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Abstract 

Mammographic density is one of the most significant risk factors for breast cancer. Breast tissue 

with high mammographic density is characterised by increased abundance of fibroglandular 

tissue and reduced abundance of adipose tissue compared to breasts of low density. 

Mammographic density is a consequence of cellular and molecular events that occur during 

adolescent breast development. Epidemiological studies show that increased body mass index 

in adolescence is associated with low mammographic density as an adult and reduced lifetime 

risk of breast cancer. This suggests that adiposity during pubertal development could be a 

significant, and modifiable factor that affects adult breast health. However, the causal 

relationships are yet to be investigated. The studies described in this thesis investigated whether 

increased pubertal adiposity is causal in mammary gland density and cancer development in 

adulthood in a mouse model. 

Alms1 bbb/bbb mice exhibit hyperphagia, resulting in increased adiposity and body weight 

relative to wildtype (+/+) and heterozygous (bbb/+) littermates when fed a normal mouse chow 

diet. To investigate the impact of increased adiposity on mammary gland development during 

puberty, mammary glands were dissected from controls (bbb/+ or +/+) and bbb/bbb female 

mice during puberty (6 weeks; n=10/gp). At puberty, the adipocyte size in the mammary 

adipose tissue was significantly increased in bbb/bbb mice compared to controls (p<0.001). 

Further, bbb/bbb mice exhibited increased number of terminal end buds (p=0.003), increased 

number of proliferating epithelial cells (p=0.002), and increased abundance of macrophages 

around terminal end buds (p=0.008) and in the mammary adipose tissue (p<0.001), compared 

to controls. 

To investigate the impact of increased pubertal adiposity on mammary gland development and 

density in adulthood, bbb/bbb mice were calorie-matched with controls from 7 weeks of age, 

such that weight of adult bbb/bbb mice was comparable to that of wildtype. Mammary glands 

were dissected from calorie-restricted bbb/bbb mice (and controls) at adulthood (12 weeks; 

n=10/gp). At adulthood, the adipocyte size in the mammary adipose tissue was significantly 

increased in matched bbb/bbb mice compared to controls (p<0.01). Interestingly, matched 

bbb/bbb mice exhibited significantly reduced percent fibroglandular density (p<0.001), reduced 

stroma/epithelium ratio (p=0.003), and reduced collagen deposition around ducts (p<0.001), 

compared to controls. Further, mammary glands of matched bbb/bbb mice demonstrated 

increased expression of mRNA encoding adiponectin (p<0.01), TGFB1 (p=0.044), CSF1 

(p=0.033), IGF1 (p=0.007), and STAT3 (p=0.033), compared to controls. 



  vii 

To determine the impact of increased pubertal adiposity on mammary cancer development, the 

MMTV-PyMT tumour model was crossed with Alms1 bbb/+ mice to generate female PyMT-

control and PyMT-bbb/bbb mice. At 18 weeks, PyMT-bbb/bbb mice exhibited significant 

increase in tumour free survival (LogRank p=0.002), greater tumour latency (p<0.01) and 

reduced number of tumours (p=0.006), compared to PyMT-control mice. Interestingly, matched 

PyMT-bbb/bbb mice exhibited significantly increased expression of mRNA encoding TGFB1, 

compared to PyMT-control mice (p=0.037).  

This research in mice provides the first evidence that increased pubertal adiposity might be 

causative in affecting mammographic density and breast cancer risk in adulthood. Together 

with epidemiological studies, this research provides the foundation for a new paradigm for the 

origins of mammographic density and breast cancer risk during pubertal breast development.  
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Chapter 1 – Literature review and aims 

Ghadge  2 

1.1 Introduction 

Mammographic density (also known as breast density) is an important risk factor for breast 

cancer (1, 2). It refers to the proportion of radiologically dense fibroglandular tissue present in 

the breast in comparison to radiologically non-dense adipose tissue, when observed on a 

mammogram. At the cellular level, epithelial and stromal cells are the predominant cell types 

in white dense regions and adipocytes are the predominant cell type in dark non-dense regions 

(3). Forty years of epidemiological research has demonstrated that women with ‘extremely 

dense’ breasts have a 4-6-fold increased risk of breast cancer in comparison to women with 

‘mostly fatty’ breasts, when adjusted for age and body mass index (BMI) (2-6). Although the 

association between mammographic density and breast cancer risk is well-established, the 

molecular and cellular events that lead to the development of mammographic density, and why 

this is associated with an increased risk of cancer are yet to be elucidated. 

Puberty is a critical time for breast development. Endocrine and paracrine signalling drive 

development of epithelial, stromal, and adipose tissue in the breast (7-12). As the relative 

abundance of these cell types determines the radiological appearance of the adult breast, puberty 

should be considered as a key developmental stage in the establishment of mammographic 

density. This important stage of growth and development has a significant impact on both adult 

mammographic density and breast cancer risk. Epidemiological studies have consistently 

shown an inverse association between pubertal adiposity measures such as weight, BMI and 

body shape with percent mammographic density (13-20) as well as adult breast cancer risk (21-

26). Commencement of menstrual cycling - known as menarche, and timing of appearance of 

breast buds - known as thelarche, also impact adult mammographic density. Later onset of 

menarche and regular menstrual cycles is associated with increased mammographic density and 

earlier age at thelarche is associated with lower adult mammographic density (27).  

Although these epidemiological studies point to significant associations between pubertal 

adiposity, adult mammographic density, and breast cancer risk, causal relationships are yet to 

be established. If it could be shown that adult mammographic density is modifiable during the 

pubertal growth period, there could be opportunities to intervene during adolescence to reduce 

lifetime mammographic density-associated breast cancer risk. Therefore, understanding 

biological mechanisms active during puberty that might drive high mammographic density hold 

great potential in breast cancer prevention. Here we discuss potential roles of endocrine and 

paracrine signalling during puberty as well as genetic and epigenetic factors that affect adult 

mammographic density. 
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1.2 Mammographic density is a breast cancer risk factor  

The Breast Imaging Reporting and Data System (BI-RADS) developed by the American 

College of Radiology describes four categories of mammographic density: (a) ‘mostly fatty’; 

(b) ‘scattered density’; (c) ‘heterogeneously dense’; and (d) ‘extremely dense’ (28) (Figure 

1.1.A). Approximately 8% of women aged 40-74 have breasts classified as ‘extremely dense’ 

and around 35% have breasts classified as ‘heterogeneously dense’ (29). Combined, these two 

categories of density are often termed “high mammographic density” and define what it means 

for a woman to have “dense breasts”. The cellular components of mammographic density can 

be identified through image-guided biopsies of x-rayed breast tissue samples (Figure 1.1.B; 

(30)). Breast tissue regions with low mammographic density exhibit increased abundance of 

adipocytes and reduced abundance of epithelium and stroma (Figure 1.1.C). Conversely, high 

mammographic density is characterised by abundant stromal and epithelial cells and fewer 

adipocytes (Figure 1.1.D). 

Thirty nine percent of premenopausal and 26% of postmenopausal breast cancers are attributed 

to high mammographic density (2). Mammographic density also masks cancer on a 

mammogram; dense fibroglandular tissue and breast cancers both appear white on the 

mammogram, therefore increased mammographic density can reduce the sensitivity of 

mammography to detect breast cancer (1, 31-33). Early research suggested that the increased 

risk of breast cancer associated with high mammographic density was the consequence of the 

masking effect of density (34). However, the masking effect of mammographic density is only 

partly responsible for the association of mammographic density with breast cancer risk. A 

landmark meta-analysis in 2006 demonstrated that women with increased mammographic 

density, assessed at least 5 years earlier, had a 3.25-fold increased breast cancer risk, in 

comparison to women of similar age with low mammographic density (4). In another study, the 

association between high mammographic density and breast cancer risk remained intact for an 

average of 7 years after mammographic screening (35).  

High mammographic density appears to be associated with an increased risk of all breast cancer 

subtypes although there are still mixed findings in the literature (comprehensively reviewed by 

(36)). Breast cancer is 5 times more likely to develop in dense breast tissue regions compared 

to non-dense regions (37). An autopsy study of women without clinically detectable breast 

cancer demonstrated that precancerous microscopic columnar cell lesions are found in 1 of 4 

women with dense breasts (38). This suggests that the cellular and molecular components that 

comprise high mammographic density could be associated with a pro-tumorigenic 

microenvironment that increases the susceptibility of the breast to all cancer subtypes (3, 39). 
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The breast is a highly heterogeneous tissue containing 3 distinct tissue compartments: (1) 

epithelium (containing epithelial cells), (2) stroma (containing a combination of fibroblasts, 

immune cells, and extracellular matrix), and (3) adipose tissue (containing adipocytes and 

immune cells). All of these cell types, as well as the extracellular matrix, contribute to the 

mammographic density of the breast, and could also affect breast cancer risk. However, the 

molecular and cellular mechanisms that link high mammographic density with increased breast 

cancer risk are yet to be elucidated.  

The prevalence of high mammographic density in the population is greatest in younger women 

and gradually decreases with increasing age (29). Studies have shown that percent 

mammographic density decreases an average of 1% per year (40, 41) and more (~5%) over 

menopause (41). High mammographic density is associated with increased breast cancer risk 

across all age groups, with the strongest association in premenopausal women and women 

receiving postmenopausal hormone therapy (42). Although mammographic density declines as 

women age, young women with high density tend to have high density throughout life relative 

to their peers (43, 44). Therefore, mammographic density tends to be at its highest in young 

women following breast development during puberty, and this sets the trajectory for 

mammographic density over the life course. 
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Figure 1.1. Mammographic density refers to the radiological appearance of the breast and 

reflects the relative proportion of fibroglandular and adipose tissue. (A) Four categories of 

mammographic density are described by the American College of Radiology; (a) mostly fatty, 

(b) scattered density, (c) heterogeneously dense, and (d) extremely dense, images are 

reproduced from InforMD (www.informd.org.au). (B) In order to explore the cellular structures 

associated with high and low mammographic density (HMD and LMD respectively), 

surgically-excised breast tissue is X-rayed and the image used to guide biopsies of high and 

low density regions for further analysis. (C, D) Hematoxylin and eosin stained sections of low 

and high mammographic density respectively from a 35-year old woman undergoing breast 

reduction surgery. Regions of low mammographic density consist predominantly of adipocytes 

(large white cells), and regions of high mammographic density consist predominantly of 

epithelial cells (purple-stained cells) and stroma (pink-stained regions). 

  

http://www.informd.org.au/
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1.3 Pubertal breast development  

Puberty is a critical time for breast development when endocrine and paracrine factors drive 

development of epithelial, stromal, and adipose tissue in the breast (7-12, 45) (Figure 1.2). Prior 

to puberty, the mammary gland consists of a rudimentary framework, with ductal elongation 

occurring at a rate proportional to general growth of the body (46). At this stage, the epithelium 

is two-layered, and the dense supporting stroma can be distinguished from the less dense 

periductal connective tissue, with these different tissue compartments having been established 

around the age of 8 months (47). Thelarche occurs prior to menarche. During puberty, with 

activation of the hypothalamus and pituitary gland leading to increased secretion of ovarian, 

adrenal, and somatotropic hormones, the rudimentary mammary gland begins to show active 

responses and there are changes in both the epithelium and the stroma (48). Solid epithelial 

buds form along the already laid ducts, which with the progression of development become 

canalised (46). The growth and branching of the solid epithelial buds are supported by 

proliferation of connective tissue that replaces the fatty tissue (47). This results in the formation 

of groups of small ductules surrounded by loose connective tissue, which finally form typical 

terminal duct lobular structures seen by the end of puberty. After the completion of puberty, 

there is minimal development in the epithelium and stromal components of the adult breast until 

the first pregnancy (48). The adult breast is thus comprised of three broad tissue compartments: 

epithelium, stroma and adipose tissue. As the relative abundance of these cell types determines 

the radiological appearance of the adult breast, puberty therefore can be considered as a key 

developmental stage in the establishment of mammographic density. 

1.4 Adiposity, mammographic density, and breast cancer risk  

There is compelling evidence of associations between measures of adiposity over the life course 

with adult mammographic density and breast cancer risk. However, the relationships are 

complex; increased adiposity at different developmental stages affects breast cancer risk 

differently. Adiposity is often expressed in terms of BMI, and calculated as the ratio of weight 

(in kilograms) to square of height (in meters). In the literature linking pubertal growth measures 

with adult mammographic density, weight and recalled body shape or somatotype are also used 

as measures of adiposity. The association between BMI and mammographic density is 

dependent on how mammographic density is expressed (percent or absolute) and measured 

(area or volume). Increased BMI often increases breast size (49-51) and the relative abundance 

of non-dense adipose breast tissue compared to dense fibroglandular tissue influences percent 

mammographic density simply by its calculation.  
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Figure 1.2. Development of epithelial, stromal, and adipose tissue in the breasts occurs 

during puberty. (A-D) Schematic diagrams and hematoxylin and eosin (H&E)-stained 

sections of ductal morphology in the breast in the pre-menarche, menarche, post-puberty stages, 

and adult stages respectively. (A)  H&E-stained section is breast tissue of an 11-year old pre-

menarcheal girl with no lobular differentiation; (B) H&E-stained section is breast tissue 

showing initiation of lobular differentiation and development of intralobular stroma in an 11-

year old girl at menarche; (C) H&E-stained section is breast tissue showing lobular structures 

observed in the follicular phase of the menstrual cycle in a 15-year old girl; and (D) H&E-

stained sections are of breast tissue from a 27-year old woman undergoing mastectomy for 

inherited high breast cancer risk of unknown genetic origin, boxes show magnified regions 

predominantly containing (i) adipocytes, (ii) epithelial cells, and (iii) stroma. H&E-stained 

sections in A and C are reproduced from Hoda et al., Rosen’s Breast Pathology 3rd edition, 

Wolters Kluwer Health Inc, 2008 (Copyright licence in Appendix B); H&E-stained section in 

B is reproduced from Hoda et al., Rosen's Diagnosis of Breast Pathology by Needle Core 

Biopsy 3rd edition, Wolters Kluwer Health Inc, 2010 (Copyright licence in Appendix C). 
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BMI has been shown to be inversely associated with absolute dense area, which is the two-

dimensional dense tissue area projected on the mammogram, but positively associated with 

dense volume, which takes into account the thickness of dense tissue (52-55). This highlights 

the importance of adjusting for confounding adiposity measures when investigating 

associations between mammographic density and breast cancer risk.  

Adult BMI affects breast cancer risk, however the direction of this relationship varies by 

menopausal status. Premenopausal women with high BMI have lower risk of breast cancer, but 

postmenopausal women with high BMI have increased risk (56, 57). In obese premenopausal 

women, increased frequency of anovulatory menstrual cycles results in reduced exposure to 

ovarian hormones, which may contribute to the reduced risk of breast cancer (57). On the other 

hand, there can be an increased concentration of estrogen in obese postmenopausal women due 

to increased aromatisation of adrenal androgens in adipose tissue, which increases breast cancer 

risk (58). Obesity also increases inflammatory markers in adipose tissue which could drive 

increased breast cancer risk (59-64). 

Several studies have shown an inverse association of pubertal body adiposity with breast cancer 

risk (21-26), however, there are other studies that do not support this association (65-67). 

Prospective data from a British birth cohort (68, 69) showed that women diagnosed with breast 

cancer had been consistently thinner during childhood than women without breast cancer (70). 

Interestingly, a post-hoc analysis within the earlier Nurses’ Health Study showed that gain in 

body adiposity between ages 5-10 years was associated with lower postmenopausal breast 

cancer risk, but gain in body adiposity between ages 10-20 years was associated with greater 

risk (71). Epidemiological studies show that excess body adiposity or abnormal leanness in 

adolescents, both associated with decreased risk of breast cancer, also have an association with 

ovulatory dysfunction (72-77). With abnormal leanness, child gymnasts, athletes, and ballet 

dancers who commonly experience delayed menarche and irregular menstrual cycles, have 

reduced breast cancer risk (78). Although the biological basis of the association between 

childhood and pubertal adiposity and adult breast cancer risk is not clearly understood, it may 

be mediated through mammographic density (20, 79, 80). 

There is a growing body of evidence for a relationship between pubertal growth measures and 

adult mammographic density (Table 1.1). A number of studies show consistent inverse 

associations between pubertal adiposity using measures such as BMI, weight and recalled body 

shape, and percent mammographic density in adult women when adjusted for adult BMI (13, 

14, 16-19), while there are few studies that oppose this association (81, 82). One study 

demonstrated that mammographic density mediates the association of childhood BMI with 
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breast cancer risk in premenopausal women (83). In a register-based cohort study, the 

significant inverse association of BMI at age 13 with breast cancer risk was weakened when 

adjusted for mammographic density (19), which further supports the notion that mammographic 

density could mediate the association between pubertal BMI and breast cancer risk. Other 

studies have suggested the mediating effect of mammographic density on the association of 

pubertal adiposity with breast cancer risk is weak (15). However, these studies have examined 

mammographic density in older, predominantly postmenopausal women where the impact of 

pubertal growth could be mitigated by other factors during adulthood.  

Mammographic density in girls and younger women has not been well characterised because 

routine radiographic screening is not implemented until age 40 or older. When mammographic 

density is measured by magnetic resonance imaging (MRI) in women aged less than 30, it is 

found to be inversely associated with childhood body size (84, 85). A limitation in some studies 

investigating relationships between pubertal BMI and adult mammographic density is that the 

pubertal BMI is self-reported, however, the accuracy of this is thought to be reasonably good 

(86). A further degree of caution is needed when assessing pubertal body adiposity using the 

adult BMI scale. Weight and height can change in adolescents as part of normal pubertal growth 

and development. Therefore, it is important to use a BMI scale that is age appropriate, such as 

BMI-percentiles (87). Compared to the median BMI-percentile (20.7 kg/m²), a BMI over 22.3 

kg/m² (75th BMI-percentile) at age 18 is associated with a 45% decrease in adult 

mammographic density, adjusted for adult BMI and timing of menarche (88). Higher BMI 

percentile in adolescence is also associated with reduced risk of breast cancer (71, 89, 90). 

Overall, these studies demonstrate that increased pubertal body adiposity is associated with 

reduced mammographic density and breast cancer risk in adult women. 
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Table 1.1. Summary of studies reporting association of early life growth measures with 

mammographic density. Somatotype assessment is based on 9-level figure pictogram, 

participants recall the figure that best represented their body shape at a particular age (1 

represented extremely lean and 9 represented extremely obese). The correlation of recalled 

somatotype and BMI measured at approximately same ages range from 0.60 to 0.75 (91). BMI 

Z-scores are BMI expressed as a Z-score relative to Centres for Disease Control and Prevention 

(CDC) 2000 growth charts (92). Breast water is the water content of the breast measured by 

magnetic resonance imaging, provides measurement of amount of fibroglandular breast tissue, 

without exposure of young women to radiation (93). Breast water is strongly correlated to 

mammographic density (94). MRI: Magnetic resonance imaging; DXA: Dual energy X-ray 

absorptiometry.   
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1.5 Timing of puberty onset affects adult mammographic density  

In humans, puberty is marked by maturation of reproductive organs, linear growth acceleration, 

development of secondary sex characteristics, and, in females, the occurrence of menarche. The 

transition into puberty is driven by two physiological processes: gonadarche and adrenarche. In 

females, gonadarche is the growth and maturation of the ovary with secretion of estrogen and 

progesterone, initiation of ovulation, and menarche. Adrenarche, which typically precedes 

gonadarche, is associated with increased secretion of adrenal androgens, such as 

dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), and 

androstenedione (95). In females, increased secretion of ovarian and adrenal hormones cause 

thelarche and menarche. The age at onset of puberty and the time interval between thelarche 

and menarche, known as pubertal tempo, are dependent on many factors and highly varied 

between individuals.  

Onset of pubertal breast development, onset of menstrual cycling, and pubertal tempo, all 

impact adult mammographic density (Table 1.2). Most studies analysing the association of age 

at puberty onset with adult mammographic density have utilized age at menarche (17, 18, 96-

101). A recent study (27) found that later onset of menarche and later onset of regular cycles 

are associated with increased mammographic density. Most studies show a positive association 

between age at menarche with mammographic density (17, 18, 27, 96, 97, 99, 100, 102), but 

not all (98, 99, 101). Similarly, age at thelarche and pubertal tempo are also found to be 

associated with adult mammographic density. Early age at thelarche has been shown to be 

associated with lower adult mammographic density (27). Women who experienced a longer 

interval between thelarche and menarche (i.e., tempo), and between thelarche and regular 

menstrual cycles, have increased dense breast area, independent of age at onset of menarche 

(27). Women whose pubertal tempo was 2.9 years or longer, had 40% higher percent dense 

breast volume than women whose pubertal tempo was less than 1.6 years (103).  

