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Abstract

Glass is often broken when a crime is committed, whether it be a case of
breaking and entering or a hit and run vehicle incident, for example. Forensic
scientists may be tasked with analysing the broken glass in a number of ways.
They may be asked to establish how the glass was broken, for example the
type of instrument used to break the glass and whether it was broken from
the inside or the outside. They may also be asked to connect a suspect
with having been at the scene of the crime. In this thesis we restrict our
focus to statistical methods to make comparison between two fragments of
broken glass: one from the crime scene and another found on the clothing of
a suspect. The chemical composition of the glass is measured by a technique
known as laser ablation-inductively couple plasma mass spectrometry (LA-
ICPMS).

We show that machine learning methods, decision trees in particular, pro-
vide near-perfect prediction accuracy, improving on the currently employed
methods. Further, the strength of evidence can be quantified by extending
these methods and by constructing score-based likelihood ratios – a benefit
otherwise only given by the traditional likelihood ratio methods. We find
that these traditional likelihood ratio-based procedures do not o↵er an im-
provement in terms of prediction accuracy, and in fact perform worse than
the current methodologies in this regard.

These results demonstrate that a great deal of prediction accuracy can
be gained by taking full advantage of the multivariate structure of the LA-
ICPMS data. While glass evidence only constitutes a single component of
a legal case, it is important that the methods used to evaluate the data are
high in accuracy. In particular, in correspondence with the philosophy of
“innocent until proven guilty”, our models perform well in minimising the
rate at which samples are incorrectly classified as matching.
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Chapter 1

Introduction

Those committing a crime may not be aware that after breaking glass, they
may be carrying crucial evidence on their clothes that can place them at
the scene of the crime. This is the nature of forensic glass evidence. One
of the key tasks given to forensic practitioners is identifying whether glass
samples found on the clothing of a suspect match the glass object that was
broken when the crime was committed. In this thesis we explore the use of a
number of statistical methodologies to make this comparison, and compare
the results of new techniques with the current best practice approach.

Our work is conducted in collaboration with Forensic Science South Aus-
tralia (FSSA), who have provided data from South Australian casework from
2017-2020 which has been measured by measured by a technique called laser
ablation-inductively couple plasma mass spectrometry (LA-ICPMS).

1.1 Forensic Glass Evidence

1.1.1 Transfer of Glass

When a person breaks a glass object – such as a window – minuscule frag-
ments of the broken glass are transferred to the person’s clothing. This
process of fragmentation of the broken glass back towards the object which
broke it was observed by Nelson and Revell (1967) and is now referred to as
backscatter fragmentation. Any person within “a few feet of the window”
which is broken will likely have a number of minute fragments of glass trans-
ferred to their clothing. When a suspect is apprehended, these fragments
can be found on their clothing and compared to the glass which was bro-
ken, potentially placing the suspect close to the object at the crime scene

3



4 Chapter 1. Introduction

when it was broken. This analysis requires a careful treatment as one of
course wishes to avoid wrongfully convicting an innocent person. As such,
the development of measurement techniques with a high level of precision
to discriminate between, say, two panes of glass manufactured at the same
factory, on the same day, but installed as windows in two distinct buildings
is of the utmost importance. Likewise, we require a statistical technique
which allows for a clear quantification of the level of di↵erence between two
glass samples, and a threshold of permissible di↵erence to classify samples as
coming from the same piece of glass. In this section we provide an overview
of the methodology used to measure glass fragments.

1.1.2 Refractive Index Analysis

Refraction is the phenomenon of light bending, or change of direction of light
as it moves from one medium to another. As light passes from a vacuum to
a transparent medium such as glass, it is slowed, resulting in this change of
direction. This idea is quantified by refractive index (RI) – a property had
by every medium through which light can travel. It gives a measure of how
fast light travels through a given material, defined by the ratio of the speed
of light in a vacuum, to the speed of light in the medium, that is,

n =
c

v
,

where n is the refractive index of the medium, c is the speed of light in
a vacuum, and v is the speed of light in the medium. Being a property
of individual pieces of glass, refractive index has historically been used to
discriminate between glass samples. Now, it is often used as a first step
screening process before using LA-ICPMS.

Curran et al. (2000) note that in the last half a century, the process of
glass manufacturing has been greatly refined – particularly in the area of
quality control. New methods of automated production have allowed for a
great deal of control over the physical characteristics of the glass, namely the
thickness of the glass, and its refractive index. Further to this, the production
methodology has become increasingly similar between manufacturers, leading
to an observed decrease in the variation of RI between panes of glass produced
in a given factory. They note also, however, that the increased globalisation
of the market – that glass is often imported from a number of di↵erent
companies – has o↵set this issue somewhat, but that using RI alone may not
be su�cient to discriminate between samples in forensic casework.
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1.1.3 Elemental Analysis

Analysis of the elemental composition of glass o↵ers some benefits over the
comparison of refractive index. It is possible for two entirely distinct frag-
ments of glass, that is, fragments originating from di↵erent sources, to have
the same RI, but have observable di↵erences in concentrations of several ele-
ments. The primary benefit of elemental composition measurements is simply
the fact that the data is multivariate. The use of several measurements to
compare glass samples allows for a robust comparison, both by comparing
multiple elements individually, and by taking the correlations between the
variables into account.

A number of di↵erent techniques have been employed for the measurement
and analysis of elemental composition of glass, largely because the equipment
required can be very expensive, and forensic laboratories have often been put
in the position of having to adapt the equipment they have available to suit a
number of di↵erent purposes (Curran et al., 2000). In Australia, LA-ICPMS
is conducted in some forensic laboratories and so data collected in this way
will be the focus of this thesis.

1.1.4 Presenting Evidence in Court

The analysis of forensic glass evidence, along with other types of evidence
such as DNA, fingerprints and handwriting, is presented in court to support
either the prosecution or defence. While glass evidence only constitutes a
single component of a case, it is important that the methods used to evaluate
the data are high in accuracy. In particular, in correspondence with the
philosophy of “innocent until proven guilty”, we aim to minimise the false
positive prediction rate. In other words, we aim to minimise the rate at
which a statistical model suggests that the defendant was at the scene of the
crime, when in fact they were not.

1.2 Analysis of LA-ICPMS Data

The current best practice techniques employed for forensic glass analysis
in South Australia involve making separate univariate comparisons between
the measurements of each individual element in the control and recovered
glass samples. This will be explored in detail in Chapter 3. Research has
been conducted into the use of techniques which take full advantage of the
multivariate nature of the data through its individual elements as well as



6 Chapter 1. Introduction

covariance structure. We aim to apply these methods, as well as some new
methods which we introduce, to the data and compare their performance
against the current practice methodology.

1.2.1 Multivariate Data

The motivation behind the research presented in this thesis stems from the
question of whether the currently employed techniques can be improved upon,
particularly with regards to maximising overall prediction accuracy, and min-
imising false positive predictions. Specifically, the research is motivated by
improving the methodology to take full advantage of the multivariate LA-
ICPMS data, and investigating the importance of establishing a location-
specific background database of glass samples. Further to this, we aim to
establish how the methods perform on di↵erent data sets. We consider two
data sets: a diverse set of observations originating from South Australian
casework from 2017 to 2020, and a much more homogeneous set of observa-
tions taken from two glass factories in the USA. These two data sets will be
described in detail in Section 2.1.

1.2.2 Location-Specific Glass Profile

The variety of glass found in a given location, whether that be a city, region
or country, may be quite specific, depending on how the glass used in that
location is manufactured. As such, one can establish a glass profile for a given
location, which captures the distribution of glass measurements found at that
location. Such a profile can be determined by collating a database of glass
measurements, which can be used by forensic examiners in their statistical
analysis. Firstly, such a database can be used to quantify the level of spread
observed in a location. For example, if all of the window glass in a certain
city originates from the same factory, it may be the case that the elemental
composition measurements for windows show little variation. In this case, a
tighter constraint should be placed on what is deemed “similar enough” to be
classified as matching, as compared to a city in which the windows originate
from many di↵erent factories, and show greatly varying measurements.

Such a profile can also be utilised to help inform the strength of evidence
for or against a match. They can be used in this way when constructing
likelihood ratios, which will be discussed in detail in Part II. For this purpose,
the distribution of measurements from the background database is used to
inform how likely a random piece of glass is to have a certain measurement.
To give an example, again suppose that a large proportion of window glass in
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a given city were to originate from a single factory, and that there was little
variation in the elemental composition of glass from this factory. In this case,
the elemental measurements of this glass would be very common, meaning
that it is likely that a random piece of glass would have these measurements.
As such, finding a piece of glass which matches the crime scene, and matches
the glass from this commonly used factory, would be considered as weak
evidence, given that much of the glass in that city has that composition.

1.3 Thesis Summary

Having introduced the thesis in this chapter, in Chapter 2 we move on to
detail the necessary background information about the data on which we will
test our methods, as well as the statistical classification methodology which
we employ throughout. Next, in Chapter 3, we give a review of currently used
methods to analyse glass data, in particular the best practice approach used
by Forensic Science SA, and apply this approach to our data. This allows
us to establish a baseline level of performance to which other methods can
be compared. In Chapters 4 and 5 we then discuss the use of likelihood ra-
tio (LR) based techniques incorporating a background database of evidence.
These methods allow for the added benefit of quantifying the strength of
evidence. Chapters 6 and 7 move on to the final method of comparison:
machine learning classification. In these chapters we detail the background
theory of decision tree and random forest models, and then apply these as
well as logistic regression to our data sets. Finally, we bring together the
ideas explored in the likelihood ratio and machine learning sections in Chap-
ter 8, with the introduction of score-based likelihood ratios. These take the
results from machine learning methods (as well as some other approaches)
and construct likelihood ratios from the distributions of results. In Chapter 9
we summarise the benefits and shortcomings of each of the models that we
have explored, before concluding the thesis in Chapter 10.
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Chapter 2

Analysis Background

In this thesis, we aim to investigate whether di↵erent statistical methodolo-
gies can improve upon the current best practice techniques for establishing
whether or not two glass samples originate from the same source. To do this,
we will first establish a baseline level of performance that is achieved when
the current methodology is applied to our data sets. This current practice
is the use of what is known as the standard 4� criterion, and is a univariate
approach which is conducted individually for each element. We will then
consider some alternative methods which take into account the multivariate
structure of the data. These methods fall into two broad categories: like-
lihood ratio-based methods, and machine learning classifiers. Each set of
methods will be presented in their own chapter or part of the thesis. In each
case, we will provide the necessary mathematical theory to understand and
apply the techniques; describe how the methods were implemented; and then
apply the procedures to two data sets.

2.1 Data

As mentioned, we consider two data sets in this thesis, which serve as exam-
ples of data collected under two very di↵erent circumstances. The first data
set, the USA ribbon data set, was collected under laboratory-like conditions,
and provides an example of data with very little variability. The second set,
on the other hand, consists of samples from real forensic casework collected
in South Australia. This data set contains a great deal more variability,
and is a much more realistic example of a database of forensic samples. By
performing our analysis on both sets of data, we test the robustness of the
techniques presented in this thesis.

9
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2.1.1 USA Ribbon Data

This data set was commissioned to serve as a database of chemical compo-
sition measurements by Park and Carriquiry (2019). The data is comprised
only of measurements of float glass manufactured by two companies in the
United States of America. These companies will be referred to as Company
A and Company B. A sample of 31 panes of float glass was taken from Com-
pany A, labelled AA,AB, . . . , AAR, and 17 manufactured by Company B
labelled BA,BB, . . . , BR. The panes sampled from Company A were man-
ufactured between the third and 24th of January, 2017, and those produced
by Company B were sampled a little earlier from the fifth to the 16th of
December, 2016 (Park et al., 2020).

Glass is manufactured in long continuous sheets known as ribbons, which
are then cut into panes. At both of these factories, a large number of samples
were taken from each ribbon of glass in order to develop an understanding
of the level of variability within a source. To achieve this, on almost all days
within the sampling periods, for both manufacturers, two glass panes were
collected – one from each side of the ribbon. A sample of 24 fragments were
then taken from each pane, and from 21 of these fragments, five replicate
measurement were taken. For the other three, 20 replicate measurements
were made, resulting in a total of 165 measurements per pane of glass.

In this study, the choice of elements to measure was made following Weis
et al. (2011), who recommended that only 18 elements are used. Three
major elements: calcium, sodium and magnesium; three minor elements:
aluminium, potassium and iron; and 12 trace elements: lithium, titanium,
manganese, rubidium, strontium, zirconium, barium, lanthanum, cerium,
neodymium, hafnium, and lead.

2.1.2 Australian Casework Data

The second data set comprises glass collected during casework in South Aus-
tralia which has been measured and analysed by FSSA. The analysis by
FSSA follow the standard 4 � � criterion recommended by the guidelines
ASTM-E2330-12 (2012) and ASTM-E2927-16 (2016) as will be described in
Section 3.1.1. The measurements in this data set span from 2016 to 2020
at the time of writing, and as the data is from real police casework, there
is some variability in the number of measurements obtained. The data also
come in two distinct forms: control samples and recovered samples. Con-
trol samples are taken from a known source at the scene of the crime, and
typically at least nine individual fragments are measured, and between one
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and three replicate measurements are made of each fragment, depending on
what is possible given the size of the fragment. Recovered samples are typ-
ically those taken from suspects’ clothing as well as other sources such as
the interior of a car. These samples are much less numerous, with between
one and three fragments measured, and again between one and three repli-
cate measurements for each fragment. Given that these observations are far
less numerous and do not have a known source, only control fragments are
considered for the analysis throughout in order to maintain a certain level of
consistency in the observations used.

In this dataset, the concentrations of 19 chemical isotopes were mea-
sured: Lithium 7, Magnesium 24, Aluminium 27, Potassium 39, Calcium
42, Calcium 43, Titanium 47, Manganese 55, Iron 57, Rubidium 85, Stron-
tium 88, Zirconium 90, Tin 118, Barium 137, Lanthanum 139, Cerium 140,
Neodymium 146, Hafnium 178, and Lead 208. However, the two calcium
isotopes were almost perfectly correlated, and so only Calcium 42 was used
for modelling, and Tin was found to be very unreliable and contain some
extraneous measurements, and so only the 17 remaining isotopes were used.

Measurements of two sides of a glass laminate

It is worth noting also, that there is significant variety in the sources of
measurements in the Australian casework data, in that they can be a number
of di↵erent types of glass, and in some cases, both sides of a given glass
laminate are measured separately, and recorded as di↵erent objects. In order
to avoid any potential issues, or misleading conclusions being drawn, only
one side of such fragments have been included in the data used for analysis,
typically the side labelled side A, or side 1.

2.2 Exploratory Analysis

Here we present a brief exploratory analysis of the data to give an insight
into the nature of this data set. Figure 2.1 shows the distribution of four
of the chemical isotopes for each case within the data. Although this shows
only four of the elements in the data set, it gives an idea of the level of
variability present in this data. We can see that the level of spread varies
from sample to sample, and that there is a high degree of variability between
some samples as well.

Preliminary analyses also indicated that there was a significant level of
correlation present between some of the variables. In Figure 2.2 we get some
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insight into the nature of the relationship between a few of the variables. We
see that there is very strong positive correlation between the two calcium iso-
topes, but also between lanthanum and neodymium, and between zirconium
and hafnium. Given just how closely related the two calcium measurements
(Ca 42 and Ca 43) were, Ca 43 was removed from the Australian data set,
and only Ca 42 was measured in the USA data. The other related measure-
ments were left in the data since there were a number of observations which
deviated from this observed co-linearity. In the other comparison plots in
this figure we note that the pairwise distributions between elements show
little in the way of clear structure.

2.3 Evaluation of Glass Evidence as a Classi-
fication Problem

Having provided a brief exploration of the structure of the data, we move on
to describe how to frame our analysis as a statistical classification problem.

2.3.1 Classification Models

We are considering data for which each pair of observations originate from
either the same source or two di↵erent sources. The forensic practitioner
cannot determine for certain whether samples share a common source, so
instead we are interested in whether pairs of observations can be considered to
be “matching”. Statistical classification is the problem of identifying whether
pairs of glass samples match, based on some training data for which the
classes are known. To this end, a statistical classifier, or classification model
is a statistical model that predicts to which class a new observation belongs.

2.3.2 Data Preparation

In order for classification techniques to be applied, the number of categories
into which the observations can be classified cannot be too large. As such,
we consider each pair of observations in the dataset, and a new categorical
variable is added identifying the pair as matching or non-matching based
simply on whether the measurements are of the same or di↵erent panes of
glass. The categories are labelled KM (known mate) and KNM (known non-
mate). To define this formally, let xij be the set of all data where i denotes
the pane and j denotes the fragment. We consider pairs of observations, to
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label as matching or not matching. In this case, the data points are given by

{(xi,j,xi0,j0) : i 6= i0 or j 6= j0} .

That is, pairs of observations xi,j and xi0,j0 where either the glass sources
(first index) are di↵erent, or if the sources are the same, the samples (second
index) are di↵erent. This is the case as we do not need to consider whether
there is a match between a single fragment of glass and itself.

2.3.3 Assessing the fit of a model

We use five metrics to compare the models when applied to the training set:
accuracy, Cohen’s Kappa coe�cient, sensitivity, specificity, and the area un-
der the receiver operating characteristic curve (ROC AUC). Accuracy is the
most simple and easy to interpret of these metrics, as it is simply the propor-
tion of correct predictions that the model makes when applied to the testing
set. Generally speaking, for any classification model one wishes to maximise
the accuracy of the model, that is, maximise the proportion of correct pre-
dictions made. However, accuracy may not always be the highest priority.
In the case of forensic evidence, one is often more concerned with minimis-
ing the false positive rate (FPR), than the false negative rate (FNR). The
false positive rate being the proportion of times that the model incorrectly
classifies samples as the same, and the false negative rate the proportion of
times that the model incorrectly classifies samples as di↵erent. The reason
being that we wish to keep to a minimum the probability of suggesting that
a suspect is guilty – i.e. that the glass found on their clothing matches that
at the crime scene – when in reality they are innocent. It is to this end that
we consider sensitivity and specificity.

Sensitivity and Specificity

Sensitivity and specificity are complementary to the false negative and false
positive rates respectively. Formally, they are defined as follows

Sensitivity =
number of true positives

number of true positives + number of false negatives
.

Specificity =
number of true negatives

number of true negatives + number of false positives
.
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Sensitivity is sometimes also referred to as the true negative rate (TNR)
and specificity the true positive rate (TPR). As such,

Sensitivity = TPR = 1� FNR,

and
Specificity = TNR = 1� FPR.

Hence we find ourselves with the aim of maximising the specificity of our
classification model. These quantities can also be compared intuitively using
what is known as a confusion matrix. A confusion matrix is a 2 ⇥ 2 table
displaying the proportions of true positives and negatives which have been
predicted as positives and negatives. The general structure of a confusion
matrix is shown in Table 2.1.

Truth
Same Source Di↵erent Source

Prediction
Match TPR FPR

Non Match FNR TNR

Table 2.1: Example of a confusion matrix.

Alternatively, a confusion matrix may contain the number of true and
false positive and negatives rather than the proportions, though it is more
easily interpreted when containing the proportions.

Cohen’s Kappa Coe�cient

Cohen’s kappa coe�cient, , can be thought of as another measure of accu-
racy, corrected for data in which each category has di↵erent counts (Cohen,
1960). Most generally, the kappa coe�cient compares the reliability between
two raters, i.e. two people who are classifying observations into groups, or
two models. In the context as a metric for evaluating a machine learning
model, kappa compares the classification model against one which would
randomly allocate new observations into classes, based on the proportion of
observations in the training and testing data which fall into those classes. To
properly define the kappa coe�cient, we must first consider the two quantities
used in its calculation: observed accuracy and expected accuracy. Observed
accuracy, p0, is simply the same as accuracy discussed above: the raw propor-
tion of correct classifications when the model is applied to the testing data.
Expected accuracy, pe, on the other hand, is the expected value of accuracy
that an entirely random classifier would have, given the confusion matrix of
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the model applied to the testing data. For each class, what is known as the
marginal frequency of the truth is multiplied by the marginal frequency of the
prediction. That is, the true count of observations in that class, multiplied
by the number of predicted observations in that class. The expected accu-
racy is obtained by summing these values, and dividing by the total number
of observations in the testing data squared (Cohen, 1960). More formally,
letting Ti and Pi be the number of observations which truly belong to class i
and are predicted to belong to class i respectively, and N the total number
of observations in the data, the expected accuracy is given by

pe =

P
i
TiPi

N2
. (2.1)

Cohen’s kappa coe�cient is then defined as

 =
p0 � pe
1� pe

. (2.2)

The kappa coe�cient is most important when there is imbalance between
the classes in the data set, which is very much the case in this analysis, as
will be explained in Section 6.2 in some detail. Its value is best interpreted
in comparison with other models, as other than some fairly arbitrary magni-
tudes which have been suggested, such as those by Landis and Koch (1977),
and those by Fleiss (1973), there are no clear cut guidelines as to what is a
“good” value of kappa. With that said, kappa takes values between -1 and 1,
with values less than zero implying that the classifier is worse than a uniform
classifier. Overall, the larger its value, the more accurate the classification
model is compared to a uniform classifier.

Receiver Operating Characteristic (ROC)

Finally, another useful assessment of the reliability of a binary classifica-
tion model is given by the receiver operating characteristic (ROC) curve.
The ROC curve quantifies the compromise that one must often make be-
tween sensitivity and specificity. It is a plot of sensitivity (true positive rate)
against 1�specificity (false positive rate) as the classification threshold of the
model is varied between its maximum and minimum values. By classification
threshold, we mean a cut-o↵ value by which a classification model makes a
prediction. The details of specific thresholds will be discussed in more detail
in the coming chapters. In the case of the interval-criteria in Chapter 3, the
threshold can take any positive real value, for likelihood ratios in Part II, the
threshold could be any real number. For now, to simplify the explanation,
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consider a classification model that predicts the probability that two frag-
ments of glass match, as per the machine learning models in Part III. This
prediction must take values between zero and one, and so the same must
be true for the classification threshold. Given that this classification model
predicts match probabilities, this threshold is the lower bound on this proba-
bility for which two samples are predicted to be a match. When the threshold
for classification is one, almost no pairs of samples will be predicted to be
matching, and so both the false positive and true positive rates will be zero.
As such, sensitivity will be zero, and specificity will be one, so 1�specificity
will be zero as well. Then, as the threshold is decreased from one, some pairs
will be classified as matching, and so the false positive and true positive rates
will increase. When the classification threshold reaches zero, there will be no
negative predictions, and so the false negative and true negative rates will
both be zero. As such, sensitivity and 1�specificity will both be zero. For
perfect predictors, the area under the ROC curve (ROC AUC) will be equal
to one and as such, the ROC AUC gives another measure for the predictive
performance of a classification model.

