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Abstract

Beyond-Standard Model (BSM) physics searches at the LHC are limited by the amount of
information available to distinguish a new physics process from its backgrounds. Analyses
apply a range of classification algorithms to obtain sensitivity to rare signals, but are chal-
lenged to obtain enough information in a broad parameter space without relying on heavy
optimisation in narrow search regions. LHC event classification techniques become more
powerful when they can be applied broadly to diverse models, requiring a large number of
independent variables sensitive to anomalous signals. In our prototype ATLAS search, we
create new variables that target information not used in current methods. Whereas typical
variables treat events in isolation, we obtain further discrimination from the “similarity” be-
tween event pairs by evaluating “distances” in a kinematic space. A map of event similarities
forms a graph network, which provides a convenient range of network variables able to
quantify local topologies. In networks constructed from nodes of LHC events, we aim to use
network variables to increase sensitivity to anomalous topologies local to BSM events. Our
proof-of-principle analysis reveals that BSM physics events may populate distinct distribu-
tions compared with Standard Model events in several types of network variables, including
measures of local centrality and clustering, using supersymmetry searches as examples.
Graph network analysis may contribute power to existing methods of event classification and
increase sensitivity to anomalous signatures.
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Introduction

Many viable improvements to the Standard Model theory of particle physics have been
proposed over recent years, offering solutions to the limitations of the current model. Al-
though the Standard Model provides sound descriptions of all known particles and accurate
predictions of their interactions, it cannot solve several remaining problems, including the
nature of dark matter, gravity and the matter-antimatter asymmetry. These and other co-
nundrums are driving beyond-Standard Model research to seek the true theory using an
experimentally verifiable framework.

One proposed extension to the Standard Model is the principle of supersymmetry, which
may in one of its possible forms provide a dark matter candidate, stabilise the Higgs boson
mass and answer several other pressing questions. If the correct “beyond the Standard Model”
scenario involves supersymmetry, then the Large Hadron Collider has a high chance of
detecting direct evidence for it within the coming years, especially after undergoing planned
upgrades reaching higher energy and luminosity. Searches for strong and electroweak
supersymmetry both have merit: whereas strongly coupled supersymmetry is characterised
by larger production rates, electroweak processes are likely to benefit from more distinctive
signals and identifiable final states.

While the true extension to the current framework remains elusive, we must focus
experimental efforts on searching for evidence of new physics, which has a large free
parameter space even when restricted to theories of supersymmetry. Progress in these
analyses requires powerful methods of isolating small signals in one of many possible forms.
The logical solution is to increase sensitivity to as many scenarios as possible, driving
us to develop creative new methods of isolating anomalies against the Standard Model
background. Not only do we need model-independent search strategies, but we also benefit
from coupling new methods with existing analysis techinques, combining their sensitivity to
develop powerful, broad searches.

The work in this thesis tests a new method for beyond-Standard Model physics analyses
in collider data using graph theory techniques. Graph networks have proven useful in a range
of social, biological and economic applications, but within particle physics have mostly
been applied in deep learning models, and have never been used to study collider topology
in particle collision event networks. Wider research shows that networks are an effective



tool for characterising and quantifying the extent of topological structures; the connections
between elements of a dataset reveal more information about the data than we can obtain
from studying the elements in isolation. Supersymmetry presents a good example on which
to test this novel technique for new physics searches with the Large Hadron Collider.

This thesis evaluates the potential for using a network analysis approach in beyond-
Standard Model searches, seeking to characterise the network behaviour of small signals
in particle collider data using examples from the strong and electroweak sectors of super-
symmetry. The analysis exploits convenient variables defined by graph theory to identify
distinct network topologies, isolating unique signatures of signal events against the predicted
Standard Model background. The network variables target aspects of clustering, closeness
and other centrality measures, which may reveal new information depending on the scale
of connections. Further information is obtained from selecting sensitive basis variables
underlying the graph space, and by calculating a range of spatial distances. Exploiting these
various possibilities may allow particle collider event networks to become effective methods
in searches, and further apply to model-independent anomaly detection.

Chapter 1 describes the successes and limitations of the Standard Model, identifying
the gaps which may be explained by theories of supersymmetry presented in Chapter 2.
In Chapter 3, the Large Hadron Collider and ATLAS experiment designs are described,
followed by an outline of current analysis strategies for new physics searches with ATLAS
data. Chapter 4 discusses graph networks in a particle context, presenting our methods for
constructing networks using collider events and their kinematic attributes. The methods then
feature in several contexts throughout Chapters 5-7, first in two preliminary tests involving
electroweak and strongly coupled supersymmetry in Chapters 5 and 6, and later in Chapter
7 as a test to determine whether network methods yield reliable results when constructing
graphs using real ATLAS data.

Chapter 8 discusses the conclusions and future applications of network analysis to ATLAS
searches. Since the completion of the work presented in Chapters 5 and 6, these results
are now published in the Journal of High Energy Physics [1]. I contributed personally to
the development of this project at all core stages including design and concepts, modelling
and simulation, refinement and generation of results, and the writing and editing of the
publication.



Chapter 1

The Standard Model

1.1 Introduction to the Standard Model

The Standard Model of particle physics (SM) is a gauge field theory describing the con-
stituents of matter and their strong, weak and electromagnetic interactions, based on symmetry
laws. Particles are allowed to interact only if the process conserves the required symmetries,
so in the quantum field theory of the SM, invariance under a local symmetry transformation
restricts the form of the interactions.

Since the laws of physics must never depend on the frame of an observer, all physics
in the model must obey global Poincaré symmetry, consisting of translational invariance,
rotational invariance and invariance under the change of inertial reference frame. A different
type of symmetry, this time local not global, restricts the form of the three fundamental
interactions, and is a type of internal SU(3)×SU(2)×U(1) gauge symmetry. The SM is
gauge invariant because it is locally invariant under transformations belonging to this product
of groups.

All possible interactions can be written within the Lagrangian mathematical formalism,
which provides a concise statement of the physical properties of particles in the SM. It
represents matter as fields that couple to one another with different relative strengths. The
Lagrangian comprises free terms for every field, including kinetic terms that describe dynamic
motion, in addition to coupling terms that describe the possible interactions permitted by the
symmetries and their relative strengths. Any symmetry operation belonging to the theory
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must leave the time integral of the Lagrangian (i.e. the action) invariant, so the terms allowed
in the Lagrangian are constrained by the required symmetries.

Another requirement of the model is renormalisability, a property that relates to the
highest energy processes the theory can possibly describe. We can define D as a distance
cutoff such that effects involving fields varying on shorter distance scales than D are ignored,
and consider the continuum limit as D → 0 at some momentum scale p. If the SM is
renormalisable, then it can describe the physical values of constant parameters in the high
energy limit (at small distance scales) using only a finite number of bare coupling parameters.
To satisfy this requirement, all terms in the Lagrangian must be renormalisable.

The quantum field theory of the SM is the culmination of decades of international effort
and careful reasoning. Subatomic physics theory in the 20th century progressively unified
explanations of matter and interactions until the current SM was achieved, unifying the
electromagnetic and weak forces but leaving the strong force in a separate sector. Theoretical
calculations can now predict many experimental measurements to high precision, verifying
the model at energies up to those probed by the LHC.

1.2 Symmetry groups and particle content

The symmetries driving the SM are based on transformations that conserve some properties
that we call the quantum numbers of the particles. If the SM has a symmetry under a
particular transformation, then a type of quantum number is conserved. This is a consequence
of Noether’s theorem, which states that a continuous symmetry implies that a conserved
current exists with an associated conserved charge [2].

The SM is split into two sectors: the electroweak sector and the strong sector. The
theory is invariant under transformations in the subgroup SU(2)L ×U(1)Y , which describes
the electroweak symmetry group, and the SU(3)C gauge theory, which describes strong
interactions belonging to the theory of quantum chromodynamics (QCD). The Lagrangian
can be written as the simple sum of terms belonging separately to the electroweak and QCD
sectors: LSM = LEW +LQCD. The subscripts C, L and Y refer respectively to colour, left
chirality and weak hypercharge, and are properties of the subsets of matter that interact in
each case.

In any interaction, matter particles called fermions interact with force-carrying particles
called bosons, which are shown in blue in Figure 1.1.
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Fig. 1.1 Table of particles in the Standard Model [3].

Matter comprises quarks and leptons, and the SM categorises these as fermion fields
according to their spin statistics, which are Fermi-Dirac statistics due to their half-integer
spin. Bosons instead obey Bose-Einstein statistics, have integer spin values, and mediate
the fermion interactions. If the integer spin of a particle is zero, it is called a scalar boson,
whereas a spin-1 particle is called a vector boson. The Lagrangian contains all the types
of renormalisable interactions of four mass dimensions between scalar, fermion and vector
fields which are invariant under transformations belonging to the local symmetry group of
the SM.

The photon (γ), Z, W± and gluons are all force-carrying bosons. The W± states are
responsible for carrying the weak charge-current interactions, and the neutral Z mediates the
neutral-current weak interactions, while gluons mediate the strong interactions. The final
boson is the Higgs particle, the most recent additional SM particle measured experimentally.
The Higgs boson was discovered at a mass of 125.36± 0.41 GeV by the ATLAS [4] and
CMS [5] experiments some decades after it was introduced in the theory by Brout, Englert
and Higgs to give mass to the fermions and weak bosons via the Higgs mechanism, described
in Section 1.6. The discovery confirmed the picture of electroweak symmetry breaking
in the SM, and added the final element to complete the current theory. Since the Higgs
boson was confirmed, all experimental observables in the SM can now be calculated from
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SM parameters, although some (such as the anomalous magnetic moment of the muon) are
non-perturbative and remain difficult to calculate.

1.3 Constructing the Standard Model

The fermions and bosons are combined in a gauge invariant quantum field theory that
describes their properties and interactions using symmetries. The symmetry groups are
classified either as Abelian or non-Abelian, according to whether their elements commute or
do not commute. Developing a free fermion field theory into an interacting model via these
two types of continuous gauge groups, we find that particle content comes out differently
from Abelian and non-Abelian theories. In the SM, the theory of electrodynamics governed
by symmetry under transformations belonging to the U(1)Q subgroup is an Abelian theory,
whereas the weak and strong interactions come from non-Abelian subgroups. The different
nature and description of the bosons involved in these interactions is accurately developed by
constructing the theories starting from the same free fermion fields with these differences in
mind.

1.3.1 Quantum electrodynamics

The need to combine Maxwell’s equations of electromagnetism with quantum field theory
led to the development of quantum electrodynamics (QED) in the 1940s, a gauge theory
that now forms part of the Standard Model. The principle of symmetry by gauge invariance
was already present in Maxwell’s theory, and is developed in QED into a symmetry by local
phase invariance. Gauge invariance under local transformations of fermion fields with the
U(1) group is equivalent to invariance under phase rotations at every point x in spacetime
such that every point in the space is phase invariant. The transformations proceed for a field
φ as shown in Equations 1.1 and 1.2. The phase invariance of the electromagnetic field under
these transformations implies charge conservation, following from Noether’s theorem.

φ → φ
′
= eiqα(x)

φ (1.1)

φ
† → φ

′† = e−iqα(x)
φ

† (1.2)
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When the local phase transformations of the U(1) group are applied to terms in the
Lagrangian that describes the properties and dynamics of a free, complex scalar field, some
terms are naively not gauge invariant. For a dynamic field, the Lagrangian contains a kinetic
term that is proportional to the derivative product (∂µφ †)(∂ µφ), where the partial derivative
introduces a term proportional to ∂µα(x). This term removes the gauge invariance of the
theory, and a significant step towards formalising QED involves adapting it into covariant
form so the theory is invariant under these local transformations.

The covariant derivative

The Lagrangian becomes gauge invariant in this case by introducing a derivative which
transforms covariantly, denoted Dµ as shown in Equation 1.3. By making the derivative
covariant, we remove the term proportional to ∂µα(x) and ‘gauge’ local transformations
to maintain the required gauge invariance in QED. The Lagrangian consequently includes
an additional vector gauge field Aµ with the property in Equation 1.4, introducing a new
interaction that promotes the free theory to an interacting theory. The form of the interaction
is fixed in terms of the new vector field.

Dµ = ∂µ + iqAµ (1.3)

Aµ(x)→ A
′
µ = Aµ(x)−∂µα(x) (1.4)

A gauge boson is a quantisation of the gauge field, and one boson is added to the model
of QED corresponding to the generator inserted above. Generally, local gauge invariance
requires the introduction of massless vector gauge bosons, whose interactions are fixed. The
boson mediating the electromagnetic interaction pertaining to the Aµ field is the photon, γ ,
so local phase invariance in QED leads to the existence of the photon field. By this process,
QED comes from a theory of free Fermi fields via the continuous, Abelian U(1) gauge group.
The symmetry does not permit a quadratic term in the vector field, which would not be
invariant under the transformation, so the QED Lagrangian is missing a mass term of the
form AµAµ . Since the photon is massless, the absence of a mass term is an accurate depiction
of reality.
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1.3.2 The non-Abelian Standard Model theory

The electroweak and QCD theories are both non-Abelian, where the elements of the group
do not commute. The combination of SU(3)×SU(2)×U(1) groups then produces a fun-
damentally non-Abelian gauge theory. Developing the non-Abelian theory using the same
steps that were taken to develop the Abelian theory of QED now leads to a more complicated
result. In the electroweak theory, starting with the Lagrangian density of free fermions leads
us to again make the derivative covariant, but now that the group structure involves multiple
generators we find that after several additional steps there is now more than one vector boson
added to the model. These bosons are the three SU(2)L gauge bosons W 1,2,3. Similarly, in
QCD the same process applied to the non-Abelian theory of strong interactions involves
more generators, where each of the eight gauge fields adds a new boson, a gluon gα . An
important consequence of non-Abelian symmetries is their implication that the gauge bosons
may interact.

As in the Abelian theory of QED, mass terms in the non-Abelian theories of electroweak
and strong interactions are not invariant under the group transformations and are therefore
not allowed. The eight gluons always remain massless, but the W 1,2,3 and B are massless
only in the limit of exact electroweak symmetry, and obtain mass via the Higgs mechanism
described later in Section 1.6. The combination of non-Abelian gauge groups which form
the SM produces a model that agrees with the experimental constraints on the masses and
other properties of the measured particles.

1.4 Symmetries in the Standard Model

By unifying electromagnetic interactions and weak interactions in the electroweak theory
belonging to the Glashow-Weinberg-Salam (GWS) model [6], the SM describes its three
constituent forces in simpler terms using only two main symmetry subgroups. An important
consideration in understanding the SM symmetry groups and forces is the chirality of the
model. Particle states are classified according to their spin properties as either left-handed
or right-handed fermion fields, and these states transform differently within the two gauge
groups and the Lorentz group. This section considers the transformation properties resulting
from symmetries in the SM subgroups.
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1.4.1 Symmetries in the electroweak theory

Whereas electric charge is conserved in transformations belonging to U(1)Q electromag-
netism, two different charges are conserved in the electroweak group: the quantum numbers
hypercharge and weak isospin. The U(1)Y transformations act on hypercharge and SU(2)L

transformations act on weak isospin.

Weak isospin is denoted T , representing the conserved charge of states interacting via the
weak nuclear force, and is derived from a relation to the Pauli matrices σi. Particles which
form part of a quantum system with an SU(2) symmetry have intrinsic angular momentum
which can also be described using the Pauli matrices. In the SM, all weak interactions must
conserve the third component of the left chiral weak isospin T3L [7]. Hypercharge instead
represents the conserved charge of the U(1)Y component of the electroweak gauge group, and
is denoted Y . For any fermion field, hypercharge is related to the electromagnetic charge Q
and T3L by the relationship: Y = 2Q−2T3L. When vector currents are written as projections
of the left- and right-handed components into separate terms, interactions via the U(1)Y
group conserve the two hypercharge values YL and YR.

The weakly-interacting fermions are typically projected as left- and right-handed compo-
nents to write the SM Lagrangian more easily. Under SU(2)L in the SM, left chiral fermion
fields transform as doublets so that we can construct theories that are invariant under SU(2)
transformations that mix the components. Right chiral fields instead form singlets, as they do
not interact weakly and have T3 = 0 for their third component of weak isospin. In contrast
with the weak current, the electromagnetic current has the same charge for both left and right
chiral components. Therefore, combining the weak and electromagnetic interactions into the
same terms in the SM Lagrangian requires us to use states of definite chirality, where the
weak current resembles the vector form of currents from electromagnetic interactions.

1.4.2 Symmetries in the strong theory

The non-Abelian gauge theory of QCD was constructed by Yang and Mills in 1954 [8] using
local isospin symmetry transformations, comprising independent isospin rotations at every
point in spacetime. The physics of the strong interactions must be invariant under SU(2)
transformations that mix the proton and neutron wavefunctions in isospin space. By treating
nucleon wavefunctions as components of a two-component nucleon ‘isospinor’, we can
construct a theory which satisfies this invariance. Furthermore, if we consider the proton
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and neutron as composite baryons of constituent quarks, we can extend the invariance of the
strong interaction under rotations of the nucleon isospinor to include transformations on the
scale of the quarks. This smaller-scale theory leads to the current model of transformations
between quark flavours, which is an approximate global symmetry of strong interactions.
The transformation acts on a 3-component vector in the fundamental representation of the
SU(3) f group, pertaining to transformations mixing the up, down and strange quark flavours.

The QCD Lagrangian of the SM has another symmetry under transformations mixing the
quark colours, involving quarks as colour triplets in the fundamental SU(3) representation.
Colour is simply a label for states in an SU(3) representation, where states may possess one of
three possible colours called “red", “green" and “blue". Whereas the SU(3) f symmetry of the
QCD Lagrangian is approximate, the colour transformations yield an exact symmetry, such
that the strong interactions always proceed identically regardless of which colour charges
are present. The SU(3)c group must conserve the three colour charges, where colour is the
Noether conserved charge of the QCD symmetry group.

1.5 Transformation properties

The properties of the particles under the symmetry transformations dictate which terms are
permitted in the SM Lagrangian, where a term that is not invariant under transformations
belonging to the group SU(3)c ×SU(2)L ×U(1)Y is not a physical process and cannot be
added to the model. All permitted transformations preserve the required symmetries of the
SM. This section describes these properties of the electroweak and strong transformations in
further detail.

1.5.1 Electroweak transformations

The left and right chiral fermion fields transform in the electroweak gauge sector of the SM
with the behaviour described in Equations 1.5 and 1.6. The relative strengths of the weak
and electromagnetic forces appear in the gauge couplings of the SU(2)L and U(1)Y groups,
denoted g2 and gY respectively. Left-handed weak transformations are described using g2,
the gauge coupling function α⃗2(x) and the Pauli matrices τ⃗ acting in the weak isospin doublet
representation space. The transformations under the U(1)Y group involve a different gauge
coupling function αY (x) and the hypercharge Y .
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fL(x)→ e−igY αY (x)Y/2e−ig2α⃗2(x)·⃗τ/2 fL(x) (1.5)

fR(x)→ e−igY αY (x)Y/2 fR(x) (1.6)

The summary of the fermion electroweak quantum numbers in Table 1.1 shows the
left-handed components as doublets and the right-handed components as singlets. Quarks
and charged leptons interact via both the weak nuclear force and electromagnetism. Neutri-
nos, which are massless in the SM and have no electric charge on which electromagnetic
interactions can act, only interact via the weak force.

Table 1.1 SM fermion electroweak quantum numbers.

Fermion Y T T3 Q

Leptons
e−R -2 0 0 -1(
νe
e−

)
L

-1 1
2

1
2 0

-1 1
2 −1

2 -1

Quarks

uR
4
3 0 0 2

3

dR −2
3 0 0 −1

3(
u
d

)
L

1
3

1
2

1
2

2
3

1
3

1
2 −1

2 −1
3

1.5.2 Strong transformations

All quark (q) and lepton (l) fields have left- and right-handed components transforming
by Equations 1.7 and 1.8 under the colour rotations in the QCD sector. The lepton fields
are colour singlets under SU(3), so leptons are unaffected by the strong interactions. Here,
gs and αa

s are the gauge coupling and corresponding function of SU(3)C, and λ a are the
Gell-Mann matrices acting in the triplet representation space.

qL,R(x)→ e−gsα
a
s (x)λ

a/2qL,R(x) (1.7)

lL,R(x)→ lL,R(x) (1.8)

The strong force also transforms bosons in different ways. While the photon and W± and Z
bosons have colour charge zero like the leptons and do not participate in strong interactions,
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the gluons gα are colour charged and therefore interact via the strong force as well as
mediating it.

The QCD gauge coupling sets the strength of the strong interactions, and is much
larger than the electroweak coupling, leading to larger loop corrections than we find in
the electroweak sector. A distinguishing characteristic of QCD interactions comes from
the behaviour of the coupling function at different scales of momentum transfer, which
informs our understanding of hadronic interactions at long and short distances. At large
momentum (or short distances), perturbative calculations are feasible because the coupling
function is small and quarks are asymptotically free. In the long distance domain, perturbative
QCD is no longer possible because the coupling function grows large when momentum
transfer decreases, creating the effect of quark confinement. The running of the coupling is a
unique property of the strong interactions that generates interesting behaviour in hadronic
interactions, where quarks are confined to exist naturally in colour-neutral hadrons and never
in isolation.

1.6 Spontaneous symmetry breaking

A symmetry in a Lagrangian is spontaneously broken if the Lagrangian is symmetric but
the symmetry is not conserved by the physical vacuum. If the Lagrangian contains an
exact continuous symmetry that is not shared by the physical vacuum, then one or more
massless spin-0 particles emerge, called Goldstone bosons [9]. If the Lagrangian instead
contains a local gauge symmetry, then it must have obtained interaction gauge fields when we
constructed a covariant derviative using the process in Section 1.3.1. When a local symmetry
is broken by the physical vacuum, the interplay between the “would-be" Goldstone bosons
and the massless gauge bosons removes the Goldstone bosons from the physical spectrum
and implies masses for the gauge bosons.

Spontaneous breakdown of the electroweak symmetry group has important effects on
the physical boson and fermion states in the SM, many of which are observed with masses
generated by the mechanism of symmetry breaking. For example, several bosons in the
electroweak sector have measured masses, but the fields derived from the steps described up
until this point are massless. Three out of four of the standard electroweak generators come
from the SU(2) group and one from U(1), which together generate the four massless fields
labelled W 1, W 2, W 3 and B. Below the weak scale at 246 GeV, the physical electroweak
bosons acquire mass from spontaneous symmetry breaking, where the Higgs mechanism
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breaks SU(2)L ×U(1)Y into U(1)Q electromagnetism [10]. The B quantum field mixes
with W 3 to produce two observed integer-spin particles: the photon and the Z gauge boson.
Similarly, the massless W fields mix to produce the physical W± bosons. Although fermions
are already allowed to have mass terms in the SM Lagrangian, they obtain additional mass
terms from this process. This section describes spontaneous symmetry breaking via the
Higgs mechanism.

1.6.1 The Higgs mechanism

The SM fermions and the W±, Z and Higgs bosons are all measured at observed masses
which agree with the terms they acquire via the spontaneous breakdown of the electroweak
gauge symmetry. The Higgs mechanism allows us to build an experimentally accurate gauge
invariant theory, using interactions with a complex scalar field. The mechanism proceeds
differently for Abelian and non-Abelian symmetries, reminiscent of the differences in the
gauge theory. The Abelian case involves one vector field coupled to a single complex scalar
field, whereas the true Higgs mechanism of the SM is non-Abelian involving non-commuting
group elements, and comprises several vector fields Aα(x)

µ and two scalar fields, φi(x). The
SM is non-Abelian in general, as for electroweak and QCD interactions.

The Higgs sector in the SM introduces an SU(2)L Higgs doublet Φ with weak isospin
T = 1/2 and hypercharge Y = 1. The Higgs potential V is typically described using a
Mexican hat function:

V (Φ) = λ [Φ†
Φ− v2

2
]2 (1.9)

where λ is an overall scaling factor. We can describe the Higgs field in a physical gauge
using the form:

Φ =
1√
2

(
0

v+H

)
(1.10)

where H relates the fluctuation field from the ground state and v parameterises the Higgs
field vacuum expectation value (vev), which can take many possible complex values but is
often chosen for convenience as a point on the real axis. Denoting the Higgs mass as MH , we
can write the Higgs potential as:

V (H) =
1
2

M2
HH2 +

M2
H

2v
H3 +

M2
H

8v2 H4 (1.11)
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Shifting to the minimum of the Higgs potential generates mass terms that fully determine the
masses of the gauge bosons. If we expand Φ around the minimum of the potential, we obtain
one massive scalar particle (the Higgs boson), plus three massless Goldstone bosons which
are absorbed to produce masses for the W± and Z bosons.

Mass is generated in this case if transformation of the vacuum state by the generators
causes it no longer to share the symmetry of the Lagrangian. When we shift to the minimum
of the Higgs potential, the non-Abelian Higgs mechanism of the SM produces a mass matrix
(in place of the single mass term that we would expect from the Abelian mechanism). By di-
agonalising this matrix, we obtain one of two distinct possible solutions. First, the generators
may annihilate the vacuum so the symmetry remains unbroken, producing massless vector
bosons. Alternatively, the generators may not annihilate the vacuum, instead transforming
the vacuum so it is no longer symmetric under the action of the group of symmetries. In
this case where the symmetry is broken, we obtain massive vector bosons and the SM Higgs
boson couples proportional to mass.

1.6.2 Mixed bosonic states

In the non-Abelian broken symmetry of the electroweak sector, the physical bosonic states
observed in experiment are combinations of field contributions from the W 1,2,3 and B. All
electroweak interactions depend on the mixing of these fields, determining which interactions
are permitted. For example, the Z interacts with all fermions, containing contributions from
both the U(1)Y B boson and the SU(2)L W 3. The strength of these interactions depends on
the relative contributions from the B and W 3 fields; in this case, stronger interactions are
observed between the Z and the left-handed fermions. Equations 1.12 and 1.13 parameterise
the mixing contributions in the Z boson and photon (A) states using the Weinberg angle θW ,
which is known as the angle by which spontaneous symmetry breaking rotates the plane of
massless vector bosons.

Zµ = cos(θW )W 3
µ − sin(θW )Bµ (1.12)

Aµ = cos(θW )Bµ + sin(θW )W 3
µ (1.13)

The relationship between the Weinberg angle and the electroweak gauge couplings reveals
further information about the relative strengths of the two terms in the equations above. In
Equations 1.14 and 1.15, the gauge coupling strength for SU(2)L is g2 and the coupling for
U(1)Y is gY .
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cos(θW ) =
g2√

g2
2 +g2

Y

(1.14)

sin(θW ) =
gY√

g2
2 +g2

Y

(1.15)

Similar mixing of the original electroweak gauge fields produces the physical W± bosons.
Equation 1.16 shows the physical W± states mixed entirely from SU(2)L bosons, correspond-
ing to our observation of their electroweak interactions in experiment.

W± =
1√
2
(W 1

µ ∓ iW 2
µ ) (1.16)

The masses of the W± and Z bosons obtained through the Higgs mechanism are in agreement
with the short distance range of the weak nuclear force.

1.6.3 Fermion mass terms

The electroweak gauge symmetry of the SM forbids fermion mass terms in the fundamental
Lagrangian because they are constructed from left and right components, where the left are
doublets and the right are singlets, and therefore cannot be written in a way that is gauge
invariant. The fermions obtain mass from interactions with the Higgs scalar fields, and
all interactions between fermions and scalar fields are described in the SM Lagrangian by
Yukawa terms. Through spontaneous symmetry breaking, the fermions in these interactions
acquire a mass proportional to the vev of the Higgs field. Equation 1.17 contains an example
of the Yukawa terms describing the interactions between an SM fermion field and the Higgs
Φ, where left- and right-handed components of the fermion field are separated because their
different spin quantum numbers require us to treat them as different particles. The fermion
field denoted eR represents the right-handed electron singlet, and ΨeL is the left-handed
doublet. The Higgs coupling with the electron is written as he.

LYU =−he(ΨeLΦeR + eRΦ
†
ΨeL) (1.17)

After spontaneous symmetry breaking, rewriting the Higgs field Φ in terms of its vev (v)
reveals which terms in the Yukawa component of the Lagrangian contain the Higgs vev, and
are therefore the mass terms of the electron field. They are identified in Equation 1.18, which
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is written in terms of the component eL of the left-handed electron field doublet.

LYU =−he(
v√
2
)(eLeR + eReL)+ [other terms] (1.18)

The electron mass is determined by the effects of spontaneous symmetry breaking on
the Yukawa terms, and can be discerned directly from Equation 1.18 in terms of the Yukawa
coupling constant and the Higgs field vev:

me =
hev√

2
(1.19)

The mass equations proceed in a similar way for the muon and tau. The quarks have similar
Yukawa couplings to the leptons, but the right-chiral quark components add terms to the
Yukawa couplings that are not present in the leptonic couplings (for models where right-
handed neutrinos do not exist). The consequence of the right-chiral quark components in the
Yukawa couplings is to form a mass matrix for the down-type quarks, instead of a mass term
like for the leptons. Diagonalising the mass matrix using a biunitary transformation reveals
the masses of the physical down-type quarks through the eigenvectors of the matrix.

1.7 Parameters in the Standard Model

Diagonalising the quark mass matrix requires us to apply a rotation to the fermion fields,
where the same rotation must be applied to both the charged current and neutral current
components. Since the charged current couples different objects (such as up and down
quarks), the rotations do not cancel out, resulting in quark sector flavour mixing. This is the
origin of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the extent to
which the quantum states of quarks are mixed by the weak interactions [11, 12]. The CKM
matrix contains the information required to predict how much of each quark mass eigenstate
exists in the weak eigenstates, using rotation angles called the quark mixing angles.

The CKM matrix is a unitary matrix containing fundamental parameters of the SM, and
its unitarity hinges upon the values of these parameters. For example, the most sensitive test
of unitarity in the SM with three quark generations is provided by the relation,

|Vud|2 + |Vus|2 + |Vub|2 = 1−δ (1.20)
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where |Vud| describes the probability for a d quark to transition to a u quark, and so on. Here,
a non-zero value of δ indicates that new physics is present. These components of the matrix
VCKM are generally parameterised by the three real quark mixing angles and one imaginary
phase, whose precise values are determined fundamentally by the couplings in the charged
current part of the Yukawa interactions in the electroweak Lagrangian. Consequently, the
unitarity of the CKM matrix is a strong experimental test of the merit of the SM. Tests of
CKM unitarity using experimental decay rates and lattice field theory have found that the
SM is an accurate prediction of the parameters of the CKM matrix. Strict constraints have
been placed on the CKM matrix as a result of these searches [13].

Combined with the four parameters defining the CKM matrix, the SM has nineteen other
free parameters that must be measured experimentally. These are: the Higgs vev and mass,
the Weinberg angle θW , the masses of the nine charged fermions, three gauge couplings and
four parameters defining the relationships between the weak interaction eigenstates of the
neutrinos [14].

The latest measurements of the SM reveal no signs of inaccuracies up to the weak scale.
Searches at the LHC and other colliders have tightly constrained its fundamental parameters,
including the fermion and boson masses which have all now been measured experimentally.
Since the discovery of the Higgs boson confirmed how boson and fermion mass contributions
come from interactions with the Higgs field, the SM has been considered the appropriate field
theory for encapsulating physics on the scale of the weak interactions, mweak ∼ 246 GeV.
Increasingly precise data continues to tighten the constraints on the parameters, repeatedly
confirming that the theory is complete at low enough energies.

1.8 Limitations of the Standard Model

Historically, experimental advances have allowed us to delve into progressively more micro-
scopic theories on shorter distance scales. We can then use these more fundamental theories
to backtrack and calculate the masses of particles from outdated theories. For example,
developing the present-day SM enabled calculations to be made of the pion mass, a particle
that had previously been discovered experimentally but was unknown in origin. Once the
current account was formulated describing the pion as a composite particle, its mass was
calculated from the quark masses. There is little reason to assume the same will not be true
for the SM, or that physics stops at the scales already probed. The various shortcomings of
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the current model provide further evidence of a more fundamental microscopic theory that
will allow predictions to be made of parameters it cannot explain.