Childhood weight is likely to be an important factor in the association between puberty onset 

and adult mammographic density (18, 27, 102). Multiple longitudinal and cross-sectional 

studies demonstrate that girls with higher body adiposity during childhood, undergo earlier 

pubertal development (104-108). A recent pooled analysis of five cohort studies (104, 106, 109-

111) indicated that the proportion of obese girls with early puberty was significantly greater 

than girls with average weight (112). A number of studies add support to the notion that 

increased adiposity may be a significant driving factor for early onset of puberty in girls (113-

115). However, the relationship between excess adiposity and early menarche is not universal. 

A meta-analysis based on two cohorts (116, 117) indicated no statistical difference in the age 
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of menarche between obese and normal-weight girls. Another study reported no correlation 

between age at menarche and pubertal BMI (118). Like menarche, onset of thelarche is also 

dependent on body adiposity during puberty. Studies have shown that girls with thelarche 

exhibit greater body adiposity compared to age-matched girls without thelarche (106, 108), and 

similarly, that girls with excessive adiposity more commonly have earlier thelarche compared 

to girls with normal BMI (119). However, more accurate assessment of breast development in 

obese girls is needed, as excessive subcutaneous adiposity in the breasts can be mistaken for 

breast development and thus, errors can occur in estimating the onset of puberty (120).  

Despite some minor controversy around the relationship between obesity and early menarche, 

it is clear that a certain amount and distribution of adipose tissue is necessary for the onset of 

menarche (121) and increased body adiposity is associated with earlier pubertal development 

(104-108). Body adiposity is thought to increase in mammalian females during puberty as it 

guarantees a healthy future pregnancy and maternal survival (117). Interestingly, adipose tissue 

localised to the gluteofemoral depots is associated with onset of menarche, and this specific fat 

deposit appears to be more closely associated with puberty initiation than the amount of total 

body fat (122-124). Thus, adiposity is a significant regulator of puberty onset in healthy children 

affecting the timing of thelarche and menarche (Figure 1.3). In turn, these key pubertal 

milestones, and the time interval between them, appear to affect the relative abundance of 

fibroglandular and adipose tissue within the breast. Pubertal changes in mammary gland 

development may persist into adulthood where they are observed on a mammogram as altered 

mammographic density. 
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Figure 1.3. Puberty is a key developmental stage in the establishment of adult 

mammographic density. Adiposity during childhood affects the timing of thelarche, 

menarche, and the time interval between these developmental stages (tempo). These factors 

collectively affect pubertal mammary gland development, which in turn affects the 

establishment of adult mammographic density. 

  



Chapter 1 – Literature review and aims 

Ghadge  15 

 

 
 



Chapter 1 – Literature review and aims 

Ghadge  16 

1.6 Endocrine regulators of pubertal breast development and 

mammographic density  

The onset of puberty and mammary gland development is a consequence of activation of the 

hypothalamic-pituitary axes, with the timing influenced by nutrition and genetic factors that 

affect adipose tissue deposition (Figure 1.4). The hypothalamus is activated by the production 

of kisspeptin resulting in the release of gonadotropin releasing hormone (GnRH) and growth 

hormone-releasing hormone (GHRH). In females, the anterior pituitary secretes growth 

hormone (GH) that acts on the liver to form the hypothalamic-pituitary-somatotropic axis; and 

adrenocorticotropic hormone (ACTH) that stimulates the adrenal gland to form the 

hypothalamic-pituitary-adrenal axis. In addition, luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) act on the ovaries to form the hypothalamic-pituitary-gondal (HPG) 

axis. FSH promotes ovarian biosynthesis of estrogen and LH induces ovulation (125, 126). 

Rising estrogen acts on the hypothalamus creating a negative feedback loop in this cycle (127). 

Breast development typically starts around 9 years of age and is well-progressed by the time of 

menarche (128-131). Thus, breast tissue in pre-pubertal and early pubertal girls is exposed to 

relatively lower levels of estradiol (132). However, increased body adiposity is shown to affect 

the abundance of sex hormones in girls. Increased total and free testosterone, in association 

with lower concentration of sex hormone binding globulin (SHBG), and higher fasting insulin, 

have been reported in peripubertal obese girls (133). In addition, around the time of thelarche, 

girls with higher BMI had lower circulating concentration of estradiol (128). 

1.6.1 Sex hormones 

Few studies have investigated the role of peripubertal hormones on determination of adult 

mammographic density. Irrespective of menarche status, estrogens (85, 134-138), progesterone 

(85, 134, 136, 138), testosterone (85, 135, 137-145) and androstenedione (135, 139, 142, 145, 

146) measured during puberty were found to be non-significantly associated with 

mammographic density in adult women. In contrast, elevated premenarcheal concentration of 

circulating dehydroepiandrosterone sulfate (DHEAS) is associated with increased breast dense 

area during adulthood (147). DHEAS is also found to be positively associated with growth 

factors during puberty (148), which can have substantial impact on pubertal breast development 

(149-151). DHEAS can have estradiol-like proliferative effects in an environment of low 

estrogen (152), which is typical during early puberty in girls (132). In pre-pubertal girls, prior 

to the activation of the HPG axis, DHEAS can be metabolised to estrogens in adipose tissue 

(128). This could explain the early breast development, mediated independent of ovarian 

hormones, in girls with excess adiposity (129, 153).  
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Premenarcheal SHBG is also shown to be positively associated with adult percent dense breast 

volume in premenopausal (134, 135, 137, 147, 154) and postmenopausal women (134, 146, 

155), although other studies do not support this association (139-142, 145, 156). Further, cell 

surface SHBG receptors and intracellular SHBG are detected in the breasts, which further 

suggest that SHBG could influence mammographic density via other mechanisms (157) besides 

controlling steroid hormone bioavailability. Hence, both SHBG and DHEAS could be potential 

candidates to mediate the effect of pubertal adiposity on development of adult breasts with low 

mammographic density. 

1.6.2 Growth hormone and insulin-like growth factor 1 

Growth hormone (GH) acts on both the stromal and epithelial cell components of the mammary 

gland to promote the formation of terminal end buds and ductal elongation (151, 158-160). In 

addition to pituitary secretion, GH is also produced locally in the mammary gland (161, 162). 

In mice, expression of GH mRNA and protein is detected in mammary gland epithelium, with 

maximum expression observed during puberty (160). Over-expression of GH in a transgenic 

mouse model results in precocious mammary gland development (163), while deficiency of 

functional GH leads to severe impairment of mammary gland development (164). In humans, 

autocrine GH and GH receptor mRNA and protein expression are primarily observed in the 

luminal epithelial and myoepithelial ductal cells (161, 162, 165, 166).  

Insulin-like growth factor 1 (IGF1) is believed to be a key mediator of GH signalling in 

mammary gland development (151, 158-160). This is demonstrated by the inability of GH to 

have any effect on mammary gland development in animals unable to produce IGF1 (167). 

Rodent studies have demonstrated that locally derived IGF1 promotes pubertal mammary gland 

development (168-170).  Further, the expression of GH receptor is also observed in the stroma 

(171) and it is hypothesised that the presence of GH activates the GH receptor within the stromal 

cells leading to the expression of IGF1, which further activates IGF1 receptors in the epithelium 

(172). Lower circulating concentrations of both GH and IGF1 are observed in pubertal girls 

with excess adiposity (173), however this may not reflect levels within the breast tissue. 

In adult women, case-control and cohort studies have demonstrated a positive association 

between elevated circulating concentration of IGF1 with breast cancer risk (174-179), however 

other studies have found no association (180, 181). The GH/IGF1 axis is also shown to be 

associated with mammographic density. IGF1 and GH are positively associated with percent 

mammographic density in both premenopausal and postmenopausal women, without 

adjustment for other risk factors (182).  
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Figure 1.4. Schematic diagram of the factors that initiate pubertal mammary gland 

development in girls. Nutrition and inherited genetic factors regulate the abundance of 

childhood adipose tissue and govern secretion of insulin by the pancreas, secretion of leptin, 

and adiponectin by adipose tissue, and activation of hypothalamic-pituitary axes. Activation of 

the hypothalamic-pituitary-somatotropic axis results in secretion of growth hormone-releasing 

hormone (GHRH) from the hypothalamus, followed by release of growth hormone (GH) from 

the anterior pituitary gland. The secretion of insulin-like growth factor 1 (IGF1) from the liver 

then creates a negative feedback loop in this cycle. Activation of the hypothalamic-pituitary-

adrenal axis results in secretion of adrenocorticotropic hormone (ACTH) from the anterior 

pituitary gland and dehydroepiandrosterone sulfate (DHEAS) from the adrenal gland. 

Activation of hypothalamic-pituitary-ovarian axis results in secretion of gonadotropin-releasing 

hormone (GnRH) from the hypothalamus, followed by release of luteinizing hormone (LH) and 

follicle-stimulating hormone (FSH) from the anterior pituitary gland. The secretion of sex 

hormones, estrogen and progesterone, then create a negative feedback loop in this cycle. 

Secretion of sex hormone-binding globulin (SHBG) from the liver and DHEAS from the 

adrenal gland regulates the activity of estrogen. This whole process, starting from the activated 

hypothalamus and pituitary gland, results in thelarche, menarche, and pubertal mammary gland 

development.  
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However, another study adjusted for waist circumference and only IGF1 remained significantly 

associated with percent mammographic density, and only in premenopausal women (134), 

supporting other findings that circulating concentration of IGF1 is positively correlated with 

percent mammographic density in premenopausal women, but not in postmenopausal women 

(183). Within breast tissue, IGF1 is elevated in tissue of high density compared to low density, 

with greater differences observed in women under the age of 50 compared to older women 

(184). 

1.6.3 Endocrine function of adipose tissue 

Adipose tissue is an active endocrine organ that secretes adipokines including leptin, 

adiponectin, tumour necrosis factor alpha (TNFA) and interleukin 6 (IL6). The abundance of 

adipose tissue can affect the circulating concentration of these adipokines and thus influence 

tissue development and homeostasis. Circulating leptin concentration is strongly correlated 

with abundance of gluteofemoral fat depots in human females (123), can stimulate the secretion 

of kisspeptin, and subsequently activate the HPG axis (121). On the other hand, obese 

individuals exhibit low circulating concentration of adiponectin (185, 186), an insulin-

sensitising adipokine, which affects the HPG axis via adiponectin receptors present in the 

hypothalamus, pituitary gland, and gonads (186, 187). Adiponectin acts as a negative regulator 

of puberty onset through inhibition of kisspeptin and GnRH secretion in the hypothalamus and 

inhibition of GH and LH in the pituitary gland (186-189). These findings suggest that adipose 

tissue-derived leptin and adiponectin affect initiation of puberty (121). 

Studies in animal models suggest leptin may regulate mammary gland development and 

function through direct effects on the mammary gland and also indirectly through inhibition of 

IGF1. Leptin inhibits IGF1-mediated proliferation in a bovine mammary epithelial cell line 

(190) as well as in the bovine mammary gland (191). Heavier girls have elevated circulating 

leptin (192) and lower IGF1 (193, 194), and these factors in adulthood are shown to be 

associated with lower mammographic density (134, 183, 195-197). In addition, leptin might act 

directly on mammary fibroblasts (198), thereby altering the stromal compartment of the breast 

and mammographic density (199). 

Excess adiposity is also known to establish a state of chronic low-grade inflammation 

characterised by increased inflammatory cytokines such as TNFA and IL6 (200) as well as other 

adipokines, including omentin, visfatin, resistin, and chemerin (201-204). These factors affect 

ovarian function with downstream consequences for pubertal mammary gland development and 



Chapter 1 – Literature review and aims 

Ghadge  20 

potentially mammographic density. In addition, immune signalling cytokines can act as 

paracrine regulators of pubertal mammary gland development and mammographic density.  

1.7 Paracrine regulators of pubertal breast development and 

mammographic density  

1.7.1 Stromal fibroblasts and extracellular matrix 

Fibroblasts are one of the main cell types in the mammary stroma and significantly contribute 

to the fibroglandular tissue compartment that comprises high mammographic density. During 

puberty, mammary fibroblasts around the terminal end buds become activated by estrogen and 

growth hormones and interact with epithelial cells to promote mammary gland morphogenesis 

(205). These fibroblasts actively produce factors such as TGFB, IGF1, and hepatocyte growth 

factor (HGF), which regulate epithelial cell proliferation (206-212). TGFB also regulates the 

growth and activity of fibroblasts, modulating expression of tissue remodelling factors 

including extracellular matrix (ECM) proteins, proteases, and angiogenic factors (213, 214).  

In situ, fibroblasts proliferate slowly and synthesise low levels of ECM proteins, matrix 

metalloproteinases (MMPs) that degrade ECM, and tissue inhibitor of metalloproteinases 

(TIMPs) that inhibit MMP-mediated degradation to maintain breast tissue integrity (205). 

Mammographic density is positively associated with extracellular matrix proteins produced by 

fibroblasts such as collagen, lumican, decorin, and syndecan-1 (184, 199, 215, 216). ECM 

proteins can be active players in promotion of tumorigenesis and metastasis, for example, a 

highly dense collagen matrix promotes tumour formation and progression in a mouse model 

associated with increased neutrophils and inflammatory COX2 (217-219). High 

mammographic density tissue is associated with increased TIMP3, compared to low 

mammographic density tissue in adult women (184), although this association was not found 

in another study (220). TIMP3 is expressed in the mammary stroma and acts on epithelial cells 

to promote cancer onset in mouse models (221). Further, a study in mice xenografted with 

human breast tissue (222) found that high mammographic density breast tissue significantly 

increased tumour weight, had greater proportions of high grade DCIS and metastasis of 

DCIS.com cells compared to the low mammographic density breast tissue from the same 

woman, suggesting that high mammographic density promotes tumour development and 

progression.  

Using in vitro and in vivo screening of human and murine mammary tissue samples, gene 

expression profiling of fibroblasts associated with high and low mammographic density tissue 

revealed that CD36 expression was reduced in high mammographic density-associated 
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fibroblasts (223). CD36, also known as fatty acid translocase, is involved in adipocyte 

differentiation, immune signalling, TGFB activation, and cell–ECM interactions (224, 225). 

CD36 knockout in mice caused decrease in fat accumulation and increase matrix accumulation 

(223). Taken together, these studies suggest that fibroblast-associated CD36 may be actively 

involved in regulating the abundance of adipocytes versus abundance of stromal ECM that 

determines mammographic density. 

1.7.2 Immune cells and signalling molecules 

Immune system cells and signalling molecules are essential components of the mammary gland, 

with macrophages, eosinophils, neutrophils, mast cells, and lymphocytes (T and B cells) all 

contributing to mammary gland development and function (205, 226-228). Of particular 

significance in pubertal mammary gland development, macrophages promote collagen 

fibrillogenesis, which supports the development of terminal end buds and ductal elongation 

(229). Colony stimulating factor 1 (CSF1) is a key factor responsible for the proliferation and 

survival of macrophages (230). The mammary glands of mice homozygous for a null mutation 

in Csf1 exhibit reduced number of macrophages, lower numbers of terminal end buds as well 

as reduced ductal branching and elongation (227). C-C motif chemokine ligand 2 (CCL2) is an 

inflammatory cytokine known to be a chemoattractant for monocytes and macrophages to the 

sites of inflammation (231, 232). In CCL2-overexpressing mice, the mammary gland exhibits 

increased abundance of macrophages, elevated deposition of stroma and collagen, and 

increased susceptibility to carcinogen-induced mammary cancer (233). Human and murine 

studies reported that increased abundance of inflammatory CCL2, cyclooxygenase 2 (COX2), 

IL4, and IL6, as well as macrophages, dendritic cells, and B cells are all observed in high 

mammographic density breast tissue, in comparison to tissue with low mammographic density, 

suggestive of a protumour inflammatory microenvironment (39, 215, 233-235).  

Eosinophils are detected around the developing terminal end buds (TEBs) in pubertal mouse 

mammary glands, where they promote ductal elongation and branching (227). Similarly, IL5, 

a key cytokine that promotes eosinophil differentiation and survival, is also required for ductal 

elongation (235).  However, overabundance of eosinophils due to transgenic expression of IL5 

results in delayed onset of ovarian cycling accompanied by perturbed pubertal mammary gland 

development (236). Therefore, the abundance and activity of mammary gland eosinophils 

during puberty appear to be critical for appropriate development. Eosinophils secrete eosinophil 

peroxidase, an enzyme that promotes fibroblast recruitment and establishment of collagen-rich 

ECM (237). While the role of eosinophils in establishment of mammographic density is yet to 
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be explored, eosinophil peroxidase promotes breast cancer progression in a mouse model, 

associated with increased collagen deposition and elevated COX2 (238). 

Excess adiposity enhances bioavailability of transforming growth factor beta (TGFB) (239, 

240), an anti-inflammatory cytokine with diverse roles in pubertal mammary gland 

development in mice. Epithelial cell-derived TGFB limits both proliferation and cell death of 

mammary epithelium as well as regulating local immune cell populations (241). The mammary 

glands of mice heterozygous for a null mutation in Tgfb1 exhibit increased ductal invasion, with 

increased epithelial cell proliferation during puberty (212). Stromal- or endocrine-derived 

TGFB promotes mammary gland development possibly through regulation of the HPG axis or 

through regulation of macrophage function (211, 242). TGFB signalling is reduced in breast 

tissue with high mammographic density in adult women (243, 244). 

1.8 Molecular determinants of pubertal mammary gland 

development and mammographic density  

1.8.1 Heritability and genetics 

Twin studies have provided strong evidence that percent mammographic density is partially 

heritable (245-247) and that a large proportion of variation in absolute dense area and absolute 

non-dense area is also attributed to genetic factors (248). A study comparing 571 pairs of 

monozygotic twins to 380 pairs of dizygotic twins from Australia and North America suggests 

that genetics accounts for 60-67% of the variability in all three of the mammographic density 

measures (percent, absolute dense and absolute non-dense area) when adjusted for other major 

breast cancer risk factors (245). The overlap between genetic determinants of both breast cancer 

risk and mammographic density measures is estimated to be around 14-18% (249, 250). Twin 

studies have also shown that the circulating concentration of IGF1 is strongly heritable (251, 

252). Excess pubertal adiposity is associated with lower IGF1 and lower mammographic 

density (173), suggesting this may be one role of genetic factors in regulation of pubertal 

adipose tissue deposition and development of mammographic density.  A number of common 

genetic variants are associated with mammographic density including rs3817198, which is a 

polymorphism of the gene encoding lymphocyte-specific protein 1, and rs2241716, a 

polymorphism of the gene encoding TGFB1 (250, 253-256).  

Surprisingly, elevated concentration of androgens have been observed in girls with breast 

cancer family history in comparison to girls without breast cancer family history (257). This 

suggests that elevated concentration of hormones during puberty may be an important factor 

explaining the familial clustering of breast cancer (258). Hence, it has been postulated that 
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association of elevated androgen concentrations and increased breast cancer risk is established 

during puberty and modified by breast cancer family history (258), which indicates that both 

pubertal development and genetic factors play a crucial role in breast cancer risk. However, the 

interaction between genetic factors and environmental factors in pubertal development that 

could determine adult mammographic density is still not known and will surely be multi-

factorial. 

1.8.2 Epigenetic basis 

DNA methylation can modulate gene expression without altering the DNA sequence and is 

believed to play a role in regulating homeostasis and risk of disease. Peripheral blood DNA 

hypermethylation in breast cancer susceptibility genes, such as BRCA1 and ATM is shown to 

be associated with increased breast cancer risk (259-261). Several genome-wide DNA 

methylation studies have suggested that peripheral blood DNA methylation, at both global and 

site-specific levels, is associated with breast cancer risk (262-265). An analysis of the 

association of genome-wide average methylation and epigenetic age acceleration within 

participants of the Australian Mammographic Density Twins and Sisters Study (253) found that 

genome-wide average methylation was associated with hormone-related risk factors (number 

of live births and age at first live birth), while epigenetic age acceleration was associated with 

lifestyle risk factors (BMI, smoking, and alcohol intake) and hormone-related risk factors (age 

at menarche and age at first live birth) (266).  

