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Abstract  

In the human genome, 98% of the DNA is in non-gene coding regions. While 

these regions do not express genes, a mounting number of studies have shown 

that they are crucial to the maintenance of chromosome structure and in the 

regulation of gene expression. Although large epigenomics projects were 

established to functionally annotate non-coding regions, the comprehensive 

linkages between these regions and their target genes remain unknown. The 

human genome folds into hierarchical three-dimensional (3D) structure, bringing 

distantly regulatory elements into close proximity, leading to the formation of 3D 

chromatin physical interactions and playing an important role in the complex 

gene regulation network. Using chromatin interaction information, we can 

connect functional non-coding regions to their target genes to reveal novel 

regulation mechanisms. 

 

In Chapter 1, we reviewed current existing approaches to prioritise functional 

interactions from Hi-C data, the state-of-the-art data type used to study chromatin 

interactions, and categorised them into three classifications, including structural-

based methods, statistical model-based methods and data integration methods. 

Chapter 2 described the computational procedures of analysing Hi-C datasets, 

and introduced: HiC-QC, a tool that extracting summary statistics to perform 

quality control with Hi-C libraires; HiC-interactionmap and integration-tracks plot, 

tools to offer visualisation for Hi-C data integration. Additionally, aligners BWA 

and Bowtie2, were compared for their performance of mapping Hi-C data. 
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Using type 1 diabetes (T1D) and regulatory T cells (Treg) as a disease-cell type 

model, based on data integration of Treg-specific Hi-C interactions and other 

epigenomics information, Chapter 3 established a filtering workflow called 

3DFAACT-SNPs to link genetic variants that are associated with T1D to the loss 

of immune tolerance in Treg. Using this workflow, we identified 36 SNPs with 

plausible Treg-specific mechanisms of action contributing to T1D, linking 119 

novel interacting regions. We demonstrated that it is possible to prioritise SNPs 

that contribute to disease based on regulatory function and illustrate the power of 

using chromatin interactions to connect non-coding SNPs to disease 

mechanisms. 

 

Lastly, Chapters 4 and 5 launch the statistically significant interaction profiling of 

51 human cell lines and primary tissues from 173 public Hi-C datasets using a 

statistical model from MaxHiC, followed by investigating the uniqueness, 

distancing preference and the associated genes of the cell/tissue-specific 

interactions. We also identified interaction “hot zones”, regions with chromatin 

interactions observed across many cells and tissues. Using global and local 

enrichment analysis and a comparison to frequent interacting regions, we 

demonstrated the structural and regulatory functionality of the hot zones. We 

further comprehensively annotated chromatin interactions into 66 interaction 

classes, cataloguing potentially regulatory functional interactions for different 

cells and tissues. Finally, we revealed cell/tissue-specific 3D regulatory regions 
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that are enriched with super-enhancers and overlapped with expression 

quantitative trait loci (eQTLs). 

 

Overall, using data integration and statistical models to prioritise functional 

chromatin interactions, this work produced novel computational tools and 

pipelines and generated valuable resource for the investigation of genome 

structure, demonstrating the power of using chromatin interactions to discover 

novel mechanisms in the genome and revealing novel linkages between non-

coding DNA to traits/diseases. 
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Abstract 

Eukaryotic genomes are highly organised within the nucleus of a cell, allowing 

widely dispersed regulatory elements such as enhancers to interact with gene 

promoters through physical contacts in three-dimensional space. Recent 

chromosome conformation capture methodologies such as Hi-C have enabled 

the analysis of interacting regions of the genome providing a valuable insight into 

the three-dimensional organisation of the chromatin in the nucleus, including 

chromosome compartmentalisation and gene expression. Complicating the 

analysis of Hi-C data however is the massive amount of identified interactions, 

many of which do not directly drive gene function, thus hindering the identification 

of potentially biologically functional 3D interactions. In this review, we collate and 

examine the downstream analysis of Hi-C data with particular focus on methods 

that prioritise potentially functional interactions. We classify three groups of 

approaches; structural-based discovery methods e.g. A/B compartments and 

topologically-associated domains, detection of statistically significant chromatin 

interactions, and the use of epigenomic data integration to narrow down useful 

interaction information. Careful use of these three approaches is crucial to 

successfully identifying potentially functional interactions within the genome. 
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Keywords 

chromosome conformation capture, Hi-C, statistically significant interactions 
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Background 

The three-dimensional (3D) architecture of the eukaryotic genome has been 

shown to be an important factor in regulating transcription [1–3]. In the nucleus, 

DNA is folded into a highly organised structure, allowing transcriptional and 

regulatory machinery to be in specific nuclear territories for efficient usage. The 

impact of DNA folding and the resulting physical interactions can have dramatic 

impacts on the regulation of the genes, enabling non-coding regions such as 

regulatory elements (e.g. enhancers and silencers) to act on distally located gene 

promoters with disruption of chromosomal organisation increasingly linked to 

disease [4–6]. However, while highly organised, the folding structure of the 3D 

genome can also be highly dynamic to allow for the flexibility and modularity to 

facilitate regulatory action across a wide-range of cell-types and biological 

processes, such as development, immune homeostasis, cancer and diseases.  

 

In recent decades, the development of chromosome conformation capture 

assays and high-throughput sequencing has facilitated the construction of 3D 

genomes at high resolution, enabling the identification of cell-type and tissue-

specific 3D interactions between regions in the genome. However, the analysis of 

such data is complicated by the massive amount of identified physical 
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interactions, hindering the detection and interpretation of interactions that are 

biologically meaningful. In this review, we introduce the background of 3D 

genome structure and its components, followed by a summary of the protocols 

that are commonly used to study 3D genome architecture in recent years, 

focusing on Hi-C protocols and other derived methods, whilst the use of 

microscopy to image 3D genome organization has also been recently reviewed 

[7]. We then thoroughly review current in silico methods for identification of 

potentially functional interactions, which are contacts with higher chance to be 

biologically functionally-relevant, and categorise them into three methodological 

groups.  

 

Chromosome architecture and gene regulation 

Within eukaryotic nuclei, chromosomal DNA is condensed and folded into highly 

organised 3D structures, with distinct functional domains [8,9]. A key 

consequence of chromosome folding is that it can bring DNA regions that are far 

away from each other on the same linear DNA polymer (i.e. intrachromosomal), 

into close proximity, allowing direct physical contact to be established between 

regions. Interchromosomal interactions may also play an important role in 

transcriptional regulation but are less studied. The best characterised examples 

of this type of interaction include the clustering of ribosomal genes to form the 

nucleolus and the clustering of olfactory receptor genes to ensure the monogenic 

and mono-allelic expression in an individual olfactory neuron [10].  
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The most basic level of chromosome organisation is chromatin “Loop” structures 

(Figure 1A). Chromatin loops are formed based on a loop extrusion model, where 

linear DNA is squeezed out through the structural maintenance of chromosomes 

(SMC) cohesin complex until the complex encounters convergent CTCF bound at 

loop anchor sequences [8,11–14]. Chromatin loops can either bring distal 

enhancers and gene promoters into close proximity to increase gene expression, 

or exclude an enhancer away from the loop to initiate boundaries to repress gene 

expression [15–17]. The archetypal chromatin looping factors are the CCCTC-

binding protein (CTCF) and Cohesin complex [18–20], with the initial transient 

chromatin loops are created by the Cohesin complex during the extrusion 

process, or anchored on one CTCF binding site while the other anchor moving 

dynamically [11,21,22]. Moreover, specific transcription factors such as EKLF, 

GATA-1, FOG-1, NANOG and YY1 [23–28] were confirmed to play important 

roles in the regulation of chromatin looping.  
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Figure 1: Illustration of genome architecture and the corresponding Hi-C 
interaction maps. Top panel: interaction heatmaps A, B, C, D are in different 
scales (kb or Mb per pixel) to correlate with the diagrams of 3D structures in the 
bottom panel, yellow boxes in A and B are identified TADs and small blue boxes 
in A indicate chromatin loops. The purple box in A is a frequently interacting 
region, with its classical “V” shape pattern colored in purple dotted lines. 
Heatmaps were generated using Juicebox [29] with published Hi-C data of 
GM12878 [3]. Bottom panel: diagrams of 3D structures in the genome.  
 

Chromatin folding and DNA looping in particular leads to the formation of large 

scale chromatin structures such as topologically-associated domains (TADs) and 

chromosome compartments (Figure 1B) [30]. TADs are defined by chromatin 

interactions occurring more frequently within the TAD boundaries, with TAD 

boundaries often demarcating a change in interaction frequency [30]. TAD 

boundaries are also enriched for the insulator-binding protein CTCF and cohesin 

complex [19,20]. CTCF motif orientation appears to play a role in demarking TAD 

boundaries with some studies indicating that the majority of identified TADs (~60-

6 Mb50 kb10 kb1 kbA B C D

A/B compartments NucleusTADsChromatin loop

Cohesin

CTCF CTCF
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90%) have a CTCF motif at both anchor boundaries with convergent orientation 

[3,31,32]. This is consistent with the loop extrusion model mentioned above, 

suggesting that the formation of most TADs are form by extrusion and are strictly 

confined by boundaries established by ‘architectural’ proteins such as CTCF and 

SMC cohesin complex [33], along with the boundaries engaging with strong 3D 

interactions [34]. Moreover, experimental inversion of CTCF orientation or 

complete removal of the CTCF binding sites have been shown to disrupt the 

formation or shift the boundary of a TAD [14,16,32], further emphasizing the 

important role of CTCF defining TAD boundaries. The size of TADs are highly 

dependent on the resolution of the data and the chosen TAD caller and 

parameters [35], it can vary from hundreds of kilobases (kb) to 5 megabases 

(Mb) in mammalian genomes [36,37], and also show significant conservation in 

related species [38], suggesting that they may serve as the functional base of 

genome structure and development. With higher sequencing depth, patterns of 

interactions across regions within a TAD can be further divided into “sub-TADs” 

with a median size of 185 kb using one kilobase resolution data [3], enabling finer 

scale investigation of the genome structure [39,40]. In addition to “sub-TADs”, 

many other terms of TADs with different sizes and features have been proposed, 

including “micro-TADs” [41], “mega-domains” [42] and “super-TADs” [43]. 

However, functional distinction between the “conventional TADs” and them is still 

unclear. Evidence has shown that TADs are crucial structural units of long-range 

gene regulation [44–47], with interactions such as promoter-enhancer looping 

mostly found within the same TADs [48], and abnormal interactions across TADs 
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(inter-TADs) can lead to significant regulation of expression level of important 

genes [49]. 

 

At a multi-megabase scale, the genome organisation is spatially segregated into 

euchromatin (gene-rich regions) or heterochromatin (gene-poor regions) to form 

active and inactive domains called ‘Compartments’ (Figure 1C) [2]. This 

compartmentalisation of chromosome folding depicts the global organisation of 

chromosomes in the nucleus, where compartment A corresponds to gene-dense, 

euchromatic regions, and compartment B corresponding to gene-poor 

heterochromatin. Using higher resolution data, the genome can be further 

grouped into six sub-compartments, compartment A is separated into A1 and A2 

whereas compartment B is separated into B1, B2, B3 and B4, with each one 

associated with specific histone marks [3]. Sub-compartments A1 and A2 are 

enriched with active genes and the activating histone marks H3K4me3, 

H3K36me3, H3K27ac and H3K4me1. Sub-compartments A1 and A2 are also 

depleted in nuclear lamina and nucleolus-associated domains (NADs). B1 

domains correlate with H3K27m[3]e3 positively and H3K36me3 negatively, B2 

and B3 are enriched in nuclear lamina but B3 is depleted in NADs, and B4 is a 

11 Mb region, containing lots of KRAB-ZNF genes [3].  

 

The interaction of transcription factors bound at regulatory elements, such as 

promoters, enhancers and super-enhancers, mediate the transcription level of a 

gene via interactions which are the direct result of the 3D chromosome structure, 
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but which appear to be long-distance interactions when viewed through lens of a 

linear chromosome [50–52]. One early and well-characterized example is the 

interaction between beta-globin locus and its locus control region (LCR) [53]. 

During the development and differentiation of erythroid in human and mouse, the 

LCR, which is located 40-60 kb away from beta-globin genes, contains the 

hypersensitive sites that are exhibiting strong enhancer function and contacting 

to beta-globin genes distally via chromatin loops to regulation gene expressions 

[54–56]. Hox gene clusters, essential for patterning the vertebrate body axis, are 

also governed by a rich enhancer interaction network. Using chromatin 

conformation capture methods, a number of studies found that the transcriptional 

activation or inactivation of Hox clusters requires a bimodal transition between 

active and inactive chromatin [30,57–60]. Taken together, the 3D genome 

structure governing long-distance contacts can build complex gene regulatory 

networks, allowing for either multiple enhancers to interact with a single promoter 

or a single enhancer to contact multiple promoters [61]. Disruption of these long 

range regulatory networks is increasingly being linked to both monogenic and 

complex diseases [62,63].  

 

Hi-C assays to quantify chromatin interactions 

In order to investigate the 3D genome architecture, a series of protocols called 

chromosome conformation capture (3C) assays have been developed that 

specifically capture the physical interactions between regions of DNA [1,2,64–
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66]. A suite of 3C-derived high throughput DNA sequencing assays have been 

developed, including circular chromosome conformation capture sequencing (4C-

seq) [64,67], chromosome conformation capture carbon copy (5C) [65], 

chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [66], 

enrichment of ligation products (ELP) [68] and higher-resolution chromosome 

conformation capture sequencing (Hi-C) [2], which vary in complexity or the scale 

of the interactions that are captured. The initial 3C method used PCR to quantify 

specific ligation products between a target sequence and a small number of 

defined regions [1]. 4C-seq, known as the “one vs all” method, uses an inverse 

PCR approach to convert all chimeric molecules associated with a specific region 

of interest generated in the proximity ligation step into a high throughput DNA 

sequencing library [67]. 5C increased the number of regions that could be 

captured by multiplexing PCR reactions [65], and it is also considered as the first 

“many vs many” approach and has been used to examine the long range 

interactions of between transcription start sites and approximately 1% of the 

human genome [69]. ChIA-PET implements a similar approach, however uses a 

specific, bound protein, generally a transcription factor protein, generating a 

protein-centric interaction profile [31]. ELP implements a double digestion 

strategy to improve the enrichment of 3C products in the library and is able to 

generate a detailed genome-wide contact map of the yeast genome [68]. 

 

Compared to other approaches, Hi-C, also known as the Genome conformation 

capture method [70], is the first “all vs all” method of genome-wide, 3C-derived 
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assay to capture all interactions in the nucleus, allowing for a more complete 

snapshot of nuclear conformation at the global level [36]. Hi-C works through 

cross-linking DNA molecules in close proximity via a formaldehyde treatment, 

preserving the 3D interaction between two genomic regions. The cross-linked 

DNA is then usually fragmented using a restriction enzyme, such as the 6bp 

recognition enzyme HindIII [30,71] or 4bp cutter MboI, DpnII and Sau3AI, and the 

resultant DNA, ends held in close spatial proximity by the DNA cross-links, are 

ligated into chimeric DNA fragments. Subsequent steps convert these chimeric 

DNA fragments into linear fragments to which sequencing adapters are added to 

create a Hi-C library. The library is then sequenced using high-throughput 

sequencing technology, specifically limited to Illumina paired-end (as opposed to 

single-end/fragment) DNA sequencing to enable the accurate identification of the 

two ends of the hybrid molecule [2]. In the initial development of Hi-C, the 

identification of Hi-C interactions was impacted by the number of spurious 

ligation products generated as a result of the ligation step being carried in 

solution allowing for greater freedom for random inter-complex ligation reactions 

to occur. The resolution of Hi-C interactions in these earlier approaches was also 

limited by the cutting frequency of a 6-base restriction enzyme, such as HindIII 

[2,30,72–74]. To address these issues, an in situ Hi-C protocol was developed 

[3], where the ligation steps were performed within the constrained space of the 

nuclei, reducing the chance of random ligation [75,76]. Furthermore, in situ Hi-C 

used a 4-base-cutter (such as MboI) for digestion, increasing the cutting 

frequency in the genome and improving the resolution of captured interactions 
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[3]. Using this method, the first 3D map of the human genome was constructed 

using the GM12878 cell line with approximately 4.9 billion interactions [3], 

enabling interaction resolution at the kilobase level. In recent years, the in situ Hi-

C protocol has been developed further to target different technical and/or 

biological questions (Table 1).  

 

Table 1: Different Hi-C-derived methods. Optimizations indicate their modification 
in their protocols compared to traditional Hi-C. 

Hi-C flavours Optimizations 
Advantages compared to 
traditional Hi-C Reference 

Traditional Hi-C - - [2] 

in situ Hi-C Nuclear ligation; 4-based 
cutter 

Allow higher resolution data 
generation [3] 

DNase Hi-C DNase I to digest 
crosslinked DNA  

Improve capture efficiency, 
reducing digestion bias but 
have A compartment bias 

[77] 

Micro-C 
Crosslinking with DSG and 
micrococcal nuclease to 
digest crosslinked DNA 

Improve capture efficiency, 
reducing digestion bias but 
have A compartment bias 

[78] 

BL-Hi-C 
HaeIII to digest crosslinked 
DNA, followed by a two-
step ligation 

Improve capture efficiency 
in regulatory regions, 
reducing random ligation 
events 

[79] 

DLO Hi-C No labelling and pull-down 
step Reduce experimental cost [80] 

tag Hi-C Tn5-transposase 
tagmentation 

Focus on accessible 
chromatin, allow only 
hundreds of cells as input, 
reduce experimental cost 

[81] 

Capture HiC RNA baits to subset 
specific chromatin contacts 

Reduce sequencing cost, 
focus on a subset of 
interactions 

[82] 

Capture-C/NG Capture-
C/Tiled-C 

Enrich the 3C library with 
biotinylated capture 
oligonucleotides 

Focus on the subset of 
interactions while retaining 
maximal library complexity 

[83], [84], [85] 

HiChIP/PLAC-seq 

Chromatin 
Immunoprecipitation (ChIP) 
to subset bound chromatin 
contacts 

Reduce sequencing cost, 
focus on a subset of 
interactions 

[86], [87] 
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OCEAN-C Phenol-chloroform 
extraction step 

Focus on accessible 
chromatin [88] 

HiCoP Column purified chromatin 
step 

Focus on accessible 
chromatin [89] 

Methyl-HiC Bisulfite conversion 
Allow jointly profiling of 
DNA methylation and 3D 
genome structure 

[90] 

Hi-C 2.0 Efficient unligated ends 
removal 

Largely reduce the dangling 
end DNA products [91] 

Hi-C 3.0 
Double crosslinking with FA 
and DSG and double 
digestion with DpnII and 
DdeI 

Improve the ability to 
identify A/B compartments 
and improve the enrichment 
of regulatory elements in 
loop detection 

[92] 

 

Owing to the vast complexity of the Hi-C ligation products generated, it is often 

too costly to sequence samples to a sufficient depth to achieve the resolution 

necessary to investigate specific interactions such as promoter-enhancer 

interactions, leading to the development of capture Hi-C (CHi-C) [82]. CHi-C 

employs a sequence capture approach, using pools of probes complementary to 

thousands of restriction fragments, to enrich for molecules containing the region 

of interest from the Hi-C library. This significantly reduces the complexity of the 

libraries and enables a significant increase in the number of detectable 

interactions within specific regions without the need for ultra-deep sequencing. 

Therefore CHi-C, has been used in many cases to analyse specific types of long-

range interactions, such as interactions linked to promoter or enhancer regions. 

For example, CHi-C was recently used to characterise promoter interactions in 

17 human primary hematopoietic cells to demonstrate the highly cell-type specific 

nature of many promoter interactions even with a group of related cell types [51]. 

Similar to CHi-C, another series of approaches, including Capture-C [83], NG 
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Capture-C [84] and Tiled-C [85], that focus on capturing chromatin interaction of 

interest have been developed. Compared to the CHi-C protocols, they enrich the 

3C library with biotinylated capture oligonucleotides instead of enrich the 

biotinylated Hi-C library, allowing the library to retain maximal library complexity, 

which is important for analysing data from small cell numbers [85].  

  

Like many other high-throughput sequencing approaches, Hi-C continues to be 

modified to improve the efficiency and resolution of the approach. DNase Hi-C 

was developed to reduce the bias introduced through the use of restriction 

enzymes (e.g. MboI recognizes GATC), due to the uneven distribution of 

restriction sites throughout the genome [77,93]. Instead, DNase Hi-C replaces 

the restriction enzyme digestion of cross-linked DNA with the endonuclease 

DNase I that has a much reduced DNA sequence specificity to reduce bias in 

identifying Hi-C interactions. Commercial Hi-C library preparation kit such as 

Omni-C kit from Dovetail Genomics [94] exploits the use of DNase and is 

designed specifically to overcome limitations of only capturing Hi-C interactions 

near restriction sites. Similar to DNase Hi-C, Micro-C uses micrococcal nuclease 

(MNase) digestion, enabling the generation of high resolution contact maps at 

200 bp to ~4 kb scale in budding yeast [78] and sub-kilobase resolution contact 

maps in mammalian cells [41,95]. What’s more, BL-Hi-C uses HaeIII, which has 

higher cutting frequency in the human genome compared to other 4-base cutter 

like MboI, to conduct digestion and a two-step ligation optimization to reduce the 

chance of ligating event of random DNAs, increasing the capture efficiency with 
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active regions in the genome and reducing the probability of random ligation 

events [79]. In addition to increasing the capture efficiency, optimised protocols 

are now much more cost effective. For example, DLO Hi-C [80] avoids biotin 

labeling and pull down steps, and tagHi-C [81] uses Tn5-transposase 

tagmentation, similar to ATAC-seq, to capture the chromatin structure with 

hundreds of cells. 

 

The integration of Hi-C with other genomic applications, such as chromatin 

immunoprecipitation (ChIP), formaldehyde-assisted isolation of regulatory 

elements (FAIRE) or bisulfite treatment has also occurred. The ChIP-integrated 

approaches, including HiChIP and PLAC-seq, combining the in situ Hi-C with 

ChIP, generating a Hi-C library enriched for interactions associated with specific 

bound proteins [86,87], increasing the resolution of the library while reducing the 

sequencing cost. Combining the phenol-chloroform extraction step from FAIRE-

seq [96] with in situ Hi-C, OCEAN-C was developed to prioritise the chromatin 

interactions on open chromatin [88]. Similarly, integrating with an assay called 

column purified chromatin (CoP), which is enriched for accessible chromatin 

regions such as active promoters, enhancers and insulators, HiCoP was recently 

developed to identify chromatin contacts in regulatory regions [89]. Methyl-HiC 

has been developed to jointly profile the DNA methylation and 3D genome 

structure [90]. Recent studies have also revealed that DNA methylation is able to 

impact 3D genome structure via polycomb complexes, which play an important 

part in respressing key developmental genes [27,97–100].  
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The optimizations introduced by protocols such as Micro-C largely improve the 

crosslinked DNA capture specificity, allowing higher resolution data to be 

generated with less sequencing cost. Based on these optimizations, Hi-C 2.0 and 

Hi-C 3.0 have been developed as the updated versions of Hi-C protocol in recent 

years [91,92]. In Hi-C 3.0, the protocol uses a combination of two restriction 

enzymes, DdeI and DpnII, and MNase to generate short fragments, which can 

improve the identification of genome compartmentalization. Additionally, Hi-C 3.0 

also uses DSG as cross-linker in addition to formaldehyde to generate cross-

linked DNA, improving the enrichment level of regulatory elements such as 

promoters and enhancers in the identified chromatin loops [101]. 

 

As the development of Hi-C approaches continue, it is essential that 

computational methods are standardized in order to provide consistent results 

that are comparable across species or cell-types. In the next section, we review 

the current data processing methods that are used in standard Hi-C sequencing 

approaches. 

 

Prioritisation of chromatin interactions 

Methodologies to extract meaningful, potentially functional information from the 

massive number of interactions identified through Hi-C data can be categorized 

into three groups: structural-based methods, detection of significant interactions 
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and data integration (Figure 2). The first approach is to define structures such as 

A/B compartments and TADs, based on the 2D interaction patterns across the 

genome. The second approach is to investigate only a subset of Hi-C interactions 

that are identified from a statistical test based on a trained model. Finally, taking 

advantage of the publicly available databases or the generation of epigenomics 

data in parallel with Hi-C data, the third approach is to prioritise interactions that 

are more likely to be biologically relevant through the investigation of genomic 

and epigenomic information. These approaches are not mutually exclusive and in 

many cases can be combined to address specific questions in genome 

organisation and gene regulation.  

 

 

Prioritize 
interactions 

from Hi-C data

Structural-based 
methods

Statistically 
Significant 
interactions

Data 
integration
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background
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Figure 2: Approaches to prioritise interactions from Hi-C datasets. In this review, 
we categorised the approaches to identify potentially functional interactions into 
three ways, including significant interactions identification, structures 
summarisation and data integration. Referenced tools and sub-categorical 
analyses are marked on the figure with boxes and stars respectively. 
 

Structural-based identification methods 

Methods that identify structural aspects of chromatin interactions (i.e. A/B 

compartments and TADs) are employed as an avenue to reduce the 

dimensionality of the 3D interaction patterns across the genome by clustering or 

summarising regions with similar patterns across the genome. The A/B 

compartments are commonly predicted with normalised Hi-C matrices generated 

using vanilla coverage (VC) [2], Knight and Ruiz’s method (KR) [102] or iterative 

correction and eigenvector decomposition (ICE) [103]. Normalised data is then 

used to calculate Pearson’s correlation and through principal component analysis 

(PCA), the eigenvectors of the first (or second) principal component (PC) are 

usually used to assign bins to A or B compartments. Current analysis toolkits, 

such as Juicer [104] and FAN-C [105], have optimised correlation matrix 

functions to identify A/B compartments from Hi-C matrices without significant 

taxes on memory and computational resources. 

 

As detailed above, TADs are defined as structures with interactions that occur 

within TADs rather than across TADs [30]. As such, they are often identified by 

finding domains where contacts are enriched within the same TAD as compared 

to neighboring TADs [30,106]. Currently, there are over 20 commonly used TADs 
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callers that have been developed using various methodologies. For instance, 

arrowhead [3], armatus [107], directionality index [30], insulation score [108] and 

TopDom [109] use their own linear scoring system, clusterTAD [110] and 

ICFinder [111] are based on clustering, TADbit [112], TADtree [113] and HiCseg 

[114] use statistical models; and MrTADFinder [115] and 3DNetMod [116] rely on 

network-modelling approaches [37,117]. Although comparisons reveal low 

reproducibility among tools, especially in the number and mean size of identified 

TADs, recent reviews [37,117] have suggested a preference for TAD callers that 

allow for the detection of nested TADs or overlapped TADs, such as rGMAP 

[118], armatus, arrowhead and TADtree. 

 

While theoretically similar to TAD calling, frequently interacting regions (FIREs) 

are also commonly used to describe structural interaction characteristics. Defined 

as genomic regions with significant interaction profile, FIREs exhibit strong 

connectivity with multiple regions in the chromosome neighbourhood [73]. FIREs 

can be easily visualised on the Hi-C interaction map, with interacting signals 

appearing from both sides of the FIREs, forming a characteristic “V” shape 

(Figure 1A). Unlike TADs and compartments, which exhibit a certain level of 

conservation across cell types (about 50~60% and 40%, respectively) 

[3,30,73,119], FIREs appear to be cell type- and tissue-specific and are often 

located near key cell phenotype-defining genes. However, similar to TADs, 

FIREs formation seems to be dependent on the Cohesin complex, as its 

depletion results in decreasing interactions at FIREs [73]. They are also enriched 
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for super-enhancers, suggesting FIREs play an important role in the dynamic 

gene regulation network [120,121]. Similar to FIREs, “V” shape structural feature 

that is referred to as “line” structure was observed at the edge of the TADs during 

the exploration or loop extrusion model using simulated Hi-C data [14].  

Methods for identification of significant chromatin interactions  

In order to prioritize potentially meaningful chromatin interactions, statistical 

significance is assigned to Hi-C interactions by comparing them to a background 

model and assessing the probability of observing the experimental set of counts 

if the background model were the underlying method of generating observed 

counts. The interaction frequency generally decays with increasing linear 

distance, and by applying this background model meaningful interactions can be 

identified through a higher than normal frequency. Here we summarize the 

current methodologies of significant interactions identification and categorise 

them into two groups; global background model methods, which define a 

background signal model by considering the read count of any pair of 

interactions, and local background model methods, which account for 

interactions in the neighbouring areas to identify peak interactions with statistical 

significance. 

 

Table 2: methods for identification of statistically significant interactions for Hi-C 

data. 

Method name Type Base model Specific features Reference 
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Duan et al. 2010 Global background Binomial Specifically designed for yeast 
genome 

[122] 

Fit-Hi-C/FitHiC2 Global background Binomial Spline fitting procedure, compatible 
with different formats 

[123,124] 

HOMER Global background Binomial Highly compatible with the HOMER 
Hi-C analysis pipeline 

[125] 

GOTHiC Global background Binomial Use relative coverage to estimate 
biases 

[126] 

FitHiChIP Global background Binomial Specifically designed for HiChIP data [127] 

HIPPIE Global background Negative binomial Account for fragment length and 
distance biases 

[72,128] 

HiC-DC Global background Negative binomial Use zero-inflated model [129] 

HMRFBayesHiC Global background Negative binomial Use hidden Markov random field 
model 

[130] 

FastHiC Global background Negative binomial An updated version of 
HMRFBayesHi, with improved 
computing speed 

[131] 

MaxHiC Global background Negative binomial Use ADAM algorithm, identify 
interactions with enrichment for 
regulatory elements 

[132] 

CHiCAGO Global background Negative binomial Specifically designed for CHi-C data [133] 

ChiCMaxima Global background Local maxima Specifically designed for CHi-C data, 
more stringent and robust when 
comparing biological replicates 

[134] 

HICCUP Local background Local enrichment  Robust for finding chromatin loops [3] 

cLoops Local background DBSCAN Loop detection with less 
computational resource 

[135] 

Automated 
identification of 
stripes 

Local background Local enrichment Specifically designed to identify 
architectural stripes 

[136] 

 

Global background-based methods 

The Initial study which assigns statistical significance to Hi-C interactions is done 

in the yeast genome. The chromatin interactions in the yeast genome was first 

separated into intra-chromosomal interactions (within the same chromosome) 
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and inter-chromosomal interactions (across two chromosomes), followed by a 

binomial distribution to assign confidence estimates for inter-chromosomal 

interactions [122]. A binning method is then used to account for the characteristic 

pattern of intra-chromosomal interactions, with the observed interacting 

probability decaying as the genomic distance increases linearly. This is then 

used to compute interacting probabilities for each bin separately and assigning 

statistical significance using the same binomial distribution as used for inter-

chromosomal interactions [122]. Based on the same binomial distribution 

concept, Fit-Hi-C uses spline fitting procedure instead of binning, reducing the 

bias of artifactual stair-step pattern, allowing detection of statistically significant 

interactions in the mammalian genome [123]. Additionally, Fit-Hi-C also 

incorporates an extra refinement step using a conservative model with stringent 

parameters to remove outlier interactions, which can be applied iteratively, to 

achieve a more accurate empirical null model. However, Fit-Hi-C was initially 

limited by only allowing bin sizes larger than 5 kb to compute significance due to 

the heavy memory usage when dealing with higher-resolution data. However this 

has been improved with recent updates [124], and is now able to handle data 

with high resolution (bin sizes from 1 to 5 kb). Another important new feature is 

that it is now accepting multiple input formats so that it is compatible with 

different Hi-C analysis pipelines. Another similar tool is included in the Homer 

toolkit [125], which accounts for biases such as sequencing depths, linear 

distance between regions, GC bias and chromatin compaction to establish a 

background model to estimate the expected interaction count between any two 
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regions, followed by the use of a cumulative binomial distribution to assign 

significance to interactions. GOTHiC [126] also uses relative coverage of two 

interacting regions to estimate both known and unknown biases, followed by a 

cumulative binomial distribution to build the background model to identify 

significant interactions  

 

The Negative Binomial distribution is commonly utilised in the analysis of count-

based data, including popular RNA-seq analysis tools such as edgeR [137] and 

DEseq2 [138], and has been implemented in a number of Hi-C programs such as 

HIPPIE [72,128]. This method uses a negative binomial model to estimate the 

statistical significance of the interactions in one fragment region (< 2 Mb) while 

accounting for restriction fragment length bias and interacting probability distance 

bias simultaneously. However, negative binomial models can be confounded by 

many bins with zero counts [129] and a number of programs have developed 

approaches to account for “zero-inflated” observations. HiC-DC, for example, 

uses a hurdle negative binomial regression model to identify significant 

interactions [129], modelling the probability of non-zero counts and the rate of 

observed counts as separate components of the model.  

