concentrations and aridity index. However, this result alone did not demonstrate 359 

whether the ability of isolates to produce IAA would assist the bacteria themselves to withstand 360 

the stress conditions. In a further experiment, an increase in the production of IAA was 361 

observed in the presence of 1.0 mM Mn and Zn with Burkholderia sp. 12F and B. cenocepacia 362 
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127F. However, viable cell populations of these strains were slightly reduced. Consistent with 363 

these findings, nitrogen starvation that suppresses cell viability can increase IAA production 364 

by the same bacterial strain in vitro (Malhotra and Srivastava, 2009). However, IAA production 365 

and cell viability of these isolates in the presence of the same concentration of Cu as used in 366 

this study were reduced. This result could be related to the highly toxic effect of Cu on 367 

microbial cell viability and expression of metabolites, as compared with Zn and Mn (Biswas 368 

et al., 2017; Cai et al., 2019).  369 

The potential of rhizobacteria to produce IAA was related to their ability to withstand stressful 370 

conditions (metal ions and osmotic stress). We found greater tolerance to the high level of 371 

metal ion concentrations and simulated drought conditions for Burkholderia sp. 12F and B. 372 

cenocepacia 127F than for P. fluorescens 27F and B. pumilus 98F. These different responses 373 

to stress may be related to the nature of the environments from which they were isolated. In 374 

this regard, Burkholderia sp. 12F and B. cenocepacia 127F were isolated from sites that had 375 

higher levels of metal ions in the soil and a higher aridity index. Burkholderia sp. 12F and B. 376 

cenocepacia 127F were able to produce 54.3 and 41.9 µg mL-1 IAA in the presence of L-377 

tryptophan in vitro, respectively. Based on these results and those presented in Fig 1, we 378 

suggest that water stress and low soil fertility with higher levels of Cu, Mn and Zn at the site 379 

of the source can result in the selection of rhizobacteria with higher IAA production potential. 380 

The exogenous supply of IAA in Bradyrhizobium E109 in vitro induced greater production of 381 

exopolysaccharides that are important for rhizobacterial protection from environmental stress 382 

(Naseem et al., 2018; Torres et al., 2018). Therefore, the ability to express IAA may also help 383 

isolates to tolerate stress conditions  384 

4.6.3. Diversity of Bacillus, Burkholderia and Pseudomonas isolates from soils 385 

Diverse species of bacteria belonging to Bacillus, Burkholderia and Pseudomonas isolated 386 

from rhizospheric soil of chickpea were identified in this study. Bacillus was represented by 387 

nineteen distinct species, Burkholderia by eight species and Pseudomonas by seven species. 388 

Numerous studies have reported that chickpea is capable of supporting beneficial species of 389 

rhizobacteria (Hynes et al., 2008; Patel et al., 2012; Dubey et al., 2013; Yadav and Verma, 390 

2014; Benjelloun et al. 2019; Alok et al., 2020). Recently, the types of PGPR identified in this 391 

study were also among the prominent genera identified as endophytic bacteria isolated from 392 

nodules and roots of chickpea (Alok et al., 2020). The dominant species identified in the present 393 

study have been shown to promote plant growth and yield in greenhouse and field conditions 394 
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(Xu et al., 2014; Zeng et al., 2017; Shahid and Khan, 2018; Bhatt and Maheshwari. 2020; You 395 

et al., 2020).  396 

The taxonomic position of PGPR in the phylogenetic tree was partly associated with 397 

environmental conditions at the soil sampling sites. Specifically, Burkholderia spp. were 398 

predominantly isolated from dry environments (Supplementary Table 1 and 2). Most 399 

Burkholderia spp. identified in the present sampling sites have been frequently reported as 400 

symbiotic N2 fixing bacteria associated with plants grown under arid conditions (Garau et al., 401 

2009; Sprent and Gehlot, 2010). However, the taxonomic position of bacterial species 402 

belonging to the genera Pseudomonas and Bacillus was not associated with the environmental 403 

conditions of their sources. This is possibly indicated that Pseudomonas and Bacillus is widely 404 

spread in sampling sites. 405 

4.7. Conclusion 406 

Our results demonstrate that high aridity index, higher concentrations of metal ions and low C, 407 

N, P and Ca in soils appear to exert selective pressure on rhizobacterial phenotypes for IAA 408 

production and ACC deaminase capacity. Likewise, soils with low fertility, alkaline pH and 409 

high Ca and Mg contents harbour PGPR with high potential for P solubilisation. IAA 410 

production could enable the bacteria to withstand stress conditions. IAA and ACC deaminase 411 

production ability of PGPR were the main mechanisms of plant growth promotion in vitro. 412 

However, the ability to solubilise P had no role in plant growth promotion at the seedling stage.  413 

In general, these studies suggest possible targets for isolation of efficient PGPR with ecological 414 

traits and PGP mechanisms that may enhance chickpea production and eventually reduce the 415 

time and budget required for inoculant development.  416 
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Table 1. Pearson’s correlation matrix for 18 soil and environmental characteristics and PGP attributes and potential of plant growth promotion of 623 

743 rhizobacteria isolated from 74 soil samples. Trait abbreviations: C/N, soil carbon to nitrogen ratio; Ca, soil calcium content; C, soil carbon 624 

content; N, soil nitrogen content; P, soil phosphorus; pH, the soil pH in CaCl2; K, soil potassium content; Mg, magnesium; Zn, soil zinc content; 625 

Cu, soil copper content; AI, Aridity index; Clay, soil clay content; Mn, soil manganese content; Etp, Evapotranspiration; EC, soil electrical 626 

conductivity; S, soil sulphur content;  sand, soil sand content; ACCd, ACC deaminase production; RL, root length, PS, P solubilisation. 627 

  ACCd IAA RL EC pH Clay Sand N C C/N P Zn Mg Mn K Cu Ca S Etp AI 

PS -0.029 0.057 0.011 -0.039 -0.403 0.074 -0.05 0.015 -0.399 -0.483 -0.261 0.049 -0.46 0.007 0.103 0.035 0.423 0.237 -0.106 -0.028 
ACCd   -0.075 0.201 0.053 0.009 0.046 -0.046 -0.088 -0.08 -0.049 0.005 0.018 0.05 0.074 -0.05 0.025 -0.062 0.014 0.076 0.099 
IAA  

 0.441 -0.014 -0.015 0.046 -0.02 -0.131 -0.128 -0.098 -0.079 0.1 -0.02 0.168 -0.006 0.122 -0.136 -0.09 0.395 0.244 
RL  

  0.352 0.107 0.582 -0.49 -0.223 -0.296 -0.208 -0.209 0.342 0.177 0.35 0.113 0.39 -0.217 -0.15 0.56 0.352 
EC  

   0.021 0.415 -0.475 0.14 -0.001 -0.108 -0.031 0.176 0.056 0.32 0.018 0.123 -0.02 0.001 0.395 0.329 
pH  

    0.064 0.014 -0.008 0.272 0.35 0.196 0.347 0.573 0.127 0.432 0.135 0.467 -0.087 0.183 -0.124 
Clay  

     -0.927 -0.075 -0.301 -0.317 -0.027 0.734 0.308 0.7 0.318 0.684 -0.282 -0.06 0.638 0.704 
Sand  

      -0.119 0.194 0.32 -0.133 -0.722 -0.299 -0.672 -0.402 -0.698 0.223 0.029 -0.507 -0.741 
N  

       0.593 0.04 0.651 0.105 0.18 -0.171 0.545 -0.058 0.38 0.148 -0.443 0.189 
C  

        0.771 0.75 0.014 0.494 -0.229 0.356 -0.163 0.928 0.033 -0.253 -0.172 
C/N  

         0.433 -0.074 0.426 -0.194 -0.022 -0.184 0.849 -0.079 -0.021 -0.296 
P  

          0.293 0.537 -0.133 0.657 0.247 0.631 0.197 -0.277 0.079 
Zn  

           0.574 0.551 0.579 0.805 0.096 -0.074 0.446 0.581 
Mg  

            0.184 0.501 0.465 0.558 -0.078 0.32 0.257 
Mn  

             0.023 0.522 -0.176 -0.033 0.646 0.592 
K  

              0.417 0.33 0.071 -0.161 0.174 
Cu  

               -0.129 -0.003 0.476 0.569 
Ca  

                -0.018 -0.125 -0.246 
S  

                 -0.074 -0.105 
rain  

                 0.611 0.98 
Etp                                       0.446 

 628 

        Colour legend   P < 0.05 
    P < 0.01 
    P < 0.001 

 629 

 630 
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Table 2. Percentage contribution, cumulative variances and eigenvectors of the first six 631 

principal components (PC1-6) for 18 soil and environmental characteristics and the ability of 632 

the rhizobacteria isolated from those soils to produce IAA and ACC deaminase and to promote 633 

root growth. 634 

Parameter PC1 PC2 PC3 PC4 PC 5 PC6 

Eigenvalue 7.16 5.015 2.3 2.004 1.357 1.049 

%variance 31.13 21.81 10 8.71 5.9 4.56 

Cumulative(%) 31.13 52.937 62.936 71.648 77.548 82.109 

Character Eigenvalue 

Root growth promotion 0.599 -0.112 0.164 0.290 -0.047 -0.278 

Electrical conductivity 0.371 -0.038 0.679 0.107 0.399 -0.107 

Soil pH 0.061 0.508 0.084 0.487 -0.430 -0.179 

Soil clay  0.923 0.028 0.163 0.002 -0.020 -0.069 

Soil sand  -0.886 -0.126 -0.214 0.175 -0.076 0.078 

Soil N  -0.115 0.549 0.317 -0.637 0.208 -0.089 

Soil C  -0.377 0.839 0.198 0.045 0.230 0.123 

Soil C/N -0.388 0.620 0.003 0.512 0.192 0.228 

Soil P  -0.063 0.832 0.170 -0.337 -0.067 0.156 

Soil Zn  0.769 0.449 -0.032 -0.014 -0.221 -0.088 

Soil Mg  0.338 0.757 0.005 0.277 -0.169 0.099 

Soil Mn 0.764 -0.001 -0.026 0.181 0.171 0.146 

Soil K 0.250 0.671 0.152 -0.368 -0.418 -0.294 

Soil Cu 0.785 0.229 -0.011 -0.055 -0.303 0.074 

Soil Ca -0.349 0.847 0.117 0.291 0.127 0.069 

Soil S -0.090 -0.005 0.239 -0.322 -0.257 0.689 

Evapotranspiration 0.707 -0.107 0.113 0.569 0.070 0.221 

Aridity index 0.823 0.099 -0.069 -0.251 0.377 0.039 

 635 

 636 

 637 
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 638 

  639 

Fig. 1. Principal Component analysis (PCA) biplot combining thirteen soil and environmental characteristics (a) to determine which inter-related 640 

parameters most influenced the PGP potential of the isolates, (b) 6 principal components (PC) with eigenvalues > 1 and (c) to examine their effect 641 

on the biological attributes of PGPR isolates. Trait abbreviations: C, soil carbon content; N, soil nitrogen content; P, phosphorus; pH, soil pH; K, 642 

soil potassium content; Mg, magnesium; Cu, soil copper content; AI, Aridity index; Clay, soil clay content; Mn, soil manganese content; Etp, 643 

Evapotranspiration; EC, soil electrical conductivity; S, soil sulphur content;  sand, soil sand content; RL, root length; IAA, IAA  production, 644 

ACCd, ACC deaminase production; PS, P solubilisation.  645 
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   647 

Fig. 2. Dendrogram showing the genetic relationship among the 16S rDNA gene sequences (1500 bp) of strains 648 
of (a) Burkholderia and Pseudomonas, and (b) Bacillus isolated from chickpea rhizospheric soils and their related 649 
type strains. The tree was created by the neighbour-joining method. The numbers on the tree indicate the 650 
percentages of bootstrap sampling derived from 1000 replications. PSI: phosphate solubilisation index, *- PSI 651 
value <2, **- 2-3, ***>3-4, ****>4.0. IAA concentration (µg mL-1) * < 10, ** 10 - 20, *** 20 – 30, ****30 – 40, 652 
***** 40 – 50, ****** 50 – 60 and ******* 60 – 70.  ACCd: ACC deaminase, ‘+’ isolates positive for ACC 653 
deaminase activity and ‘-’ isolates negative for ACC deaminase activity. SVT: Seeding vigour test, ‘-’, ‘*’, ‘**’, 654 
and ‘***’ - no effect on seedling promotion, up to 25%, 25-50% and >50% seedling root length promotion, 655 
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respectively. Seedling root length promotion = Root length (inoculated) – Root length (control)/ Root length 656 
(inoculated)   657 

 658 

 659 

 660 

 661 

Fig. 3 Effect of metal ion, copper (Cu), manganese (Mn) and zinc (Zn), on the production of 662 

IAA by (a) Bacillus pumilus 98F, (b) Burkholderia sp. 12F, (c) Burkholderia cenocepacia 127F 663 

and (d) Pseudomonas fluorescens 27F  isolated from chickpea rhizosphere soils. The culture 664 

solution was incubated in shaker incubator (28 oC, 160 rpm) for 48 h. Experiments were 665 

performed in triplicate and the values are presented as means. Error bars show standard error 666 

(n = 3) 667 
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 669 

Fig. 4 The cell viability of selected strains of rhizobacteria isolated from chickpea rhizospheric soils with increasing concentration metal ions (Cu, 670 

n and Zn) in liquid medium in the presence and absence of L-tryptophan (500 µg mL-1) for Bacillus pumilus 98F (a and e), Burkholderia sp. 12F 671 

(b and f), Burkholderia cenocepacia 127F (c and g) and Pseudomonas fluorescens 27F (d and h). The culture solution was incubated in shaker 672 

incubator (28 oC, 160 rpm) for 48 h. Experiments were performed in triplicate and the values are presented as means. Vertical bars show standard 673 

error (n = 3)674 
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Fig. 5 Effect of osmotic stress induced by PEG-6000 on IAA production by selected PGPR 

such as (a) Bacillus pumilus 98F, (b) Burkholderia sp. 12F, (c) Burkholderia cenocepacia 127F 

and (d) Pseudomonas fluorescens 27F isolated from chickpea rhizosphere soils. Five PEG-

6000 concentration (0, 10, 20, 30 and 45%) correspond to 0, -0.07, -0.17, -0.28 and -0.49 Mpa, 

respectively. The culture solution was incubated in shaker incubator (28 oC, 160 rpm) for 48 h. 

Experiments were performed in triplicate and the values are represented as means. Error bars 

show standard error (n = 3). PEG-6000: Polyethylene glycol 6000  
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Fig. 6 Viable cell populations exposed to five PEG-6000 concentration (0, 10, 20, 30 and 45%) 

corresponding to 0, -0.07, -0.17, -0.28 and -0.49 Mpa, respectively, in the presence of the IAA 

(a) and with no IAA (b). The culture solution was incubated in shaker incubator (28 oC, 160 

rpm) for 48 h. Experiments were performed in triplicate and the values are presented as means. 

Error bars show standard error (n = 3). PEG-6000: Polyethylene glycol 6000 
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5.2. Abstract 

Phosphate solubilising bacteria (PSB) that are screened for Ca3(PO4)2 solubilisation ability in 

vitro are not always efficient solubilisers in soils that contain diverse forms of phosphorus (P). 

Therefore, we investigated P solubilisation from a variety of P sources. PSB isolated through 

enrichment in media with AlO4P, Ca3(PO4)2 or FeO4P were compared with Pseudomonas- and 

Bacillus-like bacteria able to solubilise P. Furthermore, we investigated the diversity of 

culturable PSB by sequencing 16S rRNA. There was a positive and highly significant (P <0.05) 

association between the number of culturable PSB in chickpea rhizosphere soils and calcium 

(r = 0.41), magnesium (r = 0.33), potassium (r = 0.49), total nitrogen (r = 0.60), P (r = 0.58), 

carbon (r = 0.57), electrical conductivity (r = 0.40) and silt (%) (r = 0.56) content of soils from 

which the PSB originated. However, this association was inverse to the sand content in soil (r= 

0.33). Following enrichment, the prevalence of PSB among total culturable bacteria was 

significantly increased. The most prominent PSB belonged to Burkholderia, Variovorax, 

Leifsonia, Pantoea and Rhizobium. Additionally, rhizobacteria belonging to Curtobacterium, 

Microbacterium, Cellulomonas, Mycolibacterium, Rhodococcus, Inquilinus, Phyllobacterium, 

Dyella and Mucilaginibacter were identified. P solubilisers belonging to Inquilinus, Dyella and 

Mucilaginibacter were newly identified. Results further showed greater P solubilising isolates 

enriched in the presence of FeO4P than AlO4P and Ca3(PO4)2. Isolates enriched with FeO4P 

were able to produce predominantly tri- and di-carboxylates. Enriching rhizobacteria in culture 

conditions with sparingly soluble P increased the likelihood of isolating elite PSB from bulk 

soils and plant rhizospheres. 

Keywords Burkholderia sp., Carboxylate, Rhizobacteria, Sparingly soluble P
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5.3. Introduction 

Phosphorus (P) is an essential nutrient for all living organisms. Because of its chemically 

reactive nature, it is often bound as sparingly soluble mineral phosphates in soil (Holford 1997). 

As an example, in soils with 400 to 1200 mg kg-1 of P, only ~1 mg kg-1 was dissolved P in the 

soil solution (Rodrı́guez and Fraga, 1999). For plants to use insoluble soil P reserves, it is 

necessary to convert them into primary and secondary orthophosphate ions (H2PO4
- and HPO4

2-

) within the typical pH range (4.0 - 9.0) of most soils (Pierzynski et al., 2005). Plant and soil 

microorganisms may improve plant P use efficiency through three main strategies, including 

root foraging, P mining and improvement of plant P utilisation efficiency (Richardson et al., 

2011). Of these strategies, P mining through dissolution or mineralisation of P from sparingly 

available sources by action of root exudate and soil microorganisms, is the main mechanism to 

improve P nutrition for plants.  

Plant associated bacteria can benefit plants by growth promotion via direct and indirect 

mechanisms, including P solubilisation (Swift et al., 2018; Alemneh et al., 2020). The 

dissolution of soil P into plant available forms is demonstrated by numerous soil bacteria in 

vitro (Richardson et al., 2009). These types of beneficial bacteria have been termed ‘phosphate 

solubilising bacteria’ (PSB) and among them are strains that belong to Bacillus, Burkholderia, 

Pseudomonas, Serratia, Alcaligenes, Arthrobacter, Enterobacter, Pantoea, Acinetobacter, 

Stenotrophomonas, Cupriavidus, Agrobacterium, Acinetobacter, Rhodococcus and 

Exiguobacterium (Chung et al., 2005; Collavino et al., 2010; Yu et al., 2011; Azziz et al., 2012). 

The diversity and abundance of culturable PSB communities in soils varies with location, and 

are affected by environmental (Mander et al., 2012) and management (Azziz et al., 2012; Zheng 

et al., 2017) practices. A diversity of microsites in impose strong selective constraints and 

thereby lead to highly diverse PSB (Fernández et al., 2015). In some instances, PSB belonging 

to the genera Burkholderia (Estrada et al., 2013), Herbaspirillum (Estrada et al., 2013), 

Entrobacter spp. (Jorquera et al., 2008; Collavino et al., 2010), Streptomyces and 

Micromonospora (Hamdali et al., 2008) and Pantoea (Jorquera et al., 2008) have been 

identified in different locations from various plant species. However, information about the 

dominant genera of soil bacteria that are efficient in P solubilisation is scant. Understanding 

the effect of environmental and agricultural management practices on soil communities of PSB 

and their diversity is important to inform strategies that enhance agroecosystems productivity 

through increasing plant available P. 
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Among the aforementioned genera of PSB, rhizosphere isolates of Pseudomonas and Bacillus 

have been described as effective phosphate solubilisers (Igual et al., 2001; Browne et al., 2009; 

Meyer et al., 2011; Yadav et al., 2011; Pei-Xiang et al., 2012). In one investigation of the 

diversity of PSB, a phylogenetic tree showed that 85% of superior PSB were linked to one 

lineage within Pseudomonas fluorescens (Browne et al., 2009). Focussing on particular 

organisms may be one strategy to enhance soil inorganic P mobilisation and P utilisation 

efficiency by plants. Hence, identification of species and genera of bacteria directly affiliated 

with P solubilisation is important for the development of efficient PSB that can enhance plant 

growth through increasing the P nutrient supply to associated host plants.  

Although soils contain a variety of chemically diverse phosphate forms, a large proportion of 

efficient PSB have been selected from rhizosphere soils using in vitro culture media containing 

insoluble Ca3(PO4)2 (Karagöz et al., 2012; Liu et al., 2015; Manzoor et al., 2017; Bautista‐Cruz 

et al., 2019; Solans et al., 2019). None of the PSB in these studies showed efficient P 

solubilisation from iron phosphate (FePO4) and aluminium phosphate (AlPO4) which limits 

their usefulness in acidic soils, where P is often associated with iron or aluminium. Therefore, 

there is a need for developing isolation strategy that result in an efficient PSB capable of 

solubilising P concentration well beyond their own needs (Raymond et al., 2021).  

Dissolution of P from insoluble P forms by rhizobacteria can be mediated by the production of 

organic and inorganic acids, the release of protons (H+), siderophores, hydroxyl (OH-) ions and 

CO2 (Illmer et al., 1995; Rodrı́guez and Fraga, 1999; Vassilev et al., 2006; Sharma et al., 2013). 

A significant amount of P from Ca3(PO4)2 can be released through acidification of the media 

(Jones and Oburger 2011). However, the production of chelators, including carboxylates, 

siderophores and other organic derivatives, is essential for efficient solubilisation of P from 

sparingly soluble P sources, including FePO4 and AlPO4 (Walpola et al., 2012). Because of 

this, Ca3(PO4)2 is an inappropriate compound to use in universal selection for PSB adapted to 

diverse agricultural soils. Therefore, we focused on the development of P solubilisers that can 

efficiently access P from a variety of P sources and in this study, PSB were isolated through 

enrichment in media containing AlP, CaP or FeP as sources of sparingly soluble mineral 

phosphates. These organisms were compared with PSB isolated from rhizosphere soils without 

enrichment. Moreover, we investigated the diversity of culturable PSB communities across a 

range of sampling sites. The objectives of this study were therefore (1) to determine the 

abundance and proportion of PSB in a variety of agricultural soils, (2) to investigate the 
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phylogenetic diversity of PSB, and (3) to develop an effective selection strategy for isolation 

of efficient PSB.  

5.4. Materials and methods 

5.4.1. Soil sample collection and physico-chemical properties of soils 

Soil samples (0 to 10 cm depth) were collected from 74 cropping sites in Australia (Appendix 

Fig. 1; Appendix Table 1) and kept at 4 oC. Soils were prepared for analysis by air-drying and 

sieving (2 mm). The physico-chemical properties of the soils were analysed following the 

methods described in Rayment and Lyons, (2011). Soil carbon was determined with the 

Walkley Black method. Total N was determined following a modified Kjeldahl method. Total 

soil P was determined following a colorimetric method after extracting elemental P by 

perchloric acid digestion. Soil pH was determined from a suspension containing a 1:2.5 soil: 

CaCl2 (0.01 M). The electrical conductivity (EC) of a water extract (1: 2.5 soil: water 

suspension) was determined. The textural composition of the soils was analysed by dispersal 

and hydrometric readings. Ammonium acetate-extractable Ca, K and Mg in soils were 

determined using atomic absorption spectrophotometry. Plant available Cu, Zn and Mn in soils 

were determined using diethylenetriaminepentaacetic acid (DTPA) micronutrient extraction 

method.  

5.4.2. Enumeration of PSB communities in agricultural soils 

Chickpea cv. HatTrick seedlings were grown in pots (4.5 cm × 4.5 cm ×10 cm) containing soil 

collected from a wide variety of sampling sites across major agricultural lands in Australia to 

obtain rhizosphere soils. The pots were kept in a growth chamber with lighting (1000 µmol) 

programmed for a 16 h photoperiod, with a constant temperature at 20 oC, CO2 concentration 

at 2890 ppm and 70% relative humidity. Seedlings were harvested four weeks after 

germination. The soils adhering strongly to the roots of each chickpea seedling were collected 

and kept at 4 oC. A total of 74 chickpea rhizosphere soils were collected. One gram of each soil 

was suspended in 9 mL of sterile MilliQ water. Then, tenfold serial dilutions were prepared to 

a factor of 10-6. From the dilution suspensions, the total number of heterotrophic bacteria and 

PSB were enumerated. A 100 µL aliquot from the 10-4 and 10-5 dilutions in triplicate was 

inoculated on to National Botanical Research Institute's phosphate (NBRIP) growth media 

supplemented separately with 5 g of either AlO4P (Sigma-Aldrich, CHEMIE GmbH, 

Steinheim, Germany), Ca3(PO4)2 (>96%, Sigma-Aldrich) or FeO4P.2H2O (Sigma-Aldrich) and 



 

140 
 

with 75 µg mL-1 of cycloheximide. The acidic pH of media containing FeO4P.2H2O and AlO4P 

was adjusted to 7.00 before autoclaving and confirmed after sterilisation. The experiment had 

three replications. Inoculated plates were incubated at 28 oC for 10 days. Distinct colonies with 

clearing (halo) zones around them were identified as PSB. The population of PSB as a 

proportion of the total culturable heterotrophic rhizobacteria was calculated based on colony 

forming units (CFU).  

5.4.3. Selection of PSB  

We used two methods to isolate PSB from rhizosphere soils collected from chickpea. The first 

method was the selective isolation of PSB favouring two bacterial taxa: Pseudomonas and 

Bacillus, that have been identified as two genera of efficient PSB associated with various plant 

species (Yu et al. 2011; Liu et al. 2015; Mukhtar et al. 2020). These genera are commonly used 

in commercial products and relatively easily cultured in vitro. The second method was based 

on a previous finding of the present work that showed an inverse association between P 

solubilising capacity of soil bacteria in vitro and available soil P content (Chapter 4). 

Accordingly, we hypothesised that incubating the soils in media containing insoluble P sources 

may enrich selectively P solubilising bacteria but discourage the growth of non-P solubilising 

bacteria.  Therefore, the second method was designed to selectively enrich for efficient PSB 

using media containing various sparingly soluble P sources [AlO4P, Ca3(PO4)2 and FeO4P].  

Method 1: Taxonomically based selection of PSB  

From the above-mentioned dilution suspension, a 100 µL aliquot from the 10-5 and 10-6 

dilutions was aseptically spread onto a semi-selective medium for Pseudomonas-like bacteria, 

consisting of 1/10 strength Tryptone Soya Agar (TSA) (OXOID LTD, Basingstoke, 

Hampshire, England) supplemented with 50 µg mL-1 of ampicillin (99%, Sigma-Aldrich, 

CHEMIE GmbH, Steinheim, Germany), 12.5 µg mL-1 of chloramphenicol (99%, Sigma-

Aldrich) and 75 µg mL-1 of cycloheximide (Simon and Ridge, 1974). As an alternative strategy, 

Bacillus-like rhizobacteria were isolated after heat treatment (15 min, 80 oC) followed by 

streaking on TSA and incubation (5 days, 28 oC) (Travers et al. 1987). According to the 

morphological appearance of colonies, 540 Bacillus-like and 303 Pseudomonas-like 

rhizobacteria were purified on the same medium and maintained in slant culture at 4 oC and in 

20% glycerol at -80 oC. To detect the presence of P solubilisation properties among the 

collected bacteria, isolates were streaked on NBRIP media (Nautiyal, 1999), containing the 

following ingredients (L-1): glucose, 10 g; MgCl2.6H2O, 5 g; MgSO4.H2O, 0.25 g; KCl, 0.2 g, 
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and (NH4)2SO4, 0.1 g supplemented with 5 g of Ca3(PO4)2 (>96%, Sigma-Aldrich). After ten 

days of incubation at 28 oC, isolates that created clearing zones around their colonies were 

considered to be PSB. 

Method 2: Selective enrichment of PSB  

PSB were enriched and isolated from chickpea rhizosphere soils that varied in pH and P 

content. One gram of rhizosphere soil was added to sterile bottles containing 100 mL of NBRIP 

broth supplemented separately with one sparingly soluble form of P: AlO4P (Sigma-Aldrich), 

Ca3(PO4)2 or FeO4P.2H2O (Sigma-Aldrich) as the sole P source. The bottles were shaken at 28 
oC at 160 rpm for one week. One mL of the enriched culture was successively transferred into 

fresh NBRIP (100 mL) containing the same type of insoluble P for a second round of 

enrichment. After seven days of incubation, 1 mL of culture solution was transferred into a 

fresh medium for third round enrichment of PSB enrichment in the media. 

From every round of enrichment, samples were taken and the total population of aerobic 

culturable bacteria, the population of bacteria that produced a P clearing zone, the concentration 

of soluble inorganic P (Pi) and pH of the culture were determined. One mL of culture 

suspension was transferred into 9 mL of sterile MilliQ water and a dilution series was made to 

10-6. A 100 µL sample from the 10-5 and 10-6 dilutions was spread on the NBRIP agar medium 

supplemented separately with 5 g L-1 of AlO4P, Ca3(PO4)2 or FeO4P.2H2O. Plates were 

incubated at 28 oC for 10 days.  

The size of the solubilisation zone and colony diameter of P solubilizing isolates were 

determined. Based on these measurements, the phosphate solubilisation index (PSI) was 

calculated by applying the formula described by Nguyen et al. (1992).  