With the necessary background out of the way, we now move on to pre-
senting the analysis. In the next chapter we discuss the current best practice
methodology employed by forensic practitioners in South Australia, and ap-
ply these methods to our data.



Chapter 3

Current Practice for Analysis
of Glass Evidence

In this chapter we provide a review the standard best practice analysis, and
apply it to both the homogenous USA data and the diverse Australian case-
work data. We explore the imitations associated with these methods and
propose a multivariate extension to the univariate method. This current
best practice approach treats each element individually, while the method
we present generalises the approach to incorporate the covariance between
the elements.

3.1 Match Criteria

In this section we introduce some criteria by which pairs of glass samples are
classified as matching. By this, we mean that the samples cannot be distin-
guished from one another by the given statistical procedure. On the other
hand, samples which can be distinguished from one another, are classifies as
non-matching.

3.1.1 Interval-Based Approach

The standard practice for comparing glass samples with LA-ICPMS elemen-
tal analysis is via some interval-based match criteria (Park and Carriquiry,
2019). In this setting, we consider a known (K) and unknown, or questioned
(Q), sample of glass. The known and questioned labels are entirely analogous
with the control and recovered labels respectively which were introduced in
Chapter 2. Authors make use of both of these sets of terminology and we

19
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will use the two interchangeably. To simplify the notation, we will denote
the known and questioned samples by y1 and y2 respectively. For each sam-
ple, the concentrations of p elements are measured, for nl fragments of a
given sample of broken glass (where l = 1, 2). In some cases there will also
be replicate measurements taken of each fragment. In order to avoid over-
complicated notation, we assume that replicate measurements are contained
in the index spanning the number of fragments. That is, we take nl to span
the fragments and replicates for sample l. In full, the control and recovered
measurements are denoted

y = {yljk | l = 1, 2, j = 1, . . . , nl, k = 1, . . . , p} .

From this, we have that each measurement is a vector of the form

ylj = (ylj1, . . . , yljp).

The mean vector for each element in sample l is then denoted

ȳl =
1

nl

nlX

j=1

ylj,

and similarly the vector of standard deviations is

�l =
1

nl � 1

nlX

j=1

(ȳ � ylj)
2.

That is,
ȳl = (ȳl1, . . . , ȳlp),

and
�l = (�l1, . . . , �lp),

Several criteria have been proposed and are used for interval-based com-
parisons. The two most commonly used are the standard 4� criterion and
modified 4� criterion. These methods are described in the ASTM-E2330-12
(2012) and ASTM-E2927-16 (2016) guidelines, and both involve element-wise
comparisons of glass samples.

Standard 4� criterion

We begin with what is known as the standard 4� interval criterion (Almirall
and Trejos, 2006, Weis et al., 2011, Trejos et al., 2013a,b, Almirall and Trejos,
2015, ASTM-E2330-12, 2012, ASTM-E2927-16, 2016). For this standard
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criterion, we consider two glass samples y1 and y2, where y1 is from a known
source and y2 is the sample in question. The guidelines suggest that at least
nine measurements be taken from the known source via three replicates of
three fragments and that “as many measurements as are practical” be taken
of the sample in question (ASTM-E2927-16, 2016). Comparison intervals
are then constructed for each element individually. The k-th comparison
interval is computed as the mean of the control sample plus or minus four
times its standard deviation. However, a lower bound of 3% of the mean is
placed on the standard deviation (ASTM-E2330-12, 2012). As such, the k-th
comparison interval is defined as

ȳ1k ± 4⇥max {�lk, 0.03⇥ ȳ1k} . (3.1)

In other words, no matter the number of measurements obtained for the
known fragment, the variability in this data can never be less than 3% of
the control mean. The concentrations of each of the p elements in the ques-
tioned sample are then compared to the intervals calculated in Equation 3.1.
If the concentrations lie within the interval for all elements, then y1 and
y2 are said to be chemically indistinguishable. In the event that one or
more concentration lies outside its respective interval for any of the measure-
ments, the samples are said to be chemically distinguishable. Equivalently,
the distinction between two samples is quantified with a score determined by
rearranging Equation 3.1. That is, we take the absolute di↵erence between
the concentrations of a the k-th element for the two samples and scale by
the standard deviation of y1. We denote this by SASTM,k. The overall com-
parison score between the samples, denoted SASTM , is then taken to be the
maximum across the p elements.

SASTM,k =

����
ȳ1k � ȳ2k

max {�1k, 0.03⇥ ȳ1k}

���� . (3.2)

SASTM = max
1kp

SASTM,k.

This score exceeding four is equivalent to the questioned sample lying outside
of the comparison interval and so the samples are declared distinguishable in
this case (ASTM-E2330-12, 2012, ASTM-E2927-16, 2016).

Modified 4� criterion

Weis et al. (2011) recommend a modified 4� as an alternative to the standard
criterion. In fact they proposed a more general r� criterion, but found that
r = 4 gave the most desirable combination of specificity and sensitivity.
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Recall from Section 2.3 that sensitivity and specificity are metrics to assess
a binary classification model. Sensitivity is the ratio of the number of true
positive predictions to the total number of positive predictions. Specificity
is the ratio of the number of true negative predictions to the total number of
negative predictions. To construct the comparison intervals in this case, one
computes a fixed relative standard deviation (FRSD). That is, the standard
deviation of the control sample divided the corresponding mean, for each
of the p elements in a sample. Similarly to the standard criterion, when
the standard deviation is below 3% of the mean the FRSD is set equal to
0.03. Using the FRSD, Weis et al. (2011) suggest constructing the following
interval: ✓

ȳ1k

1 + 4⇥ FRSDk

, 1 + 4⇥ FRSDk

◆
.

As for the standard criterion, if the measurements of all elements in y2 fall
within the interval constructed for y1, then the two samples are said to be
chemically indistinguishable. Otherwise, they are chemically distinguishable.
Weis et al. (2011) also transform this interval to be represented with a score
SBKA,k. As before, the overall comparison score is taken to be the maximum
score across the p elements.

SBKA,k =
exp(|log ȳ1k � log ȳ2k|)� 1

FRSDk

.

SBKA = max
1kp

SBKA,k.

Multivariate Region of 4�

The interval-based criteria are most intuitively thought of as p individual
univariate tests. However, geometrically, this is equivalent to constructing a
hyper-rectangle around the observations whose dimension is the number of
elements measured. This hyper-rectangle would be located at the centroid of
the data, and the length in each dimension would be 8�. Then, a recovered
sample is declared as matching if it lies within this hyper-rectangle, and non-
matching if it lies outside. The construction of this hyper-rectangle assumes
no relationship between any of the elements. Therefore, the most natural
extension of the standard interval criterion to take into account correlations
between the elements would be to consider a p-dimensional ellipsoid centred
about the mean vector. We would then wish for this ellipsoid to be rotated
such that its principal axes align with the directions of greatest variation,
and that the surface is always four standard deviations from the centre. As
far as the author is aware, there is no mention of this in the forensic glass
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examination literature, though it can be constructed quite easily by employ-
ing the Mahalanobis distance. The Mahalanobis distance is an example of
what is known as a statistical distance, and provides a well-defined notion
of distance between observations. To define it, let X and Y be two ran-
dom vectors from the same distribution with covariance matrix ⌃. Then the
Mahalanobis distance dM(X,Y ) between X and Y is given by

dM(X,Y ) =
p

(X � Y )T⌃�1(X � Y ).

The Mahalanobis distance is a generalisation of Euclidean distance, scaled by
the standard deviation in the direction between the two points. As a result,
the numerical value of the Mahalanobis distance is precisely the number of
standard deviations between the two points. It is worth noting also that in
one dimension, the Mahalanobis distance simplifies precisely to the standard
4� score as expressed in Equation 3.2. Further, by considering a centroid
µ and an observation x, both in Rp, a p-dimensional ellipsoid centred at µ,
whose distance from the edge to the centre is equal to r standard deviations
is given by the equation

(dM(µ,x))2 = (µ� x)T⌃�1(µ� x) = r2. (3.3)

This is referred to as the standard deviational ellipsoid and any point which
lies within this hyper-ellipsoid is within r standard deviations of the mean
vector, µ. Thus, by classifying matches for comparisons where the Ma-
halanobis distance is less than four, and non-matches where it is greater
than four, this provides a natural generalisation of the standard 4� interval
method. For control and recovered samples y1 and y2, the comparison score
in this case is therefore given by

Sellipsoid = dM(y1,y2).

To understand why this works, first consider that the general equation
for an ellipsoid centred at w 2 Rp is

(w � u)T A (w � u) = 1,

where u,w 2 Rp and A is a p ⇥ p positive definite matrix. Here, A defines
the scale and rotation of the ellipsoid. Let �1, . . . ,�p be the eigenvalues
of A. Then the semi-axes of the ellipsoid are given by ��2

1
, . . . ,��2

p
. The

eigenvectors of A then define the principal axes of the ellipsoid, that is, its
rotation in Rp. Now, in the context of data, we note that the eigenvectors of ⌃
define the principal components of the data, that is, the orthogonal vectors of
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greatest variance. The corresponding eigenvalues then provide the size of the
deviation in each respective direction. Let s1, . . . , sp be the eigenvectors and
&2
1
, . . . , &2

p
the eigenvalues of ⌃. Here, &2

i
is the variance in the i-th principal

component. Then, since ⌃ is symmetric and invertible, s1, . . . , sp are the
eigenvectors of ⌃�1 also, and &�2

1
, . . . , &�2

p
are its eigenvalues. Thus, since

⌃�1 is also positive definite, we have that the equation

(µ� x)T⌃�1(µ� x) = 1

defines a p-dimensional ellipsoid centred at µ, with principal axes s1, . . . , sp,
and semi-axes &1, . . . , &p. Finally, we can rewrite Equation 3.3 as

(µ� x)T r�2⌃�1(µ� x) = 1.

The matrix r�2⌃�1 has the same eigenvectors as ⌃, and has eigenvalues
r�2&�2

1
, . . . , r�2&�2

p
. Therefore, we have that Equation 3.3 defines a p-dimensional

ellipsoid centred at µ, with principal axes s1, . . . , sp, and semi-axes r&1, . . . , r&p.
That is, each semi-axis has length r standard deviations.

To help visualise the distinction between the standard and ellipsoid 4�
criteria consider Figure 3.1. The data used in this figure has been simulated
to clearly demonstrate the potential distinction. To keep the visualisation
simple, only two variables have been used. Variables 1 and 2 have been
simulated from a bivariate normal distribution, with covariance matrix given
by 

1 0.5
0.5 1

�
.

The black points show the simulated data, the straight black lines show
the boundaries for the standard criterion in each variable, and the black
ellipse is that for a Mahalanobis distance of four. The red cross shows a new
observation which would be declared as matching by the standard criterion,
but rejected by the ellipsoid method, while the opposite is true for the blue
cross.

Covariance Matrix Shrinkage Estimator

Often, in practice, the number of elements measured, p, is greater than the
number of observations in each sample (number of fragments multiplied by
number of replicate measurements). As such, the sample covariance matrix
is not guaranteed to be well-conditioned, meaning that the inverse cannot
always be computed accurately. This poses issues in calculating the Maha-
lanobis distance. In an e↵ort to combat this, Campbell and Curran (2009)
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Figure 3.1: Comparison of standard and ellipsoid 4� match criteria in

two variables. Variables 1 and 2 have been simulated from a bivariate

normal distribution, each with variance 1, and the covariance is 0.5. The

black points show the simulated data, the straight black lines show the

boundaries for the standard criterion in each variable, and the black

ellipse is that for a Mahalanobis distance of four. The red cross shows a

new observation which would be declared as matching by the standard

criterion, but rejected by the ellipsoid method, while the opposite is true

for the blue cross.

recommend using a shrinkage estimator for the covariance matrix proposed
by Ledoit and Wolf (2004). This method seeks to strike a balance between
the unbiased sample covariance matrix, and a much more highly structured
estimator. This structured estimator is referred to as the target matrix,
denoted F . The standard sample covariance is replaced by ⌃̂s (Campbell
and Curran, 2009, Schfer and Strimmer, 2005), given by the convex linear
combination:

⌃̂s = �̂⇤F + (1� �̂⇤)⌃.

Here, �̂⇤ 2 [0, 1] is an optimised shrinkage constant which minimises the
distance between ⌃ and F . Ledoit and Wolf (2004) suggest a constant corre-
lation model for F which achieves a good compromise between performance
and ease of implementation. To construct this target, the average of all of the
sample correlations is used to estimate the constant correlation. The matrix
is then constructed as follows, using this average, and the vector of sample
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variances. Continuing with our pooled sample covariance matrix ⌃ = [�ij]
(Equation 3.4), the sample correlations are given by

⇢ij =
�ijp
�ii�jj

.

The mean sample correlation is then given by

⇢̄ =
2

p(p� 1)

p�1X

i=1

pX

j=1

⇢ij.

Finally, the target matrix F = [fij] is now defined as

fij =

(
�ii if i = j,

⇢̄
p
�ii�jj if i 6= j.

3.1.2 Hypothesis Tests

As an alternative to match criteria, hypothesis tests have been proposed to
classify samples as matching or not. We do not include these methods in our
analysis and comparison, as they o↵er little distinction from the interval-
based criteria, but present them here in the interests of including a compre-
hensive review of currently used techniques in the field.

Multiple t-tests

The most basic approach, which is somewhat parallel to the univariate in-
tervals, is to simply conduct p independent t-tests (Aitken and Lucy, 2004).
While this method is not exactly the same as the standard 4� interval cri-
terion, it di↵ers only slightly. By choosing an appropriate significance level,
the confidence interval of the t-test can be considered to be almost equivalent
to the 4� interval. The di↵erence is only in that if a two sample t-test were
used, it would account for the variability in the recovered sample as well as
the control sample, using a pooled standard deviation rather than just that
of the control sample.

Hotelling T 2 Test Statistic

As another alternative to the interval-based methods, Campbell and Curran
(2009) suggest the use of the two sample Hotelling T 2 test statistic for the
comparison of multivariate means. This approach can be considered as a
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multivariate generalisation of the t-test. The Hotelling test is to the ellipsoid
criterion, what the multiple t-test approach is to the standard interval cri-
teria. In fact, the Hotelling test statistic is essentially a small modification
to the squared Mahalanobis distance. This approach also assumes that the
data is normally distributed, that is,

y11, . . . ,y1n1

iid⇠ N(µ,V )

and

y21, . . . ,y2N2

iid⇠ N(µ,V ).

As before, we take ȳ1 and ȳ2 to be the respective vectors of sample means,
and ⌃̂1 and ⌃̂2 the respective sample covariance matrices. The unbiased
pooled sample covariance matrix is then defined as

⌃̂pooled =
(n1 � 1)⌃̂1 + (n2 � 1)⌃̂2

n1 + n2 � 2
, (3.4)

Now, the Hotelling two-sample test statistic is defined as

t2 =

✓
n1n2

n1 + n2

◆
(ȳ1 � ȳ2)

T ⌃̂pooled (ȳ1 � ȳ2) .

Under the assumption of multivariate normality, the statistic has the Hotelling
T 2 distribution. In particular,

t2 ⇠ T 2(p, n1 + n2 � 2).

This, however, is simply a transformation of an F -distribution. Specifically,

n1 + n2 � p� 1

(n1 + n2 � 2)p
t2 ⇠ F (p, n1 + n2 � 1� p).

As such, this F -distribution can then be used to evaluate p-values and test the
null hypothesis. As discussed in the previous section, the shrinkage estimator
for the covariance matrix generally needs to be used to compute the Hotelling
test statistic. While we do not apply and compare the Hotelling T 2 test
here, the T 2 test statistic will be of importance in the construction of some
likelihood ratios in Chapter 4.

3.2 Results

In this section we apply the interval-based criteria to the Australian casework
and USA ribbon data sets to establish a performance benchmark against
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which we can compare the more advanced methods discussed in Parts II
and III. Since the hypothesis testing approaches – multiple t-tests and the
Hotelling T 2 test – are e↵ectively equivalent to the interval based methods,
only these two methods are considered here.

3.2.1 USA Ribbon Data

We begin by applying the two methods to the USA ribbon data. We note in
Table 3.1 that the standard 4� criterion was only approximately 60% accu-
rate, and that its low value of kappa suggests little di↵erence between it and
a uniform random classifier. It received a perfect score for sensitivity, mean-
ing that it never incorrectly classified same-source pairs as non-matching,
but received quite a low score for specificity, meaning a large number of false
positive predictions. The ellipsoid 4� criterion appears to have significantly
improved upon the standard method, achieving a raw accuracy of 0.950. It
also scored above 0.9 for both sensitivity and specificity, with specificity in
particular scoring above 0.95, meaning that false positives were minimised.

method accuracy kappa sensitivity specificity
Standard 4� 0.616 0.109 1.000 0.600
Ellipsoid 4� 0.950 0.575 0.917 0.951

Table 3.1: Performance metrics for standard and ellipsoid 4� criterion

applied to USA ribbon data. The standard criterion is only approxi-

mately 60% accurate while the ellipsoid criterion is 95% accurate. The

standard criterion scored 0.109 for Cohen’s Kappa, suggesting only a

slight improvement over a uniform classifier, while the ellipsoid criterion

received a score of 0.575 The standard criterion received a perfect score

for sensitivity, meaning that it never incorrectly classified same-source

pairs as non-matching, but received quite a low score for specificity,

meaning a large number of false positive predictions. The ellipsoid cri-

terion has high scores for both sensitivity and specificity, with both

above 90%.

To provide another interpretation of sensitivity and specificity, we see
that the standard 4� criterion predicted perfectly on same source pairs, but
only 60% of the time on di↵erent source pairs. The ellipsoid criterion, by
contrast, predicted correctly 91.7% of the time on same source pairs, and
95% of the time on di↵erent source pairs. In other words, the ellipsoid
criterion sacrifices approximately 8% accuracy on same source pairs, in order
to increase di↵erent source accuracy by 35 percentage points.
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3.2.2 Australian Casework Data

Moving on to the Australian casework data, Table 3.2 displays the perfor-
mance metrics of these two criteria on this data set. We see that in terms of
raw accuracy, both methods perform quite well, with the ellipsoid criterion
performing slightly better with a near-perfect score of 0.992, an increase of
0.031 over the standard criterion. In Cohen’s kappa coe�cient, the di↵erence
is more pronounced, with a significant increase of 0.34 from the standard to
ellipsoid criterion, suggesting that accounting for correlations has a signifi-
cant impact on classification as compared to a random classifier. Looking
at sensitivity and specificity, we note that the standard criterion achieves a
perfect score for sensitivity, suggesting that it predicted no false negatives,
that is, no pairs of fragments were classified as non-matching, when they in
fact had the same source. The standard criterion traded this high sensitivity
for a slightly lower specificity, suggesting that it made a small number of false
positive predictions. The ellipsoid criterion, achieved a balance with close to
perfect scores for both sensitivity and specificity.

method accuracy kappa sensitivity specificity
Standard 4� 0.961 0.497 1.000 0.960
Ellipsoid 4� 0.992 0.837 0.990 0.992

Table 3.2: Performance metrics for standard and ellipsoid 4� criterion

applied to Australian data. In terms of raw accuracy, both methods

perform quite well, with the ellipsoid criterion performing slightly bet-

ter with a near-perfect score of 0.992, an increase of 0.031 over the

standard criterion. In Cohen’s kappa coe�cient, the di↵erence is more

pronounced, with a significant increase of 0.34 from the standard to

ellipsoid criterion, suggesting that accounting for correlations has a sig-

nificant impact on classification as compared to a random classifier. We

note also that the standard criterion achieves a perfect score for sensi-

tivity, suggesting that it predicted no false negatives.

The score of 1.000 for sensitivity means that the standard 4� criterion
performed perfectly on same source pairs, and the specificity shows that it
correctly predicted 96% of the time on di↵erent source pairs. By contrast,
the ellipsoid 4� criterion made correct predictions 99% of the time on same
source pairs, and 99.2% of the time on di↵erent source pairs.
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3.3 Summary

In this chapter we have provided a review of the currently practiced method-
ologies for the comparison of forensic glass evidence measured by LA-ICPMS
in South Australia. We have applied the currently employed interval-based
technique (standard 4� criterion), and suggested a simple multivariate ex-
tension to this method (ellipsoid 4� criterion), accounting for the correlation
structure in the data.

Overall, we note that both the standard and ellipsoid criteria perform
quite well on the diverse Australian casework data set, with the ellipsoid
method o↵ering substantial improvement on di↵erent source classifications.
The standard criterion performed quite poorly on the homogeneous USA rib-
bon data, being able to classify same sources pairs as matching, but strug-
gling to correctly classify di↵erent source pairs. The ellipsoid method, taking
into account the correlation structure between the variables, closed this gap
and o↵ered substantial improvement on di↵erent source classification, while
maintaining good performance on same source comparisons.

Park and Carriquiry (2019) make note of some clear weaknesses in the
element-wise univariate interval-based approaches. Variability in the data,
whether it be by uncertainty in measurement, or inherent variation in the
elemental composition of samples, leads to widening of the intervals. This in
turn, has the counterintuitive e↵ect of it being less likely that the hypothesis
that the samples originate from the same source is accepted. Also, any
correlations between elemental concentrations are not taken into account
by the element-wise comparisons. The ellipsoid criterion and the Hotelling
T 2 test aim to remedy this by combining all elements into a single score,
including the covariance matrix in this calculation.

In none of the methods presented in this chapter, however, is the notion
of a coincidental match entertained. The probability that two fragments may
be indistinguishable but also come from di↵erent sources is not calculated,
which, depending on the variation of glass in a certain location, may not
be negligible. The methods discussed in Parts II and III address this by
considering a background database of samples from known sources to inform
the level of variability in a given population of glass samples. In particular,
in Part II, the likelihood ratio methodology aims to quantify the strength of
evidence for or against a match.



Part II

Likelihood Ratio Approach
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Part II Glossary

Terminology

Term Meaning
Block A partition of a set of values (a1, . . . , an). e.g.

({a1, . . . , am1}, {am1+1, . . . , am2}, . . . , {amr+1, . . . , an}).
Entropy In information theory, the entropy of a random vari-

able is the average level of uncertainty contained in
the variables potential outcomes. The entropy H of a
discrete random variable X with outcomes xi is given
by H(X) = �

P
i
P (xi) log2 P (xi).