 

While physical interactions between loci found in close linear proximity are likely 

to be more prevalent in Hi-C datasets, a known bias in Hi-C libraries is the 

correlation between two nearby restriction fragments brought about by ligation 

events. Ligation events can be the result of bias or random collision events 
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between restriction fragments during library preparation, so with high coverage 

sequencing, false signals can impact the identification of significant interactions 

[72]. To tackle this problem, HMRFBayesHiC uses a negative binomial 

distribution to model observed interactions [72], followed by a hidden Markov 

random field model to account for the correlation between restriction fragments, 

and to model interaction probabilities [130]. This implementation required 

significant resources to run, leading to the development of FastHiC [131], which 

enables higher accuracy of interaction identification and faster performance. 

Recently, another tool called MaxHiC also based on negative binomial 

distribution was developed [132]. Compared to other tools, all parameters of the 

background model in MaxHiC are established by using the ADAM algorithm [139] 

to maximize the logarithm of likelihood of the observed Hi-C interactions. 

Significant interactions identified by MaxHiC were shown to outperform tools 

such as Fit-Hi-C/FitHiC2 and GOTHiC in identifying significant interactions 

enriched between known regulatory regions [132]. 

 

Compared to traditional Hi-C protocols, Capture Hi-C (CHi-C) requires different 

analytic methods due to the extra bias driven by the enrichment step in the 

protocol. Capture libraries can be regarded as a subset of the original Hi-C 

library, meaning the interaction matrix of CHi-C is asymmetric, and interestingly 

not accounted for in traditional normalisation methods [82,133]. Because of this, 

many analysis approaches are specifically designed for CHi-C data analysis. 

CHiCAGO (Capture Hi-C Analysis of Genomic Organisation) was developed to 
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account for biases from the CHi-C protocol and identify significant interactions 

[133], using a negative binomial distribution to model the background local profile 

and an additional Poisson random variable to model technical artefacts [133]. 

CHiCAGO uses the implicit normalization method ICE [103] and multiple testing 

stages based on p-value weighting [140] to carefully identify significant 

interactions from each CHi-C dataset [133]. Another CHi-C-specific tool called 

ChiCMaxima was developed to identify significant interactions by defining them 

as local maxima after using loess smoothing on bait-specific interactions [134]. 

Compared to CHiCAGO, ChiCMaxima’s approach is more stringent and exhibits 

a more robust performance when comparing biological replicates [134]. As well 

as being applicable to conventional HiC data, MaxHiC is also able to identify 

significant interactions in CHi-C data [132] and offers robust performance to 

identify regulatory areas compared to CHi-C-specific tools including CHiCAGO 

[132]. 

 

Like the other capture approaches, HiChIP cannot use traditional (Hi-C-specific) 

interaction callers (e.g. Fit-Hi-C or GOTHiC) due to the inherent biases 

associated with an enrichment with specific immunoprecipitation targets [86]. 

Hichipper was developed to firstly identify ChIP peaks while accounting for the 

read density bias in restriction fragments, enabling a more accurate identification 

of interactions from HiChIP dataset [141]. While hichipper does not implement 

any function to identify significant interactions, FitHiChIP was developed to 

account for non-uniform coverage bias and distance bias in restriction fragments 
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using a regression model, together with 1D peak information in a spline fitting 

procedure to accurately identify significant interactions from HiChIP data [127]. 

Local background-based methods 

Chromatin looping structures can be regarded as the basic unit of 3D genomic 

architecture and play an important role in the regulatory process, by bringing 

distal promoter and enhancer elements together or excluding enhancers from the 

looping domain [15–17]. Chromatin loops from Hi-C data were first defined by 

searching for the strongest “pixel” on a normalised Hi-C contact map (Figure 1A). 

Different from the global background models used by methods like Fit-Hi-C and 

MaxHiC, using a local background model to compare all pixels in a neighbouring 

area is able to detect pixels with the strongest signals as the anchor points of 

chromatin loops [3]. A searching algorithm named Hi-C Computational Unbiased 

Peak Search (HICCUPS) was therefore developed to rigorously search for these 

pixels based on the local enrichment in the pixel neighborhood, followed by 

hypothesis testing with Poisson statistics, enabling the identification of chromatin 

loops from Hi-C data [3]. Somewhat similar to TADs, published information on 

chromatin loops demonstrates structural conservation between a number of 

human cell lines (~55-75% similarity), and between human and mouse (about 

50% similarity), suggesting conserved loops may serve as a basic functional unit 

for the genome [3]. However, loop detection using HICCUPS requires high 

resolution data with extremely high sequencing depth. For example, almost 5 

billion unique interactions were required by HICCUPS to identify 10,000 unique 

loops in the GM12878 cell line [3]. This limitation can potentially be addressed by 
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the current development of deep learning approaches, such as DeepHiC [142] 

using generative adversarial networks, as well as HiCPlus [143] and HiCNN [144] 

which use deep convolutional neural networks. Such methods can be used to 

increase the resolution of Hi-C data to achieve necessary resolution so that 

chromatin loops can be identified, or to improve loop detection accuracy 

[142,143].  

 

Hardware requirements to identify loops in high-resolution data is also extremely 

restrictive with HICCUPS requiring specific architectures (i.e. NVIDIA GPUs) to 

identify looping patterns. However this has been addressed recently with the 

HICCUPS algorithm being reimplemented in the cooltools package 

(https://github.com/mirnylab/cooltools), allowing HICCUPS to be run on a regular 

server or compute cluster [95]. Alternatively, an approach called cLoops was 

implemented which identifies peak interactions from chromatin contact map 

[135]. cLoops initiates loop detection by finding candidate loops via an 

unsupervised clustering algorithm, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) [145], which enables computing statistical 

significance of interactions with less amount of input and reduced computational 

resources. Candidate loops are then compared with a permuted background 

model, based on the interaction decay over linear distance, to estimate statistical 

significance.  
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Further investigation in high-resolution Hi-C data (<= 10 kb), another local 

background model method was developed to identify architectural stripe 

structures rather than loops [136]. The stripe structure is similar to FIRE, where a 

genomic region contacts other regions of the entire domain with high interacting 

frequency [136]. Its identification algorithm Automated identification of stripes 

computes the pixel-specific enrichment relative to its local neighbourhood, then 

performs Poisson statistics to test if the signal is statistically significant [136]. It 

was further shown that stripe anchors highly correspond to loop anchors, and 

stripes appear to be relevant with enhancer activity [136,146]. 

Potentially functional interaction identification via data integration 

While variation in gene-coding regions can lead to significant alterations in one 

gene or abnormalities across a region in the genome, causing mendelian 

diseases such as chronic granulomatous disease [147], cystic fibrosis [148] and 

Fanconi’s anaemia [149]. The fundamental motivation for identifying interacting 

regions across a genome is to establish how non-coding regions of the genome 

impact gene expression [1,150,151]. However potentially functionally-relevant 

interactions, whether this be chromatin interactions between gene promoters and 

enhancers or transcription factor binding mechanisms, are often established in a 

cell-type specific manner [71,82]. By integrating Hi-C interactions with local or 

publicly available genomic, transcriptomic and epigenomic datasets, such as 

regulatory elements, gene expression, genetic variation and quantitative trait loci 

(QTL) information, potentially functional interactions can be prioritised. 
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Potentially functional Hi-C interactions can be identified by integration with 

transcriptomics and enhancer data. Promoter-enhancer interactions (PEI), 

promoter-promoter interactions (PPI) or enhancer-enhancer interactions (EEI), 

where distal promoter or enhancer are brought into close proximity by chromatin 

contacts to form complex contact, are three widely accepted potentially functional 

Hi-C interaction types to be studied [51,69,152–158]. These interaction 

categories are often identified by finding overlaps of promoter or enhancer 

signals separately at each anchor of a Hi-C interaction [51,156,159]. However, 

when identifying PEI or PPI from Hi-C data for a specific cell type, the gene 

expression profile of such cell type should be considered to determine which 

promoters are active given that promoter interactions are shown highly cell-type 

specific [51].  

 

Similar to promoters of expressed genes, active enhancers of a specific cell type 

are necessary to identify potentially functional PEI or EEI for a specific cell type. 

Expressed enhancers (eRNAs) or experimentally verified enhancers of different 

human cell types and tissues are available in publicly available projects and 

databases such as FANTOM5 project [160], the NIH Roadmap Epigenomics 

project [161], the EU Blueprint project [162], ENCODE [163,164] and ENdb [165]. 

Additionally, previous studies also used cell type-specific histone markers ChIP-

seq data, such as H3K27ac and H3K4me1, or integrated chromHMM chromatin 

state information predicted from a variety of epigenomic sequencing information 

[166,167] to indicate the activity of an enhancer in a specific cell type 
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[51,156,159,168,169]. In addition to using Hi-C data, there are numerous 

methods that have been developed to predict potentially functional interactions 

based on histone marker signals [170], gene expression and methylation data 

[171], ATAC-seq data [172], DNase-seq data [173] or even DNA sequence alone 

[174]. These types of methods have been comprehensively reviewed in a recent 

review study [175].  

 

Besides promoters and enhancers, Super-enhancers (SEs) are another major 

regulatory element that is crucial to the identification of potentially functional 

interactions. SEs are defined as a clustered region of enhancers exhibiting 

significantly higher levels of active enhancer marks and an enrichment with 

transcription factor binding sites (TFBS) [176]. These regions act as “regulatory 

hubs”, which are higher-order complexes consisting of interactions between 

multiple enhancers and promoters at individual alleles [153,177,178]. The 

formation of these regulatory hubs are proposed to be the consequence of the 

high level of TF and co-factor localisation to the SE interacting to form a 

biomolecular condensate by a phase separation model [179–184]. Identified Hi-C 

interactions with linkages to SE have been shown to be potentially functional by 

mediating multiple gene expression regulations three-dimensionally, or being 

essential for cell identity and development [50,185–190]. SE can be identified 

from H3K27ac ChIP-seq using the ROSE algorithm [187], and currently SE 

information can be easily accessible from databases such as AnimalTFDB [191], 

PlantTFDB [192], GTRD [193], SEdb [194], dbSUPER [195] and SEA [196,197], 
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allowing cell-type regulatory hubs to identified and linked to phenotypic traits 

and/or disease. 

 

In genome-wide association studies (GWAS), almost 90% of the identified 

genetic single nucleotide polymorphisms (SNPs) associated with phenotypic 

traits are located in non-coding regions such as gene desert, which are areas 

lacking protein-coding genes, hence making the interpretation of the functions of 

such variants much more challenging than the ones located within or nearby 

protein-coding genes [198–200]. Hi-C data have been proved to be useful in 

many studies for addressing this issue by forming linkages between diseases-

associated variants and genes using long-range chromatin interactions. For 

examples, interactions between gene promoters and variation-located long 

coding RNAs (lncRNA), where GWAS SNPs can impact the expression of the 

target genes by affecting the binding of TF binding to the lncRNA [201]; direct 

interactions between SNPs and multiple genes, exhibiting co-regulation function 

of the SNPs [202]; interaction networks based on a SNP, bringing gene 

promoter, TF binding site and active enhancer region together by chromatin 

interactions to affect gene expression [203]. Variants may also impact gene-

coding regions over large distances meaning that target genes of the variations 

are not necessarily their closest proximal gene [71,204]. Currently, databases 

such as GWAS catalog [205], ImmunoBase [206], GWAS Central [207], GWAS 

ALTAS [208] and GWASdb [209] contain information of the level of genetic 
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association of each variant to specific diseases, which are invaluable data to be 

integrated in a high-dimensional interaction dataset.  

 

Tissue-specific quantitative trait loci (QTLs) are identified as the possession of 

variants that can significantly impact the level of quantitative trait [210], such as 

expression QTLs (eQTLs) that affect the expression level of the target genes 

[211], histone QTLs (hQTLs) that affect histone modifications [212,213], 

methylation QTLs (meQTLs) that impact DNA methylations [214,215] and ATAC-

QTL that affect the accessibility of the corresponding areas [216]. In recent QTL 

studies, QTLs are found to affect their target regions by the long-range chromatin 

interactions between them observed from Hi-C data. For example, Greenwald et 

al. has recently used pancreatic islet-specific data to investigate the risk gene loci 

of Type 2 Diabetes (T2D) [217]. In their work they combined gene and enhancers 

interaction maps generated from Hi-C data, together with variant and gene 

expression linkage data, provided by tissue-specific eQTL analysis, to establish 

an enhancer network for T2D risk loci. In support of genetic variation at 

enhancers influencing transcriptional regulation, Yu et al. used HiC data to 

demonstrate that eQTLs tend to be in close spatial proximity with their target 

genes [218]. Additionally, a recent multi-tissues integration analysis between 

eQTLs and Hi-C interactions revealed the close proximity between eQTLs and 

their target genes, indicating that eQTLs regulate the expression of their target 

genes through chromatin contacts [218]. Therefore, with publicly available QTL 

databases such as the GTEx project [211], seeQTL [219], Haploreg [220], Blood 



 47  

eQTL browser [221], Pancan-meQTL [222] and QTLbase [223], the linkages 

between such QTLs and their target genes or regions can be used to infer 

potentially functional Hi-C interactions. 

 

Future prospects 

The investigation of 3D chromosome structure can provide novel insights into the 

complex regulatory network in the genome. The development of Hi-C and its 

derived protocols have facilitated the studies of the 3D genome structure, 

generating numerous high quality datasets. However, due to the complexity of 

the Hi-C library preparation and analysis, the biologically meaningful, small-scale 

interactions may still lack sufficient signals, hindering the detection and 

interpretation of 3D interactions. The approaches that we presented in this review 

all aim to reduce the complexity of 3D interaction data, narrowing down 

information based on structure, statistical inference and additional lines of 

experimental evidence (i.e. cell-type specific epigenomic data). 

 

Incremental development of Hi-C calling applications (chromatin loops, TADs etc) 

has continued with a focus on correcting biases introduced by library preparation 

and sequencing. As more and more sequencing data is deposited on open-

access data repositories such as NCBI Short Read Archive (SRA) [224] and 

European Nucleotide Archive (ENA) [225], has allowed the development of novel 

Machine Learning models trained on known interactions to identify novel patterns 
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when applying these models to new datasets. Incorporation of publicly-available 

cell type/tissue-specific epigenomics data into these machine learning models of 

chromatin interactions will allow for more accurate predictions on the molecular 

mechanisms by which diseases-associated genetic acts. In the future, such 

models of 3D interactions can potentially be used as markers for disease 

screening and used for personalised medicine development. 

 

Although the development in protocol efficiency, parallel algorithmic 

improvements are likely to improve current approaches for identifying 3D 

interactions. Additional imaging technologies such as real-time signal 

Fluorescence in situ hybridization and advanced imaging approaches such as 

STORM imaging have been used to visualise the nuclear organization in living 

cells and leading to the identification of clusters of clutch domains that are 

thought to correspond to TAD [7,226]. Lastly the ability to engineer specific 

mutations in DNA through genome editing technology such as the CRISPR-Cas9 

system [227,228], means that future experiments using Hi-C and 3D imaging in-

parallel with genetically modification of genomes will vastly improve our 

understanding of how variation may impact genomic structure, and the 

regulations of gene expression. 
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Conclusion 

In this review, we first introduced the three-dimensional chromosome architecture 

in different scales, followed by presenting the chromosome conformation capture 

assays, with a focus on Hi-C and its variations, which are the state of the art 

methods for investigating the 3D genome structure. Lastly, we comprehensively 

reviewed methodologies that are developed to reduce the complexity of 3D 

physical interactions identified from Hi-C datasets to detect potentially functional 

interactions. We also categorised the methods into three types, including 

structural-based detection methods, significant chromatin interactions 

identification methods and data integration methods. Taken together, by utilizing 

these methods carefully, we are able to detect physical interactions with 

biological meaning and impact from complicated Hi-C dataset, which may serve 

a purpose in diagnosis and precision medicine. 
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Development of Hi-C data analysis components 
for accurate chromatin interaction profiles 

Abstract 

High resolution chromosome conformation capture sequencing (Hi-C) is the 

state-of-the-art sequencing technique used to identify three-dimensional 

chromatin structure inside the nucleus. Due to the complex nature of Hi-C data 

and different laboratory protocols available, reproducible computational methods 

are essential to construct genome-wide chromatin contact maps and identify 

informative chromatin interactions. There are currently a number of standard 

workflows designed for analysing Hi-C data, however quality control metrics to 

determine the quality of a Hi-C library are difficult to obtain, as is the ability to 

visualise Hi-C interactions with other genomics data. In this methods chapter, I 

develop a number of tools and analysis strategies designed to improve the 

analysis of all Hi-C data types and enable many of the analyses developed in 

Chapter 3 and 4, focusing specifically on three components; Quality Control, 

Genome Alignment and Visualisation. For quality control, I developed HiC-QC to 

conveniently summarise important metrics required for assessing the quality of a 

Hi-C library. For genome alignment, I investigate the appropriate usage of two 

popular aligners (Bowtie2 and BWA) in their performance in aligning Hi-C 

sequencing reads to a reference genome. Lastly, two visualisation methods, the 

HiC-integrationmap and the integration-tracks plot were also developed to 

facilitate the visualisation of integration between Hi-C interactions and other 
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genomics data. These analyses and tools aim to give researchers a better guide 

to accounting for limitations in Hi-C datasets and to enable the reuse of these 

datasets for functional investigations. 

Background 

High-resolution chromosome conformation capture sequencing (Hi-C) assay 

(Lieberman-Aiden et al., 2009; Rao et al., 2014) have been widely used in 

studies to reveal the 3D structure of the genome (Dixon et al., 2012, 2015; Jin et 

al., 2013) and investigate the gene regulation contributed by the chromatin 

interactions (Mifsud et al., 2015; Javierre et al., 2016). However, Hi-C 

sequencing data is complex because complicated experimental procedures such 

as cross-linked DNA digestion and ligation can introduce uninformative data such 

as self-ligating DNA or random ligation during the construction of the Hi-C library, 

hindering the identification of genuine chromatin interactions (Ay, Bailey and 

Noble, 2014; Mifsud et al., 2017). Therefore, it is important to learn the 

computational procedures to analyse Hi-C data properly to identify chromatin 

interactions and construct Hi-C contact maps (Lajoie, Dekker and Kaplan, 2015).  

 

The analysis of Hi-C data generally comprises four fundamental steps; alignment 

of sequencing reads, filtering to identify informative interaction pairs, generating 

an interaction matrix and normalization of the interaction matrix (Figure 1). 

However, prior to this analysis, data preparation and quality control stages must 

be conducted, and is often overlooked that is critical to downstream analysis. 
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Raw sequencing data from a Hi-C experiment is similar to that of other 

sequencing data (e.g. RNA sequencing or chromatin immunoprecipitation 

sequencing) in that it is necessary to conduct quality control processes in order 

to evaluate sequencing quality. In an RNA-seq experiment for example, quality 

control is achieved by the inspection of metrics such as sequencing base quality 

score, GC content, sequence duplication levels and overrepresented sequence 

quantification (Figure 1). QC metrics are often summarised using tools such as 

FastQC (Andrews and Others, 2010) for a single dataset, and multiQC (Ewels et 

al., 2016) or ngsReports (Ward, To and Pederson, 2020) for multiple datasets.  

 

 
Figure 1: Comprehensive flow-diagram of a Hi-C experiment. The blue box 
indicates the Hi-C data preparation stage, while the red box indicates the data 
analysis stage of Hi-C data. 
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contact map requires higher sequencing depth than that required for many 

sequencing applications. A depth of ~7 billion raw reads was required to reach a 

resolution of 950 bp in the construction of a contact map of the GM12878 cell line 

(Rao et al., 2014), which is far larger than a standard 30x whole genome 

sequencing sample (Rieber et al., 2013). Secondly, the protocol for construction 

of a Hi-C library is complicated by DNA crosslinking, digestion and ligation steps 

(Lieberman-Aiden et al., 2009; Rao et al., 2014). The failure of any of these steps 

will result in a Hi-C library with poor quality. To reduce the risk of conducting 

downstream analysis of poor quality Hi-C libraries it is essential to conduct 

quality control to ensure that libraries pass metrics for both quality and 

sequencing depth (Figure 1) (Patel and Jain, 2012; Rao et al., 2014). 

Additionally, whilst Hi-C libraries usually do not produce a significant amount of 

adapter contamination, certain digestion steps, especially in DNase Hi-C 

protocol, can generate DNA fragments that retain both adapter sequences and 

Illumina primers (Ma et al., 2018). In the event of this type of adapter 

contamination, it is important that the sequencing adapters are removed to 

ensure better mapping results (Figure 1), with tools such as AdapterRemoval 

(Schubert, Lindgreen and Orlando, 2016) or cutadapt (Martin, 2011) being 

commonly used for this purpose. 

 

After data preparation, the data analysis stage is firstly started by linking the 

sequencing data information with a genome location via alignment (Figure 1). 

Due to the different primary location of each DNA read fragment, the alignment of 
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Hi-C paired-end reads directly to a reference genome should be avoided (Figure 

2). Instead, one should treat Hi-C paired-end reads as two single-end reads, 

align them separately to the genome, and then match them by their unique read 

pair identification (Lieberman-Aiden et al., 2009). A number of mapping 

strategies have been developed specifically for alignment of Hi-C data (Table 1). 

One such aligner in common use is the Burrows-Wheeler Aligner (BWA) 

software. The BWA-MEM algorithm employs a “-5SPM'' flag to disable read 

pairing specifically for use in mapping Hi-C data (Li, 2013).  

 

 
Figure 2: Schematic figure of the alignment process of Hi-C data. Each pair of 
blue and red arrows indicates Hi-C sequencing read pairs. The yellow squares 
indicate the ligation junctions, which result from the successful ligation step 
during constructing the Hi-C library. The yellow arrows indicate the ligation 
junction contaminations during sequencing.  
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Table1: Software tools to map, filter, quantify and normalise Hi-C data. 
Standard analysis of Hi-C data 

Procedures Softwares/Strategies Reference Source 

Mapping 

BWA-MEM -5SPM (Li, 2013) 
https://github.com/l
h3/bwa 

Pre-truncation (Wingett et al., 2015) 

https://www.bioinfo
rmatics.babraham.
ac.uk/projects/hicu
p/ 

Post-truncation (Servant et al., 2015) 
https://github.com/
nservant/HiC-Pro 

Iterative mapping (Imakaev et al., 2012) 

https://github.com/
mirnylab/hiclib-
legacy 

Filtering 

Low mapping quality reads 

NA NA 

Non-unique alignments 

Singletons 

Dangling ends pair 

Duplication 

Quantification Binning 
(Lieberman-Aiden et al., 
2009) NA 

Normalization(Explicit) Yaffe and Tanay's model (Yaffe and Tanay, 2011) NA 

 HiCNorm (Hu et al., 2012) 
https://github.com/
ren-lab/HiCNorm 

 Jin's model (Jin et al., 2013) NA 

 OneD (Vidal et al., 2018) 
https://github.com/
qenvio/dryhic 

Normalization(Implicit) Vanilla coverage 
(Lieberman-Aiden et al., 
2009) NA 

 ICE (Imakaev et al., 2012) 
https://github.com/
nservant/HiC-Pro 

 Knight and Ruiz's model (Rao et al., 2014) 
https://github.com/
aidenlab/juicer 

 

Aligning reads separately to the genome is the basic rule of Hi-C alignment 

(Lieberman-Aiden et al., 2009). However, mapping of Hi-C reads is not 

straightforward given the presence of ligation junction sequence within a read 

can lead to mapping failure (Figure 2). Furthermore, it is not possible to know a 



 75  

priori whether the ligation junction will be found within either the forward, reverse 

or both ends of the sequence reads. In order to overcome this issue two ligation 

junction targeting strategies have been developed (Table 1). These include a 

truncation method before mapping (Wingett et al., 2015), which trims off the 

sequence downstream of the ligation junction before mapping, and an unmapped 

read rescuing strategy after mapping (Servant et al., 2015), which trims off the 

sequence downstream of the ligation junction in unmapped reads, and is then 

followed by a second round of mapping using the trimmed sequences. In addition 

an iterative mapping strategy may address the ligation junction issue by first 

trimming the reads into short sequences (25 bp) which are then extended by 5 bp 

to the reads iteratively until a unique alignment or maximum read length is 

achieved (Imakaev et al., 2012).  

 

After alignment, the next step is to remove low mapping quality reads and non-

unique alignments (Figure 1 and Table 1) using tools such as SAMTools (Li et 

al., 2009). Subsequent to this filtering, uninformative read pairs are identified 

based on their unique features and removed. Reads that fail to match with a 

mate-pair (i.e. singletons) are removed, as they fail to infer a valid interaction 

(Servant et al., 2015). When restriction enzyme digestion is used within the HiC 

library preparation, we expect each read of a pair to be observed in different 

restriction fragments, i.e. DNA segments between every two restriction sites. If 

both reads of a pair are located in the same fragment, this would indicate either 

self-ligation products of the fragment or ‘dangling ends’ (Lajoie, Dekker and 
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Kaplan, 2015; Servant et al., 2015). These fragments also need to be removed 

as they introduce a known bias from library preparation. Finally, PCR duplicates 

are removed since they will overinflate the quantification of Hi-C contacts 

(Lieberman-Aiden et al., 2009; Rao et al., 2014), through identification and 

removal of read pairs that share identical 5’ and 3’ ends. 

 

After mapping QC filtering is complete, the remaining read pairs are considered 

valid 3D interactions. In order to quantify the interactions (Figure 1), an 

interaction frequency matrix is generated by binning the genome into equal size 

bins and then mapping the valid interaction pairs to each individual bin 

(Lieberman-Aiden et al., 2009). The choice of bin size depends on the number of 

identified valid interaction pairs, which is a function of the coverage and quality of 

the sequencing data, and it is usually used as a reference of the resolution of Hi-

C dataset (Lieberman-Aiden et al., 2009; Rao et al., 2014). In short, the smaller 

the bin size, the higher the resolution of detected interactions. It is important to 

choose a suitable bin size for Hi-C data, as mapping to undersized bins will result 

in a sparse, zero-inflated matrix, which impacts the subsequent normalisation 

step and downstream analysis including identifying statistically significant 

interactions and structural domains such as topologically-associated domains 

(TADs) or A/B compartments. The smallest bin size (and therefore highest 

resolution) seen in human Hi-C studies has been one kilobase bin size, and 

required approximately 4.9 billion interactions (Rao et al., 2014). Most studies 

however, are analysing data at lower resolutions, with a range of 10-40 kb bin 
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size (Javierre et al., 2016; Taberlay et al., 2016; Rodrigues et al., 2018; Barisic et 

al., 2019).  

 

The selection of bin size should also take into consideration the biological 

question at hand. For example, if a study aims to refine a region to be 

investigated based on the 3D structure, larger bin size such as 50-150 kb can be 

used to identify TADs or A/B compartments at multi-kilobases to megabases 

scale; while smaller bin sizes, such as 5-10 kb allow for the investigation of long-

distance interactions impacting regulatory elements such as transcription factors 

or enhancers (Dixon et al., 2012; Rao et al., 2014).  

 

After the creation of a interaction matrix, further normalisation is required to 

account for biases introduced in the Hi-C library preparation (Figure 1) 

(Lieberman-Aiden et al., 2009; Rao et al., 2014; Lajoie, Dekker and Kaplan, 

2015; Servant et al., 2015). A number of normalisation methods are widely used 

(Table 1) and can be classified into explicit and implicit methods based on the 

assumption of their models (Pal, Forcato and Ferrari, 2019). Explicit 

normalisation methods are designed to directly account for the sources of bias 

known to have originated from the Hi-C protocols or sequencing technologies 

(Yaffe and Tanay, 2011). There are three major sources of bias that are built into 

a probabilistic background model: non-specific digestion events in Hi-C 

experiment with restriction enzymes, restriction fragment lengths bias and GC 

content of the regions near the ligation sites (Yaffe and Tanay, 2011). By 
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contrast, implicit normalisation approaches are designed to normalize Hi-C data 

without making assumptions regarding the source of biases in the experiment, all 

of which are based on a matrix balancing method developed by Sinkhorn and 

Knopp (Sinkhorn and Knopp, 1967). One of the most popular methods is Iterative 

correction and eigenvector decomposition (ICE). This method was developed 

based on the assumption that the total number of interaction signals will be the 

same across all genomic loci (Imakaev et al., 2012). Recently, a new matrix 

balancing algorithm (Knight and Ruiz, 2013), which performs much faster with 

similar convergence properties as Sinkhorn-Knopp’s method, has been used to 

normalize interaction matrices in ultra-high-resolution Hi-C datasets (1 kb 

resolution) (Rao et al., 2014).  

 

Protocols/workflows for the analysis of Hi-C data have been optimised and 

standardised in computational pipelines, published studies and research projects 

including HiC-Pro, Juicer and the 4DN project (Servant et al., 2015; Durand et 

al., 2016; Dekker et al., 2017). However, there are three critical aspects of the 

analysis that require further optimization and investigation. Firstly, while Juicer 

and HiC-Pro, two of the most popular pipelines in current use, both summarise 

statistics at each step of the pipeline, there are no tools that conveniently 

summarise and import statistics metrics into a single document to assist QC on 

Hi-C libraries. Secondly, the choices of aligner and alignment strategy are 

different from study to study, mainly driven by the usage of developed pipelines, 

the types of protocol to generate Hi-C library and the quality of sequencing data. 
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HiC-Pro for example was developed based on the Bowtie2 aligner rather than the 

BWA-MEM aligner due to BWA-MEM being incapable of performing split read 

analysis, where each read in a read pair was considered as single-end 

sequencing data and this is essential for Hi-C data mapping. However in the 

latter updates of BWA-MEM, parameters that were specifically designed for Hi-C 

data mapping (i.e. the ‘5SPM’ flag) were included in the program, enabling the 

split parameters. This program benefits from having a shorter running time than 

Bowtie2, making it a preferable choice for alignment in later-published pipelines, 

such as Juicer. Lastly, the visualisation methods of Hi-C data, such as contact 

probability heatmap, circular plot, local arc track and multi-track visualisation 

(Akdemir and Chin, 2015; Kerpedjiev et al., 2018) are limited, particularly when 

integration of multiple genomic data types is considered. 

 

In this chapter, in order to optimize current computational methods of analysing 

Hi-C data, we first developed HiC-QC, a tool to summarise the metrics to assist 

quality control of Hi-C libraries. We then conduct a systematic comparison 

between two aligners Bowtie2 and BWA with different Hi-C data. Finally, we 

developed HiC-integrationmap and integration-tracks plot to facilitate the 

visualisation of Hi-C interaction integration, providing a new and complimentary 

tool for Hi-C data analysis. The source code of all developed tools are publicly 

available at https://github.com/ningbioinfostruggling/HiCvisualisation. 
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Results 

Quality control of Hi-C libraries using HiC-QC 
 

Quality control (QC) in Hi-C analysis is an essential first step in determining the 

quality of a sequencing library. Constructing a comprehensive chromatin contact 

map is expensive because it requires high sequencing depth (Rao et al., 2014). It 

is a risk therefore to conduct deep sequencing without first assessing the quality 

of the Hi-C library preparation. In previous Hi-C studies (Oksuz et al., 2020; Rao 

et al., 2014; Belaghzal, Dekker and Gibcus, 2017), it is common practice for the 

Hi-C libraries to be first sequenced at a low sequencing depth, generating 1~3 

million reads, before undergoing the standard downstream analysis steps (Figure 

1). QC is then conducted by obtaining statistics from each step to evaluate the 

quality of the Hi-C library. Finally, libraries of good quality are chosen to be 

sequenced to a depth of hundreds of millions of reads to be used for answering 

biological questions or constructing chromatin contact maps. To ensure the 

quality of Hi-C libraries, based on the analysis procedures of the HiC-Pro 

pipeline, here we developed a computational tool called HiC-QC to summarise 

useful statistics in the QC of Hi-C libraries. 