The main shortcomings of the SM can be split into two main classes: observational and
structural problems. Observation of the matter existing today, which is comprised of the
one particle per billion that still remains after the Big Bang, indicates that there is very little
antimatter. Matter and antimatter are found to behave differently in experiments, including
the first observations in 2019 of CP violation for the charm quark in D0 meson decays at
LHCb [15]. However, the matter-antimatter asymmetry is unexplained by the SM. The
size of CP violation in SM interactions in the quark sector is not large enough to explain
the measured imbalance, implying there are additional, unknown sources of CP violation.
Another unexplained observation is neutrino oscillations, which indicates that they have
mass. The SM predicts no mass for neutrinos, but Yukawa couplings can give them very
small masses. Solving the problem by introducing lepton number violation with higher
dimensional operators leads to unitarity violation at higher energies, requiring new degrees
of freedom. Adding interactions to the SM may solve both of these observational problems.

Additional degrees of freedom may also explain the nature of dark matter, a critical
observational problem the SM cannot address without new physics. Cosmological evidence
from descriptions of the formation of galaxy clusters in the observable universe, as well as
the evolution of galaxies and galactic collisions on a more local scale, indicate that a missing
mass constitutes 85% of total mass. Dark energy and dark matter combined must form 95%
of the total mass-energy content. The observational evidence from gravitational interactions
places stringent limits on the type of matter that is missing, with popular candidates being a
new type of weakly interacting massive particle (WIMP), or axions [16, 17]. For example, a
natural WIMP-like dark matter candidate is proposed by supersymmetric extensions to the
SM.

Supersymmetric extensions can also unify the electroweak and strong forces, which
cannot be achieved without a mechanism changing their high-energy dependence. Grand
unified theories (GUTs) are another method of performing this change, relating the free
parameters in the SM to reduce them to a single gauge coupling. Gravitational interactions
are not described in the SM, so the process of unifying the gravitational force with the strong
and electroweak forces at any scale is already highly uncertain. Gravitational interference
is vital to inferring the location of dark matter, so its absense from the SM alongside dark
matter poses questions about the shortcomings of our current model.
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1.8.1 Structural issues & the Hierarchy Problem

New interactions may solve the structural problems with the SM, which are shaped by the
unexplained hierarchies in the generations and scales of the theory. For example, the three-
generational hierarchy in the masses of the quarks and leptons could be explained by a more
microscopic theory. Labelling the particles by their gauge couplings produces three copies in
an exponential hierarchy, due to a pattern in the Yukawa couplings. The generational patterns
are compelling evidence for an underlying theory containing the information required to
derive the masses from more fundamental principles. A similar argument is relevant for
the Higgs mass, which has a bare mass that could in future be calculated from fundamental
parameters.

Other structural conundrums abound, typically appearing as unexplained patterns similar
to the quark and lepton masses, or as disagreements between theory and experiment. One
disagreement is the cause of the strong CP problem, where no CP violation is observed in
the strong sector even though no known symmetry holds it at zero. There are natural terms
in the QCD Lagrangian able to break CP symmetry that suggest CP violation should be
observed at the magnitude of those terms, but no evidence has been found. Another structural
problem, this time an unexplained pattern, is the hierarchy between the Planck scale with
mass MP = 1√

8πGN
≈ 1.2×1019 GeV and Fermi’s constant on the weak scale [18]. These

two parameters operate at energy scales that differ by 16 orders of magnitude. The difference
between the two scales forces SM parameters to be finely tuned to eliminate the quadratic
divergence of their contributions to the Higgs mass. If the Planck scale is the fundamental
scale of nature, then the bare Higgs mass must be on the order of the Planck scale, requiring
an unnatural tuning of one part in 1017 between the contributions to the Higgs mass to cancel
the quadratic divergence and obtain a mass on the electroweak scale [19].

The LHC has revealed that the Higgs indeed has a light mass at 125 GeV, which allows
the quartic coupling of the Higgs to remain small so that the scattering of the longitudinal
components of the W bosons, which grows with energy, does not break down at exponentially
higher energies. Otherwise, this extra degree of freedom belonging to the massive spin-0
particles would result in a Landau pole at high energies, breaking down the theory.

In this respect, the light mass of the Higgs is a requirement of the high-energy theory,
but it is also the basis of the hierarchy problem. Such a light Higgs is not predicted by the
SM, which gives it couplings that break any symmetry that could have kept it light. The
option to finely-tune these couplings to cancel their contributions is unconvincing. In the
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SM, the Higgs couplings to the fermions is proportional to the fermion masses, reflecting
the hierarchy of the generations. In Figure 1.2, the one-loop correction to the Higgs mass
squared parameter m2

H due to the Dirac fermion f with mass m f is written

∆m2
H =−

|λ f |2

8π2 Λ
2
UV + ... (1.21)

where the quadratic divergence of the Higgs loop corrections causes the mass to become
highly ultraviolet (UV)-sensitive. A convenient method of handling the UV divergences
in the SM is provided by dimensional regularisation and then renormalisation. The loop
integral is regulated by the UV momentum cutoff ΛUV , which is typically the energy scale of
new physics. The terms in this sum which are proportional to the fermion mass cause large
corrections to the Higgs scalar boson squared mass because of the direct quadratic sensitivity
to the cutoff ΛUV .

Fig. 1.2 One-loop corrections to the Higgs boson mass, due to a fermion f and a scalar S
[20].

The question remains whether the Higgs may break flavour universality as part of a
beyond-SM (BSM) theory. If the mass of the Higgs boson is calculable from a more
fundamental microscopic theory, the cutoff terms imply that new physics should emerge
at around 400 GeV, or around 2 TeV in the gauge sector, to which the Higgs mass is
sensitive. No such physics has yet been observed, but this discovery would naturally follow
the progression of particle physics through history as experiments have moved to higher
energy scales.

If the Higgs is not a composite particle, its positive parity lends it only one degree of
freedom, making it the first elementary scalar found in nature. If it is a composite particle
then its mass, like the mass of the pion, may be calculated in the future from its component
particles. If the Higgs is composite, we expect three main phenomenological signatures to
appear at high energies: ρ

′
(rho prime) vectors, top partners and Modified Higgs Couplings.

Searches for all three are ongoing at the LHC, but none are yet supported by compelling
evidence. Regardless, it is convincing to argue that solving the hierarchy problem requires
new high-energy physics that couples to the Higgs.
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The idea that degrees of freedom may reveal completely new objects at higher energies
is not new. Already, the theory of gravity cannot hold at high energies, and on the Planck
scale on the order of 1019 GeV, a quantum description of gravity breaks down. Combining
quantum field theory with gravity generates problems with renormalisability, and quantum
computations involving gravity at these energies are non-renormalisable. Therefore, a UV
cutoff must lie either at or before the Planck scale, at which point the theory requires
new physics. Effective field theories (EFTs) are a general method of describing effective
interactions at SM energies that parametrise the effects of a higher energy theory, an example
of which is the Fermi theory. In the case of gravity, an EFT yields a renormalisable quantised
theory of gravitational interactions up to energies below the Planck scale, at which point it
breaks down. The effective interactions in an EFT involve the low-energy SM fields only, so
the precise nature of the new physics is irrelevant to the parametrisation.

The limitations of the SM prompt us to return to developments in theory and experiment
to describe the physics model which best explains the gaps. Although many scenarios remain
possible, only some are both theoretically well-motivated and phenomenologically viable,
able to solve several remaining questions and offer a chance of discovery at the current
experimental energy frontier.





Chapter 2

Supersymmetry

2.1 Introduction to supersymmetry

Supersymmetry is a class of extensions to the SM that aims to incorporate the existing gauge
field theory into a larger model by combining observed physics with additional particles
and interactions. Supersymmetric extensions are praised for their mathematical simplicity,
which derives from their consistent structure and their reliance on only a few key concepts.
The primary idea behind these theories is the existence of an additional symmetry of nature
linking fermions and bosons, which results in several benefits, including a possible solution
to the hierarchy problem of Section 1.8.1.

The principle of supersymmetry extends the existing Poincaré spacetime symmetry struc-
ture of the SM to include an as-yet-unobserved fermionic spacetime symmetry. The extended
supersymmetric SM is consequently invariant under generalised spacetime transformations
linking fermions and bosons. Phenomenologically, a quantum field theory that requires
supersymmetry is one in which every fermion (or boson) degree of freedom is the “partner”
of a boson (or fermion) degree of freedom that has the same set of non-mass quantum num-
bers. If the superpartner particles are also mass degenerate, where the new supersymmetric
state (“sparticle") and its SM counterpart have the same mass, then the symmetry is exact.
Although this extension implies the addition of at least 17 extra particles, it does so by
tightening constraints on the structure of the theory which ultimately simplifies the model.

Supersymmetry is a common target for collider physics searches because theories that
incorporate it have several plausible properties. Initial interest in supersymmetry during the
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1970s and ‘80s focused on the nonrenormalisation of some supersymmetric interactions and
the higher UV convergence of the field theories, as well as the link to gravity [21]. Soon to
follow, further theoretical motivation came from the idea that we observe only a low energy
manifestation of Planck scale physics, and that supersymmetric parameters at high energies
may solve the hierarchy problem [22]. The experimental discovery of supersymmetry was
therefore highly anticipated by phenomenological studies at the advent of the LHC, and
continues to motivate new search strategies in the hope of a discovery in the near future.

2.2 Key motivations

If supersymmetry implies the emergence of degrees of freedom at energy scales above the
current observed range, and if the Higgs mass is sensitive to them, then the fine-tuning
between the loop corrections to the Higgs mass are no longer necessary. The observed
masses of the Higgs and W and Z bosons are preserved without unnatural fine-tuning [23].
For each leading order correction shown in Figure 1.2, supersymmetry requires another that
comes from the superpartner of the old one. The Feynman rules require that a −1 is added
with every fermion loop, which causes all such pairs of corrections to cancel exactly, leading
to theories that allow the Higgs to remain light in spite of its many couplings to massive
particles. The cancellation is exact only when the superpartners are equal in mass to their
SM counterparts, and the supersymmetry is softly broken when the superpartners are heavier
within constraints that preserve the leading order cancellation. This cancellation is one of the
primary advantages of supersymmetric extensions to the SM, because it provides a natural
alternative to fine-tuning.

In addition, various models of supersymmetry are capable of unifying the fundamental
interactions. Some unify all particles and forces except gravity on the order of 1015 −
1016 [24, 22], but other models include gravity. Supergravity theories generalise gravity
using a local gauged supersymmetry, which automatically produces Einstein’s general theory
of relativity as a necessary consequence [25]. This method of unifying gravity with the
other fundamental interactions is a natural motivation for local supersymmetry theories.
String theories are often cited as methods of achieving unification, and superstring theory
incorporates supersymmetry as an integral component. Supersymmetry is a vital ingredient
of various prominent theories unifying all the couplings of the strong, electroweak and
gravitational interactions, discussed further in Section 2.5.
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2.3 Symmetry properties

The generator for the additional symmetry transformation is the supercharge operator Q. The
operator is a spinor, carrying spin angular momentum 1

2 . The properties of the superpartners
come from the commutation and anti-commutation relations for Q; SM particles alone do
not satisfy the properties of all the particles implied by the enhanced symmetry. When
acting on a boson state Q generates a fermion state, and vice versa, where the operation
produces superpartner states that differ in spin from their counterparts by ±1

2 . Consequently,
the superpartners of the fermions are scalars, and are called sleptons (scalar leptons) and
squarks (scalar quarks). The superpartners of the SM bosons are spin-1

2 fermions, and these
fermionic sparticles have physical states called the charginos, neutralino, gluino and Higgsino.
Equation 2.1 summarises the operation of the symmetry transformation.

Q |boson⟩= |fermion⟩ , Q |fermion⟩= |boson⟩ (2.1)

The property of the operators Qα and Q†
α where they transform quantum mechanical

states between fermionic and bosonic statistics is encoded in the anticommutation relations.
Equations 2.2 - 2.4 are the relations satisfied by the generators in supersymmetry. Here,
four-component Dirac spinors are split into 2 two-component spinors denoted by indices α

or β for the first two components and α̇ or β̇ for the second. The four-momentum Pµ is the
generator of spacetime translations under Lorentz boosts and rotations.

{Qα ,Q
†
α̇
}=−2σ

µ

αα̇
Pµ (2.2)

{Qα ,Qβ}= {Q†
α̇
,Q†

β̇
}= 0, (2.3)

[Qα ,Pµ ] = [Q†
α̇
,Pµ ] = 0 (2.4)

Following Equation 2.4, operators Qα and Q†
α commute with the squared-mass operator

−P2 such that, for example, [P2,Qα ] = 0. The squared-mass operator also commutes with
all spacetime translation and rotation operators. These relations require that the superpartners
have the same mass as their SM counterparts. Although this rule must hold in exact super-
symmetry, superpartner masses are allowed to differ when the symmetry is broken, described
later in Section 2.4.3. Furthermore, the Q and Q† operators commute with the momentum
operator and with the generators of the gauge transformations which gives the superpartners
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the same values of weak isospin, electric and colour charge as the particles in the SM. In
general, every supersymmetric particle inherits the same (non-mass) quantum numbers as its
SM counterpart as a result of the continuous symmetry of the theory, which commutes with
the SM gauge group.

2.4 The MSSM

The Minimal Supersymmetric Standard Model (MSSM) is the “simplest” supersymmetric
model that requires several constraints. All the particle content of the SM must be con-
tained in the MSSM, and it must preserve the SM conservation laws. The most general
phenomenologically viable type of MSSM is an N = 1 supersymmetry, and this is the type
most frequently studied. Here, N is the number of supersymmetries in the model, equivalent
to the number of distinct copies of the generators Q, Q†. Extended models of supersymmetry
exist where N > 1 copies of the generators cause unphysical phenomenologies in four-
dimensions, but which may describe real physics in higher-dimensional field theories with
careful treatment of extra dimensions [26]. The MSSM is the minimal extension required to
incorporate a softly-broken N = 1 global supersymmetry, where extra dimensions are not
required.

The N = 1 MSSM is motivated by its desirable properties including conservation of
charge parity, minimal flavour violation at the TeV scale and suppressed flavour-changing
neutral currents at tree level, which constrain some of the possible free parameters in
supersymmetry-space. Although the number of free parameters is greater than 100 at first,
extra simplifying assumptions sometimes decrease this number to comprise only 10 sfermion
masses, 3 Higgs and Higgsino parameters, 3 gaugino masses and 3 trilinear couplings [27].
These simplified models narrow the experimental search region.

Combining supersymmetry with gravity as mentioned in Section 2.2 is possible as part of
a phenomenologically viable MSSM. The theory must promote supersymmetry to a local
symmetry and unify the resulting transformations with the spacetime symmetries of general
relativity. When an MSSM scenario is extended to include gravity it typically involves
non-renormalisable interactions, but these can be ignored in the phenomenology at LHC
energies because their effects are suppressed by inverse powers of the high energy cutoff,
λUV [28]. Supergravity therefore remains an interesting method of incorporating gravity into
the quantum field theory, and minimal supergravity (MSUGRA) is a benchmark scenario for
experimental collider search limits.
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Superpartner states are stored in two-component objects called supermultiplets, which
contain the pairs of bosonic and fermionic states that are related via a supersymmetric
transformation. Whereas the irreducible representations of the symmetry group of the SM
algebra were multiplets, the same concept is referred to in supersymmetry as supermultiplets.
Supermultiplets contain both the SM particles and the superpartners of those states, containing
both fermion and boson members. The components within a supermultiplet must possess the
same electric charge, mass, weak isospin and colour degrees of freedom. It is always possible
to write N = 1 supersymmetric theories in terms of only two different types of supermultiplet,
called chiral and gauge supermultiplets. Both types contain two spin-1

2 fermions, but whereas
chiral supermultiplets also contain two scalars, gauge supermultiplets contain one massless
spin-1 boson instead. Superfields are the fields of the superpartners of the SM particles, and
they are sorted into the chiral or gauge supermultiplets depending on their transformation
properties.

2.4.1 Chiral & gauge superfields

Chiral supermultiplets treat left- and right-handed fermionic components differently, whereas
gauge supermultiplets treat them the same. The quarks and leptons in the SM belong in
chiral supermultiplets, because they have left and right states that transform differently under
Lorentz transformations. Since their superpartners must reside in the same supermultiplets,
the superpartners of the SM fermions are also in chiral supermultiplets and are scalars with
spins half a unit less than their SM counterparts, as shown in Table 2.1. The final members of
Table 2.1 are the SM scalar Higgs particles and their superpartners, the Higgsinos, which are
chiral superfields with spin 1

2 , this time half a unit of spin more than their SM counterparts.
In Table 2.2, the gauge supermultiplets are shown, which must contain the spin-1 SM vector
bosons according to their transformation properties. The superpartners of the SM gauge
bosons belong in the same gauge supermultiplets and have spins half a unit less.

If the SM were extended to include a particle description of gravity, then the spin-2 gravi-
ton would adopt a superpartner called the gravitino with spin 3

2 . The supermultiplet structure
in the graviton-gravitino sector is therefore different to the chiral and gauge supermultiplet
structure for the SM particle fields and their superpartners.

The properties of the fields belonging to the supermultiplets in the MSSM are clearly not
accounted for by the SM fields alone, which motivates the addition of the new states. For
example, a spin-1

2 neutrino cannot form the superpartner of the spin-1 photon, because the
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Table 2.1 The chiral supermultiplets of the MSSM [20].

Names spin 0 spin 1/2
squarks, quarks Q (ũL d̃L) (uL dL)

×3 families u ũ∗R u†
R

d d̃∗
R d†

R
sleptons, leptons L (ν̃L ẽL) (νL eL)

×3 families e ẽ∗R e†
R

Higgs, Higgsinos Hu (H+
u H0

u ) (H̃+
u H̃0

u )
Hd (H0

d H−
d ) (H̃0

d H̃−
d )

Table 2.2 The gauge supermultiplets of the MSSM [20].

Names spin 1/2 spin 1
gluino, gluon g̃ g

winos, W bosons W̃± W̃ 0 W± W 0

bino, B boson B̃0 B0

photon is neutral under weak isospin whereas the neutrino forms a doublet. Despite the name
“minimal”, the MSSM does not contain the minimum possible new particle content, because it
introduces a new superpartner for every SM particle. Not including the gravitino, the MSSM
contains 32 distinct mass parameters for undiscovered particles. Some superpartners seem
to share the properties of SM particles; a Higgs doublet with hypercharge −1 transforms
identically to the SU(2) (νL,eL) doublet and therefore could be contained in the same chiral
supermultiplet. However, if this is true and the sneutrino is indeed the Higgs boson, then
several phenomenological problems arise, including an incorrect neutrino mass and lepton
number violation. All SM particles must consequently belong in separate supermultiplets,
partnered by a new degree of freedom.

Electroweak symmetry breaking in the MSSM performs a similar function to its role
in the SM and mixes the higgsinos with the electroweak gauginos. The zinos and winos,
which are the superpartners of the electroweak Z and W bosons and are together called
the electroweakinos, mix with the higgsino to form the physical states, the charginos and
neutralinos. The gluinos are the strongly-interacting fermion partners to the SM gluons, and
are spin-1

2 gauginos that do not mix. The supersymmetric states transform in interactions as
either chiral or gauge supermultiplets via the transformations contained in the gauge groups,
analogous to the transformations of multiplets in the SM.
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2.4.2 Gauge groups & the Lagrangian

Abelian gauge transformations on the chiral superfields describe the interactions in supersym-
metric quantum electrodynamics (SQED), and non-Abelian gauge transformations describe
supersymmetric quantum chromodynamics (SQCD) and supersymmetric chiral gauge theory
(SχGT ). The latter two are extensions of the SM gauge field theories based on the strong
SU(3)C and electroweak SU(2)L ×U(1)Y gauge groups. Interactions are described in the
SQCD and SχGT Lagrangian densities, resulting in a list of allowed supersymmetric ver-
tices and their Feynman rules, informing the ways in which sparticles are predicted to be
experimentally observed through their interactions with each other and with SM particles.
The interactions are contained in the MSSM Lagrangian.

The Lagrangian of the MSSM can be written generally as the sum LMSSM = LSUSY +Lso f t .
LSUSY contains the interaction and mass terms coming from the exact supersymmetrisation
of the SM; in other words, it contains all gauge and Yukawa interactions and preserves
supersymmetry invariance [26]. Lso f t describes the heavier masses of the sparticles than their
partner particles, containing terms derived from supersymmetry breaking. The supersymmet-
ric part of the MSSM Lagrangian decomposes into pure gauge, matter and Higgs-Yukawa
parts, LSUSY = Lg +LM +LH , which contain terms with different relevant field strengths
for the spinorial superfields. The gauge part of the supersymmetric Lagrangian is a sum of
interactions between the chiral and vector superfields.

2.4.3 Supersymmetry breaking

Electroweak symmetry breaking in the MSSM is analogous to the mechanism of the SM and
is required to give mass to the standard gauge bosons, quarks and leptons. In supersymmetry,
however, two Higgs doublets are typically required instead of one, cancelling the higgsino
contributions to the gauge anomaly, and also allowing holomorphic Yukawa couplings. Like
spontaneous symmetry breaking in the SM (described in Section 2.4.3), the spontaneous
mechanism in the MSSM can only give masses to particles via their Yukawa interactions,
even though the superpartners of the SM quarks and leptons must be more massive than their
counterparts to explain why they have not yet been observed. The difference in mass between
the superpartners must come from another form of supersymmetry breaking.

The group transformations in a quantum theory with an exact symmetry leave the vacuum
state Ψ0 invariant, so it must be annihilated by the symmetry group generators. In an
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exact supersymmetry with mass degeneracy between the superpartners, the vacuum state
is annihilated by the generators Q as in Equation 2.5. The annihilation of the vacuum
state implies that the vacuum state energy of the Hamiltonian also vanishes, because the
Hamiltonian is expressed in terms of the supercharges, H = {Q,Q†}. However, this is no
longer true in a spontaneously broken supersymmetry, when the vacuum state energy of the
Hamiltonian becomes non-zero.

QΨ0 = Q†
Ψ0 = 0 (2.5)

In models with spontaneous supersymmetry breaking, by definition the vacuum state
must not be invariant under supersymmetry transformations. In particular, the vacuum must
have positive energy, because the inner product with the Hamiltonian operator H acting on
Ψ0 = |0⟩ gives ⟨0|H |0⟩> 0 if the Hilbert space is required to have positive norm.

As a global continuous symmetry, supersymmetry can be broken in one of three ways, of
which the spontaneous breaking mechanism of electroweak symmetry breaking is only part.
The other two possibilities are the explicit addition of terms to Lso f t , and the combination
of both explicit and spontaneous symmetry breaking. Explicit supersymmetry breaking
leaves the vacuum invariant and keeps supermultiplets intact except for mass splittings,
characteristic of what is known as the Heisenberg-Wigner mode. Spontaneous breaking
instead occurs in the Nambu-Goldstone mode, which causes the vacuum symmetry to break
and multiplet structure to be destroyed. These are the possible mechanisms for breaking mass
degeneracy of the superpartners, although spontaneous supersymmetry breaking is a favoured
option. The spontaneous mechanism adds new particles and interactions at high mass scales
such that supersymmetry is hidden at low energies just as the electroweak symmetry is hidden
below the appropriate mass scale in the SM.

Explicit versus spontaneous breaking

In explicit supersymmetry breaking, superfields do not break supersymmetry spontaneously
at the weak scale by themselves; some soft supersymmetry breaking operators must be
added to the Lagrangian as part of Lso f t so that the superpartners obtain heavier masses. The
coefficients of the operators in Lso f t are treated as unknown parameters of the MSSM. The
soft supersymmetry-breaking coupling parameters and mass terms must have positive mass
dimensions so they can maintian a hierarchy between the electroweak and Planck scales and
enable a solution to the hierarchy problem. This requirement on the mass dimensions in
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particular prohibits dimensionless supersymmetry-breaking couplings, of which there would
otherwise be several notable possibilities. These terms only involve scalars and gauginos and
not their respective superpartners, so they must break the supersymmetry. The added soft
terms can give mass to all of the scalars and gauginos, even if the gauge bosons and fermions
in chiral supermultiplets are massless.

Spontaneous supersymmetry breaking is different, as mentioned above, in that it instead
involves a positive ground state energy that produces non-degenerate superpartner mass states,
where no equivalent unknown parameters are added to the theory. In this sense, spontaneous
supersymmetry breaking is preferred in the search for a theory that explains the mechanism
rather than merely parameterising it. Explicit supersymmetry breaking adds a large number
of free parameters, so that the broken MSSM obtains around 105 mass, phase and mixing
angle parameters which cannot be removed by redefining the basis for the supermultiplets,
even though the unbroken MSSM has only a similar number of free parameters to the SM.
The number of free parameters added by models with spontaneous supersymmetry breaking
is an order of magnitude smaller.

Only soft supersymmetry breaking terms with mass dimension less than 4 are permitted
in the weak scale effective Lagrangian, to control the quadratic divergence in the radiative
correction to the Higgs mass in the SM. These terms are a consequence of the spontaneous
breakdown of supersymmetry at a high energy cutoff scale, ΛS. The information from the
ΛS scale appears in the physics of our low energy world via messengers, which act on some
mass scale MM. If the supersymmetry breaking terms in the weak scale Lagrangian are on
the mass scale MS, then the mass scale of the messengers is approximately MM ∼ Λ2

S
MS

. The
high scale mechanism of supersymmetry breaking fixes the values of the soft supersymmetry
breaking parameters on the weak scale. The weak scale values of these parameters control
superpartner masses and, in the case where mixing occurs, they influence the superpartner
couplings too. Pinpointing the values of these weak scale parameters could rely on measuring
the scalar superpartner masses and determining the gaugino-higgsino mixing parameters,
amongst other possible measurements. In turn, these values point to the high energy physics
responsible for supersymmetry breaking at the ΛS scale.

2.4.4 Natural supersymmetry

Since supersymmetry must be broken to allow room for discovering superpartners in a higher
mass range, the perfect cancellation of leading order contributions to the Higgs mass is not
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possible. In “natural supersymmetry” theories, the couplings of the sparticles to the Higgs
balance well with those of their SM partners, still allowing the model to bypass any need for
unnatural fine-tuning. To preserve naturalness, the masses of the superpartners are therefore
constrained by the Higgs mass and cannot be too heavy: the mass splitting between partners
becomes severely limited, especially between the top and the stop (which is the lightest
squark according to prediction) [29]. To observe a Higgs at 125 GeV, the stop mass cannot
be greater than around 400 GeV without reintroducing a large degree of tuning between this
correction and the others that remain after pair cancellation.

In general, these considerations for natural electroweak symmetry breaking indicate that
stops, the gluino and higgsinos are close to the weak scale. Therefore, search efforts focusing
on natural supersymmetry target these lighter states, but allow the remaining superpartners to
have masses in excess of 1 TeV. In Figure 2.1, the superpartners to the right are decoupled at
high mass, but the superpartners on the left are not: the gluino enters the Higgs mass matrix
at two-loop level, the stop and sbottom at one-loop and the Higgsino mass parameter (µ) at
tree-level. In addition, natural supersymmetry has a weak isospin symmetry demanding a
left-chiral sbottom. LHC searches focus on these states, and produce experimental constraints
on the superpartner masses. Various stop searches suggest that the stop mass is larger than 1
TeV, indicating that some degree of fine-tuning may be required on the order of the percent
level or below, despite attempts to promote a natural theory. The possibility remains that a
small amount of fine-tuning exists in the theory, and that these new particles will soon be
detected at fairly low mass.
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Fig. 2.1 A mass spectrum comparing parameters of natural supersymmetry (SUSY) with the
possibility of decoupled superpartners at high mass [30].

2.4.5 R-parity symmetry

Any new physics interactions must have good symmetry under R-parity transformations.
R-parity is a discrete symmetry relating the fermion number, baryon number and lepton
number:

Rp = (−1)R = (−1)F+3B+L

Requiring R-parity symmetry in supersymmetric models avoids proton decays, which are
not experimentally observed. SM particles have Rp =+1 whereas the superpartners have
Rp = −1, which means that supersymmetric particles can only be pair-produced at SM
particle colliders, until a pair of superpartners remains: the lightest supersymmetric particle
(LSP). This pair is stable, because any further decays into SM particles with opposite Rp are
kinematically forbidden. In many models, the LSP is the lightest neutralino, but the gravitino
has also been proposed in supersymmetric models containing gravity, and in either case the
stable LSP is an excellent dark matter candidate. Different incarnations of supersymmetry
treat R-parity conservation and R-parity breaking in different ways, but in each case it is a
useful symmetry, with the important phenomenological consequence that supersymmetric
particles must appear at the interaction vertex in pairs.
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2.5 Further advantages of supersymmetry

Many advantages of supersymmetry relate to its simplification of the SM, extending the
symmetries to place tighter constraints on calculations and produce uncomplicated solutions.
Calculating quantum corrections is simpler, since the corrections to the Higgs mass are no
longer quadratically divergent in the cutoff scale; the Higgs mass renormalises multiplica-
tively, but not additively, due to cancellations between corrections from SM and superpartner
particles. New states at the Planck scale would not impact the Higgs mass, so supersymmetry
is a hierarchy enabler. There is no longer a need to bring the new mass scales down towards
the weak scale to achieve a small hierarchy, because supersymmetry permits interactions
between particles of such different mass scales.

Superpartners also enable the unification of the gauge couplings, which is a coveted
feature in BSM theories that cannot be achieved in the SM, and is one of the original
perceived benefits motivating supersymmetry. The renormalisation group in the MSSM can
cause the three couplings of the gauge interactions to coincide at a scale MU ∼ 1.5×1016

GeV [20, 31]. The approximate unification at MU is sometimes considered evidence to
support a Grand Unified Theory (GUT) or supersymmetric models of string theory. Within
the bounds of group theory typically used in GUTs, the MSSM can achieve this unification
much more precisely than the SM. Although no convincing unification so far can achieve
absolute precision, several studies have shown that the small differences that remain in the
couplings at this scale can be accounted for with supersymmetric threshold corrections [32].
Where GUTs incorporating the SM theory are able to produce reasonable unification between
the gauge couplings, replacing the SM with the MSSM can achieve a stronger result.

2.6 Searching for supersymmetry

The search for supersymmetry signals has so far been confined to setting limits, which are
mostly based on simplified models and pre-defined search regions. Every iteration of the
MSSM has a large number of free parameters, but we can narrow the search by constraining
these parameters. Typically, theories contain tree-level relations between the quartic Higgs
couplings and the other couplings, which are useful for predicting the masses of the MSSM
Higgs particles. These Higgs masses are sensitive to all the particles in the model (when
radiative corrections are included), which constrains the parameter space even before any
supersymmetric particles are discovered. The Higgs mass in the SM has been measured to
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high precision at the LHC from different decay modes, originally H → γγ and H → ZZ∗ → 4l,
and is now known to the level of a few hundred MeV [33]. The precision of the SM Higgs
mass measurement has consequences for the parameters of the MSSM: if supersymmetry is
detected, then the mass and couplings of the SM Higgs boson will help to constrain those
MSSM parameters that may be too large to access directly in experiments. In the likely
scenario where some superpartner masses are larger than 1 TeV, the parameters of the Higgs
will provide these constraints by acting as precision observables. Notably, the theoretical
predictions of the Higgs mass should be increased to match the precision of experiment,
including two-loop effects.

Measurements at the LHC

Supersymmetry could provide the high-energy theory that will allow us to comprehensively
solve the remaining problems with the SM and perhaps to calculate a composite Higgs
mass from more fundamental parameters. We explore possible supersymmetry scenarios
experimentally both by probing higher energies directly and by measuring rare or forbidden
processes in the SM indirectly by targeting the contributions from supersymmetric particle
loops. To discover the nature of the true extension, which remains likely to involve some
iteration of supersymmetry, high energy experiments must operate at or beyond the energy
scale of the SM. The LHC was designed to operate at a maximum centre-of-mass energy of 14
TeV, but could be sensitive to the corrections from more microscopic processes contributing
higher energy degrees of freedom. In direct search efforts, the stop quark in particular is
a likely candidate for discovery due to its low mass relative to other sparticles in natural
supersymmetry models. Third generation squark searches are motivated by the possibility
that supersymmetry can be considered natural with only these sparticles accessible at LHC
energies. In models with large stop mixing, only one squark may be light enough for
observation [34]. If supersymmetry adds the next layer to the microscopic fundamental
theory, it may be probed with the greatest sensitivity currently possible at the LHC.

