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A B S T R A C T   

A highly effective method for controlling the spread of an infectious disease is vaccination. However, there are 
many situations where vaccines are in limited supply. The ability to determine, under this constraint, a vacci
nation strategy which minimises the number of people that become infected over the course of a potential 
epidemic is essential. Two questions naturally arise: when is it best to allocate vaccines, and to whom should they 
be allocated? We address these questions in the context of metapopulation models of disease spread. We discover 
that in practice it is generally optimal to distribute all vaccines prophylactically, rather than withholding until 
infection is introduced. For small metapopulations, we provide a method for determining the optimal prophy
lactic allocation. As the optimal strategy becomes computationally intensive to obtain when the population size 
increases, we detail an approximation method to determine an approximately optimal vaccination scheme. We 
find that our approximate strategy is consistently at least as good as three strategies reported in the literature 
across a wide range of parameter values.   

1. Introduction 

Infectious diseases have devastating impacts on society. Examples 
include the 1918 ‘flu pandemic and the Ebola epidemic in West Africa in 
2014. Vaccination is an effective method for controlling the spread of an 
infectious disease, and in fact eradicated smallpox. However, vaccines 
are expensive to produce and for some diseases, vaccines may not yet 
exist and may only be developed during an epidemic. Both of these 
scenarios result in a limited supply of vaccines. Here we provide new 
insights and a new algorithm which can be used by public health offi
cials to help find a solution to the challenging problem of how best to 
allocate a limited supply of vaccines. 

Our focus for this paper is on determining an optimal allocation of a 
finite number of vaccines to a stochastic SIR (susceptible-infectious- 
recovered) metapopulation model, where optimal means minimising the 
mean final epidemic size (the expected number of people that become 
infected following an import attempt). The optimal allocation of a 
limited supply of vaccines to a population has been investigated in a 
range of different contexts, such as metapopulation models (Ball et al., 
1997, 2004; Ball and Lyne, 2002; Keeling and Shattock, 2012; Duijzer 
et al., 2015, 2016; Keeling and Ross, 2015; Yuan et al., 2015) and 
age-structured models (Medlock and Galvani, 2009; Wallinga et al., 

2010). Stochastic models similar to the one we consider have been 
studied previously, but with a focus on reducing the household basic 
reproduction number, R* (Ball et al., 1997, 2004; Ball and Lyne, 2002; 
Keeling and Ross, 2015). The objective of minimising the final epidemic 
size has been considered, but in the context of deterministic models 
(Keeling and Shattock, 2012; Duijzer et al., 2015, 2016), or for sto
chastic models in only specialised cases (Yuan et al., 2015; Keeling and 
Ross, 2015). 

Three main strategies arise from these studies: the equalising strategy 
(Ball et al., 1997; Ball and Lyne, 2002); the deterministic strategy 
(Keeling and Shattock, 2012); and, a fair (pro-rata) strategy (Azman and 
Lessler, 2014), used by many as a basis for comparison. We will present 
these strategies in more detail in Section 4.3. 

This paper contributes to the literature by considering a Markovian 
metapopulation model and the objective of minimising the mean final 
epidemic size subject to a constraint on the number of vaccines avail
able. An important and novel feature of our work concerns the import of 
infection. Here, we assume that there is a single attempted import of 
infection into the population. This means there is a chance the infection 
may be blocked if infectious contact is with a vaccinated individual, 
especially in the case of prophylactic vaccination. Hence, this type of 
seeding (a single attempted import) is an important consideration. 
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The first question we answer is whether it is better to vaccinate some 
of the population before the attempted import, or to wait until the 
location of first import is known. Both of these approaches may have 
benefits. Vaccinating before infection is present in the population allows 
for a reduction in the number of susceptible individuals in the popula
tion which might reduce the chance of successful import; it also limits 
the spread of the disease if import is successful. On the other hand, 
vaccination post-import might allow for vaccine distribution based on 
the location of the infection(s). We found that for the question of when to 
allocate, it is in practice generally better to allocate vaccines before the 
presence of infection in the population. 

Next, we explore the problem of where to allocate. That is, we 
consider the optimal pre-allocation of vaccines to the population. As it is 
computationally intensive to use exact methods to determine the 
optimal allocation of vaccines for large populations, we develop an 
approximately optimal allocation. We compare our approximate strat
egy, as well as three existing strategies in the literature, with the optimal 
strategy. We found that our approximate strategy compared well with 
the optimal strategy and also compared favourably with other strategies 
from the literature, especially in the case of medium-sized populations 
(for example, overall population of 1800 individuals). Overall, we found 
that when the optimal strategy cannot be calculated, as is the case when 
the population size is large, our approximate strategy is preferred and 
for very large population sizes, a deterministic strategy performs well. 

2. Model 

A metapopulation model, where individuals live in patches and have 
different rates of transmission between patches and within patches, is a 
useful extension to the general homogeneous population model. Such 
two-level mixing models can be used to capture people living in coun
tries, cities and/or households, and animals on farms; the grouping/ 
aggregation of individuals incorporates more realism in the model. 
Hence, we use a metapopulation structure for any similar grouping of 
individuals. For this model, we have also chosen to consider SIR disease 
dynamics, where each individual in the population is classified as sus
ceptible, infectious or recovered. Under these dynamics, an individual is 
initially susceptible, and has some chance of becoming infected if con
tact is made with an infectious individual. After some period of time, the 
infectious individual recovers and becomes immune to the disease. Note 
that we have not considered an exposed class, where individuals are 
infected but cannot transmit the disease, as we are interested in the 
mean final epidemic size which is independent of the exposed class 
(Andersson and Britton, 2000). 

Consider a metapopulation model with m patches and SIR disease 
dynamics. This can be modelled by a continuous-time Markov chain 
with state space, 

S = {(s1, i1,…, sk, ik,…, sm, im) : 0 ≤ sk, ik, sk + ik ≤ Nk, ∀ k = 1,…,m},

where Nk is the population size of patch k and sk and ik represent the 
number of susceptible and infectious individuals in patch k, respectively, 
for k = 1, …, m. The transition rates for this model, which describe the 
infection and recovery rates in patch k, for k = 1, …, m, are given by, 

qx,x+infk =
βskik

Nk − 1
+
∑m

j∕=k
j=1

(
αjkskij

Nk
+

αkjskij

Nj

)

,

which corresponds to a new infection in patch k, and 

qx,x+reck = γik,

which corresponds to a recovery in patch k, where,  

• x = (s1, i1,…, sk, ik,…, sm, im),  

• infk = e2k − e2k− 1, where ek is a vector of 0s with a 1 in the kth 
position,  

• reck = − e2k,  
• γ is the recovery rate for each infectious individual,  
• β is the effective transmission rate parameter for transmission within 

a patch, and  
• αjk is the effective transmission rate parameter for contact between 

an individual from patch j with an individual in patch k. 

These transition rates are used to form the generator matrix Q for this 
continuous-time Markov chain. Note, throughout we assume the trans
mission rates between patches, e.g. αjk, to be considerably smaller than 
the transmission rate within a patch, β, corresponding to transmission 
within a patch being much more likely than transmission between 
patches — e.g. transmission to an individual within the same city 
compared to an individual in a different city. Further, we focus on the 
case where the basic reproduction number, R0, which we approximate as 
β/γ, is greater than 1, ensuring a chance of a major outbreak. 

Recall that we have chosen to use the mean final epidemic size, 
which is the expected number of people that become infected over the 
course of an epidemic, as our measure to minimise. For the SIR model, 
the mean final epidemic size can also be thought of as the expected 
number of recovered individuals at the end of the epidemic and can be 
calculated using path integrals of continuous-time Markov chains (Pol
lett and Stefanov, 2002; Pollett, 2003). Here, we state the equation used 
to calculate the mean final epidemic size and refer the reader to (Teo, 
2017) for further details. The mean final epidemic size, ζ(x), for every 
state x ∈ S, can be obtained by solving, 

Q*ζ = − f,

where the vector f contains the number of recovered individuals for 
elements corresponding to absorbing states and 0’s elsewhere. To 
construct the matrix Q*, we let B = {(s1, 0, …, sj, 0, …, sm, 0) : 0 ≤ sj ≤Nj, 
∀ j = 1, …, m} be the set of states in S with no infectious individuals and 
introduce a new absorbing state, call it 0. For this state, we set q0,x = 0,
∀ x ∈ S, qx,0 = 1, ∀ x ∈ B and qx,0 = 0, ∀ x ∈ S\B. Then, Q* consists 

of the transition rates in Q and the additional rates described above, but 
restricted to the original state space S, which are now the transient 
states. Note that this is the overall mean final epidemic size not the mean 
final epidemic size in each patch. 

Next, we consider the impact of vaccination on the mean final 
epidemic size. The effect of vaccination on susceptible individuals can 
be modelled in a variety of ways. For example, vaccinating a susceptible 
individual can render the individual immune to the disease (Ball et al., 
1997; Ball and Lyne, 2002; Keeling and Shattock, 2012; Duijzer et al., 
2015, 2016; Keeling and Ross, 2015; Yuan et al., 2015) or vaccinating 
can reduce an individual’s susceptibility to the disease (Ball and Lyne, 
2006; Ball and Sirl, 2018). Here, we consider perfect vaccination, that is, 
when a susceptible individual is vaccinated, they become immune to the 
disease. For the SIR model, this can be represented by moving a sus
ceptible individual to the recovered class. This means that in the 
calculation of the mean final epidemic size, the number of vaccinated 
individuals must be deducted from the number of recovered individuals 
at the end of the epidemic. 