Abbreviations

Abbreviation Meaning
Cllr Cost Log-likelihood Ratio
ECE Empirical Cross-Entropy
LR Likelihood Ratio
LLR Log-likelihood Ratio
MVK Multivariate Kernel
MVN Multivariate Normal
PAV Pool Adjacent Violators
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Chapter 4

Likelihood Ratio Methodology

Having established a baseline level of performance given by the standard
and ellipsoid 4� criteria, in this chapter, we describe the likelihood ratio
(LR) methods used to make comparisons between glass samples. We begin
by introducing and motivating likelihood ratios as a tool to compare glass
samples and describe how the method can be used to add more information
by quantifying the strength of the association between samples, rather than a
simple black and white declaration of match given by the established criteria.
We also discuss how likelihood ratios can be interpreted in a Bayesian setting
in conjunction with prior and posterior odds. We next present the three
methods for constructing LRs discussed by Aitken and Lucy (2004). We
then explain how likelihood ratios can be interpreted, and discuss how one
can assess whether a system of calculated LRs is valid. In particular, we
discuss the notion of measuring the calibration of a system of LRs, in order
to establish whether the numerical outputs can reasonably be interpreted
in the correct manner. We suggest two post-hoc, invertible transformations
which can be applied to a system of LRs to recalibrate the system without
fundamentally changing the information it contains.

4.1 The Likelihood Ratio

The approaches described in Chapter 3 all define some criterion for classi-
fying pairs of glass as matching or not. A clear improvement to approaches
such as these would be one which allows for a probabilistic measure of how
good a match is, or how significant the di↵erence is when samples are said
to originate from di↵erent sources. To achieve this, we consider the notion
of a likelihood ratio (LR) of the samples originating from the same source.

35
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This can be constructed in a number of di↵erent ways, but at the most fun-
damental level, we consider two quantities: the probability of observing the
recovered sample given that it originates from the same source as the control
sample, and the probability of observing the recovered sample given that
it originates from a di↵erent source. These two quantities can be expressed
mathematically as P (E |Hp) and P (E |Hd) respectively, where E is the event
that the evidence is observed, i.e. obtaining the observed measurements of
the recovered glass; Hp is the prosecutor’s (same source) hypothesis; and Hd

is the defence’s (di↵erent source) hypothesis. In other words, the numerator
is the probability of the evidence given that the samples have the same origin,
and the denominator is the probability of the evidence given that they have
di↵erent origins. The likelihood ratio of matching can then be computed as

LR =
P (E |Hp)

P (E |Hd)
.

If the LR is greater than 1, it supports the same source hypothesis, and
if it is less than 1, it supports the di↵erent source hypothesis. The strength
of the association (or disassociation) is then quantified by how large or small
the LR is.

Given that the measurements of chemical composition are continuous and
can each theoretically take any value on the positive real line, the exact prob-
ability P (E |Hp) (and likewise P (E |Hd)) is equal to zero. To resolve this,
the likelihood ratio is calculated using probability densities for the numerator
and denominator. That is,

LR =
f(E |Hp)

f(E |Hd)
,

where f is the probability density function in each case. The densities can be
estimated based on background databases, which we will describe in detail
in Section 4.2.

4.1.1 Bayes’ Theorem and the Odds Ratio

In forensic science, likelihood ratios are often also considered within the
Bayesian framework. In short, Bayesian statistics is founded on combin-
ing prior knowledge about an event with observed data, to establish what
can be referred to as posterior knowledge. Mathematically, a prior probabil-
ity, or probability distribution, is multiplied by the likelihood of the observed
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data (and then rescaled) to obtain a posterior probability or probability dis-
tribution. This is presented in Bayes’ theorem:

p(✓ | x) = p(x | ✓)p(✓)R
p(x | ✓)p(✓)d✓

,

where p(✓ | x) is the posterior distribution of ✓ given the observed data, x;
p(x | ✓) is the likelihood function of the data, given ✓; and p(✓) is the prior
distribution of ✓. Then, the integral on the denominator is taken over all
possible values of ✓, acting as a normalising constant.

Now we can consider Bayes’ theorem applied to likelihood and odds ratios.
Let f(Hi) be the prior probability density of hypothesis i. Now let f(Hi |E)
be the posterior probability density of hypothesis i, given the evidence E.
That is, the probability that the samples originate from the same or di↵erent
sources, given the observed measurements. The relationship between these
values and the likelihood ratio is given by Bayes’ theorem:

f(Hp |E)

f(Hd |E)
=

f(Hp)

f(Hd)
⇥ f(E |Hp)

f(E |Hd)
.

In other words, the posterior odds is proportional to the likelihood ratio,
and the constant of proportionality is given by the prior odds. The prior
odds represent any prior knowledge which one may have before performing
inference, via some non-scientific evidence, for example.

At this stage, it is important to observe the distinction between the likeli-
hood ratio and the posterior odds. The likelihood ratio quantifies how much
more or less likely one is to observe the evidence, given the same source hy-
potheses versus given the di↵erent source hypothesis. The posterior odds,
however, quantifies, given the evidence, how much more or less likely the
same source hypothesis is than the di↵erent source hypothesis.

4.2 Methods to Calculate Likelihood Ratios

Having motivated the use of likelihood ratios as a tool to compare glass sam-
ples, we must now determine how they can be calculated. In this part of the
thesis, we aim to test and validate the accepted methods to calculate likeli-
hood ratios present in the literature. The three methods which we present
are those described by Aitken and Lucy (2004). First, using the value of
the Hotelling T 2 test statistic to determine the numerator probability, and
a univariate kernel density estimate for the denominator. The second uses
multivariate normal densities for both the numerator and denominator, while
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the third builds on this approach by replacing the denominator density with
a multivariate kernel density estimate.

Definitions

For the remainder of this section and onward, we consider the following
quantities calculated from the background data, as introduced by Aitken and
Lucy (2004). Let N be the total number of samples in the given database,
and m the number of groups, that is, the number of individual glass sources.
Each group i contains ni measurements and so N =

P
m

i=1
ni. Recall also

that for each sample we measure the concentrations of p elements. The
background data is then denoted

x = {xijk | i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , p}.

For each group i, the vector of means for each element is denoted

x̄i =
1

ni

niX

j=1

xij.

Let µ be the mean over all groups, estimated by

x̄ =
1

m

mX

i=1

x̄i.

Now let U be the within group covariance matrix, estimated by

Û =
Sw

N �m
,

where,

Sw =
mX

i=1

niX

j=1

(xij � x̄i)(xij � x̄i)
T .

Let C be the between-group covariance matrix, estimated by

Ĉ =
S⇤

m� 1
� Sw

n(N �m)
,

where,

S⇤ =
mX

i=1

(x̄i � x̄)(x̄i � x̄)T .
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Finally, the pooled, within-group standard deviation is denoted s, and is
given by

sk =
p

ûkk,

where Û = [ûij].

Next we consider the measured samples which are to be compared. We
consider control and recovered measurements as described at the beginning of
the chapter. Recall that the control and recovered measurements are denoted

y = {yljk | l = 1, 2, j = 1, . . . , nl, k = 1, . . . , p} .

As for the background data, the vector of means for each element is denoted

ȳl =
1

nl

nlX

j=1

ylj.

4.2.1 Using Hotelling’s T 2 Statistic

The first method makes use of the two sample Hotelling’s T 2 test statistic in
the calculation of the numerator density, f(E |Hp). This LR is described by
Curran et al. (1997) and takes the numerator to be the probability density
of the T 2 statistic. The density is calculated under the assumption that
the statistic follows the Hotelling T 2 distribution, which, as mentioned in
Section 3.1.2, is a transformation of an F distribution. More specifically,

t2 ⇠ (N �m� 2)p

N �m� p� 1
F(p,N�m�p�1).

This assumption is true only if the original data, that is the elemental
measurements are normally distributed. This approach uses a within-group,
i.e. within glass source, covariance matrix Û which is estimated from the
background population. As per Curran et al. (1997), we define

t2
q
=

(ȳ1 � ȳ2)T (ȳ1 � ȳ2)⇣
1

n1
+ 1

n2

⌘
q̂T Ûq

where,
q̂ = Û�1(ȳ1 � ȳ2).

Following the assumption of normally distributed data, consider the statis-
tic t2

q
/r, where r = (N �m� 2)p/(N �m� p� 1). Then,

t2
q

r
⇠ F(p,N�m�p�1).
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The numerator of the LR is then defined as

fF

✓
t2
q

r

◆
1

G
, (4.1)

where

G =
⇣

1

n1
+ 1

n2

⌘
q̂T Ûq,

and fF is the probability density function of an F distribution with p and
N �m� p� 1 degrees of freedom.

For the denominator term, Curran et al. (1997) use a kernel density esti-
mate evaluated at the point (q̂T ȳ2)2. This estimate is made from the back-
ground database, transformed to scalars vi = (q̂T x̄i)2, for i = 1, . . . ,m. We
denote also z = (q̂T ȳ2)2. The kernel density estimate of the density function
is then given by

k(z) =
1

mhsv

mX

i=1

�

✓
z � vi
hsv

◆
, (4.2)

where,

sv =

vuut 1

m� 1

mX

i=1

(vi � v̄)2, (4.3)

that is, the sample standard deviation of the vi. The function � is then the
probability density function of the standard normal distribution, and h is a
smoothing parameter optimised by

h =

✓
4

2p+ 1

◆1/(p+4)

m�1/(p+4). (4.4)

Further information about kernel density estimation can be found in Ap-
pendix A.4. The likelihood ratio is now given by the ratio of Equations 4.1
and 4.2.

While this method takes advantage of the correlation structure present in
the multivariate elemental data, it involves creating a univariate projection
of the data, and considers the probability of observing the given projection.
The next two methods which we consider instead calculate likelihood ratios
using multivariate density functions.
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4.2.2 Multivariate Normal Density Approach

The multivariate probability density functions used in this technique and the
next consider likelihood ratios expressed in the form

LR =
f(y1,y2 |µ, C, U,Hp)

f(y1,y2 |µ, C, U,Hd)
. (4.5)

In this procedures, both the numerator and denominator densities will be
assumed to be multivariate normal and as such, Aitken and Lucy (2004)
refer to this method as the multivariate normal (MVN) procedure.

In the numerator probability density, the prosecutor’s hypothesis leads
us to the assumptions that the means of y1 and y2 are equal, to say ⌫. The
numerator term can then be expressed as

f(y1,y2 |µ, C, U,Hp) =

Z

⌫

f(y1 |⌫, U)f(y2 |⌫, U)f(⌫ |µ, C)d⌫, (4.6)

where f is the probability density function of the corresponding multivariate
normal distribution. Aitken and Lucy (2004) assert that Equation 4.6 can
then be shown to be equal to

|2⇡U |�(n1+n2)/2|2⇡C|�1/2

���2⇡
�
(n1 + n2)U

�1 + C�1
��1
���
1/2

⇥ exp
�
�1

2
(H1 +H2 +H3)

�
,

where,
H1 =

X

l2{K,Q}

tr
�
SlU

�1
�
, (4.7)

H2 = (y⇤ � µ)T
✓

U

n1 + n2

+ C

◆�1

(y⇤ � µ) , (4.8)

H3 =
n1n2

n1 + n2

(ȳK � ȳQ)
T U�1 (ȳK � ȳQ) , (4.9)

y⇤ =
n1ȳ1 + n2ȳ2

n1 + n2

,

Sl =
nlX

j=1

(ylj � ȳl) (ylj � ȳl)
T .

Intuitively, the three terms H1, H2 and H3 can be explained as follows.
H1 (Equation 4.7) quantifies the variability within each group of glass; H2

(Equation 4.8) accounts for the rarity the measured elemental compositions
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in the background database, by measuring the distance from the mean; and
H3 (Equation 4.9) is a measure of the distance between the control and
recovered samples.

Next, the denominator probability is given by

f(y1,y2 |µ, C, U,Hd) =

Z

⌫

f(y1 |⌫, U)f(⌫ |µ, C)d⌫

Z

⌫

f(y2 |⌫, U)f(⌫ |µ, C)d⌫.

The separation into two integrals arises from an assumption of the indepen-
dence of y1 and y2 which follows from the assumption that they originate
from di↵erent sources. The two integrals can be shown to be equal to

2Y

l=1

|2⇡U |nl/2 |2⇡C|�1/2

���2⇡
�
nlU

�1 + C�1
��1
���
1/2

⇥ exp

✓
�1

2
tr
�
SlU

�1
�
� 1

2
(ȳl � µ)T

⇣
1

nl
U + C

⌘�1

(ȳl � µ)

◆
. (4.10)

The likelihood ratio is then given by the ratio of Equations 4.6 and 4.10.
After simplifying, this ratio is then equal to

|C (n1U�1 + C�1) (n2U�1 + C�1)|1/2 exp
�
1

2
(H4 +H5)

�

|(n1 + n2)U�1 + C�1|1/2 exp
�
1

2
(H2 +H3)

�

where H2 and H3 are as per Equations 4.8 and 4.9 respectively, and

H4 = (µ� µ⇤)T
✓⇣

1

n1
U + C

⌘�1

+
⇣

1

n2
U + C

⌘�1
◆
(µ� µ⇤) ,

H5 = (ȳ1 � ȳ2)
T

⇣⇣
1

n1
+ 1

n2

⌘
U + 2C

⌘�1

(ȳ1ȳ2) ,

µ⇤ =

✓⇣
1

n1
U + C

⌘�1

+
⇣

1

n2
U + C

⌘�1
◆�1✓⇣

1

n1
U + C

⌘�1

ȳ1 +
⇣

1

n2
U + C

⌘�1

ȳ2

◆
.

4.2.3 Multivariate Kernel Density Estimate Approach

The assumption of normality on between-group variability may not be rea-
sonable in all cases. As a result, Aitken and Lucy (2004) suggesting relaxing
this assumption by considering a multivariate kernel density estimate for
the between-group distribution. The kernel density function is taken to be
that of a multivariate normal distribution with with mean x̄i and variance
h2C. Aitken and Lucy (2004) refer to this method as the multivariate kernel
(MVK) procedure.
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For each group i in the background data, it is given by

K(µ | x̄i, C, h) = (2⇡)�p/2h�p|C|�1/2exp
⇣
�1

2
h�2 (µ� x̄i)

T C�1 (µ� x̄i)
⌘
.

The complete probability density function is then estimated as the mean of
these, that is,

f(µ | x̄1, . . . , x̄m, C, h) =
1

m

mX

i=1

K(µ | x̄i, C, h).

To simplify the remaining expressions, we introduce the notation Dl = n�1

l
U

for l = 1, 2. Now, the numerator term in the likelihood ratio can be shown
to be equal to

f(y1,y2 |µ, C, U,Hp) = (2⇡)�p|D1|�1/2|D2|�1/2|C|�1/2(mhp)�1

⇥
���D�1

1
+D�1

2
+
�
h2C

��1
���
�1/2

⇥ exp
⇣
�1

2
(ȳ1 � ȳ2)

T (D1 +D2)
�1 (ȳ1 � ȳ2)

⌘

⇥
mX

i=1

exp

✓
�1

2
(y⇤ � x̄i)

T

⇣�
D�1

1
+D�1

2

��1
+ h2C

⌘�1

(y⇤ � x̄i)

◆
, (4.11)

where y⇤ =
�
D�1

1
+D�1

2

��1 �
D�1

1
ȳ1 +D�1

2
ȳ2

�
.

The denominator term, meanwhile, can be shown to be equal to

f(y1,y2 |µ, C, U,Hd) = (2⇡)�p|C|�1(mhp)�2

2Y

l=1

 
|Dl|�1/2

��D�1

l
+ (h2C)�1

���1/2

⇥
mX

i=1

exp
⇣
�1

2
(ȳl � x̄i)

T
�
Dl + h2C

��1
(ȳl � x̄i)

⌘!
.

(4.12)

The likelihood ratio is then given by the ratio of Equations 4.11 and 4.12.

4.2.4 Implementation

Due to the high-dimension of the measurements in the datasets, the multi-
variate normal and multivariate kernel approaches yielded infinite and zero
likelihood ratios in a number of cases. To address this issue, the calculations
were instead performed in log space resulting in log likelihood ratios which
enabled greater interpretability of the results. These values can still be used
for prediction, but with a critical value of zero rather than one, as is the case
for regular LRs.
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4.3 Interpreting a Likelihood Ratio

The use of likelihood ratios to evaluate forensics evidence is motivated by
a number of key factors. In particular, LRs can be constructed using legal
propositions i.e. the probability of observing the evidence given that the
suspect is guilty or not. In particular, they have been shown to be the best
way to express the strength of forensic evidence (Aitken et al., 2018, Lund
and Iyer, 2017). Further, LRs allow the use of background information to
establish how common certain measurements are in a given population, and
can quantify the strength of a match between two evidence sources. However,
one can also think about a likelihood ratio in a similar way to a score: as
a numeric output of a procedure which falls above or below some critical
value. Similarly to how a value of four standard deviations was chosen for
the standard interval criterion in Section 3.1.1, one can choose a critical value
and use to this to classify samples as matching or not matching.

4.3.1 Binary Classification

Recall that a likelihood ratio is the ratio of the conditional probability of
observing two fragments of glass, given that they originate from the same
source, to the conditional probability, given that they do not. If the former
is larger than the latter, the LR should be greater than one, and less than one
if the opposite is true. As a result, a critical value of one is the natural choice
to deem samples as matching or not. When we transform the likelihood ratio
to log space, that is, to a log-likelihood ratio (LLR), the values which were
previously between zero and one, now lie below zero, and those which were
greater than 1, now lie above zero. As such, the natural choice of critical
value for LLRs, would be zero.

Alternatively, given a set of likelihood ratios calculated by one of the pro-
cedures described above, one could compute the performance metrics for a
range of critical values, and choose the value which gives optimal scores in
some desired metrics. The range of values over which to test would likely
need to be determined by trial and error, and through observation of the
complete range of LRs which have been calculated. However, while this
method may yield improved classification performance, given that by defi-
nition, the critical value of one describes where an LR is in favour of the
same source or di↵erent source hypothesis, using an alternative critical val-
ues brings into question the validity, or at least calibration, of the procedure
used to calculate the LR.
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4.3.2 Strength of Evidence

After utilising background information to inform how common certain mea-
surements are in a given population, likelihood ratios o↵er the benefit of
quantifying the strength of a match between a pair of fragments. It is well
understood that the larger a likelihood ratio is (above 1), the stronger the
evidence of match, and the smaller it is (below 1), the stronger the evidence
against a match. However, what remains unclear is how one can assign an
understanding of how “strong” a given likelihood ratio. With this in mind,
we must question how we can establish whether an LR is valid, and from
this arises the idea of the calibration of a likelihood ratio. In particular, a
poorly calibrated LR might suggest that a pair of fragments have a common
source, when in fact they do not, or that the evidence appears to strongly
favour one hypothesis, when in fact there is only weak evidence in its favour.

4.4 Validity of Likelihood Ratios

As mentioned in the previous section, when using a likelihood ratio to quan-
tify the strength of evidence for or against a match, it is of vital importance
to establish that the LR is valid and well-calibrated, to avoid scores which are
misleadingly large or small (Vergeer et al., 2021). In this section we discuss
some key performance metrics against which to assess LR systems, and in
particular, a method to test their calibration.

4.4.1 Performance Metrics

Meuwly et al. (2017) mention three key three performance characteristics
to evaluate the validity of a likelihood ratio procedure. The first two are
accuracy and discriminating power. Accuracy is of course simply the raw
predictive accuracy of the method when viewed as a binary classifier, that is,
the proportion of correct predictions. Discriminating power, is defined as a
“performance property representing the capability of a given method to dis-
tinguish amongst forensic comparisons where di↵erent propositions are true”
(Meuwly et al., 2017). This can be assessed using sensitivity and specificity
in combination, as these metrics quantify how well the method can predict
on same source and di↵erent source pairs respectively. Thus, if a classifier
performs well on both types of sample pair, it can successfully discriminate
between them. These first two measures e↵ectively assess the method’s per-
formance as a binary classifier. One can then begin to ask how well it per-
forms in terms of quantifying the strength of the evidence. This is assessed
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via the calibration of an LR procedure.

4.4.2 Assessing Calibration

To begin to interpret the strength of the evidence shown by an LR, we must
first understand what it means for a likelihood ratio to be calibrated. First,
as an example, if an LR procedure is to be accurate in its interpretation, an
LR of 500 should mean that the probability of obtaining samples with the
observed elemental composition is 500 times higher if they have the same
source, than from di↵erent sources. Similarly, an LR of 1

500
= 0.002 should

mean that the samples are 500 times more likely to originate from di↵erent
sources, than the same. Meuwly et al. (2017) and Ramos and Gonzalez-
Rodriguez (2013) provide a succinct definition of what it means for an LR
system to be well-calibrated. If an LR procedure were perfectly calibrated,
any LR calculated by this method would be exactly as big or small as is
warranted by the data. That is, the LR can be probabilistically interpreted
in the same way as the above example, comparing the strength of the evidence
in favour of one hypothesis over the other. Mathematically, an LR system,
LR0, is well-calibrated if the operation of taking the LR is idempotent. That
is,

LR(LR0 = V ) =
P (LR0 = V | , Hp)

P (LR0 = V | , Hd)
= V.

In other words, the likelihood ratio is the same as the likelihood ratio of itself
(Vergeer et al., 2021). A likelihood ratio procedure can be ill-calibrated in
a number of di↵erent ways. Vergeer et al. (2021) mention four key circum-
stances of ill-calibration. The procedure produces LRs which are: too large,
that is all LRs favour the same source hypothesis; too small, that is the LRs
favour the di↵erent source hypothesis; too extreme, suggesting stronger ev-
idence than is reasonable; or too weak, suggesting weaker evidence than is
reasonable.

Vergeer et al. (2021) use simulated well- and ill-calibrated likelihood ratio
systems to provide a comparison of four metrics to assess the calibration of
an LR. These metrics comprise three well-established methods, and a new
methods which the authors propose. They found that their new method,
coined DevPAV, as well as the well established cost log-likelihood ratio (Cllr)
provided the best assessment of calibration. At the time of writing, DevPAV
was a very new method, while Cllr was well established. The two methods
are build on the same foundation and Vergeer et al. (2021) found that both
methods performed well, and so for the remainder of this chapter, we use
Cllr as our calibration metric. The word calibration can be confusing in its
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meaning in the field of reporting likelihood ratios. We wish to make distinc-
tion between measuring calibration, and performing calibration. Measuring
calibration refers to assessing how well- or ill-calibrated a system of LRs is,
generally by using a metric such as Cllr to make comparison with a system
which is known to be optimally calibrated. Performing calibration, however,
refers to applying some transformation or making adjustments in some way
to a system of LRs, such that the result is better calibrated than the original
system. To help avoid this confusion, in the context of assessing performance
we will say assessing or measuring calibration. In the case of making post-hoc
adjustments to a system of LRs, we will use the terminology transformation,
adjustment or re-calibration.