PSI =
SD

CD
 

 

Where SD- Solubilisation (clearing zone) diameter and CD- Colony diameter 

5.4.4. Plant growth promoting traits 

The amounts of indole acetic acid (IAA) produced in the presence and absence of L-tryptophan 

were determined using Dworkin Foster (DF)-minimal broth (Patten and Glick, 2002). 

Aminocyclopropane carboxylic acid (ACC) deaminase-producing rhizobacteria were 

identified using DF-minimal medium containing ACC as the sole N source. ACC deaminase-
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positive strains were further investigated for quantitative ACC deaminase production in the 

same media. Cultures were incubated at 28 oC and shaking at 150 rpm for 6 h before the cultures 

were centrifuged to obtain the supernatant. When a bacterium utilises ACC, it produces NH4
+ 

and α-ketobutyrate. In this experiment, we measured the concentration of NH4
+ in the 

supernatant using a colorimetric method (Harwood and Kühn, 1970). The concentration of 

NH4
+ was converted into ACC deaminase activity expressed as nmol α-ketobutyrate produced 

h-1.  

5.4.4. Sequencing and phylogenetic analysis of 16S rRNA 

Phosphate solubilising bacteria with PSI greater than 2 were selected for phylogenetic analysis 

using the 16S rRNA gene. An approximately 1500 bp fragment of 16S ribosomal DNA from 

167 strains was amplified using universal forward primer: fD1 (5'-

AGAGTTTGATCCTGGCTCAG-3') and universal reverse primer: rP2 (5'-

ACGGCTACCTTGTTACGACTT-3') (Weisburg et al. 1991). Amplification reactions were 

performed in 25 µL containing 1 µL of each of 10× diluted reverse and forward primer, 12.5 

µL of 2× master mix and 10.5 µL MilliQ water. The PCR cycle conditions were as follows: 

initial denaturation at 95 oC for 1 min followed by 35 amplification cycles comprising 

denaturation at 95 oC for 15 s, annealing at 57 oC for 30 s, extension at 72 oC for 1 min and a 

final extension at 72 oC for 5 min. All amplified PCR products were confirmed by 

electrophoresis on 1.5% agarose gels in 1x TAE buffer containing gel red nucleic acid stain (3 

µL L-1), using gene ruler 2 Kb DNA ladder. DNA sequencing was performed on a direct 

sequence of PCR products by AGRF Sanger Service (Plant functional genomes, University of 

Adelaide, South Australia).  

DNA sequences obtained were compared with those deposited in the Genebank database from 

the National Centre for Biotechnology Information (NCBI) 

(http//www.ncbi.nim.nih.gov/BLAST) for taxonomic assignment. Phylogenetic analyses of the 

16S rRNA gene sequences were performed by the Maximum Likelihood approach, based on 

the Tamura 3 parameter model using MEGA version 7. Phylogenetic tree topology, based on 

1000 times the neighbour-joining data set, was evaluated by bootstrap analysis.  

5.4.5. P solubilisation efficiency in liquid medium 

Efficient PSB were selected proportionally from both isolation methods, based on PSI values. 

Five isolates, namely Bacillus simplex 37F, Bacillus megaterium 8F, P. fluorescens 27F, 
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Bacillus pumilus 98F and Burkholderia cepacia 126F were selected from those obtained 

directly from rhizosphere soils. The remaining two isolates: Burkholderia sp. 12F and 

Burkholderia cenocepacia 127F were selected from those obtained after enrichment. The P 

solubilisation potential of these strains was investigated in liquid NBRIP medium containing 

sparingly soluble P sources [AlO4P, Ca3(PO4)2 or FeO4P.2H2O]. Each treatment was replicated 

three times. Every two days for three weeks of incubation, 5 mL of culture solution was taken 

and centrifuged (10,000 ×g for 10 min). The supernatant was analysed for Pi. One mL of culture 

was also taken for enumeration of viable cell populations. Cultures were serially diluted using 

sterile MilliQ water and 100 µL samples were plated on TSA and incubated at 28 oC for seven 

days.  

5.4.5. Inorganic phosphate determination 

Soluble phosphate was determined using the phospho-molybdate method (Murphy and Riley, 

1962). Briefly, after centrifugation 0.4 mL of supernatant and 2 mL of mixed reagent were 

transferred into test tubes. The absorbance of the mixed solution was measured by 

Nanophotometer (Implen GmbH, Schatzbogen, Münichen, Germany) at 882 nm against a set 

of standards spanning 4.567 x to y (µg mL-1) of Pi. X and y represent the spectrophotometer 

reading and Pi (µg mL-1) in the culture solution, respectively. The net Pi in the aliquot was 

calculated by deducting the Pi in a non-inoculated solution from that of the respective 

inoculated solution.  

5.4.6. Carboxylate production 

Carboxylate production during P solubilisation was analysed by high-performance liquid 

chromatography of culture supernatant using HPLC (600E pump, 717plus autoinjector, 996 

Photodiode array detector, Waters, Milford, MA, USA) and an Alltima C-18 reverse-phase 

column (Cawthray, 2003). The culture solution was centrifuged at 10,000 ×g for 10 min. The 

supernatant was further filtered through a 0.22 µm filter and the pH was adjusted to <4.0 using 

H3PO4. Authentic standards included gluconic, pyruvic, malic, iso-citric, malonic, shikimic, 

lactic, acetic, α-ketobutyric, α-ketoglutaric, maleic, citric, succinic, fumaric, cis-aconitic, and 

trans-aconitic acids.  

5.4.7. Data analysis  

All experiments followed a completely randomised design with three replications. Data for Pi 

and pH at day 14 of incubation were subjected to ANOVA and an LSD test, with a significance 
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level of P <0.05. A correlation analysis between soil characteristics and PSB population and 

the proportion of PSB in chickpea rhizospheres at the sampling sites was carried out. Data were 

analysed using Genstat 18th edition. Before analysis, normal distribution of the data was 

checked using the Shapiro-Wilk test. Homogeneity of variances was evaluated using Bartlett’s 

tests. Figures were constructed using SigmaPlot ver. 14.0. 

5.5. Results 

5.5.1. Abundance and diversity of PSB  

The total population of culturable aerobic bacteria and the percentage of PSB in rhizospheres 

of chickpea grown in soils from the various study sites were enumerated. The PSB populations 

varied between 4.3 to 4.95 log10 (CFU g-1 DW of rhizosphere soil). The correlation between 

the soil and environmental variables and the populations of PSB are presented in Table 1. The 

abundance of PSB in rhizosphere soils had a positive and highly significant (P <0.05) 

association with soil Ca2+ (r = 0.410), Mg2+ (r = 0.33), K+ (r = 0.49), total N (r = 0.60), total P 

(r = 0.58), total carbon (r = 0.57), EC (r = 0.40) and silt (%) (r = 0.56). In contrast, there was 

a significant and inverse association between the PSB population in the rhizosphere and sand 

content (r = 0.33).  

A total of 743 rhizobacteria were isolated selectively as Bacillus- and Pseudomonas-like 

bacteria. Besides this, 98 rhizobacteria able to solubilise phosphate from different forms of P 

were enriched in the presence of either AlO4P, Ca3(PO4)2 or FeO4P.2H2O. Out of the 841 

isolates, 683 (81.3%) were able to produce IAA in the presence of L-tryptophan. ACC 

deaminase activity was detected in 90 isolates (10.7%). Of 743 Bacillus- and Pseudomonas-

like bacteria, only 72 (9.7%) were able to solubilise Ca3(PO4)2 in a plate assay.  

Diverse species of PSB belonging to the genus Bacillus were identified (Fig.1). Among the 

dominant species, B. simplex, Bacillus muralis, B. megaterium, Bacillus niacini, Bacillus 

cucumis and Bacillus amyloliquefaciens were identified. One strain each belonging to Bacillus 

subtilis, Bacillus endophyticus, Bacillus atrophaeus, Bacillus pacificus, Bacillus pumilus, 

Bacillus mycoides, Bacillus toyonensis and Paenibacillus endophyticus were identified. On the 

basis of the percentage similarity of isolates with the reference strains, our isolates were 

categorised into nine clades. Clustering was made at 99.94% of similarity, which was the 

highest percentage similarity of our isolates with reference strains. Between clustering, the 

average value of PSI was varied. Bacteria in the clade containing B. pumilus 52 scored the 
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highest average PSI value (4.70). Following this clade, PSB that were closely related to B. 

megaterium had an average PSI of 2.68. Although the majority of P solubilisers among the 

Bacillus isolates were assigned to the group containing B. simplex EH12, these isolates scored 

the lowest average PSI value (1.46). None of the isolates closely related to B. simplex EH12 

had PSI greater than 3.00.  

Pseudomonas-like bacteria were isolated using a semi-selective medium which was also able 

to recover Burkholderia-like bacteria (formerly included in Pseudomonas). Hence, we 

identified a number of phosphate solubilising Pseudomonas and Burkholderia isolates with PSI 

>2.00 (Fig. 2). The dominant species were assigned to Burkholderia sp., Paraburkholderia 

phenoliruptix followed by B. cepacia, Pseudomonas frederiksbergensis and Pseudomonas 

jessenii. One strain was assigned to each of Burkholderia territorii, Burkholderia rhynchosiae, 

Burkholderia caledonica, Pseudomonas corrugate, P. fluorescens, Pseudomonas putida and 

Pseudomonas sp. Compared with the strains belonging to Bacillus and Pseudomonas, a large 

proportion of Burkholderia isolates were found to be somewhat more efficient P solubilisers in 

vitro. On the basis of similarity percentage, the strains were categorised into four groups having 

varied PSI values. The highest average PSI value (3.58) was observed for B. cenocepacia 262- 

and B. territorii KBB5-like strains, followed by strains that were closely related to 

Burkholderia spp. from the database. Among seven Pseudomonas strains in the present study, 

only one isolate had a PSI value greater than 3.00.  

5.5.2. Enrichment of P solubilizing bacteria  

Phosphate-solubilising bacteria were isolated from enriched consortia of rhizobacteria cultured 

in the presence of sparingly soluble P as the sole P source. We selected PSB that had PSI >2.00 

for phylogenetic analysis. We recovered 16 genera of efficient PSB (Fig. 3). The majority of P 

solubilising strains belonged to Burkholderia, Variovorax, Leifsonia, Rhizobium and Pantoea. 

Also, a few isolates belonging to Microbacterium, Mycolicibacterium, Rhodococcus, 

Caulobacter and Phyllobacterium were recovered. Of the newly isolated bacteria, one strain 

belonged to each of the following genera: Cellulomonas, Inquilinus, Sphingomonas, Dyella 

and Mucilaginibacter. One strain showed less than 97% similarity with Bacillus endophyticus 

NM3E6 in the database. On the basis of average PSI values, isolates were categorised into 

eleven groups. The group of PSB that was most similar to Burkholderia from the database 

scored the highest average PSI value (4.06). This value that was associated with Burkholderia 
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was higher than the average value of PSI (3.29) for Burkholderia isolated from non-enriched 

soils.  

The concentration of Pi (Fig. 4a), solution pH (Fig 4b), PSB population (Fig. 4c) and their 

proportion out of the total culturable bacteria (Fig. 4d) varied significantly along the 

enrichment process. The highest PSB population in enriched consortia occurred with Ca3(PO4)2 

as the sole P source, followed by FeO4P.2H2O and AlO4P. However, the highest proportion of 

PSB out of the total culturable bacteria used FeO4P.2H2O and Ca3(PO4)2 in the last enrichment 

stage. During enrichment, the culturable bacteria, presumably unable to release Pi, declined 

(Fig.4e). Although a large number of P solubilisers was enriched in the presence of Ca3(PO4)2, 

most of the isolates from Ca3(PO4)2 enrichment medium had low P solubilisation efficiency. 

Efficient PSB with PSI greater than 2.00 were obtained from bacterial consortia enriched in 

the presence of FeO4P.2H2O and AlO4P (Fig. 3).  

5.5.3. P solubilisation efficiency 

Greater PSI values were observed in PSB isolated through selective enrichment methods than 

for those strains isolated using the selective taxonomic method (Fig. 5a). PSB enriched in the 

presence of FeO4P.2H2O had significantly higher average PSI values, followed by those 

enriched in AlO4P and then those enriched in Ca3(PO4)2 (Fig. 5b). On the basis of high PSI 

values, two strains from enriched consortia and five strains isolated from non-enriched 

rhizosphere soils were selected for further investigation of P solubilisation efficiency in liquid 

media. Phosphate solubilisation potential of the seven selected strains in liquid medium 

differed at P <0.05. The highest Pi concentration occurred after 14 days of incubation and later 

declined. For further investigation of the performance of PSB in P solubilisation, we measured 

Pi after 14 days of incubation. Accordingly, Pi solubilisation ranged between 16.8 to 36.7 µg 

mL-1, 61.3 to 184.3 µg mL-1 and 13.7 to 43.6 µg mL-1 from AlO4P, Ca3(PO4)2, and 

FeO4P.2H2O, respectively (Fig. 6a, b and c). The highest Pi from AlO4P (36.5 and 36.7 µg mL-

1), Ca3(PO4)2 (184.3 and 147.5 µg mL-1), and FeO4P.2H2O (43.6 and 41.3 µg mL-1) were 

recorded with B. cenocepacia 127F and Burkholderia sp. 12F, respectively. These strains 

solubilized 1.8 to 2.2, 1.4 to 2.9 and 2.2 to 3.3-fold higher Pi from Ca3(PO4)2, AlO4P and 

FeO4P.2H2O, respectively than other strains obtained using the taxonomic selection method. 

Among five strains isolated from rhizosphere soils, P. fluorescens 27F produced the highest Pi 

from Ca3(PO4)2 and AlO4P while B. megaterium 8F mobilised the highest Pi from AlO4P.  
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Quantitative and qualitative differences in carboxylate production were observed between 

efficient P solubilisers during the P solubilisation process (Table 2). Thirteen types of 

carboxylates were detected in culture media containing sparingly soluble P sources. Most 

strains produced lactic and fumaric acids. B. cenocepacia 127F followed by B. simplex 37F 

and B. megaterium 8F produced the highest total concentrations of carboxylates (5,313, 2,383 

and 1,122 µM) during Ca3(PO4)2 solubilisation, respectively. An efficient P solubiliser, B. 

cenocepacia 127F, produced predominantly citrate (213 µM), fumarate (144 µM), α-

ketoglutarate (2,756 µM), pyruvate (1,814 µM), malate (1,333 µM), acetate (966 µM) and 

succinate (663 µM) accounting for 3.1%, 2.1%, 40.0%, 26.2%, 19.3%, 14.0% and 9.6%, of 

total carboxylates, respectively. Acetate, lactate, and malate and a very low amount of fumarate 

were produced by B. simplex 37F. Burkholderia sp. 12F produced lactate (132 µM) and 

fumarate (0.1 µM) during P solubilisation. This strain also produced the tricarboxylates cis-

aconitate, α-ketoglutarate, citrate and trans-aconitate. Among the P sources used, the highest 

total carboxylate production and more types of carboxylates were recorded when Ca3(PO4)2 

was the sole P source.  

During P solubilisation, the pH of the medium decreased significantly (Fig. 6d, e and f). The 

pH value in the non-inoculated treatment with Ca3(PO4)2 was 6.89. However, slightly acidic 

pH (5.82 and 5.44) was observed in AlO4P and FeO4P.2H2O containing media, respectively. 

These pH values were further acidified to 3.00 and 3.02 in the presence of B. simplex 37F. At 

these pH values, viable cells for B. simplex 37F were not detected after 14 days of incubation. 

Moreover, these media without inoculation had a pH below 4.7 after shaking for 14 days. When 

Ca3(PO4)2 was solubilised, Burkholderia sp. 12F induced the lowest pH (3.7) in the culture 

solution. 
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5.6. Discussion 

Bacteria have a major role in P cycling in the terrestrial ecosystem (Acevedo et al. 2014; Azziz 

et al. 2012; Narsian and Patel 2009). Accordingly, we investigated the populations of PSB in a 

wide range of agricultural soils collected from different agricultural cropping regions across 

southern and eastern Australia. Most soils had very low populations of culturable PSB (102-

104 CFU g-1 of DW soil) compared with those reported in the reported previously. However, 

our results demonstrated up to 15.7% of culturable aerobic rhizobacteria could solubilise P 

from Ca3(PO4)2. The proportion of PSB in some soils in the present study was higher than those 

reported in soils from in other reports (Alireza Fallah and Ave, 2006; Chatli et al., 2008; Van 

Der Heijden et al., 2008; Zhou et al., 2020). In these studies, the percentage of PSB in 

populations of aerobic soil bacteria varied between 4.0% and 14.4%. The highest proportion of 

PSB in the present study was in soil with a pH of 8.2 and high aridity index. In a previous 

study, a significantly higher percentage of PSB was found in a harsh environment with high 

aridity and alkaline soil pH (Timmusk et al., 2011). 

Environmental conditions and agricultural practices affect the populations and P solubilisation 

activity of rhizobacteria (Fernández et al., 2015). Soil characteristics, rather than agricultural 

management, can have a greater impact on microbial community structure and catabolic 

function (Wakelin et al., 2008). Accordingly, we identified soil factors that influenced the 

population and proportion of PSB in cropped soils collected from the southern and eastern 

agricultural environments of Australia. There was a positive association between the 

abundance and proportion of culturable PSB in the sampling sites and soil carbon, N, P, total 

cation (Ca2+, Mg2+, and K+) and silt content. However, the association between PSB count and 

proportion, and sand content was negative, suggesting an effect of soil type, as they were high 

in loamy soil and low in soils with a greater proportion of sand (Xia et al., 2020). Previous 

reports also found a direct correlation between culturable bacteria that can solubilise P and soil 

carbon, as well as the concentration of cationic nutrients (Ca2+ and Mg2+) (Kim et al., 1997; 

Ndung’u-Magiroi et al., 2012). PSBs are heterotrophic bacteria that require external carbon 

sources to solubilise P. Incorporation of organic residues has enhanced the abundance of PSB 

(Perez et al., 2007; Panda et al., 2016; Wei et al., 2017). An increase in the proportion of PSB 

with increasing Ca2+, Mg2+ and K+ concentration in soils could also indicate the influence of 

these cations on the prevalence of heterotrophic bacteria that can utilise P from Ca/Mg-PO4 

complexes, which are the dominant forms of P in soils of neutral and alkaline pH.  
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Plant growth-promoting rhizobacteria belonging to Bacillus, Pseudomonas and Burkholderia 

have been frequently reported as the most powerful P solubilisers present in chickpea 

rhizosphere soils when tested in vitro (Yadav and Verma, 2014; Midekssa et al., 2016; Laabas 

et al., 2017; Brígido et al., 2019; Pandey et al., 2019). Isolates belonging to these bacterial 

genera have improved plant growth through various mechanisms including phosphorus 

solubilisation (Laabas et al., 2017; Pandey et al., 2019; Zaheer et al., 2019). Accordingly, we 

performed semi-selective isolation methods to obtain isolates of the three above-mentioned 

genera of bacteria that commonly solubilise Ca3(PO4)2 in vitro. We identified 25 species of 

phosphate solubilising Bacillus, the predominant species being Bacillus spp.: B. simplex, B. 

muralis, B. thuringiensis, B. megaterium, B. flexus, B. niacini, B. amyloliquefaciens and B. 

subtilis. Selected isolates from most of these Bacillus species have been previously identified 

as efficient PSB from chickpea rhizosphere soils (Singh et al., 2014; Yadav and Verma, 2014; 

Sharma et al., 2019), as have Paraburkholderia phenoliruptrix, B. graminis, and P. 

frederiksbergensis (Coenye et al., 2004; Barriuso et al., 2008; De Meyer et al., 2013) identified 

here. We also identified an efficient P solubilising isolate of B. rhynchosiae that was previously 

described from root nodules of the South African legume Rhynchosia ferulifolia (De Meyer et 

al., 2013). In addition, P. putida and P. fluorescens have been frequently reported as potent P 

solubilisers (Vyas and Gulati, 2009; Zabihi et al., 2011; Patel et al., 2012), and were also 

isolated from the rhizospheres of chickpea grown in soils from a diverse collection of 

agricultural soils.  

Among forty isolates of P solubilising bacteria from an enriched consortia, we identified 17 

main genera including Leifsonia, Pantoea, Variovorax, Rhizobium and Burkholderia. 

Burkholderia has been identified in several studies as a dominant P solubiliser isolated from 

different plant species including chickpea. Burkholderia spp. are also known to express 

multiple plant growth-promoting traits (Park et al., 2010; Ambrosini et al., 2012; Arruda et al., 

2013; Batista et al., 2018). Besides the above-mentioned genera, P solubilising isolates in the 

present study were observed from the genera Curtobacterium, Microbacterium, Cellulomonas, 

Mycolibacterium, Rhodococcus, Inquilinus, Phyllobacterium, Dyella and Mucilaginibacter. In 

previous studies these genera identified here, excluding Inquilinus, Dyella and 

Mucilaginibacter, have been isolated from chickpea rhizosphere soils and could solubilise P 

(Hynes et al., 2008; Oves et al., 2013; Brígido et al., 2019). Selected isolates belonging to most 

of these genera can promote plant growth through multiple mechanisms including increasing 

available P concentration in soils and enhancing plant P uptake (Rahi et al., 2010; Khan et al., 
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2013). The bacterial genera Inquilinus, Dyella and Mucilaginibacter have been rarely reported 

in association with chickpea rhizosphere soils but were recovered here as efficient PSB 

following enrichment. These genera have been identified as plant growth-promoting 

endophytic and rhizosphere bacteria in association with other plant species (Bent and Chanway, 

1998; Afzal et al., 2017; Proença et al., 2017).  

Our results demonstrate that PSB isolated after enrichment were more efficient in solubilising 

P than PSB isolated directly from rhizosphere soils. In particular, B. cenocepacia 127F 

produced 1.2 to 4.2-fold higher P concentrations in liquid culture than other strains. Most of 

the efficient PSB identified in the present study were recovered from enriched consortia in the 

presence of AlO4P or FeO4P.2H2O as a sole P source. The amount of Pi from all three P sources 

was not associated with the capacity of strains to induce acidic pH conditions in the culture 

solution. Although the direct correlation of medium acidification directly correlated with Pi in 

culture media has been reported in certain cases (Barroso et al., 2006; de Oliveira Mendes et 

al., 2014), in other instances, the degree of solubilisation was always proportional to the decline 

in pH (Mehta and Bhide, 1970; Wani and PV, 1979; Goldstein, 1986; Asea et al., 1988).  

In the present study, the tested strains produced a diverse type and quantity of carboxylates 

during P solubilisation. The types of carboxylate production by the tested strains explained the 

P dissolution potential. It has been observed previously that the type of carboxylate (tri- di- or 

mono-carboxylate) is more important for P-solubilisation than the total amount of carboxylates 

produced by PSB (Cunningham and Kuiack, 1992; Scervino et al., 2010). In our experiments, 

the highest P dissolution was recorded by Burkholderia sp. 12F and B. cenocepacia 127F, 

which produced predominantly tri- and di-carboxylates. Conversely, monocarboxylates were 

the dominant type of carboxylate produced by B. simplex 37F, which performed poorly in P 

solubilisation. In line with our findings, others have reported that the ability to produce citric 

acid, a tricarboxylate, determined the potential of PSB to solubilise P from AlO4P and FeO4P 

(de Oliveira Mendes et al., 2014). Carboxylates increase P availability mainly through 

decreased adsorption of P and increased solubilisation of phosphates. P solubilisation by 

carboxylates is facilitated through acidification, anion exchange of PO4
- by acid anion or 

chelation of metal ions associated with phosphate (Omar, 1997; He and Zhu, 1998; Henri et al. 

2008).  

The main mechanism involved in efficient P solubilisers in this study was associated with the 

type of carboxylates produced, particularly citrate and α-ketoglutarate. The effect of particular 
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carboxylates on P solubilisation can be associated with their chemical nature (Jones and 

Oburger, 2011), including their concentration, the position of the -COOH and -OH functional 

groups, the stability of the metal ion-organic acid complex, the amount and types of metal ions 

in solution and the pH (Pohlman and Mc Coll, 1986; Bolan et al., 1994; Kpomblekou-a and 

Tabatabai, 1994; Whitelaw, 1999). In particular, carboxyl and hydroxyl groups are the main 

chemical constituents affecting the amount of cation mobilisation by carboxylates (Sagoe et 

al., 1998). Carboxyl groups facilitate the chelation of the cation bound in sparingly soluble 

phosphates leading to the release of Pi (Kpomblekou-a and Tabatabai, 1994). Chelating metal 

ions that may be associated with complexed forms of P facilitate the release of adsorbed P 

(Bolan et al., 1994). The P desorption ability of different carboxylates decreases with reduction 

in stability constants of Fe- and Al-carboxylate complexes in the order: citrate > oxalate > 

malonate/malate > tartrate > lactate > gluconate > acetate > formate (Ryan et al., 2001). The 

ability of carboxylates to chelate metals is greatly affected by their molecular structure and 

number of carboxyl groups (Khan et al., 2009). The aforementioned carboxylates produced by 

efficient PSB in the presence study contain α-carboxyl and β-hydroxyl groups that are 

important in forming a stable organometallic six-member ring structure (Pohlman and Mc Coll, 

1986). Through the formation of this structure, tri-carboxylates could increase the 

concentration of Pi from AlO4P and FeO4P.2H2O and improve the P availability to plants. 

Increased P uptake from rock phosphate was observed in plants supplied with di- and tri-

carboxylates previously (Bolan et al., 1994). 

5.7. Conclusion 

This research has shown a high diversity of PSB belonging to 16 genera isolated from 

rhizosphere soils of chickpea through a selective enrichment process. This enrichment method 

of PSB isolation improved the selection of efficient P solubilising bacteria from rhizosphere 

soils. In particular, rhizobacteria enriched in the presence of FeO4P.2H2O were efficient P 

solubilisers. Moreover, the efficiency of P solubilising bacteria was associated with their 

capacity to produce di-and tri-carboxylic acids. The majority of efficient PSB that were 

obtained from the rhizosphere of chickpea grown in soils sampled from a wide survey of 

Australia’s agricultural regions were assigned to the genus Burkholderia. Newly isolated 

Burkholderia strains that were obtained from enriched consortia had 1.2- to 4.2- fold greater 

efficiency in P solubilisation than those of the same genus isolated from rhizosphere soils 

without enrichment. This study shows that enriching rhizobacteria in culture conditions with 
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sparingly soluble P increased the likelihood of encountering elite PSB from bulk soils and 

rhizospheres.
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Table 1. Correlation between soil chemical and physical properties and the presence and abundance of PSB in 

rhizospheric soil obtained from chickpea seedlings grown in greenhouse  

Soil properties Population of PSB  % of PSB  

Soil pH 0.03 0.09 

EC  0.40** 0.33** 

Calcium (mg kg-1)  0.41*** 0.36** 

Magnesium(mg kg-1)  0.332** 0.38** 

Potassium (mg kg-1)  0.49*** 0.45*** 

Carbon (%) 0.57*** 0.48*** 

Nitrogen (%) 0.60*** 0.51*** 

Phosphorus (mg kg-1)  0.58*** 0.58*** 

Sulfur (mg kg-1) 0.20 0.19 

Copper (mg kg-1)  -0.02 0.11 

Manganese (mg kg-1)  -0.12 -0.09 

Zinc (mg kg-1)  0.16 0.20 

Clay (%) 0.06 0.11 

Sand (%) -0.33*** -0.34** 

Silt (%) 0.56*** 0.52*** 

PSB - Phosphate solubilising bacteria; %PSB is the proportion of culturable bacteria able to solubilise Ca3(PO4)2 

in NBRIP medium relative to total culturable aerobic bacteria assessed by growth on TSA medium. Concentration 

of Ca, Mg and K measured after ammonium acetate extraction. Diethylenetriaminepentaacetic acid (DTPA) 

extractable concentration of Cu, Mn and Zn are reported. Phosphorus reported here is total P after perchloric acid 

digestion followed by extraction of total elemental P.  
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Table 2. Types and amounts (µM) of organic acids produced by selected PSB grown in NBYM liquid medium supplemented with Ca3(PO4)2, AlO4P or FeO4P.2H2O after 

seven days of incubation at 28 oC 

Bacterial Strains 
 

Monocarboxylate Dicarboxylate Tricarboxylate 
Total 
organic acid  

Acetate Lactate Shikimate Pyruvate Malate Succinate Fumarate Maleate cis-aconitate 
α-
ketoglutarate Citrate 

Trans-
aconitate  

FeO4P.2H2O 
B. megaterium 443.9 345.0 0.31 n.d. n.d. 39.3 59.48 55.12 0.07 n.d. n.d. n.d. 943.1 
B. pumilus n.d. 21.0 n.d. n.d. n.d. n.d. 0.11 n.d. n.d. n.d. n.d. n.d. 21.1 
B. simplex 321.0 234.0 n.d. n.d. 321.0 n.d. 2.70 n.d.  3.56 n.d. n.d. n.d. 557.7 
B. cepacia n.d. n.d. n.d. 9.0 n.d. n.d. 0.17 n.d. n.d. n.d. n.d. n.d. 9.2 
P. fluorescens n.d. 19.7 n.d. 592.6 n.d. n.d. 0.08 n.d. n.d. n.d. n.d. n.d. 612.4 
Burkholderia sp. n.d. 34.0 n.d. n.d. n.d. n.d. 0.02 n.d. 2.37 310.7 5.7 n.d. 352.8 
B. cenocepacia 234.0 n.d. n.d. 287.0 24.2 n.d. 5.14 n.d. n.d. 301.8 17.6 2.1 871.7 
AlO4P 
B. megaterium 478.0 378.0 0.46 n.d. n.d. 56.0 61.00 0.05 0.14 n.d. n.d. n.d. 973.7 
B. pumilus n.d. 27.9 n.d. n.d. n.d. n.d. 0.13 n.d. 0.12 n.d. n.d. n.d. 28.2 
B. simplex 345.0 363.1 n.d. n.d. 469.2 n.d. 3.50 n.d. n.d. n.d. n.d. n.d. 1180.8 
B. cepacia n.d. n.d. n.d. 18.8 n.d. n.d. 0.33 n.d. 0.27 n.d. n.d. n.d. 19.4 
P. fluorescens n.d. 56.9 n.d. 244.2 0.5 n.d. 0.06 n.d. 0.09 n.d. n.d. n.d. 301.7 
Burkholderia sp. n.d. 40.6 n.d. n.d. n.d. n.d. 0.03 n.d. n.d. 321.7 24.7 1.7 388.6 
B. cenocepacia 301.3 n.d. n.d. 341.0 456.0 176.8 65.00 n.d. 1.16 362.1 43.0 4.7 1750.9 
Ca3(PO4)2 
B. megaterium 564.0 410.0 0.59 n.d. n.d. 72.0 76.00 0.05 0.09 n.d. n.d. n.d. 1122.7 
B. pumilus 284.6 148.3 n.d. n.d. n.d. n.d. 0.09 0.03 0.20 n.d. n.d. n.d. 433.2 
B. simplex 613.6 1223.0 n.d. n.d. 546.0 n.d. 0.13 n.d. n.d. n.d. n.d. n.d. 2382.7 
B. cepacia n.d. n.d. n.d. 28.0 n.d. n.d. 0.17 n.d. 0.33 n.d. n.d. n.d. 28.5 
P. fluorescens n.d. 67.0 0.46 306.4 363.1 n.d. 0.07 n.d. 0.14 n.d. n.d. n.d. 737.1 
Burkholderia sp. 202.9 57.0 n.d. n.d. 55.1 39.3 0.06 n.d. 4.56 364.0 n.d. 11.0 733.9 
B. cenocepacia 431.0 n.d. n.d. 1186.0 852.9 486.9 74.27 n.d. 9.06 2092.1 152.5 29.0 5313.7 

Key: n.d.: Not detected. Media inoculated with B. megaterium 8F, 2: B. pumilus 98F, 3: B. simplex 37F, 4: B. cepacia 126F, 5: P. fluorescens 27F, 6: Burkholderia sp. 12F, 

and 7: B. cenocepacia 127F 
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Fig. 1 Neighbour–joining phylogenetic tree based on the 16S rRNA gene sequences of 

culturable phosphate solubilising Bacillus spp. isolated from chickpea rhizospheric soils. 