The association between lifestyle risk factors and epigenetic age acceleration points to the 

proposition that an unhealthy lifestyle can impact epigenetic ageing to modify breast cancer 

risk (266). Although there appears to be no association between blood DNA methylation and 

mammographic density in adult women (267), peripheral blood DNA methylation at several 

genomic locations show association with current BMI, BMI at ages 18-21 years, and BMI 

change, suggesting adiposity through the life course can impact on future breast cancer risk 

through epigenetic modifications (268). Environmental factors such as exposure to synthetic 

estrogens may also be responsible for these DNA modifications (269, 270). Twin pair 

correlations in genome-wide average DNA methylation at birth, decrease with age during 

adolescence, suggesting individual environmental exposures during early life can affect DNA 

methylation (271). Use of oral contraceptives during puberty (98, 272) or before pregnancy 

(273) is associated with increased rates of breast tissue proliferation (273), increased dense 

breast volume (98), and higher breast cancer risk (272). Thus, environmental and lifestyle 

factors, as well as endogenous and exogenous sex hormone exposure during puberty, possess 

the potential to induce epigenetic changes to modify the composition of breast tissue.  
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Epigenetic age acceleration is also postulated to predict onset of puberty. Increased epigenetic 

age acceleration was observed to be strongly associated with decreased pubertal tempo and 

earlier menarche (274). Previous studies have shown the association of timing of puberty and 

pubertal tempo with pubertal percent fibroglandular volume (102). Another study, however, 

observed that epigenetic age acceleration was positively associated with pubertal percent 

fibroglandular volume in adjusted models, but was weakened after adjusting for cellular 

heterogeneity (274). Through the existing literature, the role of epigenetic age acceleration in 

determining pubertal mammographic density is still not clear and thus needs further 

investigation.  

Estrogen receptor alpha (ERA) is a crucial transcriptional regulator that mediates the action of 

estrogen in regulating mammary gland development and function (275, 276). Variants in the 

gene encoding ERA (ESR1) are associated with increased percent fibroglandular volume in 

both premenopausal and postmenopausal women (277-279). A recent study observed that 

average ESR1 DNA methylation pattern at Tanner stage B4 is inversely associated with total 

breast volume and fibroglandular volume measured at Tanner stage B4, after adjustment of 

breast fat percentage, ESR1 DNA methylation pattern at Tanner stage B2, and cellular 

heterogeneity (280). It is hypothesised that ESR1 downregulation might increase expression of 

inhibitory factors, such as TGFB, to cause cell cycle arrest and this may result in reduced 

mammary epithelial proliferation in the later stages of breast maturation (281-283).  

Recently, a study identified that breast tissue in healthy women ages faster than blood, as 

measured by DNA methylation (284). Further, women with luminal breast cancer were 

observed to have significant epigenetic age acceleration in normal adjacent breast tissue, in 

comparison to healthy women (285). These studies suggest that breast tissue age is determined 

by exposure to endogenous and exogenous factors during a women’s lifetime. Taken together, 

the limited studies available do not provide enough evidence to support an epigenetic basis of 

mammographic density during puberty. However, if we could understand the impact of pubertal 

body adiposity on epigenetic ageing of breast tissue, epigenetic age of the breast tissue during 

puberty could be used to understand the changing internal milieu of the breasts and 

establishment of mammographic density during puberty. 
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1.9 Current controversies, conclusions and outlook  

Adolescence is a time of developmental plasticity (286, 287), and as breast tissue develops there 

is the potential for environmental and lifestyle exposures to have a significant influence on 

future breast cancer risk. Pubertal adiposity, timing of menarche, and timing of thelarche are 

all demonstrated to affect mammographic density, an important risk factor for breast cancer. 

Activation of hypothalamic-pituitary axes during puberty, genetic and epigenetic molecular 

determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling 

factors in the mammary gland are likely to act in concert to drive breast development and 

ultimately the histological structure of the adult breast (Figure 1.5). 

The interaction between established risk factors for breast cancer and mammographic density 

is currently somewhat paradoxical, and further research is required to address these 

complexities. For example, epidemiological studies suggest that earlier menarche, which is an 

established breast cancer risk factor, is associated with reduced mammographic density, which 

is protective against breast cancer. This complicated relationship between age at onset of 

menarche, mammographic density, and breast cancer risk has not been sufficiently explored in 

the published literature. However, it is possible that age at menstrual onset affects breast 

development and establishment of mammographic density via the simultaneous increase in 

adiposity, while independently increasing breast cancer risk through longer term exposure to 

ovarian hormones estrogen and progesterone with menstrual cycling. 

Another paradox lies in the relationship between adipose tissue at different stages of the life 

course and breast cancer risk. Obesity is a risk factor for breast cancer in postmenopausal 

women, but might be protective during adolescence. A key uncertainty resides in the assessment 

of pubertal body size and shape, making it difficult to discriminate between healthy adolescent 

weight gain and excessive weight gain. Whilst adipose tissue deposition is a key driver of 

puberty onset, it can be difficult to distinguish healthy pubertal weight gain from 

overweight/obesity in the published literature. For instance, the mass component of BMI 

reflects the accumulation of adipose tissue, but does not distinguish between localised 

deposition in gluteofemoral or breast depots, which is indicative of healthy pubertal weight 

gain, versus abdominal and subcutaneous depots, which characterise obesity. Thus, varied study 

approaches using different growth measures remain a barrier in synthesising a clear 

understanding of the relationship between adipose tissue deposition and mammographic 

density. Further research that specifically investigates the association between pubertal adipose 

tissue deposition at localised depots and adult mammographic density is required to address 

this uncertainty.  
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Beyond these complexities, a critical research question yet to be addressed is whether 

interventions that modify body adiposity during puberty alter adult breast cancer risk. Given 

the limitations of human studies, controlled animal experiments can provide clues regarding 

possible biological mechanisms through which pubertal development might affect adult 

mammographic density and long-term changes in risk of breast cancer. Future research in 

understanding how pubertal mammary gland development might determine adult breast 

composition and mammographic density could be a new key to reducing the incidence of breast 

cancer. 
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Figure 1.5. Schematic diagram of endocrine, paracrine, and molecular regulators of 

pubertal mammary gland development that may affect adult mammographic density. 

Endocrine hormones from adipose tissue and hypothalamic-pituitary axes, combined with 

genetic and epigenetic determinants, regulate pubertal mammary gland development and may 

affect adult mammographic density. Within the pubertal mammary gland, paracrine regulators 

associated with immune cells, stromal fibroblasts and the extracellular matrix direct the 

development of the epithelial, stromal and adipose tissue compartments that determine adult 

mammographic density. 
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1.10  Hypothesis and aims 

Mammographic density is one of the most significant risk factors for breast cancer. High 

mammographic density attributes to 29% of all breast cancer diagnoses. Breast tissue with high 

mammographic density is characterised by increased abundance of fibroglandular tissue and 

reduced abundance of adipose tissue compared to breasts of low density. Mammographic 

density is a consequence of cellular and molecular events that occur during adolescent breast 

development. Epidemiological studies show that increased BMI in adolescence is associated 

with low mammographic density as an adult and reduced lifetime risk of breast cancer. This 

suggests that adiposity during pubertal development could be a significant, and modifiable 

factor that affects adult breast health. However, the research to date has demonstrated 

epidemiological associations; causal relationships between pubertal adiposity with adult 

mammographic density and breast cancer risk have not been investigated.  

 

The studies described in this thesis aim to address the following hypothesis:  

Increased adiposity during puberty is causal in mammary gland density and cancer 

development in adulthood. 

 

 

The validity of this hypothesis was investigated by addressing the following aims: 

(1) To explore the impact of increased adiposity on mammary gland development and 

function during puberty in a mouse model. 

(2) To investigate the impact of increased pubertal adiposity on mammary gland 

development and density during adulthood in a mouse model. 

(3) To explore the effect of increased pubertal adiposity on mammary cancer development in 

adulthood in a mouse model. 

 

 



 

 

 

 

 

 

 

 

 

 

   

Materials and methods 
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2.1 Animals and general procedures  

2.1.1 Mice strains 

All animal experiments were approved by the University of Adelaide Animal Ethics Committee 

(Approval number: M-2018-045) and conducted in accordance with the Australian Code of 

Practice for the Care and use of Animals for Scientific Purposes (8th edition, 2004) (288). All 

mice were maintained in specific pathogen-free conditions with controlled 12:12 hour light-

dark cycles, and temperature at the Laboratory Animal Services Helen Mayo Animal Facility 

and The Queen Elizabeth Hospital animal facility.  

2.1.1.1 Alms1 bbb/bbb mice 

Transgenic C57BL/6JSfdAnuAlms1bbb/Apb (bbb/bbb) mice have an ENU-induced T to A 

mutation at position 6507 (exon 10) on the Alms1 gene, which results in a truncated Alms1 

protein (289).  These mice exhibit hyperphagia and increased weight gain by 5 weeks of age 

when fed normal mouse diet (290). These mice were used to model the impact of increased 

adipose tissue deposition on mammary gland development at 6 weeks (puberty) and 12 weeks 

(adulthood) of age.  

2.1.1.2 MMTV-PyMT transgenic mice 

MMTV-PyMT transgenic mice harbour the polyomavirus middle T-antigen oncogene (PyMT), 

which is driven by the mammary gland specific mouse mammary tumour virus promoter 

(MMTV) (291). Female MMTV-PyMT+/- mice on a FVB background spontaneously develop 

mammary tumours with 100% penetrance and an average latency of 6 weeks. Male MMTV-

PyMT mice were used for mating.   

2.1.1.3 PyMT-bbb/bbb mice 

Male MMTV-PyMT mice were mated with female bbb/+ mice. Male PyMT-bbb/+ offspring 

were mated with female bbb/+ mice to generate female PyMT-control (PyMT-bbb/+ or PyMT-

+/+) and PyMT-bbb/bbb mice. Female offspring that are PyMT-bbb/bbb spontaneously 

develop mammary tumours and gain weight as they age. These mice were used to model the 

effect of increased pubertal adiposity on mammary cancer development in adulthood. PyMT-

control mice were littermate controls that did not gain excess weight. 
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2.1.2 General animal procedures 

2.1.2.1 Genotyping mice 

2.1.2.1.1 Tail tip digestion  

Tail tips were collected from weaned 3 week old mice in sterile 1.5 mL Eppendorf tubes. The 

tissue was digested in 250µL of digestion buffer (Table 2.1) with 0.1mg proteinase K (Sigma-

Aldrich, Cat No. P2308) added, at 55°C for 4 hours. Proteins and cellular debris were 

precipitated by adding 4M ammonium acetate (Merck; Cat No. A1542), followed by incubation 

at room temperature for 25 minutes and centrifugation at 14,000g for 10 minutes. The aqueous 

layer was transferred to a new Eppendorf tube, and DNA was precipitated by adding 2x sample 

volumes of 100% ethanol (Sigma-Aldrich, Cat No. E7023). DNA was pelleted by 

centrifugation at 14,000g for 10 minutes, followed by rinsing the pellet with 70% ethanol. The 

pellet was air-dried and resuspended in 250µL of PCR-grade water (ThermoFisher Scientific, 

Cat No. 10977015). Extracted genomic DNA was stored at -20°C. 

2.1.2.1.2 Genotyping conditions for Alms1 transgene 

To screen for the Alms1 gene mutation, the extracted genomic DNA was first PCR amplified 

using mutation-specific primers (forward: 5’AAAGCCCCACATGTAGATCG 3’, reverse: 5’ 

TGAGGTATATGCTGAACCTCATAT 3’) by PCR kit (Invitrogen; Cat No. 10342-053). The 

PCR reaction contained 1x DNA polymerase reaction buffer, 2mM MgCl2, 100µM dNTPs 

(Invitrogen, Cat No. R0192), 5µM each forward and reverse primers (Integrated DNA 

technologies), 1.5U Taq polymerase, and 9.7µL extracted DNA in a final reaction volume of 

50µL. PCR conditions were 94°C for 2 minutes, followed by 38 cycles of 94°C for 30 seconds, 

59°C for 1 minute, 72°C for 2 minutes; and 72°C for 5 minutes.  

PCR products were then digested using PsiI restriction digestion kit (New England Biolabs, Cat 

No. R0744S). The restriction digestion reaction containing 1x Cut Smart buffer, 8U PsiI 

restriction enzyme, and 2µL PCR product in a final reaction volume of 20µL was incubated at 

37°C for 3 hours.  

The digested products were detected by gel electrophoresis. Digested products containing 1x 

loading buffer (New England Biolabs, Cat No. R0744S) were run on 4% agarose gel with 

GelRed (Gene target solutions, Cat No. 41003) in TAE (Tris-acetate EDTA) buffer (Table 2.1) 

at 100V for 2 hours. The size of the digested products was estimated on the gel by using a DNA 

ladder (Invitrogen, Cat No. 15628019). The gels were visualised under UV light using Gel 

DocTM EZ Imager (BioRad). Wildtype control mice DNA produced a single 190bp band, 
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heterozygous bbb/+ produced 190 and 200bp bands, and homozygous bbb/bbb produced a 

single 200bp band (Figure 2.1). 

Table 2.1. Composition of buffers and solutions used for animal experiments. 

Digestion buffer  50mM Tris (Sigma-Aldrich; T1378), 20mM EDTA (Sigma-

Aldrich; Cat No. E6758), 120mM NaCl (Sigma-Aldrich; Cat 

No. S9888), and 1% (w/v) SDS (Sigma-Aldrich; Cat No. 

L3771) dissolved and made up to a volume of 1L with H2O at 

pH = 8. Stored at room temperature. 

10x TAE buffer 48.4g Tris base (Sigma-Aldrich, T1378), 20mL 0.5M EDTA 

(Sigma-Aldrich, Cat No. E6758), 11.42mL glacial acetic acid 

(Merck, CAS No. 64-19-7) dissolved and made up to a volume 

of 1L with H2O.  For 1x stock, diluted 1:10 with H2O. Stored 

at room temperature. 

Avertin Dissolved 1g 2,2,2-tribromomethanol (Sigma-Aldrich, Cat No. 

T48402) in 1mL 2-methyl-2-butanol (Sigma-Aldrich, Cat No. 

152463), then volume made up to 50mL with H2O. Aliquots 

stored at -20°C.  
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Figure 2.1. Genotyping of Alms1 bbb/bbb by PsiI restriction digestion. Genomic DNA of 

control and bbb/bbb mice was first amplified using Alms1 gene-specific primers by PCR, and 

then digested by PsiI restriction enzyme. Wildtype control mice (+/+) DNA produced a single 

190bp band, heterozygous bbb/+ (+/-) produced 190 and 200bp bands, and homozygous 

bbb/bbb (-/-) produced a single 200bp band. 
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2.1.2.1.3 Genotyping conditions for MMTV transgene 

Presence of the MMTV-PyMT allele was detected by PCR amplification using allele-specific 

primers. The extracted genomic DNA was PCR amplified using primers (MMTV-490 forward: 

5’ CGTCCAGAAAACCACAGTCA 3’, MMTV-685 reverse: 5’ 

CCGCTCGTCACTTATCCTTC 3’) by PCR kit (Invitrogen; Cat No. 10342-053). The PCR 

reaction contained 1x DNA polymerase reaction buffer, 2.5mM MgCl2, 100µM dNTPs 

(Invitrogen, Cat No. R0192), 5µM each forward and reverse primers (Integrated DNA 

technologies), 0.55U Taq polymerase, and 5µL extracted DNA in a final reaction volume of 

25µL. PCR conditions were 94°C for 5 minutes, followed by 35 cycles of 94°C for 30 seconds, 

55°C for 30 seconds, 72°C for 1 minute; and 72°C for 7 minutes.  

PCR products were detected by gel electrophoresis. PCR products containing 1x loading buffer 

(ThermoFisher Scientific, Cat No. R0611) were run on 4% agarose gel with GelRed (Gene 

target solutions, Cat No. 41003) in TAE buffer at 100V for 1 hour. The size of PCR products 

was estimated on the gel by using a DNA ladder (Invitrogen, Cat No. 15628019). The gels were 

visualised under UV light using Gel DocTM EZ Imager (BioRad). Mice with MMTV transgene 

were confirmed by the presence of a 195bp product (Figure 2.2).  

2.1.2.2 Estrous cycle tracking 

The estrous cycles in adult control and bbb/bbb mice were tracked by vaginal cytology, as 

described previously (292). In brief, the vagina was flushed with 20µL of sterile phosphate 

buffered solution (PBS) (Sigma-Aldrich; Cat No. P3813) and the recovered fluid was then 

pipetted on a glass slide and coverslipped. The cellular components of the collected smears 

were examined under a phase contrast microscope, and the relative proportion of cell types 

determined the estrous cycle stage for each mouse (Figure 2.3, Table 2.2). Vaginal smears were 

collected from mice daily from 8 to 12 weeks of age. Mice were euthanized at the estrus phase 

of the estrous cycle, and tissues were collected.  

2.1.2.3 Bromodeoxyuridine (BrdU) administration 

Pubertal bbb/bbb and control mice were intraperitoneally injected with 1mg of BrdU solution 

(Sigma-Aldrich, Cat No. B5002) 1 hour prior to sacrifice and tissue collection. The BrdU In-

situ Detection kit (BD Pharmingen, Cat No. 550803) containing a specific biotinylated anti-

BrdU antibody was used to detect proliferating epithelial cells in tissue sections, according to 

the manufacturer’s instructions (see section 2.2.4).  
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Figure 2.2. Genotyping MMTV transgene by PCR. Genomic DNA of PyMT-control and 

PyMT-bbb/bbb mice was amplified using MMTV specific primers by PCR, and presence of a 

195bp product confirmed the mice carrying the MMTV-PyMT transgene. Control (+) is the 

DNA of pre-confirmed MMTV-positive mice that produced a single 195bp band and control (-

) is the no template control. 
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Figure 2.3. Determination of estrous cycle stages by vaginal cytology. Representative 

images of vaginal cytology at (A) proestrus; (B) estrus; (C) metestrus; and (D) diestrus stages 

of the mouse estrous cycle. N: nucleated epithelial cells, L: leukocytes, and C: cornified cells. 

Image adapted from (293). 
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Table 2.2. Classification of estrous cycle stages by cellular components in vaginal smears. 

 
Cell density: 0 = none; + = few; ++ = moderate; +++ = heavy; - - = low number of cells 
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2.1.2.4 Tumour detection and monitoring 

PyMT-control and PyMT-bbb/bbb mice were monitored twice a week for tumour development 

by palpation. In brief, mice were gently restrained by grasping the scruff of the neck between 

the thumb and the forefinger, and the base of the tail with the little finger. To identify any 

tumour, mice were palpated from first mammary gland to the tenth mammary gland. After the 

identification of the first mammary tumour, the tumour growth was monitored by measuring 

the length and width of the tumour. Tumour volumes were calculated as:  

Tumour volume (mm3) = (length x width x width x 𝜋)/6 

Mice were sacrificed at 18 weeks of age unless the tumour volume exceeded 2000mm3, in that 

case mice were euthanised before 18 weeks of age. 

2.1.2.5 Blood collection 

Prior to humane killing, blood was collected from mice under deep anaesthesia by cardiac 

puncture. Firstly, mice were injected intraperitoneally with 0.5 mL of 2% Avertin (Table 2.1). 

After confirming lack of reflex by toe pinch, up to 500µl to 1mL of blood was collected directly 

from the heart. Blood was centrifuged at 10,000g for 10 minutes. Serum was collected in a new 

sterile Eppendorf tube and stored at -80°C. 

2.2 Histology and Immunohistochemistry  

2.2.1 Carmine alum staining 

From the same mouse, fourth pair mammary glands were used for histology and 

immunohistochemistry analysis, and third pair mammary glands were used for real-time PCR 

analysis (section 2.3). Fourth pair mammary glands were collected from bbb/bbb and control 

mice aged 6 weeks and 12 weeks. The mammary glands were spread onto a glass slide and 

fixed in Carnoy’s fixative (60% ethanol, 30% chloroform (ChemSupply, Cat No. CA038) and 

10% glacial acetic acid (ChemSupply, Cat No. AA009)) overnight. The slides were then washed 

with 70% ethanol and rinsed with MilliQ water for 5 minutes. The slides were stained with 2% 

carmine alum (Sigma-Aldrich, Cat No. C6152) overnight. Stained whole-mounts were washed 

with 70% ethanol for 15 minutes, twice with 100% ethanol (ChemSupply, Cat No. EA043) for 

15 minutes each. Slides were cleared in xylene and mounted with Entellan mounting media 

(Proscitech, Cat No. IM0225).  

The mammary gland whole-mounts were imaged using an Olympus SZ61 stereo microscope. 

Ductal invasion area, ductal length, branching, and number of terminal end buds were measured 
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using ImageJ software. Ductal invasion area was calculated by measuring the area invaded by 

the ducts into the mammary adipose tissue from the lymph node. Ductal length was calculated 

as the length from the nipple to the furthest duct. Branching was calculated as the number of 

branch points per millimetres of duct. Only terminal end bud structures of size greater than 

100µm were included in quantification (294). 