Pool Adjacent Violators Algorithm

In the interests of assessing the calibration of a system of LRs, it is important
to establish a reference point for an optimally-calibrated system. To achieve
this, we use what is known as the pool adjacent violators (PAV) algorithm
(Ahuja and Orlin, 2001, Zadrozny and Elkan, 2002, Brümmer and Du Preez,
2006).

The PAV algorithm applied to an LR system is performed as follows.
Suppose we have a system of likelihood ratios and their corresponding ground
truth classes (LRi, Ci), for i = 1, . . . , n. We begin by sorting the LRs into
ascending order. For simplicity, assume that the index i corresponds to this
ordering. Now, for each LR, assign a posterior probability pi where pi = 1
if Ci = same source and pi = 0 if Ci = di↵erent source. If a system of LRs
is properly calibrated, all of the di↵erent source LRs will be less than all of
the same source LRs, and so the vector of posterior probabilities p, will be
of the form

p = (0, . . . , 0, 1, . . . , 1). (4.13)

If this is the case, the PAV algorithm need not be applied. Alternatively, if
there are some same source LRs which are less than some di↵erent source
LRs, we will have a vector of posterior probabilities of the form

p = ((0, . . . , 0), (1, . . . , 1), (0, . . . , 0), . . . , (1, . . . , 1)). (4.14)

Note in Equation 4.14 that each sub-vector of uninterrupted ones or zeros
has been contained in parentheses. We will refer to such an sub-vector as a
block. Note that, in general, assigning blocks is simply a way to partition the
set of values pi, and need not only contain entries with the same value. We
will, however, only consider blocks in which each entry has the same value. A
block starting at pq and ending at pr for some q  r will be denoted [pq, pr].
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A block is said to take a value ✓qr, where pq = pq+1 = · · · = pr = ✓qr. In fact,
we will actually define ✓qr to be the mean of pq, . . . , pr. A pair of adjacent
blocks [pq, pr] and [pr, ps] is said to be in order if ✓qr  ✓rs, and out of order

otherwise. Note that Equation 4.13 is an example where all blocks are in
order. The PAV algorithm is now applied to the vector p, partitioned into
blocks. We will denote this as

P = ([p1, p2], [p2, p3], . . . , [pn�m, pn]),

for some m. While there exist out of order blocks, the PAV algorithm will
select a pair of out of order blocks [pq, pr] and [pr, ps], replace them with
[pq, ps], and compute ✓qs. P will then be updated to now contain one less
block. This process is then repeated until no out of order blocks remain. At
this point, the resulting set of posterior probabilities p will be increasing.
This is a simplified version of the algorithm, including only what is relevant
in our setting. The full, more general algorithm is described by Zadrozny
and Elkan (2002). Once the monotonic set of posterior probabilities has
been obtained, using a given prior odds, they can be converted into a set of
calibrated likelihood ratios. To do so, the posterior odds are calculated as

Opost

i
=

pi
1� pi

,

and the prior odds, Oprior

i
, are given by the ratio of the number of same

source LRs to the number of di↵erent source LRs in the system. From this,
the likelihood ratio is calculated using Bayes’ theorem. Note that the original
input LR values serve only to provide an ordering. The output of so-called
calibrated LR’s contain no information from the input LRs other than this
ordering. This procedure is detailed as pseudocode in Appendix C.

As mentioned by Ramos and Gonzalez-Rodriguez (2013), it is important
to make clear that the PAV algorithm is used here only to create a reference
point by which to measure the calibration of an LR system. The PAV algo-
rithm creates a set of optimally calibrated LRs, given an observed set, and
it is by the comparison of these sets that we can measure the calibration.
Recently, some authors have used PAV as a transformation method to adjust
the LRs calculated by a given procedure, and then report these adjusted
values. We have chosen not to use PAV for this purpose, as it makes changes
to the information contained in the LR system that has been calculated. In
Section 4.4.3 we propose an alternative invertible post-hoc transformation
method which improves the calibration of an LR system, without fundamen-
tally changing the information contained in the system.
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Empirical Cross-Entropy and the Cost Log-Likelihood Ratio

Having now established an optimally calibrated system, we can now measure
the calibration of a new LR system in relation to this optimal system. To
do so, we first introduce the notion of empirical cross-entropy (ECE). ECE
serves to address both calibration and discriminating power of an LR system,
and is an example of what is known as a strictly proper scoring rule (SPSR)
(Savage, 1971, DeGroot and Fienberg, 1983, Gneiting and Raftery, 2007).
The SPSR methodology is based on a Bayesian framework, and relies on prior
probabilities to construct posterior probabilities by which the performance is
measured. In forensic science, LR values are reported, rather than posterior
odds ratios as one cannot accurately determine a prior (Cook et al., 1998).
To address this, Ramos and Gonzalez-Rodriguez (2013) suggest that the
posterior odds ratio is computed for a range of prior probabilities, and the
ECE is calculated in each case. The performance of the LR system can then
be assessed using this range of ECE values.

With this technicality out of the way, we can now describe how the ECE
is calculated. Denote the true hypothesis as H i in a given comparison of
samples. That is, H i = Hp if the i-th pair of samples originate from the
same source, and H i = Hd if they originate from di↵erent sources. The ECE
is then given by

ECE = �P (Hp | I)
Np

X

Hi=Hp

log
2
P (Hp |Ei, I)�

P (Hd | I)
Nd

X

Hj=Hd

log
2
P (Hd |Ej, I),

where Ei denotes the evidence for the i-th pair of samples, and Np and Nd

are the number of LR values for which each hypotheses is true. For clarity,
the first sum is over the set of pairs for which Hp is true, and the second sum
is over the set of pairs for which Hd is true. We can also express the ECE
explicitly in terms of the prior odds Oprior and the i-th likelihood ratio LRi.

(4.15)

ECE =
P (Hp | I)

Np

X

Hi=Hp

log
2

⇣
1 +

�
LRi ⇥Oprior

��1
⌘

+
P (Hd | I)

Nd

X

Hj=Hd

log
2

�
1 +

�
LRj ⇥Oprior

��
,

Note that each term in the ECE is weighted by the corresponding prior
probability. This weighting is important in the interpretation of the ECE in
information theory. A detailed explanation of this can be found in (Ramos
et al., 2013).
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In Equation 4.15 we see that the ECE depends on the system of LR values
and their corresponding known classification of same or di↵erent source, as
well as the prior odds ratio Oprior, due to the Bayesian framework in which
an SPSR is constructed. We can then view the ECE as a function of the
prior odds, and Ramos and Gonzalez-Rodriguez (2013) suggest assessing LR
systems via a plot of ECE against log

10
Oprior. The ECE of the system of

LR values alone, provides a measure of the accuracy of the procedure, but in
order to assess discriminating power and calibration, the so-called ECE plot
is used. The ECE plot comprises three ECE curves. First, the ECE of the LR
system as discussed. The lower the values in this curve, the more accurate the
LR values. Second, the ECE after the PAV algorithm has been applied to the
set of LR values. This shows the accuracy of optimally calibrated LR values,
and thus provides a measure of discriminating power. The di↵erence between
the default and calibrated ECE curves provides a measure of calibration. An
explicit numerical metric to quantify the calibration is then defined, called the
cost log-likelihood ratio, denoted Cllr. The Cllr is then given by the di↵erence
between the default (or observed) and calibrated ECE curves evaluated at
log

10
Oprior = 0 (Vergeer et al., 2021). Finally, a null curve of ECE values for a

system in which the LR is one for each pair of samples. This curve serves the
purpose of a lower bound of performance, as no method should perform worse
than one which gives a value of one for each comparison. Figure 4.1 gives
three examples of ECE plots. The first shows a relatively well-calibrated
LR system, in which the observed ECE curve sits below the null curve.
The second and third plots show poorly calibrated systems which include
misleadingly large or small LR values, which in turn, favour one hypothesis
over the other. Figure 4.1b shows a system with very small di↵erent source
LRs, suggesting that the system favours that prediction. Figure 4.1c shows
the opposite scenario, in which the system favours same source prediction.

The R package comparison (Lucy et al., 2020) was used to compute the
PAV transform and create the ECE plots used throughout this chapter and
the next.

4.4.3 Optimising the Critical Value

In Section 4.3 we discussed that for likelihood ratios, the natural choice of
critical value is one, and for log-likelihood ratios it is zero. If it appears to
be the case that a di↵erent critical value leads to optimised performance,
when the LR is used as a binary clarifier, this may suggest that the LR
procedure is not well-calibrated. It is common practice in forensic science
to apply a post-hoc operation to recalibrate the system of LRs (Brümmer
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(a) LR system in which same source and di↵erent source

LRs are appropriately scaled. Cllr = 0.284

−2 −1 0 1 2

0

1

2

3

4

5

6

log10Odds(θ)

e
m

p
ir

ic
a

l c
ro

ss
 e

n
tr

o
p
y

null
observed
calibrated

(b) LR system in which di↵erent source LRs are much

smaller than same source LRs are large. Cllr = 4.590
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(c) LR system in which same source LRs are much larger

than di↵erent source LRs are small. Cllr = 4.590

Figure 4.1: Example ECE plots showing null, observed and calibrated

ECE curves. Figure (a) shows an observed curve which is below the null

curve, and so the accuracy is better than the lower bound for LR = 1

in all pairs. The di↵erence between the observed and calibrated curves

shows the level of calibration, and is quantified by the di↵erence at log

odds of zero. Figures (b) and (c) show examples of ill-calibrated LR

systems. Figure (b) shows a system in which the di↵erent source LRs

lie between 10
�3

and 10
�2

, while the same source LRs lie between one

and ten. Figure (c) shows a system in which the di↵erent source LRs lie

between 10
�1

and one, while the same source LRs lie between 10
2
and

10
3
.
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and Du Preez, 2006, Morrison, 2011, Ramos and Gonzalez-Rodriguez, 2013,
Meuwly et al., 2017, Vergeer et al., 2021). As mentioned, the PAV algorithm
is often used to perform this calibration, but this procedure applies a non-
invertible transformation to the LR system. In particular, it retains only the
ordering of the LR values, rather than the values themselves or the way that
they are distributed. To address this, we consider a methodology in which
an optimal critical value is chosen, and this value is used to recalibrate the
calculated LRs using an injective transformation.

There are several ways to choose such a transformation, and there are
several factors which must be taken into account. First, considering stan-
dard likelihood ratios, any scaling or translation of the LR scores will lead
to changes in the classification of pairs of samples. The same is true for
translation of log-likelihood ratios. We restrict our attention to transforma-
tions of log-likelihood ratios, because they can take any real value, and so we
need not concern ourselves with a translation which could lead to a negative
likelihood ratio.

Now, given a system of LLRs, suppose we were to find an optimal critical
value of ↵ 6= 0. This could suggest two things: that the LLR system is
poorly calibrated in terms of location, and that it is poorly calibrated in
terms of scale. For an LLR optimal critical value which is non-zero, we
cannot interpret the LR to mean that the same source hypothesis is however
many times more likely than the di↵erent source hypothesis. To adjust for
this, for each LLR, we could apply the transformation �(s) = s�↵, meaning
that zero would now be the optimal critical value in our new log-likelihood
ratio system. Further to this, the particular critical value could also be
interpreted to indicate that the scale of the likelihood ratio is also poorly
calibrated. Suppose, for example, that ↵ ⌧ 0 or ↵ � 0, that is, there is
a substantial deviation from the natural critical value of zero which may
suggest that the LLR system is too extreme. In this case, we propose the
transformation '(s) = s�↵

|↵| , which will centre and scale the LLR system.

There are potentially countless ways for one to optimise the critical value,
and we suggest two criteria which optimise sensitivity and specificity. First,
we seek to minimise the trade-o↵ between sensitivity and specificity. That is,
we seek a critical value which favours neither sensitivity nor specificity over
the other. This is achieved by maximising the absolute di↵erence between the
two metrics. We call this the min-trade-o↵ critical value and denote it ↵mt.
Second, we seek to maximise both sensitivity and specificity by maximising
their sum, or equivalently their mean, thereby maximising performance on
both same source and di↵erent source pairs. We call this the max-mean
critical value, denoted ↵mm. For the optimised critical values ↵mt and ↵mm
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we will denote the corresponding transformations as

'mt(s) =
s� ↵mt

|↵mt|
and 'mm(s) =

s� ↵mm

|↵mm|
.

We find that applying this adjustment substantially improved the calibration
of the LR system, and we will discuss the results of this adjustment in Sec-
tion 5.2 in more detail. To reiterate, unlike adjusting an LR system via the
PAV algorithm, as discussed in Section 4.4.2, these transformation methods
do not change the information contained in the LR system calculated by any
of the procedures described in Section 4.2.

With the theory and methodology out of the way, in the next chapter,
we will apply these techniques to compute likelihood ratio systems for the
Australian casework and USA ribbon data sets.
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Chapter 5

Likelihood Ratio Results

In this chapter we apply the methods described in Chapter 4 to calculate
likelihood ratio systems for the Australian casework and USA ribbon data
sets. We present only the results for the multivariate normal and multivari-
ate kernel LR procedures, as the Hotelling T 2 statistic procedure has been
superseded by the multivariate kernel techniques in the literature by Aitken
and Lucy (2004).

We begin by comparing the LR procedures in terms of their performance
as binary classifiers via an assessment of accuracy, Cohen’s kappa coe�cient,
sensitivity and specificity. We then proceed to optimise the critical values and
assess the calibration of the LR systems. Finding that the MVK procedure
consistently outperformed the MVN, we focus on only the MVK method in
this section. We begin by finding optimal critical values ↵mt and ↵mm which
minimise the trade o↵ between, and maximise the mean of sensitivity and
specificity respectively. We then apply the corresponding transformations,
and use ECE plots and the metric Cllr to assess the calibration of the methods
before and after these transformations.

5.1 Binary Classification Results

Here we present the results of the likelihood ratio calculations applied to
both data sets as a binary classifier. That is, with no transformation applied
to the LR systems, and no evaluation of their calibration.

55
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5.1.1 USA Ribbon Data

We begin by applying the multivariate normal and multivariate kernel density
LR methods to the USA ribbon data. When this procedure was repeated
with the data randomly distributed into each of these sets, it was found that
there was some variability in the results. To address this, the procedure was
repeated ten times for each model, with the background randomly sampled
in each case. We note that the results were skewed in some cases, and present
the median of the ten repeats for the model fit metrics.

Table 5.1 displays the confusion matrix for the multivariate normal like-
lihood ratio method applied to the USA ribbon data. We note that this
method only correctly predicts 13.3% of the time on same source pairs, there-
fore making incorrect predictions more often than correct predictions. The
method does, however, predict correctly on di↵erent source pairs 99.8% of
the time. This suggests that the method makes little distinction between
same and di↵erent source pairs.

Truth
Same Source Di↵erent Source

Prediction
Match 0.133 0.002

Non Match 0.867 0.998

Table 5.1: Median confusion matrix of match predictions for fragments

using the multivariate normal log likelihood ratio applied to USA ribbon

data. We see that this criterion has 13.3% median accuracy on same

source pairs, and 99.8% median accuracy on same source pairs.

Table 5.2 shows the confusion matrix for the multivariate kernel method
applied to the USA ribbon data. In this case, we see improvement over the
MVN procedure in terms of predicting on same source pairs, now predicting
correctly 41.9% of the time, an increase of 28.6 percentage points, but still
predicting correctly less often than incorrectly. We also see a very small
decrease in the prediction accuracy on di↵erent source pairs, this method
correctly predicting 99.1% of the time.

5.1.2 Australian Casework Data

We now move on to the more diverse Australian casework data set. For each
model, the data was split into a background training set and a testing set.
When this procedure was repeated with the data randomly distributed into
each of these sets, it was found that the results varieried much more than
was the case for the USA data. This is likely due to the highly variable
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Truth
Same Source Di↵erent Source

Prediction
Match 0.419 0.009

Non Match 0.581 0.991

Table 5.2: Median confusion matrix of match predictions for fragments

using the multivariate normal log likelihood ratio applied to USA ribbon

data. We see that this criterion has 41.9% median accuracy on same

source pairs, and 99.1% median accuracy on same source pairs.

nature of the data set, with several separate clusters observed in several of
the elements. This variability may reduce when a larger data base can be
obtained to inform the background data set. To address this, the procedure
was repeated 50 times for each model, rather than ten. We again note that
the results were skewed in some cased, and present the median of the 50
repeats for the model fit metrics.

Table 5.3 displays the confusion matrix for the multivariate normal like-
lihood ratio procedure applied to the Australian casework. We note that
this method predicts correctly on same source pairs 58.3% of the time, but
performs much better on di↵erent source pairs, predicting correctly 100% of
the time.

Truth
Same Source Di↵erent Source

Prediction
Match 0.583 0.000

Non Match 0.417 1.000

Table 5.3: Median confusion matrix of match predictions for fragments

using the multivariate normal log likelihood ratio applied to Australian

casework data. We see that this criterion has 58.3% median accuracy

on same source pairs, and 100% median accuracy on same source pairs.

Table 5.4 displays the confusion matrix for the multivariate kernel likeli-
hood ratio procedure applied to the Australian casework. We note that this
method improves significantly over the MVN procedure in terms of predic-
tion on same source pairs. This method predicts correctly 83.3% of the time
in this case. We note also that it performs almost identically on di↵erent
source pairs, predicting correctly 100% of the time.
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Truth
Same Source Di↵erent Source

Prediction
Match 0.833 0.000

Non Match 0.167 1.000

Table 5.4: Median confusion matrix of match predictions for fragments

using the multivariate kernel log likelihood ratio applied to Australian

casework data. We see that this criterion has 83.3% median accuracy

on same source pairs, and 100% median accuracy on same source pairs.

5.2 Calibration and Transformation Results

In the last section, we assessed how each LR system performed as a binary
classifier. Now, we assess the calibration of the LR systems and in doing
so evaluate the extent to which LR results can be interpreted as strength of
evidence. We compare the classification performance of the systems with a
variety of critical values, and find the min-trade-o↵ and max-mean optimum
values. We then apply the min-trade-o↵ and max-mean transformations to
the LR systems, and assess the calibration before and after these trans-
formations have been applied. Having seen in Section 5.1 that the MVK
procedure outperformed the MVN method, throughout this section we use
only the MVK procedure.

5.2.1 USA Ribbon Data

In Section 5.1 it was found that there was only a small amount of variability
in the results when the LR techniques were applied using di↵erent subsets of
the USA ribbon data for background and testing. As a result, in this section
we proceed only with the results from a single run of the LR procedure.

Figure 5.1 shows the sensitivity and specificity of the MVK procedure
applied to the USA ribbon data at varied critical values. We see that trade-
o↵ is minimised at -74, and the mean is maximised at -99.

Figure 5.2 shows the ECE plots for the MVK procedure applied to the
USA data. We see in Figure 5.2a that when no adjustment is applied, the ob-
served ECE curve lies well above the null curve, and shows poor calibration
with a Cllr of 20.103. The calibration is substantially improved when trans-
formations are appleid, with both transformations bringing the observed ECE
curve well below the null curve (Figures 5.2b and 5.2c). The two transforma-
tions appear to perform almost identically, with the min-trade-o↵ achieving
a Cllr of 0.095, and the max-mean transformation a Cllr of 0.089.
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Figure 5.1: Plot of sensitivity, specificity and the mean of the two

metrics for the MVK LR procedure applied to the USA ribbon data,

with varying critical values. The dotted vertical lines show the critical

values at which the mean of the metrics is maximised, and the trade-o↵

between sensitivity and specificity is minimised.

Table 5.5 shows the classification performance metrics for the MVK meth-
ods applied to USA data with and without transformations applied. We see
that the transformed LR systems compromised in accuracy and Kappa in
order to achieve a better balance between sensitivity and specificity. With-
out adjustments, the model was able to predict near perfectly on di↵erent
source pairs, but correctly less than half of the time on same source pairs.
In order to make sensitivity and specificity approximately equal, they were
both reduced to 0.84 in the min-trade-o↵ transformation. In the max-mean
transformation however, sensitivity was favoured, with the model predicting
correctly 90% of the time on same source pairs, and 80% of the time on
di↵erent source pairs.

Model Accuracy Kappa Sensitivity Specificity Cllr

Default 0.983 0.315 0.418 0.989 20.103
Min-trade-o↵ 0.841 0.077 0.842 0.841 0.095
Max-mean 0.803 0.065 0.907 0.802 0.089

Table 5.5: Performance metrics for multivariate kernel density LR

procedure applied to USA ribbon data before and after transformations.
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(a) MVK LR with no transformation. Cllr = 20.103
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(b) MVK LR with min trade-o↵ transformation. Cllr =

0.095
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(c) MVK LR with max mean transformation. Cllr =

0.089

Figure 5.2: ECE plots of MVK LRs for USA ribbon data with and

without transformations applied. We see in (a) that the LR system with

no transformation applied contain misleading evidence in favour of same

source predictions. The transformed LR systems show better levels of

calibration, each having Cllr values less than 0.8, compared to 20 for

the untransformed LR system. The min trade-o↵ transformation was

calibrated best with a Cllr of 0.715.
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5.2.2 Australian Casework Data

Recall that in Section 5.1, for the Australian casework, the LR procedures
were repeated 50 times with random samples of the data set used as the back-
ground training set, and as the testing set. The performance was evaluated
separately for each of these 50 repeats, and the median of the performance
metrics were presented. Having evaluated this variability, in this section, in
order to obtain a single, reliable estimate, we aggregate the LR calculations
from each of these 50 repeats, to obtain a larger set of LR values. This
process can be thought of as similar to the process of bootstrap aggregation.
Throughout this section, the analysis is conducted on this aggregated set of
LR values.

Figure 5.3 shows the metric scores a varying critical values for the MVK
LLR procedure. In this case, we note that the curves are very flat the the
performance varies only slightly at largely di↵erent critical values. We find
↵mt = �2140 and ↵mm = �685.

Min Trade−off = −2140 Max Mean = −685
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Figure 5.3: Plot of sensitivity, specificity and the mean of the two

metrics for the MVK LR procedure applied to the Australian casework

data, with varying critical values. The dotted vertical lines show the

critical values at which the mean of the metrics is maximised, and the

trade-o↵ between sensitivity and specificity is minimised.

Figure 5.4 shows the ECE plots for the MVK procedure applied to Aus-
tralian casework data with the two transformations applied. The ECE plot
for the untransformed LLR system could not be produced, as infinite val-
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ues were yielded in the calculation of the ECE. This, in itself, suggests poor
calibration of the original system. in Figure 5.4a we note that when the
min-trade-o↵ transformation is applied, the resulting LR system has an ECE
curve which sits entirely underneath the null curve, and results in a Cllr of
0.207. When the max-mean transformation is applied, the system is less
well-calibrated, and the ECE curve is not entirely underneath the null curve.
In this case, the Cllr is 0.504, more than double that after then min-trade-
o↵ transformation. Since a Cllr could not be determined for the unadjusted
LLR system, it is di�cult to establish how much of an improvement each of
these methods give, though it is clear that the min-trade-o↵ transformation
performs best.