If superpartners are accessible, they could be discovered directly through one of three
main searches: R-parity conserving searches, R-parity violating regimes or searches for long-
lived particles. These strategies are based on predictions that sparticles will be discernible
from standard physics by their unique and unusual kinematic behaviour and decays. The first
type focuses on pair-production proceeding through the strong or electroweak interaction,
including decays to the stable LSP, characterised by high transverse momentum Standard
Model decay products and large missing transverse energy (defined in Section 3.2.3). R-parity



34 Supersymmetry

violating models instead assume the lightest supersymmetric particle decays to Standard
Model particles, which may be detected through multi-jet and multi-lepton searches. The third
main possibility for detecting supersymmetry is long-lived particles, in which superpartners
have small couplings, or there are mass degeneracies in the spectrum, such that superpartners
are produced with long lifetimes. In these cases, we may conduct searches that include
displaced vertices from late decays of the LSP. With the LHC operating at 13 TeV, the search
strategy is focused on superpartners with the largest predicted production cross-sections
and cleanest channels. The three main search strategies dedicated to detecting evidence of
superpartners at the high energy LHC are ongoing, and continue to be refined by new results.



Chapter 3

Collider experiments

International efforts to discover evidence of BSM signals, with a focus on supersymmetry,
rely on high-energy collider experiments. The largest is the LHC, a circular hadron collider
that accelerates beams of high-energy protons to produce showers of secondary particles
whose kinematics are measured at experimental sites around the ring. Searches in the
recorded data seek evidence of small signals from SM and BSM processes which may lead
to more precise measurements and new discoveries.

Once data is collected, an LHC analysis proceeds according to the parameters of the
target model. Generally, measured objects are calibrated, the distributions of observables are
built, these observables are compared with background expectations and in BSM searches,
if no deviations from the SM are discovered, the group sets limits constraining the models
of new physics. The analysis group may choose one or more methods that balance between
greater sensitivity and a broader search. New strategies are informed by the design capacity
of the detector, the physics reach of the collider, the types of information available, the
phenomenology of target physics models and any relevant existing search strategies. This
chapter describes these considerations regarding the LHC and its largest experiment, ATLAS.
The data considered here is simulated later in Chapters 5 and 6, and extracted directly from
ATLAS for the analysis in Chapter 7.
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3.1 The Large Hadron Collider

The design of the LHC was intended to maximise sensitivity to small SM and BSM signals
under the constraints of its size, power of instrumentation, shape and the capabilities of other
existing detectors. It is a proton-proton collider operating up to a total beam energy of 14
TeV at design capacity, superseding the Fermilab Tevatron proton-antiproton collider. The
LHC design was particularly optimised for measuring the Higgs boson mass for the first
time, and now for exploring further Higgs physics. The sensitivity of the experiment to new
physics requires a high centre-of-mass energy, high luminosity, high bandwidth and a strong
ability to identify particle signatures.

3.1.1 LHC design specifications

The LHC uses powerful dipole magnets to deflect beams of protons around a ring 27
kilometres in diameter, before colliding the beams at Interaction Points (IPs). Massive and
short-lived particle states often appear in BSM physics, so for a chance to detect these states
the LHC must use precision timing with a high data rate and bandwidth. The most recent
data-taking period spanned 2015 to 2018 (known as Run 2), when protons were accelerated
in two counter-rotating beams of 6.5 TeV each, producing a nominal combined energy of
13 TeV. Strong magnets shape and direct the proton beams; a total of 1232 superconducting
dipole magnets are responsible for maintaining the beams on their circular paths, and 392
quadupole magnets focus the beams at the IPs.

Four main experiments are located at the IPs around the ring, comprising two general-
purpose detectors (ATLAS and CMS), a flavour physics experiment (LHCb) and a heavy ion
detector (ALICE), the positions of which are shown in Figure 3.1. The four main experiments
permit collaborations to analyse vastly different sets of data simultaneously, searching in
realms as different as B physics, Higgs, cosmic rays, heavy ions, supersymmetry searches
and more.
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Fig. 3.1 Schematic diagram of the four main experiments located at interaction points around
the LHC ring. Also identified are the eight arc sections of the ring and locations for beam
collimation, acceleration and extraction [35].

The key objectives of these experiments include precise measurements of existing signa-
tures and discoveries of new physics signatures at TeV energies. Achieving these objectives
requires collisions that cover a wide energy range, for which a hadron collider design is the
ideal instrument. Partly, this is because hadrons are able to achieve higher energy collisions
than, for example, lepton colliders. The LHC is constructed within the tunnel that was first
operated in 1989 to collide electrons and positrons as part of the Large Electron-Positron
(LEP) experiment. The original lepton collider was designed to succeed in different objec-
tives to the LHC; colliding elementary point-like particles achieved a well-defined collision
energy that was suited for precision measurements. However, the LEP design also limited the
maximum beam energy and collision rate compared with the LHC. Since the design capacity
for beam energy at the LHC is 14 TeV, analyses can directly probe any energy up to this
value.



38 Collider experiments

The event rate is another consideration for achieving good significance in experimental
measurements. Experiments colliding a beam of particles with their anti-particles can
accommodate both oppositely-charged beams within the same vacuum chamber and magnets
(as LEP did), but the advantage of this efficient design comes at the expense of a lower
collision rate. Particle and anti-particle colliders are intrinsically limited by the rate at which
anti-particles can be generated, so the LHC was designed to collide high-energy proton
beams with a two ring design containing separate vacuum and magnet systems in each ring.
The protons collide in bunches containing a certain number of particles each. In Run 2, the
LHC was colliding 2808 bunches per proton beam, beginning the run with 1.2×1011 protons
per bunch [36]. Per second, the number of collisions was approximately 1 billion. Such a
high collision rate was made possible by the two-ring design of the LHC.

The amount of data produced in these collisions is vast and demands significant effort
for identifying which is “interesting” to be stored for analysis and which is irrelevant and
discarded. When beam particles scatter, information about the products of this interaction
may be pieced together and stored as an event. Relevant information is selected by the trigger
system, which stores an event if it is interesting enough to have been listed in the trigger menu
which was decided in advance of data taking. Circulating selected events internationally
for analysis is managed by data sharing on the Worldwide LHC Computing Grid (WLCG),
which provides computing resources for storing, distributing and analysing many petabytes
of data. The global collaborations connected to the WLCG comprise around 170 computing
centres spread across more than 40 countries, all requiring high-statistics measurements to
perform searches for interesting new signatures.

Luminosity and pileup

Luminosity is a main measure of the performance of a collider. The instantaneous luminosity
(L) of the LHC is a measure of the collision rate at the IPs, and is determined by the geometry
of the apparatus and the particle flux. It has dimensions of (area)−1(time)−1, typically
cm−2s−1. An increase in luminosity equates to a higher rate of event production per unit area
and time, producing higher statistics for rarer processes. A useful calculation for experiments
is the integral of luminosity over time, called integrated luminosity, which indicates the
number of collisions that occurred over the time interval. Integrated luminosity is measured
in units of inverse femtobarns (fb−1), where the barn is a measure of area such that 1 b
≡ 10−24cm2 = 10−28m2. If the time interval for integration is t − t0, then the integrated
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luminosity is:

Lint =
∫ t

t0
L(τ)dτ (3.1)

Since the beam sizes and bunch intensities of the LHC vary with time, the integrated
luminosity measures the total number of events possibly generated in t − t0, which is a useful
indicator of the performance of the LHC and its sub-detectors in a given run. At the end
of Run 2, the LHC had delivered a total integrated luminosity of 156 fb−1, of which 139
fb−1 can be used in physics analysis, where the increase in luminosity over time is shown in
Figure 3.2. The ATLAS experiment records around 95.5% of the luminosity delivered by the
LHC.

Fig. 3.2 Total integrated luminosity of the LHC over the Run 2 data-taking period comprising
the years 2015-2018 [37].

To understand how the luminosity relates to bunch crossing statistics, consider the
luminosity for head-on collisions in Equation 3.2. Luminosity depends on several parameters:
N1 and N2 are the numbers of particles per bunch in beams 1 and 2 and nb is the number
of bunches, while frev is the frequency of revolutions. The effective overlap cross-section
between the two beams at the IP is denoted A.

L =
N1N2nb frev

A
(3.2)
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If Equation 3.2 is used to calculate the Run 2 luminosity of the ATLAS Experiment, it
must first be manipulated to accommodate the non-zero crossing angle between the proton
beams at the LHC. To understand how it obtains angular dependence when collisions are
no longer head-on, consider Equation 3.3. At the LHC, the same number of protons per
bunch is injected into both beams, so N1 = N2 = N. The number of bunches per beam is
nb = 2808, which is multiplied by the revolution frequency frev ≈ 11.245 kHz and divided
by the product of the areas of the two Gaussian beams at the IP, σx and σy, each of which is
valued around 10−20 µm [38].

L =
N2nb frev

4πσ∗
x σ∗

y
F (3.3)

The product of beam areas can be written in terms of useful parameters: the normalised
emittance εn, the β function and the relativistic Lorentz factor γ proportional to beam energy.

σ
∗
x σ

∗
y =

εnβ ∗

γ
(3.4)

where the β function is the envelope of proton oscillations, and β ∗ denotes its minimum value.
These oscillations are called betatron oscillations, and they depend on the configuration of
magnets in the apparatus which are designed to minimise the β function at the IP where
the beams are focused. In the ATLAS experiment, focusing is achieved using a triplet of
quadrupole magnets. The emittance ε is the cross-sectional area of the beam, approximated
as an ellipse that contains a defined percentage of the particle phase space. Magnetic fields
change the shape of the ellipse, but leave its area unchanged. The area ε is controlled
instead by a process called adiabatic damping, which relies on the property that the beam
cross-section decreases as the acceleration of the beam increases. We compare the emittances
at different energies by calculating the normalised cross-sectional area (εn).

The geometric reduction factor F is valued between 0.3 and 1, so this fraction decreases
the luminosity by a value that depends on the non-zero crossing angle between the interacting
beams. For beams that are directed at different angles instead of aligned head-on, the
luminosity is reduced by a larger fraction. The effect of geometric reduction is controlled
in the experiment apparatus by using crab cavities to rotate the beam angle. Equation 3.5
describes the geometric reduction factor as a function of crossing angle (φ ):

F =
1√

1+(σs
σt

φ

2 )
2

(3.5)
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where the reduction factor depends inversely on the ratio of longitudinal bunch length σs and
transverse bunch size σt . As the crossing angle increases, the reduction factor decreases, so
collisions with a large transverse offset or crossing angle reduce the instantaneous luminosity.

The LHC is designed for a high luminosity to produce high statistics analyses, but the
collision rate and detection is limited by several factors, including hardware performance,
detector effects and collective effects such as beam instabilities. It is maximised by:

• Optimising the overlap area between the beams at the IPs,

• Minimising the size of the beams at the IPs,

• Increasing the number of particles per bunch, and

• Increasing the number of bunches.

A difficulty of achieving high luminosity is the increase in the number of simultaneous
interactions per beam crossing, called pile-up. Simultaneous interactions are difficult to
extract, as the overlap between detections confuses event reconstruction, a process described
later in Section 3.2.3. An experiment may choose to separate the beams to decrease pile-up
using a technique known as luminosity leveling, which reduces the luminosity on purpose
when it is naturally high and then ceases to temper beam interaction at the time when
luminosity would naturally decay. To achieve this effect, the experiment may begin with a
high value of the beta function at the IP before decreasing β ∗ when there are fewer protons
left in the beam to spread the rate of interactions more evenly over time.

The LHC therefore functions optimally when the distribution of collisions over time is
constant, to avoid large pile-up, and the total number of collisions over time is high. Using
the integrated luminosity (Equation 3.1), we can calculate the number of events resulting
from a particular physics process N within a time period by multiplying by the cross-section
as a function of the total beam energy of the LHC [39].

N = σ(
√

s)×
∫ t

t0
L(τ)dτ (3.6)

The ATLAS and CMS experiments are the highest luminosity experiments, requiring
L > 1034 cm−2s−1, whereas LHCb requires a medium luminosity of L ∼ 1032 cm−2s−1, and
the ALICE experiment for ion collisions requires low luminosities L ∼ 1029 cm−2s−1. The
ATLAS experiment has a high design luminosity to permit the search for many benchmark
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processes with small predicted rates of production, including Higgs boson production and
decay, and new physics scenarios such as supersymmetry.

LHC magnets

The main magnets on the LHC must be cryogenically cooled to temperatures near absolute
zero, operating at 1.9K. The cryo-cooling capacity is affected by effects such as the heat
load, power and impedance of other systems, including beam-induced heating. All magnets
in the LHC are electromagnets, in which the magnetic field is produced by the flow of
electric current. Superconducting materials, which conduct electricity without resistance,
avoid overheating in the high-current (11,850 amp) magnet coils [39]. Superconductivity
is achieved through the cryogenic systems where niobium-titanium wires in the coils are
maintained at low enough temperatures to reach a superconducting state using a closed
liquid-helium circuit. The magnets require 120 tonnes of liquid helium flowing through this
circuit to maintain their temperature. The helium refrigeration capacity influences the ability
of the magnets to accelerate and control the proton beams.

To correctly control the beams at the experimental collision sites, maintaining the magnets
is a primary concern. Early in Run II, fast losses were observed in this system, in some cases
requiring beam dumps where the energy of the protons was absorbed to control the beams
[40]. Mitigating the losses, the collision points were shifted by “orbit bumps”, but the lossy
object and the orbit bump remained for the full Run II. The maximum beam current was also
limited by other losses, limiting the total intensity per proton bunch in the beams. The cause
in this case was a vacuum leak following the exchange of a magnet. Although this limited the
bunch intensity during 2017 and 2018, luminosity was increased by using beams inducing a
low heat-load with small emittance. The luminosity did not become severely compromised
by detector losses, and high quality functionality was maintained.

3.1.2 LHC physics capabilities

Proton beams in the LHC are collided with high enough energies to generate interesting results
in the required centre-of-mass energy range for new physics processes. Supersymmetry and
other BSM scenarios may be produced within the current energy range, or they may appear as
contributions from higher energy processes. Understanding the sources of proton collisions,
the phenomenology of the target physics scenarios and the range of signatures possible within
our current energy capacity enables optimisation for future discoveries. Planned increases to
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the LHC integrated luminosity suggest that if the correct BSM scenario is supersymmetry
described in Chapter 2 then the LHC has a high chance of detecting direct evidence for it
within the next few years.

Proton collisions

Accelerating protons to such high energies causes them to behave as groups of unbound
partons. The partons usually interact during collisions in hard scattering processes where the
remaining partons are scattered away or interact at lower energies. In LHC collisions, the
interacting partons are not restricted to the valence quarks of the proton (two up quarks and a
down), but also include a sea of quarks and gluons within the proton that arise from QCD
interactions. Each of these particles carries some fraction of the total beam energy, according
to the parton distribution function (PDF) model.

The initial parton momenta in hadron collider experiments are fundamentally unknown,
but could take a range of possible values as described by their PDFs. The collisions at
the LHC do not exclusively have centre-of-mass energy at the limit of the LHC energy,
but instead span the range of energies up to the LHC energy, where the hard scattering
interaction is accompanied by multi-parton interactions and radiative corrections to the initial
and final states coming from gluons and photons, amongst other processes. These corrections
are called initial and final state radiation (ISR and FSR), and are detected at the LHC and
included in analyses. The range of effects and energies means that a proton beam energy far
in excess of 1 TeV is necessary to probe physics on the TeV scale, motivating the nominal
LHC design energies of 7 TeV per beam [38].

Production of supersymmetric particles

At hadron colliders, superpartners can be produced in pairs from parton collisions of elec-
troweak or QCD strength. If R-parity is conserved, then supersymmetric particles are always
pair-produced and never appear in isolation, as per Section 2.4.5. The products include
charginos (χ̃+

i=1,2), neutralinos (χ̃0
i=1,2,3,4), sleptons (l̃) and sneutrinos (ν̃), in the electroweak

sector. In the strong sector, reactions produce gluinos (g̃), squarks (q̃) and anti-squarks (q̃∗).
Production mechanisms of electroweakinos include [20]:
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qq → χ̃
+
i χ̃

−
j , χ̃

0
i χ̃

0
j , ud → χ̃

+
i χ̃

0
j , du → χ̃

−
i χ̃

0
j ,

qq → l̃+i l̃−j , ν̃l ν̃
∗
l , ud → l̃+L ν̃l, du → l̃−L ν̃

∗
l ,

(3.7)

and QCD strength reactions involve the following supersymmetric products:

gg → g̃g̃, q̃iq̃∗j ,

gq → g̃q̃i,

qq̃ → g̃g̃, q̃iq̃∗j ,

qq → q̃iq̃ j.

(3.8)

where i, j are the mass eigenstate indices of the charginos and neutralinos, and the generation
indices of the sleptons and squarks.

LHC supersymmetry signals are always an inclusive combination of all types of par-
ton collisions, but generally the LHC mostly operates as a gluon-gluon and gluon-quark
collider instead of a quark-antiquark collider, because it collides two proton beams instead
of colliding protons with antiprotons. QCD strength reactions already dominate over elec-
troweak strength processes, so the most likely reactions are gluon-gluon and gluon-quark
fusion in Equation 3.8. Of these, stop quark (top squark) production may be amongst the
most common, given our current knowledge of the allowed masses of the other squarks and
gluinos.

Predictions suggest that parton scattering produces supersymmetric particles very rarely,
so signals are scarce. Scattering cross-sections, which quantify the rate of occurrence, are
measured in units of barn common to the inverse femtobarn units for integrated luminosity
introduced in Section 3.1.1. The total proton-proton scattering cross-section, ignoring its
weak (logarithmic) energy dependence, is around σ ∼ πr2

p = 3 fm2 = 30 mb, and the cross-
section of any process of interest will be far smaller [38]. For example, the typical scale
for weak interactions is Fermi’s constant, GF ≈ 1 nb, which indicates that the rate of W
boson production is around 1 per million proton collisions. If supersymmetric particles
are produced in the collisions, then they have smaller cross-sections by several orders of
magnitude [41]. At the LHC, the largest supersymmetric cross-sections belong to the QCD
strength reactions described above, followed by lower cross-sections predicted for processes
with the associated production of a chargino or neutralino with a squark or gluino. Their
small predicted cross-sections motivate the high luminosity of the LHC, which should permit
their discovery.
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In addition to the limitations produced by small cross-sections on the maximum amount
of available data for BSM processes, interference from similar physics processes further
limits the number of available events. The event rate is reduced by the need to select final
states that have good resolution and are distinct from as many SM background events as
possible. If the optimal final states by these criteria are the states with small branching
ratio, which is the fraction of time for which a particle decays to this state, then the event
rate is severely limited. For example, during Run 2, the LHC produced almost 8 million
Higgs bosons, but the number of selected events was far smaller for these reasons. Similar
constraints on physics models and final states apply in supersymmetry searches.

Collider reach

The LHC must not only record enough events for analyses to isolate supersymmetry sig-
nals, but also must operate at energies higher than the superpartner masses. These masses
determine the discovery potential, where the current collision energy of the LHC at

√
s = 13

TeV has a certain reach in a chosen discovery channel for a given model, defining upper
bounds on the superpartner masses below which they could be observed with high enough
statistical accuracy to be confirmed a discovery. There are no stringent limits on the degree
of fine-tuning that is acceptable in a natural model of supersymmetry, so the overlap between
the reach of the LHC and the possible parameter space of natural supersymmetry is somewhat
arbitrary. Even so, when natural models are defined by a chosen amount of fine-tuning to
have quantum corrections to the Higgs mass that fall below some limits, the range of possible
superpartner masses is also bounded above, revealing the collider energy required to produce
them experimentally.

In Figure 3.3 the region below the grey band is not considered finely-tuned, and the upper
region where the gluino mass is greater than 6 TeV belongs to a finely-tuned model. Run 2
data from the 13 TeV LHC can exclude the green region with 95% confidence level, and is
unable to reach the remaining part of the allowed mass range. Natural supersymmetry defined
by these limits requires a hadron collider like the proposed High-Energy-LHC (HE-LHC)
with

√
s ∼ 33 TeV and 1000 fb−1 to either discover or falsify its existence over the full mass

range, where the top squark signal will be accessible even if the gluino is out of reach [42].
However, the superpartner masses would ideally fall below these upper limits, because this
reduces fine-tuning. For making discoveries in the lower mass range, the Run 2 dataset is
ideal.
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Fig. 3.3 The level of fine-tuning of the gluino mass required for its detection in current and
possible future experiments [43].

The effective reach of experiments can be increased through a strategic choice of analysis
techniques. Examples of strategies that search for signatures outside of the current energy
range include precision measurements of contact interactions, and indirect searches for parti-
cles produced in quantum loops. Indirect searches are not limited to the LHC centre-of-mass
energy, because energy conservation can be violated for a very short time in quantum loops.
In considering possibilities for future colliders, direct and indirect searches for new physics
complement each other: an excess in indirect searches informs the decision to build a new
direct detector that will target relevant processes. Alongside targeted strategies, developing
model-agnostic approaches and testing them on LHC Run-2 data is vital preparation for
future discoveries. Such global fits allowing sparticle decays to be more complex than those
encountered in simplified models have previously found ample parameter space for light
squarks [44–48]. Testing old and new strategies on current data, in searches that reach as
much of the new physics parameter space as possible, is important both to discover evidence
of new physics in current data and to design future experiments for the coming years.

3.2 Detection with ATLAS

The ATLAS experiment operated with successful detector performance throughout Run
2 compared with design expectations. In spite of the challenging conditions produced by
recording an unprecedented integrated luminosity of almost 96% of the LHC total, the
data quality was high. Considering complications arising from pile-up, which amounted to
10-70 interactions per bunch crossing, performance was outstanding and all subdetectors ran
smoothly with high data taking efficiencies.
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High performance of the ATLAS detector in Run 2 was intended to achieve excellent
lepton and photon resolution, good jet and missing energy resolution and standalone muon
measurement, amongst other benefits [49]. These focus points enabled ATLAS to precisely
measure the results in Figure 3.4, which shows a summary plot of the progress in measuring
production cross-sections of the SM processes from the end of Run 2 in 2020. Cross-sections
are measured in picobarns and are fiducial, meaning that they are calculated for a subset of
phase space in which the process signatures are visible because the detector is sensitive to
them in this region.

Fig. 3.4 Fiducial production cross-section measurements of SM processes compared with the-
oretical expectations calculated with next-to-leading order (NLO) or higher loop corrections
[50].

The overlap between data and theory in Figure 3.4 represents strong agreement between
experimental measurements with the ATLAS detector and the predicted values of each
process from the SM. Cross-sections are measured in picobarns, and the dark-colour error
bar represents statistical sources of uncertainty related to the available number of detected
events in the analysis, while the light-colour bar represents the full uncertainty, including
systematic effects. Processes with a high cross-section are clearly easier to measure precisely
and in general do not require such a high luminosity to produce clear results as the processes
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lower in the table. These results have since been further improved by additional analysis, but
the summary remains strong evidence of the detector (and analysis) performance during Run
2.

3.2.1 ATLAS detector design & setup

The ATLAS and CMS general-purpose detectors are the largest at the LHC and have the
same basic design. In ATLAS, an inner detector close to the beamline measures tracks of
charged particles, and is followed by a liquid argon (LAr) electromagnetic (EM) calorimeter
which mostly measures electron and photon energy. Further from the beamline, a hadronic
calorimeter made of plastic scintillator tiles and iron measures the energies of protons and
neutrons, and outside of this is a muon detector. The inner detector tracking system is made
up of silicon pixel detectors close to the beamline, surrounded by a silicon semiconductor
tracker and a transition radiation tracker. The ATLAS detector uses magnets in several
capacities, both toroidal and solenoidal, with a 2 Tesla strong magnetic field able to deflect
and focus the proton beams [51].

The energy deposited in the hadronic and EM calorimeters by particles passing through
the material is converted to electrical signals. Consequently, those particles that leave tracks
are identifiable through the length and curvature of their trajectories. In Figure 3.5, the
locations and relative sizes of detector components are visible, including the semiconductor
and transition radiation trackers (SCT and TRT), which together with the pixel detector make
up the three main components of the inner detector. Respectively, these three comprise a
silicon microstrip tracker with 60 m2 of silicon distributed over several barrel layers and
endcap discs (SCT), straw tubes with gold-plated tungsten wire in the centre providing
additional information on particle type with the ability to distinguish electrons from pions
(TRT), and 80 million pixels (pixel detector) [52, 53]. The three together provide precise
measurement of the direction, momentum and charge of electrically-charged particles.

The overall size of the ATLAS detector is dominated by the muon spectrometer, which
accommodates large monitored drift tube (MDT) chambers composed of aluminium tubes
designed to measure the curvature of the muons. Muons typically pass undetected through
the inner detector and calorimeter, and then leave long paths in the MDT chambers because
they are highly energetic at around 200 times the mass of the electron. They are tracked as
they deposit energy in the spectrometer, but are too energetic for the detector to stop their
motion, so their total momentum is measured instead from the curvature of their helical
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trajectories in the strong solenoidal magnetic field. The apparatus also measures their precise
coordinates as they leave the detector using cathode strip chambers.

Fig. 3.5 A cutaway diagram of the ATLAS detector identifying the detector components,
including hadronic and EM calorimeters and the large muon chamber [54].

The aim of the above combination of detector components is to precisely track and
measure the energy and momenta of as many identifiable products as possible from hard
scattering reactions and subsequent decays. When a hard scattering process takes place,
the scattered particles move off at transverse directions to the beams. For clear results, we
seek quantities that are measured in the frame of reference of the scattered products. The
centre-of-mass frame of these particles is not in general the same as the lab frame in which
measurements are made, so we choose measurements which have the same values in the
lab and partonic centre-of-mass frames. These quantities are invariant under Lorentz boosts
along the beam line, or the z- (longitudinal) direction, and may be derived from various
levels of the detector system. Observables are functions of these kinematic measurements,
revealing distinguishing characteristics of the collision products. These are combined to
produce additional variables for selecting data and performing analysis.

First, discerning a comprehensive picture of particle kinematics is vital for creating useful
variables. The momenta of scattering partons are fractions of the momenta of colliding
protons, as described in Section 3.1.2. According to the parton model, the momentum
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fractions of partons colliding in a hard scattering process from within two different protons
are distributed probabilistically and independently. Therefore, the probability of a parton in
one proton found with momentum fraction x1 of the total momentum Pµ

1 of the first proton is
independent of a parton found with momentum fraction x2 of the second proton Pµ

2 . In this
case, the parton momenta p1 and p2 are written:

pµ

1 = x1Pµ

1 , pµ

2 = x2Pµ

2 (3.9)

Since the colliding partons carry different fractions of longitudinal momentum, the rest
frames of the parton collisions have different longitudinal boosts.

Applying a Lorentz boost along the longitudinal direction reveals which components of
energy and momentum are boost invariant and therefore particularly interesting for analysis.
Under a Lorentz boost parameterised by β , the components of a parton four-momentum
pµ = (E, px, py, pz) transform as:

E → Ecoshβ + pzsinhβ , px → px, py → py, pz → pzcoshβ +Esinhβ (3.10)

The transverse momenta px and py give the boost invariant vector and scalar quantities,
p⃗T ≡ (px, py) and pT ≡ |pT|, which are typical in analyses, and are useful for calculating
more sophisticated variables. By remaining in the parton centre-of-mass frame, boost
invariant variables are useful for disentangling the outcomes of the hard collisions from
the protons that produced them. Using this method, we can produce final collision events
characterised by kinematic attributes, amassing all the discernable measurements and piecing
them together into physics objects by the reconstruction process. As part of this process, the
ATLAS tracking system relies on a boost-invariant coordinate system to distinguish collision
products, also calculated from the transverse momenta.

The coordinate system

The trajectories of scattered particles and decay products are tracked through the detector
components in an angular coordinate system. The system is based on the azimuthal φ and
polar θ angles standard in cylindrical coordinate systems, but since the polar angle is not
boost invariant, further calculations are useful. The azimuthal angle is calculated from the
components of transverse momentum:

φ ≡ tan−1 px

py
(3.11)



3.2 Detection with ATLAS 51

and is therefore already a boost invariant quantity. An additional component of the trajectory
coordinates is rapidity y, which is a function of the energy and z-component of momentum.

y =
1
2

ln
E + pz

E − pz

The difference of two rapidities for two momenta is boost invariant, so the difference ∆y is
part of the definition of angular separation ∆R, a useful variable for distinguishing particles
produced in the hard collision.

∆R =
√
(∆y)2 +(∆φ)2 (3.12)

Whereas rapidity is a kinematic quantity defined from components of the four-momentum
vector, and therefore so is angular separation, there is an additional quantity which is entirely
geometric known as the pseudorapidity η . Pseudorapidity is a function of polar angle θ :

η =− ln
(

tan
θ

2

)
where massless particles have η = y. However, massive particles do not have the property that
the difference between their pseudorapidities is boost invariant, unlike the rapidity difference
∆y. A standard definition of angular separation uses the pseudorapidity difference ∆η in
place of rapidity difference, as in Equation 3.13.

∆R =
√
(∆η)2 +(∆φ)2 (3.13)

The angular coordinate system composed of φ , θ and η for a cylindrical detector appara-
tus is represented in Figure 3.6.
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Fig. 3.6 The coordinate system of the ATLAS detector, comprising pseudorapidity η and
azimuthal angle φ [38].

A pseudorapidity of 0 corresponds to a particle moving with no longitudinal component
directly away from the beam line. In contrast, particles with η ∼±5 are moving effectively
along the beam line. The ATLAS detector calorimeters cover the region |η |< 4.9, and its
charged particle trackers cover |η |< 2.5.

Detector capabilities

Certain particles have properties that cannot be measured with the ATLAS detector design.
The calorimeters measure the energy and direction (η ,φ ) of particles that are stable on
detector timescales, which does not include heavy particles such as the tau lepton because
they decay too quickly to be observed. Neutrinos are stable, but they are also undetected
because they do not interact with the calorimetry system. Because neutrinos are invisible,
their momenta cannot be discerned if there is more than one produced in the same collision.

3.2.2 Data acquisition & the trigger system

The data available for analysis is restricted to fill the available storage space, retaining only
the most interesting physics events. The data acquisition and trigger systems record signals
and decide which regions of the geometric and kinematic space are retained. Data acquisition
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(DAQ) refers to the programmable software used to measure electrical signals from the
detector apparatus and convert them to digital. On the order of 100 million channels acquire
data from ATLAS, contributing around 1 MB of raw data per measurement, recorded every
25 ns [55]. A small percentage of this total is chosen by a trigger system that selects events
in real-time, where “interesting” physics such as electroweak and top physics starts at 6-8
orders of magnitude rarer than a typical collision. Trigger and DAQ systems always introduce
some inefficiencies, which may be relevant for the physics program, although the ATLAS
experiment in Run 2 employed a highly efficient trigger system.

The ATLAS experiment trigger is two-level, comprising a level-1 hardware system and
a high-level software-based system. They operate around 1000 triggers during data-taking
and together filter the 40 MHz crossing frequency of the LHC down to 1 kHz of physics
collisions [56]. Pre-determined choices are compiled into a trigger menu, which specifies not
only the selection algorithms but also their allocated rate and bandwidth. The trigger menu
can be flexible to adjustments, following the priorities determined by the physics strategy;
for example, the main triggers for supersymmetry searches involve generic jet, missing
transverse energy and lepton selections. Sufficient events must be acquired belonging to all
the relevant search classes. Sometimes, more events of interest are recorded than necessary
or allowed by the bandwidth for their type. In this case, a pre-scale factor of N selects one
event out of every N events of its type fulfilling the requirements, discarding the remainder.
Regardless of how many events are detected, two factors are necessary for selections: the
instantaneous luminosity of the LHC, and the limitations of the ATLAS detector readout.
Both factors inform the trigger menu and are vital to overcoming challenges in the system. A
major challenge for the ATLAS trigger group in 2016 was to maintain trigger performance
with increasing luminosity and pile-up conditions, and measuring trigger efficiency is an
important part of the experiment.

The ATLAS level-1 trigger hardware system is fed mostly by input from the calorimeter
and muon detector components. Within regions of interest up to the limits of the detector
hardware, the combined system makes a selection from the set of objects identified as muons,
jets, taus and clusters. Its topological trigger component receives combined information from
two other parts, the calorimeter muon triggers, which the topological trigger uses to calculate
variables for further triggering. Events that are accepted by the level-1 trigger are passed to
the High-Level Trigger (HLT), the software-based system that reconstructs them with greater
precision.
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3.2.3 Event reconstruction

Reconstruction algorithms translate electronic signatures from the trackers, calorimeters
and muon chambers into the type, four-momentum and charge of the physics that deposited
them. These processes occur inside both the high-level trigger and the computing Grid.
They inform physics analysis of a particle’s type, location of production and the type of its
parent particles. The answers are determined by the combination of at least three classes of
reconstruction, including tracking, vertexing (grouping particles into vertices) and particle
identification (ID) of each track.