2.2.2 Tissue embedding and sectioning  

Tissues collected for histology were fixed in neutral buffered formalin (Australian Biostain; 

Product code: ANBFC). Tissues were then washed in 1X phosphate buffered saline (Sigma-

Aldrich; Cat No. P3813) overnight before storing in 70% ethanol until tissue processing. Tissue 

was processed using the Excelsior AS Tissue Processor (ThermoFischer Scientific) with the 

following protocol: 60 minutes in 70% ethanol, 60 minutes in 85% ethanol, 60 minutes in 90% 

ethanol, 60 minutes in 90% ethanol, 2 x 60 minutes in 100% ethanol, 2 x 60 minutes in xylene 

(ChemSupply; Cat No. 158775000) and held in paraffin wax at 62°C under vacuum conditions 

until embedding. Tissues were embedded into the paraffin wax blocks and cut into 5µm thick 

sections using a microtome (Leica Biosystems). Tissue sections were allowed to bond onto the 

glass slides on a 37°C heating block for 30 minutes and then stored at room temperature.  

2.2.3 Haematoxylin and eosin staining 

Paraffin-embedded tissue sections cut at 5µm thickness using a microtome were stained with 

haematoxylin and eosin for histological analysis. Briefly, tissue sections were dewaxed in 

xylene, and rehydrated subsequently through 100%, 90%, 70% and 50% ethanol. Slides were 

stained with haematoxylin (Gills No.2, Sigma-Aldrich; Cat No. GHS232) and counterstained 

with eosin (Sigma-Aldrich; Cat No. HT110132). Sections were dehydrated subsequently 

through 90% and 100% ethanol, and cleared in xylene, before mounting with Entellan mounting 

media. Stained slides were imaged using Nanozoomer 1.0 (Hamamatsu, Shizouka, Japan) at 

zoom magnification of 40X. 

2.2.3.1 Adiposity assessment 

Images of haematoxylin and eosin-stained mammary gland and visceral adipose tissue sections 

of pubertal and adult mice were used to measure adiposity. Average area of adipocytes, number 

of adipocytes per area, and frequency of adipocyte size were manually quantified using 

NanoZoomer Digital Pathology Image (ndpi) software (Hamamatsu, Shizouka, Japan). Four 

random areas in a tissue section from each mouse were selected for quantification. Area of three 

hundred adipocytes in mammary gland tissue sections and area of two hundred adipocytes in 

visceral adipose tissue sections was quantified to determine the average area of adipocytes in 



Chapter 2 – Materials and methods 

Ghadge  40 

mammary gland and visceral adipose tissue respectively, for each mouse. The adipocyte size 

cut-off point is defined by approximately 10th percentile of frequency distribution of adipocyte 

area in controls (bbb/+ or +/+), which was ≤1000µm2 for small adipocytes and >1000µm2 for 

large adipocytes (295). Frequency of adipocytes was estimated for adipocyte area of ≤1000µm2 

versus >1000µm2.  

2.2.3.2 Pathological assessment of tumours 

Haematoxylin and eosin-stained mammary tumours from PyMT-control and PyMT-bbb/bbb 

mice were assessed by a veterinary pathologist (Dr Lucy Woolford) blinded to mouse genotype. 

The primary mammary tumours were assessed for tumour grade, cytological atypia, and tumour 

necrosis.  

2.2.4 BrdU staining 

The BrdU In-situ Detection kit (BD Pharmingen, Cat No. 550803) containing a specific 

biotinylated anti-BrdU antibody was used to detect proliferating epithelial cells, according to 

the manufacturer’s instructions. BrdU staining to detect BrdU-positive proliferating epithelial 

cells in terminal end buds was performed on tissue sections of mammary glands of pubertal 

bbb/bbb and control mice. Tissue sections were dewaxed in xylene, and rehydrated 

subsequently through 100%, 90%, 70% and 50% ethanol. Endogenous peroxidase activity was 

blocked by incubating the slides in 3% hydrogen peroxide (ChemSupply; Cat No. HA154) in 

PBS. After rinsing the slides in PBS, slides were incubated with antigen retrieval solution from 

the kit. The biotinylated anti-BrdU antibody was used at 1:10 dilution and incubation for 1 hour 

in a humidified chamber. Slides were washed thrice with PBS and Streptavidin-HRP solution 

was applied on the sections for 30 minutes at room temperature. Antibody binding was detected 

using 3,3’-diaminobenzidine substrate solution (Dako, Cat No. K3467) according to the 

manufacturer’s instructions. Sections were counterstained with haematoxylin and dehydrated 

subsequently through 90% and 100% ethanol, cleared in xylene, and mounted with Entellan 

mounting media (Proscitech; IM0225). Negative controls were the adjacent serial tissue section 

stained with only secondary antibody. Stained slides were imaged using a Nanozoomer 1.0 

(Hamamatsu, Shizouka, Japan) at zoom magnification of 40x.  

To quantitate BrdU-positive proliferating cells, three random terminal end buds were selected 

in a tissue section from each mouse. The number of BrdU-positive cells was manually counted. 

All quantification was conducted by an assessor blinded to the mouse genotype.   
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2.2.5 F4/80 staining of paraffin embedded tissues 

Mammary glands and visceral adipose tissue were collected from bbb/bbb and control mice at 

puberty and adulthood. F4/80 staining to detect F4/80-positive macrophages was performed on 

5µm sections mounted on glass slides. Tissue sections were dewaxed in xylene, and rehydrated 

subsequently through 100%, 90%, 70% and 50% ethanol. Sections were incubated with a 

quenching solution (50% (v/v) methanol (ChemSupply; Cat No. MA004-2) and 5% (v/v) 

hydrogen peroxide (ChemSupply; Cat No. HA154) in water) to inactivate endogenous 

peroxidase activity. Tissue sections were then incubated with 15% normal rabbit serum (Sigma-

Aldrich; Cat No. R9133) in PBS at 37°C for 30 minutes to block non-specific antibody binding. 

The primary antibody (rat anti-mouse F4/80 (Ebioscience; Cat No. 14480182)) was used at a 

dilution of 1:50 in 1.5% normal rabbit serum and incubated at 4°C overnight. After washing the 

slides with PBS, sections were incubated with secondary antibody (biotinylated rabbit anti-rat 

IgG antibody (Vector Laboratories; Cat No. BA4000)) at a dilution of 1:200 dilution for 1 hour 

at room temperature. Antibody binding was detected using Vectastain ABC Elite kit (Vector 

Laboratories; Cat No. VEPK6100) and 3,3’-diaminobenzidine (Dako; Cat No. K3467) 

according to the manufacturer’s instructions. Sections counterstained with haematoxylin and 

dehydrated subsequently through 90% and 100% ethanol, and then xylene, were mounted with 

Entellan mounting media (Proscitech; Cat No. IM0225). Negative controls were included; and 

were the adjacent serial tissue sections stained with only secondary antibody. Stained slides 

were imaged using a Nanozoomer 1.0 (Hamamatsu, Shizouka, Japan) at zoom magnification 

of 40x.  

To assess the number of F4/80-positive macrophages around terminal end buds in pubertal mice 

and in stroma around ducts in adult mice, three random terminal end buds and three random 

ducts were selected for quantification respectively. To quantify F4/80-positive macrophages in 

the mammary gland adipose tissue and visceral adipose tissue sections, four random areas 

containing F4/80-positive staining were measured across the entire tissue section. The number 

of positively stained cells was manually counted. All quantification was conducted by an 

assessor blinded to mouse genotype.   

2.2.6 Masson’s trichrome staining 

Paraffin-embedded tissue sections were stained with Masson’s trichrome stain to detect 

collagen deposition. The Masson’s trichrome staining kit (Australian Biostain; Product code: 

AMT.K) was used to detect collagen deposition in the mammary gland tissue sections, 

according to the manufacturer’s instructions. Tissue sections were dewaxed in xylene, and 

rehydrated subsequently through 100%, 90%, 70% and 50% ethanol. Slides were then fixed in 
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Bouin’s fluid from the kit for 1 hour. After washing the slides with running water, sections were 

stained with Weigert’s haematoxylin solution for 10 minutes. Slides were rinsed with 80% 

ethanol and immersed in Biebrich Scarlet solution for 2 minutes, followed by washing with 

water. Mammary gland tissue sections of pubertal bbb/bbb (and wildtypes) were stained with 

Light Green stain and sections of adult bbb/bbb (and controls) were stained with Aniline blue 

stain, according to the manufacturer’s instructions. Excess staining was cleared in 1% glacial 

acetic acid.  Sections dehydrated subsequently through 90% and 100% ethanol, and then xylene, 

were mounted with Entellan mounting media (Proscitech; Cat No. IM0225). Stained slides were 

imaged using a Nanozoomer 1.0 (Hamamatsu, Shizouka, Japan) at zoom magnification of 40x. 

The images were analysed using NanoZoomer Digital Pathology Image (ndpi) software 

(Hamamatsu, Shizouka, Japan) to estimate thickness of collagen (µm) deposited around three 

random ducts in a mammary gland tissue section for each mouse. Quantification was conducted 

by an assessor blinded to mouse genotype.   

2.3 Real time PCR analysis  

2.3.1 RNA extraction 

Total RNA was extracted from mammary gland and mammary tumours using TRIzol 

(Invitrogen; Cat No. 15596026). Briefly, tissue was transferred into a new sterile Eppendorf 

tube containing 0.6g of 1.4mm ceramic beads (Qiagen; Cat No. 13113-50) and 1mL TRIzol 

and were homogenised using a Powerlyser 24 homogeniser (MoBio, USA) at 30Hertz for 5 

minutes. Samples were incubated on ice before adding 200µL chloroform (Sigma-Aldrich; Cat 

No. 288306). Samples were vigorously mixed by manual shaking and incubated on ice for 15 

minutes. Samples were centrifuged at 11,000g at 4°C for 15 minutes, and the top aqueous layer 

containing RNA was transferred to a new sterile Eppendorf tube. Approximately equal sample 

volumes of isopropanol (Sigma-Aldrich; Cat No. I9516) was added and incubated overnight at 

-20°C. Samples were then centrifuged at 11,000g at 4°C for 30 minutes. The recovered RNA 

pellet was washed twice with ice cold 70% ethanol, and centrifuged at 11,000g at 4°C for 10 

minutes each. The RNA pellet was air-dried for 30 minutes and resuspended in 50µL of RNase-

free water (ThermoFisher Scientific; Cat No. 10977015).  

To eliminate DNA contamination, samples were treated with DNase using a TURBO DNA-

free kit (Life Technologies; AM1906) according to the manufacturer’s instructions. In brief, 

5µL of 10x TURBO DNase buffer and 1µL of TURBO DNase was added to the RNA sample 

and incubated at 37°C for 30 minutes. To inactivate the DNase enzyme, 5µL of DNase 

Inactivation Reagent was added, and samples were incubated at room temperature for 5 minutes 
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with occasional mixing. The samples were then centrifuged at 10,000g at 4°C for 1.5 minutes, 

and RNA solution was transferred to a new sterile Eppendorf tube.  

The extracted RNA was quantified using Nanodrop Spectrophotometer 2000. The purity of the 

RNA samples was confirmed by absorbance ratios at 260/280. All extracted RNA samples were 

deemed pure (ie with absorbance ratios of ~2.0) and included in downstream analyses.  

2.3.2 RNA storage by precipitation 

For long-term storage of samples, RNA was precipitated with 2.5x sample volumes of 100% 

ethanol and 0.1x sample volume of 3M sodium acetate (ThermoFisher Scientific; Cat No. 

AM9740). The tube contents were mixed and stored at -20°C. To recover RNA, samples were 

centrifuged at 11,000g at 4°C for 20 minutes. The RNA pellet was washed twice with ice cold 

70% ethanol, and centrifuged at 11,000g at 4°C for 10 minutes each. The RNA pellet was air-

dried for 30 minutes and resuspended in 50µL of RNase-free water.  

2.3.3 Complementary DNA (cDNA) preparation 

For mammary gland and mammary tumours, cDNA was reverse transcribed from 750ng of 

RNA using iScript cDNA synthesis kit (Bio-Rad; Cat No. 1708891) according to the 

manufacturer’s instructions. The reaction contained 1x iScript reaction mix and 1µL of iScript 

reverse transcriptase in a 20µL final reaction volume. Reactions were then incubated at 25°C 

for 5 minutes, 42°C for 25 minutes, and 85°C for 5 minutes. The cDNA was then diluted 1:10 

in RNase-free water and stored at -20°C.  

2.3.4 Quantitative real-time PCR 

Real-time PCR amplification was performed on a Bio-Rad CFX96 using SYBR Green PCR 

Master Mix (Bio-Rad; Cat No. 1725271). Sequences of the primer pairs (Integrated DNA 

Technologies) specific to mouse genes used in this study are listed in Table 2.3. The reactions 

contained 1x SYBR green master mix, 4µM each forward and reverse primers, and 2µL cDNA 

template in a final reaction volume of 10µL. PCR conditions were 95°C for 10 minutes, then 

44 cycles of 95°C for 15 seconds, 60°C for 15 seconds, 72°C for 30 seconds. 

The gene expression for each sample was measured in triplicate and defined as the average of 

number of cycles required to reach threshold (Ct). Normalised gene expression was then 

calculated by 2^(-∆∆Ct) method, relative to the expression of a housekeeping gene, Rpl13a. 

Three housekeeping genes, Rpl13a, Gapdh, and Actb were assessed to determine a suitable 

endogenous reference gene for these studies. The expression of Gapdh and Actb was found to 

be highly altered within genotype groups. Therefore, Gapdh and Actb were not used as the 
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endogenous reference gene for normalization of real-time PCR data. The housekeeping gene 

Rpl13a had an invariable expression within the genotype groups, thus, it was used as the 

endogenous reference gene for these studies.  

2.4 Cytokine analysis  

Cytokine concentrations in serum collected from adult bbb/bbb and control mice were 

quantified by multiplex assay. In addition, protein was extracted from whole mammary glands 

of bbb/bbb and control mice at puberty and adulthood for cytokine detection and measurement. 

Tissue was homogenised in protein extraction buffer containing 500mM Tris-HCl (Sigma-

Aldrich; Cat No. T1378), 200mM NaCl (Sigma-Aldrich; Cat No. S9888), and 10mM CaCl2 

(Sigma-Aldrich; C1016), with one tablet of EDTA-free protease inhibitor (Roche Diagnostics; 

Cat No. 11836153001). The homogenised tissue was centrifuged at 14,000g at 4°C for 20 

minutes. The top fat layer was discarded, and the aqueous layer was collected in a new 

Eppendorf tube. The aqueous solution was homogenised again after adding 10% Triton X-100 

(Bio-Rad; Cat No. T8787). Samples were centrifuged at 14,000g at 4°C for 20 minutes, and the 

aqueous layer was collected in a new Eppendorf tube after discarding the top fat layer. This 

process was repeated until the top fat layer was completely depleted from the samples. Protein 

concentration was estimated using Bradford reagent assay (Bio-Rad; Cat No. 5000006), 

according to the manufacturer’s instructions. The protein extracts were stored at -80°C until 

use. 

The concentration of the respective cytokines in the mammary gland protein extracts and serum 

was quantified using Milliplex® MAP mouse adipocyte magnetic bead assay (Millipore; Cat 

No. MADCYMAG-72K), as per the manufacturer’s instructions. The cytokines detected in the 

extracts are as follows: adiponectin, leptin, IL6, CCL2, PAI1 (plasminogen activator inhibitor 

1), resistin and TNFA. All sample measurements were performed in a single assay. The inter-

assay coefficients of variation were lower than 15%. The minimum detection limits of the assay 

were 1.9 pg/mL adiponectin, 2.8 pg/mL IL6, 2.2 pg/mL leptin, 4.0 pg/mL CCL2, 2.3 pg/mL 

PAI1, 2.9 pg/mL resistin, and 6.3 pg/mL TNFA. The measured cytokine concentrations are 

presented as picograms per milligram of protein (pg/mg). 

2.5 Statistical analyses 

All statistical analyses were performed using SPSS Statistics version 24 software (IBM 

Corporation, USA) with consultation from a statistician (Ms Suzanne Edwards, Adelaide 

Health Technology Assessment, University of Adelaide). Results were considered statistically 



Chapter 2 – Materials and methods 

Ghadge  45 

significant at p<0.05. An asterisk (*) identified that data measures were significantly different 

between two groups. 

Data are presented as mean+SEM (standard error of mean) and analysed using a linear 

regression model to account for within group variability. All molecular experimental data such 

as Luminex assay and RT-PCR analysis data are presented as box-plots with median in between 

the first quartile and third quartile and analysed using a linear regression model to account for 

within group variability and skewness of the data. 

Kaplan Meier’s survival analyses were performed to investigate the difference in survival with 

time of detection of first palpable tumour in Alms mice crossed with the MMTV-PyMT tumour 

mouse model. LogRank test was performed to compare the survival curves of each group. 
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Table 2.3. Real-time PCR primer pairs specific to mouse genes used to quantify gene 

expression in mammary glands and mammary tumours in mice. Rpl13a is the 

‘housekeeping’ reference gene highlighted in bold. 
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3.1 Introduction 

Puberty is a critical developmental stage in girls that can affect the chances of developing breast 

cancer in adulthood. Epidemiological studies have consistently demonstrated an inverse 

association of body adiposity during puberty with adult breast cancer risk (21-26). Compared 

to the median BMI-percentile (20.7 kg/m²), a BMI over 22.3 kg/m² (75th BMI-percentile) at 

age 18 is associated with reduced lifetime risk of breast cancer, adjusted for adult BMI (71, 90, 

296). BMI-percentiles are an age-appropriate BMI scale that is used for adolescents to 

compensate for the changes in weight and height that occur as part of normal pubertal growth 

and development. The association between pubertal adiposity and adult breast cancer risk may 

be mediated through mammographic density (20, 79, 80). 

Mammographic density is a well-established risk factor for breast cancer. Thirty nine percent 

of premenopausal and 26% of postmenopausal breast cancers are attributed to high 

mammographic density (297). Puberty is a key developmental stage in the establishment of 

adult mammographic density. Endocrine and paracrine signalling that occurs during puberty 

drive the development of epithelial, stromal, and adipose tissue in the breast (7-12). The relative 

proportion of these tissue compartments determines the radiological appearance of the adult 

breast and thus mammographic density.  

A number of studies have shown an inverse association between pubertal adiposity and adult 

mammographic density (13, 14, 16-19). For example, high BMI at ages 7-13 years is inversely 

associated with adult mammographic density (19). Compared to the median BMI-percentile 

(20.7 kg/m²), a BMI over 22.3 kg/m² (75th BMI-percentile) at age 18 is associated with a 45% 

decrease in adult mammographic density, adjusted for adult BMI and timing of menarche (88). 

Overall, the above studies demonstrate that increased pubertal body adiposity is associated with 

reduced mammographic density and breast cancer risk in adult women.  

Although these epidemiological studies demonstrate significant associations between pubertal 

adiposity, adult mammographic density, and breast cancer risk, causal relationships are yet to 

be established. Currently, it remains unclear whether pubertal adiposity is causal in adult 

mammographic density and breast cancer risk. To begin to address this question, we 

investigated the impact of increased adiposity on mammary gland development and function 

during puberty in a mouse model. We used the Alms1 bbb/bbb mouse model to address this 

question. Female bbb/bbb mice exhibit hyperphagia, resulting in increased body weight relative 

to wildtype (+/+) and heterozygous (bbb/+) littermates from 5 weeks of age leading to obesity, 

hyperinsulinemia, and dyslipidemia at 14 weeks of age (290). The mice progressively gain more 
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adipose tissue when fed a normal chow diet; they do not require a high-fat diet for them to gain 

weight. Hence, bbb/bbb mice are an ideal mouse model to study the impact of healthy weight 

gain and adiposity during puberty.  

We hypothesised that bbb/bbb female mice will exhibit increased adiposity during puberty 

compared to controls (bbb/+ or +/+), and this will impact mammary gland development. In 

this chapter, we investigated the impact of increased adiposity on development of terminal end 

buds and abundance of macrophages in the mammary gland. Further, to understand the effect 

of increased pubertal adiposity on the mammary gland microenvironment, we assessed protein 

and gene expression of cytokines including leptin, IL6, TNFA, and CCL2 in the mammary 

glands. Results from this chapter demonstrate that increased adiposity in bbb/bbb mice 

promotes mammary gland development, resulting in increased number of terminal end buds, 

number of proliferating epithelial cells, and abundance of macrophages, compared to controls. 