We assume that the metapopulation is disease-free before attempted 
import and infection may occur through a single attempted import of 
infection into the population. To model this, we let ρk be the probability 
that the single attempted import of infection is in patch k. This can be 
represented by ρk = εk∑m

j=1
εj
, where εk is the rate of import into patch k. 

Note that we consider the rates εk to be very small and we are interested 
in a single attempted import. This form for ρk allows for the consider
ation of different rates of import into different patches, corresponding to 
different levels of connectivity to the source of infection, say corre
sponding to air traffic volume with infected countries. If import is 
attempted at patch k, an individual is selected uniformly at random from 
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the patch; hence, import is successful in patch k, if a susceptible indi
vidual is chosen, with probability sk

Nk
. Hence, the probability of an indi

vidual in patch k becoming infected is ρk ×

(
sk
Nk

)

, otherwise the infection 

fails to invade and the final epidemic size is 0. Note that if the entire 
population is initially susceptible, this probability reduces to ρk as 
sk =Nk; in this scenario, unsurprisingly, the optimal allocation is iden
tical to the scenario of forced infection, where infection is always 
assumed to invade (rather than potentially blocked) as in this case a 
susceptible individual is chosen uniformly at random. This also remains 
true in the case εk ∝ Nk because the mean final epidemic size for the 
latter case is a scaled version of the mean final epidemic size for the 
former. However, if the rate of import εk is not proportional to the patch 
size Nk, then there is a fundamental difference in the optimal strategy. 
Fig. 1 illustrates this phenomenon. 

Consider a simple example with two patches of size N1 = 9 and 
N2 = 15, where there are V = 6 vaccines. We have chosen to fix the re
covery rate γ = 1

2 and assume that the cross-patch infection rates are 
identical, that is, α12 = α21 = α. Further, we have also chosen to vary the 
within-patch infection rate β ∈ [0.5, 5] and the cross-patch infection rate 
α ∈ [0.01, 0.1] × β. Fig. 1 consists of the optimal strategies (obtained 
using the method detailed in Section 4.1) for each (α, β) pair and the 
following probabilities of attempted import into patch k, ρk, for k = 1, 2,  

• ρk =Nk/(N1 +N2) for k = 1, 2 (Fig. 1b),  
• ρ1 = 0.35 and ρ2 = 0.65 (Fig. 1c),  

• ρ1 = 0.4 and ρ2 = 0.6 (Fig. 1d),  
• ρ1 = 0.5 and ρ2 = 0.5 (Fig. 1e), and  
• ρ1 = 0.75 and ρ2 = 0.25 (Fig. 1f). 

Fig. 1a consists of the optimal strategies for the case of forced 
infection. This illustrates the importance of considering attempted 
import when determining an optimal prophylactic vaccination. 

3. Prophylactic is better than reactive vaccination 

First, we explore the question of when it is best to allocate vaccines. 
To do so, we consider three cases:  

• allocating all vaccines before infection is present in the population 
(strict-prophylactic vaccination);  

• withholding at least one vaccine until after infection is present in the 
population (predominantly-prophylactic vaccination); and, 

• withholding all vaccines until after infection is present in the popu
lation (reactive vaccination). 

To compare between these cases and determine the optimal vacci
nation strategy, we develop a method, the modified BDP algorithm 
(Appendix A.1 Algorithm 1), which utilises Backward Dynamic Pro
gramming (Powell, 2011; Puterman, 1994). The modified BDP algo
rithm is the standard backward dynamic programming algorithm, with a 
post-processing step that accounts for prophylactic vaccination and 

Fig. 1. Optimal strategies for a two-patch 
example with N1 = 9, N2 = 15, V = 6 vaccines, 
γ = 1

2, within-patch infection rate β ∈ [0.5, 5] 
and cross-patch infection rate α ∈ [0.01, 
0.1] × β for different probabilities of attempted 
import. (a): Forced infection, (b): Import pro
portional to population size ρk ∝ Nk for k = 1, 2, 
(c): ρ1 = 0.35 and ρ2 = 0.65, (d): ρ1 = 0.4 and 
ρ2 = 0.6, (e): ρ1 = 0.5 and ρ2 = 0.5, (f): ρ1 = 0.75 
and ρ2 = 0.25. The colour labels represent the 
number of vaccines allocated to each patch, (V1, 
V2). This figure shows that the relative rates of 
import affect the optimal strategies.   

M. Teo et al.                                                                                                                                                                                                                                     

Downloaded for Anonymous User (n/a) at The University of Adelaide from ClinicalKey.com.au by Elsevier on December 15, 
2021. For personal use only. No other uses without permission. Copyright ©2021. Elsevier Inc. All rights reserved.



Epidemics 34 (2021) 100420

4

attempted import of infection. Further, we also incorporate a delay be
tween the first onset of infection in the population and vaccination. In a 
real-world scenario, it is unlikely for public health officials to know 
instantaneously about the first onset of infection in the population and 
then be able to apply intervention measures immediately. Hence, there 
is a delay between these events. To account for this in the modified BDP 
algorithm, we let t1 be the time until vaccination can occur after infec
tion is present in the population, measured in days. Then, the transition 
probabilities of moving from one state to another in time t1 can be 
calculated by P1 : = P(t1) = eQt1. In the example considered in Section 
3.1, we vary the delay between first infection and vaccination, t1, to 
explore how prophylactic vaccination compares with vaccinating after 
infection is present in the population. For a more detailed explanation of 
the standard backward dynamic programming algorithm and how it 
relates to our problem, we refer the reader to Appendix A.1. 

Another important aspect of the modified BDP algorithm is how 
vaccines are allocated during an epidemic. As backward dynamic pro
gramming determines the best action to take at each time step, t′, we 
simplify the modelling, without loss of generality, and limit the number 
of possible actions by only allowing a single vaccine to be allocated at 
each time step t′. Then, given the current state of the process, St, and the 
chosen action, at, the process moves to the next state s′ according to the 
probability P(s′|St, at), which can be obtained from the transition 
probability matrix, P(t′ ) = eQt′ . Note that this transition probability 
matrix is different from the matrix P1 = eQt1 and is used after the delay 
between first infection and vaccination, t1. Hence, the process first 
evolves according to the transition probabilities in P1 for time t1. After 
which, the process evolves according to P(t′ ) = eQt′ . 

Next, we consider a simple example and apply the modified BDP 
algorithm to compare between prophylactic vaccination and reactive 
vaccination. 

3.1. Results 

Consider an example with 40 individuals split between two patches, 
and there are V = 10 vaccines available to be allocated to the population 
over a fixed time-horizon of T = 12 days. For this problem, we have 
chosen to fix γ = 1

2 and β = 1. Further, we also assume that the cross- 
patch infection rates, αkj for j ∕= k and k, j = 1, 2, are identical and set 
to α12 = α21 = α = 0.01. Recall that backward dynamic programming 
determines the best action to take at each time step, t′, corresponding to 
at most one vaccine allocated at each time step. To allow for a fairer 
comparison between prophylactic vaccination and reactive vaccination, 
we have chosen to let t′ = 1

100, as this essentially means that all vaccines 
are able to be allocated almost simultaneously after the delay for the 
reactive vaccination. For larger values of t′, reactive vaccinations are 
allocated at a slower rate and the disease could spread to more people. 

Under this set up, we consider four ways to split the population of 40 
individuals into two patches of size N1 and N2:  

1. [N1, N2] = [2, 38],  
2. [N1, N2] = [10, 30],  
3. [N1, N2] = [15, 25], and  
4. [N1, N2] = [20, 20]. 

Then, for each [N1, N2], we vary the time until vaccination can occur 
after infection is present in the population, t1 ∈

{
1
3,

1
2,1, 2

}

, which cor
responds to a delay of eight hours, twelve hours, one and two days, 
respectively. 

We apply the modified BDP algorithm (Appendix A.1 Algorithm 1) to 
each problem to obtain the minimum mean final epidemic size for the 
vaccination schemes of interest: strict-prophylactic vaccination; 
predominantly-prophylactic vaccination; and, reactive vaccination. 
Fig. 2 displays the results obtained from the modified BDP algorithm for 
each problem and each delay t1. 