Genetic distances were constructed using Kimura’s 3-parameter model. PSI: phosphate 

solubilisation index, *- PSI value <2, **- 2-3, ***- >3-4, ****- >4.0
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Fig. 2 Neighbour–joining phylogenetic tree based on a comparison of the 16S rRNA gene 

sequences of phosphate solubilising Pseudomonas- and Burkholderia-like bacteria isolated 

from chickpea rhizospheric soils using a semi-selective medium. Genetic distances were 

constructed using Kimura’s 3-parameter model. PSI: phosphate solubilisation index, *- PSI 

value <2, **- 2-3, ***- >3-4, ****- >4.0
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Fig. 3 Phylogenetic tree of 16S rRNA gene sequences showing the relationships among 

bacterial strains isolated after repeated culture for the enrichment of PSB from rhizospheric 

soils in different P sources mentioned in the figure. The data of type strains of related species 

were obtained from the GenBank database. Genetic distances were constructed using Kimura’s 

3-parameter model. PSI: phosphate solubilisation index, *- PSI value <2, **- 2-3, ***- >3-4, 

****- >4.0
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Fig. 4 Enrichment for PSB on three different P sources. Mean of three replicates ±SE of (a) 

Soluble P, (b) pH of enriched culture medium, (c) the population of PSB, (d) % of PSB and (e) 

the population of total culturable bacteria in each of three rounds of enrichment of rhizospheric 

soils in NBYM liquid media that contained Ca3(PO4)2, AlO4P or FeO4P.2H2O. Each enrichment 

round took seven days of incubation at 28 oC and agitated at 160 rpm. Sub-samples were taken 

at the end of each enrichment stage. The population of PSB was screened in NBRIP medium 

containing Ca3(PO4)2.  

Key: % of PSB = cell density of total phosphate solubilising bacteria log10(CFU mL-1) X 100 / 

cell density of total of culturable bacteria log10(CFU mL-1) 
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Fig. 5 Average phosphate solubilisation index (PSI) of PSB obtained using method-1: 

Enrichment method and method-2: Taxonomic method and the PSI of P solubilisers supplying 

three sparingly soluble P: P-1: AlO4P, P-2: Ca3(PO4)2 and P-3: FeO4P.2H2O. The black line 

within the box indicates the median. The red broken line in the box shows the mean value. The 

lines outside the box boundaries indicate the upper and lower quartiles. Dots outside the box 

indicate 5th/95th percentiles.
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Fig. 6 Mean of three replicates ±SE of dissolved P concentration and pH in liquid NBRIP 

medium supplemented with three P sources: Ca3(PO4)2 (a and d), AlO4P (b and e) and 

FeO4P.2H2O (c and f), respectively, after 14 days of incubation in shaker incubator (28 oC, 160 

rpm). Bar indicates the mean values of three replications. Error bar indicates the standard error. 

PSB included 1: B. megaterium 8F, 2: B. pumilus 98F, 3: B. simplex 37F, 4: B. cepacia 126F, 

5: P. fluorescens 27F, 6: Burkholderia sp. 12F and 7: B. cenocepacia 127F 
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6.3. Introduction 

Soil microorganisms can increase the bioavailability of P through the mineralization of organic 

P and the solubilisation of bound inorganic P (Richardson et al. 2009). Microorganisms that 

solubilise P are referred to as phosphate solubilising bacteria (PSB) (Bashan et al. 2013). These 

bacteria facilitate P solubilisation through secretion of low molecular weight carboxylates and 

protons (H+) that ultimately result in localised acidification (Khan et al. 2013). PSB that 

enhance plant growth through P solubilisation are referred to as plant growth-promoting 

rhizobacteria (PGPR) (Swift et al. 2018; Alemneh et al. 2020). In some instances, PGPR unable 

to solubilise P nevertheless can increase P concentration in various plant species (Barnawal et 

al. 2012; 2014; Chandra et al. 2019), through expression of 1-aminocyclopropane-1-

carboxylate (ACC) deaminase.  

ACC deaminase is the principal mechanism of plant growth-promotion expressed by most 

beneficial bacteria belonging to several genera (Marques et al. 2010; Etesami et al. 2014; Qin 

et al. 2014; Gontia-Mishra et al. 2017; Misra et al. 2017; Stromberger et al. 2017). The 

dominant ACC deaminase-producing bacterial genera are: Achromobacter, Agrobacterium, 

Azospirillum, Bacillus, Bradyrhizobium, Chryseobacterium, Enterobacter, Herbaspirillum, 

Mesorhizobium, Phyllobacterium, Pseudomonas, Ralstonia, Serratia, Sinorhizobium, 

Sphingobacterium and Variovorax, although ACC deaminase activities vary under in vitro 

conditions (Shah et al. 1998; Ma et al. 2003b; Hontzeas et al. 2005; Blaha et al. 2006; 

Caballero-Mellado et al. 2007; Duan et al. 2009; Onofre-Lemus et al. 2009; Nikolic et al. 2011; 

Nascimento et al. 2014; Li et al. 2015; Bouffaud et al. 2018). ACC deaminase as low as 0.02 

µmol is sufficient to enable a bacterium to promote plant growth. Plant growth-promotion by 

expression of ACC deaminase activity is facilitated through the reduction of a lethal 

concentration of ethylene that is often produced when plants are exposed to stresses (Glick 

2014). ACC deaminase-producing rhizobacteria can also enhance nodulation and plant growth 

under sub-lethal production of ethylene in plants (Ma et al. 2003a; Shaharoona et al. 2006; 

Zahir et al. 2011; Barnawal et al. 2012; 2014). In these studies, inoculation of PGPR also 

improved plant P concentration. An increased P content was observed through stimulation of 

root growth and/or enhanced P concentration in the rhizosphere through P solubilisation 

(Safronova et al. 2006; Shahzad et al. 2013).  

ACC deaminase catalyses the conversion of ACC to α-ketobutyrate and ammonia (Glick et al. 

1998). α-ketobutyrate is occasionally produced by rhizobacteria during mineral P 
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solubilisation, (Gaur 1990; Vazquez et al. 2000; Pal et al. 2001). In these reports, rhizosphere 

microorganisms that produce α-ketobutyrate during P solubilisation include strains of Bacillus 

amyloliquefaciens, Bacillus licheniformis, Bacillus atrophaeus, Paenibacillus macerans, 

Pseudomonas striata, Pseudomonas fluorescens and Xanthobacter agilis. Ammonia is another 

product of ACC utilisation and it is present as ammonium in soils. Ammonium can be a source 

of H+ via microbial assimilation (Illmer and Schinner 1995). Therefore, the assimilation of 

ACC via the action of ACC deaminase might affect the P solubilising activity of 

microorganisms.  

ACC deaminase-producing bacteria are typically isolated on DF-minimal media containing 

ACC as the sole N source (Penrose and Glick 2003). However, growth on this medium is not 

confirmative of ACC deaminase activity (Ma et al. 2003b; Blaha et al. 2006; McDonnell et al. 

2009; Li et al. 2011; Nascimento et al. 2012; Nascimento et al. 2014) and mis-identification of 

ACC deaminase activity causes misunderstanding of microbial function. Detection of the acdS 

gene is important for the identification of ACC deaminase-producing bacteria and for 

predicting ACC deaminase activity. The use of consensus-degenerate hybrid oligonucleotide 

primers (CODEHOP) that can differentiate authentic acdS genes from their homologs can be 

used to amplify these genes from a wide range of bacteria (Li et al. 2015). 

In our experiments, most ACC deaminase producing bacteria were able to release P from 

relatively insoluble Ca-P. Taking into consideration the role of NH4
+ and α-ketobutyrate in P 

solubilisation and observations from our preliminary experiments, we hypothesised that the 

capability to produce ACC deaminase would improve the mineral P solubilisation potential of 

PSB when ACC is the sole N source. The objectives of this study were to screen and identify 

bacteria containing ACC deaminase using in vitro methods and to sequence acdS genes to 

examine whether ACC deaminase influenced the P solubilisation potential of PSB.  

6.4. Materials and Methods 

6.4.1. Soil sampling and analysis 

Soil samples were collected from 74 sampling sites in major agricultural cropping lands across 

Australia (Appwndix Fig. 1). The collection sites have a diverse range of rainfall and 

evapotranspiration. The soil physico-chemical properties of the sampling sites are also very 

diverse (Appendix Table 1). Soil pH (H2O) varied between 5.82 and 8.2 and EC from 40 to 

271 µS cm-1. The Ca2+, K+ and Mg2+ concentrations in the soils varied between 0.276 to 100 g 
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kg-1, 308 to 7,500 mg kg-1 and 0.173 to 18.8 g kg-1, respectively. The concentration of Cu, Mn 

and Zn in soils varied from 2 to 29 mg kg-1, 21 to 1,600 mg kg-1, and 3.3 to 61.0 mg kg-1, 

respectively. The soil total carbon, N and P contents ranged from 0.23 to 8.85%, 0.009 to 

0.208% and 88 to 596 ppm, respectively. The sand textural component in soils varied between 

18.8 and 86.3% across sampling sites.  

One hundred g of soil from each sample was taken and placed in small pots sown to chickpea 

cv. HatTrick which was grown in a growth chamber with lighting intensity of 1000 µmol m-2 

s-1 with a 16 h photoperiod and a constant temperature at 20 oC, with relative humidity between 

60% and 70%. The soil strongly adhering to roots was considered to be ‘rhizosphere soil’ and 

was collected from chickpea seedlings four weeks after germination and kept at 4 oC until 

further work. 

6.4.2. Isolation and identification of PSB 

One gram of rhizosphere soil was added to 9 mL of sterile MilliQ water and diluted with tenfold 

serial dilution up to 10-6. Aliquots of 100 µL from 10-5 and 10-6 were taken and spread on semi-

selective 1/10 strength tryptone soya agar (TSA) (Oxoid LTD, Basingstoke, Hampshire, 

England) supplemented with 50 µg mL-1 of ampicillin (99%, Sigma-Aldrich, Chemie GmbH, 

Steinheim, Germany), 12.5 µg mL-1 of chloramphenicol (Sigma-Aldrich, 99%) and 75 µg mL-

1 of cycloheximide (Sigma-Aldrich) for isolation of Pseudomonas-like bacteria (Simon and 

Ridge 1974). The remaining aliquots were incubated in a water bath for 10 min at 80 oC to 

selectively enrich aerobic endospore inducing bacteria such as Bacillus. A 100 µL of aliquot 

was spread on 1/10 strength TSA media and plates were incubated at 28 oC for 5 days. 

Thereafter, bacterial colonies were transferred to fresh TSA media incubated in the same 

conditions. Well-developed colonies were selected based on their colony morphologies and 

further purified in TSA media. Purified isolates were further evaluated for P solubilisation 

potential, based on the National Botanical Research Institute's phosphate (NBRIP) growth 

media (Nautiyal 1999) containing the following ingredients (L-1): glucose, 10 g; MgCl2.6H2O, 

5 g; MgSO4.H2O, 0.25 g; KCl, 0.2 g, and (NH4)2SO4, 0.1 g supplemented with 5 g of Ca3(PO4)2 

(Ca-P, >96%, Sigma-Aldrich). Besides this protocol, novel PSB were isolated using an 

enrichment method in NBRIP media containing 5 g of insoluble P sources, including AlO4P 

(Al-P, Sigma-Aldrich), Ca-P or FeO4P.2H2O (Fe-P, Sigma-Aldrich) supplemented with 75µg 

mL-1 of cycloheximide (Sigma-Aldrich), to inhibit fungal growth. Novel PSB were isolated 

using NBRIP agar media. Plates were incubated at 28 oC for 10 days. Distinct colonies 
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surrounded by solubilisation zones were selected and re-streaked on fresh NBRIP agar media 

for further purification. Purified colonies were selected based on the phosphate solubilisation 

index, calculated using the formula described in (Nguyen et al. 1992b). Prior to preserving 

these bacterial strains, the ability to grow at 37 oC were checked to exclude isolates that were 

potential human pathogens. Culture incapable of growing at this temperature were maintained 

in 10 % glycerol at -80 oC and also on slant culture at 4 oC. The screening procedure for PSB 

capable of expressing ACC deaminase is indicated in Appendix Fig. 2.  

6.4.3. Quantification of plant growth-promoting traits  

A total of 841 rhizobacteria were obtained using the aforementioned two isolation methods. 

The P solubilisation and ACC deaminase production ability of isolates were assayed. Bacterial 

isolates able to solubilise inorganic phosphate were further investigated for ACC deaminase 

production. Qualitatively, ACC deaminase activity was screened in a plate assay on DF-

minimal medium containing 3 m mmol l-1 of ACC (TCE, Tokyo Chemical Industry Co. LTD, 

Toshima, Kita-Ku, Tokyo) instead of NH4(SO4)2 (Dworkin and Foster 1958). Isolates able to 

grow in this medium were further characterized for their quantitative production of ACC 

deaminase (Penrose and Glick 2003). IAA production in the presence and absence of its 

precursor tryptophan was also investigated in DF-minimal liquid medium (Patten and Glick 

2002). ACC deaminase-positive bacteria were further screened for their ability to grow on 

Jensen’s N-free medium by streak inoculation of individual cultures and incubation at 28 oC 

for 5 days. All tests were replicated three times to check the repeatability of the result. 

6.4.4. acdS and 16S rDNA sequencing and phylogenetic analysis 

The genetic diversity of 48 bacterial isolates able to solubilise P and express ACC deaminase 

activity was investigated by sequencing the ACC deaminase structural gene (acdS). The 

CODEHOP such as acdSf3 (ATCGGCGGCATCCAGWSNAAYCANAC) and acdSr3 

(GTGCATCGACTTGCCCTCRTANACNGGRT) were used to amplify partial sequences of 

acdS genes with an expected amplicon size of ~760 bp (Li et al. 2015). Rhizobium rhizogenes 

(formerly Agrobacterium radiobacter) K84, a known biocontrol agent containing the acdS 

gene, was used as a positive control. The PCR cycle was as follows: an initial denaturation at 

95 oC for 15 s, followed by 35 cycles of 95 oC for 30 s, annealing at 53 oC for 1 min and 

extension at 72 oC for 1 min and a final extension at 72 oC for 5 min.  
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Additionally, the universal forward primer fD1 (5′-AGAGTTTGATCCTGGCTCAG-3′) and 

reverse primer rP2 (5′-ACGGCTACCTTGTTACGACTT-3′) were used to amplify 16S rDNA 

with an approximate size of 1500 bp (Weisburg et al. 1991). PCR assays were performed using 

25 µL reaction mixture with 2x concentrated Taq polymerase under the following conditions: 

initial denaturation at 94 oC for 5 min, 35 amplification cycles of denaturation at 95 oC for 15 

s, annealing at 57 oC for 30 s, extension at 72 oC for 1 min and a final extension at 72 oC for 5 

min.  

Amplification of the target gene was confirmed by electrophoresis of PCR products on a 1 % 

agarose gel. The PCR products were sequenced by the Australian Genome Research Facility, 

Sanger Service (University of Adelaide, South Australia). Phylogenetic analysis of the 16S 

rDNA sequences was carried out. PCR products were separated by electrophoresis and 

visualised on a 1% agarose gel. Related sequences were obtained from the GenBank database, 

National Center for Biotechnology Information (NCBI) 

(http//www.ncbi.nim.nih.gov/BLAST). The tree topology was inferred by the neighbour-

joining method using the latest version of Molecular Evolutionary Genetics Analysis (MEGA-

7) (Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University 

Park, PA 16802, USA) (Kumar et al. 2016b). A distance matrix in the phylogeny was generated 

following Kimura’s 3 parameter distance model.  

6.4.5. P solubilisation efficiency  

Forty-eight PSB able to grow on DF-minimal medium containing ACC as sole N source were 

used. A pre-screening of their P solubilisation capacity from Ca-P was assessed on NBRIP agar 

media (Nautiyal 1999) using one of two N sources, ACC or (NH4)2SO4. Streaked plates were 

incubated for 14 days at 28 oC. The colony diameter and halo clearing zone were measured 

every two days. The phosphate solubilisation index (PSI) was calculated following the formula 

described in Nguyen et al. (1992a).  

The effect of ACC deaminase on P dissolution from Al-P, Ca-P or Fe-P was further 

investigated in the presence of ACC as sole N source. Five bacterial isolates, namely Bacillus 

megaterium 8F, Bacillus pumilus 98F, 3: Burkholderia cepacia 126F, 4: Burkholderia sp. 12F 

and 5: Burkholderia cenocepacia 127F were efficient in P solubilisation from diverse P sources 

(Chapter 4) and were used in this study. These PSB were efficient P solubilisers in the presence 

of (NH4)2SO4 and able to produce a range of concentrations of ACC deaminase. The NBRIP 

medium was prepared, the pH was adjusted to 7.00 and ACC equivalent to the amount of N in 
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0.1 g of (NH4)2SO4 was filter sterilised and mixed with the sterile medium. Fifty ml of medium 

was transferred into a glass bottle (200 mL capacity) and autoclaved (20 min, 121 oC). A pure 

colony of each isolate was inoculated into DF-minimal medium and the pre-culture was 

incubated for 48 h at 28 oC. Then, 100 µL of liquid culture was inoculated into bottles 

containing the sterile NBRIP media and cultures were incubated on a shaker (28 oC, 160 rpm) 

for 21 days. All treatments were replicated three times. Every two days, 5 mL of culture 

solution were drawn from each bottle. The amount of soluble P (Pi) and the pH of culture media 

were determined. 

6.4.6. Comparative effectiveness of different carboxylates in solubilisation of P 

Alpha-ketobutyrate together with the dominant carboxylates (acetate, citrate, gluconate, 

malate, maleate, α-ketoglutarate, oxalate, and succinate) produced by efficient P solubilisers 

were investigated for their relative efficiency in P solubilisation from sparingly soluble P 

sources in vitro. Inorganic acids (HCl and H2SO4) and H2O were included as controls. The 

assay was performed in 150 mL bottles containing 50 mL of 10 mmol L-1 carboxylate solution, 

which is the approximate total carboxylate concentration produced in liquid culture by an 

efficient PSB (Yi et al. 2008). Five g of each insoluble mineral phosphate was added to the 

carboxylate solution. The solution was sterilised (20 min, 121 oC) by autoclaving. To avoid the 

thermal degradation of carboxylate during sterilisation, a solution of each carboxylate or 

inorganic acid was prepared and sterilised by filtration using a 0.22 µm microfilter. All bottles 

were kept in a shaker incubator at room temperature and agitated at 160 rpm for three days. 

Quantitative estimations of Pi and pH were made.  

6.4.7. Determination of available P  

The Pi concentration in sample solutions was determined following the method described by 

Murphy and Riley (1962). The mixed reagent comprised the following: 5 N sulphuric acid, 20 

g ammonium molybdate dissolved 100 mL water, 1.32 g of ascorbic acid dissolved in 75 mL 

of water and 0.2743 g of potassium antimonyl tartrate in 100 mL water. Samples were 

centrifuged for 10 min at 10,000 ×g. A 2 mL sample of the supernatant and 0.4 mL of the mixed 

reagent was placed in a 10 mL test tube. The mixture was kept for 30 min and absorbance at 

882 nm was determined using a spectrophotometer. The absorbance values were converted into 

Pi concentration using a standard calibration curve.  
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6.4.10. Data analysis 

All experiments were conducted using a completely randomized design and all treatments were 

replicated three times. Data were analysed by ANOVA using GENSTAT 18th edition statistical 

software. Differences between treatments were compared with LSD at P <0.05. Normal 

distribution of the data was determined using Shapiro-Wilk’s test. Bartlett’s test was used to 

determine the homogeneity of variances. 

6.5 Results 

6.5.1. Identification of ACC deaminase producing bacteria 

A total of 841 isolates of rhizobacteria was obtained from 74 chickpea rhizosphere soils using 

taxonomically selective and enrichment isolation protocols. Of these isolates, 743 Bacillus- 

and Pseudomonas-like bacteria were obtained using taxonomically selective methods of 

isolation. Only 72 (9.7%) isolates were able to solubilise Ca-P in a plate assay. Besides this, 

98 efficient P solubilising bacteria closely related to Burkholderia, Caulobacter, Cellulomonas, 

Dyella, Inquilinus, Leifsonia, Microbacterium, Mycolicibacterium, Mucilaginibacter, 

Pantoea, Phyllobacterium, Rhodococcus, Rhizobium, Sphingomonas and Variovorax were 

enriched from the rhizosphere soils (Chapter 4). Of the 170 isolates of PSB, only 48 belonging 

to the genera Bacillus, Burkholderia, Pseudomonas and Variovorax were found to grow in DF-

minimal medium containing ACC as sole N source (Fig. 1). Of the 48 isolates, 44 were found 

to produce ACC deaminase in the liquid bioassay.  

The ability of PSB to produce ACC deaminase was further confirmed by detection of acdS 

gene sequences. Of the 48 isolates able to utilise ACC, the acdS gene was amplified from 25 

isolates. The acdS gene was not detected in 23 isolates. Of those, nineteen isolates were closely 

related to Bacillus spp. However, these isolates expressed ACC deaminase activity. The 

remaining four isolates belonged to Burkholderia and Pseudomonas. These isolates were able 

to grow on the DF-minimal medium in the presence and absence of ACC as N source but did 

not display ACC deaminase activity (Table 1).  

6.5.2. P solubilisation efficacy  

Out of the forty-eight PSB isolates which grew on DF-minimal medium with ACC as sole N 

source, thirty-two were able to solubilise Ca-P when the N source in NBRIP medium was 

(NH4)2SO4 (Table 1). In general, PSI values were lower with ACC than with (NH4)2SO4, 
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excluding the PSB isolates able to express ACC deaminase at > 2.50 µmol α-ketobutyrate h-1. 

An isolate closely related to Bacillus subtilis CICC10034, which was able to express ACC 

deaminase at 7.32 µmol α-ketobutyrate h-1, exhibited comparable PSI values in media 

containing ACC and (NH4)2SO4. Few isolates unable to solubilise P with (NH4)2SO4 displayed 

very weak solubilisation capacity (PSI < 2) when N was supplied as ACC (Table 1). These 

isolates produced ACC deaminase activity greater than 4.24 µmole α-ketobutyrate h-1. 

In a further P solubilisation assay, a significant and positive relationship was observed between 

ACC deaminase activity and the ability to release Pi from Ca-P when the sole N source was 

ACC (Fig. 2a). This association was non-significant with Al-P or Fe-P as P source (Fig. 2b and 

c). In these latter cases, the potential to solubilise Pi from Al-P and Fe-P was not related to the 

ability of tested isolates to produce ACC deaminase.  

An inverse and significant association between ACC deaminase production and pH of the 

culture medium was found with all P sources (Fig. 2d, e and f). The most acidic pH was 

recorded when the inoculated bacteria produced the highest ACC deaminase activity.  

The relative P solubilisation efficiency of ACC deaminase-producing isolates in the presence 

of ACC, as compared to (NH4)2SO4, was investigated in liquid media. Three out of five isolates 

produced lower Pi and degree of acidification with ACC than with (NH4)2SO4 (Fig. 3a, b, c, d, 

e and f). The remaining two isolates, B. pumilus 98F and B. cepacia 126F, which expressed 

ACC deaminase at 6.80 and 8.42 µmol α-ketobutyrate h-1 in DF-minimal medium, were able 

to release significantly higher Pi from Ca-P with ACC than with (NH4)2SO4. These isolates 

were also able to induce a higher degree of acidity with ACC than with (NH4)2SO4. However, 

all isolates solubilised P poorly from Al-P and Fe-P with ACC as compared to (NH4)2SO4 as 

N source.  

P solubilising activity of the tested isolates with (NH4)2SO4 was related to the types of 

carboxylates produced (Chapter 4, Table 2). The highly efficient P solubilisers, including 

isolates of B. megaterium, Burkholderia sp. and B. cenocepacia, produced predominantly di-

and tri-carboxylates. In contrast, the isolates that were poor in P solubilisation produced 

predominantly mono-carboxylates. 

In the presence of ACC as the sole N source, the amount of Pi released from Ca-P was inversely 

and significantly associated with the pH of the culture medium (Fig. 4a). However, this 

association was non-significant when Pi was obtained from Al-P and Fe-P (Fig. 4b and c).  
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6.5.3. Relative efficiency of carboxylates in P solubilisation  

The relative efficiency of α-ketobutyrate in P solubilisation compared with that of carboxylates 

commonly produced by efficient PSB was investigated (Table 2). The addition of carboxylate 

decreased the mean value of Pi liberated from Ca-P in the following order: malate > succinate 

> oxalate > DL-maleate > citrate > α-ketoglutarate > pyruvate > α-ketobutyrate > acetate > 

gluconate. α-ketobutyrate solubilised significantly more Pi (43.2 µg mL-1) from Ca-P than 

gluconate (28.5 µg mL-1) and acetate (37.4 µg mL-1). α-ketobutyrate was also able to release 

29.7% more Pi from Al-P than acetate. With Fe-P as P source, Pi solubilised by α-ketobutyrate 

was 25.3% higher than for gluconate.  

Tests of P solubilisation in the presence of carboxylates showed that there was no clear 

relationship between the degree of acidification due to carboxylates and their ability to release 

Pi (Table 2 and 3). In this regard, α-ketobutyrate, which produced the most acidic pH, released 

the lowest Pi as compared with the pH obtained in solutions of DL-maleate, α-ketoglutarate, 

malate, pyruvate and succinate.  

The efficacy of carboxylates in P solubilisation varied with P source. Malate was the most 

efficient carboxylate in the dissolution of P from Al-P and Ca-P. Conversely, the highest Pi 

concentration (47.3 µg L-1) from Fe-P was obtained in succinate. Malate and succinate resulted 

in higher P solubilisation than HCl.  

6.6. Discussion 

In this study, potential PSB were isolated from wide array of agricultural lands across Australia. 

Using P solubilisation and ACC deaminase bioassays, we identified that ACC deaminase 

activity of PSB was associated with their ability to solubilise P from Ca-P when ACC was the 

sole N source in the growth medium. Previous studies have demonstrated the role of other plant 

growth promoting (PGP) traits such as siderophore and exopolysaccharide production in 

mineral P solubilisation through their ability to form complexes with metals that can precipitate 

soluble P (Altomare et al. 1999; Yi et al. 2008). Our findings suggest the need to consider other 

PGP characteristics including the ability of rhizobacteria to produce ACC deaminase.  