 

While HiC-QC does not generate its own statistics, it relies on statistical metrics 

from other programs, such as samtools, to summarise 13 different metrics 

throughout the Hi-C analysis process. These statistics include many of the 

recommended statistics from published studies, such as the uniquely mapping 
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rate, the duplication rate and the ratio of inter- and intra- chromosomal 

interactions. Standard sequencing and mapping statistics such as “Sequenced 

Read Pairs”, “Unmapped”, “Low Mapping Quality” and “Unique Aligned Pairs”, all 

of which are common in QC of other types of sequencing data, are included 

(Figure 3). The “Unmapped” flag indicates the number of reads that failed to align 

to the reference genome. It has been suggested that a mapping rate below 90% 

(i.e. more than 10% reads unmapped) indicates that either the sequencing run is 

problematic or that the sample was contaminated (Lieberman-Aiden et al., 2009; 

Jin et al., 2013; Rao et al., 2014). The “Ligation” flag represents a statistic that is 

specifically for Hi-C data generated by restriction enzymes digested protocols. It 

reveals the number of sequencing reads that contain the ligating DNA sequence, 

which is introduced when constructing the Hi-C library.  

 

The ligation sequence is dependent on which restriction enzyme was used in the 

experiment, for example, 6-base cutters that generate one-base overhang result 

in ligation sequences that are found at both ends, such as the ligation sequence 

of HindIII (cutting sequence A^AGCTT) which will result in a AAGCTAGCTT 

ligation sequence. On the other hand, the ligation sequences of 4-base cutters 

are generated by their digest sequences, the ligation sequence of MboI (cutting 

sequence ^GATC) for example will result in a GATCGATC ligation sequence. 

The number of sequencing reads that include the ligation sequence can be used 

for estimating if the ligation step is successful. Although it depends on the insert 

size and read length, it was suggested that the percentage of raw sequencing 
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reads that contain ligation sequence should be around 30% to 40% for a 

successful experiment (300-500bp insert size and 101bp read length) (Rao et al., 

2014; Servant et al., 2015). The “Valid contact” flag indicates the number of 

reads that remain following the filtering step, and are hence regarded as valid 

interaction pairs. The “Duplicate contacts” flag represents interaction pairs that 

share the exact same sequenced DNA. These are typically duplicated DNA 

fragments generated by PCR during sequencing and therefore the amount of 

them can reflect the quality of the sequencing run.  

 

Besides duplicated pairs, another type of uninformative pair are both forward and 

reverse reads mapped to the same restriction fragments, which we call “Intra-

fragment pairs”. It has been suggested that a percentage of intra-fragment pairs 

greater than 20% would indicate the failure of either the digestion or ligation 

steps during the experiment (Rao et al., 2014; Servant et al., 2015). One 

important feature of the identified Hi-C contacts is the distance between two 

anchors of any interactions. Using the distance between anchors the contacts 

can be classified into short-range (<= 20 kb) intra-chromosomal interactions, 

long-range (> 20 kb) intra-chromosomal interactions and inter-chromosomal 

interactions (Figure 3). It has been suggested that the percentage of long-range 

intra-chromosomal interactions reveals the quality of a Hi-C library, with a score 

of 40% long-range unique contacts being considered a good candidate for further 

deep sequencing (Rao et al., 2014). As a final quality control the distribution of 

the read pair direction of intra-chromosomal contacts should be approximately 
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even for a high quality Hi-C experiment, with a skewed distribution indicating that 

the observed interactions are not the result of a close proximity ligation 

(Lieberman-Aiden et al., 2009; Rao et al., 2014; Servant et al., 2015; Durand et 

al., 2016).  

 

 
Figure 3: An example of output from HiC-QC. Statistics that can be used for 
quality control of a Hi-C dataset is summarised by HiC-QC. When output as a 
Microsoft Excel spreadsheet statistics for a library are coloured to indicate 
general quality. Red indicates statistics that fall outside recommended ranges, 
green within. 
 

HiC-QC is able to search through the output directory created by HiC-Pro 

(Servant et al., 2015) to obtain the above summary statistics from each step and 

output a summary in either comma-separated values (csv) format or Microsoft 

Excel format. These two formats allow a user with command line experience to 

interact with the data directly through a command line interface (csv), or through 

Excel for users more familiar with the Microsoft interface. An additional feature of 

the Microsoft Excel format output is the conditional colouration of each cell 

(coloured red or green) indicating if the statistics fall within recommended ranges 

for high quality data. Figure 3 gives an example of the HiC-QC output in Excel 

format. The second library, HiC_02, achieves quality metrics within 
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recommended ranges for all assessed statistics, indicating this library is a good 

candidate for deep sequencing. However only 31.22% of the unique alignments 

of the first library HiC_01 were identified as valid Hi-C interactions, and 50.62% 

of the alignments are intra-fragment pairs. Together with the statistics that only 

around 10% of the raw sequencing reads contain the ligation sequence, we can 

speculate that HiC_01 may have failed at the ligation step during library 

construction. 

Comparing alignment strategies of Hi-C data 

The 3D conformation of a chromosome consists of numerous distal physical 

interactions between DNA from different regions. Ideally, each DNA fragment in 

the Hi-C library originates from two DNA fragments that are cross-linked and may 

be located in different areas across the genome (Figure 2). While HiC-QC can 

facilitate the quality control step of the analysis, it is difficult to select a suitable 

aligner to map Hi-C data to the reference genome. Two widely used choices for 

aligning Hi-C data to the reference genome in common use are BWA and 

Bowtie2 (Table 2). However, there is no study that systematically compares 

these two aligners regarding their ability to map Hi-C data generated from 

different protocols, such as in situ Hi-C, capture Hi-C and DNase Hi-C.  
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Table 2: Aligner and mapping quality threshold choice of published Hi-C data 
analysis pipeline and studies.  
Pipeline/Study Aligner MAPQ 

threshold 
Extra information Reference 

Juicer BWA 30 - (Durand et al., 2016) 

HiC-Pro Bowtie2 10 Post-trimmed 
reads if restriction 
sites appeared 

(Servant et al., 2015) 

HiCUP Bowtie2 30 Pre-trimmed 
reads if restriction 
sites appeared 

(Wingett et al., 2015) 

HiCPipe BWA 10 - (Yang et al., 2020) 

FAN-C BWA/Bowtie 3/30 Provide both 
aligners for user 

(Kruse, Hug and 
Vaquerizas, 2020) 

HIPPIE BWA 30 - (Hwang et al., 2015) 

diffHiC Bowtie2 10 Pre-trimmed 
reads if restriction 
sites appeared 

(Lun and Smyth, 2015) 

in situ Hi-C BWA 30 - (Rao et al., 2014) 

Capture Hi-C Bowtie2 30 Pre-trimmed 
reads if restriction 
sites appeared 

(Mifsud et al., 2015) 

FIRE BWA 10 - (Schmitt et al., 2016) 

Compendium of 
PCHi-C 

BWA 10 - (Jung et al., 2019) 

DNase Hi-C BWA 30 - (Ramani et al., 2016) 

 

In order to compare Bowtie2 and BWA based on in their ability to correctly map 

different types of Hi-C data to the genome, we obtained three good quality 

datasets from published studies, including a in situ Hi-C library of Jurkat cell line 

(Lucic et al., 2019), an in situ DNase Hi-C library of RUES2 cell line (Bertero et 

al., 2019), and a Capture Hi-C library of GM12878 cell line (Jung et al., 2019). 

Additionally, in order to establish how these aligners perform with low-mapping 
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rates, we also include a mouse in situ Hi-C library of CH12-LX cell line (Rao et 

al., 2014). Notably, the following experiments are mainly focused on comparing 

the capability of different aligners to map different types of Hi-C data. In order to 

account for the variability of the library size, percentage instead of count will be 

used in the following comparison analyses. It has previously been suggested that 

sequencing reads from DNase Hi-C data is impacted by Illumina sequencing 

adapters (Ma et al., 2018), hence we decided to trim the sequencing adapters 

prior to the alignment process using AdapterRemoval (Schubert, Lindgreen and 

Orlando, 2016) across all datasets. Trimmed data was then aligned to the human 

genome using BWA-mem or Bowtie2 with strategies specifically designed for Hi-

C data. In this comparison, we used hg19 genome as the reference genome 

because annotation databases including Roadmap Epigenomics (Roadmap 

Epigenomics Consortium et al., 2015), GTEx (GTEx Consortium et al., 2017) and 

the ENCODE project (ENCODE Project Consortium et al., 2020) are still mostly 

focusing on hg19 even though hg38 has been available since 2013. Additionally, 

hg19 is used in the tutorial of widely used HiC analysis workflows such as HiC-

Pro (Servant et al., 2015) and Juicer (Durand et al., 2016). We acknowledge 

however, that recent new versions of the human genome, particularly ones with 

fully resolved Telomere-to-Telomere human chromosomes (Miga et al. 2020), 

would significantly benefit the analysis of Hi-C datasets, potentially identifying 

novel areas of function. Notably, since the pre-truncated strategy was popularly 

used with Bowtie2 in the published pipeline (Table 1), we used the pre-truncation 

function from HiCUP (Wingett et al., 2015) to process sequencing reads before 
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alignment with Bowtie2. BWA-mem was used with the parameter “SP5M”, which 

was specifically designed for Hi-C data processing. In order to investigate how 

these strategies impact alignment, we also include a comparison with two 

aligners mapping the in situ Hi-C data of the Jurkat cell line using default 

parameters. Finally, the aligned data were processed to identify interactions 

using Pairtools (https://github.com/mirnylab/pairtools) with a mapping quality 

threshold of 30.  

 

After processing, we found that BWA tends to have a higher mapping rate 

compared to Bowtie2, even for the low-mapping rate dataset (CH12-LX) (Figure 

4A). However, the mapped reads reported by Bowtie2 tend to have a high 

mapping quality (MAPQ 30), with 15% to 20% of the mapped reads in human 

data analysed by BWA being below the mapping quality threshold (Figure 4). 

Although the two aligners generated different alignment counts (alignment pair 

with MAPQ>=30), the identified interactions counts are similar for in situ Hi-C 

data (Jurkat) and Capture Hi-C data (GM12878) (Figure 4A). However, when 

looking at DNase Hi-C specifically, BWA generated more Hi-C interactions (1.86 

fold), which was somewhat validated by the fact that most published research of 

DNase Hi-C data analyses tended to prefer BWA to conduct sequence alignment 

(Deng et al., 2015; Ramani et al., 2016; Bertero et al., 2019). Additionally, when 

comparing Hi-C data-specific strategies with default settings of both aligners, we 

found that the mapping rate significantly decreased with default parameters 

(Figure 4A). 
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Figure 4: Aligner comparison for different types of Hi-C data. A: the fraction of 
sequencing reads that successfully mapped to the genome and be identified as 
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Hi-C interactions. B: intersection between the identified interactions of different 
types of Hi-C data processed by BWA and Bowtie2. 
 

By investigating the identified interactions, we further observed that the same 

sample processed by two different aligners shared a high fraction of identified Hi-

C interactions (Figure 4B). For in situ Hi-C data and Capture Hi-C data, on 

average 83.76% of the Bowtie2-mapped interactions are found in 82.28% of the 

BWA-mapped interactions. However, 91.09% and 99.69% of the Bowtie2-

mapped interactions of the low-mapping rate data (CH12-LX) and DNase Hi-C 

data (RUES2) are found in BWA-mapped interactions, respectively, while 

72.49% (CH12-LX) and 51.64% (RUES2) of the BWA-mapped interactions are 

not detected by Bowtie2-mapped data (Figure 4B). 

 

In summary, for in situ Hi-C and capture Hi-C data, Bowtie2 and BWA seem to 

perform equally well with Hi-C data-specific parameters/strategy, while BWA 

requires strict filtering of uninformative alignments to identify Hi-C interactions. 

However, for low-mapping rate data and DNase Hi-C data, BWA outperforms 

Bowtie2 by identifying extra informative interactions. 

Visualisation of Hi-C data integration with HiC-integrationmap and 
integration-tracks plot 
 

One of the most popular approaches to visualize Hi-C contacts is plotting 

interaction intensity, which are represented by the read count of interacting bins, 

as a heatmap (Figure 5A). Additionally, a number of published studies have used 

arc plot (Javierre et al., 2016; Jung et al., 2019) or circos plot (Vieux-Rochas et 
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al., 2015; Klocko et al., 2016) to obtain a better visualisation of Hi-C interactions 

in specific regions. However, it is difficult to make use of the Hi-C interactions by 

only visualising the contacts alone without epigenomic annotations. Therefore, 

one important downstream analysis of Hi-C data is to integrate with other 

epigenomics data to uncover the regulatory mechanism governed by 3D 

structure (Javierre et al., 2016; Schmitt et al., 2016; Liu et al., 2020). Some 

interactive browsers, such as the UCSC browser (Kent et al., 2002) or the 

WashU Epigenome browser (Li et al., 2019) offer to overlay various types of 

sequencing data such as ATAC-seq, ChIP-seq, RNA-seq and SNPs data to 

integrate with Hi-C data, so that 3D interactions can be functionally annotated. 

However, combining these integrations into a single figure is more intuitive and 

informative, and can better assist the interpretation of Hi-C contacts. We 

therefore develop two innovative plot functions, “HiC-integrationmap” and 

integration-track plot to better visualise Hi-C interactions and other data types. 
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Figure 5: Visualisation methods of Hi-C data. A: using heatmap to visualise Hi-C 
interactions, the sequencing read pair count mapped to each interacting bin pair 
was used to determine the intensity of interactions, darker the color would 
indicate stronger interaction. B: An example of a HiC-integrationmap. The arc 
plot at the top displays the Hi-C interactions in this region, the heatmap 
underneath shows overlapping levels of each chromHMM state. C: An example 
of integration-tracks plot. The red triangles in the heatmap indicate Topologically 
Associated Domains (TADs) and the large green-dotted triangle indicates the 
boundary of the current plot. Tracks displayed below the chromosome 2 
ideogram display integrating datasets along with various types of cell type-
specific data including UCSC Gene Transcript information, T cell subsets (T-
helper1 and Treg) expression data, Treg super-enhancer sets and 15-state 
ChromHMM track.  
 

Tissue and cell type-specific chromHMM states data, which is an annotation of 

the non-coding region of the genome, are widely used in integration with Hi-C 

interactions to annotate potential functional interactions (Schmitt et al., 2016; 

Greenwald et al., 2018; Liu et al., 2020). These chromHMM states data are 

predicted by a hidden markov model with five histone modification marks 

(H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3) (Roadmap 

Epigenomics Consortium et al., 2015). Therefore, a novel visualisation method 

called HiC-integrationmap was developed 

(https://github.com/ningbioinfostruggling/HiCvisualisation).  

 

HiC-integrationmap is able to generate a heatmap with Hi-C interaction 

annotated above (Figure 5B) by defining a specific region and inputting the 

binned Hi-C interactions along with the appropriate chromHMM states data. In 

the heatmap, each column is the integration status of a bin, some of which are 

the anchors of the Hi-C interactions, and each cell is the z-score normalised 

overlapping bases of that bin with the chromHMM states. This heatmap is 
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particularly useful in seeking potentially functional Hi-C interactions. For example, 

in a 2Mb plotting region (chr3:17-19Mb) (Figure 5B), we can observe dominant 

overlapping signals from the enhancer (Enh) and generic enhancer (EnhG) 

states, which indicate enhancers, along with Hi-C interactions linking to 

2_TssAFlnk and 1_TssA overlapping areas, indicating promoters. Together they 

suggest that there are promoter-enhancer interactions that might govern the 

regulation of the gene in this region. 

 

Besides chromHMM states, other epigenomics data are useful for Hi-C data 

integration. These may include data from sources such as ATAC-seq, RNA-seq, 

ChIP-seq of important transcription factors, single nucleotide polymorphism 

(SNP) and gene annotation. Taking advantages of published packages from 

bioconductor (Gentleman et al., 2004), we combined R packages Gviz, which is 

useful for visualising genomic data as tracks, GenomicInteractions, which can 

process Hi-C data into track format, and coMET, which can generate color track 

for chromHMM states data visualisation, to develop an integration-tracks plot 

(Figure 5C). One of the most important advantages of the integration-tracks plot 

is that it allows visualisation of as much integration data as the user requires 

simultaneously.  

 

An illustrative example shown in Figure 5C displays overlapping regulatory T cell 

(Treg) specific data and three type 1 diabetes-specific SNPs in the plotting area 

with overlapped ATAC-seq signals and transcription factor FOXP3-binding sites. 
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All of these datasets overlap with gene CTLA4, indicating that these SNPs might 

be important for the regulation of CTLA4, and further that this regulation tends to 

be Treg-specific. Additionally, we also developed an R function HiCheatmap 

(https://github.com/ningbioinfostruggling/HiCvisualisation) to generate the classic 

heatmap as triangle shape (Figure 5C) to visualise the interaction intensity in the 

plotting region, with optional indication of predicted topologically-associated 

domains (TADs).  

Discussion 

In this chapter, we reviewed and summarised four standardised steps commonly 

used to process Hi-C data in published studies, including aligning sequencing 

reads to reference genome, filtering uninformative read pairs, generating 

interaction matrix and matrix normalisation. However, we also demonstrated that 

there are three aspects of the process that are able to be further optimized.  

 

Assessment of Hi-C data quality is an important part of reproductive research, 

however, no tools currently exist to extract and summarise quality statistics from 

standard Hi-C analysis pipelines. To overcome this limitation we developed a 

computational pipeline called HiC-QC that is able to summarise QC statistics and 

output these metrics to file in either csv or Excel format depending on the user 

requirement. However, there are still limitations in both HiC-QC and the field of 

quality control of Hi-C data. Currently, HiC-QC can only be used with the results 

of HiC-Pro, one of most popular pipelines. The ability to include additional input 
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types will be addressed in future releases, specifically when using pipelines, such 

as Juicer (Durand et al., 2016) and FAN-C (Kruse, Hug and Vaquerizas, 2020), 

that rely on the BWA alignment. This will be addressed in a future release, where 

we will consider output structures of other commonly used pipelines, especially 

for pipelines using BWA aligner, which we found is a more appropriate option 

when analysing DNase Hi-C data, such as Juicer (Durand et al., 2016) and FAN-

C (Kruse, Hug and Vaquerizas, 2020). Additionally, with more and more Hi-C 

derived protocols being developed, such as HiChIP (Mumbach et al., 2016), BL-

Hi-C (Liang et al., 2017), Ocean-C (Li et al., 2018), DLO Hi-C (Lin et al., 2018), 

tagHi-C (Zhang et al., 2020) and scHi-C (Nagano, Wingett and Fraser, 2017), 

data generated by different protocols may require protocol-specific statistics, 

such as capture efficiency and on-target rate for capture Hi-C and HiChIP, to 

better evaluate the quality of the library, and the recommended ranges for 

specific statistics may need adjustment for different datasets. 

 

Further to the development of the new Hi-C-QC tool, we compared Bowtie2 and 

BWA, two of the most popular choices for aligning Hi-C data, by investigating 

their performance in treatment of low mapping rate Hi-C data, normal in situ Hi-C 

data, capture Hi-C data and DNase Hi-C data. We found that when treating in 

situ Hi-C and capture Hi-C data, BWA and Bowtie2 identify a similar number of 

Hi-C interactions with over 80% of the interactions overlapping (Figure 2). BWA 

outperformed Bowtie2 when aligning DNase Hi-C data and low mapping quality 

data. Currently, the alignment of Hi-C data to reference genomes such as human 
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hg38 and mouse mm10 genome has been popularly utilised, however graph-

based reference genomes have become more and more popular because they 

allow sequence read mapping to exact haplotypes, and there are recent studies 

showing that mapping to graph-based genomes can improve accuracy compared 

to linear genomes (Garrison et al., 2018; Rakocevic et al., 2019). Therefore, in 

the future, developing a graph-based alinger for Hi-C data may benefit the 

society of researchers investigating 3D genome structure and allow further 

understanding of the mechanism of how 3D interactions govern gene regulation. 

 

Last but not least, current existing visualisation methods of Hi-C data often 

neglect data integration, which can assist the functional interpretation of 

chromatin interactions. To improve visualisation and interpretation of Hi-C 

interaction, we therefore developed HiC-integrationmap and integration-track 

plot, which are able to assist in the visualisation of Hi-C interactions as well as 

with the integrations with other epigenomics data. However, a limitation of both of 

these visualisation tools is the need to input only the specific region of the 

genome to be inspected. This highlights a classic dilemma in the visualising of 

Hi-C data where we either visualise the whole genome but it is overwhelming to 

add integration visualisations, or we only visualise a specific region, but it 

requires prior information regarding the region of interest. One potential solution 

would be to develop an interactive browser for Hi-C data, similar to the UCSC 

browser (Kent et al., 2002) or the WashU Epigenome browser (Li et al., 2019). 

Such interactive browser version of HiC-integrationmap and integration-track plot 
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can be developed by R shiny app or python Dash framework in the future. 

Additionally, interactive visualisation of large amounts of data integration requires 

a large investment in computational resources. This limitation could be 

addressed by the utilisation of a cloud computing platform such as those hosted 

by Amazon Web Services, Google cloud platform and Microsoft Azure. 
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Chapter 3 

 

3DFAACTS-SNP: Using regulatory T cell-

specific epigenomics data to uncover 

candidate mechanisms of Type-1 Diabetes 

(T1D) risk 
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Abstract 

Background 

Genome-wide association studies (GWAS) have enabled the discovery of single 

nucleotide polymorphisms (SNPs) that are significantly associated with many 

autoimmune diseases including type 1 diabetes (T1D). However, many of the 

identified variants lie in non-coding regions, limiting the identification of 
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mechanisms that contribute to autoimmune disease progression. To address this 

problem, we developed a variant filtering workflow called 3DFAACTS-SNP to link 

genetic variants that are associated with T1D to the loss of immune tolerance in 

regulatory T cells (Treg). 

Results 

Using 3DFAACTS-SNP we identified 36 SNPs with plausible Treg-specific 

mechanisms of action contributing to T1D from 1,228 T1D fine-mapped variants, 

identifying 119 novel interacting regions resulting in the identification of 51 

candidate target genes. We further demonstrated the utility of the workflow by 

applying it to three other meta-analysed SNP autoimmune datasets, identifying 

17 Treg-centric candidate variants and 35 interacting genes. Finally, we 

demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of all 

known common (>10% allele frequency) variants from the Genome Aggregation 

Database (gnomAD). We identified 7,900 candidate variants and 3,245 candidate 

target genes, generating a list of potential sites for future T1D or autoimmune 

research.  

Conclusions 

We demonstrate that it is possible to further prioritise variants that contribute to 

T1D based on regulatory function and illustrate the power of using cell type 

specific multi-omics datasets to determine disease mechanisms. Our workflow 

can be customised to any cell type for which the individual datasets for functional 

annotation have been generated, giving broad applicability and utility. 
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Background 

Autoimmune diseases are chronic inflammatory disorders caused by a 

breakdown of immunological tolerance to self-antigens, which results in an 

imbalance between multiple immune cells, including conventional T cells 

(Tconvs) and regulatory T cells (Tregs) (1). The imbalance of immune cell 

function can lead to the destruction of host tissues, such as is observed in 

multiple autoimmune diseases, including rheumatoid arthritis (RA) (joint tissues), 

multiple sclerosis (MS) (myelinated nerves) and inflammatory bowel disease 

(IBD) (intestine /colon). In the case of Type 1 Diabetes (T1D), a reduction of Treg 

cell function contributes to unrestrained immune destruction of the insulin-

generating pancreatic beta cells (2).  

 

Regulatory T cell function is mediated by expression of the Foxhead Box Protein 

3 (FOXP3) transcription factor (TF) as evidenced by severe autoimmune 

diseases observed in FOXP3-deficient scurfy mice (3) and IPEX in humans (4–

6). RNA sequencing and chromatin immunoprecipitation (ChIP) studies have 

uncovered an extensive FOXP3-dependent molecular program involved in Treg 

cell development and stability (7,8), and functional fitness of Treg is dependent 
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on stable robust expression of FOXP3, such that reduced FOXP3 expression is 

linked to reduced Treg function. For example, in a small T1D cohort study, we 

have shown that there is a decrease in FOXP3 expression in the Treg of children 

over the first 9 months post diagnosis (9). However, since FOXP3 itself is not 

mutated in autoimmune diseases other than IPEX, the loss of FOXP3 levels and 

functional fitness is likely caused by perturbation of the Treg gene regulatory 

network. Hence, by decoding the regulatory network of FOXP3, and mapping the 

genetic risk to the key functional genes it impacts, we will gain a better 

understanding of how autoimmune diseases like T1D could be countered.  

 

T1D occurs spontaneously in approximately 80% of individuals, however 

predisposition to the disease has a strong pattern of inheritance (10). Genome-

Wide Association Studies (GWAS) have identified over 50 loci that are strongly 

associated with T1D, based on the genotyping of a total of 9934 cases and 

16956 controls from multiple cohorts and resources (11). In addition, fine-

mapping of immune-disease associated loci represented on the Immunochip 

Array (12) followed by a Bayesian approach identified 44 significant T1D-

associated Loci and over 1,000 credible SNPs (13). While alterations in either the 

effector or regulatory arms of the immune system can result in loss of tolerance 

and autoimmune disease, we have used a Treg centric view of loss of tolerance. 

This is based on the observation that defects in Treg function have been reported 

in autoimmune diseases including T1D and MS (14,15) and that experimental 
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deletion of FOXP3 or reduced Treg function results in autoimmune disease in 

many model systems (16,17).  

 

Although GWAS have revealed significant associations between genetic variants 

and T1D, the vast majority of the sampled single nucleotide polymorphisms 

(SNPs) are located in non-coding regions that do not alter the amino acid 

sequence in a protein, making it difficult to assign direct biological functions to 

variants (18–20). Non-coding variants can be linked to direct changes in gene 

expression by identifying expression quantitative trait loci (eQTL) that aim to 

associate allelic changes to a cis (within 1Mbp of the associated gene) and trans 

(>1Mbp) change in gene expression (21,22). This additional direct gene 

expression association however still fails to identify direct mechanisms by which 

a specific genetic variant can change gene expression. In addition, usage of 

eQTLs to establish direct changes from GWAS variants is somewhat limited to 

local, or cis-eQTLs (23,24), whereas mounting evidence shows that long-range 

regulatory connections, driven by three-dimensional chromatin interactions 

(25,26), can mediate these changes in expression.  

 

With the increasing affordability and availability of high-throughput sequencing 

techniques and various epigenomics sequencing data protocols, the impact of 

genome organization and accessibility can now be added to the functional 

annotation of genetic risk. Chromatin immunoprecipitation sequencing (ChIP-

seq) allows us to identify the binding sites of a transcription factor; assay for 
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transposase-accessible chromatin sequencing (ATAC-seq) data offers the ability 

to identify highly accessible regions of the genome; and high resolution 

chromosome conformation capture sequencing (Hi-C) data can facilitate the 

investigation of the three-dimensional structure of the genome. Since it is 

believed that the mechanisms by which non-coding SNPs contribute to diseases 

are mostly via changes to the function of regulatory elements (20), we believe 

that combining multiple genomics and epigenetics sequencing data can further 

reveal the relationship between GWAS SNPs and disease pathways. Our 

hypothesis is that the genetic variation that specifically alters Treg function will 

reside in open chromatin in Treg cells that is bound by FOXP3 and the genes 

controlled by these by regulatory regions can be identified by chromosome 

conformation capture approaches. Therefore, in this paper, we describe a 

filtering workflow using multiple sequencing data from human Tregs, aiming to 

identify plausible immunomodulatory mechanisms and potentially find previously 

unknown connections between causative variant SNPs significantly associated 

with T1D and the genes they impact. 

Results 

Post-GWAS filtering using Treg-specific epigenomic datasets 

prioritises functionally relevant genetic variants contributing to T1D  

As T1D is partly a consequence of Treg dysfunction, we infer that variants 

contained within active regulatory regions of Treg cells are likely to contribute to 

disease progression by impacting Treg function. A view supported by the finding 
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that T1D associated SNPs are enriched at Treg-specific regulatory regions (27). 

Therefore, starting with published T1D GWAS variant information, we designed a 

filtering workflow (Figure 1) using multiple human Treg-specific epigenomic data 

to identify perturbations within defined “regulatory T cell active regions”.  

 

 
Figure 1: Diagram of the individual components of the Treg-specific 3DFAACTS-
SNP filtering workflow for identifying variants that are potentially causative to 
Type 1 Diabetes (T1D). GWAS or fine-mapped variants (on the left) are 
intersected with different filtering elements, including Treg ATAC-seq peaks, 
interactions from Treg Hi-C, promoters or enhancers and previously identified 
FOXP3 binding regions in Treg cells (28), resulting in filtered variants we termed 
3DFAACTS SNPs. 
 

In order to obtain highly accessible chromatin regions in Treg, we performed 

Transposase-Accessible Chromatin using sequencing (ATAC-seq) on resting 

and stimulated Treg cells from three donors and sequenced to an average of 

37.1 million reads (± 4 million) per sample. From the ATAC-seq data, we 

identified 525,647 ATAC-seq peaks on average (Additional file1: Table S1). 

These ATAC-seq peaks were then merged into 683,954 non-redundant peaks 

and used to screen for variants located in accessible regions in regulatory T cells 

as the first filtering step of the 3DFAACTS-SNP pipeline (Figure 1).  
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Numerous studies have shown that three dimensional (3D) interactions play 

important roles in gene regulation, mediated by DNA looping bringing enhancers 

and promoters together at transcriptional hubs (29–31). As a result, distant loci 

which physically interact with disease associated regulatory regions can be 

potentially impacted by these regions. To identify 3D interacting regions in Treg 

cells, we generated and sequenced Treg in situ Hi-C libraries. Two technical 

replicates of human Treg Hi-C libraries were sequenced to an average depth of 3 

million reads, and after processing using HiC-Pro (32) and quality control by HiC-

QC, generated 459,244 and 1,441,362 Hi-C valid interactions respectively 

(Additional file1: Table S2). We extended these interactions to form 2000bp (+/- 

1000bp upstream and downstream) windows at both ends of each interaction. 

We then collapsed interactions by merging interactions with overlapping anchors 

to generate non-redundant interaction pairs which represent Hi-C interactions in 

Tregs. These non-redundant interactions were then integrated with the variant 

associated ATAC-seq peaks identified above to identify accessible interacting 

regions.  

 

To assign potential function to identified variant associated ATAC-seq peaks and 

Hi-C interacting regions we next determined the overlap of these regions with 

enhancer and promoter annotations (Figure 1). This included 113,369 enhancers 

(mean size of 698bp) identified by the Functional Annotation of the Mammalian 

Genome (FANTOM5) project (33) and promoter regions (n = 73,171) associated 

with GRCh37/hg19 UCSC known transcripts. Promoters were defined by 
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extending upstream 2 kb of transcription start sites (TSS). In addition, we 

extended the list of regulatory regions using the 15 state chromHMM model for 

CD4+ CD25+ CD127- Primary Treg cells from the Roadmap Epigenomics 

Project (34). We defined chromHMM states EnhG, Enh and EnhBiv as 

enhancers and TssA, TssAFlnk, TssBiv and BivFlnk as promoters. FANTOM5 

enhancers and defined promoters and chromHMM enhancers/promoters states 

were then merged respectively to represent all possible genetic regulatory 

elements, covering 7.49 % of the genome (Additional file2: Table S3). 