Invisible particles carry away missing energy from the system, but are identified from
momentum conservation and theoretical knowledge of processes that involve the visible
detected particles. Although precise outcomes from scattering are impossible to predict,
expectations from probability classify which reactions produced the detected particles to
within a certain confidence level. Additional discrepancies may arise from detector resolution
and from imperfect reconstruction efficiencies.

The objects reconstructed from the measurements of particles shown in Figure 3.7 can be
quite different from the original particles. For example, when the proton and neutron pass
into the hadronic calorimeter, they leave a highly collimated cone of hadrons which have their
tracks reconstructed as a jet object. The presence of a jet in the assembly of reconstructed
objects indicates that charged or neutral hadrons were likely formed from a quark or gluon,
although there is no way to uniquely identify their origin.
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Fig. 3.7 Schematic diagram of identifiable particles detected in different layers of the detector.
The hadrons produce jets in the hadronic calorimeter, which are later reconstructed alongside
the muon, electron and photon [57].

Detector data is complicated for several further reasons, especially because it involves
products from many different parton collisions, where multiple scattering reactions produce
indistinct final state particles. Background processes are those which appear similar to the
state of interest and must be removed through analysis to clean up the signal. The two causes
of background processes in an LHC dataset are:

1. different reactions that produce the same physics objects, and

2. incorrect classification of objects because they mimic the properties of other particles.

These produce two different types of background process, the first imposing a hard limit
which cannot be improved by perfecting the reconstruction and the second resulting from
performance inefficiencies. The two types are:

1. irreducible backgrounds, with the same final state as the signal, and
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2. reducible backgrounds, with a different final state.

The reducible backgrounds are caused by imperfectly identifying the type of recon-
structed particles to produce “fakes”. Often, fakes include apparent jets which are actually
electrons, or charged pions appearing as electrons. A lower fake rate for a particular type of
particle can be achieved by tightening the reconstruction requirements, therefore increasing
the proportion of “identified” signatures that were truly left by the desired particle. The recon-
struction requirements are tuned by applying quality cuts, using combinations of tracker and
calorimeter information to reject data from regions where the detector was malfunctioning.

Another feature that contributes to reducible backgrounds is misidentifying non-prompt
particles. Prompt particles originated in the primary vertex of the hard collision, which
coincides with the interaction point, whereas non-prompt particles are created from the decay
of longer lived particles and originate in a secondary vertex. Some particles that commonly
cause displaced vertices include τ-leptons, b and c-hadrons, due to their longer lifetimes.
For example, non-prompt electrons come from processes including photon conversion, semi-
leptonic heavy-flavour decays and decays of charged pions or K-mesons, and are considered
a background for prompt electrons.

Irreducible backgrounds, unrelated to detector or reconstruction performance, are re-
moved in analysis by modelling their contributions and subtracting them from the data. This
method applies generally to performance inefficiencies that can be modelled probabilistically.
If the recorded rate of a process is spuriously high, the additional contribution may be
modelled and subtracted, extenuating the error.

Generally, the event reconstruction process is complicated by several performance ineffi-
ciencies, which are worsened by memory limitations. Higher luminosities strain the load on
CPUs, causing Grid computing to turn towards parallel strategies. However, parallelising
reconstruction algorithms is not always possible when serial segments must be performed
sequentially, including tracking. Efficient strategies remain a primary consideration for
managing memory across the WLCG without sacrificing reconstruction performance.

Observables

The following series of collider observables includes a range of the objects that can be
identified in reconstructing LHC detector measurements.
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Electrons have signatures comprising reconstructed tracks associated with localised
clusters of energy in the EM calorimeter. When passing through the EM calorimeter, an
electron produces a shower with a distinct shape according to a series of variables, which
include the shower width, energy leakage, fraction of energy deposits in each calorimeter
layer and quality of the track fit. These variables are used in loose and medium levels of
electron identification.

Clean reconstruction of electrons requires good methods of distinguishing them from
photons that produce an electron-positron pair, and from misidentified pions. Other sources of
fakes include jets misidentified as electrons, and non-prompt electrons identified as electrons.
Importantly, real electrons lose only a small amount of energy when accelerated by the
electric field of another charged particle, called bremsstrahlung radiation. Consequently, the
ratio between the energy they deposit in the EM calorimeter and their track momentum, called
the E/p ratio, should be close to unity [51]. This tight criterion for electron identification
distinguishes them from hadrons, which deposit a large fraction of energy in the hadronic
calorimeter.

Muons have similar characteristics to electrons, but lose a comparatively small fraction
of energy in collisions due to their larger mass. They are reconstructed from their interaction
in the muon chamber. Fake muons arise from energetic pions which have “punched through”
the hadronic calorimeter to the muon chambers.

Jets are formed when partons hadronise, where gluons split into quark-anti-quark pairs
and quarks emit gluons, forming colour-neutral hadrons detected in the hadronic calorimeter.
The jets track the energy flow of the hadrons, and are not fundamental objects but construc-
tions containing the QCD interactions of pair-produced collimated hadrons. Consequently,
there is no unique definition of a jet, and several mappings exist from a set of hadrons with
given four-momenta to a set of recombined jets with a different series of four-momenta.
The rich jet substructure can become hidden once a jet is defined, but improvements to our
theoretical description of jet substructure from QCD are prompting more analyses to choose
techniques that exploit its complexity by designing targeted observables.

Many physics processes are distinguished by B-tagging, which is the process of identify-
ing jets containing B mesons (or originating from a b-quark). B-hadrons have long lifetimes,
travelling further than others before decaying, and bottom quarks are heavier than all others
except the top quark, so they produce more charged particles during decays. From these
properties, reconstructing the secondary vertex for the B-hadron decay allows computers to
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identify B-jets. Similarly, c-tagging algorithms identify jets originating from charm quarks
through a more difficult process, which is also useful in analysis.

Missing transverse energy is the magnitude of the vector quantity missing transverse
momentum, E⃗miss

T . Initially, LHC beams have zero transverse momentum, so by conservation
of momentum the final state particles after collision must be balanced transverse to the beam

axis. The transverse energy is ET =
√

m2 + p2
T, and is important for identifying neutrinos.

Neutrinos are the only SM particles which do not have either electric charge or colour-charged
constituents, and therefore do not interact with any component of the detector, so they are
attributed any imbalance in transverse energy. The phenomenology of R-parity conserving
supersymmetry models typically presents two massive neutral candidates that contribute a
large and measurable amount of missing transeverse momentum.

3.3 Techniques for data analysis

The observables identify a combination of kinematic properties unique to the pathway for
event production. Using this data, there is a need for creative new analysis methods for
extracting small signals from the dominant SM backgrounds. An essential step in developing
new techniques is to evaluate the current statistical methods. Some standard approaches are
considered here with the purpose of motivating future improvements to our current sensitivity.

Any improvement to current methods must treat statistics carefully to avoid false discov-
eries. Rigorous statistical techniques are important in LHC physics, which is clear through
pertinent examples. In a model-independent resonance search (“bump hunt”), the analysis
searches for an excess in data without an expected outcome for comparison, so obtaining
a large enough event count is a particular consideration. Such a method is possible only
if a (new) particle decays to visible SM decay products. The false discovery of di-photon
production in 2015 through a bump hunt was caused by a small overall excess that was later
attributed to random statistical fluctuations after more data were analysed [58]. Generic
searches for supersymmetric particles may detect a wide range of new phenomena, and
may be classified as anomaly searches, a growing area of LHC physics seeking any kind of
significant deviations from expectation [59]. A statistically significant measurement must be
recorded and accommodated within a plausible theoretical model for the new particles to be
“discovered”. The most applicable search strategies include those that search broadly and
approach kinematic methods resourcefully to improve sensitivity to many physics scenarios.
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3.3.1 Kinematic analysis variables

Selection cuts are placed on kinematic variables to retain high sensitivity to the signal,
searching in data regions where backgrounds are minimised. These region definitions are
tightened by selecting on a combination of the basic four-vector components of the final
state objects and several functions constructed from these four-vectors. Preselection criteria
are designed to maximise signal purity prior to analysis, which is most easily achieved by
targeting the dominant backgrounds.

Ideally, the selection only passes events that match the signal final state so that only
irreducible backgrounds remain, but clearly some reducible background events pass the cuts
due to object misidentification and other reconstruction inefficiencies. These are removed if
possible using analysis methods described in later sections. Some variables well-motivated
for supersymmetry searches were introduced in Section 2.6, and the current section will
continue this discussion of convenient selections for achieving clean supersymmetry signals,
considering examples of supersymmetry searches for electroweakinos and stop quarks
motivated by the later analyses in Chapters 5-7.

Electroweak supersymmetry analyses

The number and type of dominant backgrounds strongly depend on whether the chosen
signature contains zero, one, two or three light leptons (electrons or muons). In a two lepton
electroweakino search, there are typically three sources of SM backgrounds that mimic the
supersymmetric final state: diboson production, top-antitop production, and the production
of a Z-boson plus jets. Alternatively, in a three lepton electroweakino search, the preselection
criteria may define a signal region (SR) that largely excludes the latter two backgrounds so
that only diboson production dominates.

Several other preselection criteria define the SR, including cuts on the number of jets.
There may be no b-tagged jets allowed, and minimal (for example, zero or one) non-b-
tagged jets. Any jet or lepton belonging to a passing event may obey transverse momentum
criteria that typically demand greater than around pT ∼ 25 GeV, as well as criteria requiring
pseudorapidity less than some value, for example |η | < 2.5. Geometric bounds are often
chosen to eliminate events that involve particle trajectories passing through detector regions
that are notoriously difficult to reconstruct.
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Searches usually require large missing transverse energy, if the supersymmetric extension
of interest predicts a stable LSP escaping with non-zero momentum. Once the SR is defined,
the variables that show the most disparity between signal and backgrounds are analysed to
constrain the signal model. Methods of generating these results are discussed later in this
and the following chapters. Some useful variables in electroweakino analyses include the
following list. These are not unique to event topologies found in electroweakino searches,
nor is this an exhaustive list; they are simply well-motivated for this search and therefore
used later in the electroweakino analysis in Chapter 5.

• The transverse mass in a two-particle system, defined as:

mT =
√

(E1
T +E2

T)
2 − (p1

T + p2
T)

2

where p1, p2 and E1
T, E2

T denote the transverse momenta and transverse energies of
two daughter particles in a decay. Full mass reconstruction may not be possible in
events with missing or mismeasured particles (or noise contamination from pileup), so
when one particle cannot be detected directly but is indicated by missing transverse
energy, this definition of transverse mass applies. The given definition was created by
the Underground Area 1 (UA1) experiment [60] to eliminate dependence on unknown
quantities such as the total energy.

At the UA1 experiment, the W boson was detected through its decay into a charged
lepton and a neutrino, where the neutrino escapes with missing momentum. The W
mass therefore could not be directly obtained from the lepton and neutrino momenta in
any given event, so the transverse mass variable was used to place a lower bound on its
mass, given by the property m2

T ≤ m2
W. Equality is possible if the lepton and neutrino

are produced with identical rapidity. Using mT, the W mass was extracted at UA1 (and
UA2) in a fairly model-independent way by accumulating enough events close to the
upper limit of mW.

The transverse mass is derived from the definition of the invariant mass of a relativistic
particle, M2 = E2

T − (P⃗T)
2, and since it is defined only using quantities which are

invariant under a Lorentz boost in the z-direction, it is also longitudinally boost
invariant. If p1 and p2 are purely transverse, which is true if η = 0, then mT = m.
Alternatively, if p1 and p2 are instead purely longitudinal then mT = 0. Otherwise,
transverse mass lies in the range 0 < mT < m.
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• The minimum transverse mass of a lepton,

ml,min
T = min(mT(l1,Emiss

T ),mT(l2,Emiss
T ),mT(l3,Emiss

T ))

where the transverse mass of a lepton is first calculated in events with missing transverse
energy for each lepton in the event, before taking the minimum.

• The reconstructed transverse momentum of the Z boson pT(Z).

• The azimuthal angle ∆Φ between several different pairs of particles.

– ∆Φ(l+Z , l−Z ) between the two leptons associated with the Z boson. The standard
method requires the two chosen leptons to be a same-flavour, opposite-sign pair
such that their dilepton invariant mass is closest to the Z-boson mass. The third
lepton remaining in the event is assigned to the W -boson.

– ∆Φ(Z, lW ) between the reconstructed Z boson and the lepton associated with the
W boson.

Third-generation squark search

The parameter space of stop quark searches is more constrained than the corresponding space
for electroweakino searches, mostly because the signal cross-sections for electroweakino
production are smaller. Stop quark masses and decay modes that are not excluded are those
that closely resemble top quark pair processes, including scenarios where the mass difference
between the stop quark and the neutralino is smaller than the top quark and consequently
each stop quark decays via a 3-body process into a b quark, a W boson and a neutralino.
ATLAS searches for stop quarks have included significant progress in 0-lepton, 1-lepton and
2-lepton final states.

Some variables described for electroweak supersymmetry are again useful here to target
common features. The missing transverse momentum is a clear example of a variable that
is broadly applicable across a range of event topologies, motivated here again by the stable
LSP with R-parity conservation. Additional variables are defined as follows, and are again
motivated by standard stop searches and are applied later in the analysis contained in Chapter
6.
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• The minimum value of the transverse mass formed by the two b-tagged jets and
missing transverse energy in the event, mb,min

T , using the following definition of mb
T.

mb
T =

√
2pb

TEmiss
T [1− cos(∆φ)]

The transverse momentum of each b-jet is pb
T, and ∆φ is the difference in φ between

each b-jet and the missing transverse momentum.

• The asymmetric mT2 value, where mT2 is a generalisation of the transverse mass for
use with signatures where two or more particles are not directly undetected [61, 62]. It
is useful for measuring the masses of pair-produced particles where each decays to one
particle that is observable directly and another that is invisible and carries away missing
transverse momentum. The mT2 may become a function of the mass of a missing heavy
particle, if such a mass is known, or may be calculated from Equation 3.14 with two
sets of one or more visible particles denoted a and b. The maximum of their transverse
masses is minimised over all possible combinations of missing transverse momenta
p⃗Ta and p⃗Tb, with the requirement p⃗Ta + p⃗Tb = E⃗miss

T .

mT 2 ≡ min
p⃗Ta+p⃗Tb=E⃗miss

T

{max(mTa,mTb)} (3.14)

The kinematic endpoint of the mT2 distribution provides a convenient evaluation of
the mass of the parent particles as a function of the daughter particles, which is a
useful identifier of events in analysis [63]. In a supersymmetric process, it carries
model-independent information about the mass difference between the primary and
secondary supersymmetric particles.

The term “asymmetric” refers to event topologies involving two supersymmetric decay
chains terminating in different daughter particles, which is a more general approach
than the commonly assumed decay pathway corresponding to two identical missing
particles. For example, it is often useful for suppressing dileptonic tt events where one
lepton goes undetected. For these top production events, the asymmetric mT2 (amT2)
has a kinematic endpoint at the top quark mass, but extends to higher values when
there are more sources of missing energy in the process.

• The minimum of the invariant mass formed by the lepton and each of the two b-jets
in an event, mmin

bl . The value mmin
bl reaches a maximum in top pair production events,

but is not bounded by the same value in the corresponding supersymmetric stop quark
production events.
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• The scalar sum of transverse momenta HT, calculated by adding the moduli of the
transverse momenta for the physics objects in the event.

HT = ∑
j
|pT, j|

The sum over the physics objects can in general include every object in the event, where
j is the object index. More specific definitions may sum over, for example, just one
lepton and two b-jets, if these are part of the pre-selection requirements. Sometimes,
in analyses without leptons, the sum is restricted to jet objects only.

Another common variable is the effective mass (meff), which in its simplest form is the
sum of the transverse momenta (pT) of every jet and lepton in the event, plus the Emiss

T .
Other variables are calculated for semi-invisible particle searches using intricate methods
that account for unknown boosts along the beam direction and complicated cascade decay
chains. We can apply additional assumptions about decay chains and intermediate masses to
apply constraints on parent masses.

Recursive Jigsaw Reconstruction

The Recursive Jigsaw Reconstruction (RJR) method for generating uncorrelated analysis
variables is capable of reconstructing particles in the presence of combinatoric or kinematic
ambiguities [64]. Kinematic unknowns arise from unmeasured particles, and combinatoric
unknowns come from indistinguishable particles. RJR infers both types of missing informa-
tion by approximating the rest frames of every intermediate particle state in an event and
evaluating the energy and momenta of interesting objects from within these rest frames. The
reconstructed decays are entirely resolved using algorithms known as Jigsaw Rules, which
can be applied to any event topology. These algorithms generate a set of recursive jigsaw
(RJ) variables, a powerful approximation of the average kinematic behaviour which the
reconstructed missing objects would possess in the rest frames. The RJR method is applied
in the later analysis in Chapter 7.

The approach assumes a particular decay topology for the events from several possibilities
by choosing the option that best captures the kinematic features of the signal topology under
analysis. The chosen topology then sets the identities of the intermediate particle states, and
the method chooses a rest frame for all particles in the decay tree by iteratively minimising
their particle masses. The momenta that were observed in an event are then boosted to one
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of these frames, and the boosted four-vectors are used to construct the RJ variables, which
either have units of mass or are dimensionless quantities such as angles between objects.

Figure 3.8 is a simplified decay tree showing a generic event where the decay state
produces a single invisible particle. Assuming the visible state is identified and reconstructed
by the detector with a four-momentum measured in the lab frame, RJR allows us to infer the
mass and momentum of the invisible particle along the beam axis in the lab frame.

Fig. 3.8 A simplified decay tree, where invisible particles (green) are unknowns [65].

The same is true in the example of a decay tree for a single W production in Figure 3.9,
where assumptions must be made about the kinematics of the neutrino. The RJR approach
resolves the momentum and decay kinematics of the W boson without any prior assumptions
about the kinematics or masses of the event, instead considering the underconstrained four-
momentum of the neutrino as unknown components in the boost velocity between the lab
frame and the rest frame of the W boson.
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Fig. 3.9 A decay tree for W production in the lab frame and subsequent decay into a lepton
and neutrino [64].

In general, the kinematics of a decay tree are fully specified by the velocities relating
adjacent reference frames plus the measured four vectors of visible particles, without the
need for information about the mass or kinematics of any invisible particles. The specific
Jigsaw Rules required to resolve all the unknowns in an event and the order in which they
should be applied is automated by a code package called RestFrames [66]. After analysis,
the RestFrames object assigned to any particle in the decay tree can be queried about the
particle’s mass, decay angles and momentum reconstructed in any reference frame.

The observables calculated in a particular frame are largely independent of those calcu-
lated in all other frames of reference, so the variables calculated by RJR are a strong basis
for analysis. The basis of observables is created in RestFrames when partitioning available
information for each reconstructed event into approximately uncorrelated variables [64].
In tests of these observables on supersymmetric examples, they have shown evidence of
being able to distinguish between different decays of similar supersymmetric particles in
chosen models of supersymmetry, and are also sensitive to expected differences between
these signals and SM backgrounds.

Application to analysis

An analysis group identifies measured and derived (calculated) kinematic variables to target
interesting signatures. After applying preselection criteria, they plot the distributions of
relevant variables to isolate features that are indicative of signal events. The kinematic
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variables described above provide a series of both measured and derived quantities designed
to reveal independent features of the data. Ideally, different variables are sensitive to different
kinematic properties, and analyses can set stronger exclusion limits when they use a larger set
of minimally correlated variables whose combined sensitivity may isolate rarer signatures.

There is further scope to develop creative new variables that can add discriminatory
power when applied alongside those existing. We require high sensitivity to small signals
such as weakly-produced supersymmetry to avoid the need for heavy optimisation of BSM
scenarios [67]. For the best use of Run-2 data and beyond, we must add power additional to
the current variables.

3.3.2 Modelling physics processes for analysis

Signal and background processes are computer-simulated to predict their detector phe-
nomenology, with the aim of bridging the gap between theoretical first-principles calcula-
tions and complex detector signatures in experimental data. This is achieved by simulating
particle physics events as they occur in nature. Experiments depend on accurate models,
and their accuracy is the subject of constant improvement. Simulations model events based
on probability calculations of likely decay topologies and kinematics, which are limited by
theoretical uncertainties. The generated events are compared with experimental data both to
improve the simulations, in the case of SM processes, and to measure excesses, in the search
for BSM signals. Simulations may be used in place of real data as part of a preliminary
proof-of-principle analysis when developing a new technique, such as the methods applied
later in Chapters 5-7.

Theoretical and technical improvements are ongoing to increase the order of perturbative
calculations and explore new structures for parton showers, amongst other benefits. Simula-
tions are increasing systematic inclusion of terms corresponding to sub-leading corrections
and fixed-order calculations at increasing precision. Calculations at next-to-next-to leading
order (NNLO) or better in QCD, mixed QCD-electroweak and electroweak theory are under
heavy development, reducing theoretical uncertainties.

The detector response is modelled on top of the underlying decay process to account for
the effect of finite resolution and reconstruction inefficiencies on particle signatures. Event
generators must simulate the same performance capabilities as detectors, including their
inability to identify intermediate states in a decay tree or attach precise mass and kinematics
to all particles. The ATLAS detector has been fully simulated with high accuracy in programs
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such as Geant4 [68], which incorporate its predicted response to supersymmetric particles.
Simulated event displays reveal predicted detector effects for particles not yet observed as
well as consolidating our knowledge of the processes that produced real particle collision
data. Accurate simulations are of particular importance for rare processes and their dominant
backgrounds, including sparticle production, as they require more precise predictions to
overcome the challenges arising from a low event rate.

Simulated events contain constituents which represent real collider data, including a
list of stable particles (hadrons, photons, leptons) with their associated four-momenta. An
example of an ATLAS event display for Higgs production is presented in Figure 3.10, where
elements of the final state are identified in the legend: two b-jets are shown in blue, and an
escaping muon appears in red. The display is a simulated version of a real event recorded
by ATLAS in 2017 that contributed to the first measurement of the Higgs through a new
channel, the decay to two b quarks, which was a challenging signature to identify despite
comprising almost 60% of Higgs decays [69]. Although the neutrino would not be visible
in the real detector, its proposed track is marked in the simulation. Yellow boxes represent
clusters of energy deposited in the calorimeter, and Inner Detector tracks appear in orange.
Reconstruction effects are precisely tuned using these detector response simulations.

Fig. 3.10 Simulation of a candidate ATLAS event contributing to the Higgs boson mea-
surement via a pair of b quarks published in 2018 [69]. The display identifies a range of
reconstructed particles [70].
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Monte Carlo simulations

The Monte Carlo (MC) method of event simulation is a numerical integration technique
useful for representing the quantum mechanical variability that produces wildly different
multiparticle final states under fixed initial conditions. It is capable of first integrating over the
probability density of the physical process and then simulating the detector and subsequent
trigger and reconstruction algorithms. Several separate stages of simulation contribute to this
process: modelling hard processes, resonance decays, parton showers, the underlying event,
hadronisation and others. Different MC event generator algorithms are maximally effective
at each of these tasks.

After an algorithm integrates over the relevant probability density, it passes the hard
process through to a parton shower algorithm before hadronising the results to include the
full set of measurable objects, including jets, in reconstruction. Interactions with the detector
are digitised, translating them into realistic signals. General purpose MC event generators
are capable of performing many of these tasks, and specialised programs perform parts of
the process with greater accuracy. One common generator is Pythia [71], widely used for
its general purpose capabilities. To add a simulation of the ATLAS detector, Pythia can be
interfaced with a detector simulation such as Delphes [72]. This interface is sufficient for the
hard process and detector simulations required for the analysis in Chapters 5 and 6.

Event generators that use MC techniques such as Pythia are fast and reasonably accurate:
they converge fast in many dimensions, and their accuracy improves with every additional
point. They benefit from a straightforward error esimate, which scales with the number of
points requested by the user. The error always converges proportional to 1/

√
N, regardless of

the number of dimensions, which is a strong benefit when performing the high-dimensional
phase space integrals required to generate the momenta of many particles per LHC event
[73]. A method called importance sampling further improves the rate of convergence by
performing a Jacobian transform, producing a new integration variable in which the integral
is flat, and thereby reducing the error.

Modelling with MC methods is undergoing ongoing improvements, and only a small num-
ber of non-standard backgrounds remain unavailable through MC simulations. Significant
recent progress has been made in calculating processes at NLO with higher jet multiplicities,
which are useful for supersymmetry and other BSM searches. Calculations at NLO involve a
combination of explicit infrared divergences from the loop integral with divergences arising
from integration over the phase space. To successfully integrate the differential cross-section
at NLO with this combination, an MC generator must introduce a subtraction term with the
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same infrared pole structure as the real matrix element. It then integrates the result over the
phase space that was unresolved, eliminating the nuisance divergences. MC event generators
are able to accept arbitrarily complex integration regions by such methods, and require only
a few points to obtain first estimates.

An MC generator is always subject to the under- or over-estimation of some physics
processes in certain regions. Comparing simulated events at reconstruction-level with those
at generator-level allows us to quantify the efficiencies and resolutions, and to consider
theory systematics. One area of improvement is the jet reconstruction performance of event
generators. This is described by measuring the jet energy scale (JES), a value given by the
ratio and mean of the comparison between the reconstructed jets and the generator-level
jets. The JES indicates how well on average the underlying events are corrected in the
reconstruction. The detector has finite jet energy resolution, which smears out detailed jet
structures (and is the width of the jet energy response), and MC is known to underestimate
this resolution. Unfolding is the process of restoring the features that were smeared out
by detector resolutions, so we perform unfolding on the MC to give an exact theoretical
description of jet resolution and give it the same artifacts as the data.

If an analysis region is undersampled by the simulation, the user can benefit from
increasing MC statistics in the chosen region by several useful methods. One is smearing the
MC events, and another is re-weighting them after biasing the phase space. In the first option,
events that pass the selection criteria for the region are copied perhaps ∼ 100 times, then
objects are smeared in a window around their expected response. For example, in a hadronic
process, the leading jets may be smeared around their expected jet response. The window
is small enough not to bias event topology, so the kinematic distributions of smeared and
pre-smeared events match. Consequently, the existing events are made to represent a larger
sample without requiring the user to generate more events.

The option for increased sampling where the user biases the phase space is another
valuable technique, beneficial in cases where computing power or memory restrict the
maximum number of events. Throughout an MC simulation, the user has the option of
biasing the likelihood of events at parton-level (on the hard process) or at detector-level. This
artificially increases the likelihood of the chosen kinematics, oversampling in this region
compared with others that are less important to the analysis. By later assigning low weights
to these contributions, the user easily decreases statistical error in their analysis region when
computational limitations are preventing them from generating enough events to do so in all
regions simultaneously.
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Event weighting

Weights are assigned to simulated LHC samples to maintain the total number of events
close to the true number expected in data. One purpose mentioned above is to re-weight
oversampled phase space regions to increase analysis statistics. Alternatively, weights may be
added to all events of a particular process in a sample to obtain an effective number of events
that correctly reflects the LHC luminosity and the cross-section relative to other processes.

Assigning weights after oversampling follows a similar process to prescaling at trigger
level in experiment to reduce the fraction of common events that are stored for analysis.
However, in this case the resulting bias towards the region of interest is removed by applying a
different normalisation factor to the divided subsets of phase space. The normalisation factors
weight the oversampled regions down by their cross-section to represent the appropriate
number of events that would be expected to fall into that region in a true experiment.
Consequently, statistical reliability is distributed more evenly across the space without
skewing results. The outcome is equivalent to replacing the basic cross-sections encoded in
the MC event generator.

Weights are calculated in a simple case for an LHC integrated luminosity L as follows.
The cross-section for a process x with Nx events contained in a larger total sample is:

σx =
Nx

L
(3.15)

where Nx is the number of correctly weighted events. If the number of events of process x
before weighting is Nx0, then the weight W on each event is equal to Nx/Nx0. Expressed in
terms of the desired luminosity and cross-section for process x, the weight becomes:

W =
σxL
Nx0

(3.16)

Using only the predicted cross-section and integrated luminosity, an MC event sample can
be weighted according to this simple procedure. A more involved re-weighting process
applies to more complicated samples, including those with oversampled regions of phase
space. Occasionally, MC simulations are required to assign negative weights to events whose
contributions must be removed, for example when subtraction terms have been introduced
in NLO calculations. These more complex cases are treated later in Chapters 4 and 7,
respectively.
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3.3.3 Standard statistical analysis techniques

Statistical power is optimised so that analyses use as much of the available data as possible.
Several separate SRs may contain a high signal-to-background ratio, and are combined to
improve the overall signal sensitivity. ATLAS analyses often exploit multiple SRs, propagat-
ing errors appropriately between regions. In any SR, the predicted signal is extracted from
its dominant and subdominant backgrounds by estimating and removing those backgrounds.
Then, statistical methods are used to determine the significance of a discovery or exclusion.

Statistical versus systematic uncertainties

Statistical and systematic types of uncertainties are both applied to background models
generated through simulation. The statistical uncertainty is derived from the finite number
of MC events in a sample, and can be improved by increasing the sampling in regions of
interest. Systematic uncertainties include detector and reconstruction effects, along with
theoretical uncertainties derived from imperfect understanding of the SM.

To calculate systematic uncertainties, we vary systematic quantities and observe the
model’s response. Sources of experimental systematic uncertainty include the jet, lepton
and photon energy scales and resolutions, as well as b-tagging efficiency and jet energy
scale [74, 75]. Systematics also include trigger efficiencies and the imperfect measurement
of the overall luminosity. Both experimental and theoretical systematic uncertainties are
defined using this method of varying parameters within their expected range and quantifying
the response. For theoretical uncertainties, the process involves varying cross-sections,
comparing different MC generator yields, varying the renormalisation and factorisation
scales for QCD processes, and varying the parton distribution functions [76]. The relevant
systematic uncertainties are propagated through to the histograms of variables used in the
analysis.

Data-driven background estimation

If backgrounds are estimated using data-driven methods, the dominant backgrounds in
the SRs are modelled with MC simulations and normalised by signal-depleted regions
called control regions (CRs). The backgrounds in the CRs are fitted to the data in order to
calculate the normalisation factors. Separate regions called validation regions (VRs) are
also chosen with the characteristics that they possess similar kinematics to the SRs but
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lower expected signal-to-background ratios, and they are used to validate the data-driven
background estimation. The normalisation factors from the CRs are propagated to the SRs
and VRs, and the fits are compared when the results are ‘unblinded’. After unblinding, we
check for deviations in the data from the backgrounds, which may take the form of an excess
that stands out against a smooth fitted background function.

A background yield estimation for an SR using MC in a dedicated high-statistics CR
requires the analysis to calculate a transfer factor composed of the ratio between the number
of Monte Carlo events in the SR and that in the CR. The result is a central estimate for the
background yield in the SR, as shown in Equation 3.17.

NSR
Background =

NSR
MC

NCR
MC

NCR
Data (3.17)

An alternative approach to background estimation

The MC background prediction can only be scaled by a CR normalisation factor if a valid
CR exists which contains the same backgrounds as the SR but a depleted signal, which is not
always true. If the backgrounds in the SR cannot be evaluated by these data-driven methods,
pure Monte Carlo is a practical and dependable alternative. However, a pure MC approach
requires some additional error propagation, because MC is affected by theoretical systematic
uncertainties in addition to the experimental sources. The sensitivity of a result to each
source of uncertainty depends on the analysis type and the SRs, so some are better designed
to accommodate pure MC background estimations.

Likelihood fit

The next stage of the analysis aims to extract the significance of the chosen signal model
given the background estimation by applying a simultaneous likelihood fit of the models to
the observed distribution. Ideally, the likelihood function contains only one free parameter
which corresponds to the value the analysis seeks to measure: the parameter of interest (POI).
In this case, the value of the POI in the data may be determined by evaluating the likelihood
function in a background-only region, and comparing with its value in the SR. Realistically,
however, several parameters are added to the function by the systematic uncertainties from
detector simulation, theory and statistics, which are called ‘nuisance parameters’ (NPs),
and must be constrained. By definition, systematic uncertainties are unconstrained by the
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data and cannot be obtained from the measurement, so they are instead constrained in the
likelihood by multiplying by estimated constraint factors. After this step, all uncertainties
can be treated as statistical.

Constraining the background NPs and incorporating them into the likelihood function
is the same process as including the backgrounds from the CRs in the fit. This process of
using data-driven best-fit values to incorporate a description of systematic uncertainties into
the statistical likelihood function is called ‘profiling’ the systematics, and can significantly
reduce the total uncertainty in a measurement. The NPs are typically modelled using either a
Gaussian or Poisson distribution, which allows the relevant Gaussian or Poisson statistical
uncertainties to take the place of the unknown systematic uncertainties. The approach can be
used in a resonance search, where the shape of a continuum background is determined in the
likelihood from its shape in CRs.