6.6.1. Identification of ACC deaminase producing bacteria 

We used in vitro methods and sequencing of the acdS gene to identify ACC deaminase-positive 

PSB belonging to Burkholderia, Caulobacter, Cellulomonas, Dyella, Inquilinus, Leifsonia, 
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Microbacterium, Mucilaginibacter, Mycolicibacterium, Pantoea, Phyllobacterium, 

Rhizobium, Rhodococcus, Sphingomonas, and Variovorax. The acdS gene sequences were 

amplified using primers designed to detect homologous genes of Agrobacterium, 

Azospirillium, Burkholderia, Mesorhizobium, Phyllobacterium, Pseudomonas, Rhizobium, 

Ralstonia, Sinorhizobium, Variovorax, Penicillium and Trichoderma (Li et al. 2015). In the 

present study, some isolates that were closely related to Bacillus, Burkholderia, Pseudomonas 

and Variovorax spp. were able to grow on DF-minimal medium containing ACC as the sole N 

source. Most isolates belonging to these genera were able to express ACC deaminase activity. 

We also amplified the acdS gene sequences from ACC deaminase expressing bacteria. 

Bacterial strains belonging to Bacillus, Burkholderia, Pseudomonas and Variovorax spp. have 

been previously characterised as known PGPR able to express ACC deaminase activity and 

solubilise P from mineral phosphates isolated from the chickpea rhizosphere (Kumar et al. 

2016a; Shahid and Khan 2018; Pandey et al. 2019). However, the acdS gene was not amplified 

from isolates closely related to Burkholderia sp., Paraburkholderia caledonica and 

Pseudomonas putida that were able to grow on ACC-containing media. Besides the 

aforementioned isolates, we were unable to amplify the acdS gene from Bacillus spp. that were 

capable of expressing ACC deaminase activity. Previously, acdS genes have not been amplified 

from ACC deaminase-expressing Bacillus and Paenibacillus spp. isolated from soil and plant 

roots using different degenerate primer combinations (Nascimento et al. 2014; Li et al. 2015). 

The discrepancy between ACC deaminase in vitro results and the sequencing of the acdS gene 

may be due to: (i) the isolates may have another putative acdS gene that is unrelated to the 

well-known acdS gene sequences (Glick et al. 2007; Nascimento et al. 2014), and (ii) the 

primers may not amplify the acdS gene from all bacterial genera (Blaha et al. 2006; Caballero-

Mellado et al. 2007; Govindasamy et al. 2008; Onofre-Lemus et al. 2009).  

6.6.2. P solubilisation efficacy  

In the present study, most of the ACC deaminase-producing bacteria (76%) were able to 

solubilise P in vitro. ACC deaminase-producing bacteria are typically able to solubilise P 

efficiently from mineral phosphates (Safronova et al. 2006; Siddikee et al. 2011; Zabihi et al. 

2011; Shahzad et al. 2013; Çakmakçı 2016; Gontia-Mishra et al. 2017). Our results further 

showed the potential for ACC deaminase in PSB to solubilise Ca-P when ACC was the sole N 

source in the growth medium.  
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An increased ACC deaminase produced by PSB in the present study was associated with more 

acidity in the media. It is well documented that acidification of media is an effective 

solubilisation mechanism, particularly from Ca-P sources (Illmer and Schinner 1992). ACC 

deaminase-expressing bacteria produce ammonia and α-ketobutyrate through cleaving ACC 

(Glick et al. 1995). Bacteria expressing greater ACC deaminase activity could produce more 

NH4
+ from ACC. NH4

+-N is an important N source for PSB to release Pi from insoluble mineral 

phosphate (Asea et al. 1988; Halder et al. 1992) since H+ secretion, generated by the 

assimilation of NH4
+, is one of the mechanisms for solubilising phosphate (Illmer and Schinner 

1995). Therefore, greater NH4
+ uptake in exchange for H+ production could result in a high 

degree of media acidification (Jones and Oburger 2011) and lead to more mineral P 

solubilisation.  

During Al-P and Fe-P solubilisation in the present study, ACC deaminase activity was 

inversely, and significantly, associated with the pH of the culture solution. However, the ability 

of PSB to express ACC deaminase activity was not associated with the potential to mobilise P 

from these sources. These results suggest that proton extrusion as a result of NH4
+ assimilation 

is probably of less importance for P solubilisation from Al-P and Fe-P; atlternatively another 

mechanism is involved in P solubilisation.  

The type of carboxylates produced by the PSB determined their potential to solubilise P from 

Al-P, Ca-P and Fe-P. Di- and tri-carboxylates were the main carboxylates produced by PSB 

capable of solubilising the highest amounts of P. Several studies have attributed the 

solubilisation of insoluble P to the production and release of carboxylates (Gulati et al. 2010; 

Scervino et al. 2010; Wei et al. 2018; Khan et al. 2013). In these studies, PSB are able to 

produce a wide range of low molecular weight organic acids, mainly acetic, citric, formic, 

gluconic, 2-keto gluconic, lactic, malic, oxalic and succinic acids. PSB have been known to 

produce various di- and tri-carboxylates that impact both Al-P and Fe-P solubilisation (de 

Oliveira Mendes et al. 2014; Jiang et al. 2020). 

The carboxylate α-ketobutyrate can be produced by PSB in NBRIP medium containing glucose 

and (NH4)2SO4 as the sole carbon and N sources (Gaur 1990; Vazquez et al. 2000; Pal et al. 

2001). It is also produced by ACC deaminase-producing bacteria during ACC utilisation (Glick 

et al. 1995). In the present study, a solution of α-ketobutyrate alone was able to release a 

statistically comparable amount of Pi from mineral inorganic phosphate as compared to that 

produced by acetate and gluconate. However, Pi concentration in α-ketobutyrate was lower 
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than that obtained with DL-maleate, α-ketoglutarate, malate, oxalate or succinate. The potential 

of carboxylates to solubilise P is typically dependent on their affinities for chelation of different 

metal ions released from mineral phosphates and the contact time with the organo-mineral 

complex (Kpomblekou-a and Tabatabai 2003). Complex formation depends on the types and 

numbers of functional groups, such as carboxyl and hydroxyl, present in the carboxylates 

(Pohlman and Mc Coll 1986; Kpomblekou-a and Tabatabai 1994; Sagoe et al. 1998). α-

carboxyl groups in di- and tri-carboxylates are important in the formation of stable organo-

mineral complexes with Fe and Al. These groups can be responsible for the high efficacy of 

tri-carboxylates, particularly citrate, in the solubilisation of P from rock phosphate, Al-P and 

Fe-P compared with di- and mono-carboxylates (e.g. α-ketobutyrate, gluconate and acetate) 

(Kpomblekou-a and Tabatabai 1994; de Oliveira Mendes et al. 2020). 

6.7. Conclusion 

The results presented in this work indicate the presence of a diverse species of ACC deaminase 

producing bacteria, most of them solubilised mineral phosphates. The extent of ACC 

deaminase activity was associated with the capacity of PSB to solubilise P from Ca-P, but only 

if N was supplied as ACC. In this case, ACC deaminase could mediate P solubilisation, most 

likely through modulating the production of NH4
+, which is an effective source of media 

acidification. Additionally, α-ketobutyrate (produced from ACC via ACC deaminase activity) 

can facilitate P solubilisation through organic-metal complex formation. On the other hand, Fe-

P and Al-P solubilisation in culture media containing ACC as sole N source was not associated 

with the ability of PSB to express ACC deaminase activity. In addition, the amount of ACC 

deaminase activity was not associated with the P solubilisation potential of rhizobacteria when 

(NH4)2SO4 rather than ACC was the sole N source. The P solubilising activity of PSB with 

(NH4)2SO4 was rather associated with the type of carboxylates produced. 
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Table 1. Plant growth-promoting traits and taxonomic identity of ACC deaminase-producing bacteria on the basis of 16S rDNA sequences  

Strain Accession 

No. 

Putative species **% 

identity 

IAA 

production 

(µg mL-1) 

Growth in 

DF-medium 

with ACC  

*ACCd 

(µmole †α-KB 

h-1) 

‡PSI 

with 

(NH4)2

SO4 

PSI with  

¶ ACC 

Growth in 

N free 

media 

59F MW692270 Bacillus amyloliquefaciens  98.9 10.3 + 0.96 §** * + 

33F MW692258 Bacillus dijibelorensis  99.8 n.d. + 1.24 §** * n.d. 

77F MW692283 Bacillus cereus  98.9 8.5 + 6.83 ** * n.d. 

8F MW692246 Bacillus megaterium  99.4 9.3 + 0.35 §**** * n.d. 

71F MW692278 Bacillus cucumis  99 12.9 + 0.96 * * n.d. 

60F MW692271 Bacillus megaterium  99.8 6.2 + 1.14 ** * + 

38F MW692261 Bacillus simplex  98.5 11 + 3.76 n.d. * + 

14F MW692249 Bacillus simplex  99.1 4.1 + 4.79 n.d. * n.d. 

57F MW692269 Bacillus simplex  99.4 8 + 7.32 n.d. * n.d. 

98F MW692290 Bacillus pumilus  99.7 5.7 + 6.8 **** **** + 

3F MW692243 Bacillus simplex 99.3 n.d. + 0.45 ** * + 

24F MW692252 Bacillus simplex  99.4 5.1 + 1.38 ** * + 

26F MW692254 Bacillus simplex  99.6 8 + 2.23 ** * + 

42F MW692263 Bacillus subtilis  98.7 5.7 + 7.32 ** ** n.d. 

29F MW692255 Bacillus simplex  99.3 5.6 + 0.55 *** * n.d. 

72F MW692279 Bacillus toyonensis  99.5 n.d. + 1.14 ** * n.d. 
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127F MW692327 Burkholderia cenocepacia  99.3 41.9 + 0.54 **** ** + 

18F MW692297 Burkholderia sp.  98.5 18.7 + n.d. * n.d. + 

137F MW692222 Burkholderia sp.  99.8 5.5 + 0.51 ** * n.d. 

150F MW692234 Burkholderia sp.  99.3 5.6 + 0.55 ** * n.d. 

52F MW692307 Burkholderia sp.  98.5 9.5 + 0.92 *** * + 

87F MW692317 Paraburkholderia phenolirutrix  98.8 n.d. + 1.02 *** * + 

12F MW692295 Burkholderia sp.  98.3 54.3 + 1.16 **** * n.d. 

157F MW692240 Burkholderia sp.  99.8 n.d. + 1.24 ** * n.d. 

30F MW692302 Burkholderia sp.  99.5 10.4 + 1.35 *** * n.d. 

108F MW692321 Paraburkholderia phenolirutrix 99.4 13.5 + 1.6 ** * + 

28F MW692301 Paraburkholderia phenolirutrix 98.8 9.4 + 1.69 * * n.d. 

120F MW692325 Burkholderia sp.  99.2 10.4 + 1.91 *** * n.d. 

136F MW692221 Burkholderia sp.  99.6 8 + 2.23 *** * + 

94F MW692318 Burkholderia sp.  98.5 6.2 + 4.3 *** ** + 

20F MW692298 Burkholderia sp.  99.3 24.9 + 5.97 *** *** + 

84F MW692314 Paraburkholderia phenolirutrix 100 n.d. + 6.8 ** *** n.d. 

126F MW692326 Burkholderia cepacia  99.3 7.4 + 8.42 **** **** + 

9F MW692247 Paenibacillus endophyticus  97.7 4.3 + 0.55 ** n.d. n.d. 

41F MW692304 Paraburkholderia caledonica  99.5 10.4 + n.d. ** * + 

142F MW692227 Paraburkholderia caledonica  98.8 9.4 + n.d. *** * + 

27F MW692300 Pseudomonas fluorescens  99.8 5.5 + 0.51 *** * n.d. 
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45F MW692305 Pseudomonas putida 99.3 8.5 + n.d. * n.d. + 

62F MW692310 Pseudomonas putida  98.7 29.3 + 0.66 ** n.d. n.d. 

46F MW692306 Pseudomonas sp.  99.2 15.3 + 5.22 ** * n.d. 

19F MW692205 Variovorax paradoxus  99.3 n.d. + 1.28 ** * n.d. 

105F MW692210 Variovorax paradoxus  99.4 5.1 + 1.38 ** * + 

88F MW692207 Variovorax paradoxus  98.8 9.4 + 2.56 ** * n.d. 

*ACCd- ACC deaminase,  

†α-KB- α-ketobutyrate, n.d. not detected,  

‡PSI: phosphate solubilisation index  

§PSI value <2 - *, 2 – 3 - **, 3 – 4 - **, >4.0 - **** 

¶ ACC: 1‐aminocyclopropane‐1‐carboxylic acid 

** The percentage similarity values are based upon comparisons with the Genbank database using the BLASTN program. PSI was calculated 

based on the ratio of total colony diameter to the total diameter of halo zone. Results are means of three experiments conducted separately under 

identical conditions.  
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Table 2. The concentration of soluble P in suspensions supplied with various sources of P and 

10 mmol L-1 of the respective carboxylate after agitation at 150 rpm for 24 h. 

Carboxylate *Al-P †Ca-P ‡Fe-P Mean  

Acetate 29.7p 37.4k-p 33.4nop 33.5 

Citrate 46.5g-l 48.8e-j 45.8h-m 47.0 

DL-Maleate 43.7i-n 57.2a-f 43.0i-n 48.0 

Gluconate 32.5op 28.6p 35.4m-p 32.2 

α- ketobutyrate 36.2l-p 43.2i-n 41.9i-o 40.4 

α-ketoglutarate 45.5h-m 51.2c-i 38.8j-p 45.2 

Malate 59.7a-d 61.8ab 46.4g-l 56.0 

Oxalate 45.7h-m 58.0a-e 45.6h-m 49.8 

Pyruvate 43.1i-n 51.9b-i 38.7j-p 44.5 

Succinate 44.7i-m 61.3abc 47.3f-k 51.1 

H2SO4§ 62.8a 64.3a 50.1d-i 59.1 

HCl¶ 55.7a-h 56.8a-g 42.2i-o 51.5 

LSD (P <0.05) **     

P†† * Carboxylate 10.454    

CV% 6.88    

*AlPO4 = Al-P  

†Ca3(PO4)2 = Ca-P  

‡FePO4 = Fe-P 

§H2SO4 = sulphuric acid 

¶HCl = hydrochloric acid 

**LSD = Values follow by the same letter are not significant different at P < 0.05 

††P = Phosphorus 
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Table 3. The pH of suspensions containing various sources of P and 10 mmol L-1 of respective 

carboxylate after agitating at 150 rpm for 24 h. 

Carboxylate *Al-P †Ca-P ‡Fe-P Mean 

Acetate 3.09d-g 4.33c 3.43d 3.62 

Citrate 2.56ghi 4.33c 2.58f-i 3.16 

DL-maleate 2.75e-i 4.52c 2.77e-i 3.35 

Gluconate 5.51b 7.03a 4.54c 5.70 

α-ketobutyrate 2.31hij 3.48d 2.27hij 2.68 

α-ketoglutarate 2.44hij 4.49c 2.35hij 3.09 

Malate 2.33hij 4.61c 2.28hij 3.07 

Oxalate 2.52ghi 4.26c 2.49hi 3.09 

Pyruvate 2.34hij 4.21c 2.23ij 2.93 

Succinate 3.13def 4.36c 3.22de 3.57 

H2SO4§ 1.88jk 3.43d 1.52k 2.28 

HCl¶ 2.39hij 5.34b 2.81e-h 3.51 

LSD (P <0.05) **     

P†† * Carboxylate 0.57    

cv% 5.25    

*AlPO4 = Al-P  

†Ca3(PO4)2 = Ca-P  

‡FePO4 = Fe-P 

§H2SO4 = sulphuric acid 

¶HCl = hydrochloric acid 

**LSD = Values follow by the same letter are not significant different at P < 0.05 

††P = Phosphorus  
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Figure 1. Neighbour–joining phylogenetic tree based on the 16S rRNA gene sequences of 

culturable phosphate solubilising bacteria containing acdS gene encoding ACC deaminase 

isolated from chickpea rhizosphere soils. Genetic distances were constructed using Kimura’s 

3-parameter model. PSI: phosphate solubilisation index, *- PSI value <2, **- 2-3, ***->3-4, 

****->4.0 and ‘-‘ no P solubilising activity. Black and red asterisks represent the PSI with 

(NH4)2SO4 and ACC, respectively.
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Figure 2. Regression analysis between amount of soluble P and pH in NBRIP liquid medium 

containing ACC as sole N source with Ca2(PO4)3 (a and d), AlO4P (b and e) and FeO4P.2H2O 

(c and f) with ACC deaminase produced by PSB in DF minimal medium containing ACC as 

sole source of N. Data points represent the data obtained from individual bacterial isolates. 

Data points identified by colours indicate the results obtained from isolates efficient in P 

solubilisation. Symbols represented as: (●) PSB; (  ) B. cenocepacia 127F; (  ) B. cepacia 

126F; (  ) B. pumilus 98F; (  ) B. megaterium 8F and (  ) Burkholderia sp. 12F. Nonlinear 

regressions in “a”, “d”, “e” and “f” are polynomial, inverse second order functions, 

Y0=(a/x)+(b/x2). P = ns- non-significant, P < 0.05- significant, P < 0.01- highly significant.
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Figure 3. Dissolved P and pH of NBRIP medium supplemented with two types of N source 

[ACC and (NH4)2SO4] and three P sources including Ca3(PO4)2 (a and d), AlO4P (b and e) and 

FeO4P.2H2O (c and f), respectively. PSB included 1: B. megaterium 8F, 2: B. pumilus 98F, 3: 

B. cepacia 126F, 4: Burkholderia sp. 12F and 5: B. cenocepacia 127F. The bar graphs indicate 

the mean values of three replications. The lighter ( ) and darker ( ) bars represent the P 

and pH values in NBRIP containing ACC and (NH4)2SO4 as sole N source, respectively. Error 

bars represent Fisher’s LSD0.05 of differences in each section.  
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Figure 4. Regression analysis between soluble P and pH of the culture medium determined at 

14 days after inoculation of NBRIP liquid medium containing ACC as sole N source with (a) 

Ca3(PO4)2, (b) AlO4P and (c) FeO4P. Data points represent the data obtained from individual 

bacterial isolates. Data points identified by colours indicate the results obtained from isolates 

efficient in P solubilisation. Symbols represented as: (●) PSB; (  ) B. cenocepacia 127F; (  ) 

B. cepacia 126F; (  ) B. pumilus 98F; (  ) B. megaterium 8F and (  ) Burkholderia sp. 12F 

Regression line in “a” is linear, Y0= a +bX. P = ns- non-significant, P < 0.01- highly significant. 
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7.3. Introduction 

Phosphorus (P) is the second most limiting plant nutrient in the soil after nitrogen (N). The 

amount of plant-available P in most agricultural soils is below 1 µg/g soil dry weight (DW), 

which is insufficient for normal plant growth (Rodrı́guez and Fraga 1999) and impairs 

agricultural productivity and threatens food security (Runge-Metzger 1995). Phosphate 

fertilizer application is commonly practiced to stimulate crop yield in P deficient soils and is 

predominantly based upon application of mineral fertilizer derived from mined phosphate rock, 

a finite resource which is steadily declining (Reijnders 2014). However, this input may cause 

environmental pollution where phosphate fertilizer has been used in large quantities (Molina 

et al. 2009). A proportion of added inorganic fertilizers (up to 90%) can also be converted to 

sparingly soluble P forms, predominantly iron and aluminium phosphates in acidic soils, and 

calcium phosphate in alkaline soils (Chacon et al. 2006) which are poorly available to most 

plants (Sashidhar and Podile 2010; Zhang et al. 2017). 

The application of rock phosphate, a naturally occurring and cheap P source, is a promising 

approach that might reduce dependence on soluble phosphate fertilisers (Van Straaten 2006). 

However, the P in this input is not readily available to plants and is an agronomically ineffective 

P source when it is applied directly to the soil (Biswas and Narayanasamy 2006). The use of 

phosphate solubilising bacteria (PSB) may increase the plants efficiency in P utilization from 

rock phosphate (Yin et al. 2015; do Carmo et al. 2019; Ghosh and Mandal 2020). PSB have 

been shown to increase plant available P from rock phosphate in many studies (Gupta et al. 

2007; de Oliveira Mendes et al. 2014; da Costa et al. 2015; Kaleem Abbasi and Manzoor 2018; 

Ben Zineb et al. 2020).  

Plant growth promotion following inoculation of beneficial bacteria is the net result of multiple 

mechanisms that may be activated simultaneously (Martínez-Viveros et al. 2010). Previous 

studies have demonstrated a wide range of genera of rhizobacteria able to express multiple PGP 

characteristics in the chickpea root zone (Singh et al. 2014; Midekssa et al. 2016). In particular, 

phosphate solubilising bacteria with the ability to produce IAA are frequently identified in the 

rhizosphere (Ghosh et al. 2013; Masciarelli et al. 2014; Tariq et al. 2014). Hence, investigating 

the diversity and potential of rhizobacteria in IAA production and P solubilisation is important 

because these PGP mechanisms can be synergistically involved in plant growth promotion 

(Kumar and Narula 1999; Prashanth and Mathivanan 2010; Mehta et al. 2014).  
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Plant growth promotion following inoculation with plant growth promoting rhizobacteria 

(PGPR) capable of both producing IAA and solubilising P are frequently associated with 

increasing P concentration in the rhizosphere and in plant tissues (Sattar and Gaur 1987; 

Lippmann et al. 1995; De Freitas et al. 1997; Kumar and Narula 1999; Bianco and Defez 

2010a). IAA-producing and P-solubilising rhizobacteria can enhance P nutrition through two 

possible ways: (i) IAA can promote root growth and the active root system is able to explore 

more soil to encounter phosphate liberated from insoluble P sources (Egamberdiyeva 2007; 

Fierro-Coronado et al. 2014), and (ii) plant-associated bacteria enhance nutrient availability 

through direct mineralisation and solubilisation of the unavailable nutrient, particularly P, from 

soils (Wani et al. 2007; Charana Walpola and Yoon 2013). PSB were more effective as 

inoculants when they were able to produce IAA (Bianco and Defez 2010b; Vitorino et al. 

2012). An IAA-overproducing engineered bacterium was also more efficient in P dissolution 

from rock phosphate than its wild derivative that was unable to express IAA (Bianco and Defez 

2010a). However, previous studies did not investigate the role of IAA in P solubilisation and 

whether the amount of IAA produced by PSB would predict their potential to solubilise 

phosphate.  

A diverse array of bacteria including species of Acinetobacter, Achromobacter, Arthrobacter, 

Azotobacter, Bacillus, Burkholderia, Klebsiella, Microbacterium, Ochrobactrum, 

Pseudomonas, Pantoea, Serratia, Staphylococcus and Yokenella have been shown to produce 

IAA and solubilise phosphate (Patten and Glick 2002; Ahmad et al. 2005; Sergeeva et al. 2007; 

Upadhyay et al. 2009; Dutta and Thakur 2017; Govindasamy et al. 2017). Rhizobacteria can 

produce a wide range of IAA concentrations in vitro between nil and 142.5 μg mL-1 (Wilson 

1999; Arruda et al. 2013; Ghosh et al. 2013). The ability of rhizobacteria to express PGP 

activities, including IAA and P solubilisation, and their diversity, can be influenced by 

characteristics of the host plant including root exudates, management practices and local 

microenvironmental conditions (Petchey and Gaston 2002; Martínez et al. 2011; Chaparro et 

al. 2012; Arruda et al. 2013; Louca et al. 2016; Malhotra et al. 2017; Vives-Peris et al. 2020). 

Thus, the objectives of this study were (i) to investigate the occurrence of potential culturable 

IAA-producing and P-solubilising rhizobacteria obtained using taxonomically selective and 

enrichment methods, and (ii) to examine the effect of IAA concentration on the potential of 

PSB to solubilise P in vitro.  
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7.4. Materials and Methods  

7.4.1. Sources of isolates 

Soil samples were collected from 74 agricultural fields across Australia. A sub-sample of soil 

(100 g) was taken and placed in a small pot (4.5 cm × 4.5 cm × 10 cm) to grow chickpea cv. 

HatTrick. The seedlings were grown in a growth chamber with light supplied by fluorescent 

and incandescent lamps with an intensity of 1000 µmol m-2 s-1 for a 16 h photoperiod and a 

constant temperature at 20 oC, with relative humidity at 70%. The rhizosphere soil (soil 

strongly adhering to the chickpea root) was collected from four-week-old seedlings.  

Rhizobacteria were isolated using selective and enrichment methods to obtain efficient 

phosphate solubilisers. Rhizosphere soil (1 g) was transferred to a test tube containing 9 mL of 

sterile MilliQ water and the aliquot was serially diluted 10 fold up to 10-6. Then, 100 µL of the 

10-5 and 10-6 dilutions were spread on semi-selective 1/10 strength tryptone soya agar (TSA) 

(OXOID LTD, Basingstoke, Hampshire, England) supplemented with 50 µg mL-1 ampicillin 

(99%, Sigma Aldrich Chemie GmbH, Steinheim, Germany), 12.5 µg mL-1 chloramphenicol 

(99%, Sigma-Aldrich) and 75 µg mL-1 cycloheximide (Sigma-Aldrich) to obtain Pseudomonas 

like bacteria (Simon and Ridge 1974). The remaining aliquots from 10-5 and 10-6 dilutions were 

incubated in a water bath (10 min, 80 oC) and Bacillus like bacteria were isolated using 1/10 

strength TSA. Plates were incubated at 28 oC for five days. Based on the colony morphology, 

distinct colonies were selected and further streaked on TSA for purification. A total of 743 

isolates was purified. The P solubilisation ability of these isolates was tested using National 

Botanical Research Institute's phosphate growth (NBRIP) medium containing the following 

ingredients (L-1): glucose, 10 g; MgCl2.6H2O, 5 g; MgSO4.H2O, 0.25 g; KCl, 0.2 g; and 

(NH4)2SO4, 0.1 g and containing 5 g of Ca3(PO4)2 (Sigma-Aldrich) (Nautiyal 1999). A pure 

colony of each isolate was inoculated into DF-minimal media and incubated in a shaker 

incubator (48 h, 28 oC, 160 rpm). Bacterial suspensions of 100 µL were streaked on NBRIP 

medium. Plates were incubated for 10 days at 28 oC and the P solubilisation index (PSI) value 

was calculated (Nguyen et al. 1992).  

Additionally, efficient phosphate solubilising heterotrophic bacteria were enriched from 

rhizospheric soils in NBRIP medium containing insoluble P sources such as Ca3(PO4)2, AlO4P 

(Sigma-Aldrich) or FeO4P (Sigma-Aldrich). Plates were incubated for 10 days at 28 oC. PSB 

with PSI > 2.00 were selected for further study.  
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7.4.2. Determination of IAA production 

Phosphate solubilising bacteria were further investigated for their ability to produce IAA in the 

absence and presence of 500 µg mL-1 of L-tryptophan (BioChemica) in DF-minimal medium. 

The culture was placed in a shaker incubator (48 h, 28 oC, 160 rpm). The culture was then 

centrifuged (10 min, 10,000 x g). The concentration of IAA in the supernatant was quantified 

by colorimetric methods using the Salkowski reagent (40 mM FeCl3, 7.9 M H2SO4) (Patten 

and Glick 2002). A mixture containing 1 mL of supernatant and 4 mL Salkowski reagent was 

kept in the dark for 30 min and absorbance at 530 nm was determined by a spectrophotometer 

(Implen GmbH, Schatzbogen, Münichen, Germany). IAA concentration was calculated based 

on a standard curve developed using pure IAA (0, 2, 4, 8, 10, 15, 20, 25 and 30 µg mL-1).  

7.4.3. Diversity of IAA producing rhizobacteria 

The genetic diversity of IAA-producing bacteria was investigated based on the sequence of 

16S rDNA. The universal primer: fD1:5'-AGAGTTTGATCCTGGCTCAG-3' (Sigma-

Aldrich) and rP2: 5'-ACGGCTACCTTGTTACGACTT-3' (Sigma-Aldrich) were used to 

amplify the 16S rDNA with an approximate product size of 1500 bp (Weisburg et al. 1991). 

The PCR mixture contained 10.5 µL sterile MilliQ water, 12.5 µL of 2× MyFiTM Mix (Sigma-

Aldrich) and 1 µL of 10× diluted each primer. MyFiTM Mix contained MyFi DNA polymerase, 

dNTPs, MgCl2 and enhancers at optimal concentrations. PCR amplification was performed 

using a thermocycler (Bioer Version 1.10, GeneWorks, Hindmarsh, South Australia), with the 

following conditions: 1 min initial denaturation step at 95 oC followed by 35 amplification 

cycles consisting of 15 s denaturation step at 95 oC, 30 s annealing step at 57 oC, 1 min 

extension at 72 oC and a final extension at 72 oC for 5 min. DNA sequencing of PCR products 

was performed by the Australian Genome Research Facility, Sanger Service (University of 

Adelaide, Australia). 

Homologous 16S rDNA sequences were obtained from databases of the National Centre for 

Biotechnology Information (NCBI) (http//www.ncbi.nim.nih.gov/BLAST) for taxonomic 

assignment. The sequences were submitted to NCBI and assigned accession number 

(MW692202 - MW692329). The phylogenetic tree was generated using Molecular 

Evolutionary Genetics Analysis (MEGA-7) (Institute of Molecular Evolutionary Genetics, The 

Pennsylvania State University, University Park, PA 16802, USA) with Kimura’s 3 substitution 

model (Kumar et al. 2016). The neighbour-joining method was applied to the distance matrix 

to construct the phylogenetic tree.  
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7.4.4. Experiment 1 

P solubilisation was investigated in NBRIP medium supplemented with L-tryptophan 

(Biochemica) at 500 µg mL-1. Efficient PSB able to produce IAA in the presence of L-

tryptophan were selected for this experiment. One hundred µL of 48 h culture solution was 

spot inoculated at four places at equal distance on the NBRIP agar medium containing 5 g of 

Ca3(PO4)2. After 10 days of incubation, the colony and clearing zone plus colony diameter 

were measured and PSI values were calculated.  