 

The transcription factor FOXP3 is critical for Treg function and orchestrating 

immunological tolerance, and stable high FOXP3 expression levels are observed 

specifically in Tregs (3,28,35). Therefore, by intersecting filtered SNPs with 

significant human FOXP3-binding signals, we can largely constrain SNPs within 

regulatory regions to FOXP3 controlled Treg-specific gene networks (Figure 1). 

We used 8,304 (mean size = 1317bp) FOXP3 ChIP-chip peaks from our previous 

study (28) to specify FOXP3 binding in humanTreg cells. Of interest, by 

searching the Gene & Autoimmune Disease Association Database (GAAD) (36), 

we obtained 245 annotated genes that are associated with T1D, and found a 

significant enrichment of FOXP3 binding sites in T1D-associated genes (Fisher 

exact test: P-value = 4.519e-09), suggesting a strong association between T1D 

risk and FOXP3 controlled Treg function. Taken together, FOXP3 binding, 

physical interaction, regulatory element and open chromatin regions offer a large 
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subset of regions to use for GWAS variant prioritisation and functional annotation 

experiments. 

 

Linking fine-mapped T1D-associated variants to their targets via 

chromatin interactions  

Genetic studies have identified over 50 candidate gene regions that contain 

potentially causative SNPs that impact T1D (11). Recently, a study of T1D-

associated variants using Immunochip, a custom-made SNP array containing 

immune-related genetic variants from the 1000 genomes project (12,37), and 

Bayesian fine-mapping identified 1,228 putative causal variants associated with 

T1D (13). We used our workflow to further prioritise variants from this fine-

mapped set to investigate potentially causative SNPs that contribute to T1D via 

affecting promoter/enhancer interaction in human Treg cells. 

 

Table 1: T1D 3DFAACTS SNPs identified using the 3DFAACTS-SNP filtering 
workflow from T1D fine-mapping SNPs (13). The nearest locus indicates the 
closest gene to the variants in linear distance, while 3D interacting genes are 
genes contact with the variants via Treg Hi-C interactions. Overlapped regulatory 
elements of each 3DFAACTS SNPs are displayed, including chromatin states 
from a 15-states model (34) and expressed enhancers from FANTOM5 (38). 
Detailed SNP and interaction information is contained in Supplementary 
Information (Additional file 3: Table S4). 

Chromosome Position SNP id 

Nearest 
Locus 
(linear 

distance) 

Located within regulatory 
regions 

Interacting Genes (3D) 
Treg 

ChromHMM 
FANTOM5 
expressed 
enhancers 

chr2 
204700689 rs12990970 

CTLA4 
TssAFlnk   TLK1,NBEAL1,CD28 

204732714 rs231775 TssAFlnk   KIAA2012,ICOS 
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204738919 rs3087243 EnhG   ABI2,IQCA1 

chr3 

46327588 rs11718385 CCR3 Enh     

46391390 rs6441972 
CCR2 

TssAFlnk     

46401032 rs3138042 Enh   MLH1,LRRFIP2,CCR2 

46411661 rs2856758 
CCR5 

Enh   CCR3,TIPARP,KLHL24 

46412259 rs1799988 TssAFlnk   CCR3,TIPARP,KLHL24 

chr5 35852311 rs6890853 IL7R TssAFlnk   SPEF2 

chr6 

90948476 rs62408222 

BACH2 

Enh     

90983850 rs905671 Enh ! ZNF292,ANKRD6,LYRM2 

90984035 rs943689 Enh ! ANKRD6,LYRM2 

90995980 rs614120 TssAFlnk ! BACH2,AFG1L 

chr7 

50462418 rs10216316 

IKZF1 

EnhG   IKZF1,GRB10 

50462498 rs10215297 EnhG   IKZF1,GRB10 

50465206 rs55981617 EnhG   DPY19L2P3,IKZF1,DDC,C
NOT4 

50465654 rs12670555 EnhG   DPY19L2P3,IKZF1,DDC,C
NOT4 

chr10 

6088743 rs12722508 

IL2RA 

TssAFlnk   IL2RA,PFKFB3,HECTD2-
AS1 

6094697 rs61839660 TssAFlnk   SFMBT2 

6096667 rs12722496   ! 
IL2RA,RBM17,PFKFB3,LI

NC02649, 
PPA1,BORCS7-ASMT 

6107534 rs11597367 Enh   IL15RA,IL2RA,SFMBT2 

chr12 

9910720 rs3176793 

CD69 

TssA   CD69 

9912182 rs2160086 TssA   CLEC2D,CD69,CLEC2A 

9912730 rs3176789 TssA   CLEC2D,CD69,CLEC2A 

9916640 rs3136559 Enh   CD69,YBX3 

9925758 rs1029992 Enh   CHD4,BORCS5 

9926064 rs1029991 Enh   CHD4 

9926397 rs1029990 Enh ! CHD4,CLEC2D 
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9926624 rs10844749 Enh   CHD4,CLEC2D 

9926784 rs1540356 Enh   CHD4,CLEC2D 

chr15 
38903672 rs16967112 

RASGRP1 
Enh ! RASGRP1,CHP1, 

DNAAF4-CCPG1,ZNF592 

38903884 rs56249992 Enh   RASGRP1,CHP1,DNAAF4
-CCPG1 

chr16 11188949 rs71136618 CLEC16A Enh   RMI2 

chr17 38755665 rs11656173 SMARCE1 Enh ! RARA,TOP2A 

chr18 12838767 rs17657058 PTPN2 Enh   SPIRE1,PIGN 

chr22 30581722 rs5753037 HORMAD2 Enh     

*Note: Genes in bold indicate novel 3D interacting genes of the identified SNPs. 

 

From the 1,228 fine-mapped T1D-associated SNPs, we identified 36 variants that 

meet our filtering criteria as described above, in this study we will refer to them 

as T1D 3DFAACTS SNPs. These variants are located at 14 different 

chromosomal loci and distally interact with a further 80 regions in Tregs (Table 1 

& Additional file 3: Table S4). The majority of variants (71.4%, 25 out of 35 

SNPs) were located in enhancer regions rather than promoters while one variant, 

rs614120 is located in both the TssAFlnk chromHMM state and T cell-specific 

enhancers from FANTOM5. Given that a TssAFlnk state can either indicate a 

promoter or enhancer (39), combining with the identified FANTOM enhancer 

information we believe that rs614120 is more likely to be located within an 

enhancer region. This observed variant enrichment over enhancer states may be 

caused by an uneven number of promoters and enhancers used in the filtering 

scheme, where the accumulated bases of enhancers (77,217,165 bp) is 

significantly larger than promoters (71,634,647 bp). Another plausible 
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explanation of this bias is that risk variants of T1D are more likely to be in 

enhancer regions and influence the transcriptional output via affect the function 

of enhancers. This is consistent with the summary in previous review (173) that 

the number of found genetic risk variants that affect enhancer function is 

estimated to be much larger than the ones that impact promoter function. Of the 

14 loci identified, 8 contained more than two plausible variants across the loci. 

For example, variants located near the CD69 gene on chromosome 12 had the 

highest number of filtered variants, with 9 variants located in regulatory regions 

around the gene. In order to annotate the filtered variants to nearby genes, we 

took two approaches: annotated genes that were located in proximity to the 

SNPs using linear, chromosomal distances, and genes identified by their 

interaction with variant-containing regulatory regions via Treg Hi-C interactions 

(Table 1). Genes proximal to the identified 36 T1D variants include CTLA4, 

CCR5, IL7R, BACH2, IKZF1, IL2RA, CD69, RASGRP1, CCR3, CCR2, 

CLEC16A, HORMAD2 and PTPN2. These genes have previously been 

associated with T1D (13) and in addition other autoimmune disorders such as 

Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Crohn’s Disease (CD) and 

Inflammatory Bowel Disease (IBD) (40–44). Additionally, we annotated the 

filtered variants using eQTL data across all tissues from the Genotype-Tissue 

Expression (GTEx) project (45) and immune cells using the DICE database (46). 

We found that 12 filtered SNPs are annotated as the eQTL to their nearest loci 

(Additional file 3: Table S4) while 4 SNPs, rs11718385 (CCR3), rs62408222, 

rs905671 and rs943689 (BACH2) were identified as eQTL to their nearest gene 
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(nondirected) in Tregs (46). These data confirmed the ability of 3DFAACTS-SNP 

to identify potential disease associated regulatory region-target gene networks in 

a cell type specific manner.  

 

In addition to the annotation of the 36 T1D SNPs to 14 genes in closest linear 

proximity, 3DFAACTS-SNP identified 119 interacting regions and a further 51 

genes that interact with the variant containing regulatory regions via Treg Hi-C 

(Table 1 & Additional file 3: Table S4). We next used the 15 states regulatory 

model for CD4+ CD25+ CD127- Treg primary cells from the Roadmap 

Epigenomics Project (34) to annotate interacting regions. These regions most 

frequently overlapped active chromatin states associated with transcription and 

gene regulation including states associated with weak transcription (5_TxWk) in 

30% of identified regions, enhancers (7_Enh) in 29%, flanking active TSS 

(2_TssAFlnk) in 21% and 13% of regions located in active TSS state (1_TssA) 

(Additional file 3: Table S4). Two genes, DPY19L2P3 and DDC were then 

dropped from further analysis as they did not overlap active states in a Treg. 

Additionally, searches of the GAAD (36) indicated that 45 % (22/49) of the 3D 

interacting genes have been previously associated with autoimmune diseases 

including Rheumatoid arthritis, Multiple sclerosis, Inflammatory bowel disease 

and T1D (Additional file 3: Table S4). Of these 22 interacting genes, 6 have been 

shown to be significantly associated with T1D, including BACH2, CD28, CD69, 

ICOS, IL2RA and RASGRP1 (Additional file 3: Table S4). Overall, by overlapping 

with chromHMM states, we found 49 genes and 80 interacting regions that are 
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active in Tregs that are in close proximity to regulatory regions carrying TD-

associated variants. 

 

Taken together, our analysis identified 31 new T1D candidate genes that may be 

disrupted in Treg, and a further 18 genes that have been previously associated 

with T1D (13). Furthermore, 61% of these interacting regions and 13 genes 

overlap with induced Treg super-enhancers (SEs; 

http://www.licpathway.net/sedb/), consistent with these regions containing 

important Treg functional elements. When looking at the mean normalised 

expression (FPKM > 1) of genes in Treg samples in Gao et al 2019 (47), 78% of 

interacting genes (Additional file 3: Table S4) are expressed in Tregs, all of which 

were enriched for T cell specific gene ontologies (Additional file 1: Figure S1). 

These data indicate that distal interacting regions contain regulatory regions and 

genes important for Treg function and are consistent with a model in which the 

variant containing regulatory regions may contribute to T1D by disrupting the 

regulation of these distal interacting genes.  

 

The topological neighbourhood surrounding filtered T1D variants  

We next investigated the topological neighbourhood, i.e. the presence of 

topologically-associated or frequently interacting domains, in which regulatory 

regions harbouring the filtered T1D variants reside. By establishing putative 

boundaries of each 3D structural domain, we are then able to characterise the 

coordination of contacts within a loci and how they act to control gene 
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expression. We called topologically-associated domains (TADs) using Treg Hi-C 

data (Additional file 4: Table S5) used in the workflow described above and 

integrated with publicly available super-enhancer, chromHMM data of T cell 

lineages and Treg expression data (48). All data was overlapped across each 

locus and displayed in supplementary figures 2-13.  

 

TADs are called based on the frequency of interactions within a region (49), with 

physical interactions between two loci generally decaying with increasing linear 

distance on the chromosome (50). Genes in the closest proximity to our filtered 

T1D variants (Table 1), were unsurprisingly found within the same TAD. 

Interestingly however, we found that interacting regions and genes identified by 

Hi-C were only co-located within the same TAD in ~56.5% of cases (i.e. intra-

TAD interactions), with 42.6% of interactions occurring between different TADs 

(inter-TAD; Additional file 4: Table S5). Indeed, the linear distance between 

filtered variants and their 3D interacting genes (~12.5Mb) were on average 

~2.3Mb further away compared to the average distance of intrachromosomal 

interactions found in the entire Treg Hi-C dataset (~10.2Mb), indicating that Treg-

active, FOXP3-bound regions impact genes across much greater linear distances 

than regular connections. 

 

A high degree of chromatin interactions between genes and enhancer regions 

was detected within the filtered variant containing TADs, with these interactions 

both confirming previously identified SNP-target combinations and indicating 
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potential new targets for investigation. For example, 3DFAACTS-SNP identified 

rs12990970 (chr2:204,700,689) as a potential causative T1D SNP. In Treg cells, 

rs12990970 is found in a flanking active TSS (TssAFlnk) state and it is located 

within a Treg super-enhancer (Figure 2 & Additional file 1: Figure S2). This 

variant is located in a non-coding region between gene CTLA4 and CD28 and in 

past studies, and it has been associated with CTLA4 as it is an eQTL for CTLA4 

expression in testis although not in T lymphocytes or whole blood (Additional file 

3: Table S4) (11,13,45,46). Hi-C interaction signals however do not indicate that 

the rs12990970-containing region interacts with the CTLA4 promoter in Treg, 

instead Hi-C interactions indicates that this region form interactions with promoter 

and enhancer regions connected to the costimulatory receptor CD28 gene (Table 

1 & Figure 2), a family member known to play a critical role in Treg homeostasis 

and function (51) suggesting CD28 is a novel target for this variant in Treg. 
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Figure 2: Visualisation of the CTLA4 region of filtered T1D SNPs on chromosome 
2. Heatmap shows the Tregs Hi-C normalised interaction matrix (resolution of 40 
kb) on chr2: 203922714-205092714. The red triangles indicate Topologically 
Associated Domains (TADs) and the large green-dotted triangle indicates the 
boundary of the current plot. Tracks displayed below the chromosome 2 
ideogram display workflow datasets (filtered SNPs, FOXP3-binding sites and 
Treg ATAC-seq and Hi-C interactions) along with various types of cell type-
specific data including UCSC Gene Transcript information, T cell subsets 
(Thelper1 and Treg) expression data, Treg super-enhancer sets and 15-state 
ChromHMM track. T1D 3DFAACTS SNPs within this region are rs12990970, 
rs231775 and rs3087243 (from left to right). 
 

Another example is on chromosome 3, where Hi-C interactions indicated that the 

chemokine receptor genes CCR1, CCR2, CCR3 and CCR5 (Figure 3) are 
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extensively linked in one TAD containing all of the filtered variants, indicating that 

these genes may be coordinately regulated. This is supported by previous RNA 

Pol-II ChIA-PET work (52) that detected interactions between chemokine gene 

clusters during immune responses including an increase in interactions amongst 

the CCR1, CCR2, CCR3, CCR5 and CCR9 genes during TNF stimulation of 

primary human endothelial cells (52) (Additional file 1: Figure S14). Recently, 

CCR2, CCR3 and CCR5 have been shown to have additional chemotaxis-

independent effects on Treg cells with individual studies, reporting positive roles 

for individual chemokine receptors on CD25, STAT5, and FOXP3 expression and 

Treg potency (53–55), highlighting the importance of multiple genes at this locus 

on Treg function. 
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Figure 3: Visualisation of the CCR3/2/5 region of filtered T1D SNPs on 
chromosome 3. Heatmap shows the Tregs Hi-C normalised interaction matrix 
(resolution of 40 kb) on chr3: 45600000-46840000. The red triangles indicate 
Topologically Associated Domains (TADs) and the large green-dotted triangle 
indicates the boundary of the current plot. Tracks displayed below the 
chromosome 3 ideogram display workflow datasets (filtered SNPs, FOXP3-
binding sites and Treg ATAC-seq and Hi-C interactions) along with various types 
of cell type-specific data including UCSC Gene Transcript information, T cell 
subsets (Thelper1 and Treg) expression data, Treg super-enhancer sets and 15-
state ChromHMM track. T1D 3DFAACTS SNPs within this region are 
rs11718385, rs6441972, rs3138042, rs2856758 and rs1799988 (from left to 
right). 
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Filtered T1D variants are enriched at lineage specific T cell super-

enhancers 

SEs usually consist of a cluster of closely spaced enhancers that are defined by 

their exceptionally high level of transcription co-factor binding and enhancer-

associated histone modifications (i.e. H3K27ac) compared to all other active 

enhancers within a specific cell type (56). SEs are also linked to the control of 

important processes such as cell lineage commitment, development and function 

(57). Analysing T cell SE information annotated in the Super-Enhancer Database 

(58) (SEdb; http://www.licpathway.net/sedb/), 8 out of the 14 variant-containing 

loci were found to contain filtered T1D variants located in SEs formed in various 

T cell lineages including Treg cells consistent with the enrichment of 

autoimmune-disease associated variants within T cell super enhancers reported 

previously (57) (Figure 4A). The loci containing the CTLA4 and CLEC16A genes 

were the only loci that overlapped with Treg-specific SEs. The existence of a 

Treg SE is consistent with the different regulation of CTLA4 in Treg cells 

compared with other T cell lineages (59) and a recent report linking T1D risk 

variants to altered CLEC16A expression in Treg (47). Five other SNPs are 

located within SEs in multiple T cell types including induced Treg (iTreg) 

suggesting the gene controlled by these SE play a broad role in T cell function. 

While no Treg SEs are detectable at the CD69 locus the T1D associated variants 

in this region overlapped with SEs formed in other T subsets. No T cell 

associated SEs are found in the loci containing the CCR1/2/3/5, PTPN2, 

RASGRP1 and HORMAD2 genes (Figure 4A). 
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Figure 4: Integrating T1D 3DFAACTS SNPs with different data of T cell lineages. 
A. Heatmap showing overlapping status between T1D 3DFAACTS SNPs and 
super-enhancers of different T cell lineage from SEdb (58), where red indicates 
variants overlapping with SEs and blue indicates not overlapping. B. Enrichment 
of filtered T1D variants found within H3K27ac peaks from Epigenomics Roadmap 
and ATAC-seq peaks from multiple T cell lineages (34). Column names in red 
indicates Tregs specific datasets.  
 

We then investigated the level of active enhancer marks (normalised H3K27ac-

binding) and chromatin accessibility (normalised ATAC-seq peak coverage) 

overlapping each variant from Table 1 (Figure 4B). A range of tissue restriction 
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patterns of chromatin states were observed using the NIH Epigenomics 

Roadmap data with enhancers displaying in general a more cell type-restricted 

pattern of H3K27ac signal compared to promoters. No variant was found to be 

located in a regulatory region that was exclusively active in Treg cells although 

rs12990970, rs231775 (CTLA4), rs11597367, rs12722508 (IL2RA) and 

rs5753037 (HORMAD2) are associated with a restricted H3K27ac pattern that 

included Treg. The absence of Treg-specific enhancers is consistent with FOXP3 

binding data where FOXP3 binds many enhancer regions active in other T cell 

lineages to modify their activity in Treg cells (60). In particular, evidence suggests 

FOXP3 cooperates with other Thelper-lineage specifying transcription factors to 

diversify Treg cells into subsets that mirror the different Th-lineages (61–63). The 

majority of regions associated with the variants show an increase in chromatin 

accessibility upon stimulation in Treg and Thelper subsets consistent with 

increased enhancer activity upon T cell activation however in a few instances 

variants are located in regions that decrease in accessibility in stimulated Treg 

and Thelper subsets compared with their matched unstimulated counterpart. 

Notably these include the variants rs905671, rs943689 and rs614120 associated 

with BACH2. This is consistent with the reduction in BACH2 expression in CD4 T 

cells as they mature, and alteration to this repression is linked to proinflammatory 

effector function (64). Together these data are consistent with a model in which 

causal variants alter the output of enhancers that respond to environmental cues 

(65).  
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Filtered variants disrupt Transcription Factor Binding Sites (TFBS) 

including a FOXP3-like binding site 

Fundamental to understanding the function of specific disease associated 

variants is the identification of the potential impact of these non-coding variants 

on transcription factor binding. Analysis of ATAC-seq datasets with HINT-ATAC 

(66), identified over 5 million active TF footprints in chromatin accessibility 

profiles from stimulated and resting Treg populations (Additional file 5: Table S6). 

By imposing the additional FOXP3 binding annotation to the footprint dataset, we 

identified 7 T1D-associated variants that have the potential to alter the binding of 

9 TFs, suggesting the molecular mechanisms by which these variants could 

impact Treg function (Additional file 6: Table S7). Of these 7 SNPs, one SNP 

rs3176789 is located in an active TSS chromHMM state region, while the others 

are located either in enhancers or flanking active TSS that are associated with 

active enhancers, suggesting these variants might interrupt the binding of TFs to 

affect enhancer functions, with the potential for a network effect on multiple 

genes. 

 

We then used GWAS4D (67), which computes log-odds of probabilities of the 

reference and alternative alleles of a variant for each selected TF motif to 

calculate binding affinity, to predict the regulatory effect of each variant 

(Supplemental Table 8). Several of the variants are predicted to alter the binding 

of transcription factors with known roles in Treg and other T cell lineages 
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including Nuclear activator of T cells (NFATC2 & NFATC3, rs1029991) (68), 

interferon regulatory transcription factor (IRF, rs3176789) (69), myocyte 

enhancer factor 2 (MEF2, rs6441972 and rs3176789) and FOX (Forkhead box, 

rs614120) family members. In addition, variant (rs1029991) has the potential to 

alter the binding of YY1 recently identified as an essential looping factor involved 

in promoter-enhancer interactions (70). Other variants (rs1136618 and 

rs3176789) potentially alter the binding of the zinc finger protein ZNF384. 

Although expressed in T cells, the importance of ZNF384 in T cell biology has not 

yet been explored. 

 

Of note, rs614120 is predicted to decrease the binding affinity of FOXA2 in this 

enhancer region (Additional file 6: Table S7). As FOXA2 is not expressed in the 

immune compartment, this SNP may interfere with the binding of another 

member of the forkhead class of DNA-binding proteins eg FOXP3, which is 

localised to this region based on our FOXP3 ChIP (Figure 5). This suggests that 

a model in which rs614120 impacts the expression level of BACH2 and/or 

AFG1L by altered binding of a FOX protein to this enhancer.  
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Figure 5: A. Visualisation of the BACH2 region of filtered T1D SNPs on 
chromosome 6. Heatmap shows the Tregs Hi-C normalised interaction matrix 
(resolution of 40 kb) on chr6: 90320000-91665000. The red triangles indicate 
Topologically Associated Domains (TADs) and the large green-dotted triangle 
indicates the boundary of the current plot. Tracks displayed below the 
chromosome 6 ideogram display workflow datasets (filtered SNPs, FOXP3-
binding sites and Treg ATAC-seq and Hi-C interactions) along with various types 
of cell type-specific data including UCSC Gene Transcript information, T cell 
subsets (Thelper1 and Treg) expression data, Treg super-enhancer sets and 15-
state ChromHMM track. T1D 3DFAACTS SNPs within this region are 
rs62408222, rs905671, rs943689 and rs614120 (from left to right). 
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surface expressed gene CD69. In addition, our analysis indicates that this 

enhancer also contacts the chromodomain helicase DNA-binding domain family 

member 4 (CHD4), indicating that CHD4 expression may be affected by this 

variant. Although CHD4 (Mi-2β) has not been previously linked to autoimmune 

diseases by GWAS studies, it has been shown to interacts with the T1D-

associated genes IKZF1 and GATA3 and to play an important role in T cell 

development in the thymus and in T cell polarisation in the periphery including 

regulatory T cell subsets (71–73), consistent with altered regulation of CHD4 

having the potential to contribute to T1D. Filtered variant rs3176789 is predicted 

to alter IRF and/or MEF2 binding linking these transcription factors to the 

regulation of the CD69, and CLEC family members CLECL1 and CLEC2D. The 

CD69 and CLEC2D genes have previously been associated with T1D by GWAS 

while CLECL1 has not. However, CLECL1 is a known target gene for eQTL 

rs3176789 (Additional file 3: Table S4), connecting this SNP and its associated 

regulatory region to CLECL1 expression rather than CD69 and suggesting a 

possible role for disrupted CLECL1 expression in Treg in T1D. Filtered variant 

rs6441972 is also predicted to influence the binding of MEF2 to a regulatory 

region in proximity to the promoter of CCR2. This region did not appear to 

interact with any other distal regulatory region or gene. Consistent with this 

variant disrupting CCR2 expression, CCR2 is a target gene for eQTL rs6441972, 

indicating that rs6441972 may result in altered CCR2 expression in a Treg in 

T1D by interfering with MEF2 binding.  

 



 130  

Filtered Treg variants identified in other autoimmune diseases 

The primary rationale of our filtering workflow is that autoimmune diseases like 

T1D are mediated by altered Treg functions. Hence, using GWAS data for other 

autoimmune diseases, we aimed to discover variants which potentially act by 

disrupting 3D gene regulation in Tregs. Similar to filtering fine-mapped T1D-

associated SNPs, here we used the 3DFAACTS-SNP filtering workflow to 

process variants identified by Immunochip fine-mapping experiments and meta-

analysis from three studies for a broad range of autoimmune and inflammatory 

diseases. SNPs associated with 10 autoimmune diseases were identified, 

representing 221 fine-mapped SNPs associated with multiple sclerosis (MS) (74); 

69 SNPs identified by the meta-analysis of celiac disease (CeD), rheumatoid 

arthritis (RA), systemic sclerosis (SSc), and T1D(75) (which we refer to the 4AI 

dataset); and 244 SNPs identified by the meta-analysis of GWAS datasets for 

ankylosing spondylitis (AS), Crohn’s disease (CD), psoriasis (PS), primary 

sclerosing cholangitis (PSC) and ulcerative colitis (UC)(76) (which we refer as 

5ID dataset). Applying the 3DFAACTS-SNP pipeline we identified 9, 3 and 6 

filtered variants from the MS, 4AI and 5ID datasets respectively (Additional file 7: 

Table S8). We identified putative target genes for these disease associated 

variants by Hi-C interactions resulting in 24, 8 and 8 genes linked to MS, 4AI and 

5ID respectively (Additional file 7: Table S8). Many of these genes have either 

known roles in Treg differentiation, stability and function (GATA3 and CD84, 

ITCH, ILIRL2 and ILST) (77–85), or altered expression in human Treg in 
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autoimmune-disease (ICA1, SESN3 and DLEU1) (86–88) and animal models of 

autoimmunity (SEPTIN7 and WWOX) (89). 

 

Of the variants identified by 3DFAACTS-SNP, one variant (rs60600003) located 

at a locus on chromosome 7 was found to be associated with several diseases, 

including MS(74), celiac and systemic sclerosis(75), suggesting at least some of 

its interacting genes (ICA1, HERPUD2, SEPTIN7, ELMO1, DOCK4) may 

contribute to a common Treg defect in these diseases (Additional file 1: Figure 

S15 & Additional file 7: Table S8). When compared with the 36 variants identified 

from our T1D dataset analysis two variants, rs61839660 on chromosome 10 and 

rs3087243 on chromosome 2 were also prioritised by 3DFAACTS-SNP analysis 

of the 5ID and 4AI datasets respectively implicating their interacting genes 

SFMBT2 (rs61839660), ABI2 and IQCA1 (rs3087243) in the development of 

these diseases. While different variants were identified in the analysis of the 

various disease datasets, the regulatory elements in which these variants reside 

can be linked by Hi-C data to common candidate target gene such as PFKFB3 

(rs12722496 and rs12722508 - T1D and rs947474 - 4AI). This is consistent with 

the view that common mechanistic pathways underlie some autoimmune 

diseases, although the specific risk allele within a locus can be disease-specific 

(90).  

 

Similar to the filtered T1D SNPs, the GWAS filtered variants were more likely to 

be located within enhancer regions rather than promoters (Table 1 & Additional 
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file 7: Table S8), surprising given that our defined enhancers cover less of the 

genome than promoters (enhancers: cover 2.23% of the human genome, while 

promoters cover 5.27%). This is also consistent with previous studies which have 

demonstrated an enrichment of disease associated variants at enhancer and 

super enhancer regions (57,91–93). We further annotated the filtered variants 

from these three datasets with GTEx eQTLs and Tregs eQTLs, identifying 4 

SNPs that form an eQTL with a candidate gene target identified by Hi-C 

interactions (Additional file 7: Table S8). This included rs7731625-IL6ST and 

rs60600003-ELMO1, two SNP-gene contacts and eQTL pairings identified by 

3DFAACTS-SNP as potential causative Treg defects in MS (rs7731625-IL6ST) 

and MS, T1D, celiac and systemic sclerosis (rs60600003-ELMO1), respectively. 

Of particular interest is the rs7731625-IL6ST pairing as IL6ST is a common 

signalling receptor of the IL6 family of cytokines known to have differing effects 

on Treg numbers and differentiation potential (83–85). Furthermore, the IL6-LIF 

axis has been proposed to regulate the balance of Th17/Treg cells with changes 

in Il6/LIF levels proposed to play a role in MS (82) highlighting a potential 

molecular mechanism for how the SNP variant rs7731625 may impinge on Treg 

function in MS.  

 

Identifying new variants that are candidates for impacting 

autoimmune disease 

Most variants identified by GWAS have small effect sizes that together only 

represent a fraction of the heritability predicted by phenotype correlations 
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between relatives (94). To account for this missing heritability, various models 

have been proposed including a highly polygenic architecture with small effect 

sizes of the causal variants (95,96), rare variants with large effect size (97,98) 

and epistatic mechanisms including gene-gene and gene-environment 

interactions (99,100). As a consequence many causal variants with small effect 

sizes are unlikely to reach genome wide significance in current GWAS whereas 

rare variants are often under-represented on SNP arrays (101). Lastly the 

preponderance of studies utilize populations of European descent which can 

result in a bias for SNPs with a higher minor allele frequencies in Europeans 

compared to other populations potentially limiting the relevance of these SNPs to 

the associated traits in non-Europeans (102). As an alternative approach to 

identify novel putative autoimmune disease-associated SNPs independently of 

association studies, we sampled 1,004,570 common variants (MAF > 0.1) from 

the Genome Aggregation Database (gnomAD) (version 3.0) (103) as inputs to 

our filtering workflow. Of these 808,857 overlapped with Tregs-specific Hi-C 

interactions, with 135,114 of these variants were located in promoter/enhancer 

regions and finally, 7,900 variants were located in FOXP3 binding regions 

(Additional file 8: Table S9). As a demonstration how this approach may 

complement current GWAS, 4,379 (55.7%) of the common variants we identified 

in gnomAD were not included in the largest GWAS T1D dataset to date (11) 

(Additional file 8: Table S9).  
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In order to further characterise the filtered gnomAD SNPs, we used GIGGLE 

(104) to compare the regions in which filtered SNPs reside against 15 predicted 

chromHMM genomic states across 127 cell types and tissues from Epigenomic 

Roadmap (34) (Figure 6 and Additional file 1: Figure S16), identifying positive 

and negative enrichment scores according to overlapping sets. Interestingly, 

although there was strong positive enrichment signal in active Tss (TssA), 

flanking active Tss (TssAFlnk) and enhancers (Enh) states in thymus, HSC, B- 

and T- cell groups, an enrichment was also observed across all cell types 

suggesting many of the enhancer and promoter regions and by extension their 

target genes are broadly expressed (Additional file 1: Figure S16). Moreover, 

unlike the 3DFAACTS-SNP analysis of GWAS derived data where filtered SNPs 

were enriched in enhancer regions, gnomAD derived SNPs are approximately 

evenly split between enhancers and promoter regions (Additional file 8: Table 

S9). Similarly, low/negative enrichment of the heterochromatin (Het) state was 

observed in all cell types whereas other inactive states such as repressed 

Polycomb (ReprPC, ReprPCWk) and the quiescent (Quies) states exhibited a 

negative enrichment in lymphoid cells. Interestingly, gnomAD SNPs 

demonstrated a strong negative enrichment in Treg cells for the chromatin states 

associated with strong transcription (Tx) and weak transcription (TxWk) 

potentially reflecting FOXP3 transcriptional repressor function (105).  