Table 5.6 shows the performance metrics for the MVk procedure before
and after transformations. We note that in terms of overall accuracy, Cohen’s
kappa and specificity, the default, untransformed method performed best.
The two transformations led to smaller compromises between sensitivity and
specificity. In particular, the max-mean transformation reduced specificity
by 0.021, allowing for an increase of nearly 0.1 in sensitivity compared to the
default model.

Model Accuracy Kappa Sensitivity Specificity Cllr

Default 0.976 0.837 0.800 0.992 1
Min-trade-o↵ 0.916 0.604 0.917 0.916 0.207
Max-mean 0.964 0.788 0.897 0.971 0.504

Table 5.6: Performance metrics for multivariate kernel density LR

procedure applied to Australian casework data before and after trans-

formations.

The interested reader can find a visual comparison of the distributions of
the LR systems pre- and post-calibration in Appendix B

5.3 Summary

In this chapter we have evaluated the use of likelihood ratio-based techniques
to make comparison between forensic glass samples. We have assessed these
methods first viewed simply for the purpose of binary classification, and
then as a method which allows one to quantify the strength of forensic ev-
idence. We began by comparing two multivariate density-based methods,
which are well-established in the literature, to calculate LRs from elemental
composition measurements. For each method, we assessed their classifica-
tion performance using zero as a critical values for log-likelihood ratios. We
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(a) MVK LR with min-trade-o↵ transformation. Cllr =

0.207
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(b) MVK LR with max-mean transformation. Cllr =

0.504

Figure 5.4: ECE plots of MVK LRs for Australian casework data with

and without transformations applied. We see that the min-trade-o↵

transformation yields the best calibrated system of LLRs, while in the

case of the max-mean transformation the ECE curve lies above the null

curve at higher log odds.
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then investigated choosing a critical value which optimises classification per-
formance, and applying a transformation to the LLR system based on this
value. The calibration of the LR systems was then also assessed before and
after these transformations using empirical cross entropy curves.

The USA ribbon data provides insight into the performance of the MVK
method on a homogeneous data set in which there is little variation be-
tween sources. Without transformation, the MVK procedure predicted near-
perfectly on di↵erent source pairs, and correctly less than 50% of the time
on same source pairs. In this case, the calibration was very poor with a Cllr

of over 20. The Cllr was reduced to less than 0.1 by both transformation
methods, which both also raised sensitivity to above 84%–90% in the case
of the max-mean transformation. In doing so, however, the specificity was
reduced to less than 85% in both cases. These results suggest that the MVK
LR method was unable to provide good discrimination between the same and
di↵erent source pairs in this data set, as when sensitivity and specificity were
both maximised, the result was 84% prediction accuracy.

On the more diverse Australian casework data it was found that the
multivariate normal and multivariate kernel procedures predicted correctly
99% of the time on di↵erent source pairs, but less e↵ectively on same source
pairs, with the MVN procedure correctly predicting same source pairs less
than half of the time. The MVK procedure, meanwhile, predicted correctly
80% of the time.

In the assessment of calibration, it was found that the MVK procedure
was very poorly calibrated, but that this was greatly improved when trans-
formations were applied. The LR system was best calibrated with the min-
trade-o↵ adjustment, which led to correct predictions 91% of the time on
all pairs. The max-mean transformation resulted in a system which was not
calibrated as well, but had 97% correct prediction on di↵erent source pairs
and 90% correct prediction on same source pairs.

With these results on mind, one must make a decision about the compro-
mise between binary classification performance, and calibration. The max-
mean transformations applied to the MVK procedure resulted in what can
subjectively be described as the best compromise, as specificity was favoured,
resulting in the lowest false positive rate.

In terms of prediction accuracy, these methods have performed less ac-
curately than the ellipsoid criterion described and evaluated in Chapter 3
which achieved sensitivity and specificity of approximately 0.99 on the Aus-
tralian casework data. The LR methods do, however, have the benefit of
quantifying the strength of the evidence in favour of either hypothesis. In
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the next chapter, we investigate the use of machine learning classifiers to
take full advantage of a background database and the mutilvariate structure
of the data and aim to further improve predictive accuracy.
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Part III

Machine Learning Classification
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Part III Glossary

Terminology

Term Meaning
Class Variable denoting the classification of an instance.
Edge Line connecting nodes in a graph. See Appendix A.3
Entropy In information theory, the entropy of a random vari-

able is the average level of uncertainty contained in
the variables potential outcomes. The entropy H of a
discrete random variable X with outcomes xi is given
by H(X) = �

P
i
P (xi) log2 P (xi).

Feature/Attribute Any variable within a data set.
Instance Data point/observation in the training data.
Node Node of a graph. See Appendix A.3
Testing data Data set used to test the predictive performance of a

machine learning model.
Training Data Data set used to train a machine learning model. The

model learns the how to make predictions based on
the training data.
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Abbreviations

Abbreviation Meaning
AUC Area under the curve
Cllr Cost Log-Likelihood Ratio
DT Decision Tree
ECE Empirical Cross Entropy
KDE Kernel Density Estimate/Estimation
LR Logistic regression
ML Machine Learning
RF Random Forest
ROC Receiver Operating Characteristic
SLR Score-Based Likelihood Ratio
SMOTE Synthetic Minority Oversampling Technique



Chapter 6

Machine Learning Methodology

We have now seen that the likelihood ratio methodologies improve upon the
current practice by allowing for the strength of evidence to be quantified,
but fall short in their performance as binary classifiers. In this part of the
thesis, we discuss the use of some machine learning classification techniques
for predicting whether pairs of glass samples match. The work is largely
motivated by some recent work conducted by Park and Carriquiry (2019)
who investigate the use of random forests, and Bayesian Additive Regression
Trees (BART) for this purpose, and compare the results with the more tradi-
tional interval-based approaches. Following this work, we begin with logistic
regression, and then increase the model complexity by applying decision tree
models, and random forests.

In this chapter we introduce the theory involved in machine learning
classification. We first describe mathematically how the three models are
constructed, and present the algorithms which the models use to make clas-
sification. We then also discuss the preparatory steps which must be applied
to the data – specifically addressing imbalance in the number of same source
and di↵erent source pairs. We describe three resampling methods to do
this: downsampling the majority class, upsampling the minority class with
replacement, and synthetic minority oversampling examples (SMOTE).

Prior Work in This Area

Work began only recently investigating the use of machine learning algo-
rithms for the evaluation of elemental forensic glass evidence when Park
and Carriquiry (2019) investigated two classification models for this pur-
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pose: random forests and Bayesian Additive Regression Trees (BART). The
authors challenge the currently employed techniques of using univariate in-
tervals around mean values of concentrations of elements to compare glass
fragments in that these techniques do not account for dependencies between
concentrations of di↵erent elements. In this setting, rejecting the null hy-
pothesis of no di↵erence between two samples becomes less likely when the
variance of concentrations of elements is larger. In turn, this leads to favour-
ing the prosecution, as the intervals for classifying a match would in general
be wider. The authors suggest a score-based approach in which RF and
BART methods are used to determine a similarity score between pairs of
glass fragments. The similarity score is the class probability that is pre-
dicted when using a ML classification model, and a score of 0.5 or more
is classified as a match. These methods make use of dependencies between
certain elemental concentrations to establish estimated probabilities to give
what they refer to as a degree of similarity between fragments to report to
authorities in the legal setting.

Park and Carriquiry (2019) demonstrated primarily that this approach is
superior to the univariate hypothesis test based approaches insofar as min-
imising classification error between fragments. They used a combination of
three data sets to test their methodologies, one of which we have gained ac-
cess to – the USA ribbon data set. We will use this data set to validate their
findings, and compare the performance with the same models applied to the
Australian casework data.

6.1 Machine Learning Classifiers

Recall that we are considering statistical classification models to predict
whether pairs of glass fragment are matching. In this chapter, we consider
machine learning classifiers which predict an empirical probability that each
pair of fragments is matching or not matching. If this predicted probability
is greater than 0.5 in favour of a match, the pair is classified as matching.

We consider three di↵erent classification models, each slightly more ad-
vanced and complex than the last, to predict whether glass samples match.
We begin with logistic regression, and then consider a decision tree model,
and finally a random forest, which is an extension of the decision tree model.
The choice of these three models is in part motivated by their easy to in-
terpret nature in comparison to the full suite of machine learning classifiers
available. Many machine learning algorithms su↵er from being “black boxes”:
while the algorithms themselves are known, it is often a mystery as to the
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specific criteria by which they make classification. This can present problems
when a model makes incorrect classifications, as one cannot necessarily deter-
mine why the decision was made. Even in the case of consistent and accurate
predictions, many are sceptical of models which they cannot explain (Pearl,
2019, Pearl and Mackenzie, 2020). This is of particular importance in the
forensic setting, when predictions are being made on evidence which is to be
presented in court, and one needs to argue the validity of this evidence. The
three models here are less vulnerable to this criticism, and are more easily ex-
plained. Logistic regression follows a set of clear mathematical equations and
decision trees have the advantage of mimicking the human decision-making
process (James et al., 2017) – a point in favour of their interpretability.

6.1.1 Logistic Regression

In order to make comparison with the work done by Park and Carriquiry
(2019) on random forests and Bayesian additive regression trees, we chose
to start with a fully interpretable, logistic regression model. Recall that
logistic regression is a generalisation of linear regression which predicts an
odds ratio of observations belonging to each class, which is then transformed
to a probability. Observations are then assigned to the class for which their
predicted probability is highest. In the case of binary classification, the class
which receives a probability greater than 0.5. It is also important to note that
the logistic regression model is sensitive to scale and location of variables.
As such, for this model, the data were scaled by standard deviation and
centred about zero before fitting the model. A more detailed recap of logistic
regression can be found in Appendix A.1.

6.1.2 Decision Trees

Decision trees are popular as they mimic the natural human decision-making
process. A decision tree can be thought of as a flow chart, or network which
has a tree structure. This means that it has one root node which branches
o↵ into child nodes, which can branch o↵ further, until they terminate at the
final classification. The root node, and all other internal nodes are referred
to as decision nodes. The nodes at the end of the tree, from which there
are no further branches, are known as leaf nodes. Decision nodes represent
features within the data, and branches represent classification decisions based
on these features’ values. The leaf nodes then represent the classification
outcomes based on the decisions that came before it. The decision tree learns
to partition based on variable values in the training data set, and continues to
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partition recursively. As such, one can easily visualise a decision tree and see
how it replicates the decision making procedure of humans. Figure 6.1 depicts
a simple example of a decision tree classifying observations two predictor
variables A and B.

Yes No

Yes No

A > 0

B > 0
p1 = 0.9

p2 = 0.1

p1 = 0.2

p2 = 0.8

p1 = 0.8

p2 = 0.2

Figure 6.1: Example of a decision tree for a binary classification prob-

lem with two real-valued variables A and B. The decision nodes are

represented by yellow squares, and the leaf nodes as green or blue cir-

cles. At the root node, the tree first checks whether A is positive. If

not, the observation is predicted to have class 1 with probability 0.9.

If A is positive, the tree then checks if B is positive and predicts class

probabilities based on the result.

Decision trees also do not su↵er from the property of being like a “black
box”, as the logic used at each branch of the decision tree is accessible to
the user, and so the decision-making process can be better understood, and
issues in the model can be diagnosed. A key benefit of decision trees over
logistic regression, is that they do not rely on distributional assumptions of
the dataset, but rather are non-parametric (Rounds, 1980) and they are able
to handle high-dimensional data well, without a significant loss of accuracy.

The algorithms by which decision trees are constructed rely on attribute
selection measures (ASMs). Two major ASMs used in decision tree models:
Gini impurity and information gain, both of which are available in the scikit-
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learn package in Python (Pedregosa et al., 2011).

Gini Impurity

Gini impurity measures the probability that a new observation is incorrectly
classified, if it was classified at random according to the distribution of class
labels in the data. The Gini impurity G, for classification of a data set D
into K classes, is defined as

G(D) =
KX

i=1

pi(1� pi),

where pi is the proportion of instances of class i in the training data. In a
binary classification problem, we have only p1 and p2, where p1 = 1 � p2.
Therefore, the Gini impurity is simply given by

G(D) = p1(1� p1) + p2(1� p2) = 2p1p2.

To choose an attribute to split the data, we can consider the Gini impurity for
a binary split by each potential attribute. Suppose an attribute A partitions
D into D1 and D2. The Gini impurity of this split by attribute A, is then
given by

GA(D) =
|D1|
|D| G(D1) +

|D2|
|D| G(D2).

For continuous-valued attributes, as is the case for all variables in the glass
datasets, the decision tree model will iterate through all pairs of adjacent
values as a potential splitting point, and the point with the lowest Gini
impurity is chosen. This is then repeated with all potential attributes, and
again, the attribute which minimises G is chosen.

Information Gain

Next, information gain measures the decrease in entropy, or equivalently the
gain in information, when a split is made in the data set. Entropy can be
thought of as the level of uncertainty in the possible outcomes for a given
variable. To compute information gain, we first define the information, or
entropy H of the data D, again with K classes, to be

H(D) = �
KX

i=1

pi log2 pi.
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The entropy associated with a split by attribute A, H(D |A), is given by

H(D |A) = �
X

a2A

P (a)
KX

i=1

P (i | a) log
2
P (i | a),

where the a 2 A are possible values of attribute A. Now, the information
gain IG, is given by

IGA(D) = H(D)�H(D |A).

Converse to Gini impurity, we seek to maximise information gain, and so the
attribute which maximises it is chosen for the decision node. The algorithm
for decision trees, known as C4.5, is given in Algorithm 6.1.

Algorithm 6.1: Decision Tree Algorithm (C4.5)

Data : Attribute List A, Training data D
Result: Decision Tree Model

1 if D contains only one class OR A = ; then
2 Create leaf node
3 return
4 end
5 foreach A 2 A do
6 Calculate IGA(D)
7 end
8 Set Abest  argmax

A2AIGA(D) and create decision node
9 Set A A \ {Abest}

10 Partition D into {D1, . . . ,Dn} according to Abest

11 foreach Di, i = 1, . . . , n do
12 Create child node Ni

13 Recurse with inputs A,Di

14 end

This algorithm is written using the information gain attribute selection
measure. If one was to use Gini impurity, line six would be changed to

Calculate GA(D),

and line eight would become

Set Abest  argmin
A2AGA(D).
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6.1.3 Random Forests

Random forests are an example of a type of model known as an ensemble
learning model. Such models combine multiple machine learning models to
improve upon the results that would be obtained if the models were to be
used individually. In the case of random forest, an ensemble of decision
tree models is created, using bootstrap aggregation, also known as bagging.
The random forest method should increase performance of decision trees by
reducing variance without increasing bias, as a single decision tree might be
sensitive to variance within the training data, but this should be reduced
when taking the average of a number of trees, each trained on a random
sample of the data.

Bootstrap aggregation is preformed as follows: consider some training
data D = (X, Y ), where X = (x1, . . . , xn) are the observed data and Y =
(y1, . . . , yn) are the observed responses, or classes. The algorithm then pro-
ceeds with the following steps:

• Sample a set of observations at random from the training set., with
replacement.

• Sample a random subset of the features.

• Fit a decision tree to this sample of observations, using only the sampled
features.

• Repeat this process B times, on samples Db = (Xb, Yb) for b = 1, . . . , B.

• Make classification by taking the class into which the majority of the
trees classify a sample.

Note that each time a tree is fit, it uses only a sample of the features, rather
than the whole set. This method is used to reduce the chance of significant
correlation between the trees in the forest, as if a select few features carry
a lot of weight in prediction, they will be selected in the majority of the
trees. Where a decision tree can be thought of as analogous to a single
human decision maker, a random forest model takes the majority vote of a
number of decision makers. The number of attributes sampled is considered a
hyperparameter of the model. It is often set to be the square root of the total
number of attributes, but we chose to tune the value in our hyperparameter
selection process.
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6.2 Data Preparation

In order to make use of the models described in the previous section, some
preparatory steps must be applied to the data. Recall from Section 6.2 that
for the purposes of classification, our data are considered in pairs. That is,
the observations are represented in the form:

{(xi,j,xi0,j0) : i 6= i0 or j 6= j0} ,

and are classed as KM (known mate) or KNM (known non-mate) if the sam-
ples xi,j xi0,j0 are, or are not from the same source respectively. In order for
a machine learning model to make sense of this data, it must be transformed
into a single observation, rather than a pair. Keep in mind, the single ob-
servation is still multivariate in the sense that it has the observations of 18
di↵erent chemical isotopes. For each element k, the transformed observation
is given by xi,j,k�xi0,j0,k. We refer to this as di↵erencing a pair of observations,
and the data in this form will be referred to as di↵erenced data. So that a
su�ciently large data set could be created for use with the machine learning
models, this process of di↵erencing was applied to each individual observa-
tion in the data set, rather than first taking an average over the observations
in each glass source, and di↵erencing pairs of averages.

Recall also from Section 6.1.2 that for logistic regression another step
of preparation is required. This model is sensitive to scale and location of
variables, and so the data were scaled by standard deviation and centred
about zero. This step was performed for logistic regression only.

Finally, the data are split into training and testing groups, with 75% of
the data allocation for training the models. The models are then applied to
the remaining 25% of the data – the testing set – and their performance is
then measured using the metrics described in Section 2.3.3.

6.2.1 Class Imbalance

When di↵erencing data where the number of groups is large, and the number
of observations is relatively small, one is left with many more data points in
the non-matching group than in the matching group. The following explana-
tion describes the exact imbalance if the entire dataset were di↵erent, but the
result holds true in our case since samples were taken uniformly at random.
Consider data in N groups with ni observations in group i, for i = 1, . . . , N .
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Then, group i contributes
�
ni

2

�
matches, totalling to

NX

i=1

✓
ni

2

◆
=

NX

i=1

ni(ni � 1)

2
.

matched observations in the di↵erenced data set. Then, in Group i, each
observation contributes one non-match from every observation in all of the
other groups, of which there are

NX

j=1
i 6=j

nj,

for each i. There are then a total of
P

N

i=1
ni observations in the original data

set, and so the total number of non-matches in the di↵erenced data is

NX

i=1

NX

j=1
i 6=j

ninj.

For both of the data sets which we consider in this section, after the
process of di↵erencing, there were many more di↵erent source observations
than same source. In order to address this imbalance in the representation
of each class, a resampling technique should be applied to the training data.

Park and Carriquiry (2019) presented four resampling methods to pre-
process the data, and the results were compared for each of these methods.
They pre-processed by downsampling the majority class, upsampling the
minority class with replacement, synthetic minority over-sampling technique
(SMOTE), and random over-sampling examples (ROSE).

Standard Downsampling and Upsampling

Downsampling (or under-sampling) the majority class involves sampling with-
out replacement from the majority class until the number of samples obtained
is the same as the number of samples in the minority class. If samples are
taken uniformly at random, this method should provide an unbiased estimate
of the original data. Upsampling (or over-sampling) the minority class with
replacement involves taking the original minority class, and then sampling
again from this class, with replacement, until the number of samples is equal
to the number of samples of the majority class.
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SMOTE

Park and Carriquiry (2019) then also discussed two more advanced tech-
niques: synthetic minority oversampling technique (SMOTE) (Chawla et al.,
2002) and random over-sampling examples (ROSE) (Lunardon et al., 2014),
both of which generate artificial samples in the minority class. Park and
Carriquiry (2019) found that using SMOTE led to the best performance of
the random forest and BART models, which we will seek to verify for the
RF model. They also found that applying ROSE to their training data set
yielded the worst model performance overall, compromising raw accuracy
and specificity in favour of sensitivity. We investigated the ROSE algorithm
early on, but found that the same was true when applied to the Australian
casework and USA ribbon data sets and so we did not pursue the method
any further.

The SMOTE algorithm makes use of the k-nearest neighbours algorithm,
and generates synthetic samples for each observation in between it, and its k
nearest neighbours (Chawla et al., 2002). The authors motivate the algorithm
by stating that oversampling the minority class, with replacement, does not
improve the recognition of minority classes, but instead identifies more and
more specific sets of feature values to make decisions. That is, it narrows
the choice of feature values by which it classifies observations. The SMOTE
algorithm starts by drawing straight lines between each observation in the
minority class, and its k nearest neighbours. Synthetic samples are then
generated at a random point along each of these lines. Depending on the
number of samples needed, some or all of the k neighbours are chosen for
this process, and if more samples are required, neighbours of neighbours
are used also. (Chawla et al., 2002) suggest using k = 5. In theory, this
methods should have the opposite of the e↵ect the authors described for
oversampling, in that the SMOTE algorithm should generalise and widen
the choice of feature values for making classification. Figure 6.2 provides
a visualisation of the process in two variables and the pseudo-code for the
algorithm is provided in Appendix C.

In the next chapter, we move on to applying these techniques first one
the USA ribbon data set – in order to validate the work of Park and Car-
riquiry (2019) – and then the Australian casework data set as well. We will
then evaluate whether these methods o↵er an improvement over the current
practice and likelihood ratio procedures.
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Figure 6.2: Visualisation of SMOTE sampling procedure. The black

dot in the centre represents sample in original data from which to gen-

erate a new sample. The orange dots are its five nearest neighbours,

and the dotted lines show the paths between the sample and its neigh-

bours. One of the nearest neighbours is chosen at random, and the blue

dot is the new sample which has been generated uniformly at random

along the dotted path. The other grey dots are other observations in the

data which are further from the black observation than the five nearest

neighbours.
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Chapter 7

Machine Learning Results

In this chapter we present the results of the machine learning models de-
scribed in the previous chapter applied to USA ribbon data and the Aus-
tralian casework. We aim to improve upon the classification performance
o↵ered by the ellipsoid criterion and the likelihood ratio procedures.

We begin with the USA ribbon data, in order to validate the methods
employed by Park and Carriquiry (2019), before applying the procedure to
the Australian casework. We first provide an assessment of the three re-
sampling techniques: downsampling, upsampling and SMOTE, to establish
which method yields the best performance. Then, we assess which of the
three machine learning models: logistic regression, decision tree and random
forest, performs best on each data set. For both data sets, we nominate the
decision tree as the best choice of model. We find that upsampling the data
and then using a random forest provides the highest scores across the clas-
sification metrics, but that the random forest o↵ers only a small increase in
performance over decision trees, at the cost of transparency in the way that
the model makes decisions, as well as computational complexity.