Fig. 2. Mean final epidemic size comparison of 
the three types of vaccination schemes, reactive 
vaccination (blue), predominantly-prophylactic 
vaccination (red) and strict-prophylactic vacci
nation (yellow), for a total population size of 40 
individuals and V = 10 vaccines by varying t1, 
the delay between the first onset of infection in 
the population and vaccination. The following 
parameters are assumed fixed: the recovery rate 
γ = 1

2, the within-patch infection rate β = 1, the 
cross-patch infection rate α = 0.01 and the time- 
horizon T = 12 days. The subplots correspond 
to different patch sizes, (a): [N1, N2] = [2, 38], 
(b): [N1, N2] = [10, 30], (c): [N1, N2] = [15, 
25], (d): [N1, N2] = [20, 20]. Note that the y- 
axis does not start at zero, but instead has been 
chosen to make the signal more visible. This 
shows that, in general, strict-prophylactic 
vaccination is preferred as it results in smaller 
mean final epidemic sizes than withholding 
vaccines until after infection is present in the 
population, especially with realistic delays.   
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From Fig. 2, we see that, in general, withholding vaccines until after 
infection is present in the population results in a larger mean final 
epidemic size than strict-prophylactic vaccination. Hence, in general, 
strict-prophylactic vaccination is optimal. The only instances where 
there might be some benefit in withholding vaccines (some or all) until 
after infection is present in the population occurs when the delay be
tween infection and vaccination is less than 1 day and when the patch 
sizes are relatively even. The same analysis was performed for different 
values of within-patch, β, and cross-patch, α, infection rates. For larger β 
values or larger α values, we found that prophylactic vaccination 
resulted in a smaller mean final epidemic size than when vaccines were 
withheld. Note that the inherent time scale of the model considered is 
the mean infectious period, 1γ = 2 days in our examples. Therefore, the 

above results can be interpreted more generally by thinking of t1 =

{
1
6,

1
4,

1
2,1
}

mean infectious periods as opposed to days. In this language, we 

have that strict-prophylactic vaccination is optimal unless both the delay 
between infection and vaccination is less than half a mean infectious 
period and the patch sizes are relatively even. 

Hence, given the typical mean infectious period of a respiratory virus 
and anticipated delays in responding, there appears to be no benefit to 
withholding vaccines until after the infection is present for the basic 
metapopulation model considered. If vaccination could be applied very 
rapidly after the first onset of infection, then some minor benefit exists. 
In general for this metapopulation with minimal structure, we find that 
prophylactic vaccination results in a smaller mean final epidemic size 
and hence is the preferred scheme. Next, we focus on the problem of 
prophylactic vaccination and determining the best way of allocating a 
fixed number of vaccines to such a metapopulation. 

4. Optimal prophylactic vaccination 

Consider the metapopulation model described in Section 2. We know 
from the previous section that the preferred vaccination scheme is to 
allocate vaccines before the first onset of infection in the population. 
Hence, given a fixed number of vaccines, we consider all possible ways 
of allocating the available vaccines to the population and the optimal 
strategy is the one that results in the smallest mean final epidemic size. 
We first discuss how to solve this problem exactly before explaining the 
need for an approximation to the exact solution and considering other 
strategies found in the literature. 

4.1. Optimal strategy 

As the optimal strategy corresponds to the allocation with the 
smallest mean final epidemic size, we need to calculate the mean final 
epidemic size for all possible allocations of available vaccines to the 
population. Let Vk be the number of vaccines allocated to patch k with 
the total number of vaccines, V =

∑m
k=1Vk, and let uk =Nk − Vk denote 

the number of unvaccinated susceptible individuals in patch k. Recall 
from Section 2 that the number of recovered (including vaccinated) 
individuals at the end of the epidemic for every possible initial state s, 
ζ(s), can be obtained simultaneously by solving, 

Q*ζ = − f,

and extracting the appropriate element from ζ. Then, for the initial state 
of interest u = (u1, 0, …, uk, 0, …, um, 0), the mean final epidemic size 
given the infection started in patch k is 

[
ζ
(
u + infk

)
− V

]
. By multi

plying this with the probability of an individual in patch k becoming 

infected, ρk ×

(
uk
Nk

)

, and summing over all patches, we obtain the mean 

final epidemic size for the initial state of interest u, 

ζ
′

(u) =
∑m

k=1
ρk ×

(
uk

Nk

)

[ζ(u + infk) − V].

The problem of determining the optimal strategy corresponding to 
the minimum mean final epidemic size can then be written as the 
following minimisation problem, 

minimise ζ
′

(u),

subject to 

0 ≤ Vk ≤ Nk, where uk = Nk − Vk, for k = 1,…,m,

V =
∑m

k=1
Vk.

We note that this optimisation problem is relatively easy to solve 
once the vector ζ is calculated as it simply involves selecting the strategy 
corresponding to the smallest mean final epidemic size ζ′(u), which is 
itself a fairly trivial calculation given ζ. 

The difficulty with the optimisation problem lies with the calculation 
of the vector ζ as it is exact and requires solving a system of linear 
equations involving the Q matrix which is of order |S| × |S|. Further, the 
size of the state space grows with the population size as 

|S| =
∏m

k=1

(Nk + 1)(Nk + 2)
2

.

Hence, as the population size increases, obtaining the mean final 
epidemic size using this method becomes more computationally inten
sive and for large population sizes, this method is computationally 
intractable. This indicates a need to develop a more computationally- 
efficient method of estimating the mean final epidemic size to suffi
cient accuracy in order to develop an approximate strategy. 

4.2. Approximate strategy 

Here, we detail our approximation method which consists of two 
approximations. The first we call the average initial infection rate 
approximation and the second the weakly-coupled final sizes approxima
tion. Also, involved in our method is a rule for determining which 
approximation to use for a given parameter set. 

First, consider the average initial infection rate approximation. To 
best control the epidemic, we are interested in determining the vaccine 
allocation that minimises the average initial infection rate. For an initial 
state u = (u1, 0, …, uk, 0, …, um, 0), where uℓ =Nℓ − Vℓ for ℓ=1, …, m, 
the average initial infection rate, r, can be calculated by 

r =
∑m

k=1
ρk ×

(
uk

Nk

)

×

⎡

⎢
⎣

β(uk − 1)
Nk − 1

+
∑m

j∕=k
j=1

⎛

⎜
⎝

αkjuj

Nj
+

αjkuj

Nk

⎞

⎟
⎠

⎤

⎥
⎦.

For details of its derivation, we refer the reader to Appendix A.2. Then, 
we evaluate r for all feasible combinations of uk, for k = 1, …, m, and the 
combination corresponding to the smallest value of r is chosen as the 
optimal initial state. 

Next, we consider the weakly-coupled final sizes approximation 
which is suitable when the cross-patch infection rate is sufficiently small 
relative to the within-patch infection rate. Recall from Section 4.1 that 
the problem with obtaining the optimal strategy exactly is that the 
calculation of the mean final epidemic size ζ*( u + infk

)
, where ζ*( u +

infk
)
= ζ

(
u + infk

)
− V, can be computationally intensive, or even 

intractable, for large population sizes. Hence, for this approximation, we 
develop a less computationally-intensive weakly-coupled method to 
approximate ζ*( u + infk

)
. We refer the reader to Appendix A.3 for more 

details on this approximation and provide the idea behind this approx
imation below. 
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As we assume that the cross-patch infection rate is sufficiently small 
relative to the within-patch infection rate, the probability of infection 
spreading between patches is small. Therefore, we approximate the 
mean final epidemic size for each patch using single population models. 
The basis of this approximation is to calculate the mean final epidemic 
size of the initially infected patch and then add to it the mean final 
epidemic size of each patch which has not yet experienced infection, 
weighted by the probability of each of those patches becoming infected. 
Note that we consider all possible pathways that the infection can spread 
from the initially infected patch to all fully susceptible patches. From 
this, we can obtain the approximate mean final epidemic size for each 
strategy and the optimal strategy is the one corresponding to the 
smallest approximated mean final epidemic size. 

As the average initial infection rate approximation and the weakly- 
coupled final sizes approximation each return an optimal strategy for 
a given parameter set, we need a method to determine which approxi
mation, and hence corresponding strategy, is most appropriate for that 
parameter set. Recall that the weakly-coupled final sizes approximation 
is restricted to the region where the cross-patch infection rate is suffi
ciently small relative to the within-patch infection rate. On the other 
hand, there is no restriction on the average initial infection rate 
approximation. Hence, our method needs to determine, for a given 
parameter set, if the weakly-coupled final sizes approximation can be 
applied or the average initial infection rate approximation should be 
used instead. 

Let us consider the transition rates of the model (described in Section 
2) and focus specifically on the infection events. The rate of infection in 
patch k, for k = 1, …, m, is, 

βskik

Nk − 1
+
∑m

j∕=k

j=1

(
αkj

Nj
+

αjk

Nk

)

skij = sk

⎡

⎢
⎢
⎢
⎢
⎣

βik

Nk − 1
+
∑m

j∕=k

j=1

(
αkj

Nj
+

αjk

Nk

)

ij

⎤

⎥
⎥
⎥
⎥
⎦

As the weakly-coupled final sizes approximation assumes that the cross- 
patch infection rate is sufficiently small relative to the within-patch 
infection rate, we want, for each k = 1, …, m, 

∑m

j∕=k

j=1

(
αkj

Nj
+

αjk

Nk

)

ij≪
βik

Nk − 1
.

Note that the above expression is state-dependent as it depends on the 
values of ij and ik. Instead, we want our expression to be state- 
independent and so we bound these terms by the largest possible 
value they can take, Nj and Nk (Teo, 2017). Thus, the expression of in
terest to us can be written, for each k = 1, …, m, as 

∑m

j∕=k

j=1

(
αkj

Nj
+

αjk

Nk

)

Nj≪
βNk

Nk − 1
.

For large N, this expression can be approximated by, 

∑m

j∕=k

j=1

(

αkj +
Nj

Nk
αjk

)

≪β.

We need this condition to hold for all patches k = 1, …, m, for the weakly 
coupled final sizes approximation to be a suitable approximation. 
Hence, for some chosen cut-off value c ≪ 1, if 

1
β
× maxk

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m

j∕=k

j=1

(

αkj +
Nj

Nk
αjk

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

< c,

then the weakly-coupled final sizes approximation is applied. After 
investigation of potential choices for the cut-off value c (see (Teo, 
2017)), a cut-off value of c = 0.175 was chosen as a robust choice (for a 
range of population sizes, number of patches and parameter values). 