3.2 Results 

3.2.1 Female bbb/bbb mice exhibit increased mammary gland adiposity during 

puberty 

To investigate the impact of increased adiposity during puberty on mammary gland 

development, controls (bbb/+ or +/+) and bbb/bbb mice were fed a normal mouse diet ad 

libitum until 6 weeks of age. Mice were euthanised and then weighed and dissected. Mammary 

glands and visceral adipose tissue were collected from these mice. At puberty i.e., 6 weeks, 

bbb/bbb mice did not exhibit a statistically significant gain in body weight, compared to 

controls (p=0.32) (Figure 3.1.A). Weight of visceral adipose tissue (p=0.27) (Figure 3.1.B) and 

total weight of fourth pair mammary glands (p=0.47) (Figure 3.1.C) was not significantly 

different between the two genotypes.   

To determine whether controls and bbb/bbb mice exhibit differences in adiposity, we 

characterised hematoxylin-eosin stained fourth pair mammary gland adipose tissue and visceral 

adipose tissue. The adipocyte size in the mammary adipose tissue was significantly increased 

in bbb/bbb mice compared to controls (p<0.001) (Figure 3.2.A, B). Consistent with adipocyte 

size, number of adipocytes per area was significantly reduced in bbb/bbb mice compared to 

controls (p=0.017) (Figure 3.2.C). Further, percent frequency of smaller adipocytes (≤1000 

µm2) versus larger adipocytes (>1000 µm2) were estimated in the mammary gland adipose 

tissue of both genotypes. The mammary gland adipose tissue of bbb/bbb mice was 

predominantly occupied by larger adipocytes compared to controls (p<0.001) (Figure 3.2.D). 

On the other hand, the mammary gland adipose tissue of controls had relatively smaller 
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adipocytes population than bbb/bbb mice (p<0.001) (Figure 3.2.D). These results demonstrate 

that bbb/bbb mice exhibit increased mammary gland adiposity during puberty.  

In contrast to mammary gland adipose tissue, the adipocyte size in visceral adipose tissue was 

similar in controls and bbb/bbb mice (p=0.952) (Figure 3.3.A, B). No statistically significant 

difference was observed in the number of adipocytes per area in bbb/bbb mice compared to 

controls (p=0.788) (Figure 3.3.C). This result was also reflected in analysis of percent 

frequency. Percent frequency of either smaller adipocytes (p=0.943) or larger adipocytes 

(p=0.943) was not significantly different between both genotypes (Figure 3.3.D). 
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Figure 3.1. Relative weights of female control and bbb/bbb mice at puberty. Mice were fed 

normal mouse diet ad libitum till 6 weeks of age, euthanised, and then weighed and dissected 

to collect visceral adipose tissue and fourth pair mammary glands. (A) Total body weight. (B) 

Weight of visceral adipose tissue. (C) Total fourth pair mammary glands weight. Total fourth 

pair mammary glands weight is the combined weight of left and right fourth pair mammary 

glands. Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and Green: bbb/bbb (n=9). Data are 

presented as mean+SEM and analysed using linear regression model with statistical 

significance at p<0.05. 
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Figure 3.2. Mammary gland adiposity in control and bbb/bbb mice at puberty. (A) 

Representative images of hematoxylin-eosin stained mammary gland adipose tissue of fourth 

pair mammary glands of controls and bbb/bbb mice. Scale bars: 50 µm. (B) Average adipocyte 

area. (C) Number of adipocytes per area. (D) Frequency of smaller adipocytes (≤1000 µm2) 

versus larger adipocytes (>1000 µm2). Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and 

Green: bbb/bbb (n=9). Data are presented as mean+SEM and analysed using linear regression 

model. * indicates statistical significance at p<0.05. 
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Figure 3.3. Deposition of visceral adipose tissue in control and bbb/bbb mice at puberty. 

(A) Representative images of hematoxylin-eosin stained visceral adipose tissue collected from 

the abdominal cavity of controls and bbb/bbb mice. Scale bars: 50 µm. (B) Average adipocyte 

area. (C) Number of adipocytes per area. (D) Frequency of smaller adipocytes (≤1000 µm2) 

versus larger adipocytes (>1000 µm2). Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and 

Green: bbb/bbb (n=9). Data are presented as mean+SEM and analysed using linear regression 

model with statistical significance at p<0.05. 
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3.2.2 Increased development of mammary gland terminal end buds in pubertal 

bbb/bbb mice 

To investigate the impact of the bbb/bbb mutation on mammary gland development, mammary 

gland whole-mounts were stained with carmine alum and analysed (Figure 3.4.A). Ductal 

invasion area was determined by how far the ducts had grown into the mammary gland adipose 

tissue. No significant difference was observed in ductal invasion area between controls and 

bbb/bbb mice (p=0.067) (Figure 3.4.B).  

Ductal elongation was assessed by measuring the length between the nipple to the furthest end 

of the duct. The mammary glands of controls and bbb/bbb mice exhibited similar ductal 

elongation (p=0.161) (Figure 3.4.C). Ductal branching analysis demonstrated that there was no 

significant difference in the degree of branching between the two genotypes (p=0.385) (Figure 

3.4.D).  

Terminal end buds (TEBs) are specialised structures that drive mammary gland development 

during puberty by growing through the mammary adipose tissue. Interestingly, the number of 

TEBs was significantly increased in bbb/bbb mice compared to controls (p=0.003) (Figure 

3.4.E).  

Following this, epithelial cell proliferation was quantified by BrdU incorporation in TEBs. 

BrdU-positive cells (Figure 3.5.A, B, arrows indicated) represented the proliferating epithelial 

cells in the TEBs of controls and bbb/bbb mice. The negative control showed no BrdU-positive 

staining (Figure 3.5.C). The number of proliferating epithelial cells in TEBs was significantly 

increased in bbb/bbb mice in comparison to controls (p=0.002) (Figure 3.5.D). These results 

suggest that increased mammary adiposity promotes mammary gland development during 

puberty.  
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Figure 3.4. Whole-mount analysis of developing mammary glands in control and bbb/bbb 

mice at puberty. (A) Representative images of alum-carmine stained whole-mounts of fourth 

pair mammary glands of controls and bbb/bbb mice. Scale bars: 2 mm. (B) Ductal invasion 

area. It is estimated by calculating the area covered by ducts from the lymph node. (C) Ductal 

length. It is calculated as the length from the nipple to the furthest duct. (D) Branching. It is 

calculated as the number of branch points per millimetres. (E) Terminal end buds number. Only 

terminal end buds of size greater than 100 µm are considered for calculation. Colour code - 

Blue: Controls (bbb/+ or +/+) (n=8) and Green: bbb/bbb (n=9). Data are presented as 

mean+SEM and analysed using linear regression model. * indicates statistical significance at 

p<0.05. 
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Figure 3.5. Proliferation of epithelial cells in mammary gland terminal end buds in control 

and bbb/bbb mice at puberty. Immunostaining of mammary gland sections from 6-week-old 

controls and bbb/bbb mice with BrdU-antibody. Representative images of BrdU-positive cells 

(arrows indicated) are the proliferating epithelial cells in the terminal end buds from (A) 

controls and (B) bbb/bbb mice. (C) Negative control without primary antibody shows no BrdU-

positive staining. Original magnification 40X. Scale bars: 50 µm. (D) Quantification of number 

of BrdU-positive cells per area. Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and Green: 

bbb/bbb (n=9). Data are presented as mean+SEM and analysed using linear regression model. 

* indicates statistical significance at p<0.05. 
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3.2.3 No change in mammary gland fibroglandular density in pubertal bbb/bbb 

mice 

To investigate the impact of the bbb/bbb mutation on mammary gland density, percent 

fibroglandular density was calculated in hematoxylin-eosin stained mammary glands. It is 

measured as the percentage of fibroglandular tissue present per area in the mammary gland. 

Both genotypes exhibited similar percent fibroglandular density (p=0.846) (Figure 3.6). 

Further, Masson’s trichrome-stained mammary glands were assessed to analyse collagen 

deposition around the ducts of mammary glands in these mice. No significant difference was 

observed in the collagen deposition around the ducts in controls and bbb/bbb mice (p=0.352) 

(Figure 3.7). 

3.2.4 Increased abundance of mammary gland macrophages in pubertal 

bbb/bbb mice 

Macrophages are key immune cells in mammary gland development during puberty. As TEBs 

grow through mammary adipose tissue, macrophages reside in the stroma along the neck of 

TEBs to support ductal elongation (298). To investigate the impact of the bbb/bbb mutation on 

abundance of macrophages around TEBs, F4/80-antibody immunostaining of the mammary 

glands was performed. F4/80-positive cells (Figure 3.8.A, B, arrows indicated) represented the 

F4/80-positive macrophages around TEBs of controls and bbb/bbb mice. Negative control 

showed no F4/80-positive staining (Figure 3.8.C). Increased abundance of F4/80-positive 

macrophages around TEBs was evident in bbb/bbb mice compared to controls (p=0.008) 

(Figure 3.9).  
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Figure 3.6. Percent mammary gland fibroglandular density in control and bbb/bbb mice 

at puberty. Representative images of hematoxylin-eosin stained mammary gland sections of 

(A) controls and (B) bbb/bbb mice. Scale bars: 250 µm. (C) Quantification of percent 

fibroglandular density. It is calculated by the percentage of fibroglandular tissue present per 

area in the mammary gland. Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and Green: 

bbb/bbb (n=9). Data are presented as mean+SEM and analysed using linear regression model. 

* indicates statistical significance at p<0.05. 
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Figure 3.7. Collagen deposition around the mammary gland ducts in control and bbb/bbb 

mice at puberty. Representative images of Masson’s trichrome-stained mammary gland 

sections of (A) controls and (B) bbb/bbb mice. Scale bars: 25 µm.  (C) Quantification of 

collagen (green stain) deposition around ducts. It is measured as the thickness of collagen 

deposited surround the ducts. Colour code - Blue: Controls (bbb/+ or +/+) (n=7) and Green: 

bbb/bbb (n=8). Data are presented as mean+SEM and analysed using linear regression model. 

* indicates statistical significance at p<0.05. 
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Figure 3.8. F4/80-positive macrophages around mammary gland terminal end buds in 

control and bbb/bbb mice at puberty. Representative images of F4/80-positive cells (arrows 

indicated) are the F4/80-positive macrophages around terminal end buds from (A) controls and 

(B) bbb/bbb mice. (C) Negative control without primary antibody showed no F4/80-positive 

staining. Images at original magnification of 40X and scale bars: 100 µm, with inset images at 

original magnification of 80X and scale bars: 25 µm.  
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Figure 3.9. Abundance of macrophages around mammary gland terminal end buds in 

control and bbb/bbb mice at puberty. Quantification of F4/80-positive macrophages per area 

around terminal end buds of 6-week-old controls and bbb/bbb mice. Colour code - Blue: 

Controls (bbb/+ or +/+) (n=8) and Green: bbb/bbb (n=9). Data are presented as mean+SEM 

and analysed using linear regression model. * indicates statistical significance at p<0.05. 
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Macrophages within mammary adipose tissue stroma are important for mammary gland 

development and tissue homeostasis (299). To examine the effect of the bbb/bbb mutation on 

abundance of macrophages residing in adipose tissue, F4/80-antibody immunostaining of the 

mammary gland adipose tissue and visceral adipose tissue was performed. F4/80-positive cells 

(Figure 3.10.A, B, arrows indicated) represented the F4/80-positive macrophages in mammary 

gland adipose tissue of controls and bbb/bbb mice. Negative control showed no F4/80-positive 

staining (Figure 3.10.C). Interestingly, statistically significant increase in the number of F4/80-

positive macrophages per area was exhibited in the mammary gland adipose tissue of bbb/bbb 

mice, in comparison to controls (p<0.001) (Figure 3.11.A).  

As previously mentioned, there was a significant difference in the number of adipocytes per 

area in both genotypes, it is logical to also quantitate the number of macrophages to the number 

of adipocytes in an area of adipose tissue in each genotype group. We quantitated the number 

of macrophages in an area consisting of 100 adipocytes and presented data as the number of 

macrophages per 100 adipocytes. Consistent with the previous result, bbb/bbb mice exhibited 

significantly increased abundance of macrophages per 100 adipocytes than controls (p<0.001) 

(Figure 3.11.B). 

Further, we quantitated abundance of macrophages in the visceral adipose tissue of these mice. 

F4/80-positive cells (Figure 3.12.A, B, arrows indicated) represented the F4/80-positive 

macrophages in visceral adipose tissue of controls and bbb/bbb mice. Negative control showed 

no F4/80-positive staining (Figure 3.12.C). No difference was demonstrated in the number of 

F4/80-posive macrophages between these mice (p=0.167) (Figure 3.13.A). Consistently, no 

significant difference in abundance of F4/80-positive macrophages per 100 adipocytes between 

both genotypes (p=0.296) was observed (Figure 3.13.B). 
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Figure 3.10. F4/80-positive macrophages in the mammary gland adipose tissue of control 

and bbb/bbb mice at puberty. Representative images of F4/80-positive cells (arrows indicated) 

are the F4/80-positive macrophages in the mammary adipose tissue from (A) controls and (B) 

bbb/bbb mice. (C) Negative control without primary antibody shows no F4/80-positive staining. 

Original magnification 40X. Scale bars: 50 µm. 
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Figure 3.11. Abundance of macrophages in the mammary gland adipose tissue in control 

and bbb/bbb mice at puberty. Quantification of F4/80-positive macrophages (A) per area and 

(B) per 100 adipocytes in the mammary gland adipose tissue of 6-week-old controls and 

bbb/bbb mice. Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and Green: bbb/bbb (n=9). 

Data are presented as mean+SEM and analysed using linear regression model. * indicates 

statistical significance at p<0.05. 
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Figure 3.12.  F4/80-positive macrophages in the visceral adipose tissue in control and 

bbb/bbb mice at puberty. Representative images of F4/80-positive cells (arrows indicated) are 

the F4/80-positive macrophages in visceral adipose tissue from (A) controls and (B) bbb/bbb 

mice. (C) Negative control shows no F4/80-positive staining. Images at original magnification 

of 40X and scale bars: 50 µm, with inset images at original magnification of 80X and scale 

bars: 25 µm. 
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Figure 3.13. Abundance of macrophages in the visceral adipose tissue in control and 

bbb/bbb mice at puberty.  Quantification of F4/80-positive macrophages (A) per area and (B) 

per 100 adipocytes in visceral adipose tissue of 6-week-old controls and bbb/bbb mice. Colour 

code - Blue: Controls (bbb/+ or +/+) (n=8) and Green: bbb/bbb (n=9). Data are presented as 

mean+SEM and analysed using linear regression model with significance at p<0.05. 
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3.2.5 Altered abundance of adipokines and proinflammatory cytokines in 

pubertal bbb/bbb mice 

To investigate the impact of the bbb/bbb mutation on mammary gland microenvironment, we 

assessed the concentrations of the most well characterised markers of obesity and tumour 

development in the mammary glands. Luminex assay was performed to estimate the protein 

levels of IL6, CCL2, leptin, TNFA, PAI1 and resistin in the mammary glands. No significant 

difference was observed in the levels of IL6 (p=0.549), CCL2 (p=0.150), leptin (p=0.569), 

TNFA (p=0.821) and PAI1 (p=0.478) between the two genotypes (Figure 3.14). However, 

protein levels of resistin was significantly decreased in bbb/bbb mice compared to controls 

(p=0.029) (Figure 3.14.F).  

To investigate the impact of the bbb/bbb mutation on gene expression of adipokines and 

proinflammatory cytokines, RT-PCR analysis was performed to estimate the gene expression 

of leptin, adiponectin, Il4, Il6, Tnfa, Tgfb1, Ccl2, Csf1, Igf1, Stat3, and Cox2. Data was plotted 

as box plots to account for a high degree of variability with genotype groups and skewness of 

the data set. No significant difference was observed in the expression of leptin (p=0.668), 

adiponectin (p=0.602), Il4 (p=0.177), Il6 (p=0.412), Tnfa (p=0.373), Tgfb1 (p=0.878), Ccl2 

(p=0.481), Csf1 (p=0.779), Igf1 (p=0.650), Stat3 (p=0.697), and Cox2 (p=0.161) in the 

mammary glands (Figure 3.15).  

Similarly, expression of the above-mentioned genes was analysed in visceral adipose tissue. 

Likewise, no significant difference with high degree of variability was observed in the 

expression of leptin (p=0.526), adiponectin (p=0.575), Il4 (p=0.563), Il6 (p=0.783), Tnfa 

(p=0.297), Tgfb1 (p=0.723), Ccl2 (p=0.676), Csf1 (p=0.509), Igf1 (p=0.186), Stat3 (p=0.913), 

and Cox2 (p=0.307) in the visceral adipose tissue (Figure 3.16). 
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Figure 3.14. Protein abundance of adipokines and proinflammatory cytokines in the 

mammary glands in control and bbb/bbb mice at puberty. Luminex assay assessed the 

protein levels of (A) IL6, (B) CCL2, (C) leptin, (D) TNFA, (E) PAI1 and (F) resistin in third 

pair mammary glands. Colour code - Blue: Controls (bbb/+ or +/+) (n=8) and Green: bbb/bbb 

(n=9). IL6: interleukin 6; CCL2: C-C motif chemokine ligand 2; TNFA: tumour necrosis factor 

alpha; PAI1: plasminogen activator inhibitor 1. Data are presented as box-plots with median in 

between the first quartile and third quartile and analysed using a linear regression model.  * 

indicates statistical significance at p<0.05. 
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Figure 3.15. Gene expression profile of adipokines and proinflammatory cytokines in the 

mammary glands in control and bbb/bbb mice at puberty. Quantification of mRNA 

encoding (A) leptin, adiponectin, (B) IL4, IL6, (C) TNFA, TGFB1, (D) CCL2, CSF1, (E) IGF1, 

STAT3, and (F) COX2 by real-time PCR analysis using comparative Ct method (i.e., 2^(-∆∆Ct) 

method). The abundance of mRNA was normalised to abundance of mRNA encoding the 

housekeeping gene Rpl13a in each mouse. Colour code - Blue: Controls (bbb/+ or +/+) (n=7-

8) and Green: bbb/bbb (n=7). Il4: interleukin 4; Il6: interleukin 6; Tnfa: tumour necrosis factor 

alpha; Tgfb1: transforming growth factor beta 1; Ccl2: C-C motif chemokine ligand 2; Csf1: 

colony-stimulating factor 1; Igf1: insulin-like growth factor 1; Stat3: signal transducer and 

activator of transcription 3; Cox2: cyclooxygenase 2. Data are presented as box-plots with 

median in between the first quartile and third quartile and analysed using a linear regression 

model with statistical significance at p<0.05.  
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Figure 3.16. Gene expression profile of adipokines and proinflammatory cytokines in the 

visceral adipose tissue in control and bbb/bbb mice at puberty. Quantification of mRNA 

encoding (A) leptin, adiponectin, (B) IL4, IL6, (C) TNFA, TGFB1, (D) CCL2, CSF1, (E) IGF1, 

STAT3, and (F) COX2 by real-time PCR analysis using comparative Ct method (i.e., 2^(-∆∆Ct) 

method). The abundance of mRNA was normalised to abundance of mRNA encoding the 

housekeeping gene Rpl13a in each mouse. Colour code - Blue: Controls (bbb/+ or +/+) (n=8) 

and Green: bbb/bbb (n=8). Il4: interleukin 4; Il6: interleukin 6; Tnfa: tumour necrosis factor 

alpha; Tgfb1: transforming growth factor beta 1; Ccl2: C-C motif chemokine ligand 2; Csf1: 

colony-stimulating factor 1; Igf1: insulin-like growth factor 1; Stat3: signal transducer and 

activator of transcription 3; Cox2: cyclooxygenase 2. Data are presented as box-plots with 

median in between the first quartile and third quartile and analysed using a linear regression 

model with statistical significance at p<0.05. 
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3.3 Discussion 

Puberty is a key developmental stage in the establishment of mammographic density. Pubertal 

adiposity is proposed to impact adult mammographic density and breast cancer risk. However, 

the extent to which increased adiposity during puberty affects mammary gland development 

and function remains unclear.   

The experiments described in this chapter examined the impact of increased pubertal adiposity 

on mammary gland development in a mouse model. We demonstrated that bbb/bbb mice 

exhibited increased mammary gland adiposity during puberty indicated by increased adipocyte 

size specifically in adipose tissue in the mammary gland and not visceral fat depots. This 

increased mammary gland adiposity was associated with increased number of TEBs, increased 

proliferation of epithelial cells, and increased abundance of macrophages around TEBs and in 

the mammary gland adipose tissue. Hence, our results suggest that increased mammary gland 

adiposity during puberty promotes mammary gland development, potentially through the 

crosstalk between mammary gland adipose tissue, epithelium, and macrophages. 