Figure 7.1 provides a graphic visualisation of the key stages of the work-
flow of preprocessing the data and fitting di↵erent models. Starting with the
original dataset on the left, the data is di↵erenced, and the di↵erenced data
is resampled to balance the match and non-match classes. After this, the
three classification models are trained and tested. The blue path through
the graph shows the resampling method and model that were selected as
performing best on the Australian casework data.

Finally, we make an assessment of how well the models trained on one
data set can generalise to predicting on another, To do this, we train the
decision tree and random forest models on each of the data sets, and use
them to predict on the other. We find that the models perform poorly when

83
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applied to the other data set, particularly when predicting on di↵erent source
sample pairs. In this case, the decision tree models distinguished themselves
from the individual decision trees, but the performance was still too poor for
the models to be used in practice. This result supports the idea that relevant
background population databases should be constructed to train models for
classification in a given location.

The ML methods in this chapter were implemented using the scikit-learn
package in Python (Pedregosa et al., 2011).

7.1 Comparison of Resampling Techniques

In this section we make a comparison of the resampling techniques by assess-
ing the model fit metrics for each of the three models described in Section 6.1.
The downsampling, upsampling with replacement, and SMOTE techniques
were applied to both data sets, and then the logistic regression, decision tree
and random forest models were fit to each version of the data. In doing
so, we are able to summarise the di↵erence in the performance of the three
models when trained on di↵erently pre-processed data. To make these com-
parisons easier to understand and interpret, we have elected to present the
areas under the ROC curves for each resampling method applied to each
model. As discussed in Section 2.3.3, the ROC AUC gives a good overall
statistic of model fit, and for these models, the curves themselves provide
little extra information and the AUC itself is su�cient. We have then chosen
to include the accuracy, Cohen’s kappa coe�cient, sensitivity and specificity
for the three resampling methods when the random forest model is fit.

7.1.1 USA Ribbon Data

For the USA data, we note in Table 7.1 that upsampling and SMOTE perform
best, with SMOTE only outperforming upsampling in the logistic regression
case. SMOTE scores highest for logistic regression, while upsampling per-
forms best for the decision tree, and the results are equal for the random
forest. Downsampling performed worst overall, with the most notable dis-
tinction in the decision tree models, where downsampling the majority class
resulted in an ROC AUC 0.106 less than the value for SMOTE.

In Table 7.2 we see that, for the random forest models, there was little
di↵erence between upsampling and SMOTE across the four metrics, partic-
ularly specificity, in which they were equal. In accuracy, Cohen’s kappa and
sensitivity, upsetting performed best. Again, downsampling performed worst
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Figure 7.1: Visual Summary of machine learning workflow. The blue

path shows the resampling procedure and model which were ultimately

chosen for both the USA ribbon data and the Australian casework.
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Resampling Method Logistic Regression Decision Tree Random Forest
Upsampled 0.858 0.994 1.000
SMOTE 0.862 0.977 1.000

Downsampled 0.823 0.871 0.980

Table 7.1: ROC areas under the curve for three resampling techniques

applied to the three ML models trained and evaluated on USA rib-

bon data. We see that, for each ML model, there is at most a di↵er-

ence of 0.017 between AUC for upsampled and SMOTE resampled data.

SMOTE scores higher for logistic regression, upsampling higher for the

decision tree, and the results are equal for the random forest. Down-

sampling performs worst out of the three, particularly in the logistic

regression and decision tree models.

in all metrics, with the greatest di↵erence in Cohen’s Kappa, suggesting the
least improvement over a uniform random classifier.

Resampling Method Accuracy Kappa Sensitivity Specificity
Upsampled 0.998 0.995 0.995 1.000
SMOTE 0.991 0.981 0.981 1.000

Downsampled 0.928 0.855 0.892 0.962

Table 7.2: Model fit metrics for random forest models applied to to

USA ribbon data with three resampling methods. Across all four metrics

the di↵erence between upsampling with replacement and SMOTE is at

most 0.017. Upsampling scores highest in all metrics, except specificity

in which it scores equal best with SMOTE, while downsampling scores

worst in all metrics.

Overall, upsampling with replacement appears to lead to the best model
performance, with slightly higher scores that SMOTE in most cases. This is
relatively consistent with the findings of Park and Carriquiry (2019), though
they found that SMOTE resampling led to better performance than upsam-
pling. Given than SMOTE is a more complicated method, and contains
synthetic samples not contained in the actual data, we conclude that upsam-
pling is the preferable approach to preprocess the data.

7.1.2 Australian Casework Data

For the Australian casework data, there is almost no di↵erence between the
performance of the three resampling techniques. The models trained on
downsampled data perform worst, but only by a small margin. The di↵erence
between models trained on data upsampled with replacement, and SMOTE
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resampling is even smaller. Table 7.3 gives the areas under the ROC curves
for the three resampling methods applied to the three models. We can see
that the only di↵erence between the three methods is seen in the third decimal
place.

Resampling Method Logistic Regression Decision Tree Random Forest
Upsampled 0.993 0.998 1.000
SMOTE 0.994 0.996 1.000

Downsampled 0.993 0.986 0.997

Table 7.3: ROC areas under the curve for three resampling techniques

applied to the three ML models trained and evaluated on Australian

data. We see that, for each ML model, the only di↵erence between the

three resampling methods is seen in the third decimal place.

Resampling Method Accuracy Kappa Sensitivity Specificity
Upsampled 0.998 0.996 0.996 1.000
SMOTE 0.997 0.994 0.994 1.000

Downsampled 0.992 0.984 0.989 0.995

Table 7.4: Model fit metrics for random forest models applied to

to Australian casework with three resampling methods. Across all

four metrics the di↵erence between upsampling with replacement and

SMOTE is at most 0.002. In fact, except in the case of Cohen’s kappa,

for which downsampling scores 0.01 lower than SMOTE, there is only a

di↵erence between the resampling methods in the third decimal place.

In Table 7.4 we present a comparison of the three resampling techniques
using accuracy, Cohen’s kappa coe�cient, sensitivity and specificity. In this
comparison we include only the results for random forest models, so as not to
confuse the results with a comparison of models. We again note that there
is only a di↵erence between the resampling methods in the third decimal
place, except in the case of Cohen’s kappa, for which downsampling scores
0.01 lower than SMOTE. In particular, we note that across all four metrics
the di↵erence between upsampling with replacement and SMOTE is at most
0.002.

Overall, it appears that upsampling seems to yield the best performance,
even if only slightly better than SMOTE. By the same reasoning as we argued
for the USA data, since SMOTE is a more complex method, and produces
artificial samples, we conclude that upsampling is the preferable approach
for preprocessing the data.
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7.2 Comparison of Models

Having seen that preprocessing the data by upsampling the minority class
with replacement was the optimal method, we proceed for the remainder of
the chapter using this technique. We now present the results of the logistic
regression, decision tree and random forest models applied to the USA ribbon
and Australian casework data sets, and provide a recommendation of which
model is preferable in each case.

For the decision tree and random forest models, a hyper-parameter tuning
procedure was necessary to optimise their performance. The tuning process
was conducted using a random grid search with cross validation. For both
models, we tuned the minimum samples needed to split a node, the minimum
samples required at each leaf node, the maximum tree depth, the maximum
features considered at each split, and in the case of random forests, the
number of trees used. A more detailed explanation of the tuning process is
provided in Appendix D. In Chapter 8 we will present the final choices of
model, and provide a link to their specifications on GitHub.

7.2.1 USA Ribbon Data

When applied to the USA ribbon data, the decision tree and random forest
models performed best. Both had overall accuracies greater than 0.99, and
the random forest performed particularly well in its adjusted accuracy, with
a Cohen’s kappa coe�cient of 0.994. Both of these model achieved perfect
specificity scores, and the random forest saw an increase of 0.009 in sensitivity
over the single decision tree model. In this case, the logistic regression model
performed much more poorly, with an overall accuracy of 0.827, a very low
value for Cohen’s kappa of 0.654 and quite a low sensitivity of 0.710. This
suggests that almost 30% of pairs which matched in truth, were classified as
not matching. It did however achieve a specificity of 0.945.

7.2.2 Australian Casework Data

Table 7.6 shows the model fit metrics for each of the three models fit to the
Australian casework data. All three models achieved an overall accuracy of
over 97%, and the decision tree and random forest models then performed
almost identically. In particular, these two models achieved perfect scores for
specificity (to three decimal places), suggesting that no pairs of fragments
were incorrectly classified as matching, when they were not matching in truth.
This is a very good result to have achieved, as this is the main source of
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USA Ribbon Models
Model Accuracy Kappa Sensitivity Specificity ROC AUC
Random Forest 0.997 0.994 0.994 1.000 0.997
Decision Tree 0.993 0.985 0.985 1.000 0.993

Logistic Regression 0.827 0.654 0.710 0.945 0.827

Table 7.5: Model fit metrics for machine learning models applied to

USA ribbon data. We see that the logistic regression model performed

worst in all metrics, with an accuracy 0.186 lower than the decision

tree. The decision tree also scored significantly lower in sensitivity and

Cohen’s kappa coe�cient, 0.654 compared to 0.985 and 0.994. The dif-

ference between the random forest and decision tree models was less sub-

stantial, but the random forest model performed best across the board.

error which we seek to minimise. The random forest then achieved increases
of 0.001 in Cohen’s kappa and sensitivity, and equivalent scores in the other
three metrics. Logistic regression performed worst in all metrics, though still
achieving a low false-positive rate with a specificity of 0.991. Overall, these
results are comparable to the USA ribbon data results in terms of overall
ranking, but the distinction between the models is much less substantial
here.

Due to the similarity in performance in the random forest as compared
to a decision tree, and substantial improvement in both of these compared to
logistic regression, we recommend the decision tree model for the Australian
casework.

Australian Casework Models
Model Accuracy Kappa Sensitivity Specificity ROC AUC
Random Forest 0.998 0.998 0.998 1.000 0.998
Decision Tree 0.998 0.997 0.997 1.000 0.998

Logistic Regression 0.976 0.953 0.962 0.991 0.976

Table 7.6: Model fit metrics for machine learning models applied to

Australian casework data. We see that all models achieved an accu-

racy of at least 97%, and that the two decision tree models achieved

perfect scores for specificity, meaning no false positive predictions were

made. Logistic regression performed worst in all metrics, with a score of

0.991 in specificity, 0.009 lower than the score of 1.000 for the other two

models. The decision tree and random forest models performed almost

identically.
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7.3 Overfitting

We have now compared the three machine learning classifiers, and see that the
decision tree and random forest models appear to o↵er the best performance.
Next, we consider checking whether the models are overfit to the training
data.

Given that a model’s predictive capability is based on the features in the
training data set, one is at risk of developing a model which is too heavily
biased towards these features. In the most extreme case, this would be
evidenced by near perfect performance when predicting on the training data,
and poorer performance when predicting on testing data.

For the Australian casework and to USA ribbon data, we now apply the
three models to both the training and testing data. Using this, we can com-
pare the performance between the models applied to the training data and
the testing data. In general, we expect that the model would perform better
on the training data, and then aim to minimise the di↵erence in performance,
as a large di↵erence would be a sign of overfitting.

7.3.1 USA Ribbon Data

In Table 7.7, we note that the logistic regression model actually performs
slightly better when applied to the testing data as compared to the training
data. This suggests that the model is definitely not overfit to the training
data, and it is simply due to chance that the testing data was in some sense
“easier” for the model to classify.

In Tables 7.8 and 7.9, we see perfect performance when the decision tree
and random forest models are applied to the training data. The di↵erence
is largest in the case of the decision tree model applied to the USA ribbon
data, with a di↵erence of 0.015 in Cohen’s kappa and sensitivity. However,
given that across the board, the scores for all metrics are above 0.98, the
results suggest that no model is overfit to the training data.

7.3.2 Australian Casework Data

In Table 7.10, we note that across the board, the logistic regression model
performs better when applied to the training data, but that the di↵erence is
of the order of 0.01 in all metrics. Any di↵erence is negligible, and so we can
be satisfied that the model is not overfit.

In Tables 7.11 and 7.12 we note that both the decision tree and random
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Logistic Regression
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Training 0.823 0.646 0.703 0.943 0.823
Testing 0.827 0.654 0.710 0.945 0.827

Table 7.7: Comparison of model fit metrics for logistic regression ap-

plied to USA Ribbon training and testing data. We note that, unex-

pectedly, the model performs slightly better on the testing data, with

increases of 0.002 to 0.008 in the model fit metrics.

Decision Tree
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Training 1.000 1.000 1.000 1.000 1.000
Testing 0.993 0.985 0.985 1.000 0.993

Table 7.8: Comparison of model fit metrics for decision tree applied to

USA Ribbon training and testing data. We see that the model performed

better on the training data, with increased performance in all metrics

except specificity, with the largest di↵erence of 0.015 in Cohen’s kappa

and sensitivity.

Random Forest
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Training 1.000 1.000 1.000 1.000 1.000
Testing 0.997 0.994 0.994 1.000 0.997

Table 7.9: Comparison of model fit metrics for random forest applied to

USA Ribbon training and testing data. We see that the model performed

better on the training data, with increased performance in all metrics

except specificity, with the largest di↵erence of 0.006 in Cohen’s kappa

and sensitivity.
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Logistic Regression
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Training 0.977 0.954 0.962 0.992 0.977
Testing 0.976 0.953 0.962 0.991 0.976

Table 7.10: Comparison of model fit metrics for logistic regression

applied to Australian casework training and testing data. We see a very

small decrease in performance of the model applied to the testing data

compared to the training data, with decreases of 0.001 in all metrics

except sensitivity, where there was no di↵erence at all.

Decision Tree
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Training 1.000 1.000 1.000 1.000 1.000
Testing 0.998 0.997 0.997 1.000 0.998

Table 7.11: Comparison of model fit metrics for decision tree applied to

Australian casework training and testing data. We see a small decrease

in performance of the model applied to the testing data compared to the

training data, with the most substantial decrease of 0.003 in Cohen’s

kappa and sensitivity.

Random Forest
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Training 1.000 1.000 1.000 1.000 1.000
Testing 0.998 0.998 0.998 1.000 0.998

Table 7.12: Comparison of model fit metrics for random forest applied

to Australian casework training and testing data. We see a very small

decrease in performance of the model applied to the testing data com-

pared to the training data, with decreases of 0.002 in all metrics except

specificity, where there was no di↵erence at all.
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forest models receive perfect scores across the board when applied to the
training data. As for these models applied to the USA ribbon data, with
near-perfect scores of over 0.99 in all metrics, the performance on the testing
data provides support that these models are not overfit.

7.4 Generalisability of Models

Building on the assessment of overfitting, in this section we assess how well
the models generalise when applied to di↵erent elemental glass data. This is
achieved by taking the models which were trained on the USA ribbon data,
and applying the model to predict on the Australian casework data, and vice
versa. In doing so, we can see whether each type of model could be used
e↵ectively in a di↵erent scenario.

7.4.1 Method

For this to be achieved properly, some modifications to the data were needed.
Recall from Chapter 2, that the Australian data contains tin, which the
USA data does not, and that the USA data contains sodium, which the
Australian data does not. As such, each of these elements were removed
from the respective data sets, and the models were trained on these reduced
data sets. We tested all three machine learning models on both data sets,
but include only the results of the decision tree and random forest models as
they performed best in both cases. In each case, the models were trained on
a training set, but then applied to the entirety of the other balanced data set.
That is, one model was trained on 75% of the Australian data – the training
set – and then applied to the entire balanced USA data set, and vice versa.

7.4.2 Results

Tables 7.13 and 7.14 shows the model fit metrics for the decision tree and
random forest models trained on USA ribbon data applied to Australian
data. The first row shows the metrics for the model applied to the USA
training data, which has changed only slightly in Cohen’s kappa coe�cient
and sensitivity as compared to the data set including sodium shown in Ta-
bles 7.8 and 7.9. We note that both models perform poorly when applied
to the Australian data, each with an overall accuracy of 50% and a Kappa
coe�cient of zero. These two metrics in combination tell us that the model
performed exactly as well as a classifier which randomly guesses into which
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class each observation should fall. However, upon inspection of the sensi-
tivity and specificity, which are zero and one respectively, we note that the
only way which this can occur is if all pairs of samples were classified as
not matching. This is because, in order for sensitivity to be equal to one,
the number of true negatives must be equal to the number of true negatives
plus the number of false positives. Therefore, the number of false positives
must be zero. Equivalently, for the specificity to be zero, the number of true
positives must be zero. So, it must be the case that there were no positive,
or in other words no “match” predictions whatsoever. This was verified by
checking the class predictions for each of these models. As a result, all three
of these models are e↵ectively useless for predicting on Australian casework
data. This can be attributed to the fact that the USA ribbon data com-
prises samples taken from the same two factories at similar times. Therefore,
samples which are considered di↵erent, are often extremely similar in their
chemical composition, which leads to the model requiring two samples of
glass to be near identical for it to classify them as a match.

USA Decision Tree Model
Data Accuracy Kappa Sensitivity Specificity ROC AUC
USA testing data 0.993 0.985 0.985 1.000 0.993
Aus data 0.500 0.000 1.000 0.000 0.500

Table 7.13: Model fit metrics for decision tree models trained and

tested on USA ribbon data and applied to Australian casework data.

We see a substantial di↵erence in the performance on the USA ribbon

and the Australian casework data. The overall accuracy and ROC AUC

both decrease by 0.497 to 0.500 and Kappa and specificity decrease to

zero. Sensitivity increases slightly from 0.995 to 1.000.

USA Random Forest Model
Data Accuracy Kappa Sensitivity Specificity ROC AUC
USA testing data 0.997 0.995 0.995 1.000 0.997
Aus data 0.500 0.000 1.000 0.000 0.500

Table 7.14: Model fit metrics for random forest models trained and

tested on USA ribbon data and applied to Australian casework data.

We see a substantial di↵erence in the performance on the USA ribbon

and the Australian casework data. The overall accuracy and ROC AUC

both decrease by 0.497 to 0.500 and Kappa and specificity decrease to

zero. Sensitivity increases slightly from 0.995 to 1.000.

Similarly, Tables 7.15 and 7.16 shows the metrics for the DT and RF
models trained on Australian casework applied to the USA ribbon data. In
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this case, we see the opposite e↵ect where the models were trained on data
with a great deal of variability, therefore allowing a higher degree of variabil-
ity in its classification of matches. Unlike the models trained on the USA
ribbon data, there is now a di↵erence in how the two models generalise to the
Australian casework. The decision tree model has an accuracy of less than
50%, and subsequently a kappa value less than zero – meaning that the model
performs worse than a uniform random classifier. With sensitivity, specificity
and ROC AUC all less than 0.5, we see that the model underperforms on
same and di↵erent source comparisons.

The random forest model, however, performs better than the American
RF model applied to Australian data, with an accuracy of approximately
0.6, and a sensitivity of 0.883, meaning that it more often than not correctly
predicts non-matches. Its specificity is lower than the DT model, though, at
0.342, suggesting that the model predicts a large number of false positives.
Overall, this suggests that the Australian casework models generalise slightly
better than the USA ribbon model, but the performance is still much lower
than would be acceptable for assessing evidence.

Australian Decision Tree Model
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Aus testing Data 0.998 0.997 0.997 1.000 0.998
USA Data 0.453 -0.094 0.496 0.411 0.453

Table 7.15: Model fit metrics for decision tree model trained and tested

on Australia Casework data and then applied to USA Ribbon data. We

see substantial di↵erence in the performance on the Australian casework

and USA ribbon data. All metrics receive scores less than 50%, and

Cohen’s kappa in particular is negative, suggesting worse performance

than a uniform random classifier.

Australian Random Forest Model
Data Accuracy Kappa Sensitivity Specificity ROC AUC
Aus testing Data 0.998 0.996 0.996 1.000 0.998
USA Data 0.607 0.215 0.873 0.342 0.607

Table 7.16: Model fit metrics for random forest models trained and

tested on Australia Casework data and then applied to USA Ribbon

data. We see substantial di↵erence in the performance on the Australian

casework and USA ribbon data. Wee see decreases in all metrics, with

accuracy decreasing by 0.391. Kappa, specificity and ROC AUC also see

large decreases, while sensitivity sees a smaller decrease by only 0.123.



96 Chapter 7. Machine Learning Results

7.5 Discussion and Summary

In this chapter we have investigated the use of machine learning methods
to make comparison between forensic glass samples by binary classification.
We have compared three ML methods, increasing in complexity, starting with
logistic regression, then using decision trees and finally random forests. We
also compared the performance of each of these methods after preprocessing
the data using three resampling methods: downsampling the majority class,
upsampling the minority class with replacement, and oversampling the mi-
nority class using the SMOTE algorithm. We found that in all three models,
upsampling with replacement resulted in the best performance on both data
sets, but that the di↵erence between this and SMOTE was minimal.

With regards to the three models which were compared, in line with their
increasing levels of complexity, we found that for both data sets, the logistic
regression model performed worst, and the random forest models performed
best. The di↵erence in performance was most pronounced on the USA data
set, for which the logistic regression model achieved 71.0% accuracy on same
source pairs, and 94.5% accuracy on di↵erent source pairs. The random
forest model, however, achieved 99.4% accuracy on same source pairs and
100% accuracy on di↵erent source pairs.

We noted that across all of the models which were fit, the models applied
to Australian casework data performed better in terms of prediction accuracy
than the models applied to the USA ribbon data. This di↵erence in the
performance of the models applied to the two data sets makes sense, given
their respective origins. The Australian data is highly variable, and as such it
is “easier” to distinguish between the observations in this data set, than the
USA ribbon data, where the samples all came from the same two factories,
and were manufactured at similar times. This result suggests that for any
casework data, which typically would contain a great deal of variability, a
decision tree model would be entirely satisfactory. The added complexity of
the random forest o↵ered only a negligible increase in performance over the
more easily interpreted decision tree model for the Australian casework, and
a di↵erence of the order of 0.01 on the USA ribbon data.

It is also worth noting that the decision tree models performed well “out
of the box”, that is, with the default model parameters rather than tuned
parameters. This is a benefit in terms of ease of implementation, so that
models can be fit and applied without the need for extensive education about
machine learning methodology.

When it came to the way in which models generalised to predict on dif-
ferent data sets, the models trained on USA data were completely unable to
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predict on Australian data. The models trained on Australian data however
had some success on the USA data. While the decision tree model performed
worse than a uniform random classifier, the random forest was able to make
correct predictions 60% of the time, mostly on same source pairs. The per-
formance was, however, far too poor to be used in practice.