4.3. Other strategies in the literature 

We compare our approximate strategy to other strategies found in 
the literature, in particular the equalising strategy (Ball et al., 1997; Ball 
and Lyne, 2002), the deterministic strategy, obtained from a modified 
model of Keeling and Shattock (Keeling and Shattock, 2012), and a fair 
(pro-rata) strategy (Azman and Lessler, 2014), used by many as a basis 
for comparison. 

The equalising strategy involves distributing vaccines in such a way 
that an equal, or close to equal, number of susceptible individuals 
remain in each household after vaccination. We note that the main 
difference between the household model used for the equalising strategy 
and the model we have used is in their focus. Our metapopulation model 
considers a few large groups whilst the household model considers many 
small groups. Although there is a difference in their focus, we believe 
that the equalising strategy is a good comparison to make. This strategy 
was shown to be optimal for a stochastic SIR model with an infinitely 
large population of households of size two, three and four and was 
conjectured to hold for larger household sizes, with numerical in
vestigations supporting this conjecture. Their definition of optimality 
was to determine the minimal number of vaccines and an optimal 
allocation scheme that brings the basic household reproduction number, 
R*, below 1. It was also assumed that vaccination rendered an individual 
immune and that the transmission of infection is density dependent, that 
is, the chance of transmission between any two individuals in the pop
ulation is independent of the household size. Fig. 3 illustrates this 
strategy for a simple example consisting of three households of size 
N1 = 2, N2 = 4, N3 = 6 with V = 6 vaccines. 

Next, we consider a fair (pro-rata) strategy which allocates vaccines 
in proportion to the number of susceptible individuals in each patch. 
Due to vaccines being discrete, it is possible for there to be more than 
one fair strategy; herein we compare all such strategies. Fig. 3 illustrates 
this strategy for a simple example consisting of three households of size 
N1 = 2, N2 = 4, N3 = 6 with V = 6 vaccines. 

The final strategy we consider is the deterministic strategy obtained 
using a variation of the deterministic model presented by Keeling and 
Shattock (Keeling and Shattock, 2012). We made slight changes to the 
notation used by Keeling and Shattock in (Keeling and Shattock, 2012), 
incorporated a single attempted import of infection into their model and 
derived analogous formulae to their equations for the final epidemic size 
and reproduction number. The details of our modifications to their 
formulae are presented in Appendix A.4. Here, we present our method 
for obtaining the deterministic strategy. The final size for patch ℓ, for 
ℓ=1, …, m, where infection has been seeded in patch k, can be calcu
lated using the final size equation 

Z∞
ℓ (k) = (Nℓ − Vℓ) − S0

ℓ(k) exp

(

−
∑m

j=1

Rjℓ
0

Nℓ
Z∞

j (k)

)

This can be solved using simple recursion as follows, 

Zt+1
ℓ (k) = (Nℓ − Vℓ) − S0

ℓ(k) exp

(

−
∑m

j=1

Rjℓ
0

Nℓ
Zt

j (k)

)

, for ℓ = 1,…,m,
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with 

S0
ℓ(k) =

{
Nk − Vk − 1, if ℓ = k,

Nℓ − Vℓ, otherwise,

and initial condition, 

Z1
ℓ(k) =

{
1, if ℓ = k,
0, otherwise,

where Rjℓ
0 is the expected number of secondary cases produced in patch ℓ 

by a single infected individual in patch j, assuming all individuals in 
patch ℓ are initially susceptible, and 

Rjℓ
0

Nℓ
=

⎧
⎪⎨

⎪⎩

β
γ(Nℓ − 1)

, ℓ = j,

αjℓ

γNℓ
+

αℓj

γNj
, ℓ ∕= j.

Then, the final epidemic size for a given initial state u(k) =

(u1, 0,…, uk − 1, 1,…, um,0), where infection has been seeded in patch 
k, is 

ξ(D)(u(k)) =
∑m

ℓ=1

Z∞
ℓ (k),

where Z∞
ℓ (k) is the final size for patch ℓ obtained through recursion. 

This gives us the final epidemic size when infection has been seeded 
in patch k. Hence, for a given parameter set, the mean final epidemic size 
for a given strategy u = (u1,0,…, uk,0,…, um,0) is, 

ζ(d)(u) =
∑m

k=1
ρk ×

(
uk

Nk

)

× ξ(D)(u + infk)

The optimal deterministic strategy is the one corresponding to the 
smallest ζ(d)(u), calculated out of all possible strategies u. 

4.4. Results 

4.4.1. Small populations 
We first consider a small example with three patches of sizes N1 = 6, 

N2 = 12 and N3 = 18, with V = 9 vaccines available to the population. 
For this example, we make the assumption that the cross-patch infection 
rate is the same for all patches, i.e., αkj = α for k, j = 1, 2, 3 and j ∕= k. To 
allow for easy presentation of the results, we fix the recovery rate γ = 1

2 
and vary the within-patch infection rate β ∈ [0.5, 5] and the cross-patch 
infection rate α ∈ [0.01, 0.1] × β. Fig. 4a consists of the optimal strate
gies and Fig. 4b consists of the approximate strategies for this example. 
Note that as there are a large number of possible vaccine allocation 
schemes, we have chosen a colour map that only considers the required 
vaccine allocations. 

We can see from this figure that there are some differences between 
the approximate and optimal strategies. However, we note that 
comparing the strategies may not be the best approach as strategies 
which differ by a single vaccinated individual may not result in a large 
difference in the mean final epidemic size. Instead, we use the relative 
difference in mean final epidemic size as a measure to determine how 
well a proposed strategy performs in comparison with the optimal 
strategy. 

Let ζopt denote the mean final epidemic size for the optimal strategy 
and ζprop denote the mean final epidemic size for the proposed strategy. 
Note that the mean final epidemic sizes, ζopt and ζprop, are calculated 
exactly using the method in Section 4.1. Then, the relative difference is 
given by, 

|ζprop − ζopt|

ζopt
.

Note that this is the relative difference for a single parameter set. If we 
have a range of parameters and are interested in comparing between 
various proposed strategies, then a single number which describes how 
well a proposed strategy performs over the range of parameters is 
preferred. Hence, we have chosen to use the average and maximum 
relative differences as our measures for comparison between proposed 
strategies. 

Fig. 5 consists of the relative difference between each proposed 
strategy (approximate, deterministic, equalising and fair) and the 
optimal strategy and Table 1 consists of the average and maximum 
relative differences. Note that in Table 1, we consider two parameter 
regions. The first region consists of the entire parameter range and the 

Fig. 3. Example illustrating the allocation of vaccines using the equalising strategy and the fair strategy for a simple example with three households of size N1 = 2, 
N2 = 4, N3 = 6 with V = 6 vaccines. Here, blue represents a susceptible individual and orange represents a vaccinated individual. 
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second region has the additional condition of β ∈ [0.5, 0.8] which cor
responds to influenza-like parameters, where the basic reproduction 
number, R0 = β/γ ∈ [1, 1.6]. 

We observe from both Fig. 5 and Table 1 that the approximate 
strategy performs considerably better than the deterministic and 
equalising strategies and is also slightly better than the fair strategy for 
both parameter regions considered. Further, we also note that the 
average and maximum relative differences for the approximate strategy 
are very small in magnitude. Hence, this gives us confidence that the 
approximate strategy performs very well when compared to other 
strategies. 

Another important point to note is the amount of time required to 
obtain the optimal strategies. Both the exact method and the approxi
mate method were run on a Lenovo NeXtScale system consisting of 120 
nodes, where one core of an Intel® 2.3 GHz Xeon E5-2698v3 node with 
12 GB of RAM was used. The exact method required 3313 s to obtain the 
optimal strategies whilst the approximate method took only 1.74 s to 
obtain the approximate strategies. This considerable speed up in 
computational time combined with the small relative differences en
hances the attractiveness of the approximate method. Further, as the size 
of the patches increases, obtaining the optimal strategies exactly be
comes computationally infeasible, making an approximation method 
necessary to determine the best strategies. 

4.4.2. Larger populations 
Next, we explore an example of a larger problem where it is 

computationally infeasible to obtain the optimal strategies exactly. 
Consider an example with 1800 individuals split into three patches of 

sizes N1 = 300, N2 = 600 and N3 = 900, and V = 450 vaccines. Note that 
this is exactly the example used in the previous section, but scaled up by 
a factor of 50. As with the previous example, we fix the recovery rate for 
all patches (γ = 1

2) and assume that the within-patch infection rate is the 
same for all patches and the cross-patch infection rate is also the same 
for all patches. We also choose to vary the within-patch infection rate 
β ∈ [0.5, 5] and the cross-patch infection rate, α ∈ [0.01, 0.1] × β. 
Figs. 6a and 6 b consist of the approximate and deterministic strategies 
for each (α, β) pair respectively. From these figures, we observe that the 
approximate strategy differs from the deterministic strategy for β > 1.5. 

Unlike the previous example, it is computationally infeasible to 
calculate the mean final epidemic size exactly for this problem. Hence, 
we use Sellke’s simulation method (Sellke, 1983) to obtain the final 
epidemic size for a given (α, β) pair and a given strategy (initial state). As 
this only provides us with a single realisation of the final epidemic size, 
we chose to use 106 simulations to obtain a reasonable estimate for the 
mean final epidemic size. 