7.4.5. Experiment 2 

The effect of IAA (Glentham Life Sciences Ltd, Corsham, United Kingdom) and L-tryptophan 

on P solubilisation potential of PSB were investigated in liquid NBRIP medium. Four strains, 

namely Bacillus pumilus 98F, Burkholderia cenocepacia 127F, Burkholderia sp. 12F and 

Pseudomonas fluorescens 27F, were used. These strains mobilised the highest concentrations 

of dissolved P (Pi) (92 to 189 µg L-1) from Ca3(PO4)2 (Chapter 4). The strains also displayed a 

wide range of IAA production, from 4.1 to 54.3 µg mL-1 in the presence of its precursor but 

did not synthesise IAA in the absence of its precursor. 

Two types of rock phosphate, Peru rock phosphate (low reactive) and Togo rock phosphate 

(moderately reactive) were used. The rock phosphate was ground, passed through a 500 µm 

mesh sieve, and sterilised in autoclave at 121 oC for 30 min.  

The treatments consisted of a factorial combination of the abovementioned four PSB, two types 

of rock phosphate and three types of supplement (IAA: 100 µg mL-1, L-tryptophan: 500 µg 

mL-1 and control, no addition). All treatments were set up in triplicate. The media was 

incubated in shaker incubator (28 oC, 160 rpm). The Pi concentration and pH of the cultures 

were determined over a 21-day incubation period.  

7.4.6. Experiment 3 

The effect of IAA concentration on P solubilisation potential of an efficient P solubiliser 

(Burkholderia sp. 12F) was tested in liquid NBRIP medium. This strain produced 54.3 µg mL-

1 IAA in the presence of its precursor. Four IAA concentrations (0, 25, 50 and 100 µg mL-1) 

were used as supplements to the NBRIP broth medium. Each treatment was replicated three 

times. The culture solution was incubated in shaker incubator (28 oC, 160 rpm) for seven days. 
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The Pi concentration, pH and carboxylate production were determined in culture solution taken 

different incubation time. 

7.4.7. P analysis 

The Pi concentration in the sample solution (5 mL) obtained from experiments 2 and 3 at the 

3rd, 7th, 14th and 21st day of incubation were determined. Samples were centrifuged (10,000 × 

g, 10 min) and supernatants were used for P analysis. The concentration of Pi was estimated 

using the phospho-molybdate blue colour method (Murphy and Riley 1962). The mixed reagent 

was prepared from the following solutions: (i) 125 mL of sulphuric acid (5 N), (ii) 37.5 mL of 

20 g of ammonium molybdate dissolved in 75 mL of water, (iii) 75 mL of ascorbic acid (0.1 

M), and (iv) 12.5 mL of 0.2743 g of potassium antimonyl tartrate dissolved in 100 mL of water. 

Two mL of the supernatant was mixed with 0.4 mL of the mixed reagent and the solution was 

kept under the dark condition for 30 min. The absorbance at 882 nm was determined by 

spectrophotometry (Implen GmbH, Schatzbogen, Münichen, Germany) and fitted to a standard 

calibration curve.  

7.4.8. Determination of carboxylate production 

The effect of IAA concentration on the ability of an efficient PSB, Burkholderia sp. 12F, to 

produce carboxylates was investigated. The carboxylate analysis was done using HPLC (600E 

pump, 717plus autoinjector, 996 Photodiode array detector (PDA), Waters, Milford, MA) by 

adapting the method described in (Cawthray 2003). The culture extract was separated by 

centrifugation (10 min, 10,000 × g) and then by filtration using a 0.22 µm microfilter. The 

filtrate was acidified to pH <4.00 using concentrated H3PO4 before HPLC, using a sample 

injection volume of 100 µL. The working standards included authentic gluconate, pyruvate, 

malate, iso-citrate, malonate, shikimate, lactate, acetate, α-ketobutyrate, α-ketoglutarate, 

maleate, citrate, succinate, fumarate, cis-aconitate, and trans-aconitate. Detection and 

quantification of carboxylates were done at 210 nm, from absorbance data collected between 

195 to 400 nm for spectrum matching and PDA peak spectral analysis. Data acquisition and 

processing were done with Empower3 (Waters) chromatography software. 

7.4.9. Statistical analysis 

Data were analysed by multifactorial analysis of variance using Genstat 18th version. 

Treatments were considered to be significantly different at the P <0.05 level. The normality of 
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the data was checked using Shapiro-Wilk’s test. Bartlett’s test was used to determine the 

homogeneity of variances. 

7.5. Results  

7.5.1. Diversity of IAA producing- and P solubilising- rhizobacteria 

A total of 841 bacterial isolates was obtained from rhizosphere soils of chickpea grown in 74 

soils collected from major agricultural lands across Australia using three isolation methods. 

These isolation methods were used as a selection strategy to obtain a variety of putative PSB 

isolates able to promote plant growth. Of 841 isolates, 683 were found to produce IAA (ranging 

from 4.1 to 67.2 µg mL-1) in the presence of L-tryptophan. Among IAA producers, 112 were 

found to solubilise P from Ca3(PO4)2 with PSI values > 2.00.  

Of the 841 isolates, 743 isolates closely related to Bacillus, Burkholderia (formerly classified 

as Pseudomonas) and Pseudomonas were obtained (Chapter 3). Among the Bacillus-like 

isolates, eleven distinct species of Bacillus were identified. A large number of Bacillus-like-

isolates (33%) were closely related to Peribacillus simplex followed by Bacillus megaterium 

(4 isolates) and Bacillus niacini (4 isolates). The remaining eight species were each represented 

by fewer than 3 isolates. Thirty-three isolates were identified as Burkholderia species. Of these 

isolates, 20 were closely related to Burkholderia sp., 5 isolates were closely related to 

Burkholderia cepacia. The remaining six isolates were closely related to Paraburkholderia 

phenoliruptrix. Other dominant genera identified were Pseudomonas and Variovorax, 

represented by seven and four isolates, respectively.  

The remaining 98 isolates were efficient PSB obtained separately using the enrichment 

isolation method in NBRIP medium containing insoluble P. Analysis of diversity, based on 

16S rDNA sequence, classified these isolates into 15 different genera (Fig. 1). Bacterial isolates 

were assigned to the genera Burkholderia, Bacillus, Caulobacter, Cellulomonas, 

Curtobacterium, Dyella, Lefsonia, Microbacterium, Mycolicibacterium, Pantoea, 

Phyllobacterium, Pseudomonas, Rhizobium, Sphingomonas and Variovorax. The majority of 

isolates with great capacity in IAA production and P solubilisation were closely related to 

Burkholderia spp.  
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7.5.2. P solubilisation efficacy 

The PSI level of selected PSB was affected by the supply of L-tryptophan, the metabolic 

precursor of IAA, in the NBRIP medium (Fig. 2 and 3). In this investigation, all isolates were 

incapable of IAA production in the absence of L-tryptophan. In the absence of L-tryptophan, 

isolates exhibited P solubilising ability that was unrelated to their potential to produce IAA. In 

contrast, the ability to produce IAA and PSI was positively and significantly related (Fig. 2). 

Additionally, isolates which were able to produce IAA above 40 µg mL-1 had greater PSI with 

L-tryptophan than with no supplement (Fig. 1; Fig. 3a-d). Few isolates that were incapable of 

solubilising P also became low-level P solubilisers when supplied with L-tryptophan (example, 

Fig. 3c and d). These isolates produced IAA greater than 40 µg mL-1. On the contrary, P 

solubilisation potential of isolates was not affected by L-tryptophan (Fig. 1; Fig 3e and f). In 

this case, the isolates produced IAA less than 20 µg mL-1.  

Quantitatively, the P solubilising activity of selected isolates was significantly influenced by 

IAA and L-tryptophan supplements in liquid NBRIP medium. The effect of L-tryptophan was 

dependent on the ability of isolates to synthesise IAA in the presence of its precursor. L-

tryptophan did not affect the P solubilising capacity of B. pumilus 98F and P. fluorescens 27F 

that were able to produce 5.7 and 5.5 µg mL-1 IAA, respectively (Fig. 4a and b). However, the 

ability of these isolates to solubilise P was improved by the supply of IAA (100 µg mL-1) in 

the medium. Addition of L-tryptophan to the culture medium significantly improved the P 

solubilisation potential of B. cenocepacia 127F and Burkholderia sp. 12F, that produced 41.9 

and 54.3 µg mL-1 IAA, respectively (Fig. 4c and d).  

The effect of L-tryptophan on the pH of the culture medium was dependent on the type of 

isolate inoculated. All isolates tested were able to induce a higher acidity in culture media 

containing L-tryptophan than the control uninoculated check treatment. B. pumilus 98F and P. 

fluorescens 27F caused lower pH in media supplemented with IAA than with L-tryptophan 

(Fig. 4e and f). The effect of IAA and L-tryptophan supplement on pH was non-significant in 

the case of Burkholderia sp. 12F (Fig. 4g). Conversely, B. cenocepacia 127F caused more acid 

production in media containing L-tryptophan than with IAA (Fig. 4h).  

In a further study, amendment with IAA significantly increased the ability of Burkholderia sp. 

12F to solubilise P from Peru rock phosphate. Solubilisation of P increased with increasing 

IAA concentration. The highest P solubilising activity of PSB with a large amount of 

solubilised P (24.1 µg L-1) after 21 days’ incubation was obtained in media containing 100 µg 
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mL-1 IAA (Fig. 5a). Additionally, the IAA solution was also able to liberate Pi between 1.45 

to 2.68 µg mL-1 from rock phosphates (Fig. 5b). However, Pi concentration in IAA solution 

declined after incubation beyond 5 days.  

To identify the mode of action of IAA on the potential of PSB to solubilise P, we measured the 

extent of acidity and organic acid production in media. Addition of IAA to a culture of 

Burkholderia sp. 12F significantly reduced the pH of the culture medium (Fig. 6a). The most 

acidic pH was obtained in media containing the highest IAA (100 µg mL-1) at 21 days of 

incubation. One hundred µg mL-1 IAA by itself resulted in acidic pH down to 5.6 before 

agitating the solution. The pH value of uninoculated culture solution gradually increased, 

reaching 8.2 after prolonged incubation beyond the fifth day (Fig. 6b).  

Addition of IAA affected the type and total concentration of carboxylates produced by 

Burkholderia sp. 12F in the culture medium (Table 1). In the absence of IAA in the media, this 

PSB was able to produce acetate, cis-aconitate, fumarate, maleate, malate, pyruvate and lactate. 

When the strain was treated with 25 µg mL-1 IAA, citrate was additionally produced and the 

concentrations of malate, pyruvate and cis-aconitate were increased. At 50 µg mL-1 IAA, the 

isolate produced α-ketoglutarate and the concentrations of fumarate, lactate, malate were 

increased. When the cells were treated with 100 µg mL-1 IAA, α-ketoglutarate, cis-aconitate, 

lactate, citrate, malate and succinate were detected, and the highest amount of citrate, malate 

and α-ketoglutarate were measured. In this culture solution, we measured the highest total 

carboxylate concentration.  

7.6. Discussion 

A high proportion of IAA producing PSB belonging to Bacillus, Burkholderia and 

Pseudomonas identified in the rhizosphere of chickpea grown in agricultural field soils 

The proportion of rhizobacteria able to solubilise P and produce IAA vary between not 

detectable to approximately 80% of the culturable bacteria among different locations 

(Lottmann et al. 1999; Vestergård et al. 2007; Bal et al. 2013; Hariprasad et al. 2014; Hussein 

and Joo 2015; Verma et al. 2015; Gontia-Mishra et al. 2017; Brígido et al. 2019). In soils from 

our sampling sites, we detected a relatively high proportion of IAA-producing bacteria (83.4%) 

among isolates of Burkholderia, Pseudomonas and Bacillus. These genera have been 

frequently identified as IAA producing bacteria (Castro-González et al. 2011; Wahyudi et al. 

2011; Castanheira et al. 2016; Li et al. 2017; Yarzábal et al. 2018).  
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Additionally, the prevalence of IAA-producing and P-solubilising bacteria has been higher in 

water-limited and nutrient-poor soils than in soils with more favourable conditions (Martínez 

et al. 2011; Timmusk et al. 2011; Shim et al. 2015; Malhotra et al. 2017). In the present study, 

the most of the efficient isolates in P solubilisation and IAA production were obtained from 

sites with high aridity index and low soil fertility. These isolates were closely related to 

Burkholderia spp. Microorganisms that produce IAA have previously been reported to be able 

to withstand stress conditions in the rhizosphere (Donati et al. 2013; Ouyang et al. 2017; Molina 

et al. 2018), indicating the significant ecological role of IAA. IAA can also increase the 

bacteria's ability to tolerate several stress conditions through upregulating the production of 

trehalose in the cells and enhancing production of lipopolysaccharide, exopolysaccharide and 

increase biofilm formation (Bianco et al. 2006; Donati et al. 2013; Ouyang et al. 2017). 

IAA improved the ability of PSB to solubilise P 

L-tryptophan is not only important for IAA production in the root zone (Kravchenko et al. 

2004; Karnwal 2009) but as in the present study, amendment of media with this amino acid 

resulted in an increased ability of PSB to mobilise P from rock phosphate. The effect of L-

tryptophan was associated with the ability of PSB to produce IAA. Increased P solubilisation 

efficiency of PSB with increasing IAA concentration in NBRIP medium was also observed. 

These results suggest that the production of IAA in the plant root zone may not only improve 

root growth in the plant-microbe interaction (Kravchenko et al. 2004; Naveed et al. 2015), but 

also enhance P solubilisation by PSB in the root zone. Additionally, bacterial isolates incapable 

of P solubilisation but able to produce IAA greater than 20 µg mL-1 were able to develop a P-

solubilising zone around their colonies in media containing L-tryptophan. This result suggests 

that the pre-screening for P solubilisation using NBRIP or Pikovskaya media in vitro may not 

indicate their efficiency of P solubilisation in the rhizosphere zone. Bacteria that have a low 

ability to solubilise P and those lacking this activity in vitro might nevertheless be efficient P 

mobilising bacteria in the rhizosphere as part of a plant-microbe association in which L-

tryptophan may be produced by the root. This suggests the need to consider the addition of 

organic compounds, e.g. L-tryptophan, during first stage screening for PGPR, to enhance P 

nutrition. 

IAA amendment increased the capacity of PSB to produce carboxylates  

The positive influence of IAA and its precursor on the P solubilisation activity of particular 

bacterial strains was associated with the extent of acidity in the culture media solution. Here 
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we report that an increased IAA concentration in culture solution was also accompanied by an 

increased acidity. The lowest pH was recorded in bacteria cultures amended with 100 µg mL-1 

IAA. Media acidification through H+ excretion and organic acid production are the principal 

mechanisms for phosphate solubilisation (Illmer and Schinner 1992). Organic acids not only 

acidify the medium, but the deprotonated forms of these compounds also generate negatively 

charged carboxyl groups. These carboxyl groups chelate metal ions that can increase the P 

dissolution rate (Jones 1998; Whitelaw et al. 1999; Gyaneshwar et al. 2002). 

IAA amendment of a cultre of Burkholderia sp. 12F affected the concentration and type of 

carboxylates synthesised by this PSB. Acetate and pyruvate were predominantly produced by 

this PSB in media with no added IAA. When the cells were treated with 100 µg mL-1 IAA, the 

bacteria produced a higher concentration of carboxylates, comprising α-ketoglutarate, malate, 

citrate and succinate. In previous studies, IAA triggered the production of enzymes involved 

in the tricarboxylic acid cycle in Escherchia coli (Bianco et al. 2006) and Sinorhizobium 

meliloti (Imperlini et al. 2009). In particular, the production of citrate synthase, isocitrate lyase, 

succinyl-CoA synthase and malate synthase were upregulated in Escherichia coli cells when 

treated with IAA (Bianco et al. 2006; Imperlini et al. 2009). These enzymes are responsible for 

the synthesis of carboxylates that were detected in culture media amended with IAA above 25 

µg mL-1 in the present study. Therefore, a considerable increase in P solubilising activity of 

PSB in the presence of IAA can be associated with their ability to synthesise a high 

concentration of carboxylates, predominantly di- and tri-carboxylates. These types of 

carboxylates are efficient in solubilising P from relatively insoluble rock phosphates (Chen et 

al. 2006; Yi et al. 2008; Shahid et al. 2012; de Oliveira Mendes et al. 2014). 

IAA was a poor mobiliser of phosphate from low reactive rock phosphate 

IAA by itself was able to release small concentrations of Pi from rock phosphate. P 

solubilisation in IAA solution was associated with the extent of solution acidification. The 

production of H+ and indole-3-acetate during the dissociation of IAA could be the possible 

source of acidic pH in the solution. Indole-3-acetate has a bidentate ligand that can chelate 

metal ions via its side-chain carboxyl (Kamnev et al. 2001). This characteristic of indole-3-

acetate could facilitate P solubilisation through chelation of metal ions, to release precipitated 

Pi. However, the amount of Pi solubilised in IAA solutions was less than 3 µg L-1, indicating 

a poor P solubilising ability of IAA by itself. The inability of IAA to release a significant 

amount Pi could be due to its ability to induce a lower acidity (pH > 5.5). Additionally, indole-
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3-acetate belongs to the mono-carboxylate group and is therefore likely have a low P 

solubilising ability (Kpomblekou-a and Tabatabai 1994). Hence, the induction of an increased 

ability to produce organic acids rather than production of IAA per se could be the main mode 

of action of IAA in enhancing the ability of PSB to solubilise P. 

7.7. Conclusion 

We report PSB from fifteen genera that were able to produce a wide range of IAA 

concentrations in vitro, isolated from rhizospheres of chickpea grown in soils from diverse soil 

types and environmental conditions of cropping lands of Australia. In general, the presence of 

IAA or its precursor in culture media enhanced the isolates' ability to solubilise P from 

sparingly soluble rock phosphate in vitro. Addition of L-tryptophan caused a substantial 

positive effect on P solubilisation by PSB able to produce IAA in vitro (more than or equal to 

20 µg mL-1). The extent of improvement in P solubilising activity of selected PSB was linked 

to an increasing concentration of IAA in the culture medium. In this case, greater P 

solubilisation by selected PSB was linked to lowered pH of the medium and the production of 

carboxylates, predominantly di- and tri-carboxylates. Potential agricultural inoculants that can 

both produce IAA and solubilise P may offer an opportunity to maximise the provision of 

bioavailable P for improved crop growth in soils with low levels of available P. 
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Table 1. Amounts of carboxylate (mM) produced by Burkholderia sp. 12F during the 

solubilisation of Peru rock phosphate obtained from mixed solution (three replications) after 7 

days of incubation (28 oC, 160 rpm). 

Carboxylates 

 Concentration of added IAA (µg mL-1) 

Limit of 

detection (mM) control 25  50  100  

Acetate 24 443.9 301.3 n.d.  n.d. 

α-ketobutyrate 5.0 n.d.  n.d.  n.d.  n.d.  

α-ketoglutarate 4.0 n.d.  n.d.  166.6 362.1 

Cis-aconitate 0.1 0.193 8.643 0.250 1.158 

Citrate 5.0 n.d.  15.76  n.d.  42.95 

Fumarate 0.06 0.129 0.077 3.47 n.d. 

Gluconate 8.0 n.d.  n.d.  n.d.  n.d.  

Lactate 13 56.93 19.67 363.1 27.92 

Maleate 0.05 0.057 n.d.  n.d.  n.d.  

Malate 7.0 197.5  156.2 469.2 543.5 

Malonate 8.0 n.d.  n.d.  n.d.  n.d.  

Pyruvate 5.0 244.2 592.6 n.d  n.d.  

Succinate 15 n.d.  n.d.  n.d.  486.9 

Trans-aconitate 0.1 n.d.  n.d.  n.d.  n.d.  

Total 

concentration 

 

942.9 1094.3 1002.6 1464.5 

n.d. not detected
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 76F (MW692282)
 81F (MW692286)
 65F (MW692273)
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 Bacillus simplex EH12 (MN750767)
 34F (MW692259)
 83F (MW692288)
 14F (MW692249)
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Fig. 1 Neighbour-joining phylogenetic tree showing the relationship between the isolates and 

their related type strains based on 16S rDNA sequences. Bar, 0.02 substitutions per nucleotide 

position. PSI: phosphate solubilisation index, *- PSI value <2, **- 2-3, ***>3-4, ****>4.0. 

IAA (µg mL-1) concentration *- < 10, **- 10 - 20, ***- 20 – 30, ****-30 – 40, *****- 40 – 50, 

******- 50 – 60 and *******- 60 – 70.  Black and red asterisks represent PSI value and IAA 

concentration, respectively. 
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Fig. 2 The relationship between solubilisation index of 98 isolates of P solubilising bacteria in National Botanical Research Institute's Phosphate 

growth (NBRIP) medium with (a) no supplement of L-tryptophan and (b) L-tryptophan (500 µg mL-1), after 10 days of incubation and the ability 

of rhizobacteria to produce IAA (µg mL-1) in DF-minimal media using L-tryptophan. P = ns- non-significant, P < 0.01- highly significant.
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Fig. 3 P solubilisation zone for Peribacillus simplex 54F (a and b), Burkholderia sp. 12F (c and 

d) and Burkholderia cenocepacia 127F (e and f) on National Botanical Research Institute's 

Phosphate growth (NBRIP) medium containing Ca3(PO4)2 as sole P source. The medium was 

supplemented with L-tryptophan (b, d and f) or not supplemented (a, c and e). 
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Fig. 4 Ability of Bacillus pumilus 98F (a and e), Pseudomonas fluorescens 27F (b and f), Bukholderia sp. 12F (c and g) and Burkholderia 

cenocepacia 127F (d and h) to solubilise P and alter the pH of National Botanical Research Institute's Phosphate growth (NBRIP) medium 

containing 5 g per litre of Peru or Togo rock phosphate with no supplement, IAA (100 µg mL-1) and L-tryptophan (500 µg mL-1). Cultures were 

incubated on a shaker (28 oC, 160 rpm) for 14 days. Results represent the mean of three replicates ±SE. TRY: L-tryptophan, RP: Rock phosphate.
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Fig. 5 Amount of Pi solubilised from rock phosphate in National Botanical Research Institute's Phosphate growth (NBRIP) medium containing 

different IAA concentrations (µg mL-1) (a) inoculated with Burkholderia sp. 12F and (b) with no inoculation. Cultures solutions were incubated 

on a shaker (28 oC, 160 rpm) for 21 days. Results represent the mean of three replicates ± SE. 
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Fig. 6 Change in pH in National Botanical Research Institute's Phosphate growth (NBRIP) 

medium containing IAA at nil, 25, 50 and 100 µg mL-1 with (a) Burkholderia sp. 12F and (b) 

no inoculation. Results presented from the culture solution incubated in shaker incubator (28 
oC, 160 rpm) for 21 days. Results represent the mean of three replicate ±SE.  
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8.2. Abstract 

Chickpea roots exude a large amount of carboxylates that can mobilise P from sparingly soluble 

P sources but the role of carboxylate concentration, pH, reactivity of P sources and activity of 

phosphate solubilising bacteria (PSB) in improving P acquisition abilities of chickpea cultivars 

is poorly understood. Six rock phosphates with different chemical characteristics were used to 

test the potential for P release when PSB were inoculated. The activity of PSB and carboxylates 

in the solubilisation of these rock phosphates was determined. The effect of PSB on the 

chickpea-Mesorhizobium symbiosis under different P conditions was investigated using six 

cultivars with contrasting rhizosphere carboxylate concentrations and pH. The PSB strain 

Burkholderia sp. 12F showed the highest potential solubilisation of P from Boucraa, Togo, 

Sechura and Weng Fu rock phosphates. None of the bacterial isolates tested were capable of 

solubilising P from Phalaborwa, Peru and Vietnam rock phosphates. Additionally, chickpea 

root exudates solubilised Togo rock phosphate but not Peru rock phosphate under in vitro 

conditions. The presence of PSB significantly increased the amount of solubilised P in the root 

exudates. Inoculation of PSB significantly increased shoot and root biomass production, and 

nodulation of chickpea cv. Genesis-863, PBA-Striker and PBA-Slasher but did not 

significantly affect other cultivars (Genesis-090, Genesis-079 and Ambar). The P solubilising 

activity of PSB was able to explain the growth promotion of responsive cultivars when 

fertilised with Togo or Peru rock phosphate. P solubilising activity in these cases following 

inoculation with PSB was not related to the extent of acidification of the rhizosphere. Under 

no or low P conditions or with the addition of P as KH2PO4, growth promotion was observed 

but was unrelated to the P solubilising activity of PSB, suggesting that other plant growth-

promoting (PGP) mechanisms such as indole acetic acid (IAA) and/or 1-aminocyclopropane-

1-carboxylate (ACC) deaminase activity may be involved. The amount of carboxylate 

produced in the rhizosphere may partly explain the efficacy of PSB in promoting chickpea 

growth.  

Keyword(s): Carboxylate, Burkholderia, Pseudomonas, Rock phosphate 
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8.3. Introduction 

Phosphorus (P) is a major yield-limiting nutrient in most agricultural soils. P deficiency 

prevails in most soil types, particularly in soils with extremely acidic or alkaline pH and results 

in the build-up of plant unavailable P, predominantly FePO4 and AlPO4 at low pH, and 

Ca2(PO4)3 at high pH (Whitelaw 1999; Gyaneshwar et al. 2002). Consequently, the 

concentration of plant-available P in soil solution is frequently very low (0.01 to 10 µM), and 

can be insufficient for optimal plant growth (Hinsinger 2001). This calls for the use of synthetic 

chemical phosphate fertilizer in combination with other measures to make fertiliser use more 

efficient (Arcand and Schneider 2006). Because of its high and unaffordable price in 

developing countries and the high risk of over-fertilization of P on the environment, the use of 

rock phosphate is increasing due to increases in organic agriculture worldwide (Straaten 2007; 

Arcand and Schneider 2006). Rock phosphate is the cheapest means to apply chemical 

phosphatic fertilizers for plants (Chien et al. 2010). However, the solubilisation of rock 

phosphate in soils is generally too slow to release inorganic P at rates necessary to satisfy the 

agronomic requirements of plant growth (Zapata and Zaharah 2002). The low solubility of 

phosphate rock has discouraged its use as a sole P source for crops. 

The use of microbes able to solubilise phosphate is gaining more attention as a way to improve 

the efficient use of rock phosphates (Gyaneshwar et al. 2002; Vassilev et al. 2006; Swift et al. 

2018; Alemneh et al. 2020). The use of efficient phosphate solubilising bacteria (PSB) can 

improve plant P nutrition from rock phosphate applied to soil (Manzoor et al. 2017; da Costa 

et al. 2015; Kaleem Abbasi and Manzoor 2018;). Acidification of the growing medium and 

production of low molecular weight carboxylates have been identified as the main mechanisms 

involved in microbial rock phosphate solubilisation (Illmer and Schinner 1995). In a successful 

PSB-root interaction, P nutrition for plants has been improved through increasing root growth 

and/or P solubilisation in the rhizosphere (Rezakhani et al. 2019; Elhaissoufi et al. 2020). 

Chickpea is a cool season pulse crop that can fix N through the formation of a symbiotic 

association with Mesorhizobium spp. An adequate supply of P is required to optimise the 

process of N2 fixation. Like some PSB, chickpea can exude large amounts of low molecular-

weight carboxylates from the root system (Veneklaas et al. 2003). These are mainly malonate, 

citrate and malate, which can mobilise a significant amount of P from sparingly soluble P 

sources and fixed P in soils (Ohwaki and Hirata 1992; Veneklaas et al. 2003; Wouterlood et al. 

2004b). Additionally, trace amounts of lactate, maleate, cis-aconitate, fumarate, acetate, 
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succinate or trans-aconitate have been detected in chickpea root exudates (Neumann and 

Römheld 1999; Pearse et al. 2006). The amount of carboxylates in chickpea root exudates can 

be 11 and 24 times more than in pigeon pea and soybean, respectively (Ohwaki and Hirata 

1992). A study conducted by Pang et al. (2018) using chickpea genotypes with wide variation 

in carboxylate production investigated the ability to access P from FePO4. In this study, the P 

concentration in mature leaves was positively correlated with total carboxylates in the 

rhizosphere and negatively with rhizosphere pH.  