3.3.1 Increased mammary gland adiposity in bbb/bbb mice 

In this study, Alms1 bbb/bbb mice, a genetic model of adiposity, was used instead of a high-fat 

diet-induced obesity model to explore the impact of adiposity during puberty on mammary 

gland development. These mice carry a recessive homozygous genetic mutation that causes 

them to overeat compared to wildtype controls, even when fed a normal mouse chow diet. In 

this study, no significant gain in body weight at the age of 6 weeks was observed. In addition, 

no difference was detected in the weight of visceral adipose tissue and weight of total fourth 

pair mammary glands. This suggests that bbb/bbb mice exhibit overtly normal weight gain and 

growth during puberty, similar to controls. A high-fat diet usually increases BMI and therefore, 

it is not possible to investigate how diet and increased BMI independently affect breast cancer 

risk (300). However, Alms1 bbb/bbb mouse model ensured that increased adiposity during 

puberty was derived from a healthy diet and avoided the confounding factors of a high-fat diet. 

The finding of overtly normal body weight in bbb/bbb mice is in contrast to the finding of Wu 

et al., (290) where bbb/bbb mice exhibited significantly increased body weight compared to 

controls from the age of 5 weeks onward. This previous study was conducted in the same animal 

house as the current study, using the same animal colony. The difference in findings may be 

due to changes in the mouse chow diet in the intervening time between the two studies, or due 

to changes in the animal environment such as the onset of using individually ventilated cages 

(IVCs) rather than open top cages. Nonetheless, significant, albeit subtle, differences in 



Chapter 3 – Impact of increased pubertal adiposity on mammary gland development 

Ghadge  74 

mammary gland adipose tissue were observed, which suggests that the bbb/bbb mutation did 

indeed result in increased food intake consistent with the anticipated phenotype. Mice carrying 

the bbb/bbb mutation exhibited increased mammary gland adipocyte size suggesting increased 

lipid deposition in this fat depot. This may not have been a large enough increase to be reflected 

in a statistical difference in mammary gland weight, particularly as this tissue can vary in weight 

between animals of the same genotype. Interestingly, no change was observed in the expansion 

of visceral adipose tissue. The differential degree of adipose tissue deposition between the two 

adipose depots in bbb/bbb mice highlight the differences in the function of these depots. The 

finding of increased adipocyte size in the mammary gland demonstrates a significant, yet subtle 

increased adiposity in bbb/bbb mice during puberty.  

3.3.2 Effect of increased mammary gland adiposity on mammary gland 

development during puberty 

Mammary gland development is a well-regulated process. It is largely dependent on endocrine 

regulators and the paracrine interactions between epithelial stromal cells present within the 

mammary gland (301). Whilst essential for a functional mammary gland, the precise role of 

adipose tissue in normal development of the mammary gland during puberty is not well 

understood. From the perspective of investigating the impact of increased adiposity on 

mammary gland development during puberty, female bbb/bbb mice offer an ideal model; these 

mice exhibit increased mammary gland adiposity while other adipose tissue depots appear to 

be minimally affected.  

Whole mount analysis of the mammary glands demonstrated that controls and bbb/bbb mice 

have similar ductal development including ductal invasion and branching. Strikingly, bbb/bbb 

mice exhibited increased number of TEBs and increased number of proliferating epithelial cells 

in TEBs, suggesting that mammary gland adiposity promotes TEB development. The 

underlying mechanisms of how mammary gland adipose tissue regulates the development of 

terminal end buds is still not clear but may involve interactions between mammary gland 

adipose tissue, epithelium, and macrophages. 

TEBs are highly proliferative structures that drive mammary gland development during 

puberty. This involves continuous interaction of TEBs with the stroma within the gland. Our 

results are consistent with a previous study that demonstrated reduced pace of mammary gland 

development in mice with adipocyte-ablated mammary glands (301). These mice exhibited 

reduced branching points, decreased number of TEBs, and decreased proliferation and 



Chapter 3 – Impact of increased pubertal adiposity on mammary gland development 

Ghadge  75 

apoptosis of epithelial cells. This suggests that adipose tissue deposition in the mammary gland 

during puberty is a critical factor in driving mammary gland development. 

The mammary gland is comprised of fibroglandular and adipose tissue, which affect mammary 

gland density; the more fibroglandular tissue there is in relation to adipose tissue the higher the 

density (302). Furthermore, high density mammary tissue is characterised by increased 

deposition of collagen, compared to low density breast tissue (215). We investigated the impact 

of increased of mammary gland adiposity on mammary gland density. No significant difference 

was observed in percent fibroglandular density or abundance of collagen around mammary 

ducts between controls and bbb/bbb mice. It is interesting to note that increased mammary gland 

adiposity and increased epithelial cell proliferation in TEBs was not associated with altered 

mammary gland density during puberty. At 6 weeks, the mammary gland is still undergoing 

development, and assessment of density may not be an appropriate measure of mammary gland 

function at this stage.  

Macrophages are capable of multiple functions including tissue homeostasis and immunity, and 

also have roles in promoting mammary gland development during puberty, ovarian cycling and 

pregnancy/lactation. Immunohistochemical analysis using F4/80-antibody demonstrated 

recruitment of macrophages to the stroma along the neck of TEBs during puberty in mice (227, 

303, 304). We investigated the impact of increased mammary gland adiposity on recruitment 

of macrophages around TEBs using F4/80-antibody immunostaining. Strikingly, increased 

abundance of macrophages in the stroma around TEBs was observed in bbb/bbb mice, which 

might be responsible for the increased number and proliferation of TEBs we observed. This 

finding is consistent with a previous study that showed that mice lacking CSF1, a cytokine 

essential to the differentiation and survival of macrophages, exhibited reduced recruitment of 

macrophages to the stroma around TEBs resulting in impaired TEB formation and reduced 

proliferation of TEB epithelial cells (227).  

The consequences of the adipose tissue expansion include influx of fatty acids, increased leptin 

secretion, hypoxia, and adipocyte cell death (305). These consequences are all possible factors 

that can initiate macrophage recruitment. Immunohistochemical analysis of abundance of 

macrophages in the mammary gland adipose tissue using F4/80-antibody revealed increased 

abundance of macrophages in mammary gland adipose tissue of bbb/bbb mice. In contrast, no 

significant difference was observed in the infiltration of macrophages in the visceral adipose 

tissue. Differences in the infiltration of macrophages in mammary gland adipose tissue and 

visceral adipose tissue may be attributed to differences in the degree of adiposity and function 

of these depots. 
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Increased adipose tissue deposition in obesity is strongly associated with chronic low-grade 

inflammation and is characterised with infiltration of immune cells that produce and secrete 

pro-inflammatory cytokines and chemokines (306, 307). In obese adipose tissue, macrophages 

are located around dead adipocytes and form so-called crown-like structures, which is a 

proinflammatory feature (308). We did not observe crown-like structures in the mammary gland 

adipose tissue in either control or bbb/bbb mice (data not shown). In addition, the profile of key 

inflammatory cytokines associated with obesity was not altered in bbb/bbb mice. Therefore, we 

suggest that increased abundance of macrophages in the mammary gland adipose tissue of 

pubertal bbb/bbb mice is not an indicator of an obesity phenotype, but instead it is part of normal 

pubertal mammary gland development. The lack of an obesity-associated mammary gland 

microenvironment in this model is discussed further in the following section. 

3.3.3 Effect of increased mammary gland adiposity on the mammary gland 

microenvironment 

We investigated the impact of increased mammary gland adiposity on the abundance of 

adipokines and proinflammatory cytokines in the mammary glands using Luminex assay. 

Increased adipose tissue deposition is known to increase the secretion of adipokines and 

cytokines by the stromal cells. No change in the abundance of leptin is consistent with the 

observation of no increase in the body weight of bbb/bbb mice compared to controls. Cytokine 

concentrations of IL6, CCL2 and TNFA also showed no significant difference. 

Plasminogen activator inhibitor (PAI1) is a physiological inhibitor of plasminogen activators. 

It is synthesised in the adipose tissue. Plasma concentration of PAI1 is elevated in obesity (309). 

Macrophages infiltrating the adipose tissue are also shown to express PAI1 (310, 311). It has 

been proposed that production of PAI1 by macrophages and adipocytes is an underlying 

biological factor that contributes to the strong association between high plasma concentration 

of PAI1 and visceral obesity (312). In our study, we observed that bbb/bbb mice show no sign 

of significant increase in the levels of PAI1.  

We observed that protein abundance of resistin was significantly reduced in the mammary 

glands of bbb/bbb mice compared to controls. Resistin is an adipokine, secreted by adipose 

tissue, and is suggested to be a link between obesity and insulin resistance (313). Elevation of 

serum levels of resistin are reported in obese humans as well as in diet-induced obese mice 

(314, 315). Decreased levels of resistin in the mammary glands of bbb/bbb mice, suggests that 

mammary gland adiposity in these mice is not an obesity state. However, the exact role of 

resistin in mammary gland development during puberty is still not elucidated. 
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In addition to investigation of protein abundance of key adipokines and cytokines in the 

mammary gland, we investigated expression of mRNA encoding leptin, adiponectin, IL4, IL6, 

TNFA, TGFB1, CCL2, CSF1, IGF1, STAT3, and COX2. Our findings demonstrated a high 

degree of variability in the expression of these genes and none of them showed a significant 

difference between control and bbb/bbb mice. This high degree of variability could be attributed 

to varying degree of adiposity in each mouse during puberty. Similarly, we investigated the 

expression of these genes in visceral adipose tissue by RT-PCR analysis. Consistent with no 

change in the adiposity of visceral adipose tissue, we observed no significant difference in the 

expression of these genes.  

The above analysed adipokines and proinflammatory cytokines are all related to the state of 

obesity or inflammatory insults such as infection or necrosis. The bbb/bbb mutation led to a 

subtle increase in mammary gland adiposity which is not an inflammatory or obese state. Thus, 

it is not surprising that there was a similar abundance of these adipokines and cytokines in the 

mammary glands compared to controls.  

3.3.4 Limitations and future directions 

The role of the Alms1 gene in mammary gland development has not been previously 

investigated, and it is possible that the Alms1 gene, or the ENU-induced bbb mutation, might 

impact the mammary gland independent of the finding of increased mammary gland adiposity. 

Transplantation of mammary gland epithelium between control and bbb/bbb mice could reveal 

whether the epithelium is directly affected by the bbb mutation. In addition, other Alms1 null 

mutant models exist in the literature (316, 317) and could provide alternative models to 

investigate the relative roles of Alms1, the ENU-induced bbb mutation, and mammary adiposity 

on the pubertal mammary gland phenotype reported here.  

Further studies are required to investigate the underlying mechanisms that link mammary gland 

adiposity to altered mammary gland development. Interactions between adipose tissue and 

epithelium are crucial for the normal mammary gland development during puberty. For 

example, absence of mammary gland adipose tissue in pubertal mice resulted in fewer 

branching points and TEBs (301). Future studies may investigate interactions between 

epithelium and mammary gland adipose tissue, generating further understanding on possible 

factors responsible for increased TEB development and infiltration of macrophages in bbb/bbb 

mice. In addition, we did not investigate the concentration of circulating ovarian hormones 

estradiol and progesterone which are crucial for pubertal mammary gland development. Future 

studies may investigate ovarian hormones in these mice and their impact on mammary gland 
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development. High degree of variability in the gene expression of adipokines and 

proinflammatory cytokines reported in our study possibly highlight the contribution of both 

epithelium and stroma to affect their expression in the mammary gland. Future studies might 

unravel the cellular source of each cytokine to better understand the impact of increased 

adiposity on the mammary gland microenvironment during puberty. 

3.4 Conclusion 

Increased pubertal mammary gland adiposity in the Alms1 bbb/bbb mouse model is associated 

with increased number and proliferative activity of terminal end buds as well as increased 

abundance of macrophages in the mammary gland. It is important to note that the increased 

mammary gland adiposity in this mouse model is not an inflammatory or obesity state, rather it 

appears to be a subtle expansion in the size of healthy adipocytes. In the following chapter, we 

use this mouse model to explore how pubertal adiposity affects mammary gland development 

and density in adulthood.  
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4.1 Introduction 

Epidemiological studies have consistently demonstrated an inverse association between 

pubertal adiposity and mammographic density in adult women when adjusted for adult BMI 

(13, 14, 16-19). High BMI-percentile (75th BMI-percentile) at age 18 is associated with a 45% 

decrease in adult mammographic density, compared to median BMI-percentile, adjusted for 

adult BMI and timing of menarche (88).  Higher BMI percentile in adolescence is also 

associated with reduced risk of breast cancer (71, 89, 90). These studies suggest that increased 

pubertal body adiposity is associated with reduced mammographic density and reduced breast 

cancer risk in adult women. However, causal relationships between healthy pubertal weight 

gain and adult breast health are yet to be investigated.  

Previous mouse experiments have shown that pubertal C57BL/6 mice fed a high-fat diet exhibit 

increased body weight and adiposity, and reduced epithelial cell proliferation and stunted 

mammary duct elongation (318). However, healthy weight gain during puberty is part of normal 

physiological development in teenage girls, and mice fed a high fat diet is not an appropriate 

approach to model this.  In Chapter three, studies using the Alms1 bbb/bbb mouse model, where 

mice gain weight eating normal mouse chow, suggested that increased adiposity promoted 

mammary gland development during puberty in mice. The question now arises whether the 

subtle developmental changes we observed during puberty affect mammary gland density in 

adulthood. To address this, we investigated the impact of increased pubertal adiposity on 

mammary gland development and density during adulthood in the Alms1 bbb/bbb mouse model.  

The experimental design for this study is illustrated in Figure 4.1. Controls (bbb/+ or +/+) and 

bbb/bbb mice were fed a normal mouse diet ad libitum from weaning age to 7 weeks of age. 

After 7 weeks (i.e., end of puberty), a group of bbb/bbb mice were calorie-matched to controls 

until 12 weeks, such that the amount of food eaten by bbb/bbb mice was the same as that 

consumed by the controls. These mice will be referred to as ‘matched bbb/bbb mice’. Due to 

consuming mouse chow ad libitum until puberty, matched bbb/bbb mice will exhibit increased 

pubertal adiposity, as described in Chapter 3, but then they will not increasingly gain adipose 

tissue as adults because they are calorie-matched with control mice. Another cohort of mice 

was used in this study. They are bbb/bbb mice that ate ad libitum throughout the study. These 

mice will be referred to as ‘ad lib bbb/bbb mice’. This cohort allowed us to specifically isolate 

the effect of pubertal adiposity and compare it to the effect of adult obesity. Ad lib bbb/bbb 

mice exhibited increased adiposity during puberty and became progressively overweight in 

adulthood.     
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Based on the known epidemiological association between pubertal adiposity and adult 

mammographic density, we hypothesised that matched bbb/bbb mice would exhibit reduced 

mammary fibroglandular density compared to controls. As ad lib bbb/bbb mice would also 

exhibit an abundance of adipose tissue, they are also anticipated to exhibit reduced 

fibroglandular density compared to controls. However, we hypothesised that ad lib bbb/bbb 

mice would also exhibit an obesity-associated state of chronic inflammation within the 

mammary gland. 

Mammary glands and visceral adipose tissue were dissected from controls, matched bbb/bbb, 

and ad lib bbb/bbb mice at 12 weeks at the estrus phase of ovarian cycle. Mammary gland 

adipose tissue and visceral adipose tissue were characterised for degree of adiposity, and for 

infiltration of macrophages. Mammary gland density in terms of percent fibroglandular density 

and collagen deposition, was quantified. To investigate the impact of perturbation of mammary 

gland adiposity on the mammary gland microenvironment, we assessed the protein 

concentration and gene expression of adipokines and proinflammatory cytokines in the 

mammary glands. Results from this chapter suggest that increased pubertal mammary adiposity 

alters mammary gland density in adulthood and alters expression of adipokines and 

proinflammatory cytokines within the mammary gland microenvironment.  
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Figure 4.1. Illustration of experimental design to study the impact of pubertal adiposity 

on mammary gland development and density in adulthood. Controls and bbb/bbb mice were 

fed normal mouse diet ad libitum from weaning age until 7 weeks. After 7 weeks (i.e., end of 

puberty), a group of bbb/bbb mice were calorie-matched to controls until 12 weeks (adulthood), 

such that the amount of food eaten by bbb/bbb mice is same as that eaten by the controls. These 

mice will be referred to as ‘matched bbb/bbb mice’. Another cohort of mice in this study are 

bbb/bbb mice that ate ad libitum from 4 weeks to 12 weeks. These mice will be referred to as 

‘ad lib bbb/bbb mice’. Colour code: Blue – Controls (bbb/+ or +/+) (n=11), Green - matched 

bbb/bbb (n=9), Pink - ad lib bbb/bbb (n=7). 
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4.2 Results 

4.2.1 Selection of 7 weeks as the end of pubertal mammary gland growth 

period 

In Chapter 3, it was shown that bbb/bbb and control mice exhibited similar ductal elongation 

but different terminal end bud number and proliferation during puberty at the age of 6 weeks. 

In order to study the impact of pubertal adiposity on adult mammary fibroglandular density, we 

needed to set an age where pubertal mammary gland development was complete, so that we 

could at this point match food intake in the bbb/bbb mice such that they would not gain further 

excess weight and instead exhibit growth more similar to that of control mice. A small pilot 

study was conducted to confirm whether the age of 7 weeks was an appropriate developmental 

stage to distinguish pubertal mammary gland development from adult mammary gland 

function. Control and bbb/bbb mice (n=4 per group) were euthanised and mammary glands 

were dissected at age 7 weeks. Mammary gland whole-mounts were carmine alum-stained and 

observed. Puberty initiates TEB development and branching morphogenesis, and by the end of 

pubertal development, a ductal tree is established that fully invades the mammary adipose tissue 

(206). Mammary gland ducts had fully extended through the mammary gland fat pad by 7 weeks 

of age (data not shown) suggesting this is an appropriate age at which to switch mice in the 

matched bbb/bbb group from an ad libitum diet to a calorie-matched diet. 

4.2.2 Estrous cycling in control and bbb/bbb mice during adulthood 

The adult mammary gland is under hormonal regulation and can undergo developmental 

changes across the estrous cycle as the concentration of circulating estradiol and progesterone 

fluctuate (319). Before assessing adiposity and mammary gland structure and function in these 

mice, estrous cycles in adult mice were observed by daily vaginal smears between the ages of 

7 and 12 weeks. No significant difference was observed in the estrous cycle length between any 

of the groups (Figure 4.2). The same number of mice were allocated to the matched and ad lib 

bbb/bbb mouse cohorts (n=9). However, 2 mice from the ad lib bbb/bbb cohort exhibited very 

high deposition of adipose tissue in the mammary gland such that visualisation of the mammary 

glands in whole-mounts was obscured and could not be assessed. Furthermore, extraction of 

mammary RNA was more difficult due to high lipid content, requiring more rounds of 

centrifugation to remove the lipid, and there were concerns that the results for these mice would 

not be comparable to other mice in the cohort. For these reasons, these mice were excluded 

from the ad lib bbb/bbb cohort.  
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4.2.3 Female bbb/bbb mice exhibit increased adiposity during adulthood  

To investigate the impact of increased adiposity during puberty on adult mammary gland 

development, controls, matched bbb/bbb, and ad lib bbb/bbb female mice were euthanised at 

12 weeks of age at the estrus stage of the estrous cycle.  After recording body weight, mammary 

glands and visceral adipose tissue were dissected from these mice. At 12 weeks, due to the 

calorie-matched diet, matched bbb/bbb mice showed similar body weight compared to the 

controls (Figure 4.3.A). Ad lib bbb/bbb mice exhibited a significant increase in body weight, 

compared to controls (p<0.001) and matched bbb/bbb mice (p<0.001) (Figure 4.3.A). 

Further, there was a significant increase in the weight of visceral adipose tissue in ad lib bbb/bbb 

mice, compared to controls (p<0.001) and matched bbb/bbb mice (p<0.001) (Figure 4.3.B). 

Interestingly, though matched bbb/bbb mice had similar body weight as controls, visceral 

adipose tissue was significantly increased, compared to controls (p<0.001) (Figure 4.3.B).   

The weight of the total fourth pair mammary glands was significantly increased in ad lib 

bbb/bbb mice, in comparison to controls (p<0.001) and matched bbb/bbb mice (p<0.001) 

(Figure 4.3.C). Compared to controls, matched bbb/bbb mice had significantly increased total 

fourth pair mammary glands weight (p=0.038) (Figure 4.3.C).  