Our inability to calculate the mean final epidemic size exactly for this 
large population means that we are unable to use the previous method of 
comparison where we calculated the relative difference in the exact 
mean final epidemic size between the optimal strategy and the proposed 
strategies (approximate, deterministic, equalising and fair). Instead, as 
we have used Sellke’s simulation method to estimate the mean final 
epidemic size, we perform statistical tests to determine if the estimated 
mean final epidemic size between the strategies are significantly 
different. This can then tell us how well the approximate strategy per
forms in comparison to the deterministic, equalising and fair strategies. 
We highlight some key points of our method of comparison and refer the 
reader to Appendix A.5 for more details. 

The first statistical test we perform is the one-way ANOVA test, 
which tests if the means for all strategies are the same. For our problem, 
we have chosen to perform the one-way ANOVA test at a 5% significance 
level using the aov function in R (R Core Team, 2015). If we fail to reject 
the null hypothesis for the one-way ANOVA test, then we conclude that 
there is insufficient evidence that the estimated mean final epidemic 
sizes of the strategies are significantly different. Otherwise, the null 
hypothesis is rejected and we perform pairwise comparisons using 
Dunnett’s test (Dunnett, 1955, 1964), at the 5% significance level with 
the glht function in R (Hothorn et al., 2008), to determine which 
strategy or strategies differ from the approximate strategy. If the null 
hypothesis for Dunnett’s test is rejected, then we conclude that there is a 
difference in the estimated mean final epidemic size between the 
approximate strategy and the other strategy of interest. Further, if the 
difference (other – approximate) in the estimated mean final epidemic 
sizes is positive, then the approximate strategy is better than the other 
strategy. Otherwise, the other strategy is better. 

We perform this testing procedure for the (α, β) pairs considered, 
each with 106 simulations. Fig. 7 displays the results of the one-way 
ANOVA test. We observe from this figure that for all (α, β) pairs, at 
least one of the mean final epidemic sizes is significantly different from 
the other means at the 5% significance level. Hence, we perform pair
wise comparisons, using Dunnett’s test, to determine whether the 
approximate strategy performs better than the other strategies. Fig. 8 
consists of the difference in sample means between the deterministic, 
equalising and fair strategies with the approximate strategy, as well as 
the p-values from Dunnett’s test for each pairwise comparison. By 
showing both the difference in sample means as well as the p-values, we 
can use these figures to determine regions where the means are signif
icantly different (for any choice of significance level) and also determine 
if the other strategies outperform the approximate strategy. Fig. 9 
combines the results of Dunnett’s test at a 5% significance level with the 
difference in sample means for each pairwise comparison. It indicates 
where the other strategies are significantly different from the approxi
mate strategy as well as how different the sample means of the strategies 
are through the intensity of the colour. Fig. 10 combines the results of 

Fig. 4. Three-patch example with N1 = 6, N2 = 12, N3 = 18, V = 9 vaccines, γ =
1
2, within-patch infection rate β ∈ [0.5, 5] and between-patch infection rate 
α ∈ [0.01, 0.1] × β. (a): Optimal strategies, (b): Approximate strategy. The 
colour labels represent the number of vaccines allocated to each patch, (V1, V2, 
V3). Only the optimal allocations are shown in this figure. This figure shows 
that the optimal and approximate strategies match reasonably well especially 
for small α

β values. 
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the individual Dunnett’s test at a 5% significance level into a single 
figure. From these figures, we observe that the approximate strategy 
performs well when compared to the equalising and fair strategies. 

When comparing with the deterministic strategy, we observe from 
the figures that the deterministic strategy appears to perform better than 

the approximate strategy in the region where αβ = 0.01. However, when 
we consider Fig. 9a, which combines the results of Dunnett’s test at a 5% 
significance level with the difference in sample means, we see that when 
the approximate strategy performs better than the deterministic strat
egy, the difference in sample means is larger than the difference when 
the deterministic strategy performs better. The approximate strategy is 
better, or almost as good, over the parameter space considered; hence, 
the approximate strategy appears robust to the precise values of (α, β). 

5. Discussion 

The question of how best to allocate a limited supply of vaccines to a 
population to minimise the expected number of people that become 
infected over the course of an epidemic is of great importance to public 
health officials. We addressed this question in two parts, when to allo
cate and where to allocate. For both parts, we utilised a stochastic SIR 
metapopulation model and assumed that the entire population is 
initially susceptible with infection occurring through a single attempted 
import into the population. 

We first explored the question of when best to allocate vaccines, 
before infection or after infection is present in the population, and 
considered three different allocation strategies: strict-prophylactic 
vaccination, predominantly-prophylactic vaccination and reactive 

Fig. 5. Relative difference in mean final 
epidemic size between the different strategies 
and the optimal for the three-patch example 
with N1 = 6, N2 = 12, N3 = 18, V = 9 vaccines, 
γ = 1

2, within-patch infection rate β ∈ [0.5, 5] 
and between-patch infection rate α ∈ [0.01, 
0.1] × β. (a): Approximate strategy versus 
optimal, (b): Deterministic strategy versus 
optimal, (c): Equalising strategy (V1, V2, 
V3) = (0, 2, 7) versus optimal, (d): Fair strategy 
(V1, V2, V3) = (1, 3, 5) versus optimal, (e): Fair 
strategy (2, 3, 4) versus optimal. Note each 
subfigure has its own colour scale. Further, note 
that two fair strategies are possible due to the 
rounding of proportions/individuals. This 
shows that the approximate strategy compares 
well with the optimal strategy and performs 
better than the other strategies considered.   

Table 1 
Average and maximum relative difference for each proposed strategy for the 

three-patch example with N1 = 6, N2 = 12, N3 = 18, V = 9 vaccines and γ =
1
2
.  

Proposed strategy Region Relative Difference   

Average Maximum 

Approximate Full 0.0027 0.0229 
Deterministic Full 0.0363 0.3895 
Equalising Full 0.0212 0.1093 
Fair (1,3,5) Full 0.0074 0.0333 
Fair (2,3,4) Full 0.0058 0.0673  

Approximate Influenza-like 0.0047 0.0222 
Deterministic Influenza-like 0.0127 0.0509 
Equalising Influenza-like 0.0610 0.1093 
Fair (1,3,5) Influenza-like 0.0098 0.0333 
Fair (2,3,4) Influenza-like 0.0074 0.0509  
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vaccination. Through the use of a modified backward dynamic pro
gramming algorithm which included a delay between the first onset of 
infection and vaccination, we found that in general, strict-prophylactic 
vaccination resulted in a smaller mean final epidemic size. The 
strength of this result from our investigation using a simple SIR 

metapopulation model suggests that this might hold for any meta
population which lacks significant structure which might be exploited. 
Part of the reason for the success of the prophylactic scheme here is its 
accounting for import of infection in the objective for determining the 
allocation. Hence, for the next question of where best to allocate a 

Fig. 6. Large three-patch example with N1 = 300, N2 = 600, N3 = 900, V = 450 vaccines, γ = 1
2, within-patch infection rate β ∈ [0.5, 5] and between-patch infection 

rate α ∈ [0.01, 0.1] × β. (a): Approximate strategy, (b): Deterministic strategy. The colour labels represent the number of vaccines allocated to each patch, (V1, V2, 
V3). This figure shows that the approximate and deterministic strategies differ for β > 1.5. 

Fig. 7. Comparison to determine if the means of all strategies are the same using a one-way ANOVA test for the large three-patch example with N1 = 300, N2 = 600, 
N3 = 900, V = 450 vaccines and γ = 1

2. (a): Indicates whether all means are the same or at least one mean is different at a 5% significance level, (b): p-values for the 
one-way ANOVA test. 
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limited supply of vaccines to a metapopulation, we focused on the case 
of strict-prophylactic vaccination. 

Determining the optimal strategy for a given set of parameters can be 
a computationally intensive task especially as the population size in
creases; for large population sizes, this becomes computationally 
intractable. Hence, we developed a more computationally-efficient 
method to obtain an approximately optimal strategy. Our approxima
tion method consists of two approximations, the average initial infection 
rate approximation and the weakly-coupled final sizes approximation, 
as well as a rule for determining which approximation to use for a given 
parameter set. We considered two examples, a small population size and 
a larger population size, and compared the performance of our 
approximate strategy with other strategies in the literature (determin
istic, equalising and fair). In general, we observed that our approximate 
strategy performed well when compared to the other strategies and also 
appeared to be more robust than the other strategies for a range of 
parameters. 

In reality, during an outbreak of an infectious disease, it is difficult to 
know the values of disease parameters such as transmission (β, α) or 
recovery (γ) rates. Similarly, the probability of a single attempted import 
(ρ) or the rate of import (ε) may also be unknown. However, these pa
rameters might be able to be approximated and/or estimated. For 
example, the probability of a single attempted import or the rate of 

import can be informed by the international arrivals into cities, and the 
disease parameters can be informed through historical values and 
updated via first few hundred studies (Black et al., 2017). The uncer
tainty in the parameters emphasises the importance of robustness of the 
strategies to a range of parameter values. We observed, in the examples 
considered, that our approximate strategy returns optimal allocations 
which performed better than the optimal allocations obtained from 
other strategies for a range of (α, β) pairs. 