 

Treg Hi-C data was used to explore the FOXP3-associated regulatory networks 

that include these SNPs in a Treg. For the regions identified to interact with the 
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7,900 variants located in FOXP3 binding regions by Hi-C we observed a strong 

positive enrichment of regulatory states such as TssA, TssAFlnk, Tx, Txwk, 

EnhG and Enh in blood, HSC, B and T cells, supporting a regulatory role for 

these interacting regions (Figure 6 and Additional file 1: Figure S17). In total 

3,245 Treg expressed genes (mean FPKM > 1) (47) were found to be associated 

by Hi-C with variants identified by 3DFAACTS-SNP analysis of the common SNP 

gnomAD dataset. GO and Hallmark genes sets from the Molecular Signatures 

Database (MSigDB) (106,107) analysis of these 3,245 interacting Treg 

expressed genes were significantly enriched (adjusted P-value < 0.05) in relevant 

GO terms such as T cell activation and regulation of hematopoiesis (Additional 

file 1: Figure S18) and autoimmune/Tregs-related gene sets, including TNFα via 

NF-κB, IL6/JAK/STAT3, and IL2/STAT5 signaling pathways (Additional file 1: 

Figure S19). Integration of the filtered gnomAD variants with cis Treg eQTLs from 

the DICE database (46), further identified 943 common variants previously 

demonstrated to impact gene expression in Tregs (Additional file 8: Table S9). 

These 943 variants are connected by Hi-C interactions to 1038 genes in our 

analysis of which 121 (11.6%) form a cis eQTL pair with the 3DFAACTS 

identified SNPs. Importantly, interacting genes were significantly enriched (Fisher 

exact test, P value = 9.06e-24) in genes that are associated with 49 autoimmune 

diseases from GAAD (36) supporting the idea that we have identified potential 

novel disease associated molecular mechanisms.  
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Figure 6: Enrichment of 3DFAACTS gnomAD variants (left panel) and their 
interacting regions (right panel) found within NIH Epigenomics Roadmap 
samples. Enrichment test of filtered gnomAD SNPs against chromHMM states 
from 129 tissues and cell types from Epigenomics Roadmap using GIGGLE 
(104). Red coloured regions indicate positive enrichment of variants within cell-
types and chromHMM states, while blue coloured regions indicate negative 
enrichment. Here we subset to enrichment in three tissue groups, including 
thymus, HSC & B cell and Blood & T cell, enrichment result of all samples can be 
found in Additional file 1: Figure S18 & 19. 
 

We then integrated SNPs identified by 3DFAACTS-SNPs with the active TFBS 

dataset identified from Tregs ATAC-seq data by HINT-ATAC (66) (Additional file 

8: Table S9) to identify potential molecular mechanisms of action of these non-

coding SNPs. We found 870 filtered SNPs are located within active binding sites 

of 521 TFs indicating that they may impact TF binding. Accounting for the 

requirement of Treg expression of the TF (47) or its differential expression in 

Tregs compared to effector T cells (108), the number of variants with the 

potential to alter TF binding in a Treg was reduced to 693 and 108 variants 
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respectively (Additional file 8: Table S9). Of the variants that potentially impact 

the binding of a TF expressed in a Treg, 19 were found to be an eQTL with its 

interacting gene partner identified by Hi-C. Included in this list were genes 

previously associated with Treg stability and viability, specific Treg subsets and 

pathways known to influence Treg differentiation and function. This is consistent 

with 3DFAACTS-SNP identifying potential novel variants that contribute to a Treg 

defect in disease. For example, Treg IL23R and FAS expression is associated 

with Treg/Th17 imbalances in IBD and the chronic inflammatory disease, acute 

coronary syndrome (109,110) and here using 3DFAACTS-SNP we predict 

rs1324551 and rs72676067 may contribute to this altered expression by 

disrupting the binding of the transcription factors RBPJ and POU2F2 

respectively. Other genes are up-regulated in specific Treg subsets, including 

TBCID4 (follicular regulatory T cells) (111), ACTA2 (Placental bed uterine Tregs 

and tumour-infiltrating Treg) (48,112), and POLR1A (cold-exposed Brown 

adipose tissue Treg) (113), suggesting the identified common variants could lead 

to functional defects in these specific Treg subsets. A third group of genes have 

been shown to regulate growth factor signaling pathways that are known to 

influence Treg differentiation and function (114–116). In particular, we have 

identified variants that alter expression of the genes involved in TGF-β signaling 

(SPTBN1, CDC7 and SLC35F2) and WNT signaling (SPTBN1 and MCC). For 

example, 19 SNPs are linked to the SPTBN1 gene by Hi-C in our analysis, eight 

of which are identified as eQTLs with SPTBN1 in Tregs, and of these three 

(rs10170646, rs4455200 and rs13386146) overlap and potentially disrupt the 
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binding of the transcription factors BCL6, HES2 and BATF-Jun heterodimer 

respectively prioritising these potential causative variants linked to allele-specific 

expression (ASE) of SPTBN1 in Treg. However further investigation is required 

to establish if altered SPTBN1 caused by these variants may contribute to any 

disease in response to TGF-β and WNT signaling pathways. Together, these 

data indicate that the 3DFAACTS SNP pipeline in combination with the gnomAD 

database has the potential to annotate novel disease associated variants and 

their potential molecular mechanisms of action, many of which have not 

previously been investigated in GWAS studies.  

 

Discussion 

GWAS and fine-mapping studies have identified over 50 candidate regions for 

T1D progression (11,13,117), however a broad understanding of the underlying 

disease mechanism has been difficult to elucidate without relevant functional 

information derived from cell-specific material. With the availability of whole 

genome annotation, we see that the majority of genetic risk lies in non-coding 

regions of the genome and is enriched in regulatory regions including promoters 

and enhancers. Traditionally, to understand how these variants may function they 

have been assigned to the nearest gene or genes within a defined linear 

distance. However this approach ignores the role of three-dimensional 

connectivity by which enhancers and repressors function to regulate transcription 

(118–120).  
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Recent approaches use statistical co-localization tests to link potential causal 

SNPs and quantitative trait loci (QTLs) to identify the genes regulated by GWAS 

loci (121). These methods require many samples in the correct cell type or 

physiological context and to date work best for local/cis QTLs, generally less than 

1Mb in linear distance (118). An alternative approach used in this study and 

others (122,123) is to make use of chromosome conformation capture data to 

directly connect disease-associated regulatory regions to their target genes. As 

growing cellular and genomics evidence indicate that dysregulation of the Treg 

compartment contributes to autoimmune disease (27,124,125), we generated a 

cell type-specific 3D interaction profile in human regulatory T cells to establish an 

in silico, candidate loci reduction method to identify T1D-candidate regions that 

function in a Treg and the genes they affect. Open chromatin regions identified 

by ATAC-seq and regulatory regions identified by epigenetic marks such as 

histone H3K27ac can number in the tens of thousands in a specific cell type 

(47,126), we therefore initially focused on regulatory regions bound by the Treg-

specific transcription factor FOXP3 given the essential role of FOXP3 in the Treg 

functional phenotype we hypothesized that candidate variants that are found 

within open, FOXP3-bound regions are likely to alter immunological tolerance. In 

addition as different autoimmune-diseases share genetic risk regions (41) we 

speculated that by identifying specific genetic variants that may contribute to T1D 

through the dysregulation of regulatory T cell functional fitness, this could be via 

mechanisms consistent across many autoimmune diseases (1,127,128).  
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The design and implementation of the 3DFAACTS-SNPs workflow champions a 

new data-centric view of functional genomics analysis, with the development of 

cell type-specific epigenomic and 3D datasets enabling researchers to narrow 

down on molecular changes at a fine-scale resolution. However, results shown in 

this study suggests that cell type-specific viewpoints can be broadened to a 

much more lineage (T cell) or immune (e.g. innate or adaptive) system-specific 

level. While we focused on Treg cells and expected to identify Treg-specific 

enhancer-controlled targets, based on the criteria of inclusion of FOXP3 binding 

data, no functional variant was uniquely accessible in only Tregs, nor were they 

specifically enriched with Treg-exclusive H3K27ac modified regions (Figure 4B). 

This likely reflects the propensity of FOXP3 to bind to enhancers active in 

multiple CD4+ T cell lineages (60) (Figure 4) to modify their output in a Treg-

specific manner and therefore we cannot currently discern whether these filtered 

variants act predominantly in Tregs or on other CD4+ T cell subsets. The 

incorporation of context- and CD4+ T cell subset-specific gene expression (129) 

and epigenomic (123,130) data into the 3DFAACTS-SNPs workflow may help 

resolve this. Although we have focused here on using FOXP3-binding as a 

filtering criteria, it is known that other FOXP3-independent pathways are 

important for Treg function and the 3DFAACTS-SNPs workflow could be 

modified to incorporate other TFs or other epigenetic profiles such as CpG-

demethylated regions (131) to further explore the relationship between disease-

associated variants and these pathways. 
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In total using the 3DFAACTS-SNPs workflow we identified 36 novel candidate 

genes connected to variants in 12 T1D risk loci that could plausibly function in a 

Treg whereas we could not define plausible candidate Treg-specific activity at the 

other T1D risk regions that met all our filtering criteria. This may indicate that 

these other risk-regions are active in immune cell types other than a Treg or they 

impact genes and regulatory elements within a Treg that are not dependent upon 

FOXP3. As an example of how the 3DFAACTS-SNPs workflow can lead to 

testable insights into the molecular mechanisms of non-coding variants, the SNP 

rs614120 was found to be located in a FANTOM5 annotated T cell-specific 

enhancer region in the first intron of the BACH2 gene, and is predicted to disrupt 

the binding of Forkhead Transcription factor family member FOXA2 (Figure 5 and 

Additional file 6: Table S7). However, FOXA2 is not expressed in T cells, 

indicating that rs614120 might disrupt the binding of other Forkhead family 

members which bind to very similar DNA sequences, such as FOXP3, which is 

known to bind in this region (Figure 5). The 3DFAACTS-SNPs workflow further 

indicates that this enhancer region containing rs614120 interacts with the 

promoter of BACH2, forming a distal promoter-enhancer interactions, suggesting 

that rs614120 may disrupt FOXP3 binding to the enhancer leading to the 

dysregulation of BACH2 expression. It has been recently shown that Bach2 plays 

roles in the regulation of T cell receptor signalling in Tregs, including averting 

premature differentiation and assisting peripherally induced Treg development 

(132). Therefore, we suggested that this single variant may regulate BACH2 



 142  

expression and ultimately may affect the progression of T1D, and this requires 

further experiments to verify. This can further aid the development of novel 

therapeutic approaches to restore function in Treg of patients with this genotype. 

This finding also suggests that variants can contribute to the causal mechanisms 

of disease by altering the efficacy/stability of TF binding in important regions such 

as enhancers or SEs. In the future, validation experiments such as ChIP or 

qPCR will be performed to validate the 3D relationships between genes and T1D 

variants discovered in this study. 

 

The power of 3DFAACTS-SNPs is its ability to incorporate chromosome 

organisation in 3D and identify long-range interactions involving variant-

containing regulatory regions leading to the identification of target genes that 

have not previously been associated with these diseases associated risk regions. 

This is illustrated by the finding that the majority (24/31) of Treg-expressed genes 

that interact with the T1D variants are not the closest gene in linear proximity and 

of these interacting genes 20 have not been previously associated with any 

autoimmune disease. For example, T1D 3DFAACTS SNP rs1029991 although 

located in linear proximity to the CD69 gene was found to contact the CHD4 

gene (~3.2 mb away) (Additional file 3: Table S4) suggesting this variant is more 

likely to influence CHD4 expression than CD69. Interestingly, rs1029991 was not 

identified as a cis-eQTL for CHD4 in Tregs as it >3Mb away on the genome, with 

eQTLs being classified as cis when found <1Mb from their target gene. However, 

this interpretation using 3D information is largely dependent on the resolution of 
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the available Hi-C data of the specific cell type. With low resolution Hi-C data (bin 

sizes larger than 10 kb), it may not be able to precisely conduct analyses to 

identify SNPs in regulatory regions.  

 

The idea that high-order nuclear organisation coordinates transcription in times of 

immune challenge or tolerance was recently shown in a study demonstrating that 

3D chromatin looping topology is important for a subset of long non-coding RNAs 

(lncRNAs), termed immune gene–priming lncRNAs (IPLs), to be correctly 

positioned at the promoters of innate genes (52). This positioning of the IPLs 

then allows for the recruitment of the WDR5–mixed lineage leukaemia protein 1 

(MLL1) complex to these promoters to facilitate their H3K4me3 epigenetic 

priming (52). An example of long-range enhancer gene interactions in conveying 

autoimmune-disease risk in Treg cells has also recently been published (133). In 

this work a distal enhancer at the 11q13.5 locus associated with multiple 

autoimmune-disease risk, including T1D was found to participate in long-range 

interactions with the LRRC32 gene exclusively in Treg. Deletion of this enhancer 

in mice resulted in the specific loss of Lrcc32 expression in Treg cells and the 

inability of Treg to control gut-inflammation in an adoptive transfer colitis model. 

Furthermore CRISPR-activation experiments in human Tregs identified a 

regulatory element located in proximity to a risk variant rs11236797 that is 

capable of influencing LRRC32 expression. This data together highlights the 

mechanistic basis of how non-coding variants may function to interfere with Treg 

activity in disease. Although we did not identify this interaction in our final SNP-
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interaction list upon re-examination of our workflow this interaction was present in 

our Hi-C dataset, but it was filtered out as the enhancer is not bound by FOXP3. 

Coordinated genome topology has also been shown in immune cell lineage 

commitment, both at a loci (134,135) and compartment level (136), consistent 

with the concept of immune transcriptional “factories” where genes congregate in 

regions of the nucleus to undergo coordinated transcriptional activation (137).  

 

Although a shared genetic aetiology between T1D and other immune-mediated 

diseases has been proposed we did not find a large overlap between the variants 

or interacting genes identified by 3DFAACTS SNP in T1D and other autoimmune 

disease datasets. The reason for this is not clear but may be a result of the 

relatively low number of input SNPs for the other autoimmune diseases. 

Irrespective of this, several candidate causal SNPs and genes including SFMBT2 

(rs61839660), ABI2 and IQCA1 (rs3087243) and PFKFB3 (rs12722496 and 

rs12722508 - T1D and rs947474 - 4AI) were found to be common between T1D 

and other autoimmune diseases. Several of these genes such as SFMBT2, ABI2 

and PFKFB3 have previously been implicated in the development of autoimmune 

diseases or play a role in critical T cell pathways suggesting these genes are 

likely targets that explain the molecular function of the risk variants. SFMBT2 is a 

methylated histone binding transcriptional repressor which has been associated 

with childhood onset asthma (138). ABI2 is required for actin polymerization at 

the T cell:APC contact site with loss of Abi1 in mice resulting in decreased TCR-

mediated IL-2 production and proliferation (139). PFKFB3 is involved in both the 
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synthesis and degradation of fructose-2,6-bisphosphate, a regulatory molecule 

that controls glycolysis in eukaryotes. Regulation of glycolysis has increasingly 

been implicated in shaping immune responses (140) and PFKFB3 has been 

associated with multiple autoimmune diseases (141). Importantly, reduced 

PFKFB3 enzyme activity leading to redox imbalance and apoptosis has been 

reported in CD4+ T from RA patients (142) directly linking the PFKFB3 gene to 

the disease.  

 

A highly polygenic architecture with small effect sizes of many causal variants 

(95,96) has been proposed to account for missing heritability associated with 

phenotypic traits. Most of these small effect size variants have yet to be 

identified. Here we have begun to investigate whether common genetic variation 

found within populations could contribute to autoimmune diseases by altering 

gene-expression by altering enhancer and promoter output. In this study we 

illustrate this potential by accessing large population-scale variant resources in 

the gnomAD database, identifying 7,900 filtered common variants that have the 

potential to impact Treg function. Based on the search of discovered associations 

of autoimmune diseases (EFO_0005140) from the GWAS Catalog (143), over 

half of the variants surveyed here have not been used in large-scale autoimmune 

disease GWAS (11,76,144–150), precluding their assessment for potential 

disease risk in sampled disease/control populations. While filtered variants 

identified here are biased towards the inclusion of FOXP3-binding within the 

workflow, their potential immune response impact is highlighted by the finding 
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that their interacting regions are positively enriched for transcription and 

enhancer -associated chromatin states (Figure 6, Additional file 1: Figure S16 & 

17), eQTLs and potentially impacted TFBS (Additional file 8: Table S9). This 

potential accessibility of regulatory variants among a population could potentially 

explain additional variation in effector responses in T cell activation (151), 

relevant not only to autoimmune disease, but also to broader immune responses 

for example to SARS-CoV-2. 

 

In conclusion, while we initially restricted the application of 3DFAACTS-SNP to 

Treg centric genome-wide interaction frequency profiles to give functional 

annotation in T1D data, we have demonstrated that valid interacting pairs from 

Hi-C dataset can be functionally mapped with high confidence from multiple 

disease datasets as well as whole genome variant datasets, which presents a 

valuable resource in establishing cell-type specific interactomes. Coupled with 

cell-type specific genomic data available from public repositories, such as the 

NIH Roadmap (34), Blueprint (152) and ENCODE (153) projects, this workflow 

provides a useful mechanism to identify potential mechanisms by which non-

coding variants regulate disease causing genes, and identifies new targets for 

therapeutic modulation to treat or prevent disease.  
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Conclusion 

Based on Treg ATAC-seq, Hi-C data, promoters and enhancers annotation and 

FOXP3 binding site, we developed a variant filtering workflow named 

3DFAACTS-SNP to identify potential causative SNPs and their 3D interacting 

genes for T1D from GWAS fine-mapped variants. Our workflow can easily be 

used with variants associated with other autoimmune diseases or even large 

population-scale variants.  

 

Methods 

Cell preparation  

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood 

obtained from healthy human donors with informed consent at the Women's and 

Children's Hospital, Adelaide (ethics approval and consent see Declarations 

section). Cells were labelled with the following fluorochrome conjugated anti-

human monoclonal antibodies: anti-CD4 (BD Biosciences, BUV395 Mouse Anti-

Human), anti-CD25 (BD Biosciences, BV421), anti-CD127 (BD Biosciences, PE-

CF594) and viability dye (BD Biosciences, BD Horizon Fixable Viability Stain 

700) for FACS analysis by surface expression staining. Regulatory T (Treg) cells 

were sorted as CD4+ CD25hi CD127dim population (>90% purity). Following cell 

sorting Treg cells were plated at 100,000 cells per well in a 96-well U-bottom 

plate and maintained in complete X-VIVO 15 culture media (X-VIVO 15 Serum-

free media supplemented with 2 mM HEPES pH 7.8, 2 mM L-glutamine and 5% 
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heat inactivated human serum) in 400U/mL rIL-2 for 2 hours at 37oC in a 

humidified 5% CO2 incubator prior to cell preparation for ATAC-seq experiment. 

 

ATAC-seq library preparation and high-throughput sequencing 

Treg cells were rested for 2-hour post sort and then were either left untreated or 

stimulated with beads conjugated with anti-CD3 and anti-CD28 antibodies 

(Dynabeads Human T-Expander CD3/CD28, Gibco no. 11141D, Life 

Technologies) in complete X-VIVO 15 culture in 400U/mL rIL-2 at a cell/bead 

ratio of 1:1 for 48 hours. After 48 hours Dynabeads were removed from culture 

medium by magnetic separation. Omni ATAC-seq was then performed as 

described previously (154) with minor modifications. Briefly, cells with 5-15% 

dead cells were pretreated with 200U/µL DNase (Worthington) for 30 minutes at 

37oC prior to ATAC-seq experiments. Treg cells (50,000) were lysed in 50µL of 

cold resuspension buffer (RSB: 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM 

MgCl2 ) containing 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin on ice for 3 

minutes. The reaction was then washed with 1mL of ATAC-seq RSB containing 

0.1% Tween-20 by centrifugation at 500 xg for 10 minutes at 4oC and the nuclei 

were resuspended in 50µL of transposition mix (30µL 2× TD buffer, 3.0µL Tn5 

transposase, 16.5µL PBS, 0.5µL 1% digitonin and 0.5µL 10% Tween-20) 

(Illumina Inc). The transposition reaction was incubated at 37oC for 45 minutes in 

a thermomixer with 1000 rpm mixing. The reaction was purified using a Zymo 

DNA Clean & Concentrator-5 (D4014) kit. All libraries were amplified for a total of 

9 PCR cycles and size selection was carried out to enrich for a fragment size 



 149  

window of 200 to 900bp prior to sequencing. Libraries were quantified by PCR 

using a KAPA Library Quantification Kit for NGS (KAPA Biosystems, Roche 

Sequencing). Barcoded libraries were pooled and sequenced on a paired-end 

75-cycle Illumina NextSeq 550 High-Output platform (Illumina) to an average 

read depth of 37.1 million reads (± 4 million) per sample.  

 

Treg sample preparation, Hi-C library production and high-throughput 

sequencing 

Cord blood was obtained with informed consent at the Women’s and the 

Children’s Hospital, Adelaide (HREC1596; WCHN Research Ethics Committee). 

Mononuclear cells were isolated from cord blood postpartum as previously 

described (155). Briefly, cord blood CD4+CD25+(Treg) were isolated from purified 

mononuclear cells using a Regulatory CD4+CD25+T Cell Kit (Dynabeads; 

Invitrogen, Carlsbad, CA). Ex vivo expansion of isolated T cell populations (1 × 

106 cells per well in a 24-well plate) were performed in X-Vivo 15 media 

supplemented with 5% human AB serum (Lonza, Walkersville, MD), 20 mM 

HEPES (pH 7.4), 2 mM L-glutamine, and 500 U/ml recombinant human IL-2 

(R&D Systems, Minneapolis, MN) in the presence of CD3/CD28 T cell expander 

beads (Dynabeads; Invitrogen; catalogue no. 111-41D) at a bead-to-cell ratio of 

3:1. Cell harvesting, Formaldehyde cross-linking (2%) and nuclei isolation was 

per (156,157). Treg cell nuclei were frozen in aliquots of 1x107. The in situ Hi-C 

procedure was carried out as per Rao et al, (2014) (158) with the following 

modifications MboI digestion was carried out in CutSmart® Buffer (NEB) and 
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biotin-14-dCTP (Invitrogen; catalogue no. 19518018) replaced biotin-14-dATP in 

the reaction to end-fill MboI overhangs. This modification aims to reduce 

experiment cost and it was based on the methodology as per Naumova et al, 

(2012). To generate DNA suitable for library construction ligated DNA in TE 

buffer (10mM Tris-HCL, pH8.0 and 0.1mM EDTA, pH 8.0) was sheared to an 

average size of 300-500bp using a Covaris S220 (Covaris, Woburn, MA) 

instrument with the following parameters; 130ul in a microTube AFA fibre, 140 

peak incidence power, 10% Duty cycle 10%, 200 cycles per burst for 55 

seconds. Sheared fragment ends were made suitable for adapter ligation with a 

NEBNext® Ultra II End Repair/dA-Tailing Module (NEB #E7546). For adapter 

ligation the End Prep reaction was split into two and appropriately diluted 

NEBNext Adaptor ligated to fragment ends using the NEBNext Ultra II Ligation 

module. Hi-C libraries were split between 5 separate PCR reactions and directly 

amplified off the T1 beads using NEBNext Index Primers (set 1) and the 

NEBNext® Ultra™ II Q5® Master Mix. Library size distribution was determined 

using an Experion DNA 1K kit and library concentration estimated by real time 

qPCR using a Kapa universal Library quantitation kit (Roche Sequencing 

Solutions; 07960140001). Hi-C libraries were sequenced on a Illumina NextSeq 

500 Mid-output platform (2x 150bp). 

 

ATAC-seq data analysis 

The sequencing data quality was determined using FastQC (ver. 0.11.7) (159) 

followed by trimming of Nextera adapters using cutadapt (ver. 1.14) (160). 
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Trimmed reads were aligned to the human hg19 (hs37d5) reference genome 

using Bowtie2 (ver. 2.2.9) (161) with ‘-X 2000’ setting. For each sample quality 

trimming was performed with option ‘-q 10’ with unmapped and non-primary 

mapped reads filtered with option ‘-F 2828’ using Samtools (ver. 1.3.1) (162). In 

this study, we used hg19 as reference genome instead of hg38 due to available 

annotation databases that mostly focus on hg19 information. Specifically in this 

work, the consistent genome build allows data to be comparable to hg19-mapped 

T1D SNPs data. PCR duplicates were then removed from Uniquely mapped 

paired reads using Picard (ver. 2.2.4). Mitochondrial reads, reads mapping to 

ENCODE hg19 blacklisted regions and mitochondrial blacklisted regions were 

filtered out using BEDTools (ver. 2.25.0). For peak calling the read start sites 

were adjusted to represent the center of Tn5 transposase binding event. Peaks 

were called from ATAC-seq data using MACS2 (ver. 2.1.2) (163) and HINT-

ATAC (66) was used to call footprints from the ATAC-seq peaks with parameters 

‘--atac-seq --paired-end --organism=hg19’. 

The peak summits from resting and stimulated Treg were concatenated and 

sorted by chromosome and then by position. The sorted peak summits were then 

handled using an in-house Python script ATACseqCollapsing.py, which adapted 

a peak processing approach described by Corces et al (154) to generate a list of 

non-redundant peaks. Briefly, through an iterative procedure, the peak summits 

are extended by 249 bp upstream and 250 bp downstream to a final width of 500 

bp. Any adjacent peak that overlaps with the most significant peak (significance 
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value defined by MACS2) within the interval is removed. This process iterates to 

the next peak interval resulting in a list of non-redundant significant peaks.  

 

Hi-C data analysis 

The raw sequencing read files were first processed using AdapterRemoval (ver 

2.2.1a) (164) with default settings. The trimmed data were then analysed using 

HiC-Pro (ver 2.9.0) (32) with hg19 set as the reference genome and the 

GATCGATC as a potential ligation site. The valid interaction pairs of two 

technical replicates, which were stored in allValidPairs files were then 

concatenated into a single file followed by sorting based on the left interaction 

anchoring position of each interaction pair. The sorted interaction pairs were then 

processed using an in-house python script allvalidpair2collapsingint.py to 

generate non-redundant interactions. Similar to the merging process of ATAC-

seq peaks, this is done by an iterative process, two anchor points of the first 

interaction pair are extended into windows with desired window sizes (in this 

case is 2 kb), the following interaction pair is removed only if both anchor points 

are within the previous interacting window, otherwise new interaction windows 

are generated, and the number of removed interaction pairs of each iteration are 

counted, resulting in non-redundant interaction pairs with window size of 2 kb. 

The merged interaction file was then processed using the functions 

build_contact_map and ice_norm from HiC-Pro to generate a normalised n*n 

matrix for subsequent visualisations. 
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RNA-seq data analysis 

The raw sequencing data were first trimmed using AdapterRemoval (ver 2.2.1a) 

(164) with default parameters to remove sequencing adapters. Trimmed reads 

were then aligned to hg19 using STAR (ver 2.7.0d) (165). The resulting BAM files 

were converted into bedgraph files using bamCoverage from deepTools (166) 

with count normalised using counts per million mapped reads (CPM). 

 

Topologically-associated domain identification 

The valid interaction pairs of two technical replicates were concatenated 

together, followed by mapped to equal-size bins (40 kb) of the hg19 genome and 

normalised using ICE (32), resulting in a normalised interaction matrix. The 

matrix was then used as input to identify topologically-associated domains 

(TADs) via TopDom (167) with window size of 5. 

 

Visualisation & Downstream analyses 

Gene set enrichment analysis (GSEA) was performed using function enrichr from 

the R package clusterProfiler (168) with the hallmark gene sets from Molecular 

Signatures Database (MSigDB). Gene ontology (GO) analysis was performed 

using the R package clusterProfiler (168), with 0.01 as P-value threshold and 

0.05 as adjusted P-value threshold (Benjamini-Hochberg adjusted). Visualisation 

of normalised Hi-C interaction matrices (Figure 2, 3, and 5, Additional file1: 

Figure S2-13) was performed on 40 kb resolution using an in-house R function 

hicHeatmap. The visualisations of individual filtered T1D-associated SNP loci 
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(Figure 2, 3, 5 and Additional file1: Figure S2-14) were constructed using the R 

packages Gviz (169), GenomicInteractions (170) and coMET (171). Visualisation 

of the GSEA network was performed using the R package ggraph (172). 
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Abstract 

Background 

High resolution chromosome conformation capture (Hi-C) sequencing has been 

used in many studies to identify chromatin interactions and uncover 3D 

chromosome structures across the genome. Additionally, chromatin interactions 

have been shown to play an important functional role in gene regulation and 

maintaining spatial organisation, whereby physical connections between specific 

regions of the genome are maintained to enable transcriptional processes to be 

conducted. While cell-lines and tissues have been assessed for interactions at an 

individual sample level, a full meta-analysis of available HiC datasets have yet to 

be produced that determines statistically significant interactions that take place 

across all samples.  

Results 

Taking advantage of 348 publicly available Hi-C datasets, we developed a 

comprehensive analysis workflow that aims to identify significant interactions 

using a statistical algorithm MaxHiC, identifying MaxHiC-detected statistically 

significant interaction (MADSSI) profiles for available datasets. After filtering for 

technical biases down to 173 samples were analysed across 51 cell lines and 

tissues, we found that unique, tissue/cell-line-specific interactions (i.e. found in 

only one tissue) made up 62.3% of all MADSSI profiles, tended to contact type-

specific genes and were likely to contact regions over longer distances than non-

unqiue interactions. Non-unique interactions on the other hand were more likely 
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to contact genes that are active and expressed in multiple cells and tissues. 

Finally, we characterised 2,442 interaction “hot zones”, regions observing 

statistically significant interactions in over a majority of analysed tissue/cell-types. 

We found hot zones were significantly enriched for CTCF-binding sites, an 

important structural transcription factor, and located close to topologically-

associated domains (TADs) boundaries. Furthermore, hot zones are also 

enriched for active histone markers such as H3K27ac and H3K4me1, enhancer-

like signatures of candidate cis regulatory elements (cCREs), demonstrating their 

structural importance in maintaining chromosome structure and driving gene 

regulation.  

Conclusion 

Altogether, our catalogued profiles provide another valuable resource for 

researchers to enable the identification of functional interactions for specific 

cell/tissue types or diseases. 

 

Keywords 

Chromatin interactions; Hi-C; 3D chromosome structure; Statistically significant 

interactions. 
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Background 

In any eukaryotic genome such as the human genome, chromosomes are 

packaged into the nucleus in a hierarchical structure, which can bring linearly 

distal DNA segments into close proximity, resulting in long-range chromatin 

interactions [1]. Incorporated with high throughput sequencing technologies, the 

high resolution chromosome conformation capture (Hi-C) assay was designed to 

facilitate the investigation of the three dimensional (3D) architecture of a genome 

and has become one of the most popular approaches to identify 3D interactions 

and construct contact maps across the genome [2–4]. Hi-C uses formaldehyde 

and enzymes such as restriction enzymes and DNase I to capture cross-linked 

DNA fragments and to construct a Hi-C DNA library, where each fragment 

contains two pieces of cross-linked DNA that are joined together via ligating 

enzymes [2]. Sequencing the ligated DNA from the Hi-C library using paired-end 

technology, enables the detection of DNA regions that physically interact with 

each other, potentially across long distances.  

 

With the reduction of the sequencing cost in the recent decade [5], more and 

more groups have published their own Hi-C data, providing a large amount of 

accessible data that can be used to categorise cell line/tissue-specific Hi-C 

interactions. However, the complexity and scale of information available, as well 

as the quality of data available, can cause issues for researchers wanting to use 

data to identify physical interactions in other domains. Key to this issue is the 

identification of Hi-C interactions that are significantly enriched in a HiC profile 
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relative to statistical noise, owing to their higher biological importance [6,7]. 

Current statistical models can be used to account for random polymer looping 

and other types of noise, which can bias downstream analyses using Hi-C 

interactions [6]. It has also been shown that the statistical estimation of Hi-C 

interactions can assist in identifying potentially functional links between regions 

like promoters and enhancers [6–9]. 

 

One of the most important applications of chromatin interactions is using its novel 

linkage information to bridge non-gene-coding regions or elements to genes. 