Hypothesis testing

The likelihood function compares two hypotheses which suggest alternative physics scenarios
that may be present in the data. For each signal hypothesis, we can calculate a p-value
quantifying the compatibility between the data and the background-only hypothesis. If the
likelihood function has one free POI µ , we use the function to compare the likelihood of
the background-only null hypothesis H0 with a signal hypothesis H1 by evaluating it at the
relevant values of the POI: µ = µ0 under background-only assumptions, and µ = µ1 from
the data. The ratio between these two values gives the p-value, calculated by evaluating the
likelihood under the two conditions, and is the most powerful test statistic for discriminating
between two hypotheses according to the Neyman-Pearson lemma [77]. The test statistic is
an extension from basic number counting analyses, in which the likelihood of observing n
events can be found from the Poisson distribution.

The Asimov dataset is a simple method to obtain the median experimental sensitivity of a
measurement, considering the fluctuations about the expectation. For a given set of model
parameters (including POIs and NPs), the Asimov dataset is defined as the set generated
when all the parameters are set to their best-fit values, so when the dataset is binned the
event count in each bin is set to the expected yield. The approach then provides the median
significance required to reject the background-only hypothesis under the assumption of a
certain signal model.
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3.3.4 Supersymmetry searches with the ATLAS experiment

The signal models predicted for supersymmetry searches depend on many precise factors,
including the details of the supersymmetry breaking mechanism. Measuring sparticle masses
and couplings on the weak scale is sensitive to this high scale mechanism. The experimental
picture of supersymmetry depends on theoretical considerations which broadly include:
the particle content and mass hierarchy, whether R-parity is conserved or violated, the
types of particles targeted and their mixing angles and coupling constants to the Standard
Model particles. Many analyses choose to target a highly specific set of particles and apply
constraints to specify a particular realisation of the theory. Constraints include imposing a
certain mass hierarchy and equalities that reduce the number of possible parameters in the
MSSM.

In many supersymmetric scenarios, heavy sparticles decay to several massive Standard
Model top quarks or bosons, which subsequently decay into final-state leptons and jets with
significant branching ratios. The decay products of heavy particles are generally boosted, and
subsequent decays are collimated, which can be captured in a large R jet. This information
is used to design searches for the decays of very heavy particles, including top quarks. In
general, due to features such as high missing momentum and large object multiplicity, the
most powerful probes of natural supersymmetry often come from jets plus missing energy
and same-sign dileptons. The typical irreducible backgrounds with final states common to
supersymmetry decays of interest include QCD with mis-measured jets, W+jets and top
quarks, which are modelled precisely to quantify their contribution to the data according to
the above statistical methods.

The null results that have been produced by supersymmetry searches with ATLAS so far
are narrowing the broad parameter space and range of complex particle spectra, but progress
remains slow, and there are even some cases where LHC results provide no new constraints.
This situation arose in a recent global fit of the electroweakino sector in the MSSM [78],
which concluded no significant exclusion on any range of electroweakino masses in general.
Studies like these are hampered by the very low rate of weakly-produced supersymmetric
signal compared to the dominant SM backgrounds.

Current limits on supersymmetry searches with the ATLAS Experiment

No supersymmetry searches to date have found a significant deviation in the data from the
background estimate. The analysis group sets limits on models using the fit and hypothesis
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testing methods described in Section 3.3.3. Until July 2020, stop quark searches had
eliminated the regions defined in Figure 3.11. Analyses are employing steadily more sensitive
techniques to explore previously-inaccessible signal models, aided by larger datasets. This
combination inspires further hope for a discovery after Run 3 begins in 2022 with the intention
of reaching a higher luminosity. If the complex decay patterns and obscure detector signatures
of supersymmetry are hiding the evidence from view, we must develop progressively more
advanced methods of analysis in preparation for a discovery in the near future, with a focus
on decreasing their signal dependence.

Fig. 3.11 Exclusion limits on the stop particle mass from the ATLAS Experiment, up-to-date
in July 2020. The mass of the lightest neutralino is plotted as a function of the stop mass for
measurements of stop production proceeding via several possible pathways [79].

3.3.5 Advances in analysis strategies

Advances in ATLAS analysis strategies have recently come to rely heavily on machine
learning techniques, multi-channel statistical analyses and multi-variate analyses. An analysis
develops a set of minimally correlated variables that can ideally be used as part of the
selection criteria revealing an excess of signal, and these variables can equally be used in a
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machine-learning classification [80–82]. The more sophisticated cut analyses use multivariate
algorithms, such as neural networks (NNs), to define more complicated SRs. They have
the power to improve statistics and sometimes open up phase space that was previously
unexplored.

The aim of advances in analysis, including machine learning, is to find new ways of
constructing sensitive variables and to improve existing strategies. One method of increasing
the sensitivity of standard variables is principal component analysis (PCA), which finds the
axis of least variance between the SM-only and the SM+BSM model and then projects along
this axis to produce the most sensitive variable one can construct using only those input
features [83]. Consequently, differences between an SM-only and an SM-plus-supersymmetry
model, for example, will appear most prominently in measurements of this new lower-
dimensional variable. A machine learning technique that can further improve the basic PCA
strategy is deep neural networks (DNNs). DNNs take the original variables and construct a
new discriminant with even more input features, labelling the output as 0 for background and
1 for signal. The networks can be tested with different sets of inputs to find those best suited
for a particular analysis [84].

Three deep learning techniques are the most widely used in particle physics analysis:
the fully connected network (FCN), convolutional neutral network (CNN) and recurrent
neutral network (RNN). Each has a unique definition for a layered network, with important
differences between the weighting they place on relations between entities in close proximity
with one another in the input’s coordinate space, and those that are further away. FCNs
relate all input components, whereas CNNs define only local relations, and RNNs define
sequential relations. The data format required by FCNs, CNNs and RNNs is a space of
vectors, sequences or grids. However, particle collider data commonly comprises a space of
unordered elements (events). Unlike the three network types mentioned above, techniques
that instead employ graph networks create pairwise connections between sets of elements,
and are applicable to collider physics problems that involve unordered datasets with rich
relations and interactions between the elements. Graph network methods have only minimally
and recently been applied in a particle physics context, particularly in the form of graph
neural network machine learning techniques [85].

An increasingly standard machine learning method of classifying signal and background
events when those events do not have all the characteristics of either signal or background is
the Boosted Decision Tree (BDT). A decision tree recursively checks if additional criteria
can help to classify events correctly. Even if events initially fail a certain signal criterion,
they are not immediately rejected and may later be classified as signal according to the
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additional criteria. A BDT requires a good understanding of the model describing the
data, and the algorithm can only be trained if there are enough events available. They are
specifically trained to discriminate against the dominant backgrounds, and are used alongside
selection-based analyses to provide additional sensitivity.

A useful growing area of LHC analysis lies in model-agnostic searches using anomaly
detection methods. The subject comprises several regimes for searching broadly for any
signal-like events that are not explained by the SM background, one of the most robust
of which is the variational autoencoder (VAE) [86]. An encoder represents the features
of the original data in a new representation with fewer dimensions, similar to the reduced
dimensionality approach of PCA. While an encoder compresses the data, the next stage of a
VAE is a decoder which decompresses it, with some losses. These generative models are
used for fast simulation in ATLAS [87], and also trained on SM processes so that they can
detect anomalies with no assumptions on the signal [88].

Future outlook on analysis

There is clearly a strong motivation to revisit particle search techniques, and find new ways
of extracting small signals from LHC data. Creative new search techniques will be useful
first for searching in current Run 2 LHC data, which has already been partly scrutinised using
standard analysis strategies, and then for analysing additional data produced after the planned
upgrades to collider reach. Run 3 will modify the trigger system to record rare events in
regions of parameter space that remain unexplored, and increase the luminosity. Following
this, the high-luminosity LHC (HL-LHC) is the successor to the LHC scheduled to begin
operation at the end of 2027 [89]. It is designed to increase the dataset by more than 10
times, key to analysing rare new phenomena that may already be present in the energy range
currently under exploration. Progress will be made by synchronising advances in collider
luminosity and energy reach with the development of creative search strategies capable of
probing effectively for theoretically-motivated signals in the new data. We aim to use novel
techniques to target the most likely areas for imminent discoveries.





Chapter 4

Graph network analysis

4.1 Introduction

Graph networks explore the connections between elements in a dataset, where the user has
the power to choose the scale of these connections. Networks are a discrete representation
of data sampled from a continuous underlying space, containing discrete nodes and the
edges (connections) between them. Two nodes are connected if they are “close” in the
space and disconnected otherwise, where closeness is defined by some measure of similarity
specific to the data. Patterns in connections on a chosen scale reveal properties of the data
that characterise either the individual nodes or the dataset as a whole, and these patterns
are quantified by convenient calculations of network metrics defined in graph theory. The
extensive set of metrics provides a powerful method of analysing the similarities between
nodes, and comparing these measures has provided useful evidence of graph behaviours and
characteristics for datasets from the social and physical sciences [90–92]. Network analysis
has never before been applied to event-by-event particle collider analyses, and we show that
by calculating the network properties of particle collider data, we can apply standard graph
methods in novel ways to improve sensitivity to BSM physics. We formulate a series of
discriminators between signal and background events which are sensitive to small signals
across a range of physics scenarios.

Network analysis reveals more information about the data than standard particle physics
searches. ATLAS searches typically calculate discriminating variables to compare discon-
nected events, prescribing a set of attributes to each event which treat them individually
without quantifying properties of their situation in the dataset as a whole. The classification
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of signal and background may involve simple quality cuts or more elaborate algorithms.
However, typical observables often reveal no difference between disparate event topologies,
so there is a need to explore the structure of collider data in greater depth than we can achieve
with these observables alone. By evaluating relative kinematics through graph networks
instead, we characterise topologies of events on a chosen scale in the kinematic space as a
whole and extend standard BSM LHC analyses to increase their sensitivity.

Our research proposes a new method of exploring LHC data by calculating effective
distances between events, and uses this information to create networks which define novel
event-by-event variables sensitive to event topologies. These variables are based on typical
kinematics but contain additional information encoded in the similarities and differences
between the events on some scale, which becomes available only through studying their
network connections. Our networks comprise nodes of LHC events mapped as graphs
in collider space, the underlying multi-dimensional space of original kinematic variables.
Signals we seek to isolate in our analysis are generated from two scenarios of supersymmetry
based on stop quark and electroweakino production, treated in Chapters 5 and 6 respectively.

4.1.1 Event similarity in collider space

High-energy LHC collisions produce particles which are related by their kinematic attributes
and decay topologies reflecting their partonic origins. BSM signals may be rarer or more
complex than SM data, generating potentially fewer connections in a network between
BSM events as a measure of their similarity in the space. Events are connected if they
possess similar values of the underlying variables used as a basis to construct the graph. For
example, the missing energy values reconstructed for LHC events should reveal clusters of
SM events at lower values than the supersymmetry events, which are expected to be few
and scattered at higher values than the bulk of the distribution. By constructing a network
from these events instead of treating their values of missing energy in isolation, we obtain
new information derived from the similarity connections: the information we know about
a particular event grows with its connectedness, as every connected neighbour effectively
passes information about its own kinematics on to the event of interest. Network properties
thus encode information not only about an event’s kinematics as a discriminator between
event types, but also about the properties of all the events nearby which are connected to that
event.
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We consider that an event is likely to share significant kinematic properties with a distinct
subset of the dataset. This “similar” subset may be clustered in a localised region of kinematic
space, or be located approximately the same distance from a central event. BSM signals
may possess characteristic structural patterns when viewed holistically in a graph network,
which are conveniently calculated using the network metrics. Distributions arise from the
sampling of continuous manifolds underlying SM and supersymmetry processes, which lend
differences to their signatures measured at the LHC. Using similarities and differences in
networks of events, Chapters 5 and 6 show that signal events of a particular process type
may be identifiable by a combination of network metric calculations. These calculations
are sensitive to structurally distinct processes and may be strong discriminators of BSM
scenarios.

Information about similarity is obtained from factors including the density of connections
between nodes, the types of nodes that share connections, and the geometry and topology of
the sampling of events. Analysing geometries requires knowledge of the metric dimensions of
shapes, whereas topological study refers to the intrinsic shape properties of metric-free struc-
tures [93]. A structure may have shapes which are invariant under continuous deformation
of the space, making these shapes homotopic, and belonging to the study of topology. The
distributions of signal and background events in collider space can reveal both topological
and geometric differences, each possessing some features which are invariant under spatial
deformation and some which are metric-dependent. We make network topologies the broad
focus of our study, where topological disparities between signal and background events are
independent of metric dimensions and so their visibility in analysis is less dependent on the
choice of parameters in network construction. Topological properties are therefore more
relevant to a first proof-of-principle. Furthermore, this focus aligns with our long-term goal
of developing a standard analysis technique with applications across a broad range of physics
scenarios, which should not require fine-tuning of network parameters to achieve sensitivity.

4.1.2 Applications of graph networks

Networks have been created from social, trade, biological, communication and climate
data [92, 94, 95] to represent social media, political influence, neural pathways and the
transfer of information across the internet, amongst other real-world applications. Community
structure is a common property of social networks, where groups of nodes possess dense
internal connections but are weakly connected between groups. Modelling how networks are
generated with different topologies advanced in 1998 with the small world model created by
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Watts and Strogatz, generated by re-wiring lattice structures which start with strictly non-
random patterns of edges and progressively become more random [96]. The Watts-Strogatz
method creates networks with strongly-connected local clusters of nodes, which are not
typically present in other random networks, lending it practical applications in modelling
neural networks, power grids and international collaborations because they also share this
feature.

Random networks in general have properties typical of average graphs, and in particular
the Erdős–Rényi random graph model has well-studied properties and strong practical
applications, dating back to 1959 [97]. Erdős–Rényi random graphs Gr(n, p) are created by
specifying only two parameters: the total number of nodes n and the probability p that a
random pair of nodes is connected. A typical use of these random networks is to compare
them with real networks to rigorously evaluate the likelihood that non-trivial topological
structures have emerged in the real data. This comparison in network analysis is treated
similar to testing a null hypothesis for evaluating LHC signal significance using likelihood
functions described in Section 3.3.3. In our LHC networks, we quantify the difference
between SM and SM+BSM network metrics and therefore compare signal distributions with
SM-only networks instead of random networks, although we do not exclude this potentially
useful addition in future work.

Network metrics identify a range of graph characteristics which are not discernable by
eye. Some distinguishable features include clustering, which refers to the presence of a set
of closely-connected nodes, and centrality, which indicates the “popularity” of a node and
is calculated from algorithms based on its number of connections with others. The most
common centrality measure of popularity is degree, which is defined for a single node as the
total sum of its edges. Another useful centrality metric is betweenness, which detects those
nodes forming the most important pathways for travelling along connected paths through the
network. These and other characteristic properties are defined in Section 4.3. Features such
as clusters in high-dimensional data space can be difficult to interpret, prompting the need
for effective network data analysis by defining rigorous indicators of these characteristics
and calculating their significance.

Network metrics identify topological structures effectively in a diverse range of studies,
including several on galaxy distributions [98–100]. Analyses of the spatial distributions of
galaxies using network analysis revealed that distinct topologies can be distinguished using
tools such as clustering and centrality measures of importance. In particular, filamentary
structures bridging large clusters are identified from betweenness centrality in the topology of
distinct galaxy classes, in agreement with known filament properties determined using other
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means such as n-point correlation functions and visual interpretations [101]. The authors
conclude that network representations of galaxy distributions improve their ability to quantify
topological features in the universe.

Characteristics which are present in some real networks but not others are an ideal method
of discriminating between datasets. Constructing networks from real data may produce a
typical property of structure and dynamics known as “scale-free” behaviour, discovered
from a range of data types including social, biological, technological, transportation and
information networks [102–104]. Scale-free networks possess the property that the degree
distribution follows a power law, where the fraction of nodes with degree k is equal to k−α for
some α > 1, and real networks may weakly or strongly possess this property. Highly central
“hub” nodes are prevalent in real social and biological networks, and absent in others such as
random networks and lattices. When hubs are absent, the degree centrality distribution is
narrower as it does not possess a tail of highly-connected nodes, whereas scale-free networks
with power-law degree distributions must possess hub nodes [105]. Other network metrics
are also sensitive to hub behaviour and can discriminate between types of data with and
without hub nodes, as these nodes heavily influence large-scale structure.

The types of analysis that can be performed with graph networks make network techniques
advantageous in a particle collider search. The primary advantages are outlined below.

• Networks require few assumptions about the nature of the data. By designing a search
that applies network analysis directly to LHC data with no additional constraints, we
produce results which are independent of any assumptions besides the signal region
definitions. One reason is because networks are computationally effective in treating
discrete data, requiring no estimators of continuous functions pertaining to theory
models.

• Networks encode information contained in the data at a scale chosen in the analysis
design, which can be adjusted to describe an appropriate level of detail and complexity.
A remarkable feature of a complex network is its heterogeneity, which is explored
easily at different scales.

• The observational data used to create a network can be replaced by simulations,
allowing for direct comparison. We can therefore apply network analysis in LHC
searches where our strategy typically requires us to compare simulated backgrounds
with measured collider data.



84 Graph network analysis

• The tools contained in network analysis provide immediate classification of individual
events as well as more holistic structures such as clusters, comprising a wide range of
possible discriminators. The complexity of large-scale structures is typically difficult
to access via alternative analysis strategies.

Despite these benefits, our strategy for applying graph network analysis in an event-by-event
LHC search for new physics is novel and has not been attempted until now. The existing
studies into network analysis applications in collider physics are few and take a different
approach.

Existing collider physics applications

The similarity between two collider events was evaluated at MIT in 2019 by developing a
metric for the collider space based on the Earth Mover’s Distance [106, 107]. This is only
one example of a distance metric in collider space; many more standard distance metrics can
be calculated from LHC data in an n-dimensional kinematic space. We investigate several
useful metrics in our study, and apply the concept to construct a network of events, which
has never before been attempted for the purpose of LHC analysis. Recently, graph networks
have been applied as part of deep learning studies in particle physics [108–111], though
these applications are distinct from our analysis approach. Some notable studies include
modelling kinematics within an event for classification [112, 113], reconstructing tracks
in silicon detectors [114], pile-up subtraction at the LHC [115], investigating multiparticle
correlators [116], and particle reconstruction in calorimeters [117]. However, network
applications to particle physics searches beyond deep learning capabilities remain largely
unexplored.

4.1.3 Analysis strategy

We explore differences between the network properties of SM events and supersymmetry
events due to their distinct origins by calculating powerful discriminating variables defined
by graph theory. The network metrics are not highly correlated, and conveniently exist in
both local and global form, where local metrics are calculated event-by-event and global
metrics produce a single value characteristic of the entire network. Averaging over the local
metrics for every node typically produces a global metric; for example, transitivity is a global
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metric calculated by averaging the local clustering [100]. We focus on local metrics only,
leaving global metrics to future study.

Local network metrics can apply to LHC searches in two ways: the first is a model-
dependent approach tuned to one BSM scenario, and the second is model-independent
anomaly detection. In the first case, we can construct SRs from the local event-by-event
variables to improve sensitivity to a rare physics signature. This allows us to quantify
the increase in sensitivity derived from the network variables compared with a standard
search. An advantage of local metrics is that they provide a new basis of variables on which
we can place selection cuts in place of standard kinematics to increase signal yield as a
straightforward test of their analysis power. In the second case, we can create a model-
agnostic search by first calculating the network variables for the SM-only network before
searching for deviations from these values in data, covering a large signal phase space. We
focus our preliminary analysis on the model-dependent limit-setting case to generate results
which are comparable with the standard methods described in Chapter 3. A possible approach
to a model-independent anomaly detection network analysis is presented in Chapter 8.

Developing network analysis strategies in the novel context of ATLAS searches is a new
technique which requires careful tests to prove that network metrics are meaningful when
calculated from graphs in collider space. Considerations must be made for the particle col-
lider context: for example, we require variables which possess indistinguishable distributions
when calculated from the background-only network compared with the background part of
the signal-background network. Adding signal should not change the background distri-
bution significantly, otherwise the shapes of the background-only network metrics cannot
meaningfully be compared with metrics calculated from real data. One possible method
of achieving a consistent background shape is to search for signal which populates mostly
different regions of collider space and is therefore not heavily connected to the background.

In addition, particle collider networks must contain a method of representing a larger
number of events by a smaller set, because a simulated set of events cannot be made to
contain the precise number of expected events for every given process type. Since the
effective number of LHC events in a simulated sample is different to the size of the sample,
our networks represent the effective number of events by adding event weights, a process
which must also be tested to ensure these weights represent the intended information correctly.
Conveniently, weights may be added to a network in two distinct ways, where one type of
weight alters the relative importance of the nodes and the other alters the relative importance
of the links. Tests of the weighting method and the background-only versus background-
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signal distributions, along with other tests which are significant to particle collider networks,
are described in Section 4.2.3 and performed in Chapters 5-7.

4.2 Network construction

We build network graphs with LHC events from data or simulation where a pair of events is
connected if they are nearby in the space of our chosen n-dimensional graphs. We define
the concept of nearby events using a free parameter called linking length, which we set to
the maximum distance between two connected events, thereby choosing a scale on which
we can observe complexity in the patterns of connection. Given an n-dimensional dataset
comprising a set of N entries with n attributes, we choose a method of constructing a network
that reveals non-trivial behaviour in the network metrics. The main parameters involved in
construction include the choice of n variables which are used to create the graph space, the
method of calculating distance in that space, and the value of the distance nominated as the
optimal choice of linking length for observing network complexity.

4.2.1 Definitions

A network is a mathematical data structure that is comprised of nodes connected by either
directed or undirected edges. A directed edge passes from some node A to another node B
where no edge may exist from B to A, whereas an undirected edge must connect two nodes
in both directions equally. We consider finite, undirected graph networks where two events
cannot be connected in one direction only. The graph is denoted by G = (N ,E ), where N

is the set of nodes, and E ⊆ {{i, j} : i ̸= j ∈ N } is the edge list. Figure 4.1 depicts a toy
graph network visualisation comprising nine nodes and thirteen undirected edges.
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Fig. 4.1 A pictorial representation of a graph network in two dimensions, where node O is a
hub with a high degree centrality of 5, B is isolated and has low centrality, and C, D, E and
F form a highly connected cluster.

A convenient form of representing large graphs is the adjacency matrix, which has the
list of nodes as the rows and columns. Connected nodes have a 1 in the relevant adjacency
matrix entry, indicating the presence of an edge, while disconnected nodes have a 0. We may
write this as A = (ai j)i, j∈N , where ai j ∈ {0,1} and ai j = 1 if {i, j} ∈ E , and we note that
the adjacency matrix will be symmetric in our case because our LHC event networks are
undirected. The neighbours of a node ν ∈ N are those that are linked to the node by an
edge, defined via:

Nν = {i ∈ N : aiν = 1} (4.1)

These are also referred to as the members of ν’s punctured neighbourhood. We can define an
extended adjacency matrix A+ = (a+i j)i, j∈N = A+ I with:

a+i j = ai j +δi j (4.2)

where I is the identity matrix, and δi j is the Kronecker delta symbol. This then allows us
to define the unpunctured neighbourhood of ν as the set of nodes which includes both the
neighbours of ν , and ν itself:
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N + =
{

i ∈ N : a+iν = 1
}
= Nν ∪{ν} (4.3)

In our analysis, we will define the adjacency matrix for LHC events by defining a
distance between events in the space of kinematic variables that are measured for each event.
Assuming some distance di j between the nodes in this space of variables, we then define the
adjacency matrix:

ai j =

1, if di j ≤ l,

0, otherwise,
(4.4)

where l is the linking length. This prescription clearly leaves many choices open for how
to proceed, including the choice of kinematic variables, the choice of distance metric, and
the choice of linking length for a given analysis. Both the choice of distance metric and the
choice of kinematic variables will change the topological structure mapped by the network,
and sensible choices might lead to greater differences between the behaviour of SM processes
and new physics processes within the network. The variety of options is an advantage of
network analysis, as it allows the user to select prescriptions best suited to the data.

The potential sensitivity of a network analysis search for BSM physics in collider data
depends upon the topological differences between the SM and the SM+BSM networks, which
in turn builds upon differences encoded in their distributions in the chosen n-dimensional
space of kinematic attributes. To test the effect of spread in the kinematic space on the
optimum choice of distance metric and linking length, we generated toy data samples
simulating LHC signal and background event distributions in several dimensions. An
example of two toy simulations comprising 1000 events each is visualised in two dimensions
in Figure 4.2. Extensions of this simulated data are then plotted in graph form to compare
possible distance calculations in Section 4.2.2.
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Fig. 4.2 Example distributions are plotted in two dimensions x and y, simulated to represent
the difference between BSM signal and SM background events in kinematic space. Real
signal and background events are likely to populate a different, although overlapping, region
of collider space.

4.2.2 Network parameters

The network construction leaves open the choice of kinematic variables, where the spatial
distribution of LHC data may differ significantly depending on the chosen basis. It is a
challenging task to optimise this basis to maximise the discriminating power of the network
for a particular dataset, and one that does not necessarily translate well into good separation
for other datasets. In a proof-of-principle study, measuring the effects on signal-background
separation of the choice of basis variables for several datasets is beyond our scope. We
instead gain greater insight into the sensitivity of the strategy by varying other factors that
have a more predictable and quantifiable influence on the network. Our focus lies in varying
spatial distance measures, linking length and choice of local network metrics while we study
a fixed set of basis variables typical in supersymmetry analyses.

Distance metrics

The choice of distance metric sets the length between events in the space by tracing a path
along a manifold. Testing several different distance metrics, we search for topological
features of the resulting networks which distinguish signal from background. For two vectors
u and v in the space of n kinematic variables for an analysis, some useful distance metrics
include:

• The Euclidean distance: deuc =
√

∑
n
i=1(ui − vi)2.
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• The Chebyshev distance: dcheb = max |ui − vi|, i.e. the maximum of the difference
between similar kinematic variables for the two chosen points.

• The Bray-Curtis distance: dbray = ∑
n
i=1

|ui−vi|
∑

n
j=1 |u j|+∑

n
j=1 |v j| .

• The cityblock distance: Also known as the Manhattan distance, the cityblock distance
is given by dcity = ∑

n
i=1 |ui − vi|.

• The cosine distance: dcos = 1− u·v√
u·u

√
v·v .

• The Canberra distance: dcan = ∑
n
i=1

|ui−vi|
|ui|+|vi| .

• The Mahalanobis distance: dmah =
√

(u− v)V−1(u− v)T , where V−1 is the inverse
of the sample covariance matrix (calculated over the entire dataset of events).

• The correlation distance: dcorr = 1− (u−ū)·(v−v̄)√
(u−ū)2

√
(v−v̄)2

, where ū is the mean of the

elements of the vector u.

Other distances exist [118], but the above list was found to be sufficient for our purposes
and relatively easy to calculate. Each distance was calculated from toy datasets, both with
and without “event” weights, to evaluate its characteristics and any relevant constraints. All
were discovered to be useful except the Canberra distance, which was ineffective and is not
referred to in the later analysis. When events are weighted, a vital consideration follows that
the weights must be propagated into the Mahalanobis covariance matrix. An example of a
toy distribution for the cityblock distance calculated from an extended version of the data in
Figure 4.2 is contained in Figure 4.3.
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Fig. 4.3 The distribution of cityblock distances calculated between every node pair in
an example network created from 10000 “signal” and 10000 “background” events in a
5-dimensional space.

Although significant differences clearly exist between these distance distributions with-
out any need to construct and analyse a network, they are only comparable here because
they contain the same number of “signal” and “background” events. In real data, signal
contributions are rare and therefore insignificantly small by comparison to the number of
background events present in the same histogram bin, regardless of how each is distributed
in collider space. Therefore, network approaches are required to build upon these differences
and create statistically significant measures.

Linking length choice

The linking length parameter sets the scale of connections depending on typical distances in
collider space, and is therefore distance-metric-dependent. An appropriate linking length
reveals non-trivial complexity, and may take one of several possible values. A small length
will result in a disconnected network showing little structure, and one that is too large will not
reveal central nodes or local peculiarities. In networks where important topological structures
exist only on a narrow range of spatial scales, the linking length is a straightforward choice.
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However, others contain spatially diverse topological structures where non-trivial complexity
appears on a range of scales. For LHC event networks, SM backgrounds are less likely to
produce spatially diverse structures than networks containing both SM background and BSM
signal. Since these are intended as tools to isolate signal, they are given linking lengths which
set the spatial scale to a typical distance at which signal events are non-trivially connected, but
background events are even more connected. This strategy ensures that the networks detect
the difference in levels of connectivity between background and signal to help distinguish
them topologically. The linking length is therefore set to a characteristic scale of separation
of background events, equivalent to selecting a value on the upper edge of the background
distribution peak in Figure 4.3.

Node weights

Networks manage weights on either edges or nodes, where the two strategies can represent
different effects. Edge weights adjust the strength of connections between nodes when some
are more likely to “interact” or be related for reasons not captured by their spatial locations.
For example, neural networks often apply edge weights to represent the number of synapses
and gap junctions between neurons [96], and transportation networks weight edges by the
amount of traffic flow between locations [119]. Conversely, node weights adjust the effective
amount of data represented by a single node. In the LHC case we clearly require node
weights without edge weights, as introduced in Section 4.1.3. Node weights affect how the
network metrics are calculated, following a technique described in Section 4.3.

4.2.3 Node-weighted networks

Node weights can treat certain events as representative of a much larger sample when some
types have higher predicted rates of production at the LHC than is reflected in their sampling.
The weights effectively increase the number of these nodes to signify that more are present
than could be generated in an MC sample. We find the node-weighting strategy useful when
changing the absolute numbers of nodes in the networks is not viable for computational
reasons. The popular theory where edge weights are used instead is not equivalent to
using node weights, and although some methods exist of translating node weights into edge
weights [120], in general measurements made on these networks are not invariant under this
translation. For a sample of events in kinematic space represented by the yellow points in
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Figure 4.4, we may re-sample with less data and report the blue points instead, so that a
network of the blue data with high node weights accurately represents the yellow set.

Fig. 4.4 Blue points are a smaller sampling from the distribution which created the yellow
points, and receive higher weighting to represent a larger effective number of kinematically
similar events.

Simulating rare kinematics

MC simulations naturally produce fewer events with rare kinematics, which can result in poor
sampling of events in the tails of the kinematic distributions. We increase the statistics in
these poorly-sampled regions by binning the kinematic distribution into slices and increasing
sampling in the rare tail slices, then assigning these events a low weight according to their
predicted cross-section. High weights are assigned instead to the events sampled within the
bulk distribution slices where more events are expected. Weights ensure that the kinematic
distributions of the sliced samples retain the shapes of the inclusive distributions and are
consistent with physics arguments. Consequently, events in the tails become a more reliable
representation of the space.

For comparison, we generated inclusive samples in the same regions of phase space
to compare with binned (“sliced”) events, verifying that the shapes of their kinematic
distributions are consistent. Figure 4.5 compares the distributions of the average transverse
momentum of outgoing particles, p̂T, for inclusive and sliced electroweakino production event
samples simulated with Pythia and Delphes. The sliced histogram contains a combination
of events from three distinct bins whose limits were user-specified at generator-level. The
Pythia event generator assigns a cross-section to every bin, so that events in a given slice
possess a known proportion of the total stop production process cross-section.
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Fig. 4.5 A comparison of a typical electroweakino production process generated with Pythia
for m

χ̃
±
1
= m

χ̃0
2
= 400 GeV and m

χ̃0
1
= 0 GeV (details in Section 5.1), with events biased to

high momentum using slices, shown in the p̂T distribution.

The excess of events at high p̂T is the effect of biasing the event sample towards highly
energetic events. To return the distribution to the inclusive sample shape, we assign cross-
section weights to every event according to the prescription from Section 3.3.2, producing
the red histogram from Figure 4.6.
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Fig. 4.6 Electroweakino production with slices in p̂T re-weighted from Figure 4.5 to match
the un-biased process cross-section shown in blue with reduced statistical fluctuations in the
tail region.