In addition to the robustness to parameter values, these examples 
also provide us with confidence that the approximate strategy performs 
well across examples of different sizes. Overall, we note that whenever 
the optimal strategy can be obtained, it should, of course, be used. For 
patch sizes over a thousand, we are unable to obtain the optimal strategy 
and so the approximate strategy we developed should be used instead. 
Then, if we consider even larger population sizes (patch sizes in the 
millions), there appears to be some benefit in using the deterministic 
strategy. 

This work can be extended in a number of ways. One possible 
extension is to consider other types of vaccination. Here, we have 
assumed that vaccination renders an individual immune to the disease. 
However, this may not be entirely realistic. Some vaccines may not be 
completely effective and so only a proportion of vaccinated individuals 
are immune to the disease (all-or-nothing vaccination), or perhaps, 

Fig. 8. Comparison to determine whether the 
other strategies are better than the approximate 
strategy using Dunnett’s test for the large three- 
patch example with N1 = 300, N2 = 600, 
N3 = 900, V = 450 vaccines and γ = 1

2. (a): Dif
ference in sample means (deterministic −

approximate), (b): p-values for Dunnett’s test, 
(c): Difference in sample means (equalising – 
approximate), (d): p-values for Dunnett’s test, 
(e): Difference in sample means (fair – approx
imate), (f): p-values for Dunnett’s test.   
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vaccination might only reduce an individual’s chance of becoming 

infected (leaky vaccine). To incorporate all-or-nothing vaccination in 
our model, binomial probabilities would need to be included and all 
possible combinations of each strategy considered. While for leaky 
vaccines, the size of the state space of our model would increase to ac
count for the additional class of susceptible but vaccinated individuals. 
Both of these variations to vaccination can be incorporated relatively 
easily in our model. However, they increase the computational effort 
required to determine the optimal solution and so, other simplifications 
and approximations may be needed for useful results to be obtained. 

Another possible extension is to obtain strategies which are robust to 
different objectives (such as the duration of an epidemic or the peak 
(maximum number of infected individuals) of an epidemic). This could 
be explored by performing multi-criteria optimisation and weighting 
multiple objectives. The allocation of other resources, such as anti-virals 
or surveillance resources, could also be investigated in a similar way. 
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Appendix A 

A.1 Modified BDP algorithm 

The modified BDP algorithm utilises backward dynamic programming (Powell, 2011; Puterman, 1994) to determine an optimal vaccination 
strategy. Here, we discuss the terms in the backward dynamic programming algorithm and how they relate to our problem. Note that we have chosen 

Fig. 9. Comparison of the approximate strategy 
with other strategies using Dunnett’s test at a 
5% significance level for the large three-patch 
example with N1 = 300, N2 = 600, N3 = 900, 
V = 450 vaccines and γ = 1

2. (a): Indicates the 
deterministic strategy is better (green) or the 
approximate strategy is better or there is no 
difference between strategies (purple), (b): In
dicates the equalising strategy is better (red) or 
the approximate strategy is better or there is no 
difference between strategies (purple), (c): In
dicates the fair strategy is better (blue) or the 
approximate strategy is better or there is no 
difference between strategies (purple). The in
tensity of the colour increases with the differ
ence in sample means.   

Fig. 10. Combines individual tests between the approximate strategy and other 
strategies using Dunnett’s test at a 5% significance level for the large three- 
patch example with N1 = 300, N2 = 600, N3 = 900, V = 450 vaccines and γ =
1
2. The legend indicates which strategies are better than the approximate 
strategy, where A, D, E and F represent the approximate strategy, the deter
ministic strategy, the equalising strategy and the fair strategy, respectively. 
Note that purple indicates either the approximate strategy performed better or 
there was no difference between the performance of the approximate strategy 
and that of the other strategies. 
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to consider the allocation of vaccines as a finite-horizon problem where after a given time T, no more vaccines are allocated and the process evolves 
without any intervention. We let Ft(St , v) represent the minimum mean final epidemic size starting in state St at time t with optimal actions chosen from 
time t until the horizon T and with v vaccines available. At the time-horizon T, we know that FT(ST , v) is the mean final epidemic size for state ST as no 
actions are taken from the horizon T. 

As highlighted in Section 3, we have chosen to simplify the modelling and limit the number of possible actions taken at each time step by only 
allowing at most one vaccine to be allocated at each time step during the infection. That is, the possible actions at time step t are:  

• at = ∅ = no vaccine allocated,  
• at = k = a single vaccine allocated to patch k, for k = 1, …, m. 

Note that if a vaccine is not allocated, then it is stockpiled for use at a 
later time step. Hence, for a given state St, the set of possible actions are 
given by, A(St) = {∅} ∪

⋃m
k=1{k|sk > 0}, as there needs to be at least one 

susceptible individual in patch k for vaccination to occur in that patch. 
After an action is taken, the process evolves to the next time step ac
cording to P(s′

|St , at), which is the probability of the process moving to 
state s′, given the current state St and action at is chosen. This probability 
can be obtained from the transition probability matrix, P(t′ ) = eQt′ , 
which consists of the probabilities of moving from one state to another in 
time t′, for all t′ ≥ 0. 

Recall from Section 3 that our simplification of only allowing at most one vaccine to be allocated at each time step does not restrict the model to 
only allocating at most one vaccine each day as a time step, t′, does not necessarily correspond to a day. If we assume that a day corresponds to a time 
unit of 1, then smaller values of t′ result in the process evolving over smaller time steps (than a day) and so vaccines are allocated at a faster rate. For 
our example, we let t′ = 1

100 which essentially means that vaccines are able to be allocated almost simultaneously. In Algorithm 1, P2 = e
Q

100 is the 
transition probability matrix governing the evolution of the process after the attempted import of infection and when vaccination is allowed to be 
applied. 

The other term we detail is C(St, at), which is the contribution of choosing action at, given the process is in state St at time t. If no vaccine is 
allocated, that is, action at =∅ is chosen, then C(St, ∅) =0, for all t and St ∈ S, as there is no change in the mean final epidemic size. On the other hand, 
for all other actions at = k for k = 1, …, m, an individual in patch k is vaccinated and moved to the recovered class. As the method for obtaining the 
mean final epidemic size in the backward dynamic programming algorithm determines the number of recovered individuals, we need to remove the 
vaccinated individual from the mean final epidemic size calculation and so C(St, at) = − 1, for all t, St ∈ S and at ∈A(St) \ { ∅ }. 

Next, we describe the post-processing step to account for prophylactic vaccination and the attempted import of infection. We note here that unlike 
vaccination after infection is present in the population, vaccines allocated prophylactically are distributed simultaneously before the attempted import 
of infection as opposed to a single vaccine each time step. To allow for prophylactic vaccination, we assume that at the initial time t = 1, the entire 
population is susceptible. Hence, the initial state S1 = (N1,0,…,Nk,0,…,Nm,0). We also assume that the attempted import of infection occurs at time 
t = 1 and any number of vaccines, up to the maximum available V, can be allocated to the population before infection. Then, to determine the optimal 
allocation of these vaccines before infection, we consider all possible ways of allocating the vaccines to the patches as well as the option of withholding 
the vaccines to be allocated post-infection. We use Apre(S1, V) to denote this set of possible actions for state S1 and vaccines V. To better understand 
Apre(S1, V), consider a simple example with two patches, initial state S1 and V = 2 vaccines. For this example, the set Apre(S1, V) consists of the 
following actions,  

• no vaccines pre-allocated and two vaccines available post infection,  
• one vaccine pre-allocated to patch 1 or patch 2 and one vaccine available post infection,  
• one vaccine pre-allocated to each patch and no vaccines available post infection, and  
• two vaccines pre-allocated to patch 1 or patch 2 and no vaccines available post infection. 

Note that this set comprises of all three cases, strict-prophylactic 
vaccination, predominantly-prophylactic vaccination and reactive 
vaccination, as well as all possible ways of allocating vaccines within 
each case. Then, to determine the best vaccination scheme, we compare 
the mean final epidemic sizes of all possible schemes in the set Apre(S1, 
V). 

The general backward dynamic programming algorithm returns the optimal mean final epidemic size for each state in the state space without 
accounting for the attempted import of infection or prophylactic vaccination. Let F1(S, v) be the minimum mean final epidemic size starting in state 
S ∈ S at time t = 1 with v vaccines available, for v = 0,…,V, obtained from the general backward dynamic programming algorithm. Then, let F̂1(u, v)
be the minimum mean final epidemic size of starting in state u = (u1, 0,…, uk, 0,…, um, 0), at time t = 1 with v vaccines, for v = 0,…,V, after ac
counting for the attempted import of infection in the population and prophylactic vaccination. Note that uk =Nk − Vk is the number of unvaccinated 
susceptible individuals in patch k and Vk is the number of vaccines allocated to patch k with V − v =

∑m
k=1Vk. Thus, we define, 

F̂1(u, v) =
∑m

k=1
ρk ×

(
uk

Nk

)

× (F1(u + infk, v) − (V − v) ),

for v = 0,…,V, where infk = e2k − e2k− 1 and ek is a vector of 0s with a 1 in the kth position. As the method used to determine the mean final epidemic 
size for the backward dynamic programming algorithm contains vaccinated individuals, we subtract the number of pre-allocated vaccines (V − v)
from the mean final epidemic size. 