Single nucleotide polymorphisms (SNPs) have been detected by genome-wide 

association studies (GWAS) to discover variations that are associated with 

diseases or important traits. However, the majority of diseases-associated SNPs 

are found in non-gene-coding regions [10], making them difficult to be 

interpreted. Integrative analyses with genetic variation and gene expression, 

namely expression quantitative trait loci (eQTLs), have helped determine target 

genes for variants located within non-gene-coding regions [11,12], however the 

underlying mechanism of how they impact the expression level of their target 

genes is still unknown. Using chromatin interactions, it is able to bring different 

non-gene-coding genomic elements such as gene promoters, enhancers, 

transcription factor binding sites, SNPs and eQTLs together to construct the 

complex gene regulation networks governed by 3D genome structure and 

functionally interpret non-gene-coding elements [13–15].  
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In a previous study, we developed MaxHiC, a method that uses the adaptive 

moment estimation (Adam) algorithm [16] to maximize the likelihood of the 

observed Hi-C interactions and is able to identify statistically significant 

interactions based on a negative binomial distribution background model. More 

importantly, MaxHiC significantly outperformed existing Hi-C models in identifying 

biologically relevant interactions [9]. In this study, we aimed to collect all 

published Hi-C data of human cell lines and tissues and generate a 

comprehensive map of statistically significant interaction profiles in 51 cell lines 

and tissues. These profiles can be used to interpret genomic variants such as 

traits/diseases-associated GWAS SNPs and quantitative trait loci (QTLs), reveal 

regulations governed by 3D genome structure such as promoter-enhancer 

interactions, identify novel connections from genes important for diseases.  
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Results 

Data selection and process 

Our study was carried out in three stages: data collection, data processing and 

profile generation (Figure 1). Firstly, we collated all published Hi-C datasets from 

untreated or control samples of human cell lines and tissues in the European 

Nucleotide Archive [17] and 4DN data portal [18]. We specifically gathered data 

generated by Hi-C protocols such as dilution Hi-C [2], in situ Hi-C [3] and DNase 

Hi-C [4]. We did not include data from other types of Hi-C-derived protocols such 

as Capture Hi-C [13] and HiChIP [19], as they are designed for detecting 

interactions enriched for specific elements such as promoters and transcription 

factors. We also excluded data from Methyl-HiC [20], which is useful for cell 

identity and DNA methylation profiling. In total, we established a list of 348 Hi-C 

datasets from human cell lines and tissues, generated from 30 individual studies 

(Supplementary Table 1).  
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Figure 1: A schematic view of the customised computational pipeline used in this 
study. Cell line/tissue-specific interaction profiles were taken from 348 public Hi-
C datasets and filtered down to 173 profiles after quality control and filtering. In 
stage 1, data was collected from databases including ENA and 4DN data portal 
and then QC was performed (Stage 2) on raw sequencing data and filter 
datasets with bad quality, followed by conduct mapping, alignment filtering and 
generating Hi-C contact matrices. In stage 3, datasets were merged from the 
same cell lines and tissues, and statistically significant interaction profiles 
generated for each cell line/tissue using MaxHiC. 
 

After data collection, we established a custom data processing pipeline based on 

best-practise Hi-C data processing protocols [18] to analyse all Hi-C datasets 

(Figure 1). We first conducted quality control on raw sequencing data of 348 Hi-C 

datasets (Supplementary Figure 1) and removed datasets based on strict 

selection criteria. Based on the aim of generating cell line/tissue-specific 

interaction profiles at high resolution (10 kb), we only kept datasets with more 

than 90 million reads and removed smaller datasets that would not provide 

sufficient resolution. Furthermore, we removed 5 libraries that were constructed 

without the HiC cross-linking step and served as a control to the protocol 

development [3]. These filtering steps resulted in 154 datasets being removed, 

leaving 194 for further processing (Stage 2, Figure 1) (Supplementary Table 2).  

 

Of 194 Hi-C datasets, the mean and median of raw read counts were 

345,200,859 and 227,641,938, respectively (Supplementary Table 3). The 

largest dataset is from a Brain tissue dataset (PRJNA661621) containing over 3 

billion raw reads, and the smallest is a LNCaP cell line from study GSE73785 

[21] containing just over 91 million reads. We observed an average mapping rate 

of 97.09% to the human hg38 genome [22], with on average 61.73% read pairs 
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(of raw sequencing reads) having mapping quality over 30 (See Methods 

Chapter). Using Pairtools [23] to remove uninformative read pairs, including low-

mapping quality pairs (MAPQ < 30), multiple alignment pairs, singletons, 

duplicates, self-ligation products and read pairs with short distance (< 2 kb), we 

identified informative interactions representing bona fide chromatin interactions 

(Figure 1). The average informative interaction rate was 51.98% (of raw reads) 

with an average intra-chromosomal interaction rate (interactions between regions 

within the same chromosome) of 37.09% and inter-chromosomal interaction rate 

(interactions between regions in different chromosomes) of 14.89% 

(Supplementary Table 3). Finally, we utilized 10 kb as a fixed bin size for all Hi-C 

libraries to generate Hi-C contact matrices using cooler [24]. 

Unsupervised clustering of Hi-C samples 

The Hi-C contact matrices, containing information on the frequency of interacting 

10 kb genomic bin regions, can vary across tissues/cell-lines due to technical 

biases including sequencing batch effects, different HiC protocols, sequencing 

strategies and platforms. Therefore, in order to reduce these effects and ensure 

the quality of the cell line/tissue-specific profiles, we performed an unsupervised 

clustering with the intra-chromosomal interactions of 194 Hi-C libraries to identify 

potential outliers for each cell line/tissue. While principal component analysis 

(PCA) are commonly used to cluster genomics data [25–27], kernel principal 

component analysis (kPCA) [28] were found to outperform PCA by its capability 

of exploring higher order information in the input data, we therefore decided to 

use kPCA to carry out the unsupervised clustering of chromatin interactions.  
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In order to reduce the burden on computational resources, we conducted kPCA 

on intra-chromosomal interactions for chromosomes 1, 12 and 22 of 10 random 

Hi-C libraries, observing a consistent pattern of clustering across different 

chromosomes (Supplementary Figure 2). From this we then chose to use a 

single chromosome to represent the clustering of the whole genome, and 

performed kPCA on the intra-chromosomal interactions of chromosome 22 to 

visualise the relationships among Hi-C datasets (Figure 2, Supplementary 

Figures 3 and 4). Initially, we found that the Hi-C datasets were mostly separated 

by the type of HiC library protocol used, regardless of cell line or tissue type is 

used (Figure 2A), with the second largest source of separation being their cell 

line/tissue types (Figure 2B, Supplementary Figures 3 and 4). More importantly, 

outlier datasets that failed to cluster with other datasets with the same cell lines 

or tissues could also be spotted in the kPCA plots (Figure 2). Outliers are likely to 

introduce biases when we try to merge the Hi-C datasets of the same cell lines 

and tissues into one profile, leading to inaccuracy identification of cell line/tissue-

specific interactions. We observed outliers in a number of cell lines/tissues, 

including GM12878, HUVEC, Jurkat T lymphocytes, Liver, T cell, NHEK and 

PrEC (Supplementary Figures 3 and 4), and removed 10 outliers datasets (i.e. 

failed to clustered with others) from the subsequent analysis.  

 



 185  

 
Figure 2: Kernel principal component analysis (kPCA) of intra-chromosomal 
interactions of chr22 of 196 Hi-C libraries, (A) coloured by Hi-C protocols and (B) 
the cell line or tissue sampled in more than one study. Libraries that are found in 
only one study are colored in grey. 
 

Additionally, datasets from IMR90 (Supplementary Figure 3), H9-hESC and 

HMEC (Supplementary Figure 4) seem to form two separate clusters by protocol. 

This separation is likely due to the difference of the digestion enzyme, with 4-

bases cutter MboI used in in situ Hi-C protocols and 6-bases cutters such as 

HindIII being used in dilution Hi-C, leading to different capturing efficiency of 

chromatin interactions. In order to generate Hi-C contact profiles with higher 

resolution, for these 3 cell lines, we removed the cluster of datasets generated by 

dilution Hi-C, with this filtering removing a total of 21 datasets, leaving 173 Hi-C 

datasets to be used to generate cell line/tissue-specific interaction profiles 

(Figure 1). 

A B
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Generation of statistically significant interaction profiles 

In order to generate MaxHiC-detected statistically significant interaction 

(MADSSI) profiles for each cell line and tissue we curated, we merged samples 

based on their cell line and tissue types to generate cell line/tissue-specific 

interaction pairs using 173 Hi-C datasets. Some interaction pairs are 

characterised by only 1 sample, such as adrenal and aorta tissues, while others 

were composed of more than 5 datasets, such as Jurkat T lymphocytes and skin 

fibroblast tissue (Supplementary Figure 5). Interaction pairs of the GM12878 cell 

line were merged from 36 datasets, much more than any other cell lines/tissues 

(Supplementary Figure 5). This sample merging step resulted in 51 informative 

interaction pairs files from individual cell lines and tissues (Supplementary Table 

4).  

 

Interaction pairs were then used to construct individual cell line/tissue-specific Hi-

C contact matrices with a fixed bin size of 10 kb (Figure 1). It is necessary to 

perform bin-level filtering once the Hi-C contact matrices are generated, 

particularly removing genomic bins located in repeat regions where potential 

alignment issues are likely to occur, impacting the accuracy of results [29]. We 

therefore removed interaction bins located in repeat regions by removing bins 

that had over 50% overlap with annotated repeat regions and blacklist regions in 

the hg38 genome [30,31] (Supplementary Table 5). We then used hierarchical 

clustering with the WARD algorithm [32] to visualise the relationships between 

the Hi-C contact matrices of 51 cell lines/tissues (Figure 3). All 51 contact 
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matrices clustered into 5 clusters, with the largest cluster (yellow/green) 

containing 19 cell lines and tissues. In this cluster, we found some cell lines and 

tissues that are biologically similar, such as left and right heart ventricle tissues 

as well as hippocampus and cortex. Similar cases are observed in other clusters 

as well, including LNCaP and PC3 cell lines (purple cluster, both are prostate 

cancer cell lines), 786-M1A and 786-O_TGL cell lines (light blue cluster, both are 

renal cancer cell lines), HSPC and B cells (red cluster), and Jurkat cell lines and 

T cells (green cluster) (Figure 3). However, some exceptional cases of 

biologically similar cell types that don't cluster together are observed, such as B 

cells and GM12878 are assigned to different clusters. 
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Figure 3: Hierarchical clustering of cell line/tissue-specific Hi-C contact map 
showing relationships between cell line/tissue using the WARD algorithm. The X 
axis is the euclidean distance between the contact maps of each group, and the 
Y axis are contact maps of 51 cell lines and tissues. Different colours of the 
branches indicate different clusters detected by the algorithm. 
 

After extensive quality control and filtering, we then aimed to identify statistically 

significant chromatin interactions using MaxHiC. We extracted intra-

chromosomal statistically significant interactions (referred from now on a 

standard “interactions”) for 51 cell lines/tissues using an adjusted p-value 
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threshold of 0.05 (Benjamini Hochberg correction) to generate MaxHiC-detected 

statistically significant interaction (MADSSI) profiles (Supplementary File 1). 

Although inter-chromosomal interactions have been shown to exist and may play 

a role in promoting chromatin structure formation [33–35], we instead chose to 

only analyse intra-chromosomal interactions which are more likely to impact gene 

expression and regulation [34]. Of 51 MADSSI profiles, the average interaction 

count was 125,865, with cell-line GM12878 cell line containing the most MADSSI 

(1,614,240), while Adrenal tissue contained the least containing only 6 MADSSI 

(Figure 4 and Supplementary Table 6). Despite the differences in GM12878 and 

Adrenal tissue, the mean distributions of sequencing read pair count per 

interaction were similar across all 51 cell lines/tissues (Figure 4). 
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Figure 4: Output summary statistics from designed HiC workflow in this chapter. 
(Top panel) Intra-chromosomal statistically significant interaction count detected 
by MaxHiC across 51 selected cell lines/tissues. (Bottom panel) Distribution of 
read pair count per intra-chromosomal statistically significant interactions in 51 
selected cell lines/tissues. 

Unique and non-unique statistically significant interactions 

After generating MADSSI profiles across our 51 cell-line/tissue sets, we then 

described the uniqueness of each cell/tissue-type and whether common 

statistically significant interactions exist in all datasets. Comparing MADSSI 
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profiles between each cell line and tissue by calculated the percentage of 

interaction in one cell line and tissue that are also found in others (Figure 5), we 

observed that interactions of some cell lines/tissues are not uniquely identified in 

their corresponding cell lines/tissues, but found in other cell lines/tissues, such as 

interactions detected in B cells, erythroid progenitor cells, fetal heart, H9-hESC, 

HSPC, KemIII, Namalwa, NHEK, psoas muscle, small bowel and WTC. These 

cell lines and tissues have more than 37.39% (on average) of MADSSI also 

identified in others (Figure 5B). Furthermore, we found that more than 50% 

MADSSI of all analysed cell lines and tissues are MADSSI of GM12878 and 

IMR90 cell lines. This is likely due to GM12878 and IMR90 containing the most 

number of interactions in their MADSSI profiles, indicating that sampling size has 

an impact detecting uniqueness across samples (Figure 4).  
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Figure 5: Analysis of comparing MADSSI among 51 cell lines and tissues. (A) an 
equation (left) used to calculate values representing the non-uniqueness of 
interactions in each cell/tissue compared to others; and a venn diagram (right) 
demonstrating the elements in the equation. (B) Heatmap shows the fraction of 
MADSSI in each cell line/tissue that are also identified in other cell lines/tissues. 
The value in each cell is calculated by the equation in A. 

i j

Let i,j be the interactions of cell lines/tissues 
shows in row (i) and column (j), respectively, 
the value in each cell m(i,j) is calculated by:

!(#, %) = ()*+,-.(#, %)
/(012(#)

cell/tissue 
in row (i)

cell/tissue in 
column (j)

overlap(i,j)

A
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Frequency of MADSSI found in cell lines and tissues were then used to define 

unique (i.e. detected in one) and non-unique interactions (detected in more than 

one cell lines/tissues). Of all MADSSI, 62.3% of the interactions are found in only 

one cell line/tissue, defined as unique interactions, while the rest of MADSSI 

(38%) are defined as non-unique interactions (Supplementary Figure 6), 

suggested that tissue-specific interactions are the dominant form of significant 

interactions. In non-unique interactions, the most frequent MADSSI is the gene 

body of BCL6 (chr3:187,730,000-187,740,000) contacts a region 

(chr3:188,940,000-188,950,000) containing TPRG1-AS1 and TPRG1 gene. This 

MADSSI is observed across 35 cell lines and tissues, such as T cells, thymus, 

spleen, K562 and HVEC etc, however from our knowledge it has never been 

investigated in any specific study. 

 

We investigated the distance between interacting anchor bins of unique 

interactions and non-unique interactions. Unique interactions generally occurred 

at longer linear distances compared to non-unique interactions, with the mean 

unique genomic distance being 1.9 Mb (median = 650 kb) compared to 616 kb 

(median = 400 kb). The longest unique interaction was found in GM12878, 

spanning 227.8 Mb on chromosome 1 and contacting CAMTA1 gene and a non-

coding region, while the size of chromosome 1 is over 248.9 Mb. And the longest 

non-unique interaction was also detected in chromosome 1 in GM12878 and 

brain cells, spanning 219.15 Mb and contacting DDI2 gene and a non-coding 
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region. Interestingly, these two interactions both contact a non-coding region on 

chromosome 1 (chr1.q42.3) (Supplementary Figure 7), where layered H3K27ac 

histone markers and distal enhancer signatures are found, suggesting a conical 

enhancer hub. Comparing the distance distribution of unique and non-unique 

interactions, more proportions of non-unique interactions are observed in short 

distances. For example, 38.61% of non-unique interactions occur at distances 

less than 300 kb, compared to 26.91% of unique (Figure 6). However at long 

distances, such as 700 kb, unique interactions become the dominant form of 

interactions (Figure 6).  

 

 

 
Figure 6: Distance distribution of unique and non-unique MADSSI across 51 cell 
lines/tissues. In order to fairly compare non-unique MADSSI to unique MADSSI 
and account for the different interaction count of them, we used percentage of 
interaction in the y axis. 
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If unique MADSSI were only found in one tissue, we then investigated whether 

specific types of genes were contacted by carrying out Gene ontology (GO) 

enrichment analysis to detect enriched GO terms that are associated with genes 

found within these regions of unique interactions (Supplementary Table 9). We 

found out that the unique interactions were enriched for GO terms that 

correspond to the specific cell types or tissues. For example, “T cell 

differentiation” (GO:0030217) and “T cell activation” (GO:0042110) are uniquely 

found enriched for genes contacted by T cell unique interactions, “Fc receptor 

signaling pathway” (GO:0038093) for B cell, “ERBB2 signaling pathway” 

(GO:0038128) for MCF-7 cell line and “bundle of His cell to Purkinje myocyte 

communication” (GO:0086069) for right heart ventricle (Figure 7).  

 
Figure 7: Gene ontology (GO) over-representation analysis of genes contacted 
by uncommon interactions (statistically significant interactions observed in only 
one or two cell lines/tissues) across 52 cell lines/tissues. For better visualisation, 
unique enriched GO terms of four cell lines/tissues are selected here. Full lists of 
enriched GO terms across 52 cell lines/tissues can be found in Supplementary 
Table 9. 
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To demonstrate a specific example of unique MADSSI profiles interacting with 

target genes, we found that SATB1, a gene that regulates the action of FOXP3 in 

regulatory T cells via 3D chromosome structure [36–40], is contacted by MADSSI 

uniquely found in T cell samples (Figure 8). We also observed T cell-specific 

CTCF-binding sites and interactions between the promoter of SATB1 and 

multiple non-coding regions with active enhancer chromHMM states upstream, 

demonstrated by the green coloured states on the bottom genome browser panel 

of Figure 9, indicating potential regulation occurring via the formation of CTCF-

derived promoter-enhancer loop. Altogether, this example demonstrates 

cell/tissue type specificity of unique interactions and these interactions might 

govern the regulations of cell/tissue type-specific pathways that are important for 

key transcriptional regulators.  

 
Figure 8: An example of unique MADSSI contacting cell line/tissue-specific 
genes across the SATB1 gene loci of chromosome 3. The genomic tracks plot 
shows the T cell-unique MADSSI (purple coloured are interactions within the 
plotting area and the green ones are interactions linking regions outside) around 
the SATB1 region, along with T cell-specific CTCF-binding sites and T cell 
chromHMM states (color legend provide in the top left corner), which are 
obtained from the roadmap epigenomics project [41]. 
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Given their propensity to impact multiple tissues rather than one, non-unqiue 

interactions may also play a more canonical role in gene regulation. We therefore 

ranked non-unique interactions by their membership across cell-lines/tissues, 

and focused on the top 10 non-unique interactions (Supplementary Table 7). 

These interactions overlapped with 20 genes: 18 protein-coding genes, one long 

non-coding RNA (LOC100131635) and one micro-RNA (MIR4315-1) 

(Supplementary Table 8). Many of these genes have shown to be highly 

associated with disease, such as RNASEL was demonstrated to be a candidate 

hereditary prostate cancer gene [42,43], SRSF1 and MRPS23 were proposed to 

contribute to breast cancer [44,45] and NYNRIN was shown to be a 

predisposition gene for Wilms tumour [46].  

 

Based on the gene expression data from the EBI-Expression Atlas [47], 16 of the 

18 protein-coding genes exhibit relatively high expression levels across a wide 

range of tissues and cell types, the exceptions being gene LRRC52-AS1 and 

TPRG1-AS1 (Figure 9). TPRG1-AS1 is mildly expressed in liver, breast, 

esophagus, adrenal gland and adipose tissue, while LRRC52-AS1 is not 

expressed in any of the chosen cells and tissues (Figure 9). Additionally, the 

promoter regions, defined here as the region 2 kb upstream of the transcription 

start site, of most of these genes overlap with H3K27ac ChIP-seq peaks in a 

number of cell lines and tissues, except for gene LRRC52-AS1 (Figure 9). 

Together these indicate that the top 10 non-unique interactions that are observed 
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in multiple cell lines and tissues may play important roles in the regulation of 

these commonly expressed genes. 

 

 
Figure 9: Normalised (log2-scaled) gene expression profile of genes contacted 
by top 10 non-unique interactions in different cells and tissues (left), obtained 
from the EMBL-EBI Expression Atlas [47]. Additionally, promoters of the same 
genes were compared to H3K27ac ChIP-seq peak information (right) obtained 
from the ENCODE project [48]. 
 

Accumulated interactions form “hot zones” 

So far, we have identified that unique, tissue-specific MADSSI are more common 

than non-unique interactions across multiple tissues/cell-types, making up over 

62.3% of interactions. We next focused on whether MADSSI common to multiple 

tissue/cell-lines were co-located in specific areas, indicative of a spatial 

regulatory mechanism. Given the structural importance of chromatin interactions, 

we hypothesised that an accumulation of common interactions (i.e. found in 

many tissues/cell-lines) in specific bins or genomic regions will identify features 

that are essential for the structural integrity of the chromosome arrangement, 
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features such as insulator transcription factor CTCF-binding sites and TAD 

boundaries. In order to reveal genomics regions with statistically significant 

interaction across many cell lines/tissues, we took 10 kb genomic bins from 51 

cell line/tissue-specific MADSSI profiles and ranked each bin by their presence in 

the number of cell lines/tissues. These genomic bins, which we name “hot 

zones”, are defined as interacting regions observed with more than half of all cell 

lines/tissues (at least 26 cell lines/tissues). 

  

Using this new metric, we identified a total of 2,442 interaction hot zones 

dispersed across the genome (Supplementary Table 10). Hot zones can be 

easily identified on the Hi-C contact maps when visualising them with MADSSI 

profiles (Figure 10A). For example, the interaction hot zone chr3:187730000-

187740000 (Figure 10), which is the most frequently shared interaction bin 

(found in 38 cell lines/tissues), was connected by a large number of MADSSI to 

many other genomic bins. This specific hot zone was first observed in the most 

frequent non-unique interactions described previously, within the gene BCL6, 

which is a known transcription factor that plays an important role in the 

differentiation of T cells (Figure 10B) [49]. Interestingly, we can also see hot zone 

patterning in samples/tissues with poor sequencing coverage, such as MCF-7 

featured in Figure 10, suggesting that both MADSSI and hot zone identification 

can be used to outline structurally important regions in spite of technical 

limitations.  
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Figure 10: Visualisation of MADSSI and interaction hot zones across the gene 
loci BCL6. (A) Hi-C contact map of MCF-7, T cell and GM12878. Top panel: a 3 
Mb region in chromosome 3, black dots in the top right triangle indicate MADSSI 
identified in the corresponding cell line/tissue, black dots in the diagonal indicate 
interaction hot zones identified in this study. Bottom panel: a 60 kb region zoom 
from the top panel as marked. The blue dot in the diagonal indicates the 
interaction hot zone chr3:187730000-187740000. (B) genomic tracks plot shows 
interaction hot zones, T cell-specific MADSSI and TADs with gene annotations in 
the same region as the bottom panel of (A). 
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We also observed that the hot zones tend to be located close to the boundary of 

the interacting domain shown on the heatmap (Figure 10A). We therefore 

identified TADs across all 51 cells/tissues (Supplementary File 2) to investigate 

the relative distance between interacting hot zones and TAD boundaries. 

Consistent with the observation of finding hot zones near the boundary of 

interacting domains (Figure 10A), we found that the majority of interacting hot 

zones were located close to the TAD boundaries, with an average of 74.36% 

located less than 125 kb to TAD boundaries given a mean TAD size of 576 kb 

(Supplementary Figure 8), confirming our hypothesis of the structural nature of 

these regions and suggesting the hot zones may serve an important role in 

maintaining the structural integrity of chromosomes. Compared to other regions, 

interaction hot zones are also significantly enriched for H3K27ac and H3K4me1 

histone markers and CTCF-binding sites in cell lines/tissues where such 

annotation data are available (Figure 11A). Hot zones that are observed in T 

cells for example overlap 50.3% of H3K4me1 histone peaks annotated in T cells 

(Fisher’s exact test p-value = 1.39e-05) (Supplementary Figure 9). We also found 

hot zones have approximately 3-fold enrichment for CTCF-binding sites 

compared to other regions, and 2-fold enrichments were observed for H3K27ac 

and H3K4me1 histone markers (Figure 11A), indicating that hot zones 

structurally defined by CTCF could play a role in maintaining canonical gene 

expression and regulation.  



 202  

 

Aorta_fresh
B_cell_fresh
Bladder_fresh
Brain_cell_fresh
Cardiac muscle cell_fresh
GM12878
H1−hESC
H9−hESC
HepG2
Hippocampus_fresh
HL−60
HMEC
HUVEC
IMR90
K562
Left_heart_ventricle_fresh
Liver_fresh
Lung_fresh
MCF−7
Neutrophils_fresh
NHEK
Ovary_fresh
Pancreas_fresh
PC3
Psoas Muscle_fresh
Right heart ventricle_fresh
RUES2
Skin_fibroblast_fresh
Small bowel_fresh
Spleen_fresh
T_cell_fresh
Thymus_fresh

−3
−2
−1
0
1
2
3 Aorta_fresh

B_cell_fresh
Brain_cell_fresh
Cardiac muscle cell_fresh
GM12878
H1−hESC
HepG2
HL−60
HMEC
HUVEC
IMR90
K562
Left_heart_ventricle_fresh
Liver_fresh
LNCaP
Lung_fresh
MCF−7
Neutrophils_fresh
NHEK
Ovary_fresh
Pancreas_fresh
PC3
RUES2
Skin_fibroblast_fresh
Spleen_fresh

−2
0
2
4
6
8
10

A

B H3K27ac CTCF



 203  

Figure 11: Enrichment analysis with interaction hot zones. (A) global enrichment 
analysis shows the enrichment of CTCF-binding sites, H3K27ac and H3K4me1 
histone marks in hot zones. The expected overlaps are calculated the overlaps 
between permuted 10 kb regions across the genome and annotations while the 
observed overlaps are between hot zones and annotations. The p-values are 
calculated using a t test. (B) local enrichment analysis shows the enrichment of 
H3K27ac marks and CTCF-binding sites on hot zones compared to the 
surrounding regions. Top panel: mean of enrichment score of a 5 Mb region 
centred at interaction hot zones across cell lines/tissues. Bottom panel: 
enrichment score of a 5 Mb region centred at interaction hot zones in each cell 
line/tissue. 
 

 

We then used local enrichment tests to characterise the histone modifications, 

CTCF, and candidate cis-regulatory elements (cCREs) signatures [50] across 5 

Mb regions centered at interaction hot zones. Interaction hot zones are locally 

enriched for H3K27ac and H3K4me1 histone markers, which are often 

associated with active enhancers [51,52], in most of the cell lines/tissues (Figure 

11B and Supplementary Figure 10), while no obvious patterns were found for 

H3K27me3 marker (Supplementary Figure 10), which is associated with 

downregulation of genes [53].  

 

We also found a significant enrichment of CTCF-binding sites associated with hot 

zones across all cell lines/tissues (Figure 11B), consistent with the previous 

demonstration of hot zones being located close to TADs boundaries and globally 

enriched with CTCF-binding sites. With the strong CTCF-binding, interaction hot 

zones may be located near the base of chromatin loops, which are formed by the 

assistance of CTCF-binding [54]. Finally, we also used three signatures from 

cCREs to perform local enrichment, including distal enhancers (enhD), enhancer 
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signals located more than 2 kb from transcription start site (TSS), proximal 

enhancers (enhP), enhancer signals located within 2kb from TSS, and promoters 

(Prom), regions with high DNase and H3K4me3 signals and located within 200 

bp from annotated TSS [50]. We observed that the interaction hot zones are 

locally enriched for enhD and enhP (Supplementary Figure 10), but no obvious 

enrichment found with Prom. Consistently as we showed hot zones are most 

enriched for CTCF-binding sites globally, the local enrichment level of CTCF-

binding sites are higher than other annotations (Supplementary Figure 10). 

 

While the accumulation of statistically significant interactions has the potential to 

highlight structural interactions, other frequency interacting areas have been 

defined in previous studies, namely frequency interacting regions or FIREs that 

have shown to be regulatory relevant [55]. FIREs will be different to hot zones 

given they are generally called using one sample group, but we wanted to 

compare both to highlight potential regulatory mechanisms highlighted in Schmitt 

et al., 2016. Taking one cell-line sampled across both studies, i.e. GM12878, we 

compared 2,441 hot zones with 19,303 published GM12878-specific FIREs at 5 

kb resolution, identifying 331 (13.56%) hot zones overlapping with 393 (2.04%) 

FIREs. In order to examine the potential structural and regulatory functionality of 

hot zones compared to FIREs, we compared hot zones and FIREs regarding 

their overlapping with GM12878-specific CTCF-binding sites, cCREs enhancer 

signatures (including enhP and enhD) and GM12878-specific H3K27ac marker 

(Figure 12). We found that hot zones are significantly more enriched for CTCF-
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binding sites and H3K27ac marker than FIREs (Fisher exact test, p-value < 2.2e-

16), while similar large proportions of FIREs and hot zones overlapped cCRE 

enhancer signatures (Figure 12). This suggests that compared to FIREs, hot 

zones are more likely to be associated with structural integrity and may serve as 

a structural markers, and more indicative of structural function than other 

statistically-derived domains such as sub-TADs [56–58]. 

 

Figure 12: Comparison between GM12878 hot zones and FIREs of CTCF-
binding sites and cCRE enhancer signatures overlapping status. GM12878 
FIREs are obtained from a published study [55]. 
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Discussion 

Hi-C assays were developed to facilitate the detection of 3D chromatin 

interactions and the construction of 3D contact maps [2–4]. However, Hi-C 

sequencing datasets are complicated by various sources of biases such as 

random ligation artifacts and mappability of the DNA sequences [6]. Therefore, 

identifying interactions that are potentially more biologically functional than others 

is essential to future functional genomics studies. In a previous study, we showed 

that MaxHiC is able to pinpoint statistically significant interactions which show 

higher levels of overlap with regulatory annotations, such as active histone 

markers and CTCF-binding sites, than those detected by other methods [9]. In 

this study, we expanded the use of this algorithm, using a custom HiC-meta-

analysis workflow and MaxHiC to generate statistically significant interaction 

maps across 51 human cell lines and tissues (Figure 1).  

 

Despite similarities between tissues/cell-lines, hierarchical clustering of chromatin 

contact maps showed only minor levels of similarity based on the biological 

groups. Using the WARD method, the contact maps of some cell types that are 

biologically more relevant were found to be clustered together (Figure 3), such as 

left and right heart ventricle tissues and Jurkat cell line and T cell. However 

surprisingly, HL-60, which was developed as a model to study neutrophils 

[59,60], failed to cluster with neutrophils. Another similar case is that the contact 

map of B cells didn’t cluster with GM12878 (Figure 4), a B-Lymphocyte cell-line. 

This may suggest that the 3D genome profile of cell lines may evolve significantly 
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from their primary cell types after generations of passages, similar to the 

previous findings that high-passage cell lines exhibit different expression profiles 

compared to the primary cell types [61–63]. Therefore, such an effect may need 

to be taken into account when comparing Hi-C data of cell lines to investigate 3D 

regulations related to diseases, especially in light of accumulated interactions 

and hot zones identified in this study.  

 

The high number of unique compared to non-unique interactions shown in this 

study implies that the cell line/tissue-unique interactions are highly involved in 

regulations that are cell/tissue-type specific. This is consistent with previous 

findings that promoter-centred interactions are highly cell type-specific [14] and 

that tissue-specific chromatin interactions tend to involve active regulatory 

elements [55]. Studies associating diseases and the affected tissues [64,65] 

showed the Mendelian diseases to be highly tissue specific. GWAS variants of 

complex diseases, such as autoimmune, neurodegenerative and cardiovascular 

diseases [66–69] were shown to have a large tissue-specific contribution, such 

as a recent study used pancreatic islet-specific chromatin interactions to reveal 

the candidate enhancers and risk loci for type 2 diabetes [15]. Therefore, the cell 

lines/tissues-specific MADSSI we have catalogued in this study can provide an 

extra layer of information when associating genetic variation to the regulatory 

mechanism that is dysregulated in disease systems.  
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Interaction hot zones are significantly enriched for both structural and regulatory 

elements, suggesting that they play a major role in cellular integrity and canonical 

function. By considering each interaction bin separately, rather than the link 

between two interacting bins [55], we defined interaction hot zones, regions with 

statistically significant interactions in over half of our catalogued cell lines/tissues. 