This is a very important observation to make, as it suggests that in any
given location, whether that be a state or country, for example, a relevant
data base would need to be collected which is representative of the types of
glass and level of variability present in that location. Models would then need
to be trained on this appropriate database in order to be used to e↵ectively
classify matches between casework samples. However, we were only able to
test the generalisability of two data sets, comprising very di↵erent samples
and with di↵erent levels of variability. As such further research should be
conducted into the use of models trained on one database to predict on
anther, particularly using multiple sets of realistic casework databases, as
compared to the laboratory-like conditions in which the ribbon samples were
manufactured.

We have now sees that the decision tree models outperform the likeli-
hood ratio methods and the ellipsoid criterion in predictive accuracy. The
ellipsoid criterion, however, with sensitivity and specificity of 0.990 and 0.992
respectively, is not far behind the 0.997 and 1.000 o↵ered by the decision tree
model on Australian data. With each of these methods outperforming the
LR in classification, one must ask whether these methods can be extended to
include a measure of the strength of evidence. Park and Carriquiry (2019)
suggest that this can be achieved using what is known as a score-based like-
lihood ratio (SLR), constructed from any classifier which results in a score.
In the next chapter, we will explain and apply this method to the decision
tree and ellipsoid criterion scores.
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Chapter 8

Score-Based Likelihood Ratios

We have established that the ellipsoid criterion and decision tree models of-
fer better classification performance than likelihood ratios. Now, we aim to
extend these methods to measure the strength of the evidence for or against
a match. Park and Carriquiry (2019) suggest that the match probabilities
generated by ML methods can be used to quantify the strength of evidence
in favour of the same or di↵erent source hypothesis using the so-called score-
based likelihood ratio (SLR) introduced by Davis et al. (2012). They note
also that this method can be applied to any method which produces a score
which is then classified as a match or non-match according to some criti-
cal value, namely the interval-based criteria. As such, we will apply this
method to the best performing score-based classifiers: the decision tree and
the ellipsoid 4� criterion.

8.1 Procedure

SLRs are calculated by taking the full sets of same source and di↵erent source
scores, and finding kernel density estimates of the distributions of scores. (We
remind the reader than more information about kernel density estimation can
be found in Appendix A.4). For the ellipsoid criterion, for which all scores are
positive numbers, a gamma kernel was used. For the decision tree, since the
scores lie between zero and one, a beta kernel was used for this estimation.
In doing so, empirical distributions of same source scores, and of di↵erent
source scores are obtained. The distribution of same source scores can be
considered to represent the density of scores given that the pair of samples
originate from the same source, and vice versa for the di↵erent source scores.
As such these empirical distributions are then used for the numerator and
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denominator densities in the SLR, and the score for any given comparison
is used to evaluate these densities. The result is therefore a likelihood ratio.
The magnitude of the resultant likelihood ratios is determined by the shape
of these empirical distributions. As such, it is impacted by the discriminating
power of the method used to produce the scores.

8.2 Prior Findings

Park and Carriquiry (2019) demonstrate that the resultant likelihood ratios
can vary greatly depending on the method used to calculate the score. In
particular, they compare the SLR values for five specific fragments in the USA
ribbon data as determined by their random forest model and the standard
4� interval criterion.

Amongst these samples, they consider two same source pairs and two
di↵erent source pairs, all of which are correctly predicted by both the RF
and 4� criterion. In each case, the SLR also supports the binary prediction –
being greater than one for a match and less than one for a non-match – but
the scale of the values di↵ers by orders of magnitude between the methods.
This potentially brings into question the idea of calibration again, though
one could also argue that the method which yields more extreme values,
the RF, simply has a greater discriminating power. The fifth comparison
which they make is a di↵erent source pair which is incorrectly predicted
by both the 4� criterion (with a score of 3.78, which is less than 4), and
the RF (with a score of 0.558, greater than 0.5). For the 4� criterion, the
resultant SLR is greater than one, which aligns with the incorrect prediction
of same source. However, the resultant SLR for the RF prediction is less
than one, in favour of the di↵erent source hypotheses - which contradicts
the score. As a result, one can question whether constructing an SLR can
potentially correct for errors in the binary prediction of ML methods, but
also whether the critical value used should simply be optimised to ensure
that correct predictions are maximised. This discrepancy between the class
prediction from the original score and the resultant SLR is of interest, and
demonstrates that score-based likelihood ratios can lead to some unexpected
and potentially confusing results, as also noted by Morrison and Enzinger
(2016) and Hepler et al. (2012).

We wish to also highlight that the use of score-based likelihood ratios has
been subject to some criticism beyond these discrepancies. In particular, we
direct the interested reader to Neumann and Ausdemore (2020) for a detailed
exposition on this topic, and Morrison and Enzinger (2018) for a discussion
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of why SLRs should be constructed to include a measure of typicality of glass
samples.

Prior work on SLRs has also found that typically, calculating LRs using
a score-based method yields values of smaller magnitude (in terms of the
number of factors of ten away from 1), than the traditional LR procedures
(Bolck et al., 2015). This is attributed to SLRs being calculated from what
can be considered univariate projects of the multivariate data.

8.3 Classification Results

In this section we construct score-based likelihood ratios for the scores gen-
erated by the ellipsoid criterion and the match probabilities predicted by the
decision tree models for the Australian casework data.

For the decision tree classifier, we note that the predicted probabilities
for the Australian casework are almost exclusively ones and zeros, and in
particular, that all of the pairs of samples which are predicted to match,
received a predicted probability of one. As a result, a probability density
function cannot be constructed for the same source distribution. One could
construct a probability mass function and simply assign a probability mass
of one, to the value 1, but this would mean that the SLR is informed only by
the likelihood of the observed probability, given that the fragments originate
from di↵erent sources. In other words, the numerator would be held constant,
and the likelihood ratio would be entirely determined by its denominator.

In order to address this, the decision tree model was tuned in such a way
as to ensure that there was more variety in the predicted match probabilities.
This was achieved by tuning the minimum impurity decrease required for a
node to split. Recall that nodes are split according to either Gini impurity
or information gain. This hyperparameter represents the minimum decrease
in impurity, whether that be Gini impurity or the entropy in the case of
information gain, which is required for a node to be split. If another split
would result in an impurity decrease below this minimum, the node will not
be split and instead will become a leaf. By default, there is no minimum
impurity decrease, and setting higher values will result in a model with less
specific leaves. That is, each leaf will account for a larger number of samples,
and the predictions at leaves will be less certain, resulting in probabilities
strictly between zero and one. Tuning this hyperparameter is one way to
perform what is known as pruning a decision tree. Higher values compromise
accuracy in order to improve generalisability. This process of tuning leads to
our final choices of decision tree models. The specifications for these models
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are available on GitHub at github.com/olountain/forensic models.

For the decision tree models, plots of the distributions of original scores
and SLRs were included. The equivalent plots were not included for the
ellipsoid criterion scores as the same source and di↵erent source scores were
on vastly di↵erent scales.

8.3.1 USA Ribbon Data

Ellipsoid 4� Criterion

Once the ellipsoid criterion scores had been converted to SLRs, the classifi-
cations agreed with the original classification 97.1% of the time. There were
34 disagreements, of which four were incorrectly predicted as non-matching
by the original classification, but correct by SLR; one was incorrectly pre-
dicted as matching by the original classification; and the remaining 29 were
correctly predicted as non-matching by the original classification but incor-
rectly by SLR. As a result of these changes, the di↵erence in classification
performance is summarised in Table 8.1.

method accuracy kappa sensitivity specificity
Ellipsoid 4� 0.950 0.575 0.917 0.951
Ellipsoid 4� SLR 0.929 0.507 1.000 0.926

Table 8.1: Model fit metrics for ellipsoid 4� criterion and corresponding

SLR applied to USA ribbon data. We note that there is are decreases

of approximate 0.02 in overall accuracy and specificity of the SLR as

compared to the original classification. The sensitivity, however has

improved to correctly predict same source pairs 100% of the time. This

di↵erence arises when the SLR gives a di↵erent prediction to the original

classification.

Decision Tree

After tuning the USA ribbon data decision tree, we found that a minimum
impurity decrease of 0.0005 when splitting the nodes using Gini impurity
allowed for a range of predicted probabilities while minimising the decrease in
accuracy. In Table 8.2 we see that a compromise in performance metrics was
required to achieve this. The most substantial decrease was seen in Cohen’s
kappa coe�cient, which fell by 0.091. Accuracy, sensitivity and ROC AUC
also saw decreases ranging from approximately 0.05 to 0.08, while specificity
only decreased by 0.008.

https://github.com/olountain/forensic_models
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Park and Carriquiry (2019) found that when treating the resultant SLR
as a binary classifier, using one as a critical value, there were a few cases in
which the classification by SLR did not agree with the original classification
criterion. In our model, however, all predictions agreed.

In Figure 8.1 we see the kernel density estimates of match probabilities
by decision tree classification which were used to construct the SLRs. The
distribution of the resultant SLRs is then shown in Figure 8.2. To make
the plot clearer, we show the distribution of the base-10 logarithm of the
SLRs. In each case the grey, vertical dotted line shows the critical value used
to make binary classification. We see in both cases that the two densities
are mostly distinct from one another which is a visual representation of the
discriminating power of this approach.

Data Accuracy Kappa Sensitivity Specificity ROC AUC
Original 0.993 0.985 0.985 1.000 0.993
Pruned 0.947 0.894 0.901 0.992 0.947

Table 8.2: Model fit metrics for decision tree model applied to over-

sampled Australian casework before and after pruning via the minimum

impurity decrease hyperparameter.
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Figure 8.1: Kernel density estimates for same source and di↵erent

source match probabilities from decision tree model fit to USA ribbon

data.
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Figure 8.2: Distributions of base 10 logarithm of score-based likelihood

ratios constructed from decision tree scores on USA ribbon data.

8.3.2 Australian Casework Data

Ellipsoid 4� Criterion

In the case of SLRs constructed from the 4� ellipsoid criterion, we found
that the classification by SLR agreed with the original classification 99.5%
of the time. Of the observations on which the models disagreed, there was
one comparison in which a same source pair was declared as not matching
by the ellipsoid criterion, but received an SLR score of approximately 23.
There were also 20 di↵erent source pairs which were correctly predicted as
not matching by the ellipsoid criterion, but received SLR scores greater than
one. That is, for the pairs where the classification by SLR did not agree
with the original prediction, the original prediction was correct 20 out of
21 times. In Table 8.3 we see that classification performance of the SLR
system constructed from the ellipsoid criterion performs slightly worse in
overall accuracy, kappa and specificity, but has a perfect score for sensitivity.
Overall, this constitutes a minor change in performance.

Decision Tree

After tuning the decision tree model, we found that a minimum impurity
decrease of 0.000075 when splitting the nodes using Gini impurity allowed for
a range of predicted probabilities while minimising the decrease in accuracy.
The performance metrics for this modified model are given in Table 8.4. We
see that in each metric, the performance has decreased by at most 0.008.
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method accuracy kappa sensitivity specificity
Ellipsoid 4� 0.992 0.837 0.990 0.992
Ellipsoid 4� SLR 0.988 0.772 1.000 0.988

Table 8.3: Model fit metrics for ellipsoid 4� criterion and correspond-

ing SLR applied to Australia casework data. We note that there is a

small decrease in overall accuracy of the SLR as compared to the origi-

nal classification. This di↵erence arises when the SLR gives a di↵erent

prediction to the original classification.

Data Accuracy Kappa Sensitivity Specificity ROC AUC
Original 0.998 0.997 0.997 1.000 0.998
Pruned 0.994 0.989 0.990 0.999 0.995

Table 8.4: Model fit metrics for decision tree model applied to over-

sampled Australian casework before and after pruning via the minimum

impurity decrease hyperparameter.

Figures 8.3 and 8.4 show the kernel density estimates of match proba-
bilities by decision tree and the system of SLRs respectively. As for the
USA data the two densities are mostly distinct from one another, providing
is a visual representation of the discriminating power of the approach. We
note also that, as was the case for the USA ribbon data model, all of the
predictions by the SLR agreed with the original decision tree predictions.
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Figure 8.3: Kernel density estimates for same source and di↵erent

source match probabilities from decision tree model fit to Australian

casework data.
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Figure 8.4: Distributions of base 10 logarithm of score-based likelihood

ratios constructed from decision tree scores on Australian casework data.

8.4 Calibration Results

Recall from Part II that an important measure of the performance of a like-
lihood ratio system is its calibration. The calibration measures the extent to
which a likelihood ratio can be properly interpreted as quantifying how many
times more likely the same source hypothesis is than the di↵erent source hy-
pothesis. The calibration is assessed via empirical cross entropy (ECE) plots,
and is explicitly quantified by the cost log-likelihood ratio (Cllr).

8.4.1 USA Ribbon Data

Figures 8.5a and 8.5b show the ECE plots for the USA ribbon data ellipsoid
criterion and decision tree SLR systems respectively. In both cases we see
that the observed ECE curve is well below the null curve, and that the Cllr

values are very small, particularly for the decision tree, suggesting that the
SLR systems are well-calibrated and require no adjustment.

8.4.2 Australian Casework Data

Similarly, Figures 8.6a and 8.6b show the ECE plots for the Australian case-
work ellipsoid criterion and decision tree SLR systems respectively. As for the
USA ribbon data, both plots show that the observed ECE curve is well below
the null curve, and that the Cllr values are very small. The decision tree SLR
in particular, has the smallest Cllr of any likelihood ratio system presented
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(a) Ellipsoid criterion. Cllr = 0.02769501.
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(b) Decision tree. Cllr = 0.001878512

Figure 8.5: ECE plots of score-based likelihood ratio systems con-

structed from oversampled decision tree models. We see in both cases

that the observed ECE curve is well below the null curve, and that very

little di↵erence can be seen between the observed and calibrated curves,

suggesting very good levels of calibration. This is quantified by the Cllr

score which is very low in both cases.
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in this thesis. This suggests that all of the SLR systems are well-calibrated
and require no adjustment.

8.5 Summary

In this chapter, we have taken the best performing score-based models: the
decision tree and the ellipsoid 4� criterion, and constructed score-based likeli-
hood ratio systems. This procedure has maintained the high accuracy of these
methods and improved upon them by allowing for a measure of “strength of
evidence” otherwise enjoyed by only the traditional likelihood procedures.
Doing so required a small compromise in the predictive accuracy of the de-
cision tree model by adjusting the minimum impurity decrease at each split
in the decision tree to ensure that a wider distribution of match probabilities
were generated. SLRs were then created using kernel densities estimates for
these distributions. We found that the classification by SLR was entirely
in line with that original decision tree classification, and included a small
number of discrepancies in the case of the ellipsoid criterion. We found that
the values of the SLRs were smaller in magnitude than the traditional LRs,
which is in line with what was found by Bolck et al. (2015). This can be
seen in particular by comparing Figures 8.2 and 8.4 with Figures B.1 to B.4
in Appendix B.

We also assessed the calibration of these SLR systems, and found that
they were indeed well-calibrated, suggesting that this procedure provides
a robust way to quantify the strength of evidence from ML classification.
Overall, on the Australian data the decision tree SLR appears to be the clear
winner with the highest overall accuracy, high sensitivity and specificity, and
the smallest Cllr value. On the USA ribbon data, the decision tree SLR
system compromises sensitivity in favour of specificity, while the opposite is
true for the ellipsoid SLR system. In general, we wish to maximise specificity,
and in doing so minimise incorrect evidence in favour of the prosecution, and
so the decision tree would likely remain the most favourable choice.
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(a) Ellipsoid criterion. Cllr = 0.0139.
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(b) Decision tree. Cllr = 0.000447

Figure 8.6: ECE plots of score-based likelihood ratio systems con-

structed from oversampled decision tree models. We see in both cases

that the observed ECE curve is well below the null curve, and that very

little di↵erence can be seen between the observed and calibrated curves,

suggesting very good levels of calibration. This is quantified by the Cllr

score which is very low in both cases.
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Chapter 9

Comparison of Methods

We have now presented three broad types of method for making comparison
between glass samples: interval-based criteria (current practice), likelihood
ratios, and machine learning classifiers. The question is therefore: which
is best? In this chapter we seek to answer this question by balancing the
accuracy, parsimony and practical usefulness of the models considered.

9.1 Binary Classification Performance

The best likelihood ratio model was the multivariate kernel procedure after
the max-mean transformation had been applied, and of the machine learning
models the decision tree model achieved the best compromise of accuracy
and parsimony. Comparing these models with the multivariate adaptation
to the interval criteria, Table 9.1 shows that in all of the metrics for binary
classification performance except sensitivity, the decision tree model performs
best. In sensitivity, the standard 4� interval criterion performs perfectly, but
the decision tree is only worse by 0.003. We note also that the ellipsoid �
criterion is not far behind the decision tree, with sensitivity and specificity
scoring only 0.007 and 0.008 less respectively. This begs the question of
whether the machine learning procedure is worthwhile, since it is a far more
complex and involved methodology, which o↵ers accuracy improvements of
less than 0.01 on both same and di↵erent source pairs.

On the USA data, however, the di↵erence was more substantial. In Ta-
ble 9.2 we see that the decision tree model provided improvements of 0.068
and 0.049 over the ellipsoid criterion for sensitivity and specificity respec-
tively. Further research should be conducted into the use of ML methods on
di↵erent data sets.
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Model Accuracy Kappa Sensitivity Specificity
Decision Tree 0.998 0.997 0.997 1.000
Ellipsoid 4� Criterion 0.992 0.837 0.990 0.992
Max-mean MVK LR 0.964 0.788 0.897 0.971
Standard 4� Criterion 0.961 0.497 1.000 0.960

Table 9.1: Classification performance metrics for best models applied

to Australian casework data. The decision tree model performs best

overall, with the highest score in all metrics except for sensitivity, in

which it scored 0.003 lower than the standard 4� interval criterion. The

decision tree o↵ered improvements of 0.007 and 0.008 over the Ellipsoid

4� criterion in sensitivity and specificity respectively. The LR methods

performed worst out of the newly investigated methods.

Model Accuracy Kappa Sensitivity Specificity
Decision Tree 0.993 0.985 0.985 1.000
Ellipsoid 4� Criterion 0.950 0.575 0.917 0.951

Table 9.2: Classification performance metrics for the decision tree and

ellipsoid 4� criterion applied to the USA ribbon data. The decision tree

model scored higher in all metrics, with an overall accuracy 0.043 higher

than the ellipsoid criterion.

Interestingly, in terms of classification performance, the LR methods with
the best accuracy were outperformed by both the standard and ellipsoid 4�
criteria. While this may seem to suggest that the LR methods o↵er no benefit
over the interval-based methods, we must remember that the likelihood ratio
can be used to describe strength of evidence. This does, however, suggest
that LR methods only o↵er improvement when they are used to quantify the
strength of evidence, and should not be employed only as a binary classifi-
cation method.

9.2 Benefits and Shortcomings of Models

As we noted in the previous section, the likelihood ratio procedures perform
worse than both the machine learning models and the ellipsoid criterion in
terms of binary classification performance. However, the LR methodology
does have the edge in that it o↵ers more information than the other methods
by measuring the strength of evidence.

The interval-based methods are by far the easiest approaches to imple-
ment. For the standard criterion, one needs only to compute the mean and
standard deviation of each element in the control sample, and the mean of
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each element in the recovered sample. Similarly, for the ellipsoid criterion,
one needs to compute the covariance matrix of the control sample rather than
only the individual standard deviations. For these methods, no background
database is used, and the models do not need to be trained. The likeli-
hood ratios and machine learning models, however, are much more involved.
Both of these approaches require a background database on which to train
the models, and the ML methods in particular, can be quite computation-
ally expensive to train. The mathematics involved in the LR calculations is
more complex than any of the other methods, and therefore potentially less
accessible. For the ML methods, while the algorithms used may not be acces-
sible for all, the fundamental approach can be easily understood. With this
in mind, it is impressive that the ellipsoid criterion performed only slightly
worse than the decision tree models, given that the implementation is far less
complicated, and no background database is required. With this in mind,
for the purposes of classification alone, it might be reasonable to recommend
the use of the ellipsoid criterion if a relevant population database cannot be
obtained, and the decision tree model if such a database can be obtained.

While the ellipsoid criterion and decision tree models performed best
in terms of classification, the strength of the evidence in favour of either
hypothesis obtained by likelihood ratios can be a very important piece of
information for a jury when glass evidence is being used in combination with
many other pieces of evidence. Given the substantially better performance
o↵ered by these two methods over the LRs, we consider the score-based
likelihood ratio systems that can be obtained from the ellipsoid and decision
tree models. With this in mind, our focus shifts from simply looking to
optimise classification performance metrics such as accuracy, to include the
cost log-likelihood ration (Cllr), which measures the level of calibration.

We note that the two score-based likelihood ratio systems performed the
best when applied to the USA ribbon data (Table 9.3). The decision tree
SLR performed best in overall accuracy, beating the ellipsoid SLR by 0.018.
The decision tree SLR, however, favoured specificity (di↵erent source accu-
racy) over sensitivity (same source accuracy), while the reverse was true for
the ellipsoid criterion. The SLR systems also achieved the highest levels of
calibration, with the decision tree model in particular, achieving an SLR
more then ten times less than the ellipsoid method.

Amongst the LR procedures applied to the Australian casework, we see
that the decision tree SLR receives the best score in all metrics (Table 9.4).
It achieves an overall accuracy 0.03 higher than the highest of the standard
LRs, sensitivity at 0.99, 0.072 higher than any model, and near perfect speci-
ficity of 0.999. Further to this, it received a Cllr 100 times smaller than any
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Model Accuracy Kappa Sensitivity Specificity Cllr

Decision Tree SLR 0.947 0.894 0.901 0.992 0.00188
Ellipsoid 4� SLR 0.929 0.507 1.000 0.926 0.0277
Min-trade-o↵ MVK 0.841 0.077 0.842 0.841 0.095
Max-mean MVK 0.803 0.065 0.907 0.802 0.089

Table 9.3: Performance metrics for the best likelihood ratio procedures

applied to the USA ribbon data. We see that the decision tree score-

based likelihood ratio outperforms all other techniques, with near-perfect

sensitivity and specificity, as well as a cost log-likelihood ratio score 10

times smaller than any other procedure.

of the other LR techniques, suggesting a much better level of calibration.
For the MVK LR, max-mean transformation outperforms the min-trade-o↵
transformation in accuracy by 0.048, but has a Cllr value much larger than
the SLR procedures.

Model Accuracy Kappa Sensitivity Specificity Cllr

Decision Tree SLR 0.994 0.989 0.990 0.999 0.000447
Ellipsoid 4� SLR 0.988 0.772 1.000 0.988 0.0139
Min-trade-o↵ MVK 0.916 0.604 0.917 0.916 0.207
Max-mean MVK 0.964 0.788 0.897 0.971 0.504

Table 9.4: Performance metrics for the best likelihood ratio procedures

applied to the Australian casework data. We see that the decision tree

score-based likelihood ratio outperforms all other techniques, with near-

perfect sensitivity and specificity, as well as a cost log-likelihood ratio

score 100 times smaller than any other procedure.