We can determine the minimum mean final epidemic size under the optimal vaccination scheme, for the initial state S1 = (N1, 0, …, Nk, 0, …, Nm, 0) 
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and a given number of available vaccines V, in the following way, 

F̃1(S1,V) = min
a∈Apre(S1 ,V)

F̂1
(
S′

1,V
′)
,

where S′

1 is the state of the process and V′ is the number of vaccines remaining after allocation a ∈ Apre(S1,V) has been applied. The optimal vacci
nation scheme is the allocation a that solves the above minimisation problem. 

Algorithm 1 details the modified BDP algorithm used to determine the optimal vaccination strategy. Note that in Algorithm 1, t′ represents the 
chosen time step for the problem and P1 = eQt1 is the transition probability matrix containing the probabilities of moving from one state to another in 
time t1, where t1 is the delay between the first onset of infection in the population and non-prophylactic vaccination. 

Algorithm 1. Backward dynamic programming algorithm modified to allow for prophylactic vaccination, attempted import of infection, choice in 
the rate of vaccination post infection and delay between infection and vaccination.   

1: Initialise the terminal contribution FT(ST, v) for all states ST ∈ S and all vaccines v = 0,…,V.  
2: Set t = T − t′. 
3: for v = 0, 1,…,V do  
4: Calculate:  

Ft(St ,v) = min
a′
∈A(St )

{C(St ,a
′

) +
∑

s′ ∈ S

P2(s
′

|St ,a
′

)Ft+1(s
′

,v − 1{a′ ∕=∅})},

for all St ∈ S. Set at(v) = value of a′ that solves the minimisation problem. Note that if different actions result in the value of C(St , a
′

) +
∑

s′ ∈ SP2(s
′

|St , a
′

)Ft+1(s
′

, v − 1{a′ ∕=∅})

for a′ ∈A(St) being very close (within 10− 10), then these values are set to be the same. Further, if there are multiple actions that correspond to the minimal value, then the action 
corresponding to vaccinating the smallest numbered patch is chosen.  

5: end for 
6: If t > 1 + t′, t = t − t′ and return to Step 3. Else stop. 
7: Set t = 1. (Post infection, but pre-vaccination period) 
8: for v = 0, 1,…,V do  
9: Calculate  

Ft(St , v) =
∑

s′ ∈ S

P1(s
′

|St)Ft+1(s
′

, v),

F̂t(St , v) =
∑m

k=1
ρk ×

(
uk

Nk

)

× (Ft(St + infk, v) − (V − v)),

align="center"   
for all St ∈ S and infk = e2k − e2k− 1, where ek is a vector of 0s with a 1 in the kth position.  

10: end for 
11: For initial state S1 = (N1, 0, …, Nj, 0, …, Nm, 0) and given number of vaccines V, calculate  

F̃1(S1,V) = min
a∈Apre(S1 ,V)

F̂1(S
′

1,V
′

),

where S
′

1 is the state of the process and V′ is the number of vaccines remaining after pre-allocation a ∈Apre(S1, V) has been applied. The allocation a that solves the minimisation 
problem is the optimal vaccination scheme.   

A.2 Average initial infection rate 

Recall, the probability of a randomly chosen individual in patch k becoming infected is 
(

ρk ×
uk
Nk

)

, where ρk = εk∑m
j=1

εj
, and if infection is successful, 

the process moves to the state (u1, 0,…, uk − 1,1,…, um,0). From this state, the process can move to m possible states of further infection (ignoring the 
state corresponding to recovery) according to the rates specified in Section 2. Explicitly, the state (u1,0,…, uk − 1, 1,…, um, 0) can move to the 
following states with the corresponding rates,  

•
(
u1,0,…, uj,0, uk − 2, 2,…, um, 0

)
at rate 

β × (uk − 1) × 1
Nk − 1

+
∑m

ℓ∕=k

ℓ=1

(
αℓk × 0 × (uk − 1)

Nk
+

αkℓ × 0 × (uk − 1)
Nℓ

)

,

•
(
u1,0,…, uj − 1, 1, uk − 1,1,…, um,0

)
at rate 

β × uj × 0
Nj − 1

+
αkj × 1 × uj

Nj
+

αjk × 1 × uj

Nk

+
∑m

ℓ∕=j,k

ℓ=1

(
αℓj × 0 × uj

Nj
+

αjℓ × 0 × uj

Nℓ

)

,

for j = 1, …, m and j ∕= k. 
Hence, the initial infection rate for patch k is, 
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β × (uk − 1) × 1
Nk − 1

+
∑m

j∕=k

j=1

(
αkj × 1 × uj

Nj
+

αjk × 1 × uj

Nk

)

Then, to obtain the average initial infection rate, r, for the state of interest u = (u1,0,…, uk, 0,…, um,0), we combine all m possible cases of initial 
infection and obtain, 

r =
∑m

k=1
ρk ×

(
uk

Nk

)

×

⎡

⎢
⎢
⎢
⎢
⎣

β(uk − 1)
Nk − 1

+
∑m

j∕=k

j=1

(
αkjuj

Nj
+

αjkuj

Nk

)

⎤

⎥
⎥
⎥
⎥
⎦

A.3 Weakly-coupled final sizes approximation 

The weakly-coupled final sizes approximation is suitable when the cross-patch infection rate is sufficiently small relative to the within-patch 
infection rate. Recall from Section 4.1 that the mean final epidemic size for the initial state u = (u1,0,…, uk,0,…, um,0) can be calculated as follows, 

ζ
′

(u) =
∑m

k=1
ρk ×

(
uk

Nk

)

× ζ*(u + infk),

where ζ*( u + infk
)
= ζ
(
u + infk

)
− V. The problem with obtaining the optimal strategy exactly, as identified previously, is that the calculation of the 

mean final epidemic size ζ*( u + infk
)

can be computationally intensive, or even intractable, for large population sizes. For this approximation, we 
develop a less computationally-intensive method to approximate ζ*( u + infk

)
. 

Note that we have mentioned that this approximation is appropriate when the cross-patch infection rate is sufficiently small relative to the within- 
patch infection rate. Under this condition, the probability of infection spreading between patches is small. Hence, we can approximate the mean final 
epidemic size for each patch individually, using single population models, and then combine these in an appropriate way to obtain the mean final 
epidemic size for a given initial state. This reduces the computational complexity of our model, as there is a significant reduction in the state space 
when using single population models. 

Let ζ*(sk, ik) denote the mean final epidemic size, excluding vaccinated individuals, for a single population of size Nk with sk susceptible individuals 
and ik infectious individuals. Recall that the entire population is initially susceptible and a randomly chosen individual becomes infected. Assuming 
that the infected individual belongs to patch k, the mean final epidemic size for patch k, obtained from a single population model, is ζ*(uk − 1, 1). We 
then consider each fully susceptible patch j and add its mean final epidemic size, weighted by the probability of patch j becoming infected, to the mean 
final epidemic size for patch k. Note that we consider all possible ways (that is, different pathways of infection) the infection can spread from the 
initially infected patch to all fully susceptible patches. As we have assumed that the cross-patch infection rate is sufficiently small relative to the 
within-patch infection rate, it is unlikely for previously infected patches to be re-infected. Hence, we do not consider re-infection into patches that have 
already been infected. Further details can be found in (Teo, 2017). 

Next, we briefly detail the calculation of the probability of a fully susceptible patch becoming infected. Assume that patch k is the currently infected 
patch and patch j is a fully susceptible patch. Let TI denote the set of previously infected patches, excluding patch k, and let TS denote the set of fully 
susceptible patches. Also, let (k→j |TI,TS) denote the infection event from patch k to patch j ∈ TS, given the previously infected patches in TI and the 
fully susceptible patches in TS. Then, we have, 

P(k→j |TI , TS) =

⎡

⎢
⎢
⎣1 −

⎛

⎜
⎜
⎝

γ

γ +
∑

ℓ∈TI

(
αkℓu′ℓ

Nℓ
+

αℓku′ℓ
Nk

)

+
∑

j∈TS

(
αkjuj

Nj
+

αjkuj
Nk

)

⎞

⎟
⎟
⎠

ζ*(uk − 1,1) ⎤

⎥
⎥
⎦

×

⎛

⎜
⎜
⎝

αkjuj

Nj
+

αjkuj

Nk

∑

ℓ∈TI

(
αkℓu′

ℓ
Nℓ

+
αℓku′

ℓ
Nk

)

+
∑

j∈TS

(
αkjuj

Nj
+

αjkuj

Nk

)

⎞

⎟
⎟
⎠,

where u′

ℓ =
⌊
uℓ − ζ*(uℓ − 1,1)

⌋
, since we require the number of susceptible individuals to be an integer value. This probability is the product of the 

probability that at least one infectious individual in patch k infects a susceptible individual in another patch and the conditional probability of one 
infectious individual in patch k infecting patch j ∈ TS instead of any other patch, given that cross-infection occurs. 