Hot zones are more likely to possess structural information (CTCF-binding sites) 

than regulatory information (enhancer signatures) than FIREs, indicating the 

important role that hot zones play in maintaining the structure integrity of the 

genome. While TADs and sub-TADs have recently been questioned for their 

identification being lacking in biological perspective and their low concordance 

among identification methods [56,57,70], the interaction hot zones can be a more 

suitable candidate to infer large structural arrangement in the genome, which is 

steady across many cell and tissue types.  

 

Previous studies have shown that structural domains, such as TADs and A/B 

compartments, are not only consistent across human tissues, but also invariant 

across species groups [55,71]. Importantly, due to the invariant nature of TAD 

boundaries and CTCF-binding, the removal of demarcating regions can be a 

harbinger for disease impact [72–74]. By accumulating interactions, hot zones 

may provide additional disease marker information, potentially via Machine 

Learning approaches that can be trained to identify specific hot zone-like 

signatures using large public Hi-C datasets. To ultimately prove the potential of 

hot zones in this space, CRISPR knockout experiments, such as ones which 
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have been used to remove TAD boundaries [72], could be used to prove their 

disease identification potential. 

 

In conclusion, by re-analysing published Hi-C datasets and generating the first 

statistically significant interaction profiles of 51 human cell lines and tissues, we 

have catalogued interactions uniquely detected in each cell line/tissue and the 

ones that are shared across multiple cell lines/tissues, and revealed a set of 

interaction hot zones across many cell and tissue types. These results are a 

valuable resource to allow further and more specific investigation into the 

regulatory circuits governed by cell/tissue-specific 3D genome structures.  
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Methods 

Code availability 

The code for the customised Hi-C data processing pipeline used in this study and 

described in the results is available in GitHub: 

https://github.com/ningbioinfostruggling/CustomHi-CPipeline. 

Data sources 

Public Hi-C datasets were downloaded using Aspera [75]. The datasets used in 

this study are obtained from either the ENA database or the 4DN data portal, 

more comprehensive information including download links is documented in 

Supplementary Table 1. 

Cell line/tissue-specific annotations 

The gene expression information used in this study was obtained from the gene 

expression atlas database [47]. The histone and CTCF ChIP-seq data were 

obtained from the ENCODE project [48].  

 

Data processing 

FastQC [76] and ngsReports [77] were used to carry out quality control of the raw 

sequencing data. AdapterRemoval [78] was used to trim off sequencing 

adapters. BWA-mem [79] was used to conduct mapping, followed by using 

Pairtools [23] to perform filtering and deduplication of interaction. Cooler [24] was 
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used to generate Hi-C contact matrix and MaxHiC [9] was finally used to identify 

statistically significant interactions. 

Hierarchical and unsupervised clustering analysis  

We conducted unsupervised clustering on Hi-C contact matrices using Kernel 

Principal Component Analysis (kPCA). The interactions of one chromosome 

(chromosome 22) of all samples were used to generate a binary matrix by 

inspecting the appearance of interactions in Hi-C datasets, i.e. if the interaction is 

observed in such cell line/tissue (marked as 1) or not (marked as 0). We then 

used the KernelPCA function from the sklearn library [80] with cosine distance 

kernel. Finally. PC1 and PC2 are used for plotting the unsupervised clustering. 

Hierarchical clustering was performed by obtaining the first 1 million interactions 

of each contact matrix. Contact matrices were first normalised using ICE to 

account for biases such as library size, enzyme cutting bias and ligation bias. 

The normalised matrices were then used to calculate the linkage between each 

cell line/tissue based on the Ward’s method [32] of Euclidean distance using the 

cluster.hierarchy function from the scipy library [81]. 

Identification of topologically-associated domains 

To identify topologically-associated domains (TADs) for 51 cell lines/tissues, Hi-C 

contact matrix of 25 kb bin size of each cell line/tissue generated by cooler [24] 

were used to transform into dense matrix using the sparseToDense.py script 

from HiC-Pro [82]. Then the dense matrices were used by TopDom [83] to 

identify TADs.  
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Global and local enrichment analysis 

For global enrichment analysis, we calculated the percentage of interaction hot 

zones that overlapped with the corresponding annotations in each cell line/tissue 

with annotation data available, then comparing it to the expected percentages of 

overlapping, which calculated by permuting the location of hot zones ten times 

within each cell line/tissue. 

 

For local enrichment analysis, we optimised a method that was described in 

Schmitt et al. [55]. Briefly, for each interaction hot zone in each cell line/tissue, 

we obtained 250 bins upstream and 250 bins downstream, followed by 

calculating the enrichment score for each bin. The enrichment score is calculated 

by three steps, firstly, the expected enrichment bases is calculated by permuting 

the location of the hot zones ten times, then calculated the mean overlapping 

bases between the permuted hot zones and annotations for test. Then, the local 

enrichment score for each bin is calculated by the overlapping bases of observed 

bins divided by the expected overlapping bases, resulting in a total of 501 values, 

each of which are then divided by the minimum of these values to account for the 

magnitude of local enrichment. Finally, the local enrichment scores are log2 

scaled followed by a z-score normalisation. 
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Supplementary Figure 1: Summary of FastQC reports generated using 
ngsReport [77]. A: Total read count of each Hi-C library. B: Overrepresented 
sequences of each Hi-C library. 
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Supplementary Figure 2: Kernel principal component analysis of intra-
chromosomal interactions of 10 random Hi-C libraries on chromosome 1, 12 and 
22. 
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Supplementary Figure 3: Kernel principal component analysis of intra-
chromosomal interactions of 196 Hi-C libraries. Hi-C libraries that belong to cell 
lines or tissues that were sampled in more than one study are colored, while 
other libraries are colored with grey. 
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Supplementary Figure 4: Kernel principal component analysis of intra-
chromosomal interactions of 196 Hi-C libraries. Hi-C libraries that belong to cell 
lines or tissues that were sampled in only one study are colored, while other 
libraries are colored with grey. 
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Supplementary Figure 5: Hi-C libraries count per cell line/tissue that used to 
generate cell line/tissue-specific informative read pairs.  
 

 
Supplementary Figure 6: Count of unique and non-unique MaxHiC-detected 
statistically significant interactions (MADSSI) across 51 cell lines/tissues. 
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Supplementary Figure 7: A screenshot of the region chr1:234,770,000-
234,780,000 in the UCSC genome browser [84]. 
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Supplementary Figure 8: Distribution of relative distance between interaction hot 
zones and TAD boundaries. Colors indicate TAD boundaries in different cell 
lines/tissues, color legend is hidden for better visualisation. 
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Supplementary Figure 9: Global enrichment analysis with interaction hot zones. 
Bar plot shows the overlap (green) between interaction hot zones and CTCF-
binding sites, H3K27ac and H3K4me1 histone markers annotated in different cell 
lines/tissues. The expected overlaps (red) are calculated by permuting the 
location of interaction hot zones of each cell line/tissue and calculating the 
overlaps. The y-axis is the percentage of interaction hot zones overlapped with 
corresponding annotations. 
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Supplementary Figure 10: Local enrichment analysis with interaction hot zones. 
Local enrichment of CTCF-binding sites, H3K27ac, H3K4me1, H3K27me3, cCRE 
distal enhancer signatures, cCRE proximal enhancer signatures and cCRE 
promoter signatures, centering on interaction hot zones in each cell line/tissue. 
Top panel: mean of enrichment score of a 5 Mb region centered at interaction hot 
zones across cell lines/tissues. Bottom panel: enrichment score of a 5 Mb region 
centered at interaction hot zones in each cell line/tissue.  
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Abstract 

Background 

The three-dimensional chromosome structure allows physical engagement 

between distantly located DNA fragments, which can affect gene regulation. High 

resolution chromosome conformation capture (Hi-C) sequencing data offers the 

opportunity to identify interactions across the genome. Previously, we cataloged 

MaxHiC-detected statistically significant interaction (MADSSI) profiles for 51 

human cell and tissue types using 173 published Hi-C datasets and a statistical 

background model implemented in MaxHiC. However, the potential biological 

function of the chromatin interactions identified within this set have yet to be 

investigated.  

Results 

In this study, we cataloged 66 different interaction classes across cell line/tissue-

specific MADSSI via epigenomics data integration contained within public 

databases such as FANTOM5, Epigenomics Roadmap and ENCODE. We 

successfully annotated an average of 75.35% of MADSSI across all cells and 

tissues, generating a comprehensive annotation of cell/tissue-specific interaction 

profiles. Focusing on interactions that are more likely to be regulatory functional, 

we generated lists of potentially regulatory functional MADSSI (PROF-MADSSI). 

While interactions can be annotated to multiple interaction types, PROF-MADSSI 

were dominated by enhancer-enhancer interactions (69.6% on average), 

enhancer-CTCF interactions (49.6% on average) and promoter-enhancer 
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interactions (21.5% on average). Finally, we profiled cell/tissue-specific 3D 

regulatory regions, defined as specific regions with regulatory elements 

contacting cell/tissue-specific expressed gene promoters. We found 3D 

regulatory regions are enriched for the type-specific super-enhancers, and on 

average 26.73% of them overlapped with tissue-specific eQTLs, demonstrating 

their importance in the cell/tissue type-specific gene expression regulation. 

Conclusion 

We present a comprehensive database of annotated cell/tissue-specific MADSSI 

profiles, identified potentially functional chromatin interactions and regions, 

through 3D structure. This information can facilitate future genetics research of 

complex gene regulations in specific cell and tissue types, providing essential 

context to non-coding DNA regions in human genetics studies. 

 

Keywords 

Chromatin interactions; Hi-C; 3D chromosome structure. 
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Background 

The Hi-C sequencing assay has been widely used to investigate the three-

dimensional (3D) chromosome architecture and detect chromatin interactions 

between functional components of the cellular genetic system [1–3]. 

Chromosome interactions at large and small resolution have been identified and 

defined using Hi-C and related chromosome capture sequencing approaches, 

starting from macro-level structures such as A/B compartments [4] and 

topologically-associated domains (TADs) [5], to more high resolution micro-level 

structures such as chromatin loops [6] and frequently interacting regions (FIREs) 

[7].  

 

The investigations of these chromosome features have revealed that the 3D 

chromatin interactions play important roles in the regulation of genes, bringing 

distal regulatory elements such as enhancers into close proximity with gene 

promoters to facilitate gene initiation [8], or forming polycomb-bound complex 

loops to mediate gene repression [9]. Despite its essential role in cellular 

function, non-specific physical interactions found within the nucleus make it 

difficult to accurately detect biologically functional interactions from 

hundreds/millions/billions of uninformative Hi-C reads. Additional technical 

issues, such as amplification biases across the genome during sequencing, 

variation in genomic fragment size of each interaction due to various density of 

enzyme cutting sites, and the occurrence of random interactions caused by 
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random looping or ligation artefacts [10,11] also impact the ability to identify 

relevant physical interactions.  

 

To address this challenge, a number of methods have been developed to detect 

interactions that are more likely to be authentic and biologically relevant, using 

statistical models to identify statistically significant interactions from raw Hi-C 

contacts [10–13]. In a previous study, our collaborators developed MaxHiC, 

which outperforms other methods in identifying statistically significant interactions 

involving regulatory features [14]. Using MaxHiC to selectively reduce the 

relevant interactions for analysis, we established an analysis pipeline based on 

the 4DN Hi-C analysis pipeline [15] and generated MaxHiC-detected statistically 

significant interaction (MADSSI) profiles across 51 human cell lines and tissues 

collected from publicly available Hi-C data repositories such as European 

Nucleotide Archive (ENA) [16] and the 4DN data portal [15].  

 

In order to annotate Hi-C chromatin interactions to reveal their potential biological 

functions, epigenomic and tissue-specific annotations (i.e. histone modification 

markers, promoters, enhancers and repressors) have been used to provide 

context to each interaction [2,17–20]. In this study, we annotated cell/tissue-

specific MADSSI profiles with cell/tissue-specific epigenomics annotations and 

classified them into 66 classes of chromatin interactions. Subsequently, we 

investigated the interaction classes which are potentially regulatory functional. 

Finally, looking at interaction classes involved in contacting cell/tissue-specific 
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expressed gene promoters, we identify cell/tissue-specific 3D regulatory regions 

and integrate them with tissue-specific expression quantitative trait loci (eQTLs). 

 

Results 

Categories of statistically significant chromatin interactions 

We analysed 173 published Hi-C datasets from the European Nucleotide Archive 

(ENA) [16] and the 4DN data portal [15], generating MADSSI profiles for 51 cell 

lines and tissues using a customised pipeline in our previous study. In order to 

comprehensively annotate MADSSIs identified in each cell line/tissue, we first 

categorised chromatin interactions into 66 interaction classes by overlapping 

chosen genomics annotations and each anchor bin in any MADSSI (Figure 1). 

The genomic annotations are obtained from four different sources. Firstly, 

cell/tissue type-specific expression data was obtained from the EBI-Expression 

Atlas [21]. Expression data was then integrated with known gene annotation from 

the GENCODE gene annotation database [22] to identify expressed genes and 

non-expressed genes, with promoters being defined by 2 kb regions upstream of 

the transcription start sites of genes (Figure 1). In order to define active 

enhancers, we used the cell/tissue type-specific expressed enhancers data 

defined by the Cap analysis gene expression (CAGE) sequencing data 

generated in the FANTOM5 project [23]. We also included human cell/tissue 

type-specific chromHMM states, which were systematically predicted by the 

Roadmap Epigenomics Project [24] using data to develop a 15-states 
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chromHMM model [25] defining regulatory elements within each tissue. The 

cell/tissue specific chromHMM states data is used to define poised promoters, 

non-expressed active enhancers, bivalent enhancers, repressed polycomb, 

heterochromatin and repeat regions in each cell/tissue (Figure 1). Finally, CTCF-

binding sites were obtained from the ENCODE project [26] and the CTCFBSDB 

[27]. Overall, using each annotation as an anchor point and looking at 

combinations of genomic interactions, we analysed 66 classes of chromatin 

interactions throughout the study. For the consistency of annotation 

comparisons, we excluded cells or tissues that had too few annotations resulting 

in a total of 35 human cell and tissue types (Supplementary Table 1). 

 
Figure 1: Schematics overview of definition of interaction classes. Interaction 
classes are defined by the overlapping between chosen annotations and both 
anchor bins of statistically significant interactions (top panel). 11 types of chosen 
annotations are described in the schematic figure (bottom panel). 
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Figure 2: The normalised count of each interaction class annotated in each cell 
and tissue. Heatmap (left) shows the number of interaction classes identified in 
each cell/tissue. Each column corresponds to an interaction type id. Anchors 
indicated the annotations in each anchor of an interaction to define an interaction 
class. Value in each cell is the percentile rank of the z-score normalised count of 
the interaction type in each row (cell/tissue). Heatmap (right) shows the 66 
interaction classes. 
 

On average, approximately 75.35% of MADSSI in each cell/tissue were 

annotated by both anchor bins overlapping with selected genomic elements 

(Supplementary Figure 1 and Supplementary File 1). To compare the frequency 

of interaction classes across all cells/tissues while minimising the bias of various 

MADSSI count in different cells/tissues (Supplementary Figure 2), we normalised 

the frequency of interaction classes found in each cell/tissue using z-score 

normalisation and calculated the rank percentile to demonstrate the frequency of 
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found in the majority of cells/tissues (Figure 2). We also found poised promoter 

(Classes 21 - 30) and expressed enhancer (Classes 39 - 45) interaction classes 

have relatively low frequency across all 35 cells and tissues. This may be due to 

these two annotations having relatively smaller effect size, which is calculated by 

the production of the average length and total count of the annotation 

(Supplementary Figure 3). In addition to enhancer-related interaction classes, 

which are associated with gene activation, we also observed frequent 

interactions of CTCF binding sites and overlapping polycomb anchors (Classes 

57, 58 and 61) in some cells and tissues, including B cells, brain cells, cardiac 

muscle cells, HepG2, K562, NHEK, skin fibroblast and T cells (Figure 2), 

indicating that some MADSSI in these cells and tissues are also associated with 

gene repression via polycomb-mediation. By clustering of the similar frequency 

pattern of the annotated interaction classes, we found cell/tissue types with 

biological similarity are clustered together, such as HSPC and erythroid 

progenitor cells, 786-M1A and 786-O_TGL cell lines, left heart ventricle and right 

heart ventricle tissues, neutrophils and HL-60 cell lines (Figure 2), indicating that 

similar cell types tend to have similar annotated MADSSI profiles. 

Potentially regulatory functional chromatin interactions 

In the 66 interaction classes analysed above, some interaction classes are 

important to demonstrate extra layers of regulatory mechanisms of gene 

expression, such as expressed gene promoter contacting enhancers, CTCF 

binding sites contacting enhancers and polycomb contacting expressed gene 

promoters. We then drilled down to interactions that are potentially regulatory 
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functional given our hypothesis of expressed gene promoters and enhancers 

being potential regulatory markers to indicate cell/tissue-specific functional 

regulations, defining 6 types of potentially regulatory functional MADSSI (PROF-

MADSSI) for each cell/tissue type (Table 1 and Figure 3A). We describe 

promoter-promoter interactions (PPI) as contacts between two promoters of 

cell/tissue-specific expressed genes or contacts between unexpressed gene 

promoters and expressed gene promoters (Figure 3A). The former class can lead 

to the formation of a cooperatively transcribed network among genes [18], while 

the latter may be regulatory when gene promoters act as enhancers to regulate 

expression of other genes [28–30].  
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Table 1: Definition of potentially regulatory functional MADSSI (PROF-MADSSI). 
Annotations 1 and 2 indicate the annotation used in each anchor of an interaction 
to define a PROF-MADSSI. 

Annotation 1 Annotation 2 Potential regulatory 
function 

Type 

Expressed gene 
promoter 

 
 
 
 
 
 

Expressed gene 
promoter 

Co-expression; promoter 
acting as an enhancer 

PPI 
 

Non-expressed gene 
promoter 

Promoter acting as an 
enhancer 

Expressed enhancer 

Enhancer enhancing 
gene expression 

 
 

PEI 
 
 

Non-expressed active 
enhancer 

Bivalent enhancer 

CTCF binding sites CTCF drive PEI or PPI  PCI 

Polycomb 
Polycomb mediate gene 

expression PPCI 

Expressed enhancer 

Expressed enhancer 

Enhancer-enhancer 
interaction 

 
 EEI 

Non-expressed active 
enhancer 

Bivalent enhancer 

CTCF binding sites 
CTCF promote promoter 

EP or PP contacts ECI 

Non-expressed active 
enhancer 

Non-expressed active 
enhancer Enhancer-enhancer 

interaction 
 

EEI 
 Bivalent enhancer 

CTCF binding sites 
CTCF promote promoter 

EP or PP contacts ECI 

Bivalent enhancer 

Bivalent enhancer 
Enhancer-enhancer 

interaction EEI 

CTCF binding sites CTCF drive PEI or PPI ECI 

Expressed gene 
promoter Poised promoter 

Co-expression; promoter 
acting as an enhancer PPI 
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Figure 3: The identification of PROF-MADDSI. (A) Heatmap shows all interaction 
classes based on the anchored elements, interaction classes colored in red are 
selected to be PROF-MADSSI. (B) Bar plot shows the percentage of annotated 
MADSSI identified as PORF-MADSSI in 35 cells/tissues, x-axis is ordered as 
supplementary figure 2. 
 
 
As a classical regulation model [2,8,31], promoter-enhancer interactions (PEI) 

which could be interactions between expressed gene promoters or poised 

promoters in one side and expressed enhancers, non-expressed active 

enhancers and bivalent enhancers in another side, are shown to be regulatory 

functional [2,8,32]. Similarly, enhancer-enhancer interactions (EEI), which can 

lead to cooperative regulation between enhancers [32–34] are considered as 

PROF-MADSSI as well. In addition to the well-established mechanism where the 

chromosome insulator protein CTCF forms the basis of chromatin loops [35,36] 

and the boundaries of topologically-associated domains [5,6], the binding of 

CTCF in promoter regions can also drive promoter-promoter and promoter-

enhancer interactions [37]. Therefore, promoter-CTCF binding site interactions 
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(PCI) and enhancer-CTCF binding site interactions (ECI) are also regarded as 

PROF-MADSSI. Finally, the polycomb complex can mediate transcription by 

changing the accessibility of DNA, by affecting the function of RNA polymerase 

when binding to gene promoters and by involvement in promoter-promoter 

interactions [38–40], all reasons why the promoter-polycomb interactions (PPCI) 

are included for their potential regulatory function. 

 

Overall, we identified on average 32.81% of MADSSI as PROF-MADSSI in 35 

cells/tissues (Supplementary File 2), with thymus being the tissue that have the 

least fraction (8.4%) of PROF-MADSSI from its annotated MADSSI and K562 

being the most (55.2%) (Figure 3B). We observed that the vast majority of all 

PROF-MADSSI are composed of enhancers-related interactions, including on 

average 69.6% of them are EEI, 49.6% of them are ECI and 21.5% of them are 

PEI (Figure 4A). Consistently, we found that EEI and ECI are the two most 

frequently detected interaction types across 35 cells/tissues (Figure 4B). We 

observed that 35 cells/tissues are clustered into two large clusters, one have 

more ECI than EEI, such as Brain, NHEK and B cells, the other one have more 

EEI than ECI, such as thymus, small bowel and psoas muscle (Figure 4B). 

Interestingly, we also found that all tissues except for liver (11 of 12), have more 

EEI than ECI (Figure 4B).  
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Figure 4: Composition of the identified PROF-MADSSI. (A) Box plot shows the 
percentage of six PROF-MADSSI types in all cells and tissues. (B) Heatmap 
shows the frequency of each PROF-MADSSI types across 35 cells/tissues. Each 
cell in the heatmap is a z-score normalised count. 
 

We hypothesised that if chromatin interactions are assigned to more than two 

PROF-MADSSI types (i.e. EEI, PPI, PEI etc), such interactions are stacked with 

regulatory elements, potentially implying biological functionality. We therefore 

looked into the PROF-MADSSI of each cell/tissue, we found on average 42% of 

the interactions are assigned to at least two PROF-MADSSI types in all 

cells/tissues (Figure 5A). Taking two extreme cases as examples, 6 PROF-

MADSSI were detected in Psoas Muscle Tissue and all of them are annotated as 

EEI, while of the 183,346 PROF-MADDSI detected in K562 cells, 61.9% of them 

are annotated with at least two PROF-MADSSI types (Figure 5B). Interestingly, 

in the Leukemia cell line K562, 1,416 chromatin interactions are annotated as all 

6 PROF-MADSSI types (i.e. EEI, PEI, PPI, ECI, PCI and PPCI) (Figure 5B), 

indicating regulatory annotations including enhancers, expressed gene 

promoters, CTCF binding sites and polycomb signals are captured by these 
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interactions. For chromosome 12 in K562, a PROF-MADSSI contacts with the 

promoter region (2 kb upstream of transcription start site) of gene STAT6, which 

encodes transcription factor STAT6 associated with the development of 

lymphoma and leukemia [41]. We also observed CTCF-binding sites overlaid in 

the interacting regions, along with the predicted active enhancer states (red) and 

polycomb-complex states (gray) based on K562 chromHMM states (Figure 6). 

This suggests that this identified PROF-MADSSI may point to regulation of the 

STAT6 gene via a complex regulatory network. 

 

 

A

B
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Figure 5: Investigation of PROF-MADSSI types in the identified PROF-MADSSI. 
(A) bar plot shows the percentage of PROF-MADSSI that are identified as only 
one PROF-MADSSI type or identified as multiple PROF-MADSSI types in each 
cell/tissue. (B) Upset plots show the frequency of each PROF-MADSSI type in 
two extreme examples, including psoas muscle (left), which has only one PROF-
MADSSI types and K562 (right), which have the most (61.9%) of PROF-MADSSI 
are identified as multiple PROF-MADSSI types.  

 

Figure 6: An example of a chromatin interaction being annotated as all six PROF-
MADSSI types in K562 cell line. From the top, there are the UCSC gene track 
shows the known genes in the plotting region (chr12:56.9-57.3 Mb), interaction 
track shows the PROF-MADSSI of K562, annotation track shows the CTCF 
binding sites and chromHMM states track indicate the predicted K562-specific 
chromHMM states. 
 

We then investigated the genomic distance distribution of each PROF-MADSSI 

type across 35 cell/tissue types and found that the vast majority of identified 

PROF-MADSSI were located within 2 Mb (Supplementary Figure 4), relatively 

shorter than previous 10 Mb length of previous informative interactions estimates 

[32,42]. Furthermore, there were two types of distribution patterns observed 

across 35 cells/tissues: one peaks at around 200-250 kb, followed by a decay 

curve, such as in B cells (Figure 7), Brain cells, Cardiac Muscle cells etc 

(Supplementary Figure 4). The other pattern peaks at 10 kb (adjacent interacting 
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bins), such as HepG2 (Figure 7), HL-60, lung etc (Supplementary Figure 4). 

Additionally, we found that the distributions of different PROF-MADSSI varied 

slightly in the first pattern whereas they are more consistent in the second 

pattern. For example, for the genomic distance of 200-250 kb in B cells (Figure 

7), all PORF-MADSSI types are more frequently observed than all MADSSI, with 

EEI the most frequent PROF-MADSSI type and PPCI the least frequent. This 

indicates that the potential regulatory functional interactions are more likely to 

occur over short distances (200-250 kb) than other MADSSI in B cells. However, 

in HepG2 (Figure 7), the distributions of all PROF-MADSSI types are similar to all 

MADSSI.  

 
Figure 7: Investigation of the distance distribution between six PROF-MADSSI 
types. Line plots show the genomic distance distribution of MADSSI and PROF-
MADSSI in B cells (left) and HepG2 (right).  
 

Identification of 3D regulatory regions from PROF-MADSSI 

Given the complex nature of the gene regulation network, it has always been 

challenging to link regulatory elements to their target genes [32]. This particular 
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problem is essential to the analysis of targets identified from Genome-Wide 

Association Studies (GWAS), where historically, genes were assigned to lead 

SNPs based on linear genomic distances (i.e. the closest gene). Using cell/tissue 

type-specific PROF-MADSSI that contacting with cell/tissue-specific expressed 

gene promoters directly, including PPI, PEI, PCI and PPCI, we generated lists of 

cell/tissue-specific 3D regulatory regions (i.e. the corresponding promoters, 

enhancers and CTCF binding sites) that are located in close proximity to 

cell/tissue-specific expressed gene promoters in 3D space, with the potential to 

mediate gene regulation via physical contact (Figure 8A and Supplementary File 

3). In addition to the direct linkage between regulatory regions to expressed gene 

promoters, we also considered secondary linkages, which are mainly driven by 

EEI and ECI (Figure 8A), hence identifying extra 3D regulatory regions (i.e. 

enhancers with secondary linkages). Overall, in 35 cells/tissues, only enhancers-

related PROF-MADSSI (ECI and EEI) were detected in Psoas Muscle and Small 

Bowel tissue, they were therefore excluded from the following analysis. 

Consistently to the finding of EEI and ECI made up of the vast majority of PROF-

MADSSI, on average 66.98% of the 3D regulatory regions are composed of 

enhancers, including non-expressed active enhancers (60.6%), bivalent 

enhancers (4.86%) and expressed enhancers (1.52%), while CTCF binding sites 

(19%) being the second largest component (Figure 8B).  
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Figure 8: The definition and identification of 3D regulatory regions. (A) Schematic 
figure shows the direct linkage and secondary linkage that used to identify 3D 
regulatory regions in this study. (B) Bar plot shows the composition of 3D 
regulatory regions in each cell/tissue. 
 

 
 

To demonstrate the potential regulatory functionality of 3D regulatory regions, we 
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cell/tissue-specific super-enhancers (SEs), which play an important role in 

transcription factor binding and gene expression regulation in the genome 

[43,44]. We obtained from the Super-Enhancer Archive (SEA) [45], finding 68% 

(15 out of 22) of the cell/tissue-specific SEs are enriched in their corresponding 

type-specific SEs (Figure 9). For instance, T cell, neutrophils, MCF-7 and liver-

specific SEs were enriched in the 3D regulatory regions of T cells, neutrophils, 

MCF-7 and liver tissue, respectively. The exceptions being 3D regulatory regions 

of thymus, spleen, lung, aorta, pancreas, ovary and right heart ventricle tissues, 

all of which failed to show enrichment in their corresponding tissue-specific SEs 

(Figure 9). We also observed an overall high enrichment between 3D regulatory 

regions of IMR90, GM12878 and K562 and all cell/tissue-specific SEs (Figure 9). 

By clustering of the similar enrichment pattern of SEs, we found some clustering 

patterns associated with the cell/tissue type specificity, such as T cells and Jurkat 

T cell lines are clustered together with a similar enrichment pattern across all 

SEs and exhibit high enrichment level in T cell-specific SEs, and other blood-

related cell types, including HSPC, white blood cells, B cells, neutrophils and 

erythroid progenitor cells are clustered together (Figure 9).  
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Figure 9: Investigation of the enrichment of SEs in 3D regulatory regions. 
Heatmap shows the enrichment level of cell/tissue-specific super-enhancers in 
the identified cell/tissue-specific 3D regulatory regions.  
 

We finally integrated 3D regulatory regions with tissue-specific cis- (distance 

between eQTLs and their target genes within 1 Mb) expression quantitative trait 

loci (eQTLs) obtained from the GTEx database [46]. In 15 cells/tissues with 

corresponding eQTLs, eQTLs could be detected in from 11% (liver) to 43% 

(Erythroid progenitor) of the identified cell/tissue-specific 3D regulatory regions 

(Figure 10A). By comparing the 3D regulatory region-gene promoter interactions 

to eQTL-target gene pairs, we found on average 5.9% of the 3D regulatory 

region-gene promoter interactions overlapped with the eQTL-target gene pairs in 

the corresponding cells/tissues (Figure 10B), meaning these eQTLs are located 
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within a 3D regulatory region (i.e. CTCF binding sites, enhancers or promoters) 

and having physical contact via 3D chromatin interactions with the promoters of 

their target genes, whose expression levels are altered by the presence of the 

eQTLs in the genome. Here we characterise these as “3DeQTLs” and we 

identified cell/tissue-specific 3DeQTLs in 15 cells/tissues (Supplementary File 4). 