Overall, on the Australian data the decision tree appears to be the clear
winner between the methods tested. The results suggest that the standard
likelihood ratio procedures cannot outperform the ML techniques in terms
of classification accuracy. On the USA ribbon data, however, the decision
tree and ellipsoid SLR systems trade sensitivity and specificity. This data
set, is of course, unrealistic though in its low level of variability, and in
practice it is unlikely that this trade-o↵ would be substantial. The main
selling point of the likelihood ratio approach was therefore the added benefit
of quantifying the strength of evidence, but with the implementation of a
score-based likelihood ratio constructed from ML results (and the ellipsoid
criterion), the standard LR procedures no longer have an edge over the ML
techniques.
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Summary and Future Research

In this thesis we have investigated the use of several statistical methods to
make comparison between forensic glass samples measured by elemental com-
position, specifically using laser ablation-inductively coupled plasma mass
spectrometry. We found that the simple extension to the current practice of
an ellipsoid criterion taking advantage of the multivariate structure of the
data improves the predictive accuracy, and that machine learning methods
improve upon it further. We found that likelihood ratio based approaches
do not perform as well in prediction, but o↵er the ability to quantify the
strength of evidence. In order to introduce this concept into the machine
learning framework, we have considered the use of score-based likelihood ra-
tios, which maintain the predictive accuracy, and allow for the strength of
match. The complete procedure to implement the models in practice and
incorporate SLRs is given in Appendix E.

We have also considered the performance of these methods on a diverse
data set with a great deal of variation, and a homogeneous data set with much
less spread. We found that the models were more accurate when predicting
on the diverse data set, but only by approximately five percentage points.
The best performing model, the decision tree, achieved an accuracy of 0.994
on the diverse data set, and 0.947 on the homogeneous data set, as well as a
specificities of 0.999 and 0.992 respectively.

To potentially improve upon these results, there are a number of areas
which warrant further research following the results presented in this thesis,
both in the context of likelihood ratios and score-based methods. Firstly,
alternative methods could be considered to recalibrate likelihood ratio sys-
tems, whether that be di↵erent ways of optimising the critical value, or using
a completely di↵erent transformation on the system. The critical value opti-
misation method has the benefit of being invertible, and any alternative ap-
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proaches should also retain this property. For any score-based method, such
as the interval criteria or machine learning classifiers, alternative choices of
critical value could be entertained to maximise performance. For example,
a di↵erent number of standard deviations (rather than four) could be used
for interval criteria, and perhaps a cut-o↵ of 0.5 does not allow for the best
compromise between sensitivity and specificity in machine learning models.
Finally, some alterations could be made to the machine learning approaches.
While the decision tree method provides a good compromise between accu-
racy and parsimony, alternative models could be considered. For example,
the Bayesian additive regression tree which were considered by (Park and
Carriquiry, 2019) along with their analysis of random forests.

With these areas for possible further research in mind, the results pre-
sented in this thesis demonstrate that a great deal of predictive accuracy can
be achieved by taking full advantage of the multivariate structure of elemen-
tal glass measurements. Further, the results support the idea that the models
can perform very well on di↵erent data sets, and have the potential to be
very e↵ective if implemented by forensic practitioners. While glass evidence
only constitutes a single component of a legal case, it is important to ensure
that the methods used to evaluate the data are high in accuracy. In particu-
lar, the statistical procedures used for this comparison should adhere to the
philosophy of “innocent until proven guilty”, and the models we have pre-
sented perform well in minimising the rate at which samples are incorrectly
classified as matching.
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Appendix A

Mathematical Details

A.1 Logistic Regression

In Part III of the thesis we investigated the use of logistic regression to
compare glass samples. Here we provide a review of the theory behind logistic
regression. Consider grouped data of the form.

(n1, y1,x1), (n2, y2,x2), . . . , (nm, ym,xm)

for m groups of size ni. Consider also the model where

Yi ⇠ B(ni, ⇡i)

independently for each i = 1, . . . ,m. Logistic regression aims to relate the
success probability ⇡i to the predictor xi, specifically

⇡i = ⇡(xi).

We wish to define this model analogously to linear regression, which can
theoretically predict any real number, but faces the hurdle that 0  ⇡i  1.
In order to address this, we now introduce one more term, the logit ⌘i:

⌘i = log

✓
⇡i

1� ⇡i

◆
.

The logit now satisfies the requirement of linear regression that �1 < ⌘i <
1, and is invertible such that ⇡i can be easily calculated as

⇡i =
exp(⌘i)

1 + exp(⌘i)
.
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The logistic regression model is then defined as a linear regression model as

⌘i = �Txi.

Now what remains is to estimate the values of the coe�cients �. This
is done by applying maximum likelihood estimation to `(� |y), where ` is
the product of m binomial likelihoods. Appendix A.2 provides the details of
maximum likelihood estimation.

Logistic regression gives an estimate of an empirical success probability
– or for our purpose, an empirical probability of match between two glass
samples. To make classification, one must choose a threshold probability
above which two samples are said to match. As mentioned, we will use 0.5
as this threshold, meaning that pairs of fragments are classified as matching
if they are predicted to have a greater than 50% chance of being a match.

A.2 Maximum Likelihood Estimation

In many circumstances, such as regression, it may be desirable to choose an
optimum value for a certain parameter. One such method of optimisation is
maximum likelihood estimation.

Definition A.2.1. Let X be a random variable from a distribution with
parameters ✓, and let f be the probability density (if X is continuous) or
mass (if X is discrete) function of X. The likelihood function of ✓ is given
by

L(✓ |x) = f(x).

We often simply write L(✓) for L(✓ |x).

In other words, the likelihood function is equal to the probability density
function, but framed as a function of the parameters of that distribution,
rather than the random variable. With this in mind, the likelihood function
can be used to find an optimum value of ✓, for which the probability den-
sity/mass function is maximised. This is known as the maximum likelihood
estimator:

Definition A.2.2. Let L(✓ |x) be a likelihood function. The maximum
likelihood estimator ✓̂ is given by

✓̂ = argmax
✓2⇥

L(✓).
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It is often the case that the likelihood function is not concave, which makes
maximising the function practically di�cult. However, it is more often the
case that log-likelihood functions are concave. This leads us to the notion of
a log-likelihood function:

Definition A.2.3. Let L(✓ |x) be a likelihood function. The log-likelihood
function is given by

`(✓ |x) = logL(✓ |x).

Since log is an increasing function, maximising the likelihood is equiv-
alent to maximising the log-likelihood and practically, it is often easier to
maximise the log-likelihood. As such, we instead define the maximum likeli-
hood estimator ✓̂ as

✓̂ = argmax
✓2⇥

`(✓).

The maximum likelihood estimate can then be obtained by solving the equa-
tions

@`

@✓i
= 0 for i = 1, . . . , n,

where ✓ = (✓1, . . . , ✓n).

A.3 Graph Theory

The decision tree and random forest models rely on the mathematical notion
of a graph, consisting of nodes and edges. Here, we provide the fundamental
definitions required to describe a tree graph.

Definition A.3.1. A graph G(N,E) is a set of nodes N along with a set of
edges E ✓ N ⇥N which represent connections between the nodes.

It is worth noting that the basic definition of a graph does not allow for
multiple edges between two nodes nor does it allow edges from a node to itself
(known as self-loops). A graph which allows for these properties is known as
a multigraph.

Definition A.3.2. A graph is said to be directed if its edges (i, j) 2 E
represent a one-directional connection from node i to node j. If a connection
exists in both directions between nodes i and j, then (i, j) 2 E and (j, i) 2 E.

Graphically, we represent nodes in a graph as circles (often labelled with
names or numbers) and represent the edges as lines between the nodes. In
the case of a directed graph, we represent the directed edges with an arrow
in the direction of the edge.
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Definition A.3.3. Let G(N,E) be a graph and let i, j 2 N . There is said
to be a path between i and j if there exists a sequence of edges

(i, v1), (v1, v2), . . . , (vn�1, vn), (vn, j).

That is, when traversing the graph, there is a set of edges such that j can be
reached from i.

Definition A.3.4. A graph G(N,E) is said to be connected if there exists
a path between every pair of nodes.

The idea of connectedness simply means that there are no outlying nodes,
nor can the graph be considered to be made up of two or more separate
graphs. We next consider the idea of a cycle within a graph.

Definition A.3.5. A directed graph is said to be acyclic if for each node
i 2 N , there does not exist a path of length greater than or equal to one
from i to itself. That is, no self-loops exist and when traversing the graph,
when a node is left it cannot be returned to.

With this in mind, we can now define a tree:

Definition A.3.6. A (rooted) tree is a connected acyclic graph. That is, a
graph in which every pair of nodes is connected by exactly one path. One
node is designated as the root and if the graph is directed, all paths originate
from the root node. The nodes at which the paths terminate are called leaves.

Figure A.1 provides a visualisation of a directed rooted tree G(N,E) with
nodes and edges given by

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (4, 7),

(4, 8), (4, 9), (6, 10), (6, 11), (11, 12)}.

A.4 Kernel Density Estimation

Kernel density estimation (KDE) is a method of estimating the probability
density function of a random variable based on a sample of data. To begin
with, we consider the notion of a kernel:

Definition A.4.1. A kernel K is non-negative, real valued integrable func-
tion. That is, for some S ✓ R, K : S ! R such that
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Figure A.1: Example of a directed rooted tree.
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1. K(s) � 0 for all s 2 S, and

2.
R
R K(s)ds <1.

There are some common choices of kernel. For example, for symmetric
data taking values on the real line, a normal kernel may often be chosen:

KN(µ,�2)(x) = e�
(x�µ)2

2�2 .

Similarly, a gamma kernel may be chosen for positive data, or a beta kernel
for data which lies between zero and one. With this in mind, we can define
a kernel density estimator as follows:

Definition A.4.2. Let x = (x1, . . . , xn) be a random sample from some uni-
variate distribution for which the density f is unknown. The kernel density

estimator with bandwidth h > 0 is give by

f̂h(x) =
1

nh

nX

i=1

K

✓
x� xi

h

◆
.

The bandwidth h can be considered as a smoothing parameter. One
typically wishes to choose h as small as possible, but there are several factors
involved in the optimisation of this parameter. A detailed discussion of this
can be found in Park and Marron (1990), Sheather (1992), Cao et al. (1994),
Jones et al. (1996), Agarwal and Aluru (2010) and Xu et al. (2015).



Appendix B

Distributions of Likelihood
Ratios

In this appendix we include plots of the distributions of log-likelihood ratio
systems before and after calibration transformations have been applied. We
include also, for convenience, the distributions of the log of the score-based
likelihood ratio systems calculated from the decision tree models.
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Figure B.1: Distributions of same source log-likelihood ratios con-

structed from the USA Ribbon Data
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Figure B.2: Distributions of di↵erent source log-likelihood ratios con-

structed from the USA Ribbon Data
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Figure B.3: Distributions of same source log-likelihood ratios con-

structed from the Australian Casework Data
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Figure B.4: Distributions of di↵erent source log-likelihood ratios con-

structed from the Australian Casework Data
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Figure B.5: Distributions of base 10 logarithm of score-based likelihood

ratios constructed from decision tree scores on Australian casework data.
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Figure B.6: Distributions of base 10 logarithm of score-based likelihood

ratios constructed from decision tree scores on Australian casework data.



Appendix C

Algorithms

Algorithm C.1: PAV algorithm to obtain a set of calibrated LRs
Input : Set of observed likelihood ratios and ground truth classes

{(LRi, Ci)}ni=1

Output: Set of calibrated likelihood ratios and ground truth classes
{(LRcal

i
, Ci)}ni=1

/* Number of same and different source samples */

1 Define nss  sum
�
1{Ci=same source}

�

2 Define nds  sum
�
1{Ci=di↵erent source}

�

/* Sort the LRi into ascending order */
3 Set {LRi} ascending ({LRi})
4 for i 1 to n do
5 Define pi  1{Ci=same source}
6 end
7 Define P  ([p1, p2], [p2, p3], . . . , [pn�m, pn])
8 while there exist out of order blocks do
9 Select a pair of out of order blocks [pq, pr] and [pr, ps]

10 Replace them with [pq, ps]
11 Compute ✓qs
12 Update P
13 end

14 Define Oprior

i
 nss/nds

15 Define Opost

i
 pi/(1� pi)

16 Compute LRcal

i
 Opost

i
/Oprior

i

17 return {(LRcal

i
, Ci)}ni=1
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Algorithm C.2: SMOTE
Input : Number of minority class samples T , Amount of SMOTE

N%, Number of nearest neighbours k
Output: TN/100 synthetic synthetic minority class samples

1 if N < 100 then
2 Randomise the T minority class samples
3 Set T  TN/100
4 Set N  100
5 end
6 Set num attr  number of attributes
7 Sample[ ][ ] // array for original minority class samples
8 Set new index 0 // number of synthetic samples generated
9 Synthetic[ ][ ] // array for synthetics samples

10 for i 1 to T do
11 Compute k nearest neighbours for i, save indices in nn array
12 Populate(N, i, nn array)
13 end

/* Function to generate the synthetic samples */
14 Function Populate(N, i, nn array)
15 while N 6= 0 do
16 Sample nn ⇠ U{1, k} // randomly choose a neighbour
17 for attr  1 to num attr do
18 dif  Sample[nn array[nn]][attr]� Sample[i][attr]
19 Sample gap ⇠ U(0, 1)
20 Synthetic[newindex][attr] Sample[i][attr] + gap⇥ dif
21 end
22 new index new index+ 1
23 N  N � 1
24 end
25 return



Appendix D

Machine Learning Model
Tuning

For the decision tree and random forest models, we consider a number of
important hyperparameters to tune. We first consider each hyperparame-
ter separately. To do this, we fit and apply the decision tree model with all
hyperparameters left at their default values except for the parameter in ques-
tion. In each case we apply the model to the testing data and the training
data, and plot the ROC AUC against the parameter values, to establish how
performance varies. In doing so, we can establish which parameter values
lead to better performance, and also assess the level of overfitting at each
value. We then establish a range of values for each hyperparameter to con-
sider in our tuning. We use a random grid search cross validation procedure
across these potential values to obtain an optimal hyperparameter set.

D.1 Decision Trees

To begin, we consider four important hyperparameters to tune in the deci-
sion tree model: the minimum samples required to split a node, the minimum
samples required at each leaf node, the maximum tree depth, and the max-
imum number of features considered at each split. The ROC AUC versus
parameter value plots for each hyperparameter are displayed in Figure D.1.
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D.1.1 Australian Casework Data

Minimum Samples to Split a Node

The minimum samples required to split a node (min-samples-split) was tuned
at values ranging from 0.00001 and 0.15, where the value represents the pro-
portion of the samples in the training set. Specifically, given n samples and
a proportion p, min-samples-split will be calculated as dnpe. We see in Fig-
ure D.1a that the decision tree performs worse and overfits to the training
data at larger values of min-sample-split, and seems to reach a minimum
performance level at which it remains as the value of min-samples-split in-
creases. In particular the model performs better on the testing data than
the training data at higher values. As such, the parameter will be tuned for
values ranging from 0.00001 to 0.02.

Minimum Samples at Leaf Nodes

The minimum samples required at leaf nodes (min-samples-leaf) was also
tuned at values ranging from 0.00001 and 0.15. Again, the value represents
the proportion of the samples in the training set. In Figure D.1b we note
that the overall performance decreases, and again note that at higher values,
the model performs better on the testing data. As such, we will tune this
parameter at values ranging from 0.00001 to 0.0001.

Maximum Tree Depth

The maximum tree depth is the maximum length of the path from the root
node to the leaves. In Figure D.1c we plot the ROC of the model applied to
the training and testing data for maximum tree depths ranging from one to
40. We note that the model performs better at larger values, but that there
is very little change in the level of overfitting, and so leave this parameter at
its default setting of none, meaning that there is no explicit limit on the tree
depth.

Maximum Features

Finally, we consider the maximum features considered at each split in the
tree. In Figure D.1d we plot the performance at all possible values, that is
1 to 17, that is the total number of predictors. We note very little change
in the performance at di↵erent values, and so tune this parameter with two
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of the most common values: total number of features, the square root of the
total number of features, rounded to the nearest integer.

(a) Minimum samples to split a node. (b) Minimum samples at each leaf.

(c) Maximum tree depth. (d) Maximum features at each split.

Figure D.1: ROC AUC vs hyperparameter values for decision trees

trained on Australian casework evaluated on training and testing data.

Cross Validation Results

Using 100 iterations of three-fold cross-validation procedure over a random
grid of the hyperparameter values. We also tuned over the min impurity
decrease parameter to avoid overfitting. This random grid was constructed
over the potential values given in Table D.1.

After running the cross-validation, we obtained optimal values as given
in Table D.2.
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Hyperparameter Values
Min-samples-split (0.02, 0.01, 0.005, 0.001, 0.00075, 0.0005, 0.00025,

0.0001, 0.000075, 0.00005, 0.000025, 0.00001)
Min-samples-leaf (0.0001, 0.000075, 0.00005, 0.000025, 0.00001)
Min impurity decrease (0.0, 0.0000001, 0.000001)
Max features None, square root
Splitting criterion Information gain, Gini impurity

Table D.1: Potential hyperparameter values for decision tree fit to

oversampled Australian casework data.

Hyperparameter Value
Min-samples-split 0.000025
Min-samples-leaf 0.00001
Min impurity decrease 0.0000001
Max features None
Splitting criterion Information gain

Table D.2: Optimal hyperparameter values for decision tree fit to over-

sampled Australian casework data.

D.2 USA Ribbon Data

Applying the same procedure and tuning over the same values as for the
Australian casework data, optimal hyperparameter values were determined
for the decision tree model fit to oversampled USA ribbon data. These values
are shown in Table D.3:

Hyperparameter Value
Min-samples-split 0.00001
Min-samples-leaf 0.00001
Min impurity decrease 0.0000001
Max features Square root
Splitting criterion Gini impurity

Table D.3: Optimal hyperparameter values for decision tree fit to over-

sampled USA ribbon data.
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D.3 Random Forest Models

For the random forest models, the same hyper-parameters were tuned over
random grids spanning the same values as for the decision tree models. The
only addition to this was the number of decision trees used in each model.
This hyper-parameter was tuned with values ranging from 100 to 500 trees.

D.3.1 Australian Casework Data

Applying the random grid cross-validation procedure yielded the following
optimal hyper-parameter values (Table D.4).

Hyperparameter Value
Number of trees 100
Min-samples-split 0.000075
Min-samples-leaf 0.00001
Min impurity decrease 0.0000001
Max features None
Splitting criterion Gini impurity

Table D.4: Optimal hyperparameter values for random forest fit to

oversampled Australian casework data.

D.3.2 USA Ribbon Data

Table D.5 displays the optimal hyper-parameter values for the random forest
applied to the USA ribbon data.

Hyperparameter Value
Number of trees 100
Min-samples-split 0.00005
Min-samples-leaf 0.000025
Min impurity decrease 0
Max features None
Splitting criterion Information gain

Table D.5: Optimal hyperparameter values for random forest fit to

oversampled USA ribbon data.
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Appendix E

Implementing the Models in
Practice

In this appendix we describe the procedures required to implement the el-
lipsoid criterion and decision tree models in practice, and use the scores
produced to calculate score based likelihood ratios.

E.1 Ellipsoid Criterion

Our ellipsoid 4� criterion method was implemented in R (R Core Team,
2020). Implementing this model for practical use requires the following steps:

1. Obtain a data base of elemental glass measurements for a given loca-
tion, labeled by their known sources.

2. Consider a list each possible pair of samples, labeled by whether they
originate from the same or di↵erent sources. For each pair, randomly
label one of the observations in the pair as the control sample and the
other as recovered.

3. Apply a resampling technique to the data to balance the classes, as the
di↵erent source class will have many more observations that the same
source class.

4. Calculate the Mahalanobis distance between each set of pairs in the
resampled data using the covariance matrix of the control sample. A
shrinkage estimator may need to be used for the covariance matrix.
Now label each pair as predicted to be matching or non-matching.
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5. Assess the performance of the model by comparing the truth to the
prediction.

Next, we must obtain the kernel density estimates required to produce
score-based likelihood ratios. This can be done as follows:

1. Separate the set of predicted scores for same source and di↵erent source
pairs.

2. For each set, obtain a kernel density estimate of the set of Mahalanobis
distances. We recommend a gamma kernel since the scores must be
greater than zero.

3. Using the same source KDe as the numerator, and the di↵erent source
KDE as the denominator, calculate SLRs for each of the scores in the
testing data.

4. Assess the performance and calibration of the SLR system.

Now all of the necessary steps have been taken to build the model, and
it can be used in practice. The following steps can be used to analyse new
observations:

1. For any new control and recovered observations which you wish to
compare, calculate the Mahalanobis distance between the points using
the covariance matrix of the control sample.

2. Using this Mahalanobis distance, evaluate the score-based likelihood
ratio for this pair of observations.

E.2 Decision Tree

Our decision tree model was implemented in Python (Van Rossum and
Drake Jr, 1995) using the scikit-learn package (Pedregosa et al., 2011). Im-
plementing this model for practical use requires the following steps:

1. Obtain a database of elemental glass measurements for a given location,
labeled by their known sources.

2. Apply the process of pairwise di↵erencing to this data set, as described
in Section 6.2. This will result in a transformed database of di↵erenced
samples labeled according to whether they originate from the same or
di↵erent sources.
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3. Apply a resampling technique to the data to balance the classes, as the
di↵erent source class will have many more observations that the same
source class.

4. Split the data set into a training and a testing set.

5. Train the decision tree classier on the training set and tune the model.

6. Assess the performance of the model on the testing data.

At this stage, the model has now been fit to the data. Next, we must
obtain the kernel density estimates required to produce score-based likelihood
ratios. This can be done as follows:

1. Separate the set of predicted scores for same source and di↵erent source
pairs in the testing data.

2. For each set, obtain a kernel density estimate of the set of scores. We
recommend a beta kernel since the scores lie between zero and one.

3. Using the same source KDE as the numerator, and the di↵erent source
KDE as the denominator, calculate SLRs for each of the scores in the
testing data.

4. Assess the performance and calibration of the SLR system.

Now all of the necessary steps have been taken to build the model, and
it can be used in practice. The following steps can be used to analyse new
observations:

1. For any new control and recovered observations which you wish to
compare, take the element-wise di↵erence of the observations.

2. Apply the decision tree classifier to this di↵erenced observation to ob-
tain a probability of match (score).

3. Using this score, evaluate the score-based likelihood ratio for this pair
of observations.
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