To determine whether controls, matched bbb/bbb, and ad lib bbb/bbb mice exhibit differences 

in adiposity, we characterised hematoxylin-eosin stained sections of mammary gland and 

visceral adipose tissue. Ad lib bbb/bbb mice exhibited a significant increase in adipocyte size 

in the mammary gland adipose tissue, in comparison to controls (p<0.001) and matched 

bbb/bbb mice (p=0.008) (Figure 4.4.A-D). Matched bbb/bbb mice also exhibited significantly 

increased mammary adipocyte size compared to controls (p<0.01) (Figure 4.4.A-D).  

Consistent with the above result, we observed a significant decrease in the number of adipocytes 

per area of mammary gland adipose tissue in ad lib bbb/bbb mice (p<0.001) and matched 

bbb/bbb mice (p<0.001), compared to controls (Figure 4.4.E).          
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Figure 4.2. Estrous cycle length in female controls, matched bbb/bbb, and ad lib bbb/bbb 

mice at adulthood. Estrous cycles in adult mice were observed by daily vaginal smears 

between the ages of 7 and 12 weeks.  Colour code – Blue: Controls (bbb/+ or +/+) (n=11), 

Green: matched bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). Data are presented as 

mean+SEM and analysed using linear regression model with statistical significance at p<0.05. 
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Figure 4.3. Relative weights of female controls, matched bbb/bbb, and ad lib bbb/bbb mice 

at adulthood. At 12 weeks of age, mice were weighed, and fourth pair mammary glands and 

visceral adipose tissue were dissected at the estrus phase of the ovarian cycle. (A) Total body 

weight. (B) Weight of visceral adipose tissue. (C) Total fourth pair mammary glands weight. 

Total fourth pair mammary glands weight is the combined weight of left and right fourth 

mammary glands.  Colour code – Blue: Controls (bbb/+ or +/+) (n=11), Green: matched 

bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). Data are presented as mean+SEM and analysed 

using linear regression model. * indicates statistical significance at p<0.05. 
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Figure 4.4. Mammary gland adiposity in controls, matched bbb/bbb, and ad lib bbb/bbb 

mice at adulthood. Representative images of hematoxylin-eosin stained mammary gland 

adipose tissue of fourth pair mammary glands of (A) controls, (B) matched bbb/bbb, and (C) 

ad lib bbb/bbb mice.  Scale bars: 50 µm. (D) Average adipocyte area. (E) Number of adipocytes 

per area. (F) Percent frequency of smaller adipocytes (≤1000 µm2). (G) Frequency of larger 

adipocytes (>1000 µm2). Colour code – Blue: Controls (bbb/+ or +/+) (n=11), Green: matched 

bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). Data are presented as mean+SEM and analysed 

using linear regression model. * indicates statistical significance at p<0.05. 
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Further, percent frequency of smaller adipocytes (≤1000 µm2) versus larger adipocytes (>1000 

µm2) was calculated in mammary gland adipose tissue. The mammary gland adipose tissue of 

controls was predominantly populated with smaller adipocytes compared to matched bbb/bbb 

(p<0.01) and ad lib bbb/bbb (p<0.001) mice (Figure 4.4.F). On the other hand, the mammary 

gland adipose tissue of matched bbb/bbb (p<0.01) and ad lib bbb/bbb (p<0.001) mice was 

predominantly occupied by larger adipocytes compared to controls (Figure 4.4.G). These 

results demonstrate that matched bbb/bbb and ad lib bbb/bbb mice exhibit increased mammary 

gland adiposity during adulthood.    

Similar to mammary adipose tissue, ad lib bbb/bbb mice exhibited a significant increase in 

adipocyte size in the visceral adipose tissue, in comparison to controls (p<0.001) and matched 

bbb/bbb mice (p<0.001) (Figure 4.5.A-D). Matched bbb/bbb mice also exhibited significantly 

increased visceral adipocyte size compared to controls (p<0.001) (Figure 4.5.A-D).   

We found a significant decrease in the number of adipocytes per area of visceral adipose tissue 

in ad lib bbb/bbb mice (p<0.001) and matched bbb/bbb mice (p<0.001), compared to controls 

(Figure 4.5.E). There was also a significant difference in the number of adipocytes per area 

between matched bbb/bbb mice and ad lib bbb/bbb mice (p=0.035) (Figure 4.5.E). 

Further, percent frequency of smaller adipocytes (≤1000 µm2) versus larger adipocytes (>1000 

µm2) was estimated in the visceral adipose tissue. Similar to mammary gland adipose tissue, 

visceral adipose tissue of controls was predominantly populated with smaller adipocytes 

compared to matched bbb/bbb (p<0.001) and ad lib bbb/bbb (p<0.001) mice (Figure 4.5.F). On 

the other hand, the visceral adipose tissue of matched bbb/bbb (p<0.001) and ad lib bbb/bbb 

(p<0.001) mice was predominantly occupied by larger adipocytes compared to controls (Figure 

4.5.G). These results demonstrate that matched bbb/bbb and ad lib bbb/bbb mice exhibited 

increased deposition of visceral adipose tissue during adulthood.    

4.2.4 Increased development of mammary gland ducts in adult bbb/bbb mice  

To investigate the impact of increased pubertal mammary adiposity on adult mammary gland 

development, mammary gland whole-mounts were stained with carmine alum and analysed 

(Figure 4.6.A-C). Ductal invasion area was significantly increased in matched bbb/bbb 

(p<0.001) and ad lib bbb/bbb (p<0.001) mice, compared to controls (Figure 4.6.D). Ad lib 

bbb/bbb mice exhibited significantly greater ductal invasion area than matched bbb/bbb 

(p=0.009) (Figure 4.6.D). 
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Figure 4.5. Deposition of visceral adipose tissue in controls, matched bbb/bbb, and ad lib 

bbb/bbb mice at adulthood. Representative images of hematoxylin-eosin stained visceral 

adipose tissue collected from abdominal cavity of (A) controls, (B) matched bbb/bbb, and (C) 

ad lib bbb/bbb mice.  Scale bars: 50 µm. (D) Average adipocyte area. (E) Number of adipocytes 

per area. (F) Percent frequency of smaller adipocytes (≤1000 µm2). (G) Frequency of larger 

adipocytes (>1000 µm2). Colour code – Blue: Controls (bbb/+ or +/+) (n=11), Green: matched 

bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). Data are presented as mean+SEM and analysed 

using linear regression model. * indicates statistical significance at p<0.05. 
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Figure 4.6. Whole-mount analysis of developing mammary glands in controls, matched 

bbb/bbb, and ad lib bbb/bbb mice at adulthood. Representative images of alum-carmine 

stained whole-mounts of fourth pair mammary glands of (A) controls, (B) matched bbb/bbb, 

and (C) ad lib bbb/bbb mice.  Scale bars: 0.5 cm. (D) Ductal invasion area. It is estimated by 

calculating the area covered by ducts from the lymph node. (E) Ductal length. It is calculated 

as the length from the nipple to the furthest duct. (F) Branching. It is calculated as the number 

of branch points per millimetres. Colour code – Blue: Controls (bbb/+ or +/+) (n=11), Green: 

matched bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). Data are presented as mean+SEM and 

analysed using linear regression model. * indicates statistical significance at p<0.05. 
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Further, we assessed ductal elongation, in terms of ductal length in these mice. The mammary 

glands of ad lib bbb/bbb mice exhibit significantly greater ductal length than matched bbb/bbb 

(p<0.01) and controls (p<0.001) (Figure 4.6.E). Ductal branching analysis demonstrated that 

there was no significant difference in the degree of branching in these mice (Figure 4.6.F). 

These results suggest that increased mammary adiposity promotes ductal development in the 

mammary glands during adulthood. 

4.2.5 Decrease in mammary gland fibroglandular density in adult bbb/bbb 

mice  

To investigate the impact of increased pubertal mammary adiposity on mammary gland density, 

percent fibroglandular density was calculated in haematoxylin-eosin stained mammary glands. 

Percent fibroglandular density was significantly reduced in matched bbb/bbb (p<0.001) and ad 

lib bbb/bbb (p<0.001), compared to controls (Figure 4.7.A-D). Further, stroma/epithelium ratio 

was assessed by quantifying the area of stroma occupied around the epithelium. 

Stroma/epithelium ratio was also significantly decreased in matched bbb/bbb (p=0.003) and ad 

lib bbb/bbb (p<0.001) mice, compared to controls (Figure 4.7.E-H).   

Collagen is an important extracellular matrix component that has been shown to be increased 

in human breast tissue of high mammographic density (215). Masson’s trichrome-stained 

mammary glands were assessed to analyse collagen deposition around mammary ducts. We 

observed that collagen deposition around the ducts was significantly decreased in matched 

bbb/bbb (p<0.001) and ad lib bbb/bbb (p<0.001) mice, compared to controls (Figure 4.8).   

4.2.6 Altered abundance of mammary gland macrophages in adult bbb/bbb 

mice  

Macrophages are key immune cells in mammary gland development and function during 

adulthood (320). To investigate the impact of increased pubertal mammary adiposity on 

abundance of macrophages around ducts in adult mammary gland, F4/80-antibody 

immunostaining of the mammary glands was performed. F4/80-positive cells (Figure 4.9.A-C, 

arrows indicated) represented the F4/80-positive macrophages around ducts of controls, 

matched bbb/bbb and ad lib bbb/bbb mice. Negative control showed no F4/80-positive staining 

(Figure 4.9.D). Abundance of F4/80-positive macrophages around ducts was significantly 

decreased in matched bbb/bbb (p<0.001) and ad lib bbb/bbb (p<0.001) mice, compared to 

controls (Figure 4.10).   
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Figure 4.7. Percent mammary gland fibroglandular density in controls, matched bbb/bbb, 

and ad lib bbb/bbb mice at adulthood.  Representative images of hematoxylin-eosin stained 

fourth pair mammary gland sections of (A) controls, (B) matched bbb/bbb, and (C) ad lib 

bbb/bbb mice. Scale bars: 250 µm. (D) Quantification of percent fibroglandular density. It is 

calculated as the percentage of area occupied by fibroglandular tissue per area in the mammary 

gland. Representative images of hematoxylin-eosin stained epithelium surrounded by stroma in 

(E) controls, (F) matched bbb/bbb mice, and (G) ad lib bbb/bbb. Scale bars: 50 µm. (H) 

Quantification of stroma/epithelium ratio. It is calculated as the area of stroma occupied around 

the epithelium in the mammary gland. Colour code – Blue: Controls (bbb/+ or +/+) (n=11), 

Green: matched bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). Data are presented as 

mean+SEM and analysed using linear regression model. * indicates statistical significance at 

p<0.05. 
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Figure 4.8. Collagen deposition around the mammary gland ducts in controls, matched 

bbb/bbb, and ad lib bbb/bbb mice at adulthood. Representative images of Masson’s 

trichrome-stained mammary gland sections of (A) controls, (B) matched bbb/bbb mice, and (C) 

ad lib bbb/bbb. Scale bars: 50 µm. (D) Quantification of collagen deposition around ducts. It is 

measured as the thickness of collagen (blue stain) deposited around the ducts. Colour code – 

Blue: Controls (bbb/+ or +/+) (n=11), Green: matched bbb/bbb (n=9), and Pink: ad lib bbb/bbb 

(n=7). Data are presented as mean+SEM and analysed using linear regression model. * indicates 

statistical significance at p<0.05. 
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Figure 4.9. F4/80-positive macrophages around mammary gland ducts in controls, 

matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. Representative images of F4/80-

positive cells (arrows indicated) are the F4/80-positive macrophages in the stroma around 

mammary ducts in (A) controls, (B) matched bbb/bbb, and (C) ad lib bbb/bbb mice. (D) 

Negative control without primary antibody shows no F4/80-positive staining. Images at original 

magnification of 40X and scale bars: 50 µm, with inset images at original magnification of 80X 

and scale bars: 25 µm. 
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Figure 4.10. Abundance of macrophages around mammary gland ducts in controls, 

matched bbb/bbb, and ad lib bbb/bbb mice at adulthood.  Quantification of F4/80-positive 

macrophages per area around mammary ducts of controls, matched bbb/bbb, and ad lib bbb/bbb 

female mice. Colour code – Blue: Controls (bbb/+ or +/+) (n=10), Green: matched bbb/bbb 

(n=8), and Pink: ad lib bbb/bbb (n=7). Data are presented as mean+SEM and analysed using 

linear regression model. * indicates statistical significance at p<0.05. 
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To examine the effect of increased adiposity on macrophages residing in the mammary gland 

adipose tissue, F4/80-antibody immunostaining of the mammary adipose tissue was performed. 

F4/80-positive cells (Figure 4.11.A-C, arrows indicated) represented the F4/80-positive 

macrophages in mammary adipose tissue of controls, matched bbb/bbb, and ad lib bbb/bbb 

female mice. Negative control showed no F4/80-positive staining (Figure 4.11.D). 

Interestingly, the mammary gland adipose tissue of ad lib bbb/bbb mice was significantly 

infiltrated with F4/80-positive macrophages, compared to matched bbb/bbb mice (p=0.005) and 

controls (p=0.007) (Figure 4.12.A).  

 As previously mentioned, there was a significant decrease in the number of adipocytes per area 

in matched bbb/bbb and ad lib bbb/bbb mice. To assess whether the decreased number of 

adipocytes was associated with a decreased number of macrophages, the number of 

macrophages per 100 adipocytes in each group was quantified. Consistent with the above result, 

the number of macrophages per 100 adipocytes was significantly increased in ad lib bbb/bbb 

mice, compared to matched bbb/bbb mice (p<0.001) and controls (p<0.001) (Figure 4.12.B). 

This demonstrates that the adipose tissue microenvironment of ad lib bbb/bbb mice is 

comprised of more macrophages, irrespective of whether this is measured as macrophages per 

unit area, or macrophages per number of adipocytes. 

Similarly, abundance of macrophages in the visceral adipose tissue was quantified. F4/80-

antibody immunostaining of the visceral adipose tissue was performed. F4/80-positive cells 

(Figure 4.13.A-C, arrows indicated) represented the F4/80-positive macrophages in visceral 

adipose tissue of controls, matched bbb/bbb, and ad lib bbb/bbb mice. Negative control showed 

no F4/80-positive staining (Figure 4.13.D). The visceral adipose tissue of ad lib bbb/bbb mice 

was significantly infiltrated with F4/80-positive macrophages, compared to matched bbb/bbb 

(p=0.005) and controls (p=0.002) (Figure 4.14.A). The number of macrophages per 100 

adipocytes was also observed to be significantly increased in ad lib bbb/bbb mice, compared to 

matched bbb/bbb mice (p=0.003) and controls (p<0.001) (Figure 4.14.B).  
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Figure 4.11. F4/80-positive macrophages in the mammary gland adipose tissue in controls, 

matched bbb/bbb, and ad lib bbb/bbb mice at adulthood.  Representative images of F4/80-

positive cells (arrows indicated) are the F4/80-positive macrophages in the mammary adipose 

tissue from (A) controls, (B) matched bbb/bbb mice, and (C) ad lib bbb/bbb. (D) Negative 

control without primary antibody shows no F4/80-positive staining. Images at original 

magnification of 40X and scale bars: 50 µm, with inset images at original magnification of 80X 

and scale bars: 25 µm. 
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Figure 4.12. Abundance of macrophages in the mammary gland adipose tissue in controls, 

matched bbb/bbb, and ad lib bbb/bbb mice at adulthood.  Quantification of F4/80-positive 

macrophages (A) per area and (B) per 100 adipocytes in the mammary gland adipose tissue of 

controls, matched bbb/bbb, and ad lib bbb/bbb female mice. Colour code – Blue: Controls 

(bbb/+ or +/+) (n=9-10), Green: matched bbb/bbb (n=8), and Pink: ad lib bbb/bbb (n=7). Data 

are presented as mean+SEM and analysed using linear regression model. * indicates statistical 

significance at p<0.05. 
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Figure 4.13. F4/80-positive macrophages in the visceral adipose tissue in controls, 

matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. Representative images of F4/80-

positive cells (arrows indicated) are the F4/80-positive macrophages in visceral adipose tissue 

from (A) controls, (B) matched bbb/bbb, and (C) ad lib bbb/bbb mice. (D) Negative control 

without primary antibody shows no F4/80-positive staining. Images at original magnification 

of 40X and scale bars: 50 µm, with inset images at original magnification of 80X and scale 

bars: 25 µm. 
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Figure 4.14. Abundance of macrophages in the visceral adipose tissue in controls, matched 

bbb/bbb, and ad lib bbb/bbb mice at adulthood. Quantification of F4/80-positive macrophages 

(A) per area and (B) per 100 adipocytes in visceral adipose tissue of controls, matched bbb/bbb, 

and ad lib bbb/bbb female mice. Colour code – Blue: Controls (bbb/+ or +/+) (n=10), Green: 

matched bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=6-7). Data are presented as mean+SEM 

and analysed using linear regression model. * indicates statistical significance at p<0.05. 
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4.2.7 Altered abundance of adipokines and proinflammatory cytokines in 

adult bbb/bbb mice  

To investigate the impact of perturbation of adipose tissue on the mammary gland 

microenvironment, we assessed the protein concentration and gene expression of the most well 

characterised markers of obesity and tumour development in the mammary glands.  

Firstly, Luminex assay was performed to measure the serum concentration of IL6, CCL2, leptin, 

TNFA, PAI1 and resistin. No significant difference was observed in the concentration of IL6, 

CCL2, TNFA, PAI1, and resistin (Figure 4.15). However, we observed a significant increase 

in the circulating concentration of leptin in ad lib bbb/bbb mice, compared to matched bbb/bbb 

mice (p=0.025) and controls (p=0.002) (Figure 4.15.C). 

Next, protein concentration of IL6, CCL2, leptin, TNFA, PAI1 and resistin were measured in 

third pair mammary glands (Figure 4.16). Ad lib bbb/bbb mice exhibit increased protein levels 

of CCL2 (p=0.002), leptin (p<0.001), and TNFA (p=0.002), compared to controls (Figure 

4.16.B, C, D). Interestingly, matched bbb/bbb mice demonstrated increased protein 

concentration of IL6 (p=0.007), TNFA (p=0.028), and PAI1 (p<0.01), compared to controls 

(Figure 4.16.A, D, E). Compared to matched bbb/bbb mice, ad lib bbb/bbb mice exhibit 

increased leptin (p<0.01) and decreased PAI1 (p<0.01) in the mammary glands (Figure 4.16. 

C, E). No significant difference was observed in resistin concentration in these mice (Figure 

4.16.F).  
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Figure 4.15. Serum concentration of adipokines and proinflammatory cytokines in 

controls, matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. Luminex assay assessed 

the serum concentration of (A) IL6, (B) CCL2, (C) leptin, (D) TNFA, (E) PAI1, and (F) resistin. 

Colour code – Blue: Controls (bbb/+ or +/+) (n=11), Green: matched bbb/bbb (n=9), and Pink: 

ad lib bbb/bbb (n=6-7). IL6: interleukin 6, CCL2: C-C motif chemokine ligand 2, TNFA: 

tumour necrosis factor alpha, PAI1: plasminogen activator inhibitor 1. Data are presented as 

box-plots with median in between the first quartile and third quartile and analysed using a linear 

regression model. * indicates statistical significance at p<0.05. 
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Figure 4.16. Protein abundance of adipokines and proinflammatory cytokines in the 

mammary glands in controls, matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. 

Luminex assay assessed the protein concentration of (A) IL6, (B) CCL2, (C) leptin, (D) TNFA, 

(E) PAI1 and (F) resistin in third pair mammary glands. Colour code – Blue: Controls (bbb/+ 

or +/+) (n=11), Green: matched bbb/bbb (n=9), and Pink: ad lib bbb/bbb (n=7). IL6: interleukin 

6, CCL2: C-C motif chemokine ligand 2, TNFA: tumour necrosis factor alpha, PAI1: 

plasminogen activator inhibitor 1. Data are presented as box-plots with median in between the 

first quartile and third quartile and analysed using a linear regression model. * indicates 

statistical significance at p<0.05. 
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Further, we investigated gene expression of adipokines and inflammatory cytokines such as 

leptin, adiponectin, Il4, Il6, Tnfa, Tgfb1, Ccl2, Csf1, Igf1, Stat3, and Cox2 in mammary glands 

by real-time PCR analysis. 