Monte Carlo re-weighting

The weighting prescription must account for non-trivial event weights derived from multiple
sources, including integrated luminosities for the simulated LHC processes and the cross-
sections of slices. The weight on each slice therefore becomes a product of three factors:
the LHC luminosity weight, the MC cross-section weight and a normalisation factor. The
first is the LHC weight scaling the process to the correct number of events expected at a
given luminosity. This is equal to the product of the process cross-section and the integrated
luminosity, divided by the initial number of stop events before preselection Ninit. Preselection
criteria applied at generator- and detector-level decrease the proportion of events suitable
for the analysis, and the algorithm must then generate a larger initial number Ninit before
achieving the required number that fulfil the criteria.

The second factor depends on the MC cross-section output by Pythia per slice, updated
after each run with reduced uncertainty. The resulting event weight for a given slice equals
this cross-section divided by the total number of events in the slice before preselection.
The third factor is normalisation intended to scale all slices by a value proportional to the
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inverse of the MC cross-section factor, cancelling its magnitude so that the full weighting
procedure produces a sum of all event weights equal to the number of events expected from
the LHC. The normalisation factor for a given process is equal to the total number of process
events after preselection, typically N =10,000 in our analysis, divided by the sum of the MC
cross-section weight factors from all slices. The outcome is to set the sum of the weights to
N events multiplied by the LHC weight factor rescaling to the correct final count.

The product of the three factors produces event weights which vary by several orders of
magnitude, and we must calculate the network metrics using robust algorithms under such
heavy re-weighting of nodes. We verify that the metrics are reliable under this re-weighting
by methods which will be revisited in Section 4.3.1. One component is a straightforward
comparison between the network metric distributions of the sliced metrics and those calcu-
lated from inclusive samples, reminiscent of the comparison of the kinematic distributions in
Figures 4.5 and 4.6. The inclusive samples receive only the first weight factor equal to the
LHC luminosity weighting, which is large compared with the combination of all three factors
on the sliced events. Robust network metrics must handle these large weight disparities so
that their distributions are unchanged in shape when calculated from inclusive compared
with sliced events of the same process type. Understanding the comparison between network
variables calculated from sliced and inclusive samples requires us to consider the role of
node weights in network calculations.

4.3 Network metric definitions

We employ several local network metrics that draw their calculations from different key
properties of a network, investigating their power of discrimination between signal and
background in LHC data when combined in a single analysis. Our choice of local metrics
involves attributes defined event-by-event, unlike global metrics which calculate properties
of the whole network. We therefore produce binned histograms plotting the distribution of
our metrics where the number of entries per histogram is equal to the number of events in
the network, characterising the importance of events relative to their neighbours instead of
characterising the shape of the network in a set of single quantities. Focusing only on local
metrics, we can combine the local calculations for all events in the network and the different
properties they measure to form a holistic picture of network geometry and topology.

For the reasons described in the previous section, any network metrics we calculate must
incorporate node weights, and must therefore be invariant under the transformation between
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changing the number of nodes of some type by some factor and multiplying the weights on
the original set of nodes by a matching factor. Figure 4.7 represents the weight on a node by
its size, as a pictorial depiction of relative importance, where the more highly weighted nodes
should receive greater contribution to the distribution of any of the network metrics. Nodes
with weight 3 and 4 also happen to be more central than the boundary nodes with weight 1,
which means that to calculate the network metrics, we must count 4 nodes with number of
edges equal to 2 for the largest node and 3 for the second-largest. By weighting nodes, we
assume that each of the effective nodes which are represented at the same network position
possesses the same number of links to external nodes. We require a method of computing
network metrics which treats every node as a sub-network of interlinked nodes with identical
connections, so that we create a network of interacting networks.

Fig. 4.7 A pictorial representation of relative node weights, where weight is represented by
node size. The central nodes with high weights have a large impact on the network topology,
which must be considered in calculations of network metrics.

The convenient method of calculating the network metrics with node weights represented
correctly is to define typical graph theory metrics using the node-splitting invariance (n.s.i)
method [121]. This and similar methods have proven useful in generating precise estimations
of network characteristics in climate research to evaluate patterns in rainfall and ocean
currents, and in economic models to provide accurate information on trade balance [122–
124]. The n.s.i approach assumes that every node ν represents a portion of the domain of
interest which is represented by its weight wν . If the domain of interest is equivalent to
the underlying n-dimensional graph space given in the LHC case by a set of n kinematic
attributes, then this continuous space is divided into N portions, where N is the number of
events in the sample. Each node ν ∈ N then receives a weight wν such that the sum of the
weights, ∑ν∈N wν , is equal to the effective number of events.
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Under the n.s.i assumptions, events do not have a well-defined location in collider space,
and their possible locations are constrained by the boundary of the area wnu. Figure 4.8
represents three separate sets of nodes by the orange, blue and green regions of the domain,
labelled Vi,Vj, and Vk. Each node ν represents a portion of the domain belonging to the
region assigned to its node set, and edges can connect regions which are either adjacent
(orange and blue) or distinct (for example, blue and green). If the largest distance apart
between points within the same area wν is less than the linking length, then nodes lying
within that area would be connected regardless of n.s.i, lending strength to the claim that
n.s.i is an appropriate method of representing a large sample of effective nodes by a smaller
sample of network nodes with large weights. In this case, any inhomogeneities inside the
region represented by an individual network node are irrelevant.

Fig. 4.8 A network representation of a data distribution where nodes are located in distinct
regions of the underlying graph space [121].

The representation of a larger set of nodes by a smaller set is called a refinement, and
proceeds via the n.s.i technique of node splitting [121]. The concept of splitting replaces
a node ν with two connected nodes ν

′
and ν

′′
assigned the weights w

ν
′ +w

ν
′′ = wν . In

Figure 4.9, the node splitting operation transforms graph G into graph G
′
by assigning new

nodes with smaller weights which sum to the original and are connected by an edge to each
other and identically to both external nodes to which ν was connected. The operation can be
repeated iteratively many times, first on the graph G

′
to produce a graph G

′′
with three split
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shaded nodes, and so on to create many more nodes. The inverse operation is twin merging,
which decreases the number of linked nodes to transform the graph iteratively back into G.

Fig. 4.9 The dual operations of node splitting and merging transform graph G into G
′
and

vice versa, respectively. The n.s.i technique applies both operations to calculate network
characteristics from node-weighted networks [121].

The network metrics are conveniently calculated under the n.s.i paradigm using a custom
version of the pyunicorn package [122]. Pyunicorn is an open source analysis toolbox
designed for data analysis and modelling in complex network theory. We use these metrics
to search for non-trivial shape properties and investigate the complexity of structures on
different scales.

Centrality metrics

• The n.s.i degree: For a given node ν , this is the weighted version of the degree
centrality (DC), given by:

k∗ν =
∑i∈N +

ν
wi

(W +1)
, (4.5)

where W = ∑i∈N wi is the sum of the weights of all nodes in the network. In our
analysis, W is equivalent to the total number of events expected at the LHC for our
assumed integrated luminosity.

Relative degree in a toy network diagram is visible using the scale in Figure 4.10,
where central nodes are defined as those with more edge links.
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Fig. 4.10 The degree centrality calculated for a toy node distribution using the NetworkX
Python library [125].

• The n.s.i average and maximum neighbours degree: The average neighbours de-
gree of a node ν represents the average size of the network region that an event linked
to ν is linked to. The n.s.i measure of this quantity is given by:

k∗nn,ν =
1

(W +1)
∑i∈N +

ν
wik∗i

k∗ν
. (4.6)

An n.s.i maximum neighbors degree can be defined as:

k∗nnmax,ν = max
i∈N +

ν

k∗i . (4.7)

• The n.s.i betweenness centrality: The shortest path betweenness centrality of a node
ν is a measure of the proportion of shortest paths between all randomly selected pairs
of nodes in the network that pass through node ν . Betweenness can be explained using
a real-life traffic network: if there is only one straight road connecting two cities, then
all traffic will travel by this road to arrive at the other city. The betweenness of nodes
lying on this road is therefore higher than other nodes, which does not strictly coincide
with the degree centrality metric, as shown in comparing Figures 4.10 and 4.11.

If we randomly choose nodes labelled by a and b, we have that:

BCν = ⟨nab(ν)/nab⟩ab ∈ [0,1], (4.8)
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where nab is the total number of shortest paths from a to b, nab(ν) is the number of
those paths that pass through ν , and we have defined the average of a function of node
pairs by ⟨h(i, j)⟩i j =

1
N2 ∑i∈N ∑ j∈N h(i, j). A formal expression for this quantity is

written by first noting that nab can be written as a sum over the tuples (t0, ..., tdab),
with t0 = a and tdab = b (dab is the number of links between the nodes a and b on the
shortest path), where each tuple in the sum gives a contribution of 1 if every node tl
in the tuple is linked to its successor tl+1, or 0 if at least one node is not linked to its
successor. Both of these conditions are met if we simply take the product of elements
of the adjacency matrix for each pair of nodes in the tuple, allowing us to write

nab = ∑
(to,...,tdab)∈N dab+1,t0=a,tdab=b

dab

∏
l=1

atl−1tl . (4.9)

nab(ν) is given by a similar formula, except that, for some m in 1...dab −1, tm must
equal ν :

nab(ν) =
dab−1

∑
m=1

∑
(to,...,tdab)∈N dab+1,t0=a,tm=ν ,tdab=b

dab

∏
l=1

atl−1tl . (4.10)

Fig. 4.11 The betweenness centrality metric is high for nodes which are common to many
paths between randomly chosen nodes, calculated with the NetworkX Python library.
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It is possible to make an n.s.i version of this quantity based on a weighted average
instead of an average (which would be consistent with the above formula in the limit
that all node weights are 1), but the pyunicorn package instead uses a weighted sum,
giving the n.s.i betweenness centrality as:

BC∗
ν = ⟨n∗ab(ν)/n∗ab⟩

wsum
ab ∈ [0,W 2/wν ], (4.11)

where we have defined the weighted sum of a function of pairs of nodes ⟨h(i, j)⟩wsum
i j =

∑i∈N ∑ j∈N wih(i, j)w j, and n∗ab(ν) and n∗ab are defined below. The n.s.i betweenness
centrality values obtained for our examples below do not come close to saturating the
maximum value of W 2/wν .

Formulae for n∗ab(ν) and n∗ab can be derived as follows. If a node s is hypothetically
split into two nodes s′+ s′′, any shortest path through s becomes a pair of shortest
paths (one of which passes through s′, and the other of which passes through s′′).
In addition, a shortest path from s′′ to some b ̸= s′ will never meet s′. Thus, the
betweenness centrality can be made invariant under node splitting by making each
path’s contribution proportional to the product of the weights of the inner nodes, but
with the condition that we skip the weight wν in this product when calculating nab(ν).
Formally, we can write a modified n∗ab as:

n∗ab =
dab−1

∑
m=1

at0t1

dab

∏
l=2

(wtl−1atl−1tl), (4.12)

and a modified n∗ab(ν) as:

n∗ab(ν) =
1

wν

dab−1

∑
m=1

∑
(to,...,tdab)∈N dab+1,t0=a,tm=ν ,tdab=b

(
at0t1

dab

∏
l=2

(wtl−1atl−1tl)

)
. (4.13)

A geometric interpretation of the n.s.i betweenness can be obtained by considering the
set of nodes of our node-weighted network {N } as a sample from a population of
points {N0}. Each node ν in the network then represents some small cell Rν of points
in the geometric vicinity of ν in {N0}. The n.s.i betweenness can be interpreted as an
estimate of the probability density that a randomly-chosen shortest path between two
randomly-chosen points in the population network passes through a specific randomly-
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chosen point in Rν . This is ultimately a measure of the importance of the node ν in
the network.

• The n.s.i closeness centrality: Another measure of node importance is the closeness
centrality, which is defined for a node ν by CCν = 1/⟨dν i⟩i, where dν i is the number
of links on a shortest path from ν to i, or, if there is no path, ∞, and we have defined the
same average over nodes that was used previously. A larger value of CCν for a node
indicates a smaller average number of links from ν to another node in the network.
Although closeness also measures centrality, it detects different properties to the degree
and betweenness, as seen in Figure 4.12. The n.s.i version of this metric is given by:

CC∗
ν =

W
∑i∈N wid∗

ν i
∈ [0,1], (4.14)

where d∗
ν i is an n.s.i distance function given by:

d∗
νν = 1 and d∗

ν i = dν i for i ̸= ν . (4.15)

The n.s.i distance function can be justified as follows. A weighted version of CCν

should give us the inverse average distance of ν from other weight units or points
rather than from other nodes. But for this to become n.s.i, each node must have a unit
(instead of zero) distance to itself since, after an imagined split of a node s → s′s′′, the
two parts s′ and s′′ of s have unit not zero distance.
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Fig. 4.12 The closeness centrality metric is high for a node which is more directly connected
to other nodes, so that its shortest paths pass through fewer nodes, calculated with the
NetworkX Python library.

• The n.s.i exponential closeness centrality: A limitation of the closeness centrality is
that it receives very low values for nodes which are very close to most of the other
nodes, but very far away from at least one of them. To prevent outlying nodes from
skewing the closeness calculation for “typical” nodes, we can use the exponential
closeness centrality, defined as CCEC,ν =

〈
2−dν i

〉
i. The n.s.i measure is given by:

CC∗
EC,ν =

〈
2−d∗

ν i

〉w

i
∈ [0,1]. (4.16)

where we have used the notation ⟨g(ν)⟩w
ν
= 1

W ∑ν∈N wνg(ν).

• The n.s.i harmonic closeness centrality: The harmonic closeness centrality reverses
the sum and reciprocal operations in the definition of closeness centrality, such that
1/dν i contributes zero to the sum if there is no path from ν to i. The n.s.i harmonic
close centrality is given by:

CC∗
HC,ν = ⟨1/d∗

ν i⟩
w
i ∈ [0,1]. (4.17)
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Correlation metrics

Correlation metrics measure properties of grouping in contrast to the importance measured
by centralities. Local correlation is estimated from the clustering coefficient, which measures
the arrangement of a network into local groups. It quantifies the abundance of triangular
patterns of connection, measuring the short-range order within the local vicinity of the node.
A triangle is formed when a pair of connected nodes are both connected to a third node, and
the number of these shapes relative to the total number of node triples is a useful descriptor
of local structure. In Figure 4.13, the two edges r1 and r2 may form a triangular closed triple
with r12, only if this edge exists. If the edge r12 is disconnected, then the three nodes do not
contribute positively to the clustering coefficient metric.

Fig. 4.13 A schematic diagram for describing clustering coefficient in a graph network,
where connecting the edge r12 results in the addition of a closed triple, or triangle [100].

Correlation metrics are designed to detect the differences between the two networks
shown in Figure 4.14. Highly correlated networks have a large clustering coefficient, and
may take the form of community groups, a regular lattice structure or a single large cluster.
In a lattice network, a high clustering coefficient may indicate a small world network if the
linking length is small; correlation metrics are used to measure small-worldedness, which
produces several interesting properties [96] mentioned previously in Section 4.1.2. We
calculate two clustering coefficients, local and local Soffer clustering.
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Fig. 4.14 Above: two types of simulated LHC event samples mixed in one network as an
example of strong clustering in real data. Below: a subsection of a random network showing
minimal clustering. Created with the NetworkX library.

• The n.s.i local clustering coefficient: The local clustering coefficient of a node ν is
the probability that two nodes drawn at random from those linked to ν are linked with
each other. It is given by:

Cν =
∑i∈Nν

∑ j∈Nν
ai j

kν(kν −1)
=

N2 〈aν iai ja jν
〉

i j

kν(kν −1)
. (4.18)

The n.s.i version is given by:
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C∗
ν =

W 2
〈

a+
ν ia

+
i ja

+
jν

〉w

i j

k∗2
ν

∈
[

wν(2k∗ν −wν)

k∗2
ν

,1
]
⊆ [0,1]. (4.19)

• The n.s.i local Soffer clustering coefficient: An alternative form of the clustering
coefficient proposed by Soffer and Vázquez [126] includes a correction that reduces
the impact of degree correlations:

Cs,ν =
N2 〈aν iai ja jν

〉
i j

∑i∈Nν
(min(ki,kν)−1)

∈ [Cν ,1]. (4.20)

The n.s.i version of this is given by:

C∗
s,ν =

W 2
〈

a+
ν ia

+
i ja

+
jν

〉w

i j

∑i∈N +
ν

wi min(k∗i ,k
∗
ν) ∈ [C∗

ν ,1]
. (4.21)

Different clustering metrics detect different network properties, just as each centrality
metric contributes new information. In addition, local clustering and centrality metrics
measure vastly different network characteristics, and are typically not highly correlated. Local
Soffer clustering in particular is an algorithm that was developed to minimise correlations
with the degree centrality metric [126]. In real networks the clustering coefficient generally
decreases with node degree, which is a signature of the network hierarchical structure.
Degree-correlation biases in the clustering coefficient definition are removed by introducing
the local Soffer clustering, designed to accurately represent clustering topologies in real
networks which does not necessarily decrease with degree.

4.3.1 Impact of large weights on node-splitting invariant metrics

The network metrics calculated by n.s.i methods must assume that a weighted node can be
equivalently represented by a group of unweighted nodes under two conditions:

1. full internal connectivity, and

2. identical external connectivity,

where internal connections occur between “effective nodes” that are represented by the
same weighted node in a subsample, and external connections are edges between different
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subsampled nodes. To satisfy condition 1, a group of X internal nodes must all lie within
a distance of the linking length l in order to be represented in a weighted network by an
event of weight X . Satisfying condition 2 requires that all X nodes are also situated within
distance l from the same set of other nodes outside the group. Such strict assumptions are
unlikely to be satisfied exactly in any real network, but exact accordance with both conditions
is unnecessary for n.s.i measures to become reliable under node weighting. Several tests act
as valuable indicators of the reliability of node-weighted network metrics calculated under
the n.s.i paradigm, which are introduced here and explored further in Appendix A to support
the robustness of our weighted LHC network metric calculations.

Our aim is to understand the impact of disparate weights on n.s.i metric calculations in a
controlled environment to better interpret the results presented in Chapters 5-7. We test the
power of node-weighted networks to accurately represent large event samples by comparing
two samples: one given large event weights and the other given weights which are either
the same or smaller by one or two orders of magnitude. We call these simulated datasets
Toy 1 and Toy 2 respectively. The datasets should be sampled from the same distribution so
that they represent the same model and region of phase space, and should also contain the
same number of effective events. They are sampled from the same simple five-dimensional
Gaussian distribution, where Toy 1 contains fewer events than Toy 2 such that N1 < N2.
The weight on every Toy 1 event must therefore be larger, w1 > w2, to retain the same
effective event number Ne f f = N1 ×w1 = N2 ×w2. We consider three different approaches
for generating these samples:

1. first generate Toy 2 and select its elements at random to create a subsample Toy 1,

2. generate Toy 1 and Toy 2 samples independently, or

3. first generate a small sample Toy 1 and design a larger second sample to have points
nearby to those in the small set.

The first and third methods are more contrived than method two but allow for more controlled
tests of several factors. For example, the third method may be used to place points in a
larger Toy 2 sample precisely so that they will satisfy the connectivity conditions above, so
that these two conditions may be gradually broken to measure their effects on the network
metrics. Applying method one can instead allow us to consider the contrived situation where
subsampled points are positioned exactly upon points in the larger sample. In this section,
we consider the more generalised test using independent datasets as in method two.



4.3 Network metric definitions 109

The networks containing these samples from which we calculate the metrics can be
created in two ways:

1. by combining both samples in the same network, or

2. by creating separate networks for the samples.

Adding samples with different weights to the same network is the more appropriate test
for our LHC case, where we simulate backgrounds with significantly different weights
to the signal and create SM+BSM networks in which signal and background events are
interconnected. Therefore, we combine Toy 1 and Toy 2 in the same network to permit
interconnections between the two data types with different weights. In addition, we vary
the weight difference by iterating this test three times: one with equal weights w1 = w2, a
second with w1 = 10 ·w2, and a third with w1 = 100 ·w2. In each case, the total number of
effective events is Ne f f = 20,000 and the relative numbers of nodes and their relative weights
are contained in Table 4.1.

Table 4.1 Test combinations of samples Toy 1 and Toy 2 comprising numbers of events N1
and N2 respectively. Tests are designed to evaluate the impact of weight ratio w1/w2 on the
network metrics.

Test 1 Test 2 Test 3
N1 10000 1000 200
N2 10000 10000 20000

w1/w2 1 10 100

Figure 4.15 displays three examples of network metrics comparing the three tests, where
Toy 1 and Toy 2 distributions are plotted independently. These examples show clearly
identifiable shape properties in the network metric distributions. The distributions calculated
for both Toy samples have consistent shape across all three tests for each of the three metrics.
Some fluctuations are present in the tails of the distributions of the Toy 1 sample with only
N1 = 200, which can be attributed to statistical error due to low sampling. We note that the
linking length l is different in each network because the three plots show examples using
different distance calculations.
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Fig. 4.15 Examples of metric histograms for the average neighbors degree with cityblock
distance, the local clustering coefficient with braycurtis distance and the harmonic closeness
centrality with Euclidean distance, calculated from three test networks in Table 4.1. The
legend reads: Sample(N1 : N2)[Ne f f ]. Significance plots show the ratio between Toy 1 events
per bin at weight 100 and at weight 1.

The consistent shapes of these metric disributions indicates some robustness of n.s.i
network metric calculations under conditions where the maximum node weight ratio is
100 : 1. Further tests are addressed in Appendix A.
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4.4 Significance calculations

We aim to increase exclusion sensitivities using network variables in combination with
standard approaches to LHC analyses, and require valid means of comparing network
techniques with other methods to determine the significance of a potential discovery.

The binomial Zbi value we use to evaluate the significance of our analysis calculates
the expectation for an absense of signal in a ratio of Poisson means, and is a binomial
Z value based on one-sided Gaussian standard deviations. The calculation relies on a
double number counting experiment, where one of the two expectations comes from a
measurement that might contain signal and the second from an auxiliary measurement for
a signal-free background [127–129]. The values were calculated using the BinomialExpZ
function belonging to the number counting utilities in the RooStats package [130]. A full
statistical analysis is beyond the scope of our proof-of-principle study, as we do not have
access to a full background analysis, complete simulation of the detector systems, or the
systematic uncertainties available to the experimental collaborations. The exclusion and
discovery reach should be explored in a full evaluation in future ATLAS studies.

The exclusion sensitivities evaluated from the binomial significance are useful when
compared with standard analyses. The binomial significance for the best signal yields is
calculated in cases where selection cuts are placed on both network metrics and kinematic
variables and compared with cases where selections are placed only on the kinematic variables.
Chapter 5 presents the analysis and results for the study of supersymmetric electroweakino
production, and Chapter 6 presents the analysis for stop pair production. In addition, Chapter
5 further evaluates network sensitivity by combining binomial significance results for standard
selection cuts with significance derived from a standard BDT method. The result is a more
comprehensive study of the sensitivity achieved with network analysis techniques.





Chapter 5

Case study 1: Electroweakino analysis

5.1 Introduction

A collider search for new physics is a novel context for graph network techniques, so the
applications in this context must be evaluated using simulated datasets before approaching
real LHC data. Estimates of the exclusion sensitivities with simulated events will indicate
the future network analysis potential. We consider the analysis potential in two case studies
searching for supersymmetry, using model-dependent examples to evaluate whether network
techniques may extend to broader BSM searches. The electroweakino example is the focus
of this chapter.

If the masses of gluinos and squarks are out of reach at the LHC, the direct production
of neutralinos and chargions may dominate sparticle production. The electroweakinos are
the linear combinations of the superpartners of unbroken electroweak gauge bosons and
supersymmetric Higgs particles, appearing as the mass eigenstates, the neutralinos (χ̃0

i=1,2,3,4)
and charginos (χ̃±

i=1,2). The composition of these eigenstates by the mixing of the bino, wino,
and Higgsino states implies the resulting phenomenology, so LHC analyses must assume the
relative masses and mixings to design targeted searches. We assume that electroweakinos
are produced via wino-like χ̃

±
1 − χ̃0

2 production, and decay into SM gauge bosons and the
lightest neutralinos in a model where these neutralinos are pure bino states. The model
contains masses m

χ̃
±
1
= m

χ̃0
2
= 400 GeV, and m

χ̃0
1
= 0 GeV. The leptonic decays of both

gauge bosons produces a three-lepton final state, which has been targeted in recent searches,
and is shown in Figure 5.1. The model was not excluded in the three-lepton search channel
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in 139 fb−1 analyses conducted by the ATLAS collaboration until very recently [131]. Our
network analysis assumes a comparable 150 fb−1 of integrated luminosity.

Fig. 5.1 The Feynman diagram of the simplified supersymmetric model considered in the
prototype electroweakino analysis.

The background for the three-lepton electroweakino signal is by far dominated by the di-
boson WZ background, and both signal and background are simulated with Pythia 8 [132].
We use the CTEQ6L1 PDF set [133], with an LHC detector simulation performed using
Delphes3 [72, 134, 135] supplied with the default ATLAS detector card. Jets are recon-
structed using the anti-kT algorithm with a radius parameter R = 0.4 [136] using the FastJet
package [137]. The electroweakino signal is normalised to the relevant integrated lumi-
nosity using the next-to-leading-order plus next-to-leading-log cross-section provided in
Refs. [138, 139], and the WZ sample uses the next-to-next-to-leading order cross-section
presented in Ref. [140].

5.2 Electroweakino analysis design

Preselection criteria are used to narrow the search to a typical three-lepton signal region,
where we require exactly three light leptons (electrons or muons). The preselection requires
transverse momentum pT > 25 GeV and pseudorapidity |η |< 2.5. The default light lepton
reconstruction is provided by Delphes3, with no additional pseudorapidity or isolation
requirements. The default settings restrict electrons, photons and muons to |η |< 2.5, and
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restrict jets and missing transverse energy to |η |< 4.9. There must be no b-tagged jets in the
event, and at most 1 non-b-tagged jet with pT > 25 GeV and |η |< 2.4. Finally, the event
must contain the dilepton invariant mass of an opposite-sign same-flavour pair satisfying
|mll −mZ|< 10 GeV.

5.2.1 Kinematic basis for network construction

The basis of variables underlying the network is selected from those which typically discrimi-
nate well between diboson events and electroweakino events, showing the greatest difference
between the WZ background and our benchmark signal point. The variables are defined in
Section 3.3.1 and listed in brief as follows:

• Emiss
T : the missing transverse energy,

• ml,min
T : the transverse mass minimised by selecting one lepton,

• pT(Z): the reconstructed transverse momentum of the Z boson,

• ∆Φ(l+Z , l−Z ): the azimuthal angle between the two leptons associated with the Z boson

• ∆Φ(Z, lW ): the azimuthal angle between the reconstructed Z boson and the lepton
coming from the W boson.

We avoid large statistical uncertainty in the rare tail regions of the kinematic distributions
by sampling highly in these regions using the slicing process described in Section 4.2.3. We
apply this procedure to the diboson background event samples only, unlike the simulations in
Chapter 6, where all samples are generated in slices including both stop quark signal and top
quark background. Once the slices are sampled, the preselection criteria select a set of events
that amounts to just over 10,000 signal and 10,000 background events before weighting to
construct the networks. The distributions of the kinematic variables for the electroweakino
signal and WZ background are shown in Figure 5.2, where the WZ events were generated in
slices to reduce tail fluctuations and uncertainties.

A possible problem with constructing a network from a basis of variables which have
values on different scales is that those with higher average values will contribute more to the
analysis results calculated later from the network. Even if significant exclusion sensitivity is
obtained from variables which have typically smaller scales, the relative difference in their
values is dwarfed by that of higher-scale variables. Re-scaling each variable by its median
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value reduces this concern. Additionally, a median scaling is more effective than a mean
scaling because it avoids high sensitivity to uncertain tail effects. However, any technique
must carefully consider the dimensions and bounds of the analysis variables, ensuring that
a sample with values symmetric around zero are not eliminated. For example, a typical
angular variable in collider analyses may have a chosen range of (−π,π), and may contribute
analysis sensitivity equal to a variable with bounds (0,2π). Our re-scaling method was
designed with this consideration in mind.

The re-scaling method contains the following steps. First, we determine the scale of
each variable by calculating its median value for the background simulated events. We
then re-scale all entries in both signal and background by subtracting the median of the
background sample and normalising by the median absolute deviation (MAD). The MAD
is calculated by first subtracting the median of the background dataset from each point to
produce a new dataset, then calculating the median of the new dataset. Consequently, the
basis variables convey the same information into our networks, but care has been taken to
weight them evenly to avoid mistakenly eliminating some valuable discrimination power
from the later analysis. The variables plotted in Figure 5.2 are normalised by the median
scaling technique.

The lower panel of each figure shows the binomial significance Zbi for either an upper
cut or lower cut on the variable at the value given on the horizontal axis, assuming a
total systematic uncertainty of 15% (chosen to be consistent with numbers quoted by the
ATLAS Run-2 searches in the 3-lepton channel [131, 141]). This significance calculation
also includes the statistical uncertainty of the background which is added to the systematic
uncertainty in quadrature. When the signal or background weighted event yield drops below
3 events, the Zbi is set to 0. Differences in shape between the signal and SM distributions
are clearly apparent, but no selection on a single kinematic variable is able to achieve an
expected exclusion sensitivity at 95% confidence level (corresponding to Zbi = 1.64) for our
chosen benchmark point.
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Fig. 5.2 Event rates as a function of the kinematic variables used in our prototype elec-
troweakino search, with the median scaling applied. Events in the overflow bin are not shown
in the distribution but are included in the Zbi calculation.
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Parallelising the network metric calculations will in future allow us to analyse networks
containing O(100,000) events before weighting, which is a useful step we plan to pursue
after our present proof-of-principle calculations. The metrics are computationally expensive
to evaluate, not only because the adjacency matrix must always be repeatedly accessed to
enumerate the edges between each node and every other node in the network, but also because
some metrics comprise intricate methods of calculation. For example, the betweenness
centrality metric requires a computationally intensive calculation of every shortest path in the
network. After parallelising, which is made available through the pyunicorn package, we
are confident that the network variables can be calculated using a looser preselection within
the ATLAS and CMS collaborations. Looser preselection requirements are beneficial for
several reasons; for example, tighter kinematic requirements in the preselection increases
the similarity between signal and background and therefore weakens the analysis sensitivity.
Additionally, looser criteria permit the analysis to cover a broader parameter space and search
for less specific signals.

5.2.2 Distance calculations

We create networks from the re-scaled data by calculating the distance metrics defined in
Section 4.2.2, letting events become nodes and defining edges between nodes according to
the prescription for choosing a linking length discussed in the previous chapter. Figure 5.3
shows distributions of these distances for signal and background events normalised to unit
area. Shape properties of the distributions differ depending on the type of events chosen;
for example, distances between two signal events may operate on a scale that is different
to background-background and signal-background distances. Therefore, we distinguish
between event types in the distance distributions, obtaining further information regarding the
optimal setup of our networks.
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Fig. 5.3 Distributions of the distance metrics used in our prototype electroweakino search.

The signal-signal and background-background distributions in these distances are some-
what different, indicating different typical scales at which events are clustered or otherwise
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distributed in collider space. In most cases, the plots reveal that background events are more
likely to be found clustered close to other background events, while signal events are less
likely to be close to any other events, including other signal. This is true for Chebyshev,
cityblock, Euclidean and Mahalanobis distances. In the other three cases, however, the
signal-signal and background-background roles are reversed; the Bray-Curtis, correlation
and cosine metrics all have more concentrated signal-signal distributions at low distances,
while background events are typically “further away” from other events. The correlation
and cosine metrics in particular show this distinct shape property; these metrics measure
angular separation, indicating that signal events may have more closely aligned directionality
in the chosen space. In this case, the characteristic angular distances of the signal model
may contribute to distinguishing them from background in an angular distance network. We
conclude that a combination of several networks created from different distance metrics
which contribute non-trivial additional information may be useful.

The difference between these signal and background shapes in the distance distributions
suggests that the condition for adding an edge could be flipped so events are connected only
when their distance in collider space is greater than the linking length, instead of smaller.
Some network metric distributions are later shown for networks with flipped conditions, and
we compare these with the metrics calculated from standard networks. Although the main
results of this analysis proceed from the standard definitions for consistency, the flipped
conditions are an example of an additional type of network parameter which may contribute
greater power in distinguishing signal from background for some BSM models.

The linking length relates the characteristic scale of separation of background events
based on Figure 5.3 and informs which entries are 1 or 0 in the adjacency matrix. For each
distance metric di j between pairs of events i and j, we define the adjacency matrix for the
graph network by using the definition in Equation 4.4. For distances where the background is
closer in collider space to other background events than signal, our choice of linking length
creates networks which contain background more densely clustered than signal. In others,
for example correlation and cosine distance networks, the signal is more densely connected.
Our final choice of linking length for every distance metric is summarised in Table 5.1.