Even though only a small fraction (on average 0.29%) of eQTLs were identified 

as 3DeQTLs, on average 1.15%, 8.5% and 16.1% of the eQTLs were captured 

by cell/tissue-specific 3D regulatory regions, PROF-MADSSI and MADSSI, 

respectively (Figure 10C). Some cells/tissues-specific MADSSI, such as skin 

fibroblast, brain cells and T cells, were found to be overlapped over 40% of the 

eQTLs, indicating the regulatory importance of the cataloged MADSSI (Figure 

10C).  
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Figure 10: Investigation of eQTLs integrating with 3D regulatory regions. (Top 
panel) bar plot shows the percentage of 3D regulatory regions that overlapped 
with cell/tissue-specific cis eQTLs. eQTLs are obtained from the GTEx database 
[46]. (Middle panel) bar plot shows percentage of 3D regulatory region-gene 
promoter interactions overlap with eQTL-target gene pairs. (Bottom panel) bar 
plot shows the percentage of cis eQTLs found in MADSSI, PROF-MADSSI, 3D 
regulatory regions and identified as 3DeQTLs.  
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In order to demonstrate the relationship between 3D regulatory regions and the 

3DeQTLs we identified, we used the 3DeQTLs found in the liver tissue. Secreted 

phosphoprotein-1 (SSP1) gene, found on chromosome 4, is responsible for the 

production of osteopontin and was found to play an important role in the 

development of liver diseases and hepatocellular carcinoma [47–49]. More 

importantly, the SSP1 gene is also identified as an eQTL target gene for many 

liver-specific cis eQTLs located in the non-coding region upstream of the SSP1 

gene (Figure 11). Liver-specific MADSSI were observed between the promoter 

region (2 kb upstream of the transcription start site) of SSP1 gene and liver-

specific 3D regulatory regions (shown as orange) (Figure 11). These 3D 

regulatory regions contain 4 liver-specific CTCF-binding sites and 2 active 

enhancer chromHMM states, and surrounded by 149 eQTLs targeting SSP1 

located between the CTCF binding sites of one 3D regulatory region (on the left) 

and SSP1 promoter, indicating that this is a CTCF-mediated enhancer-promoter 

chromatin loop linking eQTLs within the loop to contact their target gene 

promoter (Figure 11). Interestingly, we found that this loop is located near the 

boundary of a topologically-associated domain (TAD), and the interaction 

between the 3DeQTLs and SSP1 promoter is a cross-TAD interaction (Figure 

11). Altogether, this highlights the potential mechanism of eQTLs mediating the 

expression of their target genes by associating with the 3D regulatory regions 

which contact the promoters of target genes three-dimensionally. 
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Figure 11: An example demonstrating the potential mechanism of 3DeQTL and 
its target gene in liver tissue. From the top, there are the UCSC gene track 
shows the known genes in the plotting region (chr4:87.9-88.1 Mb), interaction 
track shows the liver PROF-MADSSI, annotation tracks indicate liver TADs, 
CTCF binding sites and 3D regulatory regions, interaction track shows the 
linkage between liver cis eQTLs and SSP1 gene and chromHMM states track 
indicate the predicted liver-specific chromHMM states. 
 

 

 

 

 

Discussion 

Chromatin interactions have been proved to play important roles in the gene 

regulation networks [2,6,50–53]. It is essential to accurately distinguish likely 

functional interactions from Hi-C datasets while accounting for biases such as 

random ligations, self ligations and uneven digestion patterns. To address this 
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issue, using the statistical background model from MaxHiC [14] and publicly 

available Hi-C datasets, we generated MaxHiC-detected statistically significant 

interaction (MADSSI) profiles for 51 cell lines and tissues in previous works. In 

this study, to comprehensively annotate the cell/tissue-specific MADSSI profiles, 

we categorised chromatin interactions into 66 interaction classes based on the 

overlap between cell/tissue-specific annotations and each anchor bin of an 

interaction.  

 

From 66 interaction types, based on different 3D regulatory models, which 

associate with promoters, enhancers, CTCF binding sites and polycomb 

complex, that have been studied [29,30,32,34,37,40], we selected relevant 

interaction types as potentially regulatory functional MADSSI (PROF-MADSSI) 

(Table 1). Using the identified PROF-MADSSI, we can easily reveal regions with 

regulatory signals, such as the STAT6 region we illustrated in K562 (Figure 6). 

As an important transcription factor, the presence of phosphorylated STAT6 is 

shown to play important role in the activation of the janus kinase-signal 

transducer and activator of transcription signaling pathway, which is essential for 

lymphoma and leukemia [41,54–56]. Our identification of the novel linkage 

(PROF-MADSSI) between the promoter of STAT6 and the distal (100 kb 

upstream) regions, where CTCF binding sites, polycomb complex and enhancer 

signals are found, indicate an CTCF-drive promoter-enhancer/polycomb 

interactions may be involved in the regulation of expression of STAT6 in K562, a 

chronic myelogenous leukemia-derived cell line. This potential 3D regulation can 
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further be examined by knockout experiments via genome editing techniques 

such as CRISPR.  

  

Different studies used different overlapping thresholds to determine successful 

annotations of chromatin interactions, some used an at least 10% overlap as a 

threshold [57], and some decided that any overlap is sufficient [32]. In our study, 

in order to minimise false positive annotations, we required a 100% overlap 

between annotations and interacting bins. However, this in turn might lead to an 

uneven distribution of the detected interaction types (Figure 1B), where 

annotations with smaller size, such as active enhancers that are defined by 

chromHMM states, are more likely to be annotated.  

 

Spatial transcriptomics studies have recently shown the variation of gene 

expression profiles across different parts of a tissue and demonstrated the 

importance of positional context of gene expression in understanding the tissue 

functionality and its disease-associated pathological change [58–60]. This 

specificity is crucially important in defining epigenomic annotations and chromatin 

states, with heterogeneous tissues made up of multiple defined cell-types 

potentially leading to inaccurate results. Since chromatin interactions contribute 

to govern the gene expression regulations, it is reasonable to hypothesise that 

different parts of tissue exhibit different genome structure profiles. In this study, 

we used annotations from large epigenomic projects such as ENCODE [26] and 

the Roadmap Epigenomics [61] to annotate the tissue-specific MADSSI, but we 
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were forced to neglect the spatial context across the tissue. In the future, 

integrating spatial transcriptomics data with spatial chromatin interactions may 

help us to understand the mechanism governed by 3D genome structure more 

comprehensively and accurately. 

 

The functional mechanism of how non-coding variants, such as eQTLs affect 

gene expression can be interpreted by 3D regulatory regions and MADSSI. By 

integrating with cell/tissue-specific cis eQTLs, we showed a small fraction 

(0.29%) of eQTLs can be classified as 3DeQTLs, which are located in 3D 

regulatory regions and contact to the promoter region of their target genes, 

demonstrating the power of using PROF-MADSSI to functionally interpret eQTLs. 

Further validations can be carried out by regulatory region-knockout experiments 

in parallel with SNP editing experiments using CRISPR gene editing to validate 

the role of chromatin interactions in the functional mechanism of eQTLs. Future 

research of eQTLs and other non-coding SNPs interpretation can be facilitated 

by the cell/tissue-specific 3D regulatory regions and PROF-MADSSI catalogued 

in this study. 

 

 

Conclusion 

In conclusion, we comprehensively annotated cell/tissue-specific MADSSI for 35 

human cells and tissue, generating lists of interactions and regions that have 

potential regulatory functions in a cell/tissue-specific manner. These results can 
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further be used in cell/tissue type-specific data integration studies, such as 

identifying potential GWAS SNPs in cell or tissue types specifically associated 

with disease [3,62] or identifying novel non-coding regulatory regions such as 

long-non coding RNAs [63–65]. In future studies, based on more and more 

publicly available clinical Hi-C datasets, we will be able to generate disease-

specific MADSSI profiles from clinical samples and compare them with our 

reference MADSSI profiles to further improve the interpretation of the regulatory 

function of disease/cell/tissue-specific chromatin interactions and regulatory 

regions. 

 

Methods 

Interaction classes annotation 

In order to stringently annotate cell/tissue-specific MADSSI into various 

interaction classes, we required 100% overlap between annotation data and 

interacting bins for them to be defined as successfully annotated for each 

identified MADSSI. Overlaps between the annotation and interaction was carried 

out using the pybedtools library [66,67]. 

Enrichment test of super-enhancers 

In order to perform enrichment analysis between 3D regulatory regions and 

super-enhancers, we first created a background of 3D regulatory regions by 
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merging all 3D regulatory regions of all cells/tissues. For each cell/tissue and 

each type-specific super-enhancers, we then calculated the expected overlap 

count of super-enhancers by permuting the same amount of regions as the 3D 

regulatory regions 10 times from the background, the mean of the resulting 

overlapped count then being used as the expected overlap count. The 

enrichment score is then calculated as the observed overlap count divided by the 

expected overlap count for each cell/tissue-specific 3D regulatory region and 

super-enhancer. To visualise the enrichment, for each cell/tissue-specific 

enhancer, the enrichment scores underwent z score normalisation, followed by 

calculating the percentile rank using the pnorm function from the stats R library. 

Interaction and eQTL visualisation 

To visualise the identified interactions, 3D regulatory regions and eQTL linkage in 

specific regions such as Figure 3F, we used functions from R package Gviz [68], 

GenomicInteractions [69] and rtracklayer [70].  
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Supplementary Figure 1: The percentage of annotated interactions and 
unannotated interactions of all MADSSI of 35 cells/tissues. 
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Supplementary Figure 2: The MADSSI count of 35 cells/tissues. 
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Supplementary Figure 3: Average effect size of the 11 types of annotations used 
in this study. The average effect size is calculated by the product of average 
length and total count of each annotation in 35 cells and tissues. 
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Supplementary Figure 4: genomic distance distribution of PROF-MADSSI and 
MADSSI across 35 cell/tissue types. 
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Chapter 6 
 

Conclusion and Discussion 
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Conclusion and Discussion 

Over the last decade, a number of large epigenomics projects have been initiated 

to catalogue human cell and tissue type-specifics information, such as the 

Encyclopedia of DNA elements (ENCODE) project (ENCODE Project 

Consortium, 2012; Davis et al., 2018), NIH Roadmap Epigenomics project 

(Bernstein et al., 2010; Roadmap Epigenomics Consortium et al., 2015), 

Functional Annotation of the Mammalian Genome (FANTOM5) project (Lizio et 

al., 2015, 2019) and the Genotype-Tissue Expression (GTEx) project (Lonsdale 

et al., 2013). These projects offer unprecedented access to functional information 

of individual cell-types across the genome, enabling researchers to investigate 

complex regulatory networks that may have a significant impact on 

common/complex disease and phenotypes that are unlikely to be impacted by 

simple variant systems. However, there are still limitations to these repositories, 

partly because of the highly cell type-specific regulation of gene expression in 

some compartments, especially the immune system, and because the accurate 

functional annotation of the linkage between non-gene-coding regions and genes 

requires newer conformation-specific datasets, which have not yet been 

generated for many cell types. 

 

This means that despite the extensive, accurate annotation information of 

regulatory, non-coding regions (histone modifications, DNA methylation, 

enhancers, repressors etc), a direct functional connection to a specific gene 

target is often lacking, hindering the identification of causative gene regulation 
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mechanisms that drive complex diseases. In this thesis, I investigated the 

dynamics of 3D chromatin interactions across the human genome, attempting to 

identify a tangible link between regulatory factors found in non-gene-coding 

regions and target genes via physical proximity in 3D space (Figure 1). This is 

important for correctly annotating genetic risk to the altered genes, and for 

filtering out SNPs in linkage disequilibrium that do not drive the alteration of gene 

expression because of the cell and condition-specific 3D chromatin organisation. 

 

 
Figure 1: Research context of this PhD dissertation. 
 

Function

Non-coding DNA
• Variation
• Regulatory element

Complex disease
• Development
• Progression

Bioinformatics protocol to 
identify functional consequence

House-keeping
• Development
• Movement
• Metabolism

Tissue-specificity
• Identity
• Functionality

3D genome 
structure

Epigenomics 
information Hi-C data bridging

Non-coding DNA

?
Re
gu
lat
e

Regulate

RegulateContribute

Investigate



 277  

 
Figure 2: Schematic summary describing the relationship between each chapter 
of this dissertation.  
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Non-coding DNA: The dark matter of genetic risk 

Classical case-control human genetics studies enabled researchers to 

discovered many important genetic alterations linked to diseases such as chronic 

granulomatous disease (Royer-Pokora et al., 1986), cystic fibrosis (Kerem et al., 

1989) and Fanconi’s anaemia (Strathdee et al., 1992). Starting with few genetic 

markers that were commonly located in gene-coding regions, the development in 

high-throughput sequencing technologies and the reduction in the per-base cost 

of genome sequencing over the last 12 years has meant that researchers can 

now study the impact of genetic variation on a genome-wide scale. However, 

until very recently, genome-wide association studies (GWAS) were carried out 

using microarray technologies (Gorlov et al., 2009; Liang et al., 2020) that 

contained thousands of markers that were biased towards known, gene-rich 

regions, ignoring a wealth of non-coding variation. Despite this, the vast majority 

of the disease-associated single nucleotide polymorphisms (SNPs) discovered 

by GWAS have been located in non-coding regions (Freedman et al., 2011; Tak 

and Farnham, 2015), with no link to genes other than by proximity. Even though 

many of the non-coding SNPs have been found located in regulatory regions, 

such as enhancers (Kikuchi et al., 2019) and transcription factor binding sites 

(Huo et al., 2019), it is still challenging to interpret their functionality without 

additional information of which genes they target.  

 

Reported disease-associated variants from GWAS are commonly linked to target 

genes or regulatory elements by taking the closest gene by linear proximity 
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(Fernández and Miranda-Saavedra, 2012; International Multiple Sclerosis 

Genetics Consortium (IMSGC) et al., 2013; Suna et al., 2015; de Lange et al., 

2017). However, the genomic distance between the bona fide target genes and 

variants may be variable due to the nature of three-dimensional (3D) 

chromosome structure (Pennacchio et al., 2013; Tak and Farnham, 2015; 

Hariprakash and Ferrari, 2019). Additionally, and crucial to the interpretation of 

GWAS results, target genes may not be associated with any genetic linkage 

pattern and could be found multiple Megabases (Mb) away from their regulatory 

partner. For example, Sanyal et al. 2012 demonstrated in three cell lines that 

only 47% of the regulatory elements interact with their nearest genes. 3D 

chromosome structure can bring distal elements such as enhancers or silencers 

and gene promoters in close physical proximity in 3D space, playing an important 

role in the gene regulation network (Lieberman-Aiden et al., 2009; Jin et al., 

2013; Rao et al., 2014; Mifsud et al., 2015).  

 

Given the important impact that the 3D chromosome structure has on physical 

proximity of genomic regions, 3D chromatin interactions can now be used to 

connect regulatory functionality to specific genes, revealing novel regulation 

mechanisms. These chromatin interactions can be captured through complex 

assays such as high-resolution chromosome conformation capture (Hi-C) 

sequencing assay (Lieberman-Aiden et al., 2009), which allow detection of 

physical interactions within the nucleus by capturing crosslinked DNA using a 

digestion and re-ligation protocol. In the recent years, a significant amount of 
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data has been generated across cell-lines, tissues and across species, all 

publicly available through databases such as the European nucleotide archive 

(ENA) (Leinonen et al., 2011). These have largely been to facilitate the 

investigation of chromosome architecture, but they are now being used to 

interpret functional impacts of genetic studies. Once again, the functional impact 

of 3D connectivity has to be investigated in the relevant cell type to map causality 

of genetic risk of disease. 

 

However, given the complexity of Hi-C datasets, it is difficult to interpret Hi-C 

data and identify chromatin interactions which drive biological functionality. One 

of the main reasons being the experimental procedures in the Hi-C protocol, 

particularly the ligation step, which can introduce false positive interactions to the 

Hi-C data due to scenarios such as self-ligation and random ligation events (Ay, 

Bailey and Noble, 2014; Mifsud et al., 2017). Furthermore, Hi-C experiments are 

often performed with millions of cells and require high sequencing depth, such 

that the scale of data further complicates the identification of interactions with 

functional potential. Taken together, this suggests that in order to make use of 

the connectivity of Hi-C interactions to link non-coding DNA, such as non-coding 

SNPs, to their target genes, it is essential to accurately annotate real functional 

chromatin interactions from Hi-C datasets. In Chapter 1, we therefore reviewed 

the methodologies that are currently being used to identify potential functional 

interactions from Hi-C data (Figure 2). We categorised approaches of potentially 

functional interactions identification into three major groups: structural domain 
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identification methods, including the detection of A/B compartments (Lieberman-

Aiden et al., 2009) and subcompartments (Rao et al., 2014); detecting statistical 

significant interactions based on statistical modeling (Ay, Bailey and Noble, 2014; 

Carty et al., 2017; Mifsud et al., 2017; Alinejad-Rokny et al., 2020) and data 

integration, including integrating with regulatory elements, genome-wide 

association studies (GWAS) and quantitative trait loci (QTL) data.  

 

Using the reviewed methodologies to identify potential functional chromatin 

interactions, enable the discovery of 3D genome structure with interpretable 

biological functionality. We therefore can use them to establish linkages between 

non-coding DNA, specifically non-coding SNPs, and known genes, or gene 

regulators such as enhancers and repressors. We are then able to make 

predictions for novel genetic regulation mechanisms and identify previously 

unknown genetic risks for complex diseases, such as autoimmune diseases and 

cancers. These findings can potentially contribute to clinical genetic screens such 

as in the calculation of the polygenic risk scores, which is useful for predicting 

disease status and inherited susceptibility for individuals (Choi, Mak and O’Reilly, 

2020; Lewis and Vassos, 2020), or assisting the development of novel genetic 

treatments for complex diseases such as enhancer therapies (Hamdan and 

Johnsen, 2019; Zhao Zhang et al., 2019). 
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‘Not all SNPs are created equal’ 

As mentioned previously, a significant research gap lies in the interpretation of 

non-coding genetic variants identified from disease-specific GWAS studies. In 

Chapter 3, I address this research gap by building a computational pipeline 

called 3 Dimensional Functional Annotation of Accessible Cell Type-Specific 

SNPs (3DFAACTS-SNP) to connect diseases-associated non-coding SNPs to 

their potential target genes based on a model of type 1 diabetes (T1D) regulatory 

mechanisms. As T1D is an autoimmune disease, regulatory T cells (Tregs), a 

cell-type that plays an important role in the homeostasis of the immune system, 

are implicated in the unrestrained immune destruction of the insulin-generating 

pancreatic beta cells (Atkinson, Eisenbarth and Michels, 2014), I hypothesised 

that T1D genetic risk in Treg cells would impact the development and 

progression of T1D. Therefore variants that specifically disrupt the regulatory 

mechanisms of Treg cells are perfect therapeutic targets for investigation. Based 

on the integration of T1D-associated SNPs with other genomic datasets, I 

developed a T1D-specific 3DFAACT-SNP pipeline using Treg-specific Hi-C, 

ATAC-seq, promoter and enhancer annotation datasets to identify interacting 

regulatory regions of the genome that are active within accessible chromatin in 

Tregs. Key to this process was the inclusion of the regulome of the master 

transcription regulator of Treg cells FOXP3, using human Treg specific ChIP 

information, given that FOXP3-binding is a major contributor to Treg function.  
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Using this pipeline, we identified 36 SNPs (from 1,228 T1D fine-mapped variants) 

with connectivity to new target genes via 3D chromatin interactions, 26 of which 

were interacting with enhancer regions. Crucially, we also identify another 119 

interacting regions impacting 51 genes that may be involved in the disease. 

Connections between these new genes and variants have not been previously 

reported, demonstrating the power of cell type-specific interaction data in 

identifying novel disease risk in autoimmune disease. We further demonstrated 

the utility of the workflow by applying it to three other autoimmune datasets, 

identifying 16 more Treg-centric candidate SNPs and 35 interacting genes in 

different autoimmune disorders. Finally, we demonstrate the broad utility of the 

3DFAACTS-SNP workflow for functional annotation of any genetic variation 

datasets by applying the filtering approach to ~2 million common (>10% allele 

frequency in populations) SNPs from the Genome Aggregation Database 

(gnomAD). In total, we found 7,900 SNPs and 3,245 candidate target genes, 

generating a list of potential sites for future T1D or autoimmune research.  

 

As a data integration-based approach, one inevitable limitation of the 3DFAACT-

SNP pipeline is its dependence on the data used to perform integration, 

particularly the quality and resolution of chromatin interactions identified from Hi-

C data. In Chapter 3, instead of the standard analysis, which maps alignment 

read pairs to fixed-size genomic bins and using normalised contacts between 

bins as the chromatin interactions, we employed the post-filtered alignment read 

pairs from two Treg-specific Hi-C datasets as the basis of our chromatin 
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interactions. Given the limited coverage of our initial Hi-C datasets, standard 

analyses would likely use large bin sizes (greater than 40 kb) due to the sparsity 

of the data, leading to an increase in false positive connections to regulatory 

elements. With more sequencing depth, such as billions of raw sequencing 

reads, we can generate contact maps with resolution at kilobases level (Rao et 

al., 2014). In such cases, normalised contacts between fixed-size genomic bins 

with a small bin size such as 1 kb or 2 kb can more accurately indicate the real 

chromatin interactions, allowing a more accurate interpretation of the linkages 

between SNPs and regulatory regions, identifying more potentially causative 

SNPs for diseases. Therefore, in the chapter 4 and 5, we used published Hi-C 

datasets with high sequencing coverage to generate contact maps with 10 kb bin 

size, generating chromatin interactions with better validity. 

 

The power of the 3DFAACTS-SNP pipeline is its ability to incorporate 

chromosome organisation in 3D as well as open chromatin annotation and detect 

functional chromatin interactions involving SNP-containing regulatory regions, 

leading to the discovery of bona fide target genes that have not previously been 

identified. While we initially used Treg-specific data and T1D-associated SNPs as 

a model to identify Treg-centric 3DFAACTS SNPs and their target genes, we 

have demonstrated that chromatin interactions from Hi-C dataset can be 

functionally mapped with multiple disease datasets as well as whole genome 

variant datasets such as variants from gnomAD, which presents a valuable 

resource in establishing cell-type specific interactomes. In our Treg-centric 
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3DFAACTS-SNP pipeline, we reasoned that Treg play an important role in the 

development and progression of autoimmune diseases so that Treg-specific 

epigenomics data must be used to model the potential causative regulation of 

autoimmune diseases. A similar case was recently applied to type 2 diabetes 

(T2D), where pancreatic islet tissue-centric epigenomics data were used 

(Greenwald et al., 2018), demonstrating the power of using cell/tissue type-

specific epigenomics data to interpret non-coding variants in complex diseases. 

The 3DFAACTS-SNP pipeline can be used as a standard post-GWAS analysis, 

to further prioritise variants with potential regulatory functionality to contribute to 

autoimmune diseases, hence reducing the cost of examining every variation 

identified by association studies for their functionality. Furthermore, this pipeline 

provides a useful mechanism to identify potential mechanisms by which non-

coding variants regulate distal genes, allowing the discovery of novel diseases-

associated target genes. These novel linkages and genes can eventually be 

used as potential targets for the development of novel diagnosis, prevention, and 

treatment plans of diseases. 

 

‘Not all interactions are created equal’ 

From genetic, transcriptomic, and regulatory information, researchers are now 

able to go beyond a state of genetic linkage between genes and genetic 

variation, and truly link genetic changes to target genes on a functional level. Hi-

C interaction contact maps of many cell lines and tissues have been investigated, 
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and in Chapter 4 and 5 of this thesis, I access all publicly available Hi-C datasets 

to consolidate all interaction information into a single framework, implementing 

filtering and visualisation approaches that I describe in Chapter 2.  

 

However, not all catalogued chromatin interactions, whether they be from one 

study or cell-type specific information, are biologically functional, and Hi-C 

datasets are prone to significant noise and proximity ligation can generate 

random physical connections that have no bearing on function. As we reviewed 

in Chapter 1, statistical model-based methods have developed to prioritise 

interactions that are more likely to be functional than others. For my thesis, I 

chose MaxHiC as my method to identify functional relevance, given it 

outperformed current existing models in identifying interactions with enrichment 

of regulatory elements such as promoters and enhancers (Alinejad-Rokny et al., 

2020). In Chapter 4, we therefore collected publicly available Hi-C datasets 

followed by analysing 173 datasets with the customized analysis pipeline, 

cataloguing a landscape of MaxHiC-detected statistically significant interaction 

(MADSSI) profiles across 51 human cell lines and tissues. I also found that 

62.3% of the MADSSI are uniquely found in only one cell line/tissue and enriched 

for cell/tissue-specific gene ontology (GO) terms, implying that the cell 

line/tissue-unique interactions are highly involved in cell/tissue-type specific gene 

regulation. Such unique interactions can be important differential marks for 

genomic regions may behave differently across cell and tissue types, providing 

an extra layer of information when associating cell/tissue-specific genetic 
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variation, such as tissue-specific eQTLs, to the regulatory mechanism that is 

dysregulated in disease systems. 

 

Additionally, by accumulating common (found in multiple cells and tissues) 

interactions, we defined regions that are found to have statistically significant 

interactions in more than half (at least 26) of all cell lines/tissues as interaction 

“hot zones”. We therefore identify 2,442 interaction hot zones, which were found 

to be significantly enriched for regulatory signals, such as active histone 

modification markers H3K27ac and H3K4me1, candidate cis-regulatory elements 

(cCREs) enhancer signatures. More interestingly, they are mostly enriched for 

insulator CTCF-binding sites and found to be located close to topologically-

associated domains (TADs) boundaries, indicating the regulatory and structural 

functionality of the interaction hot zones. Compared to TADs, or sub-TADs, which 

are identified by statistical models from single dataset, the hot zones are 

identified based on the information across many cells and tissues, hot zones may 

provide additional structural marker information for a more accurate interpretation 

and investigation of the 3D genome architecture and structure-governed 

regulations that associated with diseases. Furthermore, other model organisms 

can potentially use the interaction hot zones as their 3D regulatory markers via 

alignment tools such as BLAST (Johnson et al., 2008), facilitating the 

investigations of 3D gene regulation with limited data. 
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Subsequently, in Chapter 5, we annotated on average 75.35% cell/tissue type-

specific MADSSI and comprehensively classified them into 66 interaction classes 

using epigenome annotations, revealing that MADSSI are mostly annotated to 

genes and active enhancers. Furthermore, we focused on interaction classes by 

reasoning expressed gene promoters and enhancers are functional regulatory 

markers, defining potentially regulatory functional MADSSI (PROF-MADSSI). 

Interestingly, on average 69.6% of them are enhancer-enhancer interactions, 

49.6% are enhancer-CTCF binding site interactions and 21.5% are promoter-

enhancer interactions, suggesting some interactions are identified as multiple 

types and overlaid by regulatory elements. More importantly, using the identified 

PROF-MADSSI, we used an example of PROF-MASSI contacting the STAT6 

gene promoter to demonstrate the power of using PROF-MADSSI to reveal 

regions enriched for regulatory elements. Therefore, in future studies 

investigating the gene regulation in different cells/tissues, the identified 

cell/tissue-specific PROF-MADSSI can be used to prioritise significant regions to 

be explored. 

 

The GTEx project catalogued cis eQTLs of 54 human primary tissues (Lonsdale 

et al., 2013), however it remains challenging to interpret the eQTLs because the 

mechanism by which eQTLs affect gene expression is unknown. In Chapter 5, 

we generated lists of cell/tissue-specific 3D regulatory regions, where regulatory 

annotations are contacted by the promoters of cell/tissue-specific expressed 

genes. We discovered an average of 26.73% these regions overlap with tissue-
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specific cis eQTLs. More importantly, we defined tissue-specific 3DeQTLs, which 

are eQTLs located within the 3D regulatory regions and contacting the promoter 

of their eQTL-target genes. We identified on average 5.9% of these 3D 

regulatory regions have 3DeQTLs interactions with the promoter of their eQTL-

target genes, suggesting the unknown mechanism of how eQTLs affect gene 

expression is by affecting the 3D regulatory regions of that gene or altering the 

chromatin interactions between the target gene promoter and 3D regulatory 

regions.  

 

Taken together, we demonstrated that using statistical model methods such as 

MaxHiC we can prioritise chromatin interactions that are potentially regulatory 

functional from publicly available Hi-C datasets, and successfully catalogue 

useful resources of cell and tissue-specific regulatory interactions and regions. 

Despite using unsupervised method such as kernel Principal Component 

Analysis (kPCA) to minimise the biases introduced by different samples when 

generating cell line/tissue-specific profiles, we cannot neglect systematic biases 

between studies, particularly the choice of Hi-C protocol and uneven sequencing 

depths of samples from different cells and tissues. For example, GM12878 and 

IMR90 were deeply sequenced in a number of studies (Dixon et al., 2012; Rao et 

al., 2014; Mifsud et al., 2015), resulting in more statistically significant 

interactions being identified in these cell lines compared with others, obstructing 

fair comparisons between each cell and tissue. Another inevitable limitation is the 

matching efficiency between the annotations from public databases and 
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interactions when we annotate interactions and categorise them into different 

interaction types. This is particularly limiting on the accuracy of profiling tissue-

specific interaction types because compared with purified cells, different parts of 

a tissue may exhibit different 3D chromosome structure with different regulatory 

networks and gene expression patterns. Without such limitations, we can 

generate more accurate annotation profiles of the chromatin interactions, which 

will largely facilitate future studies of validating the regulations governed by 3D 

genome structure, and ultimately developing novel treatment or diagnosis 

approaches for diseases based on the validated regulations. 

 

Future directions 

In recent years, single cell sequencing methods such as single cell RNA-seq 

(scRNA-seq) (Tang et al., 2009, 2019; Sasagawa et al., 2013; Haque et al., 

2017) and ATAC-seq (scATAC-seq) (Lareau et al., 2019; Satpathy et al., 2019; 

Fang et al., 2021) have driven the research on gene regulation mechanisms at 

the single cell level. More importantly, this has facilitated our understanding of 

cell type functional heterogeneity and the discovery of many sub-cell types with 

distinct gene expression profiles. Based on the same idea of incorporating single 

cell techniques, single cell Hi-C (scHiC) has been developed to profile chromatin 

interactions at a similar level (Nagano et al., 2013; Stevens et al., 2017; Tan et 

al., 2018), implicating the necessity of investigating 3D chromatin interactions at 

single-cell level in the future in order to have a better understanding of the non-
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coding 3D regulations in different tissues and organs. However, compared with 

Hi-C, which constructs 3D chromosome structures using millions of cells, scHiC 

often generates data with high sparsity and noise, challenging the analysis and 

interpretation of the data (Zhou et al., 2019; Kim et al., 2020). Additionally, single-

cell epigenomic data may not be available to conduct the same analyses that I 

present here in this thesis. Improved protocols and computational analysis 

approaches, such as sensitive unsupervised clustering algorithms and statistical 

models for sparse data, will therefore be needed specifically designed for scHiC 

datasets in order to accurately reveal causality between genetic risk and target 

genes.  

 

While my work has shown links between regulatory mechanisms and target 

genes, significant work needs to be carried out to validate each specific 3D 

interaction. For example, we discovered novel linkages between T1D-associated 

SNPs-located in enhancer regions and promoters of the genes CCR2, CCR3 and 

CCR5 (Figure 3 in Chapter 3), suggesting that target genes altered functionality 

caused by these SNPs are dependent on 3D chromosome structural regulation. 

To validate this finding, enhancer region-knockout experiments could be 

developed in parallel with SNP editing experiments using CRISPR gene editing 

(Doudna and Charpentier, 2014), validating not only the connectivity between the 

enhancer and the gene expression, but also the impact of each SNP on 

expression of their target genes in in vitro models. Furthermore, approaches 

such as deep mutational scanning (DMS) (Fowler and Fields, 2014) and other 
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multiplex assays for variant effect (MAVEs) (Kinney and McCandlish, 2019), 

could be used to quantify phenotypic effects for millions of genotypic variations in 

parallel, enabling the validation of the direct association between non-coding 

SNPs, 3D regulation and diseases. The validated non-coding SNPs regulating 

genes to contribute to diseases can then be used as a potential target for 

researchers and clinicians to develop novel diagnosis and treatment plans to 

provide alternative options for patients.  

 

The identification of novel 3D interactions between non-coding variants to 

disrupted gene regulation in diseases systems offers an enormous promise to a 

“precision medicine” future, where precise diagnostics and treatment plans are 

developed at higher resolution and accounting for non-causal variations between 

individuals (Bainbridge et al., 2011; Worthey et al., 2011; Ashley, 2016; Ahmed, 

2020; Morello et al., 2020). For instance, Hi-C has revealed functional insights 

into cancer-specific risk loci (Jäger et al., 2015; Du et al., 2016; Hoskins et al., 

2016; Baxter et al., 2018; Zhizhuo Zhang et al., 2019), with such information 

being used to differentiate individual patients and allowing more accurate 

diagnosis models. Additionally, regulatory regions, particularly enhancers and 

super-enhancers have been demonstrated to play an important part in 

tumorigenesis (Donati, Lorenzini and Ciarrocchi, 2018; Gelato et al., 2018; He, 

Long and Liu, 2019). In the future, the 3D regulatory regions including enhancers 

and super-enhancers identified in individual patients can serve as candidate 

targets for patient-specific enhancer therapies development. 
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