Here, we provide a detailed example of the approximation for m = 3 patches. For this case, the quantities of interest to us are 
ζ*(u1 − 1,1, u2, 0, u3, 0), ζ*(u1, 0, u2 − 1, 1, u3, 0) and ζ*(u1,0, u2,0, u3 − 1,1). We consider ζ*(u1 − 1,1, u2,0, u3,0) and note that the other two ex
pressions are analogous, 

ζ*(u1 − 1, 1, u2, 0, u3, 0) = ζ*(u1 − 1, 1)
+P(1→2 |TI = ∅,TS = {2, 3}) × [ζ*(u2 − 1, 1) + P(2→3 |TI = {1},TS = {3}) × ζ*(u3 − 1, 1) ]
+P(1→3 |TI = ∅,TS = {2, 3}) × [ζ*(u3 − 1, 1) + P(3→2 |TI = {1},TS = {2}) × ζ*(u2 − 1, 1) ],
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where the probabilities are defined as above for P(k→j |TI,TS). 
A.4 Modification to keeling and Shattock’s method 

Keeling and Shattock (Keeling and Shattock, 2012) employed a deterministic model with a finite number of patches to determine the optimal 
allocation of vaccines to a metapopulation with the aim to minimise the final epidemic size. To calculate the final size for patch ℓ, for ℓ=1, …, m, they 
used the following final size equation, 

Z∞
ℓ = S0

ℓ

[

1 − exp

(

−
∑m

j=1

Rjℓ
0

Nℓ
Z∞

j

)]

,

where Z∞
ℓ is the final size for patch ℓ, S0

ℓ is the initial number of susceptible individuals in patch ℓ, Nℓ is the size of patch ℓ and Rjℓ
0 is the expected 

number of secondary cases produced in patch ℓ by a single infected individual in patch j, assuming all individuals in patch ℓ are initially susceptible 
(the notation is slightly modified from that used in Keeling and Shattock (Keeling and Shattock, 2012)). Then, the authors used simple recursion to 
attempt to solve the final size equation, given above, in the following way, 

Zt+1
ℓ = S0

ℓ

[

1 − exp

(

−
∑m

j=1

Rjℓ
0

Nℓ
Zt

j

)]

, for ℓ = 1,…,m,

with the initial condition, Z1
ℓ = S0

ℓ, for ℓ=1, …, m. 
As we consider the seeding of infection into the population in our model, we adapt their method of calculation of the final epidemic size to suit our 

problem. To account for the patch in which infection is seeded (patch k), we modify the initial condition for the recursive method and also expand the 
final size equation to replace the first S0

ℓ term with (Nℓ − Vℓ). The initial condition is Z1
ℓ(k) = 1, if infection is seeded in patch k, otherwise Z1

ℓ(k) = 0. In 
a similar way, we set the second S0

ℓ term in the expanded final size equation to be S0
ℓ(k) = Nk − Vk − 1, if infection is seeded in patch k, otherwise S0

ℓ(k)
= Nℓ − Vℓ. Although there is only a difference of one individual in S0

ℓ(k) for the infected patch compared with the other patches, for small population 
sizes, this change can make a substantial difference. Another point of note is that we observed through numerical studies that there was little difference 
between Keeling and Shattock’s method and our revised method for reasonably large values of R0; however, as the value of R0 decreased, differences 
arose. 

The revised final size equation used to determine the final size for patch ℓ, for ℓ=1, …, m, where infection is seeded in patch k, is, 

Z∞
ℓ (k) = (Nℓ − Vℓ) − S0

ℓ(k) exp

(

−
∑m

j=1

Rjℓ
0

Nℓ
Z∞

j (k)

)

Using simple recursion, we can solve the revised final size equation by, 

Zt+1
ℓ (k) = (Nℓ − Vℓ) − S0

ℓ(k) exp

(

−
∑m

j=1

Rjℓ
0

Nℓ
Zt

j (k)

)

, for ℓ = 1,…,m,

with 

S0
ℓ(k) =

{
Nk − Vk − 1, if ℓ = k,

Nℓ − Vℓ, otherwise,

and initial condition, 

Z1
ℓ(k) =

{
1, if ℓ = k,
0, otherwise.

Another important point to note is the parameterisation used by Keeling and Shattock in their final size equation. For their model, they chose to use 
Rjℓ

0 whilst our model uses αjℓ, β and γ. Hence, we need a mapping between the two parameterisations: 

Rjℓ
0

Nℓ
=

⎧
⎪⎨

⎪⎩

β
γ(Nℓ − 1)

, ℓ = j,

αjℓ

γNℓ
+

αℓj

γNj
, ℓ ∕= j.

We have chosen this mapping as it corresponds to the transition rates of our model. Note that ℓ = j represents within-patch infection and we map this 
case to the within-patch component of the infection rate β

γ(Nℓ − 1). Similarly for ℓ ∕= j, we have cross-patch infection and so the cross-patch component of 

the infection rate is αjℓ
γNℓ

+
αℓj
γNj

. 
As the recursive calculation of the final size for each patch, Z∞

ℓ (k), depends on the knowledge of which patch the infection has been seeded in, this 
tells us that the final epidemic size is dependent on the initial state. Hence, for a given initial state u(k) = (u1, 0,…, uk − 1,1,…, um,0), where infection 
has been seeded in patch k, the final epidemic size for u(k) is, 
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ξ(D)(u(k)) =
∑m

ℓ=1

Z∞
ℓ (k),

where Z∞
ℓ (k) is the final size for patch ℓ obtained through recursion and is dependent on u(k) and hence the patch k where infection is seeded. 

A.5 Statistical testing procedure 

As described in Section 4.4.2, when the optimal strategy and the mean final epidemic size cannot be obtained exactly due to the size of the problem, 
we are unable to use the relative difference in mean final epidemic size between the optimal strategy and the proposed strategy to determine how well 
the proposed strategy performs. Instead, to compare between the various proposed strategies (approximate, deterministic, equalising and fair), we 
simulate the mean final epidemic sizes for each proposed strategy and perform statistical tests to determine if the mean final epidemic size between the 
strategies are significantly different. 

To simulate the mean final epidemic size, we perform many simulations using Sellke’s method (Sellke, 1983) to obtain a set of final epidemic sizes 
for a given (α, β) pair and given strategy. Then, the statistical testing procedure used to compare the performance of our approximate strategy with the 
other strategies, deterministic, equalising and fair, consists of two statistical tests. The first is the one-way ANOVA test, which tests if the mean final 
epidemic size for all strategies are the same. The null and alternative hypotheses for this test are, 

H0 : μapprox = μdeterministic = μequalising = μfair,

Ha : not all means are equal,

respectively, where μstrategy is the mean final epidemic size for a given strategy. Using the aov function in R (R Core Team, 2015), we perform the 
one-way ANOVA test at a 5% significance level. This means that if the p-value of the test is less than 0.05, then we reject the null hypothesis, H0, and 
conclude that the mean final epidemic size for the strategies are not all equal. 

As we are interested in determining if there is a significant difference in the mean final epidemic size between the strategies, if the null hypothesis 
for the one-way ANOVA test is not rejected, then there is insufficient evidence to conclude that the mean final epidemic sizes between the strategies are 
significantly different. However, if the null hypothesis is rejected, then not all the mean final epidemic sizes are the same and we are interested in 
which strategy or strategies are different from the approximate strategy. Hence, we make pairwise comparisons between the approximate strategy and 
the deterministic, equalising and fair strategies by performing Dunnett’s test (Dunnett, 1955, 1964). 

Dunnett’s test is a multiple comparisons test that tests various treatments with a control. This fits with our problem as the control is the 
approximate strategy and the other treatments are the deterministic, equalising and fair strategies. Hence, the null and alternative hypotheses are, 

H0 : μapprox = μother,
Ha : μapprox ∕= μother,

where μother is the mean final epidemic size for the other strategy (deterministic, equalising or fair). We use the glht function in R (Hothorn et al., 
2008) to perform Dunnett’s test at a 5% significance level. Hence, if the p-value returned by the glht function is less than 0.05, then we reject the null 
hypothesis and conclude that there is a difference in the mean final epidemic size of the approximate strategy and the other strategy. Further, we can 
determine which strategy is better if we consider the difference in the mean final epidemic sizes. If the difference, μother − μapprox, is positive, then the 
approximate strategy is better than the other strategy. On the other hand, if the difference is negative, then the other strategy is better. 

The other important aspect to consider when performing statistical tests is the underlying assumptions made. The assumptions of the one-way 
ANOVA test are:  

• normality of observations in each group,  
• equal variance of observations between groups,  
• independence of observations within each group, and  
• independence of observations between each group. 

Dunnett’s test has the same assumptions of normality, constant variance 
and independence. 

As each final epidemic size obtained from a single simulation is independent of final epidemic sizes obtained from other simulations, the inde
pendence assumption is satisfied. Next, we consider the assumption of constant variance. For this assumption to be reasonable, we require the 
following condition to be satisfied, 

maxSD
minSD

< 2,

where min SD and max SD are the minimum and maximum sample standard deviations of the groups, respectively. For all problems considered, this 
assumption is satisfied except when the within-patch infection rate, β, is 0.5. Further, we also note from (Box, 1954) and (Miller, 1997) that when the 
size of the groups are equal, moderate differences in the variance of each group does not have a serious impact. Hence, the assumption of constant 
variance is satisfied for our problem. 

Lastly, we consider the normality assumption. For this assumption, we require the set of final epidemic sizes for each strategy of interest to be 
normally distributed. We know that this is not the case for the final epidemic size as it is either skewed or bi-modal. However, the central limit theorem 
tells us that for large enough samples, the sample mean is approximately normally distributed. As we perform 106 simulations to obtain the set of final 
epidemic sizes, we can apply the central limit theorem to ensure that the sample means are approximately normally distributed (Miller, 1997). Hence, 
for our problem, all assumptions are satisfied and it is appropriate for us to use the one-way ANOVA and Dunnett’s tests. 
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