The networks then contain complex structures on the chosen scale, with properties we
can calculate from the event-by-event values provided by the network metrics defined in
Section 4.3. Our analysis with these metrics proceeds in two stages, designed to reflect how
it could be performed in practice at the LHC:
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Table 5.1 Linking length values used for each distance metric for our prototype elec-
troweakino analysis.

Distance metric Linking length
dbray 0.7
dcheb 4.8
dcity 12
dcorr 0.6
dcos 0.6
deuc 6.4
dmah 4.8

• In this section (5.2), we design signal regions that would be sensitive to our chosen
electroweakino benchmark point. Since we know which events are background and
which are signal in our simulated networks, we can design optimal signal regions from
the network metrics calculated directly from signal-plus-background networks. The
same process of using MC samples to design signal regions would be performed in
the ATLAS and CMS collaborations. After choosing optimal regions, we calculate
the hypothetical significance in each region by counting the number of signal and
background events, assuming that the background contribution to the signal-plus-
background network metrics is similar to their metric distributions calculated from
background-only networks. If this is true, then the significance calculation is valid,
as described in Section 4.1.3. Alternatively, meaningful significance results can be
calculated by optimising the selections on network metrics calculated from a signal-
plus-background network compared with a background-only network, using a separate
background sample for the latter. However, we do not pursue this second option in this
section, because since we have determined that all variables in our optimal analyses
below satisfy the earlier assumption on the background shape.

• In Section 5.3, the second option above is pursued as a realistic example of an LHC
exclusion test, where an independent set of background events becomes a background-
only network. These events represent the null hypothesis, or mock LHC data that
would be measured in absence of a signal. We then compare the yields from mock
LHC data network metrics with yields from signal-plus-background network analysis
in our search region to determine the exclusion significance of our benchmark model.
Therefore, the exclusion significance now incorporates the effect of statistical fluctua-
tions in real LHC data. This test could be repeated on a variety of signal models, to
generate exclusion limits in, for example, simplified model parameter planes.
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Numerous possible event selections can contribute to a network analysis, including selec-
tions on: the network metrics only, the original kinematic variables only, or a combination
of both. The large possible number of combinations of distance metric and network metric
we have chosen for the electroweakino study provides 7×8 = 56 new variables, excluding
the option of flipped linking criteria. Adding this latter option doubles the total number of
possibilities. All network selections may be combined with others on either different network
variables or the original kinematic variables to improve exclusion sensitivity.

5.2.3 Signal region selection

Contrasting with the distributions of the kinematic variables in Figure 5.2, the distributions
for the network metrics in the signal-plus-background network are revealed in Figures 5.5-5.4.
We have selected several useful network metrics for the Euclidean, Chebyshev, cityblock,
Bray-Curtis and cosine distance metrics. The supersymmetric events consistently show lower
values of k∗ν , as well as the clustering coefficient and closeness variables. This suggests that
the supersymmetric events form fewer connections with other events than the SM events,
and that the events they do connect with are also sparsely connected. This arises from a
combination of factors including the different typical lepton four-momenta expected in the
supersymmetry case (given that the final state has a higher multiplicity), different signal
distributions for variables which have well-defined kinematic endpoints for the background,
and the smaller number of supersymmetry events limiting the number of possible signal
connections. These network metrics may also be useful for other BSM cases, because the
rare and complex nature of the signal events for our benchmark model is a common feature
among BSM model processes. More complex supersymmetry models favoured by recent
global fits significantly depart from simplified model assumptions, and possess especially
rare and complex signals.

The local network metric distributions provide greater discrimination between signal
and background than can be obtained with the original kinematic variables alone. Optimal
kinematic selections for potential analyses come from placing a single upper or lower cut on
each variable in turn, and determining which variables lend greatest significance. The cut
value may take one of a range of possible values we considered. Iteratively, cuts are placed
on every variable and retained if they improve significance until the number of signal and
background events passing the combined selections decreases to less than three each. Several
examples of promising selections and their Zbi values and event yields are shown in Table 5.2
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for Zbi > 1.64. Binomial significance is calculated from both the statistical uncertainty on
the event yields and an assumed systematic uncertainty of 15%.

Table 5.2 Examples of binomial significances for search regions that provide exclusion
sensitivity without reducing yields below 3 events. The errors only include the statistical
error.

Requirement Nsignal Nbackground Zbi

k∗,euc
ν < 0.003,CC∗,corr

EC,ν > 0.324 7.78±0.17 6.53±1.29 1.96
k∗,euc

ν < 0.003,CC∗,corr
HC,ν > 0.656 8.45±0.18 7.52±1.45 1.96

k∗,city
ν < 0.004,k∗,cos

ν > 0.343 5.86±0.15 3.20±1.05 1.89
k∗,city

ν < 0.004,CC∗,cos
HC,ν > 0.646 7.43±0.16 5.67±1.42 1.89

k∗,city
ν < 0.004,k∗,corr

ν > 0.359 7.34±0.16 5.43±1.10 2.04
k∗,city

ν < 0.004,CC∗,corr
EC,ν > 0.323 8.13±0.17 7.15±1.44 1.93

k∗,city
ν < 0.004,CC∗,corr

HC,ν > 0.656 8.17±0.17 7.27±1.45 1.92
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Fig. 5.4 Event rates as a function of useful network metrics for our prototype electroweakino
analysis calculated using dcorr and dcos. Events in the overflow bin are not shown in the
distribution but are included in the Zbi calculation.
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Fig. 5.5 Event rates as a function of useful network metrics for our prototype electroweakino
analysis calculated using dcity. Events in the overflow bin are not shown in the distribution
but are included in the Zbi calculation.

The network metrics possess different shape properties for the background and signal for
this benchmark model, when calculated from a combined signal-plus-background network.
For a more complete view of the distribution shapes, we checked the shapes of the network
distributions with those calculated using the flipped criterion, connecting nodes when they are
a greater distance apart than the linking lengths in Table 5.1. The flipped metric distributions
are displayed in Figure 5.6 for the same set of network metrics chosen in Figure 5.4 with
correlation and cosine distances. Both angular distances showed signal grouped closer than
the background in collider space, which was spread “further apart” by these measures, so the
flipped correlation and flipped cosine networks are designed to increase connectivity in the
background events compared with the signal. Flipping the connectivity for networks with
these distances produces similar signal-background separation to the standard Euclidean and
cityblock network definitions with the degree centralities shown in Figure 5.5.

The flipped metrics are not used in the prototype analysis to calculate signal yields, but are
an interesting method of verifying the shape properties of the network metrics, in particular
for the correlation and cosine distances with reversed signal and background connectivity.
Flipping the network connectivity definition in these cases reveals similar distributions to the
metrics from the standard constructions, but exhibits evidence of signal events with lower
average centralities.
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Fig. 5.6 Event rates as a function of flipped network metrics calculated using dcorr and
dcos. Events in the overflow bin are not shown in the distribution but are included in the Zbi
calculation.
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5.3 Results of realistic electroweakino exclusion test

The next stage of our electroweakino analysis is designed to reveal any differences between
the network metrics for a signal-plus-background network and a background-only network.
We do this by comparing the yields in the signal regions derived in the previous section with
those found when there is no longer any signal in the networks. To represent collider data
without signal, we use the mock LHC background-only dataset. The setup produces a realistic
example of an LHC exclusion test, allowing us to calculate the exclusion sensitivity we would
obtain by using real LHC data for this benchmark model. The sensitivity calculation is again
performed using binomial significance, calculated with an error on the background yield that
includes both the statistical uncertainty and an additional 15% systematic uncertainty.

We compare yields in search regions defined with network metrics only with regions
constructed using only conventional kinematic variables, representing standard cut-and-count
analysis regions. The kinematic-only selections are loosely inspired by the regions in the
ATLAS 36.1 fb−1 search [142], but generally have tighter requirements on Emiss

T and Ml,min
T .

Additionally, our preselection requirements include n jets < 2, unlike the ATLAS search
region which was inclusive in light jet multiplicity, but had “binned” regions considering
the 0 and > 0 light jet categories separately. Tightening these requirements is designed to
increase signal yield in kinematic regions for a more competitive comparison with network
methods.

Table 5.3 compares the expected sensitivity of these regions with that obtained in the
standard kinematic search regions. The Zbi values differ from those of the previous section,
due to statistical fluctuations in the mock LHC dataset. Network methods provide exclusion
sensitivity for this benchmark supersymmetry model, outperforming the analysis based
exclusively on the original kinematic variables. The two types of analysis may be performed
in combination; results revealed that a further kinematic selection pT(Z)> 160 GeV provides
additional signal-background discrimination that enhances the role of the network metrics.
However, if this cut is instead applied in the preselection, the same search regions defined by
the network metrics produces lower yield, suggesting that the preselection affects the network
topology non-trivially. In this case, the operations of selecting data and constructing a
network do not commutatively produce the same metric distributions. The measurable impact
of preselection criteria on network topology and subsequently on signal yields in network
regions is an avenue for further investigation intended to extend our ability to accurately
predict when network metrics will provide useful power of discrimination, re-visited in
Chapter 8.
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When comparing yields with background-only datasets, we must compare background
distributions for network metrics calculated from the background-only networks with those
calculated from signal-plus-background metrics. Verifying a consistent background shape
indicates that the addition of rare signal events does not substantially change the connection
properties of background events. If this is true, then the procedure we designed to define
search regions using only signal-plus-background networks is realistic. Figure 5.7 superim-
poses background distributions taken from the two networks, and reveals that the general
shape properties are the same. We consider this sufficient evidence to validate our method of
defining search regions for a mock LHC study.

Table 5.3 Yields in our electroweakino search regions for our mock LHC data set (Nb-only)
and our mock MC set (Ns+b). Also shown is the sensitivity of search regions using only the
original kinematic variables. The errors quoted are statistical only, while the Zbi calculation
uses a relative background uncertainty.

Requirement(s) Nb-only Ns+b Zbi

k∗,euc
ν < 0.003,CC∗,corr

EC,ν > 0.324 7.27 ± 1.17 14.31 ± 1.3 1.76
k∗,euc

ν < 0.003,CC∗,corr
HC,ν > 0.656 8.43 ± 1.36 15.97 ± 1.46 1.73

k∗,city
ν < 0.004,k∗,cos

ν > 0.343 3.48 ± 0.85 9.06 ± 1.06 1.90
k∗,city

ν < 0.004,CC∗,cos
HC,ν > 0.646 6.21 ± 1.29 13.1 ± 1.42 1.77

k∗,city
ν < 0.004,k∗,corr

ν > 0.359 6.08 ± 1.13 12.77 ± 1.11 1.79
k∗,city

ν < 0.004,CC∗,corr
EC,ν > 0.323 7.77 ± 1.46 15.29 ± 1.45 1.74

k∗,city
ν < 0.004,CC∗,corr

HC,ν > 0.656 7.17 ± 1.31 15.45 ± 1.46 2.01
k∗,city

nn,ν < 0.009,CC∗,corr
HC,ν > 0.659 4.4 ± 0.87 9.5 ± 0.85 1.63

pT(Z)> 160 GeV, Emiss
T > 100 GeV, ml,min

T > 150 GeV 93.93 ± 7.66 105.28 ± 7.55 0.47
pT(Z)> 160 GeV, Emiss

T > 200 GeV, ml,min
T > 150 GeV 28.55 ± 3.83 34.99 ± 3.62 0.64

pT(Z)> 160 GeV, Emiss
T > 300 GeV, ml,min

T > 150 GeV 7.05 ± 1.59 13.41 ± 1.78 1.48
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Fig. 5.7 Event rates as functions of C∗,euc
s,ν and k∗,city

ν for WZ background events calculated
from either the signal-plus-background or background-only network. These two networks
use different sets of simulated WZ events. Events in the overflow bin are not shown in the
distribution.

5.4 Discussion

The network variables reveal exclusion potential for an electroweakino example using a
benchmark point that has recently been excluded by a three lepton ATLAS search performed
using 139 fb−1 of data. Comparing network techniques with prototype cut-and-count anal-
yses, the network analysis performs well, due to the differences in shape between signal
and background in the network variables. The analysis includes the degree centrality metric
calculated for cityblock, Euclidean, cosine and correlation distance networks, and closeness
centrality metrics calculated for correlation and cosine distance networks. The closeness
metrics include both exponential and harmonic closenesses. Several other network metrics
may provide additional power, but were excluded from the proof-of-principle analysis. Many
network metrics are not highly correlated, designed to calculate different characteristics of
network topology, and may therefore combine to increase exclusion potential.

A more comprehensive comparison of network variables with standard search techniques
comes from comparing their sensitivity with that of a Boosted Decision Tree (BDT). In this
section, results are compared first with a BDT trained on the original kinematic variables
with the same preselection as the networks, and then with a BDT trained on the original
variables (with preselection) plus the addition of one promising network metric.
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Training the BDTs was performed using the ROOT package TMVA [143] with its default
settings. We trained both BDTs on half the electroweakino signal and WZ background
samples, randomly selected, so that they could be tested on the other half, retaining good
sample size. The BDT output distribution provides binomial significance Zbi, calculated using
the same method as before, which is evaluated for upper and lower cuts on the BDT output
variable shown alongside the full sample BDT distribution in Figure 5.8. The maximum Zbi

is 3.63, which is slightly higher than the network variable cuts proposed in Table 5.2.

Whereas a BDT performs admirably when required to exclude the same signal that it was
trained on, its performance is expected to decrease when generalising to other signal points
which were not part of its training set. An advantage of the graph network approach is that
its performance generalises across diverse models and search regions because it does not rely
on model-dependent training.
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Fig. 5.8 Distributions of the BDT score for electroweakino signal and WZ background events,
in the case where the BDT is only trained on kinematic variables. In the lower panel the Zbi
is shown for cumulative upper or lower bound cuts on the score. Events in the overflow bin
are not shown in the distribution but are included in the Zbi calculation.

The second BDT we consider was created from the same setup as the first, but with the
addition of one network variable: k∗,euc

ν . The distribution of the second BDT output variable
is plotted in Figure 5.9, where a clear improvement in Zbi is observed, reaching up to 3.98.
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Adding only one network metric that revealed promising behaviour in the initial analysis
noticeably increases BDT performance.
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Fig. 5.9 Distributions of the BDT score for electroweakino signal and WZ background events
after k∗,euc

ν is added to the BDT. In the lower panel the Zbi is shown for cumulative upper or
lower bound cuts on the score. Events in the overflow bin are not shown in the distribution
but are included in the Zbi calculation.

The promising performance of several network metrics in the electroweakino case study
motivates further research. We progress towards checking network applications to real
ATLAS data measured at the LHC, but precede this investigation with a second test on
simulated events from a different region of phase space. Chapter 6 presents a supersymmetric
top quark case study, for comparison with network construction and metric calculations
for a different model and search region. Following these results, Chapter 7 discusses our
application to real ATLAS data, checking the shapes of the metric distributions against
simulated background expectations.





Chapter 6

Case study 2: Stop quark analysis

6.1 Introduction

Our second demonstration of network analysis applied to an LHC search is a search for
supersymmetric top quarks. One purpose of this second example is to determine whether the
apparent gains in sensitivity seen in Chapter 5 are common to other final states and signal
topologies. We choose the stop production example as a comparison with the electroweakino
study to evaluate the differences which may arise when more challenging signal models are
employed. Comparing with a different signal model also reveals whether the same network
metrics that produce useful results in the electroweakino case are widely useful, or if new
combinations of distance and network metrics are more valuable for distinguishing events
distributed in a different collider space.

The squarks are produced in strong interactions with significantly larger production
cross-sections than non-coloured sparticles of equal mass (such as neutralinos and charginos),
so they are a primary focus of hadron collider search efforts. However, the benchmark
squark production model we choose is also motivated by its challenging properties; the
kinematic properties of the top quarks produced are highly similar to those expected in the
SM. Consequently, this chapter contributes a more thorough test of LHC network analysis.
The model assumes that t̃1t̃1 production dominates at the LHC, and the decay of the stop is
presumed to occur with 100% branching ratio to either a top quark and a lightest neutralino,
χ̃0

1 , or a b quark and a lightest chargino. We consider a model with mt̃1 = 500 GeV, and
m

χ̃0
1
= 280 GeV. The decay topology we analyse corresponds to a one lepton final state,

identified in Figure 6.1. Since this work began, the ATLAS Collaboration released a zero
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lepton stop pair production search utilising 139 fb−1 of data which excludes our chosen
benchmark model [144]. However, the results remain valid to show that, for a given set of
kinematic variables in the 1 lepton case, network measures can improve standard analysis
performance. It remains to be seen how useful this would be in the 0 lepton case, and whether
our 1 lepton network-based analysis would outperform the 0 lepton analysis.

Fig. 6.1 The Feynman diagram of the simplified supersymmetric model considered in the
prototype stop pair analysis.

The dominant SM background in this final state is top quark production, including both
top pair and single top production. In a real analysis, there would be a small contribution
from events containing a W boson produced in association with jets, but we neglect this in
our preliminary study. The signal and background are again simulated using Pythia 8 and
Delphes3 with the ATLAS detector card. The cross-section used for normalisation of the
stop sample is the next-to-next-to-leading-order plus approximate next-to-next-to-leading
log cross-section derived from Refs. [145–148]. The top sample uses the next-to-next-to-
leading-order plus next-to-next-to-leading log tt̄ cross-section derived from Refs. [149–155].
The weight on the top background is given approximately by this cross-section, because
the subdominant contribution from single top events is scaled by the same value as the tt̄
contribution.
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6.2 Stop analysis design

Before building the network we require there to be exactly one electron or muon, with
transverse momentum pT > 25 GeV, at least 2 b-jets (with pT > 30 GeV), and a missing
transverse energy, Emiss

T , greater than 100 GeV. Our prototype analysis selects the most
constraining final state: the 1 lepton state in which one of the top quarks decays hadronically
and the other decays leptonically. Increasing the constraints on the model to search for a
more SM-like signal creates a challenging environment for identifying signal events using
any analysis strategy.

6.2.1 Kinematic basis for network construction

We examined a number of kinematic variables typical of stop searches, and select the
following six because they show comparatively good discrimination between signal and
background processes for the benchmark model. These are described briefly here and defined
more fully in Section 3.3.1, and are used to construct networks of stop and top events in
six-dimensional collider space.

• p j1
T : the leading jet transverse momentum,

• Emiss
T : the missing transverse energy,

• mb,min
T : the minimum transverse mass formed by the two b-jets and missing transverse

energy,

– mb
T =

√
2pb

TEmiss
T [1− cos(∆φ)], where pb

T is the tranverse momentum of each
b-jet, and ∆φ is the difference in φ between the each b-jet and the missing
transverse momentum,

• mmin
bl : the minimum invariant mass formed by the lepton and each of the two b-jets,

– For the top pair production process, this has a maximum value which is lower
than the range of possible signal values,

• HT: the scalar sum of the moduli of the transverse momenta for the lepton and the 2
b-jets;

• amT2: the asymmetric mT 2 defined in Refs. [61, 62, 156–158].
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Both the top background and the stop signal samples were generated using the slicing
procedure to increase tail statistics in the kinematic distributions. All samples in the stop
case study are generated in slices of HT, the scalar sum of the transverse momenta, unlike
the slices in the electroweakino background samples which were placed in the transverse
momentum variable p̂T. The scalar sum HT is better suited to the stop example; Appendix B
discusses the slicing method applied to simulated events used in this chapter, including its
motivation and application.

We show histograms of event rates as functions of these variables after the pre-selection
in Figure 6.2, with the samples scaled using the “background median” procedure motivated
in Section 5.2.1. Although these distributions revealed the greatest separation between
signal and background compared with other options for the kinematic basis variables, there
remains strong similarity in the shapes of the stop and top distributions. The background is
substantially higher than the signal across the entire range in every variable, and the signal is
clearly more difficult to isolate using the original kinematic variables than the electroweakino
signal, where selections on the kinematic variables alone shown in Chapter 5 carried some
exclusion power.

6.2.2 Distance calculations

Histograms of the distance metrics are provided for our stop example in Figure 6.3, and were
calculated between every pair of events in the six-dimensional collider space. Those distance
metrics which did not transpire to provide useful discrimination with any local network
metric are suppressed. To construct the networks, we select linking lengths using the method
described in Chapter 4 and employed in Chapter 5, producing the distances in Table 6.1. The
correlation and cosine metrics have signal more concentrated at small distances from other
events than the background, which was also true in the electroweakino example. Although
these angular distances are useful in the stop analysis, we retain the standard condition for
connecting two events with an edge only if they are closer in distance than the linking length
and not if they are further away, avoiding flipped networks for simplicity.

Figure 6.3 contains distance distributions calculated from inclusive samples with no
slicing, although we were also required to calculate distances between pairs of events in the
sliced samples to create the networks. The inclusive samples are used here instead because
they represent the distribution of real events in collider space, and guide our choice of linking
length. They represent the distances between events in sliced samples without requiring the
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(a) HT (b) pT( j1)

(c) Emiss
T (d) mmin

bl

(e) amT2 (f) mb,min
T

Fig. 6.2 Event rates as functions of the kinematic variables for the stop simplified model
example that show the most difference between the signal and the background. Each variable
has been scaled by the “background median” procedure described in the text. Events in the
overflow bin are not shown in the distribution but are included in the Zbi calculation.
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distance distributions to be weighted, and pairwise distances are numerous enough that low
numbers of events do not cause difficulty here as they do for the inclusive samples in the tails
of the original kinematic variables.

(a) correlation (b) cosine

(c) Euclidean (d) Mahalanobis

Fig. 6.3 Distributions of the distance metrics we use in our prototype stop search, calculated
using inclusive samples.

Table 6.1 Linking length values used for each distance metric for our prototype stop analysis.

Distance metric Linking length
dcorr 0.7
dcos 0.8
deuc 5.5
dmah 4.0

6.3 Network metric distributions

In Figure 6.4, we show the network metrics that were used in the previous example, and that
are considered robust under the theoretical reasoning described in Appendix A.1. Although
the distributions show some differences in shape, there is not enough separation between the
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signal and background distributions to render them useful in stop searches. We found no
combination of selections on these variables plus the original kinematic variables that gives
sensitivity for exclusion at the LHC. It remains possible that different choices of the original
kinematic variables used to build the network might change this picture, but it is clear that the
use of local network metrics does not automatically give sensitivity to BSM physics signals.

Some network metric distributions which were not as powerful in the electroweakino
search in Chapter 5 now show much greater signal-background separation for the stop signal
model. Figure 6.5 contains several of these metrics: betweenness centrality distributions for
correlation, cosine and Mahalanobis distances, local and local soffer clustering coefficients
for Euclidean distance, and average neighbours degree for cosine. The betweenness measures
in particular fall off much faster for top events than stop, especially if the network is
built using correlation and cosine distance metrics. All three betweenness plots show
background distributions decreasing faster than signal, but in particular the tails in the cosine
and correlation background betweennesses sink appreciably lower than the signal, producing
higher values of Zbi than the Mahalanobis betweenness. More modest discrimination comes
from the local and local soffer clustering coefficients and average neighbours degree. If
these metrics are trustworthy under the conditions of LHC network construction, then these
distributions can define powerful signal regions with high yield. To be considered reliable,
the metrics must be robust under node weighting with n.s.i conditions satisfied as described
in Section 4.3.1. The n.s.i external connectivity assumption is a focus of our current tests
outlined in Appendix A.1, and we recommend caution on the use of these metrics until
further investigations are performed.
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(a) k∗,corr
ν (b) CC∗,mah

HC,ν

(c) CC∗,euc
EC,ν (d) CC∗,euc

HC,ν

(e) CC∗,cos
EC,ν (f) CC∗,cos

HC,ν

Fig. 6.4 Event rates as functions of the network variables for the stop simplified model
example. Events in the overflow bin are not shown in the distribution but are included in the
Zbi calculation.
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(a) BC∗,corr
ν (b) BC∗,cos

ν

(c) BC∗,mah
ν (d) C∗,euc

s,ν

(e) k∗,cos
nn,ν (f) C∗,euc

ν

Fig. 6.5 Event rates as functions of the network variables for the stop simplified model
example that show the most difference between the signal and the background either when
alone or when combined in cuts with other variables. Events in the overflow bin are not
shown in the distribution but are included in the Zbi calculation.
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We consider the possiblity that the network metrics in Figure 6.5 are affected by bias
introduced in the n.s.i calculations when the networks have highly disparate weights. The
weight differences are largely a product of the slicing procedure described in Section 4.2.3,
which contributes up to two orders of magnitude difference between event weights. This
prompts a straightforward method of testing the weights in this context using a comparison
between sliced and inclusive event distributions. In Appendix B, we check the agreement
between inclusive samples and sliced samples of stop and top events for network metrics
presented in the stop case study to consider the effects of slicing on the metric distributions.
If the slicing procedure is causing skew in the network metrics, then comparing them with
the metrics calculated from inclusive samples should reveal this skew, because the inclusive
samples have consistent weights on every event, differing only in stop and top weights
according to their respective LHC production cross-sections. Strong similarity between these
distributions indicates that the metrics can somewhat be trusted in the context of this case
study.

For the metrics which are known to be robust under large node weighting, results may
improve if the stop networks contain more events, which would allow the linking length to
be optimised for signal sensitivity. Our current limitation on the number of events results
from the computational complexity of local metric calculations for large networks. As more
signal and background events are added, the number of edges in the network becomes very
large, increasing the computational load of our parallelised calculations in the pyunicorn
package. We aim to study how the prototype analyses change when choosing different linking
lengths for each distance metric, where shorter linking lengths may significantly reduce
computational complexity because they would produce sparsely-connected networks. In this
case, however, background and signal events will often have a low degree and be difficult to
discriminate. We address the possibilities for future increases in computing power in Chapter
8. Given our present computational limitations, the next stage of our investigations is to
evaluate the shape properties of the metric distributions calculated from networks of real
ATLAS data, using appropriate numbers of events under the constraints of such complex
calculations.



Chapter 7

ATLAS electroweakino network analysis

7.1 Introduction

The outcomes of the graph network analysis application to supersymmetry searches in Chap-
ters 5 and 6 must now be corroborated with evidence showing that network techniques are
valid in a real ATLAS search. The next stage in our event-by-event LHC-style study is to ver-
ify that there is significant agreement between the shapes of the network variable distributions
calculated from real data and those calculated from simulated models in the same region. We
select another electroweakino search region, with dominant diboson WZ background, which
was recently revealed by ATLAS to contain no excess of signal events [159]. Ultimately,
we aim to create a framework within data-driven collider phenomenology that does not
depend on a specialised set of observables, but can instead be built around whichever tools
are available for the given physics scenario and search strategy. Therefore, our approach to
an ATLAS search for supersymmetry in this chapter is to create networks from the same
original variables used to exclude our specific target model. We pursue a narrow search
region as a necessary example prior to broader applications in future.

Several key aspects of the previous analyses are verified in this chapter. Whereas LHC
data always acquire unitary weights per event, MC backgrounds have non-unitary weights
which may span several orders of magnitude. This chapter is therefore not only a check
that graph theory variables are calculable on LHC events, but also that the n.s.i method
of calculating graph variables is reliable in the presence of vastly different node weights.
As well as comprising weighted events, the simulated backgrounds also comprise a set of
multiple dominant backgrounds instead of a single background as per the previous analyses.
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Although only the WZ background again represents more than 95% of the events in the region
selected for this chapter, we aim for a more thorough understanding of network techniques
applied to real data and therefore consider the full background set.

The existing search has been unblinded and excludes our chosen model in the signal
region, so we compare the network distributions in the same region with those calculated from
the MC backgrounds, expecting strong agreement. The region was designed to search for a
supersymmetric electroweak signal that differs from the signal simulated in the preliminary
electroweakino study in Chapter 5, and the original kinematic variables underlying the
networks are also different. The construction provides a useful method of verifying network
metric shape properties, as the unblinded analysis predicts that data and background network
distributions should agree within the sensitivity of the existing analysis.

7.2 Experimental data and target model

The network analysis in this chapter exploits 139 fb−1 of
√

s = 13 TeV pp collision data
collected with the ATLAS experiment in Run 2 during 2015 and 2016. The data is selected
from an ATLAS electroweakino analysis targeting chargino-neutralino production. Whereas
the previous analysis searched for several final states with two or three charged leptons,
we choose only a single decay topology with a three-lepton final state in the presence of
additional initial state radiation (ISR) jets. The decay topology is depicted in Figure 7.1,
where the production of χ̃

±
1 χ̃0

2 is associated with an ISR jet, labelled j. To define a signal
region for this final state that is consistent with the region in the previous analysis, and
to incorporate powerful original variables into network techniques, we adopt the recursive
jigsaw reconstruction (RJR) variables. The RJR method was introduced in Section 3.3.1 and
is again discussed in Section 7.2.1. The ATLAS analysis comfortably excluded the search
region using these variables.
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Fig. 7.1 A Feynman diagram showing the target 3l signal topology involving the decay of
χ̃
±
1 χ̃0

2 via leptonically decaying W and Z bosons [159].

The experimental signature for this decay topology identifies events with a three-lepton
final state along with a set of additional kinematic properties. The signal region defined
by these properties is derived from the RJ variables in the following section. We target
supersymmetry scenarios with compressed mass spectra, where the sparticles have smaller
mass splittings and lower intrinsic Emiss

T . Compressed scenarios implicate multiple supersym-
metric states nearly degenerate in mass which produce soft decay products, and are therefore
an experimental challenge for ATLAS and can only be probed using highly sensitive search
strategies. Methods such as RJR may achieve even greater sensitivity to small BSM signals
when combined with graph network techniques in these regions.

The strategy targets compressed supersymmetry scenarios using a standard approach
that selects events with a partially resolved sparticle system recoiling from high-pT ISR jets,
motivating an ISR topology. The high transverse momenta in the target events are derived
from the momentum kick passed to the weakly interacting particles from ISR jets. Therefore,
the source of the large momenta of LSPs comes not from decay but instead from recoiling
against ISR, a feature that causes LSPs to receive higher momentum than their neutrino
backgrounds because they possess greater mass. The radiation of quarks and gluons that
produces ISR states also contributes extra jets to the measured event. Therefore, our decay
topology of interest is distinguished by both its high jet multiplicity and its large transverse
momenta, which are typical phenomenological features of supersymmetry.
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7.2.1 Basis of variables for network construction

The basis of RJ variables underlying the networks is outlined below. RJR boosts from
the laboratory frame define a set of observables in the centre-of-mass (CM) frame which
target properties of the visible and invisible systems and are maximally uncorrelated. The
compressed spectra motivate the compressed ISR decay tree in Figure 7.2. An RJR approach
defines a decay tree that is split into the lab state, decay states, visible states and invisible
states, and an ISR system splits the decay tree into the CM frame, the ISR frame and the
system frame S.

Fig. 7.2 A recursive jigsaw decay tree for a compressed ISR system. The signal sparticle
system S decays to a set of visible momenta V, and the invisible momentum I recoils from
the ISR system [159].

The variables that characterise the compressed ISR system are built upon the transverse
momenta of the ISR and invisible systems, where the invisible system “I” contains the LSPs,
χ̃ . An ISR system produces events with at least one high-pT jet. Selected RJR variables are
defined as follows:

• pT, ISR is the magnitude of the vector-sum of the transverse momenta of all ISR
associated jets evaluated in the CM frame, which gives the momentum of the ISR
system.
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• pT, I is the magnitude of the vector-sum of the transverse momenta of the I system in
the CM frame, which corresponds to the missing transverse momentum without the
ISR recoil.

• RISR is chosen for its sensitivity to the ratio mχ̃/mp̃, where p̃ denotes the parent
sparticles. It is a measure of the amount of momentum in the invisible system that can
be attributed to the ISR kick, and is calculated from the transverse momenta of the ISR
and I systems according to Equation 7.1.

RISR =
|p⃗T, I · p̂T, ISR|

|p⃗T, ISR|
(7.1)

RISR is a projection of the invisible system onto the ISR boost-axis in units of the ISR
system momentum.

• ∆φISR, I is the azimuthal angular difference between the ISR-associated jets and the
invisible system in the CM frame.

• mT is the transverse mass of the S (V+I) system, including the mass of all jets associated
with the visible system.

We use these variables not only to define the signal region, but also as the basis to
construct a network. The RJ variables increase sensitivity to the chosen signal compared with
other choices of kinematic variables, and applying network analysis with this set of highly
sensitive underlying variables is intended to lend the greatest power to the network approach.