Increases in nodulation and growth promotion following inoculation of PSB on to chickpea is 

not fully explained by P concentration in the rhizosphere and plant P uptake (Zaidi et al. 2003; 

Rudresh et al. 2005; Mittal et al. 2008; Verma et al. 2012; Singh et al. 2014; Verma et al. 2014; 

Imen et al. 2015; Saxena et al. 2015; Israr et al. 2016; Rajwar et al. 2018). These studies were 

conducted using cultivars that had different rhizosphere carboxylate concentrations, 

rhizosphere pH and root biomass, in different P conditions, using PSB able to express various 

beneficial plant growth-promoting (PGP) mechanisms and with different P amendments. A 

considerable variation in root traits and carboxylate concentration in the root exudates has been 

found in tests of a wide range of chickpea germplasm (Chen et al. 2017; Pang et al. 2018). The 

chickpea genotypes with high amount of carboxylate tended to have relatively thinner roots, 

with lower costs of root construction (Wen et al. 2020). Consequently, there is a need for 

mechanistic studies to investigate factors, such as rhizosphere pH and root biomass production, 

that could affect PSB function in chickpea cultivars with contrasting rhizosphere carboxylate 

concentrations when supplied with different P sources. To examine this, we conducted in vitro 

experiments to investigate the solubilisation of different rock phosphates by efficient PSB and 

by carboxylates that were produced by tested isolates. Accordingly, we selected two rock 

phosphates, of moderate and of low reactivity. Six cultivars that produced contrasting 

concentrations of carboxylates were selected. The objective of this study was to investigate 

how the PSB benefited the chickpea-Mesorhizobium symbiosis under different P sources, 

which is a test for possible coordination among root biomass production, rhizosphere pH and 

the effects of PSB inoculation in improving P nutrition and as a result enhancing the chickpea-

Mesorhizobium symbiosis. 
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8.4. Materials and Methods 

8.4.1. Soil collection 

Soil samples were collected from 74 agricultural cropping lands in southern and eastern 

Australia (Appendix Fig. 1 and Appendix Table 1) and kept at 4oC until processed further. A 

100 g sample was taken from each soil to grow chickpea cv. HatTrick in small pots, which 

were kept in a growth chamber with fluorescent lighting (400 microeinsteins m-1 s-1), 

programmed for a 16 h photoperiod, with a constant temperature at 17 oC and 70% relative 

humidity. After four weeks of growth, the soil strongly adhering to the root surface was 

collected and kept at 4 oC before carrying out the microbial experiments.  

8.4.2. Isolation of bacteria 

Rhizospheric bacteria were obtained using three methods of selective isolation. One g of 

rhizospheric soil was suspended in 9 mL of sterile MilliQ water and this soil suspension was 

serially diluted (10-2 - 10-6). An aliquot (100 µL) of solution from 10-5 and 10-6 dilutions was 

aseptically spread on semi-selective 1/10 strength tryptone soya agar (TSA) (OXOID LTD, 

Basingstoke, Hampshire, England) supplemented with 50 µg mL-1 of ampicillin (99%, Sigma-

Aldrich, CHEMIE GmbH, Steinheim, Germany), 12.5 µg mL-1 of chloramphenicol (Sigma-

Aldrich, 99%) and cycloheximide (75 µg mL-1) to isolate Pseudomonas-like bacteria (Simon 

and Ridge 1974). Aerobic endospore-producing bacteria were isolated using 1/10 TSA after 

the soil suspensions (10-5 and 10-6) were treated at 80 oC for 10 min. Five days post-incubation 

at 28 oC, distinct colonies were further purified by re-streaking on fresh TSA. Additionally, 

efficient phosphate solubilising bacteria from rhizospheric soil were enriched in National 

Botanical Research Institute's Phosphate growth medium (NBRIP) supplemented with 5 g of 

Ca3(PO4)2 (Sigma-Aldrich), AlO4P (Sigma-Aldrich) or FeO4P.2H2O (Sigma-Aldrich) 

(Nautiyal 1999). A 100 µL aliquot of enriched bacterial consortia was aseptically spread on 

NBRIP agar and incubated at 28 oC for ten days. Colonies with distinct clearing zones were 

further purified by streaking on NBRIP agar. Pure colonies were preserved at 4 oC for 

immediate use and -80 oC for long-term storage.  

8.4.3. Phylogenetic diversity of phosphate solubilising bacteria 

Purified colonies of phosphate solubilising bacteria were grown on TSA medium for 48 h at 

28 oC and used for genetic analysis. The 16S rDNA was amplified using universal primers 

fD1:5’-AGAGTTTGATCCTGGCTCAG-3’ (Sigma-Aldrich) and rP2: 5’-
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ACGGCTACCTTGTTACGACTT-3’ (Sigma-Aldrich) (Weisburg et al. 1991). Amplification 

was carried out in 25 µL containing 12.5 µL MiFiTM Mix (Sigma-Aldrich), 1 µL of each primer 

and 10.5 µL sterile MilliQ water. Thermocycling conditions were 1 min initial denaturation at 

95 oC followed by 35 amplification cycles consisting of a 15 s denaturation step at 95 oC, 30 s 

annealing step at 57 oC, 1 min extension at 72 oC and a final extension cycle at 72 oC for 5 min. 

Amplicons were confirmed by 1% agarose gel electrophoresis. Sequences closely related to the 

isolates used in this study were retrieved from the National Centre for Biotechnology 

Information GenBank BLAST program (www.ncbi-nlm-nih.gov). Sequencing reactions were 

performed as a direct sequence of PCR products by AGRF (Australian Genome Research 

Facility) Sanger Service (University of Adelaide, South Australia). Phylogenetic trees were 

constructed by the neighbour-joining method using MEGA 7.0 software. 

8.4.4. Identification of phosphate solubilising bacteria 

The phosphate solubilisation characteristics of 841 bacterial isolates were investigated 

qualitatively by applying 10 µL of bacterial inoculum at four places on NBRIP agar containing 

Ca3(PO4)2. Plates were incubated for 10 days at 28 oC. The P solubilisation zone and colony 

diameter were measured. The phosphate solubilisation index (PSI) was calculated using the 

formula described by Nguyen et al. (1992). Based on PSI values, isolates were selected for a 

study of quantitative P solubilisation from AlO4P, Ca3(PO4)2 or FeO4P.2H2O. Based on these 

preliminary results, three isolates, namely Burkholderia cenocepacia 127F, Pseudomonas 

fluorescens 27F and Burkholderia sp. 12F exhibiting the highest P solubilisation efficiency 

were selected (Chapter 4) and used in subsequent experiments. All experiments were carried 

out in triplicate. 

8.4.5. Type of rock phosphate 

The mineral composition of the rock phosphates is presented in Appendix Table 3. Seven rock 

phosphates, namely Boucraa, Vietnam, Weng Fu, Togo, Phalaborwa, Sechura and Peru 

phosphate rock were used. Rock phosphates were ground and sieved through 500 µm size 

mesh. Five g of each rock phosphate was used in subsequent experiments. 

8.4.6. Experiment 1. The solubility of rock phosphate in carboxylate solutions 

Seven rock phosphate with contrasting chemical properties were used to examine their 

solubility in different carboxylates under sterile condition. The carboxylates comprised acetate, 

citrate, gluconate, α-ketoglutarate, lactate, maleate, malate, oxalate and succinate. These 
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carboxylates were produced by efficient PSB during Ca3(PO4)2, FeO4P.2H2O and AlO4P 

solubilisation (Chapter 4). The rock phosphate samples were mixed with 50 mL of solution in 

100 mL bottles containing one of the aforementioned carboxylates or one inorganic acid such 

as H2SO4. Both organic and inorganic acids were commercial products of reagent grade. The 

concentration of organic and inorganic acids was 10 mM, which is an approximate 

concentration of total carboxylate produced by the chickpea rhizosphere (Wouterlood et al. 

2005). Rock phosphates suspended in MilliQ water were used as control check treatments. The 

solutions were kept in a shaker incubator (3 days, 28 oC, 160 rpm). After three days of 

incubation, samples were collected for soluble P (Pi) and pH determination.  

8.4.7. Experiment 2. Microbial rock phosphate solubilisation 

B. cenocepacia 127F, P. fluorescens 27F and Burkholderia sp. 12F were further investigated 

for their potential to solubilise P from different rock phosphates. One mL of active culture 

solution was transferred into bottles containing sterile 50 ml of NBRIP medium containing 5 g 

of rock phosphate. The inoculated solutions were incubated in the same conditions as described 

for Experiment 1. After fourteen days of incubation, five mL of culture suspension were taken 

every 2 days for pH, carboxylate determination and Pi analysis.  

8.4.8. Experiment 3. The solubility of rock phosphates in chickpea root exudates 

The ability of chickpea root exudates to solubilise rock phosphate was tested. Six chickpea 

cultivars with contrasting rhizosphere carboxylate concentrations, rhizosphere pH and root 

biomass were selected (Pang et al. 2018). Cultivars used were Ambar, Genesis -090, Genesis-

079, Genesis-836, PBA-Slasher and PBA-Striker. Genesis-09, Ambar and Genesis 079 had 

relatively large amounts of carboxylate (13 - 27 µmol plant-1) in their rhizosphere. While 

Genesis-863, PBA-Striker and PBA-Slasher had relatively small amounts (8 - 14 µmol plant-

1). 

One seedling per pot was grown in a growth chamber. Root exudates were collected from each 

pot separately and kept at -20 oC for further analysis. The solubility of two types of rock 

phosphate (Peru and Togo rock phosphates) in root exudate, each collected per seedling, in the 

presence and absence of PSB was investigated. The rock phosphate was ground and sterilised 

(121 oC, 30 min). Root exudate was filter sterilised (0.2 µm). Five g of sterilised rock phosphate 

was added to 50 mL of filter sterilised root exudate. After 7 days of agitation in a shaker 

incubator at 160 rpm, pH and Pi were determined. 
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8.4.9. Experiment 4. Plant inoculation experiment 

This experiment was a factorial randomised design with three factors (six chickpea genotypes, 

+ and - PSB inoculation and four P treatments). Seeds were soaked in 5% hypochlorite solution 

for 3 min and rinsed five times with sterilised MilliQ. This pot experiment was conducted in a 

growth chamber with fluorescent lighting (400 microeinsteins m-1 s-1), programmed for a 16 h 

photoperiod, with a constant temperature at 17 oC and 70% relative humidity.  

Plastic pots (11 cm × 7 cm × 8 cm) were filled with 1 kg of sand: vermiculite mix (1:1 v/v), 

which contained 3 µg P kg-1 and the mix was sterilised (121 oC, 1 h). Sparingly soluble P 

sources were applied at 40 µg P g−1 of growing medium. The P treatments comprised K2HPO4, 

Peru and Togo rock phosphate, and control unfertilised treatment. Four surface-sterilised seeds 

were placed in each pot and these were thinned to two seedlings seven days after sowing and 

covered by a layer of plastic beads to minimise microbial contamination. The PSB treatment 

included inoculation of Burkholderia sp. 12F and control uninoculated chickpea. This PSB 

isolate was selected based its ability to solubilise P from rock phosphate in vitro in the present 

study. Colonies of the PSB (Burkholderia sp. 12F) and of Mesorhizobium ciceri CC1192 were 

inoculated into yeast-mannitol and tryptone soya broth, respectively. The cultures were 

incubated in a shaker incubator (28 oC, 48 h). One mL of culture solution of Burkholderia sp. 

12F was inoculated per seedling according to the treatment layout. All treatments received 1 

mL of M. ciceri CC1192 inoculant. All treatments were replicated three times. McKnight’s N 

free nutrient solution containing all essential nutrients was prepared according to McKnight 

(1949). The growing mix was initially moistened with N-free nutrient solution to 

approximately 80% of field capacity, which was later maintained during the experiment by 

watering pots with sterilised MilliQ water. 

Plants were harvested seven weeks after inoculation. Shoots were separated from roots. The 

sand was carefully tipped out of the pots and root systems were gently shaken to remove non-

rhizospheric sand. The sand remaining attached to the root was defined as rhizospheric sand. 

To measure the pH and P concentration in the rhizosphere region, 1 g of sand from the 

rhizosphere was placed into a vial in 5 mL of MilliQ water. The solution was separated from 

sand after centrifugation (10,000 ×g, 10 min). The supernatant was kept at 4 oC for further 

analysis. Soluble P concentration in the supernatant was determined using the molybdate-blue 

method. 
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After taking the rhizosphere samples, the roots were washed and nodules were carefully 

detached. The nodule number and nodule colour rating were recorded. The chlorophyll content 

of five randomly selected leaves was measured using a SPAD meter. The nodules, roots and 

shoots were dried at 70 oC for two days and weighed. The root mass ratio was calculated as the 

ratio of root dry weight to total shoot dry weight. The dried shoot biomass was ground 

separately and the shoot P content was determined via acid digestion and inductively coupled 

plasma spectrometry (Zarcinas et al. 1996).  

8.4.10. Determination of available P in the supernatant  

The amount Pi in samples collected from the above experiments was determined following the 

molybdate-blue method (Murphy and Riley 1962). Samples were centrifuged (10,000 ×g, 10 

min). A 2 mL aliquot of the filtrate and 0.4 mL of reagent containing 5 N of sulphuric acid, 0.1 

M of ascorbic acid, 1 mg of potassium antimonyl tartrate were mixed. The mixture was allowed 

to stand for 30 min and absorbance (A) of the mixed solution was determined at 882 nm using 

a spectrophotometer.  

8.4.11. Data analysis 

Before implementing the analysis of results obtained from in vitro experiments, values obtained 

with the uninoculated control check treatment were always subtracted from their respective 

treatments. All statistical analysis was performed using Genstat ver.15. To investigate P 

solubilising activities of efficient PSB from chemically diverse rock phosphate, a two-way 

analysis of variance (ANOVA) was performed to investigate rock phosphate solubilisation by 

different PSB isolates.  

To understand the possible mechanisms of P solubilisation, the solubility of rock phosphates 

in different carboxylates that were produced by tested PSB was investigated using two-way 

ANOVA with rock phosphate and carboxylates as factors. The solubility of Peru and Togo 

rock phosphate in root exudates obtained from six cultivars of chickpea and the effect of PSB 

were compared using two-way ANOVA. The pooled means are presented as the bar graphs 

and box plots. 

To investigate the role of carboxylate concentration in the chickpea rhizosphere, PSB 

inoculation and solubilisation of P source for P acquisition strategies of chickpea, the effect of 

PSB, cultivars and P sources and their interaction on growth, nodulation, P concentration and 

pH in rhizosphere extract and plants P uptakes were estimated by fitting the following model: 
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Y = Cultivar + PSB + P + Cultivar*PSB + Cultivar*P + P*PSB + Cultivar*PSB*P + Rep + e- 

Where, Y is the response variable, as determined by the main effects of cultivar, PSB, P and 

their interaction. Rep and e are a random replicate effect and residual error, respectively. 

Significant differences between pooled means were separated by Fisher’s protected LSD at a 

significance level of P < 0.05. The pooled means are presented in bar graphs with error bars 

denoting standard errors of n = 3 treatment replicates.  

The regression analysis between plant parameters, P uptake, P concentration and pH in 

rhizosphere extract was performed using SigmaPlot ver. 14. Principal component analysis 

(PCA) was performed using SigmaPlot ver 14 to determine the multivariate coordination of 

ten plant traits for six cultivars of chickpea fertilised with different P sources under contrasting 

PSB inoculation treatments.  

8.5. Results 

A diverse range of species of PSB belonging to Burkholderia, Bacillus, Pseudomonas, 

Variovorax, Dyella, Pantoea, Sphingomonas, Caulobacter, Phyllobacterium, Rhizobium, 

Curtobacterium, Microbacterium, Cellulomonas and Mycolibacterium were obtained from 74 

soil samples collected across Australia (Chapter 4) using enrichment and taxonomically 

selective methods. Among these, bacterial isolates which were able to solubilise a significant 

amount of Pi from Ca3(PO4)2, AlO4P and FeO4P.2H2O were selected to investigate their ability 

to solubilise P from different types of rock phosphate in the NBRIP medium and in root exudate 

extracts of six cultivars of chickpea in vitro. Their effectiveness in enhancing the chickpea-

Mesorhizobium symbiosis was also investigated.  

8.5.1. The release of P from rock phosphate by efficient P solubilisers 

The total P concentration and purity of rock phosphates from different locations worldwide are 

presented in Appendix Table 1. The amount of total P varied between 12.6 and 16.0 %. 

Phalaborwa phosphate rock had the highest total P (16.0%) while the lowest P contents were 

found in Vietnam phosphate rock (12.6%) followed by Peru phosphate rock (14.7%). The 

concentrations of Al3+, Cd2+ and Fe3+ varied widely between the rock phosphate samples. 

Boucraa rock phosphate had the highest concentration of Al3+ and Fe3+. The highest 

concentration Cd+2 was present in Togo rock phosphate followed by Boucraa rock phosphate.  
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The efficiency of PSB in phosphate solubilisation in vitro varied widely across the rock 

phosphate samples. Burkholderia sp. 12F produced significantly higher Pi from Boucraa, 

Sechura and Weng Fu rock phosphate (Fig. 1a, d and g). On the contrary, none of the isolates 

was able to liberate a significant amount of Pi from Phalaborwa, Peru and Vietnam rock 

phosphate (Fig. 1b, c and e). The highest Pi concentration released from Sechura rock 

phosphate by Burkholderia sp. 12F was not always associated with the extent of acidification 

of the culture solutions (Fig. 2a-g). All tested isolates were able to produce diverse 

carboxylates, predominantly di- and tri-carboxylates during mineral phosphate solubilisation 

(Chapter 4). The carboxylates included acetate, citrate, gluconate, α-ketoglutarate, lactate, 

maleate, malate, oxalate and succinate. 

8.5.2. The solubility of rock phosphate in carboxylates  

To understand the possible mechanisms governing their efficiency to solubilise rock phosphate, 

the P solubilising potential of the aforementioned carboxylates was investigated in vitro. The 

relative efficiency of these carboxylates in the dissolution of rock phosphate varied widely 

(Table 1). The lowest Pi concentration released from all rock phosphates was recorded in 

MilliQ water (negative control) while the highest concentration of Pi released was obtained in 

dilute H2SO4 (10 mM) followed by oxalate, maleate and citrate. Among the carboxylates 

investigated, the average rate of dissolution of rock phosphates by carboxylates (10 mM) 

decreased as follows: oxalate > maleate > citrate > succinate > malate > α-ketoglutarate > 

lactate > acetate > gluconate.  

The carboxylates induced varying degrees of acidification of the solutions containing 7 

different rock phosphates (Table 2). The low solubility of rock phosphates in the presence of 

acetate or gluconate was also associated with higher pH. The lowest pH was induced by oxalate 

and citrate. The remaining carboxylates induced pH ranging between 3.00 and 4.00.  

The solubility of the different rock phosphates in carboxylate solutions varied widely: in acetate 

from 0.48 to 7.16 µg mL-1 Pi, in citrate from 8.6 to 59.9 µg mL-1, in gluconate from 1.0 to 2.6 

µg mL-1, in lactate from 8.0 to 19.3 µg mL-1 and water (control) from 1.02 to 2.69 µg mL-1. 

The lowest amount of Pi was liberated in acetate, citrate or succinate solutions from 

Phalaborwa rock phosphate. Vietnam rock phosphate released the lowest Pi concentration in 

lactate, α-ketoglutarate, maleate, malate or oxalate solution. Our results also indicated some 

variation in solubility among the rock phosphates tested, as measured by Pi released in H2SO4 

(51.6 to 56.7 µg mL-1). However, the amount of P solubilised varied widely in α-ketoglutarate 
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(17.5 to 31.5 µg mL-1), maleate (36.0 to 49.6 µg mL-1), malate (17.0 to 36.1 µg mL-1) and 

oxalate (38.8 to 51.6 µg mL-1).  

8.5.3. The solubility of rock phosphate in root exudates of chickpea cultivars 

The ability of root exudates, collected from six cultivars of chickpea, to solubilise P was 

investigated in vitro. The pH of the exudates varied between 3.2 and 3.6. After seven days of 

incubation, the pH of the solutions was increased to between 5.25 to 5.7 and 6.45 to 8.22 in the 

presence and absence of PSB, respectively (Fig. 3a and b). In the absence of PSB, exudates 

obtained from Genesis-090, Genesis-079, Ambar and PBA-Slasher were slightly more acidic 

than those from Genesis-863 and PBA-Striker incubated with Togo rock phosphate (Fig. 3c). 

This variation was not observed when P source was Peru rock phosphate (Fig. 3d).  

The amount of solubilised P from Togo and Peru rock phosphate varied between 0.5 and 3.6µg 

L-1 and 12.3 to 21.7 µg L-1, respectively (Fig. 3c and d). The highest concentrations of Pi from 

Togo and Peru rock phosphates were obtained with the exudate of Genesis-090 followed by 

exudates of Ambar and PBA-Striker. The lowest Pi concentrations were obtained with the 

exudate of Genesis-863. In these solutions, the association between the concentration of Pi 

released from both rock phosphates and the pH of the exudate before and after incubation was 

non-significant (Fig. 3g, h, i and j).  

Addition of PSB to the exudate significantly increased rock phosphate solubilisation (Fig 3e 

and f). PSB solubilised the highest concentrations of Pi from Togo rock phosphate in exudates 

of Genesis-090 and PBA-Striker, followed by Ambar (Fig 3c). The highest concentration of Pi 

from Peru rock phosphate was mobilised by incubation in exudate of Genesis-863 followed by 

PBA-Striker (Fig. 3d). PSB increased Pi release from Peru and Togo rock phosphate during 

incubation in exudates from Genesis-863, PBA-Striker and PBA-Slasher by 0.7 to 0.9 and 2.2 

to 2.1 times, respectively, compared to uninoculated controls. PSB increased Pi release from 

Peru and Togo rock phosphate between 0.14 to 0.32 and 0.3 to 0.5 times, respectively, relative 

to uninoculated controls, when incubated with exudates of cv. Ambar, Genesis-090 and 

Genesis-079. In these culture media, the amount of Pi released and the extent of acidification 

were significantly and inversely correlated (Fig. 3k and l).  

8.5.4. Effect of PSB inoculation on the Chickpea-Mesorhizobium symbiosis 

Three-way interactions between chickpea cultivar × PSB × P source impacted the shoot (P < 

0.026) and root dry weight (P < 0.05) (Table 3). Looking at individual P source, the effect of 
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PSB (Burkholderia sp. 12F) on plant growth varied with different cultivars of chickpea. 

Regardless of the P source supplied, the shoot dry weight (SDW) and root dry weight (RDW) 

of PBA-Striker were significantly increased by PSB inoculation (Fig. 4a-h). Additionally, PSB 

increased these plant growth parameters when inoculated on to cv. Genesis-836 and PBA-

Slasher when fertilised with Togo or Peru rock phosphate. However, PSB inoculation did not 

significantly affect biomass production of the remaining cultivars.  

Interactions between cultivar, PSB and P source affected nodule number per plant (NN, P < 

0.001) but not nodule dry weight (NDW, P = 0.601) and nodule colour rating (NCR, P = 0.192) 

(Table 3). Nodule dry weight was significantly improved by PSB inoculation for Genesis-863, 

PBA-Striker and PBA-Slasher with no P application and with Peru rock phosphate (Fig. 4i-l). 

PSB increased the NDW of PBA-Striker and Genesis-863 when fertilised with Togo rock 

phosphate and K2HPO4, respectively. 

Two-way interactions between PSB and P source influenced the rhizosphere P concentration 

(P < 0.021) and pH (P < 0.001) (Table 3). The lowest pH (5.1 and 5.3) was induced in the 

rhizosphere of cv. Genesis-079 and Ambar when fertilised by KH2PO4 (Fig. 5a-d). A less acidic 

pH (6.2 and 6.0) was observed in the rhizosphere of Genesis-863 and PBA-Striker, respectively 

fertilised, when with Peru rock phosphate. PSB significantly reduced the pH in the rhizosphere 

of Genesis-090 fertilised with Togo rock phosphate. The rhizosphere pH for the remaining 

cultivars was not affected by inoculation. 

The effect of chickpea cultivar, PSB and P, and their two-way and three-way interactions 

impacted the P concentration in the rhizosphere. The rhizosphere P concentration in Genesis-

863, PBA-Striker and PBA-Slasher with no P application or KH2PO4 was significantly reduced 

up to 40% following inoculation of PSB (Fig. 5e-h). Inoculation increased the P concentration 

up to 53.6% when plants were supplied with either Togo or Peru rock phosphate.  

Two ways interactions between cultivar and P source (P < 0.001) and PSB and P source (P < 

0.001) affected plant P uptake (Table 3). PSB did not influence P uptake where no P was 

applied and with KH2PO4 addition (Fig. 5i-l). Conversely, PSB improved plant P uptake by 

cvv. Genesis-863, PBA-Striker and PBA-Slasher with both rock phosphates.  

Plant P uptake was significantly and positively associated with root growth when plants were 

grown with no P application (r = 0.54, P < 0.01; r = 0.43, P < 0.01), Peru rock phosphate (r = 

0.29, P < 0.05; r = 0.39, P < 0.01), Togo rock phosphate (r = 0.21, P < 0.05; r = 0.37, P < 0.01) 

and KH2PO4 (r = 0.25, P < 0.05; r = 0.35, P < 0.01) with and without PSB, respectively (Fig. 
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6a-d). Additionally, plant P uptake was significantly and positively related to P concentration 

of all cultivars fertilised with Peru rock phosphate (r = 0.37, P < 0.01; r = 0.38, P < 0.01) and 

Togo rock phosphate (r = 0.31, P < 0.01; R2 = 0.67, P < 0.01) with and without PSB, 

respectively. (Fig. 7a-d). However, this association was non-significant when plants were 

supplied with no P or with KH2PO4. 

The effect of PSB on cultivars with contrasting carboxylate concentrations in their root 

exudates were differentiated by PCA according to variables that defined the growth, nodulation 

and P acquisition abilities from different P sources. The cultivars did not cluster in particular 

PCA compartments based on the total carboxylates produced per plant, rather the clustering of 

cultivars was observed based on +/- PSB inoculation (Fig. 8a, b, c and d).  

With no P application, PC1 explained 28.6% of the variability and the cultivars inoculated with 

PSB were clustered with SDW and pH of the rhizosphere (Fig. 8a). With the sparingly soluble 

P sources, PC1 accounted for 36.2% of the variability and the majority of cultivars inoculated 

with PSB were clustered with rhizosphere P concentration, RDW and plant P uptake (Fig. 8b). 

With the moderately soluble P sources, PC1 explained 36% of the total variation and cultivars 

inoculated with PSB were distinguished from uninoculated ones by increased RDW, SDW, 

plant P uptake and P concentration in the rhizosphere (Fig. 8c). In treatments with KH2PO4, 

regardless of PSB inoculation, the majority of cultivars clustered with NN, RDW and SDW 

(Fig. 8d).  

8.6. Discussion 

Total P content or Al3+, Fe2+ and Cd2+ concentration of rock phosphates did not predict 

their solubilisation by rhizobacteria  

Although the quality and value of rock phosphates is generally based on their P content, 

solubilisation by PSB in the present study was independent of the total P content and available 

P concentration of the P source. For instance, we found a very low concentration of Pi (<8 µg 

L-1) in a suspension of Phalaborwa phosphate rock, which contained the highest total P (16%) 

compared to the other rock phosphates. In contrast, we measured up to 50 µg L-1 of Pi in 

solution from other rock phosphates, which contained < 16% total P. Apart from total and 

water-soluble P, the mineralogical and chemical composition of rock phosphate, including the 

concentration of different cations, mainly Al, Ca and Fe, affect the ability of bacteria to 

solubilise rock phosphate (Leon et al. 1986; Sagoe et al. 1998). Besides precipitation of Pi in 
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culture solution by metal ions, potentially lethal concentrations of metal ions released during 

rock phosphate solubilisation might suppress microbial rock phosphate solubilisation by 

impairing the growth of the microbes (Hartley et al. 1997; Fomina et al. 2004). In the present 

study, the concentrations of Al (0.2-15.5% w/w), Cd (329.6 mg Cd kg-1 P) and Fe (0.7-5.3% 

w/w) found in the rock phosphate samples could potentially inhibit microbial growth during 

the biologically-mediated P solubilisation process (Gadd 2010). However, we observed the 

liberation of Pi from rock phosphate via microbial solubilisation, irrespective of the 

concentration of Al, Cd and Fe in the rock phosphates. For instance, the highest liberation of 

Pi was obtained from Boucraa and Togo rock phosphates in which the concentration of Cd was 

relatively high (161 and 329 mg Cd kg-1 P). Two possible explanations can be given for this. 

One would be the reduction of free metal ion concentration by metal complexing agents, mainly 

low molecular weight organic compounds produced by PSB during P solubilisation (Gadd 

1994; Krantz-Rülcker et al. 1996; Teng et al. 2019). Alternatively, the PSB used here may have 

a higher ability to tolerate these metal ions (Fomina et al. 2004). However, this would not be 

so much a problem in field soil, where the metal ions could be gradually diluted in soil solution 

and washed down the soil profile with rainfall or move away from the P granule in the soil 

solution (Wood et al. 2016). 

PSB exhibited different P solubilising activity when supplied with rock phosphates from 

a variety of sources 

The ability of three selected PSB to solubilise P from rock phosphates that differ in their 

chemical properties varied. A PSB isolate that was efficient at solubilising one type of rock 

phosphate was not necessarily efficient at solubilising other rock phosphates. For instance, 

Burkholderia sp. 12F were able to dissolve relatively high amounts of Pi (39.5 to 51.6 µg L-1) 

from Boucraa, Sechura, Togo and Weng-Fu rock phosphates. On the other hand, none of the 

three bacterial isolates was able to solubilise a significant amount of Pi from Phalaborwa, Peru 

and Vietnam rock phosphates. The P solubilising activity of the tested isolates was not always 

completely explained by the extent of acidification of the culture medium. These results 

suggest that other P solubilisation mechanisms may also explain the variation in performance 

of the PSB (Scervino et al. 2010; Scervino et al. 2011).  

In the present study, the PSB produced widely diverse types of carboxylates in vitro, including 

acetate, citrate, gluconate, α-ketoglutarate, lactate, maleate, malate, oxalate and succinate. 

authentic oxalate and maleate followed by malate mobilised a large amount of Pi from all rock 
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phosphates. While succinate, citrate followed by lactate was able to release a substantial 

amount of Pi from all rock phosphate, except for Phalaborwa and Vietnam. Accordingly, the 

high potential of Burkholderia sp. 12F to solubilise P may be related to their ability to produce 

carboxylates, particularly maleate, malate, citrate, succinate, α-ketoglutarate and lactate, most 

of which are efficient in P solubilisation.  

The response of chickpea cultivars to PSB inoculation was partly explained by their 

ability to produce carboxylates in the rhizosphere  

The chickpea-Mesorhizobium symbiosis was improved by addition of rock phosphate fertiliser 

compared with the unfertilised control. This effect was more pronounced when the plants were 

fertilised with moderately soluble rock phosphate compared with a poorly soluble rock 

phosphate. This result indicates the ability of chickpea root exudates to mobilise Pi from rock 

phosphate in in vitro conditions. Previous studies have been shown the various capacity of 

chickpea genotypes to obtain Pi from sparingly soluble P sources (Wen et al. 2020; Pang et al. 

2018). Accordingly, they found the highest plant P uptake in genotypes able to produce the 

largest amounts of carboxylate. These results were also observed in the present study, in in 

vitro conditions. 

Although chickpea seedlings were able to obtain Pi from rock phosphate, inoculation with 

isolate Burkholderia sp.12F further enhanced the chickpea-Mesorhizobium symbiosis. This 

effect was only observed with three of the six cultivars tested (Genesis-863, PBA-Striker and 

PBA-Slasher). These cultivars were previously reported to produce relatively low carboxylate 

(Pang et al. 2018). Conversely, ‘poorly responsive cultivars’ that did not significantly respond 

to PSB inoculation were able to produce relatively higher rhizosphere carboxylate 

concentrations than cultivars that responded to PSB inoculation. Therefore, the carboxylate 

concentration in the chickpea rhizosphere may partly explain the different responses of 

cultivars to PSB inoculation. The relationship between the positive effects of carboxylate 

release on P uptake in plants fertilised with sparingly soluble P has been previously reported 

(Gerke et al. 2000; Pearse et al. 2006; Pang et al. 2018; Zhang et al. 2021). In plants with 

relatively high carboxylates in the rhizosphere, the plant may mobilise higher Pi from rock 

phosphate that is possibly have feedback inhibition of the P solubilising activity of the 

inoculated PSB (Pearse et al. 2006; Zhao et al. 2016; Liu et al. 2020). This isolate also promotes 

chickpea root elongation that via mechanisms related to IAA production and ACC deaminase 
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activity (Chapter 3). These mechanisms may be also involved in promoting the growth of the 

responsive cultivars.  

The solubility of the P source affected the type of plant growth-promoting mechanisms of 

PSB that enhance the chickpea-Mesorhizobium symbiosis  

The type of P source used affected the PGP mechanism involved in enhancing the chickpea-

Mesorhizobium symbiosis for responsive chickpea cultivars. Inoculation with PSB strain 

Burkholderia sp. 12F increased the growth and nodulation of plants fertilised with Peru and 

Togo rock phosphates. This positive effect of PSB was associated with increased P nutrition as 

determined by P concentration in the rhizosphere and plant total P content. This indicates an 

important role for the P solubilising activity of this PSB strain in growth promotion. 

Burkholderia sp. 12F increased P solubilisation from rock phosphates in chickpea root exudates 

in vitro (Fig. 1). Similarly, other PSB have increased P uptake in wheat (Lekfeldt et al. 2016), 

soybean (Fernández et al. 2007), barley (Raymond et al. 2019) and pea (Belimov et al. 2020), 

where the concentration of carboxylates in the root zone is very low compared with chickpea 

(Wen et al. 2019). The ability of chickpea itself to release high levels of carboxylates may be 

insufficient to mobilise the required amount of P for the plant, leading to P deficiency. 

Additionally, the present study showed a correlation between increased P uptake and root 

growth promotion, with greater root biomass and high P uptake in plants inoculated with 

Burkholderia sp. 12F. This may indicate the role of IAA and ACC deaminase involved in root 

growth promotion  

In plants with no P application or with added KH2PO4, the positive effect of Burkholderia sp. 

12F on plant growth promotion was not explained by P nutrition per se. Results showed that 

an increased P uptake occurred regardless of the P concentration in rhizosphere extract. In this 

case, the P solubilising activity of PSB does not appear to lead to growth promotion. Rather, 

plant P uptake was positively related to root biomass promotion. A previous study has shown 

the important role of greater root growth of chickpea to improve P acquisition ability when 

grown in low P conditions (Gahoonia et al. 2007) as well as high P conditions (Wen et al. 

2019). Such an association suggests the role of other PGP mechanisms, possibly IAA 

production and ACC deaminase activity, in the mediation of root growth promotion. The 

positive role of these PGP traits on growth, nodulation and P uptake of chickpea has been 

previously reported (Malik and Sindhu 2011; Fierro-Coronado et al. 2014; Yadav and Verma 
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2014; Zaheer et al. 2016; Ahmad et al. 2019) (Nascimento et al. 2012; Kumar et al. 2016; Ditta 

et al. 2018).  

The extent of rhizosphere acidification was not affected by PSB but was associated with 

nodulation  

Rhizosphere acidification is said to be a prerequisite for the release of solubilised P from 

inorganic insoluble P sources in the root zone (Hinsinger 2001). However, there was no 

apparent link between Pi concentration and the extent of acidification in the chickpea 

rhizosphere in the present study. This result suggests that other mechanisms, particularly 

carboxylate production after inoculation, may also be involved in explaining Pi release. 

However, more acidic rhizosphere pH was demonstrated in plants fertilised with K2HPO4, 

followed by Togo rock phosphate, although soluble P has been reported to have a suppressive 

effect on organic acid production by PSB (Pearse et al. 2006; Zhao et al. 2016; Liu et al. 2020). 

An increased P availability in the root zone can lead to more effective nodulation, which in 

turn leads to greater symbiotic N2 fixation, a biological process that releases a net excess of 

protons (Dakora and Phillips 2002). These protons can result in reducing rhizosphere pH. Such 

an effect may lead to further P solubilisation from sparingly soluble P sources. In particular, 

acidification may accelerate the solubilisation kinetics of sparingly soluble forms of Ca3(PO4)2 

(Andersson et al. 2015).  

8.7. Conclusion 

The type of carboxylate produced and the ability to acidify the surrounding medium explained 

the efficiency of PSB strains to solubilise P from diverse sparingly soluble P sources. The 

performance of the efficient PSB (Burkholderia sp. 12F), in stimulating the chickpea-

Mesorhizobium symbiosis was partly affected by the ability of the plants to produce 

carboxylates in their root exudates. PSB strain Burkholderia sp. P-81 enhanced the 

Mesorhizobium symbiosis of three chickpea cultivars which produced relatively low amounts 

of carboxylate in their root exudates. On the other hand, this PSB did not significantly increase 

nodulation or promote the growth of three other chickpea cultivars, which produced relatively 

high amounts of carboxylates in their root exudates. The presence of a high concentration of 

carboxylates in the rhizosphere, whether from plant or PSB origin, may affect the performance 

of PSB to enhance the chickpea-Mesorhizobium symbiosis.
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Table 1 Inorganic P released from various rock phosphates incubated in nine carboxylates (10 mM) and H2SO4 (10 mM) in solution for 3 days 

(mean of three replicates) 

RP Acetate Citrate Gluconate 

α-Keto-

glutarate Lactate Maleate Malate Oxalate Succinate H2SO4 Water  

Boucraa RP 7.14a 42.14bc 1.55c 30.58ab 19.28a 46.95ab 35.29ab 51.60a 46.67c 56.68ab 1.77bc 

Phalaborwa RP 0.48c 8.63d 1.51c 22.57cd 13.25c 46.99ab 27.19b 46.60ab 4.97b 54.76bcd 2.52ab 

Peru RP 5.33b 36.93c 2.63b 24.43c 14.78bc 42.78b 31.92ab 51.60a 41.06b 55.68abc 2.65a 

Sechura RP 6.92a 59.93a 1.58c 26.16bc 16.96ab 44.81ab 37.47a 50.53ab 42.65b 59.45a 2.67a 

Togo RP 5.65b 53.11ab 1.04c 17.72d 15.14bc 40.89bc 34.25ab 50.15ab 42.93c 51.58d 2.69a 

Vietnam RP  0.68c 19.06d 1.55c 17.50d 8.03d 35.96c 16.98c 38.77c 5.15a 52.04cd 1.02c 

Weng Fu RP 7.16a 32.63c 5.14a 31.45a 17.58ab 49.57a 36.10a 46.00b 46.29c 54.32bcd 1.25c 

LSD 0.61 11.12 0.12 5.16 3.22 6.50 8.16 5.04 8.08 3.82 0.86 

Key: RP: rock phosphate  
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Table 2 pH of solutions containing various rock phosphates treated with nine carboxylates (10 mM) and H2SO4 (10 mM) and incubated for 3 days 

(mean of three replicates). 

Rock phosphate Acetate Citrate Gluconate 

α-Keto-

glutarate Lactate Maleate Malate Oxalate Succinate H2SO4 Water  

Boucraa RP 4.11d 3.46a 6.82c 3.50b 3.48c 3.40d 3.59cd 3.37d 3.88c 3.10c 8.07c 

Phalaborwa RP 4.66a 3.36b 7.58a 3.22c 3.34d 3.07e 3.55cd 3.18ef 4.26b 2.38f 8.86a 

Peru RP 4.29c 3.36b 7.16b 3.79a 3.57c 3.62c 3.74b 3.50c 4.19b 3.21b 8.31b 

Sechura RP 4.47b 3.36b 6.66d 3.79a 3.75b 3.84b 3.97a 3.65b 4.28b 3.40a 7.32d 

Togo RP 4.13d 3.36b 6.61d 3.52b 3.47c 3.39d 3.67bc 3.24e 4.01c 2.71d 7.40d 

Vietnam RP  4.59ab 3.36b 7.10b 3.93a 5.36a 4.70a 3.99a 3.84a 4.96a 2.49e 3.59f 

Weng Fu RP 4.18cd 3.36b 6.57d 3.37bc 3.32d 3.37d 3.49d 3.09f 3.93c 2.69d 6.87e 

LSD 0.12 0.06 0.56 0.16 0.13 0.12 0.14 0.12 0.16 0.09 0.11 

Key: RP: rock phosphate 
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Table 3 Three-way ANOVA for growth-, nodulation- and phosphorus-related traits among six 

cultivars of chickpea with four P sources and +/- PSB strain Burkholderia sp. 12F inoculation. 

parameters Cultivar (C) PSB P source (P) C × PSB C × P PSB × P C × PSB ×P 

F P 

value 

F P 

value 

F P 

value 

F P 

value 

F P 

value 

F P 

value 

F P 

value 

SDW 21.32 0.001 89.97 0.001 439.28 0.001 5.68 0.001 6.53 0.001 5.05 0.003 1.96 0.026 

RDW 35.89 0.001 43.46 0.001 150.80 0.001 2.42 0.041 5.25 0.001 2.54 0.061 1.77 0.050 

NN 45.82 0.001 77.37 0.001 338.54 0.001 2.03 0.082 13.04 0.001 0.30 0.826 3.61 0.001 

NDW 13.78 0.001 24.83 0.001 129.16 0.001 3.21 0.01 3.04 0.001 6.04 0.001 1.23 0.261 

NCR 36.25 0.001 54.00 0.001 658.72 0.001 2.04 0.079 1.52 0.115 6.54 0.001 1.34 0.192 

RPC 19.89 0.001 27.86 0.001 2041.98 0.001 2.32 0.049 13.08 0.001 8.14 0.001 2.12 0.015 

RpH 1.4 0.230 0.08 0.772 13.25 0.001 1.62 0.163 2.02 0.021 4.12 0.009 1.06 0.407 

P uptake 18.83 0.001 34.54 0.001 883.85 0.001 1.12 0.353 7.15 0.001 7.70 0.001 0.86 0.608 

SPAD  5.38 0.001 57.85 0.001 2559.62 0.001 1.48 0.205 3.62 0.001 7.22 0.001 0.61 0.860 

SDW: Shoot dry weight (g plant-1); RDW: Root dry weight (g plant-1); NN: Nodule number 

per plant; NDW: Nodule dry weight (mg plant-1); NCR: Nodule colour rating; RpH: 

Rhizosphere pH; RPC: Rhizosphere P concentration (µg P kg-1); SPAD: Chlorophyll content 

(SPAD reading); PSB: phosphate solubilising bacteria; C: Cultivar; P: P source. 
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Fig. 1 Pi concentration of culture solutions inoculated with three PSB strains in the presence 

of 7 different sources of rock phosphate (note differences in Y axis scales). PSB-1= 

Burkholderia cenocepacia 127F, PSB-2 = Pseudomonas fluorescens 27F and PSB-3 = 

Burkholderia sp. 12F. The experiment was conducted in NBRIP medium supplemented with 5 

g L-1 of rock phosphates from different sources, namely Boucraa, Vietnam, Weng Fu Fine, 

Togo, Phalaborwa, Sechura or Peru phosphate rock. Cultures were incubated on a shaker (28 
oC,160 rpm) for 14 days. Values are mean (±SE) of three replicates. RP – Rock phosphate.
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Fig. 2 pH of culture media inoculated with three PSB strains and supplied with different 

sources of rock phosphate.  PSB-1 = Burkholderia cenocepacia 127F; PSB-2 = Pseudomonas 

fluorescens 27F and PSB-3 = Burkholderia sp. 12F. The experiment was conducted in NBRIP 

medium supplemented with 5 g L-1 of the following rock phosphates: Boucraa, Vietnam, Weng 

Fu, Togo, Phalaborwa, Sechura or Peru phosphate rock. Cultures were grown in a shaker 

incubator (28oC, 160 rpm) for 14 days. Values are mean (± standard error) of three replicates. 

RP – Rock phosphate. 
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Fig. 3 Variation in P concentration (a and b) and pH (e and f) of root exudates obtained from 

six chickpea cultivars in the presence and absence of PSB with Peru and Togo rock phosphate. 

Error bars are standard error (n = 3) to compare means of two-way interactions between PSB 

× cultivar. In c and d, symbols indicated red lines as mean values and dots as 95% confidence 

interval. The association between the P concentration and pH of root exudates (g and h), pH of 

media solution (i and j) and pH of culture solution (k and l) with Peru and Togo rock phosphate. 

P = ns- non-significant, P < 0.01- highly significant. 
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Fig. 4 The responses of shoot dry weight, root dry weight, and nodule dry weight per plant to 

inoculation of Burkholderia sp. 12F in six chickpea cultivars with (a, e, i) no P application, (b, 

f, j) Peru rock phosphate, (c, g, k) Togo rock phosphate and (d, h, l) K2HPO4. Error bars are 

standard error (n = 3) to compare means of two-way interactions between PSB × cultivar. 
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Fig. 5 The responses of rhizosphere pH (a, b, c, and d), P in the rhizosphere (e, f, g and h) and 

plant P uptake (I, j, k and l) to PSB inoculation of six chickpea cultivars with (a, e, i) no P 

application, (b, f and j) Peru rock phosphate, (c, g and k) Togo rock phosphate and (d, h and l) 

KH2PO4, respectively. Error bars are standard error (n = 3) to compare means of two-way 

interactions between PSB × cultivar. 
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Fig. 6 Relationship between rhizosphere P concentration and plant P uptake of six chickpea 

cultivars in the presence or absence of PSB strain Burkholderia sp. 12F with (a) no P 

application, (b) Peru rock phosphate, (c) Togo rock phosphate and (d) KH2PO4. Lines are least 

square linear regressions. P = ns- non-significant, P < 0.05- significant, P < 0.01- highly 

significant. 
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Fig. 7 Relationship between root dry weight and plant P uptake of six chickpea cultivars in the 

presence or absence of PSB strain Burkholderia sp. 12F with (a) no P application, (b) Peru rock 

phosphate, (c) Togo rock phosphate and (d) KH2PO4. Lines are least square linear regressions. 

P < 0.05- significant, P < 0.01- highly significant.
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Fig. 8 Principal component analysis (PCA) biplot combining ten variables that contributed to 

growth, nodulation and P acquisition strategies for six cultivars in response to PSB under (a) 

no P application, (b) Peru rock phosphate, (c) Togo rock phosphate and (d)KH2PO4. Cultivars 

represented as: ● Ambar; ○ Genesis 079, ▼ Genesis-863, ∆ Genesis-090, ■ PBA-Striker and 

□ PBA-Slasher. Symbols with red edge represent cultivars inoculated with PSB and with black 

edge represent no PSB addition. Trait abbreviations: RB ratio, root biomass ratio; pH of 

exudate, the pH of exudates obtained from rhizosphere; RDW, root dry weight; SDW, shoot 

dry weight; NN, nodule number per plant; NDW, nodule dry weight per plant; Rhizo P con, 

rhizosphere P concentration; mg P/plant, plant uptake P; SPAD value, chlorophyll reading; EN, 

nodule colour rating  
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Chapter 9. General discussion 

Increased nodulation and yield of chickpea following inoculation of PGPR able to solubilise P 

have been observed, although their effect was not always linked with P nutrition per se (Zaidi 

et al. 2003; Rudresh et al. 2005; Mittal et al. 2008; Verma et al. 2012; Singh et al. 2014; Verma 

et al. 2014; Imen et al. 2015; Saxena et al. 2015; Israr et al. 2016; Rajwar et al. 2018). 

Additionally, PGPR with high P solubilising activity in vitro reported in the literature have not 

always enhanced chickpea-Mesorhizobium symbiosis under controlled and field conditions. 

Such inconsistent effects may be due to many factors associated with the host plant and the 

PSB. In this study, we investigated the efficiency of PSB in P solubilisation and their 

occurrence in the soil environment, the role of PGP characteristics other than P solubilisation, 

that enhanced P nutrition, and whether the presence of high carboxylate concentrations in the 

chickpea rhizosphere would affect the efficiency of PSB.  

The first stage screening of PSB typically uses differential media, mainly Pikovskaya’s and 

NBRIP supplied with Ca3(PO4)2 (Pikovskaya 1948; Nautiyal 1999; Mehta and Nautiyal 2001). 

However, the use of this P source alone may not indicate the actual P solubilising potential of 

the PSB in soil (Bashan et al. 2013). Therefore, considering the ability to solubilise P sources 

other than Ca3(PO4)2, including AlO4P and FeO4P, that are often found in acidic soils and in 

rock phosphate is important to obtain broadly efficient PSB at the pre-screening stage. In this 

experiment, two isolation methods, including taxonomically selective and enrichment methods 

were used (Chapter 4). Using the taxonomically selective methods, Pseudomonas- and 

Bacillus-like bacteria were isolated; these genera are frequently reported as efficient PGPR 

with a high ability to solubilise P (Ndung’u-Magiroi et al. 2012; Khan et al. 2013; Alaylar et 

al. 2019). Additionally, isolates with high P solubilising activity were isolated through 

enrichment in low P conditions (Chapter 4). Results showed that a diverse range of bacteria 

belonging to Pseudomonas, Burkholderia and Bacillus able to solubilise diverse P sources was 

obtained. Sixteen genera of bacteria, predominantly Burkholderia, Variovorax, Leifsonia, 

Pantoea and Rhizobium, were isolated. These genera have been previously reported as efficient 

PGPR with P solubilising activity from the rhizosphere of chickpea (Hynes et al. 2008; Shahid 

and Khan 2018). These isolates were more efficient in P solubilisation than those obtained 

using the taxonomically selective method. Most of the efficient P solubilisers were enriched in 

FeO4P- and AlO4P- containing media. For example, Burkholderia sp. 12F and B. cenocepacia 

127F, that were obtained following enrichment in media containing FeO4P.2H2O, were able to 

produce diverse carboxylates, predominantly di-and tri-carboxylates. These carboxylates by 
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themselves were previously confirmed as efficient P solubilisers compared with mono-

carboxylates (Bolan et al. 1994; Kpomblekou-a and Tabatabai 1994). In particular, their 

chelation ability enables them to efficiently solubilise moderately reactive rock phosphate as 

well.  Burkholderia was the most dominant genus of bacteria that were efficient in P 

solubilisation in this study. In particular, B. cenocepacia, B. cepacia and B. caledonica have 

been previously characterised as potent P solubilisers in vitro and potential PGPR as well 

(Suárez-Moreno et al. 2012; Zhao et al. 2014; You et al. 2020).  

In the present study, IAA and ACC deaminase production was related to the potential of the 

bacterial isolates to promote seedling root growth in the plant-based first-stage screening 

bioassay (Chapter 3). Additionally, the ability of PGPR to produce ACC deaminase enhanced 

the ability of PSB to solubilise P from Ca3(PO4)2 when ACC was the sole N source (Chapter 

6). Such an effect was associated with the presence of a more acidic pH. Likewise, the presence 

of IAA and its precursor L-tryptophan increased the P solubilising potential of PSB from 

moderate- and low-reactive rock phosphate (Chapter 7). IAA increased P solubilisation through 

inducing a more acidic pH and the production of more carboxylates, predominantly di- and tri-

carboxylates by PSB.  

Biofertilizer development typically requires the collection of a large number of microbial 

isolates from a wide range of agricultural soils. This process requires time and resources to 

obtain an elite PGPR that can increase the growth and productivity of plants. This led us to 

investigate the soil and environmental factors that could affect the occurrence of PGPR and 

their potential to promote plant growth. In the present study, the potential of isolates to promote 

seedling root elongation in the first stage screening and their ability to produce IAA was 

positively correlated with soil copper, manganese and zinc concentrations, electrical 

conductivity and the aridity index of the sampling environment but was negatively correlated 

with soil carbon (C), nitrogen (N) and phosphorus (P) (Chapter 5). Additionally, the ability to 

produce IAA and ACC deaminase was related to their ability to promote seedling root growth 

(Chapter 3 and chapter 5). Results further showed that isolates with multiple PGP traits and 

with a high ability to solubilise P and produce IAA came from sampling sites with low soil 

fertility, a high aridity index and high levels of metal ions (Cu, Mn and Zn). Production of ACC 

deaminase and IAA, and P solubilisation, can be important traits for plant growth promotion 

in soils of low fertility and at sites with low water availability, through a reduction in stress-

induced ethylene synthesis, increasing the nutrient availability and the capacity of the plant to 

acquire nutrients and water (Bal et al. 2013; Chandra et al. 2018; Mpanga et al. 2018; Saleem 
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et al. 2018). When bacteria coevolved with plant roots in harsh environments over millions of 

years, the bacteria acquired the ability to produce ACC deaminase and IAA, and to solubilise 

P that can now lead to associations with plants that improve plant fitness under biotic and 

abiotic conditions (Denison 2012). Additionally, IAA production improved the bacteria's 

ability to withstand the water-stressed and metal toxicity (Chapter 5). This effect of IAA may 

be related to its ability to induce the synthesis of high amounts of exopolysaccharides that are 

important for rhizobacteria protection from environmental stress (Naseem et al. 2018; Torres 

et al. 2018).  

Phosphate solubilising bacteria are saprophytically competent in a wide range of environmental 

conditions and soil types (Raymond et al. 2021). The abundance of PSB and their potential to 

solubilise P was correlated with soil properties. An increased soil C, N, P, Ca2+ and Mg2+ 

content resulted in greater abundance of PSB (Chapter 4). However, their potential to solubilise 

P in the present study was negatively correlated with soil pH, soil P, soil C, C/N ration and Mg 

(Chapter 5). High pH soils with high exchangeable cations decrease the available P through 

the formation of Mg-P and Ca-P complexes (Zheng et al. 2019). This environment may 

increase the occurrence of soil microbial communities that are capable of solubilising P from 

sparingly soluble P sources to fulfil their P needs. Soil microbial communities may be evolved 

to acquire the ability to solubilise P from sparingly soluble P source (Denison 2012). Therefore, 

these findings have potential application in designing a strategy for the development of efficient 

PGPR that have ecological traits and plant growth-promoting mechanisms that may increase 

production of important crops such as chickpea. 

An efficient PSB isolate (Burkholderia sp. 12F), able to produce IAA and ACC deaminase, 

was investigated for its effect on the chickpea-Mesorhizobium symbiosis using six chickpea 

cultivars with contrasting carboxylate concentrations in their rhizospheres under different P 

fertiliser amendments (Chapter 8). The PSB did not enhance the nodulation and growth of all 

chickpea cultivars. Of the six cultivars, inoculation of PSB increased the nodulation and growth 

of chickpea cvv. PBA-Striker, PBA-Slasher and Genesis 863.  This effect was not significant 

in the remaining three cultivars (Genesis-090, Genesis-079 and Ambar). The responsive 

cultivars released relatively less carboxylates than the less-responsive cultivars. These various 

responses of cultivars to inoculation with PSB strain Burkholderia sp. 12F could be due to 

several reasons include: (i) relatively low pH (down to 5.1) in the rhizosphere of less responsive 

cultivars may have negatively affected PSB survival, (ii) such a low pH may also suppress the 

potential of the isolate to express the beneficial traits including P solubilising activity and ACC 
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deaminase and IAA production (Chaiharn and Lumyong 2009), (iii) the less responsive 

cultivars may fulfil most of their P needs by themselves, via production of high amounts of 

carboxylates in the rhizosphere, as has been observed in other plant species (Chien et al. 2003; 

Sepehr et al. 2012) and (iv) the presence of low/no detectable L-tryptophan in the rhizosphere 

may suppress the isolate’s ability to promote the plant growth v IAA production (Kravchenko 

et al. 2004).  

Additionally, Burkholderia sp. 12F improved the growth and nodulation of the highly 

responsive cultivars directly, via PGP traits other than P solubilising activity when the plants 

were fertilised with highly soluble P source and under low P conditions. This indicates the 

ability of PSB to promote plant growth under both optimum P conditions and low P conditions. 

In this case, an increased P uptake was correlated with root growth promotion, which was 

possibly mediated by ACC deaminase and IAA production (Chapter 3). Therefore, the use of 

inoculants with multiple PGP characteristics that may be expressed simultaneously could 

promote plant growth in diverse conditions.  

9.1. Conclusions and recommendations 

The results of the seedling root elongation test predicted the effect of rhizobacteria on the 

nodulation and growth of co-inoculated chickpea in aseptic conditions. Increased nodulation 

and plant growth were the net results of ACC deaminase and IAA production by PGPR. 

Rhizobacteria able to produce high concentrations of IAA in combination with ACC deaminase 

activity are suitable PGPR candidates for further investigation in a second stage screening 

program using non-sterile soil in the greenhouse and/or field conditions. Accordingly, we 

recommend the seedling growth bioassay for first-stage screening of PGPR rather than simply 

relying on their ability to express multiple PGP traits. Additionally, we demonstrate that the 

soil and environmental variables at the sampling sites a have relevant role in both the 

occurrence and performance of culturable rhizobacteria that have traits beneficial for plant 

growth. This influence should be considered when microbial inoculants are developed. 

Accordingly, PGPR able to efficiently solubilise P were enriched from rhizosphere soil under 

conditions of sparingly soluble P supply (FeO4P.2H2O and AlO4P). Selected isolates from the 

enrichment process efficiently solubilised P from chemically varied rock phosphates. 

Burkholderia was the most efficient genus in P solubilisation. This suggests the need for the 

identification and targeting of genera that are potentially efficient in plant growth promotion 

associated with particular plant species and sampling sites. 
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The potential of efficient PSB to solubilise P was related to their ability to produce 

carboxylates, predominantly di- and tri-carboxylates. Additionally, the potential of PSB to 

solubilise P in vitro was influenced by their ability to produce IAA and ACC deaminase. High 

ACC deaminase-producing PSB exhibited higher P solubilising activity than those that 

produced less when the sole N source was ACC. The supply of IAA and its precursor L-

tryptophan also increased the P solubilising activity of IAA-producing bacteria This suggests 

the need to consider the addition of organic compounds, e.g. L-tryptophan, during first stage 

screening for PGPR that can enhance P nutrition. 

In the in-planta experiment, an efficient PSB isolate (Burkholderia sp. 12F) improved the 

nodulation and growth of chickpea cultivars with relatively low carboxylates their root 

exudates. The positive influence of PSB inoculation was mediated by P solubilisation when 

plants were fertilised with rock phosphates. Increased growth and nodulation under conditions 

of low P and highly soluble P supply was mediated by PGP traits other than P solubilising 

activities, suggesting that the plant growth promotion is the net result of multiple PGP traits 

that may be activated simultaneously. In general, this study indicates the need for considering 

plant-associated factors, mainly the composition of rhizosphere exudates that may affect the 

performance of PGPR. Additionally, PGPR with multiple activities, that may directly and 

indirectly increase P availability and the plant’s capacity to acquire P, can stimulate increased 

plant growth under different and contrasting conditions of P nutrition.  

9.2. Future research 

PSB enhanced the nodulation and growth of chickpea through increasing P concentration in 

the rhizosphere as well as plant P uptake. Although rhizosphere acidification is one of the 

mechanisms responsible for P solubilisation (Neumann and Römheld 2012), increased P in the 

rhizosphere in the present study was not related to the extent of acidification of the rhizosphere. 

In chickpea, the rhizosphere contains a large amount of root exudates that comprise a wide 

array of organic compounds (Ohwaki and Hirata 1992) that can be the source of C for the PSB. 

The PSB can ultimately produce organic derivatives that might be involved in P solubilisation. 