7.3 Background estimation

The three lepton search region is dominated by the WZ diboson irreducible background
whose shape is taken from MC simulation and fitted to data in dedicated control regions using
normalisation factors. For the compressed decay tree selection, the normalisation factor is
1.13±0.13 as calculated by the ATLAS Collaboration [159]. Additional contributions to the
modelled background come from sources including VVV (triboson), tt̄V and other processes
with a Higgs boson.

Backgrounds are used to construct separate networks from the data, and the network
metrics are calculated from each separately. The metrics from the data-only networks are
then compared with those calculated from the background-only networks to determine if
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they are a reliable indicator of the event types present in data. We aim to identify distinct
shape properties within the background-only networks which depend on the composition of
events and should be shared identically in the data networks only if signal is absent.

7.3.1 Negative node weights

Some background events are simulated in ways that require negative node weights, which
are designed to cancel their contributions with positively weighted nodes. For example,
Section 3.3.2 describes integrating a differential cross-section at NLO with a combination
of divergences, requiring correction terms with the same infrared pole structure as the real
matrix element. The correction factors subtract the over-estimated quantities, producing
negatively weighted events. Any such events that pass preselection propagate their negative
weights into the network, assigning nodes with “importance” less than zero. These weights
must then become part of the n.s.i network metric calculations, where they are used to
evaluate the characteristics both of the negatively-weighted nodes and of the other nodes
whose local properties are affected.

The network calculations may become biased by negative weights and produce non-
sensical results. Amongst these metrics is the betweenness centrality, which no longer
reliably represents a well-defined quantity in a naive MC background network with arbi-
trary negative weights. The n.s.i betweenness metric involves a weighted product which
can become negative if the number of negative contributions to the product is odd, and
yet betweenness is by definition non-negative: it is defined as the proportion of possible
shortest paths passing through a given node, calculated in the unweighted case from the ratio
between two non-negative quantities. Although other metrics such as degree centrality do
not become nonsensical when nodes are assigned negative weights, we aim to achieve a
consistent method of constructing our networks and therefore choose to remove the negative
weights from all network calculations.

Several options are available for calculating the metrics which manage this difficulty. A
procedure may be adopted from certain scenarios involving edge weighted networks, where
we may first select the smallest or most negative weight and add its absolute value to all
node weights, transforming the network into one with weights greater than or equal to zero.
However, in an LHC network the physical significance of the weights is lost when all events
are scaled in relative importance by a common value; negatively weighted events are no
longer subtracted, and their contributions do not cancel the infrared divergences. Furthermore,
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this naive approach cannot always preserve the network characteristics even in the edge
weight case, where shortest paths in the new network are insufficient to represent those in the
old one. Other options were explored for achieving our desired outcome.

We eliminate the negative weights before building our networks by selecting one negative
event and locating a set of one or more positively-weighted events with maximally similar
values of the original variables used to construct the underlying graph space. We then
sum their weights with the negative weight until its contribution to the simulated dataset is
cancelled. The same procedure is applied to every negative weight, so that the final set of
events produces a network with only positive node weights. The method assumes that all
negative events are located close-by in collider space with one or more positive counterparts.
After cancellation, the network should more accurately contain the physics information
required to represent a real network of LHC events.

7.4 Search region

Preselection criteria are applied to the variables in Section 7.2.1 to define the search region.
These criteria are taken from the ATLAS search for neutralinos and charginos belonging to
the aforementioned supersymmetry model, with a compressed mass spectrum targeting a
three lepton final state. The “loose” identification criteria for this region require one b-tagged
jet plus the set of additional constraints which are presented in Table 7.1. After applying
these criteria, the number of events remaining in data is 109, which we consider sufficient
for a first test of network analysis given that distances are calculated between every pair of
events. The loose cut is the least constrained of the regions defined in the existing ATLAS
study.

Table 7.1 Selection criteria for the compressed 3l ISR signal region with loose constraints
[159].

Variable pT, ISR [GeV] pT, I [GeV] RISR ∆φISR, I mT [GeV]
Selection >100 >80 >0.55, < 1.0 >2.0 >100

Kinematic variable plots are considered alongside our network analysis for two main
purposes. First, we verify that the region selection is sufficient for our aims by ensuring
that the original variables are populated by enough data events to achieve smooth data
distributions, and enough background events for the region to be considered well-modelled. In



150 ATLAS electroweakino network analysis

all subsequent figures, the number of background events passing preselection is approximately
25,000, which slightly exceeds the maximum number added to a single network in the
preceding chapters. Second, we compare the similarity between data and backgrounds in the
original variable distributions with their agreement in the network metric plots in Section 7.6.
The similarity here then provides a baseline against which the network metric distributions
must compete, assuming that no new physics is manifest in this region that can be detected
by our sensitive network variables but not by the original methods. The distributions in
Figure 7.3 are a standard choice of two typical variables representing the kinematics in
the region. Although the data distributions show notable statistical fluctuations and minor
deviations from the expected backgrounds, the MC modelling and numbers of events are
sufficient. These deviations guide our expectations for the agreement in later network metric
distributions.

(a) pjet1
T (b) plep1

T

Fig. 7.3 Event rates as functions of the transverse momentum for the (a) jet and (b) lepton
with largest transverse momentum.

7.5 Distance calculations

The networks of ATLAS data and backgrounds in this chapter are constructed using four
distance calculations selected from the set considered in Chapters 5 and 6 as a representative
sample. We select a range of angular and non-angular distances: the correlation, cosine,
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Euclidean and Mahalanobis. In addition, our test process involves checking the Bray-Curtis,
Chebyshev and cityblock distances, which are found to have distributions similar in shape
to the Euclidean distance and are therefore disregarded here to simplify the presentation.
All distances between events in background-only networks are entirely distinct from those
between events in data-only networks, as the two types never overlap. Linking lengths were
chosen by applying the same method used in Chapters 5 and 6, and are shown in Table 7.2.

Table 7.2 Linking length values used for each distance metric for our ATLAS data test of
network analysis.

Distance metric Linking length
dcorr 0.03
dcos 0.015
deuc 70
dmah 2.5

7.6 Results of network analysis

The local network metric distributions for data and backgrounds are compared in Figures 7.4
and 7.5. They show strong agreement between the ATLAS data and simulated MC back-
grounds, as expected in a search region containing no other evidence of signal. We interpret
this agreement as evidence that our analysis provides effective measures of real event proper-
ties. Not only do the network metrics show highly similar distributions between data and
backgrounds for robust n.s.i calculations, but also for the n.s.i calculations which remain
uncertain according to Appendix A. A sample of several of the metrics which we treat with
caution is presented in Figure 7.5. The local and local Soffer clustering coefficients for the
Euclidean distance in particular show distinct shape properties, suggesting they may measure
different non-trivial network characteristics. The betweenness centrality is a computationally
intensive calculation and is not yet measured at an appropriate linking length for networks of
such large size.

We aim to verify that these shape properties are a feature of the physics scenario and
depend on the distribution of events by comparing with false datasets. To make the distinction,
we replace the background events with a set of the same number of event-like points selected
at random between the maximum and minimum values of the true MC background set.
Figure 7.6 presents a subset of the metrics shown in Figures 7.4 and 7.5, comparing the
true LHC data distributions with false backgrounds. The false events are defined in five
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(a) k∗,corr
ν

(b) k∗,cos
ν

(c) CC∗,corr
HC,ν

(d) CC∗,mah
EC,ν

Fig. 7.4 Event rates as functions of the network variables for degree and closeness centrality
metrics calculated for data-only networks with 109 events, compared with distributions of
∼ 25,000 dominant SM background events normalised to fit. No events fall in the overflow
bin.

variables representing the original set, and replace the underlying variables used in network
construction. The value of every event in each variable is selected randomly from a flat
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(a) C∗,euc
ν (b) C∗,euc

s,ν

(c) k∗,cos
nn,ν

Fig. 7.5 Event rates as functions of the network variables for clustering, soffer clustering
and average neighbors degree metrics calculated for data-only networks with 109 events,
compared with distributions of ∼ 25,000 dominant SM background events normalised to fit.
No events fall in the overflow bin.

distribution within the same ranges as the original variables, while total event weight is held
constant.
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The resulting network distributions are sufficiently different to convince us that the shape
properties of the metric distributions cannot easily be reproduced with a random network.
Furthermore, several iterations of generating false events and plotting the same network
metric distributions shows different behaviour every time. We conclude that the data and
background distributions do not only agree because the network metrics must somehow
inherit the same shape properties in this space of original variables. Instead, their particular
event distributions within the space are influencing the metric calculations. In this case, non-
trivial information is contained both in the strong agreement between data and backgrounds
and in the metric shape properties.

The network analysis techniques we apply in this chapter offer a new method of distin-
guishing data from backgrounds when signal is present, and of increasing the confidence
level of future exclusions for BSM scenarios in LHC analyses in the absence of signal. Our
current progress tests network techniques for a BSM analysis but could also be considered a
preliminary test of network applications to SM precision measurements, where the parame-
ters of the SM are extracting from sensitive variables. Further investigation will help us to
evaluate the significance of network results and to determine the confidence levels they can
contribute to future analyses.
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(a) CC∗,mah
EC,ν (b) CC∗,corr

HC,ν

(c) C∗,euc
ν

ls,u

(d) C∗,euc
s,ν

Fig. 7.6 Event rates as functions of the network variables for closeness centrality and cluster-
ing metrics calculated for data-only networks with 109 events, compared with distributions
of background-like events selected randomly from flat distributions and normalised to the
total background weight sum in Figures 7.4 and 7.5. No events fall in the overflow bin.





Chapter 8

Conclusions and outlook

Graph network analysis provides powerful tools for calculating properties of the structures
of complex systems, and has now for the first time been applied to LHC searches for new
physics. Our proof-of-principle studies suggest that network techniques may lend BSM
analyses with greater sensitivity to supersymmetry signals. Furthermore, these methods
naturally extend to searches for a wide range of BSM physics scenarios, and further to
applications in model-independent searches.

Using networks to discriminate signal from background processes at the LHC depends
on a large set of convenient variables defined by mathematical graph theory. The range and
usefulness of network variables is enhanced by constructing networks from several different
metrics for calculating the distances between events in the underlying graph space. The
usefulness is enhanced further by selecting appropriate basis variables to define this space, not
only from the basic set of kinematic collider variables, but also from more advanced measures
derived using techniques such as RJR. Network techniques therefore build on the sensitivity
obtained from whichever variables define the space, which may include options that already
lend strong discovery potential to existing searches. After we construct a series of networks
with different distance definitions, we calculate the network metrics to incorporate additional
sensitivity derived from network structures. Whereas typical strategies in LHC analyses
design variables targeting properties of isolated events, our novel approach is sensitive to
topological structures arising from the distribution of all surrounding events. Although our
network metrics measure properties which are defined locally for every event, we obtain more
information about each event than we would obtain by treating it in isolation by considering
its network connections.
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The local network metrics are assigned as new event attributes, and the network analysis
sensitivity is evaluated in Chapters 5 and 6 using standard methods of selecting events
passing cuts on these attributes to produce signal and background yields. From calculations
of binomial significance, our results in Chapter 5 indicate that graph network methods offer
comfortable exclusion potential for the electroweakino production scenario. Furthermore,
adding a local network metric to a BDT which was originally trained only on the conventional
kinematic variables increases its performance. These results indicate that the technique
provides a promising alternative to current search methods, and motivate a deeper analysis
into further options for distance metrics, linking lengths and preselections.

The stop production scenario in Chapter 6 contains a signal process with kinematics
closely resembling those of the top background, and the network metrics which are robust
under the n.s.i assumptions do not prove to be sensitive to exclusion of this scenario. How-
ever, several metrics which remain uncertain under n.s.i assumptions and are undergoing
further investigation revealed a significant difference in behaviour between the signal and
background events, suggesting that some network measures may also provide significant
exclusion sensitivity in the stop analysis. The betweenness centrality distributions calculated
with the correlation, cosine and Mahalanobis distances show unique shapes for the signal
compared with the background, a property that we may exploit in future work. The signal
distributions are visibly flatter with longer high-betweenness tails, whereas background
events are grouped at low betweenness. Exploiting these distinct properties will require
further tests of the betweenness and other remaining metrics to evaluate their behaviour under
the n.s.i external connectivity assumption. We hope to demonstrate with certainty in which
scenarios both internal and external connectivity assumptions are satisfied, and also consider
the possibility of developing alternative forms of the network metrics which are well-defined
under violations of these two assumptions.

The results of network analysis with ATLAS data in Chapter 7 provide further evidence
suggesting that these techniques have promising potential in real LHC searches. Our progress
confirms that n.s.i metrics produce reasonable distributions when calculated from LHC data
networks compared with the expected backgrounds. Further, we find agreement between
data-only and background-only metrics in a region that is already excluded by ATLAS,
therefore agreeing with expectation. We use these preliminary tests as a guide for future
research into the discovery potential of ATLAS data networks across a range of signal models,
and consider which methods may best isolate a generic signal in anomaly detection. A point
of interest in this venture is the impact of parameters such as preselection criteria on the
exclusion potential for a signal model. To determine the constraints of such parameters,
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faster and less computationally-intensive calculations will enable us to search through larger
and more varied ATLAS datasets. In the future, we consider the option of performing a full
ATLAS analysis using network variables to achieve a complete comparison with existing
results.

Another parameter motivating faster calculations with larger networks is the linking
length, which sets the scale of interest, and is currently assigned an appropriate value from
the distance distributions. Larger linking length produces greater connectivity and therefore
more computationally-intensive calculations. The network recipe depends on the linking
length to produce non-trivial connection topologies, but this parametric representation of
the particle collider event distribution is necessary only if there exists a physical reason for
the scale. Should there be no physical constraint on the scale, this parameter may be an
unnecessary construct that can be replaced by shape-finding algorithms which are designed
to remove scale dependence using the Hessian matrix. These algorithms perform smoothing
operations with multiple options for the scale to identify structures which are consistent
across several scales. Shape-finders and other algorithm-based network techniques may help
to evaluate the parameter dependence of collider event networks in future work.

Once the parameter-dependence of network characteristics and topologies is better under-
stood, the network analysis presented here can be expanded in several broad ways. Global
network metrics differ from local metrics in their assignment of a single value to all nodes,
evaluated at a chosen scale. For example, transitivity is a global metric calculated by averag-
ing the local clustering coefficient over all nodes, and can be calculated for a single set of
events in a constant underlying collider space across a wide range of linking lengths. Plotting
the global metric against linking length then pinpoints the scale of any scale-dependent new
physics visible in this metric. The method may prove useful in future anomaly detection
applications, where we design a broad analysis with no optimisation on a particular scenario
that is manifest at a known scale. It is possible that an SM-only network has distinct topology
from an SM-plus-signal network, where the signal is given by one of many possible BSM
scenarios, and that these distinctions are visible at one or more network scales. A looser pres-
election and larger linking length would help to broaden an anomaly search, but both options
increase the number of events per network. This future analysis is further motivation to de-
velop computational improvements, possibly including the parallelisation of the pyunicorn
package. Since the BSM parameter space is so broad, enhancing the performance of network
techniques with many events and developing broader network metric-based searches will
save time and efforts and lead to a faster discovery.
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Extracting information about the topologies of collider event networks may contribute sig-
nificant discovery potential for BSM physics, and benefits from straightforward combination
with other analysis strategies. The metrics in this work may in future combine with topo-
logical data analysis (TDA), an approach for extracting information from high-dimensional
datasets using a framework that targets distance metric-independent shape properties. Fur-
thermore, machine learning models may be trained to optimise networks for discrimination
between BSM and SM event topologies, once they are better known. Expanding our study of
event topologies to incorporate these advances, as well as data from future developments in
collider experiments, provides interesting avenues for high-energy particle physics analyses.



Appendix A

Network techniques

A.1 Justifying the robustness of n.s.i network metrics

We have tested the reliability of the n.s.i network metrics in our study when events are
reweighted. Building on the considerations explained in Section 4.3.1, in A.1.1 we consider
how the network variables behave when weights are redistributed amongst different numbers
of nodes in an LHC context. Later, A.1.2 examines the n.s.i simplifying assumptions from a
purely theoretical perspective, evaluating their applicability to the present example.

A.1.1 Empirical Tests

In networks containing intermingled MC signal and background events together, we consider
the impact on the network metric distributions caused by changing only the number of
background events. This test is designed to indicate how the network metric calculations may
be affected by a redistribution of node weights. Although the test in Section 4.3.1 performed
a similar function, we obtain further useful information here by delving specifically into
the LHC case, where we create networks that we are likely to encounter in a real LHC
analysis instead of using more general toy datasets. We first consider several local network
metrics from the electroweakino study in Chapter 5 for networks constructed using the
11,197 signal events combined with the full set of 10,486 background events. Both sets of
events are inclusive (not sliced), so for simplicity all events have one of only two possible
weights: the signal or background LHC luminosity weighting factor. To consider the effect
of increased “node merging”, which is described in Section 4.3 as the inverse operation to
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node splitting, we randomly select subsamples of background events to create with only
1,000 or 5,000 nodes, weighting these nodes higher so that they represent the full background
set. Consequently, a single background node in these smaller samples represents a larger
number of true events, which are considered “merged”. Overlaying the distributions in
Figure A.1 corroborates the results of the test in Section 4.3.1, revealing that larger event
samples produce less sparse tails and smoother distributions but maintain the shape in the
bulk.
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Fig. A.1 Event rates for the electroweakino case study as a function of the network metrics
calculated using deuc, calculated using different background sample sizes. Events in the
overflow bin are not shown in the distribution.

We now consider the possible impacts on the metric distributions caused by the increase
in the range of weights introduced by the slicing procedure, which assigns low weights to tail
events. The shapes of the n.s.i network variable distributions appear to be robust under these
changes, revealing little difference in shape when weights are redistributed by the slicing
method. Many metrics show similar agreement between the distributions calculated from
sliced and inclusive samples, suggesting that for this range of LHC events and variables, the



A.1 Justifying the robustness of n.s.i network metrics 163

network metrics behave reliably. Considering Figure A.2, which shows k∗,euc
ν and CC∗,city

HC,ν

for either an inclusive WZ sample or a WZ sample sliced in pT, we conclude that the small
changes in the network distributions in the signal are caused by the small changes in the
background, but are not a sign of unstable behaviour. Further discussion is considered on the
impact of slicing in Appendix B, where we consider the maximum difference between node
weights in the Chapter 6 stop events.

Although the results presented so far are promising, without comparing with a network of
fully unweighted MC events, we cannot produce conclusive empirical evidence that metrics
from node-weighted networks can represent metrics belonging to true unweighted LHC data
networks.
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Fig. A.2 Event rates as functions of k∗,euc
ν and CC∗,city

HC,ν for the electroweakino simplified
model example, comparing the network variables calculated from inclusive WZ samples with
those calculated from WZ samples sliced in pT . Events in the overflow bin are not shown in
the distribution but are included in the Zbi calculation. In both cases the SUSY signal sample
is the same, and the legend indicates the associated WZ sample its network was built with.

A.1.2 Theoretical Considerations

We further explore the possibility of introducing artificial distortions in weighted networks
by appealing to theoretical arguments. Our approach to defining complex network metrics
on a node-weighted network was first developed by Heitzig et al. [121], who derive network
metrics for node-weighted networks using an axiomatic approach. The authors assign a
node weight proportional to the size of the underlying domain that the node represents.
Additionally, the n.s.i calculations in pyunicorn require that the local network metrics are
invariant under the node splitting operation described in Section 4.3. Chapter 4 describes
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node-splitting as replacing any node s (of weight ws) with two nodes s′ and s′′ (weights ws′

and ws′′), where ws = ws′ +ws′′ . The new nodes s′ and s′′ are connected both to each other
and to the same set of nodes as the original node s. If G is the network which contained node
s, and G′ is the refined network which contains s′ and s′′, then all n.s.i network metrics θ ∗

must satisfy
θ
∗(v ∈ G) = θ

∗(v ∈ G′) for v ̸= s,s′,s′′ (A.1)

and
θ
∗(s) = θ

∗(s′) = θ
∗(s′′) (A.2)

We are concerned with how well n.s.i calculations from a smaller, lower-resolution node-
weighted network Glr may approximate a larger, higher-resolution, unweighted network Ghr.
True LHC data is unweighted, so our network calculations for weighted background events
must be compatible with the unweighted data networks. To evaluate the success of n.s.i
calculations, we consider their assumptions: first, that a weighted node may represent a group
of nodes with identical internal connectivity, and second, that the group of nodes possesses
identical external connectivity. Figure A.3 shows a diagram where the conditions are both
satisfied, pictured in red (internal condition) and purple (external condition) respectively.
Some tests of these conditions are discussed in Section 4.3.1. To test them further in this
section, we first acknowledge that we can only expect one or both to be satisfied in a
lower-resolution network if the traits can appear in the corresponding higher-resolution
network: the larger network should contain tight groups of almost identical nodes. If so, then
the inverse operation of node merging may be performed on these groups to produce the
approximation. Dense clusters possess highly specific topology, which may be missing from
the low-resolution networks when n.s.i calculations are applied incorrectly.

We illustrate a small example of two data samples, one larger and unweighted and one
smaller with high weights, to discuss the effects of constructing networks from these samples
on the n.s.i conditions. In Figure A.4, the 10 blue circles are a smaller sample from the
same distribution as the 100 yellow dots. A node-weighted network constructed from the
blue circles may relate ideally to a network built (with the same linking length) from the
yellow dots, so that every blue node corresponds to a group of 10 fully internally connected
and identically externally connected yellow nodes. In such a small sample, this clearly
becomes less likely, although it remains possible. If the linking length is long enough, then
the assumption of full internal connectivity will still hold almost perfectly. The networks
in Chapters 5 and 6 are typically well-connected: for example, electroweakino networks in
Chapter 5 have link densities ranging from 0.213 to 0.492, which are high values increasing
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Fig. A.3 The principle of node splitting invariance means that a node-weighted graph G is
equivalent to a refined graph G’ where all nodes have been split into a number of unweighted
nodes proportional to the weight. Here node B is split into b1, b2 and b3. The nodes b1, b2
and b3 are assumed to have i) full internal connectivity (red links) and ii) identical external
connectivity (purple links).

the likelihood that a group of proximate nodes from Ghr most accurately represented by the
same weighted node from Glr are all inter-linked.

Large link density and high linking length are not in general strong enough to account for
the second n.s.i condition requiring identical external connectivity. For example, the two blue
circles A and B in Figure A.4 fall within the linking length, but only some of their nearby
yellow dots also do. If LHC data is tightly clustered, equivalent to tight clusters of the yellow
dots centred on the blue circles, then the identical external connectivity assumption will
almost perfectly hold. However, without strong evidence that this is true in the LHC datasets
we consider, we choose only to rely on n.s.i network metrics that are robust regardless of
external connectivity. In Section A.1.2, we justify why the n.s.i degree and n.s.i closeness,
harmonic closeness and exponential closeness centralities are reliable.

Justifying the choice of network metrics used

For a complex network based on geometric proximity, we interpret the weight of a node as
representing approximately the density of nodes in a nearby region. With a long enough
linking length, which we argue is true in this thesis, all potential nodes represented by a
weighted node are connected, satisfying the first n.s.i assumption. Close proximity causes
ndoes to share many external neighbors, but their external connections are not necessarily
identical. Assuming identical external connectivity may, for some network metrics (e.g.
betweenness centrality), cause a node-weight-dependent bias in the metric distributions.
Identifying the cases where this is true requires further work. However, we argue that the
n.s.i degree centrality and the three variants of the n.s.i closeness centrality are certainly safe
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Fig. A.4 Visualizing in 2-D two data samples representing the same distribution. The
graph Ghr (higher-resolution) is then constructed from the yellow nodes and the weighted
blue nodes form the lower-resolution version Glr. Circles around nodes A and B contain
approximately the 10 closest yellow nodes, which would be assigned uniquely to them under
n.s.i operations. The linking length L (grey dotted line) connects A and B and any other node
pairs within distance d < L.

to use in this analysis. This conclusion agrees with preliminary empirical tests (here and in
previous chapters), but further work is required to investigate the conditions under which
network metrics become unreliable. These conditions may include network configuration,
network size, distribution of node weights and link density. The investigation is left as an
important line of future work, as it may support future use of metrics discounted here, such
as betweenness centrality.

With a node v ∈ Glr representing the nodes v1, ...,vwv ∈ Ghr, we assume the set of
neighbors of a weighted node v in Glr is to a good approximation representative of the set of
neighbors of v1, ...,vw in Ghr. Consequently, the n.s.i degree of v will be approximately the
average of the degree of all v1, ...,vwv . The approximation becomes less accurate if v1, ...,vwv

have a sparse, non-symmetric or otherwise non-trivial structure, but this is primarily a
problem for smaller, weighted MC samples approximating finer-grained data sets, and is not
compounded by the n.s.i approximation.

The n.s.i closeness centrality of a node u measures the average length dui of shortest
paths from u to any other node in the network i. The three versions of closeness centrality
differ in how they perform this average; closeness centrality sums the length of the shortest
paths from u to each other node in the network, and takes the inverse of this sum; harmonic
closeness centrality sums the inverses of the distances of shortest paths from u to every
node in the network; exponential closeness centrality sums the inverses of 2dui . In all cases
node weights along each path are multiplied together to approximate the number of shortest
paths being traversed (see [121] for precise formulae). Since all three of these closeness



A.1 Justifying the robustness of n.s.i network metrics 167

centralities take into account only the length of these shortest paths (not their uniqueness,
as discussed below), we argue that they are not significantly distorted by the assumption of
identical external connectivity. If we reconfigure an underlying higher-resolution network
Ghr to conform with n.s.i assumptions, by removing some external links from some nodes in
a group, and replacing them with external links identical to other external links in the group,
this will not cause a significant change in the closeness centrality of any of the nodes in the
cluster. So long as full internal connectivity holds, any of the new external links assigned
to a node in order to satisfy external connectivity would have had a path length of 2, and
now have this path length reduced to 1. Due to the fact that the network is constructed via
geometric proximity, we expect that any of the broken links will likely still be connected by a
path length of 2. Therefore, the assumption of identical external connectivity will only cause
some minor changes in the average path lengths starting from a node, and these changes will
to some extent cancel out.

In contrast, an incorrect assumption of identical external connectivity may cause higher-
weighted nodes to have a lower betweenness centrality. This is because unlike closeness
centrality, betweenness depends also on the uniqueness of shortest paths passing through a
node. In calculating betweenness centrality, the contribution of a shortest path from a to b
which passes through v is always scaled by the inverse of the total number of shortest paths
that pass from a to b. While nearby nodes in a higher-resolution network may have a diverse
and distinct set of shortest paths passing through each of them, n.s.i forces all nodes in the
same group to lie along an identical set of shortest paths (see the identical external purple
links for b1,b2,b3 in Figure A.3). Thus n.s.i betweenness centrality may be systematically
lower for larger-weight nodes, if the assumption of identical external connectivity does not
actually hold.

Finally, we note that improvements in the method of construction of our node-weighted
network could lead to increased accuracy of the n.s.i assumption of identical external con-
nectivity. For example, we could generate a node-weighted network by simulating a large
sample of MC events and clustering events together into a larger weighted event only where
a tight cluster of events naturally exists. This would ensure that a weighted node accurately
represents the density of a very local area of the kinematic space. Efficient algorithms such
as k-means clustering could be used to generate a set of representative weighted nodes
from a larger sample. Methods considered in [107] to find the smallest representative set of
events could also be applied. Building a more robust node-weighted network in this way
may significantly increase the power of this analysis by permitting the use of important
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topological network measures omitted here, in particular the betweenness centrality and
clustering coefficient.



Appendix B

Event weights in sliced samples

B.1 Stop example: slicing procedure

The slicing procedure is the primary cause of disparate event weights in Chapters 5 and 6, and
is therefore responsible for a large part of the discussion in Appendix A. The stop example
in Chapter 6 in particular comprises event samples where the difference in weight between
slices is large, where the selections in HT alter the cross-sections more than the selections in
p̂T for the electroweakino production example. The maximum difference between weights in
the electroweakino case study is therefore somewhat lower and less problematic in network
calculations. In this appendix, the slices selected for the stop example are justified and their
application is described.

When abnormally high bins of HT are selected at parton-level in MC simulations with
Pythia 8, events are generated from a kinematic distribution biased towards rare energetic
particles, so that the probability of high momentum final state particles is greater than we
observe in nature. We must then add small weights to the rare events, of which there now
exists too great a number, and reproduce the expected numbers of events in measurements at
the LHC. The two weight factors associated with slicing are the slice cross-section factor
and the normalisation factor, described in Section 4.2.3. The product of these two factors is
labelled weight factor in Table B.1, which contains weights associated with slicing applied to
the signal and background samples in the stop example. These slices introduce the maximum
weight difference between any two slices from the same sample. If the n.s.i calculations are
biased by large differences in node weights, then the difference between these slices is likely
to be responsible for the greatest contribution to this bias.
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Table B.1 The two slices with maximally different weights from the stop and top simulated
event samples used in the stop case study in Chapter 6, where Nevents is the number of events
in the slice after preselection.

Slice (HT, GeV) Nevents Weight factor
Stop 300-400 1600 1.40×10−1

>2500 20 2.68×10−3

Top 0-150 200 1.31×10−1

>2000 60 1.30×10−3

The combination of all slices comprising the full set of stop or top events in selected
kinematic space produces a smoother distribution in not only the sliced variable HT, but also
the other kinematic variables on which the network analysis is dependent. Figure B.1 shows
the distribution of events by slice in the seven lowest-HT slices for the HT variable (upper
plot), where the dark blue entries represent the combination of re-weighted events from the
event slices and the black distribution is an inclusive sample. The plots are shown as a guide
to convey the effect of slicing on the contents of the kinematic distributions for variables
underlying the stop networks. They build upon the information presented in Figures 4.5
and 4.6, which revealed that smoothness increases significantly in the p̂T distribution when
electroweakino events are generated in p̂T slices.

The sliced events produce realistic distributions after re-weighting not only in the variable
that was binned at generator-level, but also in the other kinematic variables. Since events
containing many highly energetic particles are likely to belong to the HT tail plus the tail
regions of several other variables, including jet momenta and transverse mass, the rare
kinematic regions are also populated in other variables. For example, the same set of events
sliced in HT is present in the lower plot from Figure B.1, showing the transverse momentum
of the first jet p j1

T . The sample of re-weighted events in dark blue is composed again of the
various coloured entries and compares with the inclusive entries in black.
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Fig. B.1 Distributions of events across variables HT and pj1
T for sample slices in HT .

These slices are deemed sufficient for reliably modelling the kinematic tails so that the rare
regions are accurately represented in networks of limited size. The computational intensity of
network calculations limits the event count to 10,000 signal and 10,000 background events,
which contains a significant portion of re-weighted kinematic tail events as a result of the
slicing procedure. After constructing the networks, n.s.i local network metrics are calculated
for both inclusive and sliced samples generated from the search region defined by preselection
criteria in Chapter 6. Their shape properties should agree to within the statistical deviations
expected from low event counts in the tails, if weight disparities introduced by slicing has
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little effect on n.s.i calculations. The inclusive and sliced distributions are compared in
Figures B.2 and B.3.

The regions showing least agreement in Figure B.3 between sliced and inclusive distri-
butions are those with fewer events in the inclusive samples, particularly in the tail regions
where the inclusive distributions are unpopulated. For example, the tails of the betweenness
centrality distributions for the inclusive background samples are negligibly populated, which
is again true in the Euclidean local and local Soffer clustering distributions, where the sliced
networks better represent these regions by filling out the tails. We see evidence of agreement
between inclusive and sliced distributions not only in the network metrics which are con-
sidered reliable following the discussion in Section 4.3.1 and Appendix A, but also in the
metrics which should be treated with caution awaiting further investigation.
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(a) k∗,corr
ν (b) CC∗,mah

HC,ν

(c) CC∗,cos
HC,ν (d) C∗,corr

s,ν

(e) C∗,mah
ν (f) k∗,mah

nn,ν

Fig. B.2 Event rates as functions of the network variables for the stop simplified model
example. Events in the overflow bin are not shown in the distribution but are included in the
Zbi calculation.
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(a) BC∗,corr
ν (b) BC∗,cos

ν

(c) BC∗,mah
ν (d) C∗,euc

s,ν

(e) k∗,cos
nn,ν (f) C∗,euc

ν

Fig. B.3 Event rates as functions of the network variables for the stop simplified model
example that show the most difference between the signal and the background either when
alone or when combined in cuts with other variables. Events in the overflow bin are not
shown in the distribution but are included in the Zbi calculation.
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