Therefore, further research is required to investigate the types and concentrations of different 

carbon derivatives produced after inoculating with PSB.  

Additionally, Burkholderia 12F increased the growth and nodulation of chickpea cvv. PBA-

Slasher, PBA-Striker and Genesis-863 with no significant effects on the P concentration in 

their rhizosphere. Root growth promotion, in this case, was explained by an increased plant P 
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uptake. The root growth promotion might be mediated by PGP mechanisms other than P 

solubilising activity, such as production of ACC deaminase and IAA. To confirm the role of 

these PGP traits, mechanistic studies are required to elucidate a potential mechanism, such as 

by developing mutants with no ACC deaminase activity, IAA production and lacking both of 

these PGP traits that would allow a distinction to be made between the direct and indirect 

effects of the PSB on increased plant P uptake.  

Our results showed that inoculation of PSB and rhizosphere carboxylate concentration affected 

the P acquisition strategy of chickpea. Recently, Wen et al. (2019) reported that the amount of 

carboxylate in the root exudates of chickpea affected colonisation by arbuscular mycorrhizae 

and the characteristics of root functional traits (root diameter, number of root hairs, length of 

root hair, root surface area, root biomass density, total root length). In this study, relatively 

high carboxylate-producing chickpea cultivars tended to have relatively thinner roots with 

lower cost of root construction, while allocating more resources to carboxylate exudation and 

potential mycorrhizae colonisation. PSB inoculation can alter the characteristics of root 

functional traits (Fierro-Coronado et al. 2014) and can possibly affect the composition of 

carboxylates and P concentration in the rhizosphere. Therefore, a more detailed understanding 

of chickpea-M. ciceri rhizobia-PSB and mycorrhizal interaction in chickpea cultivars with 

contrasting rhizosphere carboxylate concentrations and under different P conditions is required 

to fully comprehend the P acquisition strategies of this pulse crop. 

Most studies reported in the literature have indicated positive effects of PSB on crop growth 

under controlled conditions, whereas field experiments have more frequently failed to 

demonstrate a positive response (Karamanos et al. 2010; Gómez-Muñoz et al. 2017; Meyer et 

al. 2019; Raymond et al. 2019). Additionally, Raymond et al. (2021) suggested that PSB could 

not release extra soluble P from sparingly soluble P sources beyond their own needs under field 

conditions. The positive influence of Burkholderia sp.12F on the chickpea-Mesorhizobium 

symbiosis under different P conditions in the present study also warrants further testing in field 

trials. Accordingly, investigation of the interaction between chickpea cultivars, M. ciceri 

CC1192 and Burkholderia sp. 12F under field conditions over a wide range of phosphorus 

levels that includes both sub- and super-optimal levels of phosphorus is a prerequisite before 

the isolate can be considered as an inoculant to be used in farming systems. The effectiveness 

of Burkholderia sp. 12F on other plant species or cultivars in field conditions also needs to be 

assessed. There is also a need for commercial optimization of inoculant formulations 

containing multiple effective and complementary strains such as rhizobia plus a PGPR.   
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10. Appendixes 

 

 

 

 

 

 

Fig. 1 Sampling sites of soils from major grain cropping regions in Australia. Black dots 

indicate sampling points 
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Table 1. The soil physico-chemical properties and the average annual rainfall at the sampling sites 

Sampling 

sites 

EC 

(µS 

cm-1) 

pH Clay Sand Total 

N 

(%) 

Soil 

C 

(%) 

P  

(mg 

kg-1) 

Zn 

(mg 

kg-

1) 

Mg 

(mg kg-

1) 

Mn 

(mg 

kg-1) 

K 

(mg 

kg-1) 

Cu 

(mg 

kg-1) 

Ca 

(mg kg-

1) 

Rainfall 

(mm) 

ETP 

(mm) 

Aridity 

index 

1 73.8 7.1 21.5 27.5 0.18 1.78 452.0 20.0 1250.0 1200.0 3580.0 8.9 1960.0 582.9 1173.2 0.50 

2 326.2 6.6 16.5 37.5 0.19 2.32 384.0 19.0 1350.0 200.0 3330.0 6.4 3580.0 471.0 1172.2 0.40 

5 168.7 6.5 31.5 35.0 0.12 1.72 485.0 35.0 1590.0 710.0 4010.0 29.0 2300.0 548.7 1167.9 0.47 

6 181.4 6.4 26.5 22.5 0.15 1.76 400.0 28.0 1510.0 440.0 3690.0 9.7 1640.0 425.8 1168.4 0.36 

7 138.2 6.5 26.5 27.5 0.12 1.45 292.0 22.0 1410.0 410.0 3660.0 9.2 1240.0 425.8 1171.1 0.36 

8 98.2 7.4 24.0 52.5 0.09 1.33 238.0 24.0 4000.0 190.0 5440.0 5.8 8360.0 383.0 1169.5 0.33 

9 113.5 8.2 21.5 61.3 0.07 2.29 330.0 27.0 4710.0 170.0 5200.0 6.5 38400.0 301.3 1182.4 0.25 

10 81.4 7.4 9.0 83.8 0.02 0.40 91.0 11.0 603.0 50.0 1300.0 2.0 516.0 323.4 1190.6 0.27 

11 81.5 7.2 5.3 86.3 
  

130.0 13.0 1400.0 98.0 2270.0 2.9 1330.0 329.6 1188.9 0.28 

12 74.9 7.0 9.0 85.0 0.01 0.23 82.0 8.0 673.0 56.0 1120.0 2.0 597.0 330.7 1187.5 0.28 

14 84.8 6.5 11.5 85.0 0.04 0.64 98.0 13.0 687.0 45.0 1300.0 2.0 581.0 296.0 1178.0 0.25 

15 104.2 7.1 9.0 82.5 0.01 0.27 88.0 11.0 823.0 48.0 1250.0 2.0 661.0 383.0 1177.2 0.33 

16 103.2 7.6 24.0 62.5 0.06 0.86 185.0 19.0 3070.0 160.0 4610.0 3.6 2030.0 390.4 1173.7 0.33 

17 106.3 7.5 31.5 45.0 0.13 1.88 297.0 34.0 3570.0 360.0 6560.0 9.8 3090.0 390.4 1166.0 0.33 

21 112.0 7.5 36.5 32.5 0.44 6.88 551.0 47.0 7690.0 100.0 9480.0 8.6 72300.0 600.1 1154.9 0.52 

22 278.0 7.4 36.5 45.0 0.15 1.79 242.0 23.0 2850.0 100.0 4280.0 3.8 6390.0 460.5 1167.1 0.39 
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23 151.3 6.9 29.0 57.5 0.16 2.17 248.0 21.0 2010.0 110.0 3080.0 3.0 2640.0 338.4 1167.5 0.29 

24 168.5 7.1 14.0 60.0 0.15 1.79 289.0 14.0 3870.0 150.0 2920.0 3.4 4040.0 460.5 1171.5 0.39 

25 108.9 6.9 38.0 42.0 0.13 1.66 274.0 40.0 4090.0 440.0 7510.0 9.4 3310.0 366.0 1169.5 0.31 

26 52.8 6.9 8.0 84.5 0.03 0.46 142.0 12.0 976.0 75.0 1490.0 2.8 734.0 304.5 1192.0 0.26 

27 54.1 8.0 5.5 89.5 0.01 0.16 68.0 5.2 481.0 32.0 853.0 2.0 660.0 272.2 1193.3 0.23 

28 83.4 8.1 5.5 89.5 0.02 0.40 134.0 12.0 1380.0 74.0 2050.0 2.1 3650.0 272.2 1198.5 0.23 

29 37.0 6.7 8.0 87.0 0.00 0.10 79.0 10.0 956.0 62.0 1850.0 2.0 638.0 266.0 1197.9 0.22 

30 66.5 7.5 15.5 72.0 0.05 0.69 183.0 15.0 2510.0 85.0 3160.0 2.7 2640.0 310.8 1186.5 0.26 

31 102.7 6.1 5.5 89.5 0.05 0.81 137.0 7.7 452.0 26.0 921.0 2.0 365.0 381.5 1183.6 0.32 

33 220.2 5.6 28.0 32.0 0.14 1.96 338.0 38.0 4350.0 500.0 4960.0 16.0 1260.0 542.1 1208.2 0.45 

34 158.1 6.0 18.0 52.0 0.08 1.09 251.0 28.0 1480.0 200.0 3710.0 6.7 905.0 474.3 1214.6 0.39 

35 105.6 7.9 15.5 59.5 0.10 1.78 343.0 35.0 4160.0 220.0 5410.0 9.0 11500.0 364.4 1225.0 0.30 

36 130.2 6.9 11.5 82.5 0.06 0.90 217.0 16.0 1360.0 160.0 2010.0 4.3 3270.0 371.8 1210.7 0.31 

37 108.5 6.9 26.5 52.5 0.13 1.61 303.0 28.0 3510.0 310.0 5510.0 8.8 2870.0 329.3 1204.8 0.27 

38 243.5 7.7 14.0 58.8 0.21 4.69 596.0 36.0 5370.0 220.0 7500.0 8.6 64000.0 505.2 1197.6 0.42 

40 108.4 7.4 38.0 49.5 0.11 2.13 354.0 18.0 3220.0 73.0 5770.0 4.1 21100.0 411.1 1200.4 0.34 

41 185.4 7.0 13.0 77.0 0.09 1.54 191.0 57.0 1900.0 69.0 3470.0 4.0 5780.0 402.4 1212.0 0.33 

42 83.1 8.0 14.0 70.0 0.07 1.20 179.0 26.0 3070.0 150.0 5000.0 10.0 5610.0 358.2 1212.0 0.30 

43 102.7 7.8 11.5 80.8 0.10 1.91 253.0 23.0 2370.0 87.0 3800.0 5.0 10800.0 346.2 1219.0 0.28 

44 107.5 7.7 6.5 82.3 0.09 1.63 247.0 17.0 3590.0 280.0 3220.0 4.9 16000.0 311.8 1218.0 0.26 

46 101.2 7.7 9.0 79.8 0.07 7.30 526.0 20.0 9800.0 130.0 2940.0 6.1 100000.0 377.4 1231.3 0.31 



 

283 
 

47 120.9 8.3 6.5 77.3 0.07 4.68 279.0 35.0 7250.0 260.0 3590.0 5.7 100000.0 300.5 1238.4 0.24 

48 140.5 7.2 6.5 72.3 0.17 8.85 516.0 16.0 10500.0 200.0 5290.0 4.4 100000.0 282.7 1224.4 0.23 

49 271.0 7.4 51.5 23.8 0.03 0.48 143.0 36.0 4250.0 1100.0 2530.0 13.0 4340.0 555.5 1355.4 0.41 

50 123.4 8.1 46.5 31.3 0.05 1.07 310.0 51.0 18800.0 720.0 4410.0 26.0 16700.0 659.5 1358.3 0.49 

52 92.9 7.8 64.0 15.0 0.10 1.31 696.0 74.0 5360.0 2200.0 6010.0 28.0 9600.0 807.7 1353.5 0.60 

53 72.8 8.2 34.0 50.8 0.04 0.98 142.0 28.0 2280.0 1600.0 1050.0 23.0 7110.0 659.6 1347.3 0.49 

54 134.8 7.5 59.0 32.3 0.04 1.01 177.0 53.0 5550.0 880.0 2130.0 13.0 4280.0 596.2 1309.4 0.46 

56 70.6 7.7 44.0 35.0 0.04 0.69 155.0 36.0 2400.0 3300.0 1840.0 12.0 4190.0 647.3 1309.3 0.49 

57 69.7 7.0 31.5 32.5 0.04 0.64 179.0 36.0 2380.0 1700.0 2250.0 11.0 2420.0 574.1 1299.6 0.44 

58 88.4 7.2 31.5 42.3 0.07 1.08 185.0 39.0 3130.0 2100.0 2840.0 12.0 4320.0 574.1 1295.5 0.44 

59 88.9 7.5 59.0 21.3 0.06 0.44 168.0 44.0 3840.0 1600.0 3380.0 12.0 4050.0 502.7 1289.0 0.39 

60 109.2 7.5 36.5 36.3 0.03 0.50 284.0 48.0 4620.0 560.0 6920.0 20.0 5510.0 502.7 1284.6 0.39 

61 40.6 6.9 61.5 18.8 0.03 0.46 349.0 60.0 5620.0 620.0 6770.0 23.0 4930.0 502.7 1274.0 0.39 

62 66.4 7.9 46.5 31.3 0.02 0.23 252.0 44.0 8470.0 580.0 6140.0 20.0 4500.0 472.9 1267.2 0.37 

63 107.7 8.2 39.0 40.0 0.04 0.57 514.0 61.0 11700.0 710.0 4090.0 18.0 5440.0 550.7 1267.6 0.43 

66 40.0 6.5 29.0 47.3 0.05 0.90 160.0 36.0 3190.0 740.0 790.0 9.8 2820.0 694.6 1299.4 0.53 

67 44.5 6.2 6.3 79.0 0.07 1.36 242.0 6.2 319.0 34.0 199.0 4.0 1050.0 409.4 1240.5 0.33 

68 142.4 7.4 7.5 80.3 0.04 0.84 136.0 4.1 223.0 55.0 234.0 2.1 1580.0 308.6 1243.5 0.25 

69 134.6 6.7 6.3 80.3 0.03 0.50 124.0 5.7 258.0 38.0 324.0 3.5 1390.0 328.3 1241.7 0.26 

70 127.4 6.8 26.3 54.0 0.05 0.76 118.0 11.0 1060.0 160.0 2020.0 6.9 758.0 325.5 1244.7 0.26 

71 71.8 7.4 14.0 79.8 0.02 0.35 270.0 15.0 1530.0 370.0 2930.0 8.1 1330.0 307.1 1246.2 0.25 
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72 91.3 6.3 15.0 66.5 0.04 0.61 136.0 8.5 672.0 180.0 965.0 4.9 624.0 314.2 1256.6 0.25 

74 42.8 6.9 15.3 74.8 0.02 0.61 217.0 8.7 902.0 85.0 2020.0 4.4 621.0 325.8 1251.3 0.26 

75 81.1 6.9 11.5 74.8 0.06 0.99 261.0 48.0 1490.0 390.0 1420.0 32.0 4210.0 366.4 1247.4 0.29 

76 206.2 6.2 16.5 74.8 0.05 0.97 207.0 5.7 323.0 41.0 623.0 2.9 588.0 359.3 1256.4 0.29 

77 65.0 6.9 8.8 80.3 0.02 0.51 106.0 3.3 173.0 29.0 308.0 2.0 276.0 359.3 1258.3 0.29 

79 145.1 5.8 16.3 71.5 0.05 0.86 210.0 4.9 235.0 21.0 493.0 2.3 381.0 291.9 1261.8 0.23 

80 165.7 7.6 12.5 79.0 0.02 0.50 115.0 4.0 212.0 18.0 353.0 2.5 802.0 291.9 1264.3 0.23 

81 104.3 7.2 11.3 76.5 0.01 0.40 150.0 4.9 322.0 56.0 663.0 3.6 1050.0 377.7 1270.2 0.30 

82 190.0 6.8 6.5 84.8 0.05 0.90 58.0 1.9 133.0 26.0 144.0 2.0 1180.0 533.6 1273.0 0.42 

 

N.B. ETP: Evapotranspiration, EC: Electrical conductivity
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Table 2. Taxonomic affiliation of rhizospheric bacteria isolated from chickpea, metal ion concentration and Aridity index at their sampling sites 

and their capacity to produce IAA and ACC deaminase in vitro.  

Strains Species % identity 

PSI 

 

IAA (µg L-1) 

ACCd 

(nmole 

α-KB 

h-1) Zn (mg kg-1) 

Mn (mg kg-

1) Cu (mg kg-1) 

Aridity 

index 

7F Paraburkholderia phenoliruptrix 98.28 1.23 7.38 1574.7 35.0 710.0 29.0 0.47 

12F Burkholderia sp. MR5  98.29 5.45 54.3 1158.9 35.0 710.0 29.0 0.47 

13F Burkholderia rhynchosiae WSM3930 98.89 3.54 15.71 n.d. 24.0 190.0 5.8 0.33 

18F Burkholderia sp. HB1 98.52 1.66 18.65 386.2 11.0 48.0 2.0 0.33 

20F Burkholderia sp. WSM4671 99.32 2.45 57.00 5966.4 14.0 150.0 3.4 0.39 

21F Burkholderia sp. HB1 98.47 2.44 8.08 n.d. 14.0 150.0 3.4 0.39 

27F Pseudomonas fluorescens PfAR1 99.79 4.44 5.54 512.6 10.7 26.0 2.0 0.32 

28F Paraburkholderia phenoliruptrix 98.77 1.55 19.41 1692.8 14.0 150.0 3.4 0.39 

30F Burkholderia sp. MR5 99.45 2.27 27.40 1347.2 5.2 32.0 2.0 0.23 

35F Paraburkholderia terricola 98.99 1.76 19.63 n.d. 18.0 73.0 4.1 0.34 

41F Burkholderia caledonica B5 99.15 3.45 24.93 n.d. 41.0 120.0 14.0 0.44 

45F Pseudomonas putida E46 99.29 1.39 8.52 n.d. 17.0 280.0 4.9 0.26 

46F Pseudomonas sp. AP3_22 99.2 2.69 67.58 n.d. 17.0 280.0 4.9 0.26 

52F Burkholderia sp. MR5 98.51 3.56 9.51 917.3 16.0 200.0 4.4 0.23 

53F Burkholderia sp. HB1 99.19 1.41 7.00 715.0 36.0 1100.0 13.0 0.41 

55F Burkholderia sp.  WSM4671 97.98 3.77 14.78 n.d. 36.0 1100.0 13.0 0.41 

62F Pseudomonas putida GM6  98.69 2.39 26.11 n.d. 36.0 1100.0 13.0 0.41 

64F Pseudomonas sp. ICMP 22245 98.06 1.65 n.d. 1094.3 36.0 1100.0 13.0 0.41 

68F Burkholderia sp. NA11029 99.66 2.56 9.29 n.d. 36.0 1100.0 13.0 0.41 
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73F Paraburkholderia terricola 99.49 2.54 29.89 n.d. 36.0 1100.0 13.0 0.41 

84F Paraburkholderia phenoliruptrix 100 2.33 4.74 6800.9 51.0 720.0 26.0 0.49 

85F Paraburkholderia phenoliruptrix 98.38 2.41 37.55 n.d. 36.0 3300.0 12.0 0.49 

86F Paraburkholderia phenoliruptrix 98.99 2.65 23.00 n.d. 44.0 1600.0 12.0 0.39 

87F Paraburkholderia phenoliruptrix 98.79 3.54 54.29 1018.4 42.0 1600..0 13.0 0.53 

94F Burkholderia sp. MR5 98.5 3.55 16.24 4297.4 60.0 620.0 23.0 0.39 

101F Burkholderia sp. WSM4671 99.89 1.59 13.48 n.d. 44.0 580.0 20.0 0.37 

102F Pseudomonas sp. 7.3 98.76 1.38 13.26 n.d. 61.0 710.0 18.0 0.43 

108F Paraburkholderia phenoliruptrix 99.37 2.71 13.45 1600.0 36.0 740.0 9.8 0.53 

114F Pseudomonas frederiksbergensis 98.88 2.36 5.73 n.d. 15.0 370.0 8.1 0.25 

116F Pseudomonas frederiksbergensis 98.66 1.45 n.d. n.d. 15.0 370.0 8.1 0.25 

117F Pseudomonas frederiksbergensis 99.46 2.49 4.97 n.d. 15.0 370.0 8.1 0.25 

120F Burkholderia sp. HB1 99.23 3.65 23.43 1911.9 8.7 85.0 4.4 0.26 

126F Burkholderia cepacia KSB-32 99.26 4.67 n.d. 453.6 36.0 1100.0 13.0 0.41 

127F Burkholderia cenocepacia FL-5-3-30-S1-D7 99.3 4.56 41.9 2232.2 36.0 3300.0 12.0 0.49 

130F Burkholderia cepacia KSB-32 99.26 1.23 7.25 n.d. 4.9 56.0 3.6 0.30 

132F Burkholderia caledonica B5 99.4 2.39 36.33 n.d. 4.9 56.0 3.6 0.30 

3F Bacillus simplex EH12 99.3 3.58 n.d. 453.6 28.0 440.0 9.7 0.36 

4F Bacillus amyloliquefaciens  99.15 2.67 8.84 n.d. 28.0 440.0 9.7 0.36 

6F Bacillus amyloliquefaciens C-2 SSK-8 99.14 2.39 n.d. n.d. 22.0 410.0 9.2 0.36 

8F Bacillus megaterium GBRS04 99.41 4.43 9.32 352.5 22.0 410.0 9.2 0.36 

9F Paenibacillus endophyticus BMCH-IB-ONF 7 97.73 2.49 n.d. n.d. 22.0 410.0 9.2 0.36 

10F Bacillus thuringiensis N3 99.5 1.66 n.d. n.d. 27.0 170.0 6.5 0.25 

14F Bacillus simplex 99.1 1.23 4.08 4786.3 13.0 98.0 2.9 0.28 

15F Bacillus megaterium 17-Y5 98.65 2.45 4.55 n.d. 13.0 98.0 2.9 0.28 

17F Bacillus megaterium GBRS04 99.4 3.76 13.35 n.d. 13.0 45.0 2.0 0.25 
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24F Bacillus simplex EH12 99.37 2.31 5.06 1380.9 11.0 48.0 2.0 0.33 

25F Bacillus niacini IHB B 7258 98.96 2.45 8.36 n.d. 11.0 48.0 2.0 0.33 

26F Bacillus simplex G27 99.6 2.55 7.98 2232.2 19.0 160.0 3.6 0.33 

29F Bacillus simplex 99.3 2.29 5.57 546.4 47.0 100.0 8.6 0.52 

31F Bacillus megaterium J8R4LARS 99.49 2.47 n.d. n.d. 47.0 100.0 8.6 0.52 

32F Bacillus cucumis J20BS1 99.1 3.55 n.d. n.d. 23.0 100.0 3.8 0.39 

33F Bacillus bataviensis 27.1 99.79 5.66 n.d. 1237.6 23.0 100.0 3.8 0.39 

34F Peribacillus simplex 136-CR12 99.5 2.41 4.3 n.d. 23.0 100.0 3.8 0.39 

37F Peribacillus simplex EH12 99.09 2.47 n.d. n.d. 23.0 100.0 3.8 0.39 

38F Peribacillus simplex 98.45 3.33 9.97 3757.9 21.0 110.0 3.0 0.29 

39F Bacillus megaterium J8R4LARS 99.69 3.44 6.01 n.d. 14.0 150.0 3.4 0.39 

40F Bacillus cereus WYLW1-7 99.44 2.45 15.64 n.d. 7.7 26.0 2.0 0.32 

42F Bacillus subtilis CICC10034 98.73 2.88 5.70 7323.5 36.0 220.0 8.6 0.42 

43F Bacillus megaterium 99.06 3.54 5.60 n.d. 36.0 220.0 8.6 0.42 

47F Peribacillus simplex EH12 99.7 3.44 5.60 n.d. 36.0 220.0 8.6 0.42 

50F Bacillus toyonensis 99.05 2.33 7.47 n.d. 18.0 73.0 4.1 0.34 

51F Bacillus endophyticus NM3E6 99.68 1.44 7.89 n.d. 57.0 69.0 4.0 0.33 

57F Bacillus simplex QT-140 99.36 3.66 8.01 7324.5 26.0 150.0 10.0 0.30 

59F Bacillus amyloliquefaciens SDSB22 98.86 2.59 10.30 959.4 23.0 87.0 5.0 0.28 

60F Bacillus megaterium VITAKB20 99.79 2.57 6.20 1144.8 23.0 87.0 5.0 0.28 

61F Bacillus mycoides 99.69 2.66 4.46 n.d. 23.0 87.0 5.0 0.28 

65F Peribacillus simplex EH12 99.71 2.5 7.35 n.d. 23.0 87.0 5.0 0.28 

66F Bacillus endophyticus NM3E6 94.72 2.66 5.60 1684.3 17.0 280.0 4.9 0.26 

67F Bacillus mycoides 99.55 2.54 6.27 984.7 20.0 130.0 6.1 0.31 

69F Bacillus subtilis CICC10034 99.4 2.44 9.35 n.d. 20.0 130.0 6.1 0.31 

70F Bacillus niacini 99.89 3.47 8.40 n.d. 35.0 260.0 5.7 0.24 



 

288 
 

71F Bacillus cucumis 99 2.56 12.94 959.4 36.0 1100.0 13.0 0.41 

72F Bacillus toyonensis SL4-3 99.49 2.44 35.93 1144.8 36.0 1100.0 13.0 0.41 

74F Bacillus mycoides BF1-5 99.28 3.33 10.78 n.d. 36.0 1100.0 13.0 0.41 

75F Bacillus simplex FC1781 99.26 2.55 8.62 n.d. 36.0 1100.0 13.0 0.41 

76F Bacillus simplex 99.61 2.76 5.73 537.9 53.0 880.0 13.0 0.46 

77F Bacillus cereus 103 98.93 2.88 8.52 6834.6 53.0 880.0 13.0 0.46 

78F Bacillus cereus LA324 99.59 3.87 9.41 n.d. 36.0 3300.0 12.0 0.49 

79F Bacillus niacini 99.58 2.76 16.43 n.d. 60.0 620.0 23.0 0.39 

80F Bacillus megaterium S188 98.74 2.34 6.36 n.d. 44.0 580.0 20.0 0.37 

81F Bacillus simplex 100 2.66 7.56 1212.3 44.0 580.0 20.0 0.37 

82F Bacillus simplex 99.7 2.87 6.22 n.d. 44.0 580.0 20.0 0.37 

83F Bacillus simplex 99.89 2.66 12.09 n.d. 36.0 740.0 9.8 0.53 

89F Bacillus subtilis mmb14 98.66 2.44 6.62 512.6 6.2 34.0 4.0 0.33 

98F Bacillus pumilus 315 99.66 4.76 6.52 672.8 6.2 34.0 16.0 0.23 

100F Bacillus megaterium S2 97.71 2.76 24.9 5972.3 48.0 390.0 32.0 0.29 

111F Bacillus pumilus 52 99.2 3.55 10.68 n.d. 3.3 29.0 2.0 0.29 

118F Bacillus atrophaeus 99.67 2.33 6.59 n.d. 4.9 21.0 2.3 0.23 

119F Bacillus niacini 99.7 2.77 8.36 335.1 4.9 56.0 3.6 0.30 

58F Bacillus simplex EH12 99.79 2.69 4.97 672.8 4.9 56.0 3.6 0.30 

ACCd- ACC deaminase, α-KB- α-ketobutyrate, n.d. not detected  
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Table 3. The chemical characteristics of rock phosphates  

Chemical 

properties 

Boucraa RP Vietnam RP Weng Fu RP Togo RP Phalaborwa RP Peru RP  Sechura RP 

Source  Western Sahara Vietnam China West Africa South Africa Peru Peru  

Total P (%) 15.6 12.6 14.5 15.2 16.0 14.7 13.7% 

Cadmium  

(mg Cd/kg P) 

161 6 15 329 Not available 151 - 

BD (T/m3) 1.6 1.69 - 1.5 - 1.6 - 

Iron (%) 5.3 0.88 0.70 1.4 0.7 - - 

Aluminium (%) 15.5 0.47 0.53 0.6 0.2 - - 

 Key: BD = bulk density; RP = Rock phosphate  
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11. Media and reagents 

DF minimal medium (Dworkin and Foster, 1958) 

Chemical Quantity (g L-1) 

KH2PO4 4.0  

Na2HPO4 6.0  

MgSO4.7H2O 0.2  

glucose 2.0  

gluconic acid 2.0  

citric acid 2.0  

FeSO4.7H2O 0.001 

H3BO3 0.01 

MnSO4.H2O 0.01119 

ZnSO4.7H2O 0.1246 

CuSO4.5H2O 0.07822 

MoO3 0.01 

(NH4)2SO4 0.1  

 

pH is adjusted to 7.0 and autoclaved at 121 oC for 20 min.
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YEMB medium 

Chemical  Quantity (g L-1) 

Yeast extract 0.5 

Mannitol 2.5 

L-glutamic acid Na 0.5 

Na2HPO4.2H2O 0.36 

MgSO4.7H2O 0.1 

CaCl2 0.04 

FeCl3 0.004 

Congo red: 10 mL (0.0025 g/L) 

The pH is adjusted to 7.0 and autoclaved for 20 min at 121 oC. YEMA 15 g L-1 is added to 

YEMB prior to autoclaving.
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McKnight's nutrient solution (McKnight et al. 1949) 

Chemical  Quantity (per 0.25 L) 

CaSO4.2H2O 6.75 g 

MgSO4.7H2O 1 g 

KH2PO4 1 g 

KCl 1.5 g 

A-Z trace elements* 5 mL 

D solution** 5 mL 

Distilled water 250 mL 

 

*A – Z trace elements 2.86g H3BO3, 2.08 g MnSO4.7H2O, 0.22 g ZnSO4.7H2O, 0.079 g 

CuSO4.5H2O, 0.09 g H2MoO4.H2O L-1.  

**D solution is 10 g FeCl3 L-1.
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NBRIP medium (Nautiyal 1999) 

Chemicals  Quantity (g L-1) 

glucose 10  

MgCl2.6H2O 5  

MgSO4.H2O 0.25  

KCl 0.2  

(NH4)2SO4 0.1  

Ca3(PO4)2 5  

 

 

 