Ad lib bbb/bbb mice exhibited increased expression of mRNA encoding leptin (p<0.001), 

adiponectin (p<0.001), TNFA, (p<0.001), TGFB1 (p<0.001), CCL2 (p<0.001), CSF1 

(p<0.001), IGF1 (p<0.001), and STAT3 (p<0.001), compared to controls (Figure 4.17.A, B, E, 

F, 4.18.A-E). On the other hand, mammary glands of matched bbb/bbb mice demonstrate 

increased expression of mRNA encoding adiponectin (p<0.01), TGFB1 (p=0.044), CSF1 

(p=0.033), IGF1 (p=0.007), and STAT3 (p=0.033), compared to controls (Figure 4.17. B, F, 

4.18.B-D). Further, ad lib bbb/bbb mice also had increased expression of mRNA encoding 

leptin (p<0.001), adiponectin (p=0.011), TNFA, (p<0.001), TGFB1 (p<0.001), CCL2 

(p<0.001), CSF1 (p=0.041), IGF1 (p<0.001), and STAT3 (p<0.001), compared to matched 

bbb/bbb mice (Figure 4.17.A, B, E, F, 4.18.A-D). No significant difference was observed in the 

expression of mRNA encoding IL4, IL6 or COX2 in these mice (Figure 4.17.C, D, 4.18.E).  
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Figure 4.17. Gene expression profile of adipokines and proinflammatory cytokines in the 

mammary glands in controls, matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. 

Quantification of mRNA encoding (A) leptin, (B) adiponectin, (C) IL4, (D) IL6, (E) TNFA, 

and (F) TGFB1 by real-time PCR analysis using comparative Ct method (i.e., 2^(-∆∆Ct) 

method). The abundance of mRNA was normalised to abundance of mRNA encoding the 

housekeeping gene Rpl13a in each sample. Colour code – Blue: Controls (bbb/+ or +/+) (n=9-

11), Green: matched bbb/bbb (n=7-9), and Pink: ad lib bbb/bbb (n=6). Il4: interleukin 4; Il6: 

interleukin 6; Tnfa: tumour necrosis factor alpha; Tgfb1: transforming growth factor beta 1. 

Data are presented as box-plots with median in between the first quartile and third quartile and 

analysed using a linear regression model. * indicates statistical significance at p<0.05.  
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Figure 4.18. Gene expression profile of adipokines and proinflammatory cytokines in the 

mammary glands in controls, matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. 

Quantification of mRNA encoding (A) CCL2, (B) CSF1, (C) IGF1, (D) STAT3, and (E) COX2 

by real-time PCR analysis using comparative Ct method (i.e., 2^(-∆∆Ct) method). The 

abundance of mRNA was normalised to abundance of mRNA encoding the housekeeping gene 

Rpl13a in each sample. Colour code – Blue: Controls (bbb/+ or +/+) (n=9-11), Green: matched 

bbb/bbb (n=7-9), and Pink: ad lib bbb/bbb (n=6). Ccl2: C-C motif chemokine ligand 2; Csf1: 

colony-stimulating factor 1; Igf1: insulin-like growth factor 1; Stat3: signal transducer and 

activator of transcription 3; Cox2: cyclooxygenase 2. Data are presented as box-plots with 

median in between the first quartile and third quartile and analysed using a linear regression 

model. * indicates statistical significance at p<0.05. 
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Different fat depots are proposed to have different roles in endocrine regulation and maintaining 

homeostasis due to diverse gene expression profiles and differences in the release of adipokines 

and cytokines (321). To investigate whether increased visceral adiposity vary in its impact from 

the mammary gland adiposity, we performed real-time PCR analysis to estimate the gene 

expression of leptin, adiponectin, Il4, Il6, Tnfa, Tgfb1, Ccl2, Csf1, Igf1, Stat3, and Cox2 (Figure 

4.19, 4.20) in visceral adipose tissue. 

Compared to controls, ad lib bbb/bbb mice had increased expression of mRNA encoding leptin 

(p=0.037), and decreased expression of mRNA encoding adiponectin (p=0.017), IL4 (p<0.001), 

IL6 (p=0.004), IGF1 (p=0.003), and COX2 (p=0.004) (Figure 4.19.A-D, 4.20.C, E). Matched 

bbb/bbb mice exhibited increased expression of mRNA encoding leptin (p=0.021) but 

decreased expression of IL4 (p=0.039), in comparison to controls (Figure 4.19.A, C). 

Interestingly, ad lib bbb/bbb mice demonstrated reduced expression of mRNA encoding 

adiponectin (p=0.006), IL4 (p=0.011), TGFB1 (p=0.023), and COX2 (p=0.008), compared to 

matched bbb/bbb mice (Figure 4.19.B, C, F, 4.20.E). No significant difference was observed in 

the expression of mRNA encoding TNFA, CCL2, CSF1, and STAT3 in these mice (Figure 

4.19.E, 4.20.A, B, D).  
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Figure 4.19. Gene expression profile of adipokines and proinflammatory cytokines in the 

visceral adipose tissue in controls, matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. 

Quantification of mRNA encoding (A) leptin, (B) adiponectin, (C) IL4, (D) IL6, (E) TNFA, 

and (F) TGFB1 by real-time PCR analysis using comparative Ct method (i.e., 2^(-∆∆Ct) 

method). The abundance of mRNA was normalised to abundance of mRNA encoding the 

housekeeping gene Rpl13a in each sample. Colour code – Blue: Controls (bbb/+ or +/+) (n=7-

8), Green: matched bbb/bbb (n=7), and Pink: ad lib bbb/bbb (n=6-7). Il4: interleukin 4; Il6: 

interleukin 6; Tnfa: tumour necrosis factor alpha; Tgfb1: transforming growth factor beta 1. 

Data are presented as box-plots with median in between the first quartile and third quartile and 

analysed using a linear regression model. * indicates statistical significance at p<0.05. 
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Figure 4.20. Gene expression profile of adipokines and proinflammatory cytokines in the 

visceral adipose tissue in controls, matched bbb/bbb, and ad lib bbb/bbb mice at adulthood. 

Quantification of mRNA encoding (A) CCL2, (B) CSF1, (C) IGF1, (D) STAT3, and (E) COX2 

by real-time PCR analysis using comparative Ct method (i.e., 2^(-∆∆Ct) method). The 

abundance of mRNA was normalised to abundance of mRNA encoding the housekeeping gene 

Rpl13a in each sample. Colour code – Blue: Controls (bbb/+ or +/+) (n=7-8), Green: matched 

bbb/bbb (n=7), and Pink: ad lib bbb/bbb (n=6-7). Ccl2: C-C motif chemokine ligand 2; Csf1: 

colony-stimulating factor 1; Igf1: insulin-like growth factor 1; Stat3: signal transducer and 

activator of transcription 3; Cox2: cyclooxygenase 2. Data are presented as box-plots with 

median in between the first quartile and third quartile and analysed using a linear regression 

model. * indicates statistical significance at p<0.05. 
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4.3 Discussion 

The experiments described in this chapter examined the impact of pubertal adiposity on 

mammary gland development and density during adulthood in a mouse model. We 

demonstrated that matched bbb/bbb and ad lib bbb/bbb mice exhibited increased mammary 

gland and visceral adiposity during adulthood. Increased mammary adiposity in matched 

bbb/bbb and ad lib bbb/bbb mice was associated with decreased abundance of macrophages 

around the ducts, decreased mammary gland density, and reduced deposition of stroma and 

collagen around the ducts. Overweight adult ad lib bbb/bbb mice exhibit increased abundance 

of macrophages in the mammary gland adipose tissue and visceral adipose tissue. Increased 

mammary adiposity resulted in altered abundance of adipokines and cytokines within the 

mammary gland microenvironment. Hence, overall, our results suggest that increased 

mammary adiposity during puberty reduces mammary gland density in adulthood, possibly 

through the crosstalk between mammary adipose tissue, epithelium, and stromal cells by 

altering the concentration of adipokines and cytokines.  

4.3.1 Increased mammary gland adiposity in adult bbb/bbb mice 

Mice that overeat in puberty due to their bbb/bbb mutation i.e., matched bbb/bbb and ad lib 

bbb/bbb mice both exhibited increased mammary gland adipocyte size suggesting increased 

lipid deposition in this fat depot. This was a large enough increase to be reflected in a statistical 

difference in mammary gland weight; thus clearly there was significantly increased adiposity 

in matched bbb/bbb and ad lib bbb/bbb mice during adulthood.  As expected, ad lib bbb/bbb 

mice had increased visceral adipose tissue and heavier fourth pair mammary glands, which is 

consistent with their significant gain in body weight. Matched bbb/bbb mice have similar body 

weight as controls but exhibited increased weights of mammary glands. This could be due to 

either ENU-induced bbb mutation or the increased mammary adiposity that occurred during 

puberty in this model. This can be further investigated in future by utilising alternative Alms1 

null mutant models of which a number exist (316, 317).    

4.3.2  Effect of increased mammary gland adiposity on mammary gland 

density during adulthood 

Whole mount analysis of the mammary glands demonstrated that matched bbb/bbb and ad lib 

bbb/bbb mice exhibit increased ductal invasion area. Interestingly, increased ductal length was 

observed in ad lib bbb/bbb mice, compared to controls. However, we observed no significant 

difference in branching. This suggests that increased mammary gland adiposity promotes ductal 

elongation and development but has minimal effect on ductal branching during adulthood.   
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We then investigated the impact of increased of pubertal mammary adiposity on mammary 

gland density. It is striking to observe that matched bbb/bbb and ad lib bbb/bbb mice exhibit 

reduced percent fibroglandular density. High mammographic density breast tissue is 

characterised with increased stroma around epithelium and increased deposition of collagen, 

compared to low mammographic density breast tissue (215). Matched bbb/bbb and ad lib 

bbb/bbb mice both exhibited decreased stroma around epithelium and decreased collagen 

deposition around ducts, than controls. These results thus demonstrate that increased mammary 

adiposity reduces adult mammary gland density in mice. Similarly, increased BMI in women 

is associated with reduced mammographic density, as the proportion of adipose tissue relative 

to fibroglandular tissue increases. 

As mentioned earlier, macrophages are capable of multiple biological roles in the mammary 

gland, including tissue development, homeostasis, and immunity. We investigated the impact 

of increased mammary adiposity on recruitment of macrophages around ducts. Interestingly, 

decreased abundance of macrophages in the stroma around ducts was observed in matched 

bbb/bbb and ad lib bbb/bbb mice. Similarly, human breast tissue with low mammographic 

density exhibits reduced abundance of stromal macrophages compared to breast tissue with 

high density (215).  

Further, we observed that mammary adipose tissue and visceral adipose tissue of ad lib bbb/bbb 

mice exhibited significantly increased abundance of macrophages. Expansion of adipose tissue 

in the obese state can promote chronic inflammation with increased infiltration of macrophages 

(308). Ad lib bbb/bbb mice are significantly overweight compared to control and matched 

bbb/bbb mice and could exhibit a state of chronic inflammation in mammary gland and visceral 

fat depots. In comparison, matched bbb/bbb mice have similar abundance of macrophages in 

the mammary gland adipose tissue and visceral adipose tissue as the controls. This suggests 

that though matched bbb/bbb mice demonstrate increased adipose tissue expansion in 

adulthood, the mammary gland adipose tissue and visceral adipose tissue microenvironment is 

different from that of overweight ad lib bbb/bbb mice. Analysis of gene and protein expression 

of inflammatory cytokines provides evidence that this is indeed the case. 

4.3.3 Effect of increased mammary gland adiposity on the mammary gland 

microenvironment 

Increased adiposity is known to alter the abundance of adipokines and cytokines. Increased 

circulating levels and increased mammary gland gene expression of leptin was observed in ad 
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lib bbb/bbb mice. This is consistent with previous studies that report increased circulating 

concentration of leptin in mice with excess adiposity (322).  

Protein abundance of proinflammatory cytokines IL6 and TNFA was increased in mammary 

glands of matched bbb/bbb mice, compared to controls. However, no significant difference was 

detected in the serum levels and gene expression of these cytokines in the mammary glands of 

these mice. Hence, further investigation is required to clarify the role of these cytokines in the 

mammary glands.  

Increased protein abundance of PAI1 was detected in the mammary glands of matched bbb/bbb 

mice. Studies have shown elevated expression of PAI1 in adipose tissue of obese mice and 

humans (323, 324). Increased PAI1 in primary tumour tissues of breast cancer patients (325) 

are associated with tumour aggressiveness and poor prognosis (326, 327). In contrast, another 

study demonstrated that vitamin D inhibits invasiveness of MDA-MB-231 breast carcinoma 

cells, possibly by reducing plasminogen activator activity, downregulating serine protease uPA, 

and upregulation of PAI1 in this cell line (328). Very little is known about the role of PAI1 in 

normal adult mammary gland development and function and further investigation of PAI1 

could reveal interesting insights. 

Obesity is proposed to induce inflammation in the adipose tissue by elevating proinflammatory 

cytokines. We observed increased protein and gene expression of proinflammatory cytokines 

such as CCL2 and TNFA in the mammary glands of overweight ad lib bbb/bbb mice. In mice, 

overexpression of CCL2 caused increased abundance of macrophages and increased 

susceptibility of mammary cancer development (233). Consistent with these reports, increased 

expression of Ccl2 and Csf1 in the mammary glands of ad lib bbb/bbb mice was accompanied 

with increased abundance of macrophages in the mammary gland adipose tissue. These results 

suggest that mammary glands of ad lib bbb/bbb mice exhibit a state of low-grade inflammation 

within the mammary gland microenvironment.   

Further, expression of genes encoding adiponectin, TGFB1, IGF1, and STAT3 were increased 

in the mammary glands of matched bbb/bbb and ad lib bbb/bbb mice. The circulating 

concentration of adiponectin is inversely associated with obesity-associated disorders (329-

331). Obese women have lower serum levels of adiponectin and have increased breast cancer 

risk (332-334). The increased expression of adiponectin in the mammary glands of matched 

bbb/bbb and ad lib bbb/bbb mice might thus be protective against mammary cancer 

development. However, no study has demonstrated the direct role of adiponectin in mammary 

gland adiposity, mammary gland development, and cancer development.  
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TGFB1 is highly expressed during puberty, adulthood, and pregnancy by the mammary 

epithelium (335). TGFB1 action has been extensively studied in pubertal mammary gland 

development, particularly branching morphogenesis (211). However, the exact role of TFGB1 

in adult mammary gland development is still not fully understood. Matched bbb/bbb and ad lib 

bbb/bbb mice, both exhibit ductal elongation; however, no significant difference was observed 

in branching morphogenesis. Studies have reported increased mRNA encoding TGFB1 in the 

adipose tissues of ob/ob and db/db mice, suggesting increased TGFB1 production with 

increasing adiposity as seen with leptin (336-338). These in vivo studies support our finding of 

increased Tgfb1 expression with increasing adiposity in matched bbb/bbb and ad lib bbb/bbb 

mice. 

IGF1 expression in the mammary gland is important for ductal development and branching. 

Igf1 null mutant female mice have perturbed pubertal mammary gland development, with 

reduced TEBs and decreased ductal invasion into the mammary gland adipose tissue (339). In 

an organ culture system for mouse mammary glands, IGF1 promoted ductal growth and 

elongation (340). These studies further support our result whereby, increased expression of Igf1 

in the mammary glands of matched bbb/bbb and ad lib bbb/bbb mice is accompanied with 

increased ductal invasion through the mammary gland adipose tissue. Mammographic density 

is positively associated with plasma concentration of IGF1 among premenopausal women 

(183). Interestingly, a study shows that it is the paracrine effect and not the endocrine effect of 

IGF1 that is important for branching morphogenesis (170). However, it is still unknown 

whether IGF1 regulates biological mechanisms that affect both branching morphogenesis and 

mammographic density.  

STAT3 is widely studied in the process of involution of the mammary glands. Its role is in the 

regulation of apoptosis of mammary epithelial cells and modulation of the immune cell 

microenvironment within the mammary gland (341-343). Deletion of STAT3 results in early 

embryonic lethality (344), therefore, the role of STAT3 in mammary gland development is still 

not fully understood. However, several studies have shown the role of leptin-STAT3 signalling 

in mammary gland development. Mice specifically lacking leptin-STAT3 signalling exhibit 

impaired growth of mammary ducts into the mammary gland adipose tissue (345). Our 

observation of increase in the expression of Stat3 in matched bbb/bbb and ad lib bbb/bbb mice 

is also accompanied with increased ductal growth into the mammary gland adipose tissue. 

Though previous studies support our findings, future studies might unravel the role of STAT3 

in mammary gland development during the non-pregnant non-lactating adult state.  
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Overall, these findings indicate that the mammary gland microenvironment of matched bbb/bbb 

mice with increased pubertal mammary adiposity is different from that of overweight ad lib 

bbb/bbb mice with lifelong increased adiposity. Increased mammary adiposity in adult ad lib 

bbb/bbb mice induced a state of chronic inflammation within the mammary gland which is 

evident by the increased infiltration of F4/80-positive macrophages in the mammary adipose 

tissue and elevated expression of multiple adipokines and proinflammatory cytokines, 

compared to matched bbb/bbb mice. 

4.3.4 Effect of increased adiposity on the visceral adipose tissue 

microenvironment  

In overweight ad lib bbb/bbb mice, the gene expression profile of cytokines in visceral adipose 

tissue is strikingly different from that in the mammary glands, except for leptin. Expression of 

genes encoding cytokines such as adiponectin, IL4, IL6, IGF1, and COX2 was found to be 

decreased in the visceral adipose tissue of ad lib bbb/bbb mice.  On the other hand, mRNA 

encoding IL4 was decreased in matched bbb/bbb mice, compared to controls. Our observation 

of reduced expression of adiponectin is consistent with previous studies that demonstrate 

decreased adiponectin in obese mice (346-348).  

IL4 and IL6 have been extensively studied as inflammatory cytokines, however, more recent 

studies have suggested their role in metabolic abnormalities associated with the adipose tissue. 

Lower circulating IL4 is reported in obese 145E mice and mice fed a high-fat diet, compared 

to wildtype and lean mice (349). Interestingly, IL4 is shown to promote macrophage 

polarization into M2 phenotypes (350, 351). Decreased expression of IL4 in matched bbb/bbb 

and ad lib bbb/bbb mice might be due to the increased visceral adiposity in these mice. 

However, we did not detect significant differences in the abundance of F4/80-positive 

macrophages between the visceral adipose tissue of matched bbb/bbb mice and controls. On 

the other hand, IL6 expression is reported to be increased in the adipose tissue in obese, insulin 

resistant animals (352). However, the inflammatory role of IL6 still remains conflicted and 

instead, studies suggest the positive effect of IL6 in immuno-metabolic conditions (353). In 

support of this, IL6-deficient mice develop late onset obesity (354), and when fed a high-fat 

diet exhibit enhanced inflammation compared to controls (355). Further, an acute bout of 

exercise increases IL6 signalling markers and reduces F4/80- and CD11c-positive cells in the 

adipose tissue, which suggests a reduction in M1 macrophage polarization (353). Our findings 

are consistent with these studies whereby decreased IL6 expression in the visceral adipose 

tissue is accompanied with increased infiltration of F4/80-positive macrophages in ad lib 
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bbb/bbb mice. However, further investigation is required to understand the precise role of IL4 

and IL6 in the adipose tissue development and function in mice.  

IGF1 has been proposed to play a key role in obesity. Obese humans and animal models 

generally have abnormal circulating IGF1 (356) and an inverse relationship of circulating IGF1 

with visceral adipose tissue mass had been proposed (357-361). We have also found reduced 

expression of Igf1 in overweight ad lib bbb/bbb mice. However, the role of IGF1 in the visceral 

adipose tissue is still unknown.  

COX enzymes are involved in prostaglandin production. While high-fat diet feeding in rats 

increases expression of COX1 and COX2 (362), high-fat diet feeding in C57BL/6 mice 

decreases COX-derived products (363). In addition, high-fat diet in C57BL/6 mice suppresses 

COX2 but not COX1 expression in inguinal white adipose tissue (364). Overexpression of 

COX2 in mature adipocytes resulted in reduced inguinal white adipose tissue and altered 

adipocyte size in C57BL/6 mice (365). These studies are consistent with our findings of 

decreased Cox2 expression with increased visceral adipose tissue and increased adipocyte size 

in ad lib bbb/bbb mice. Unlike the mice mentioned in the above studies, ad lib bbb/bbb mice 

were not fed a high-fat diet, but exhibit similar obesity. Future studies might unravel the effect 

of COX2 activity in the adipose tissue.   

Interestingly, compared to matched bbb/bbb mice, reduced expression of mRNA encoding 

TGFB1 was detected in visceral adipose tissue of ad lib bbb/bbb mice. Constitutive 

overexpression of an active human TGFB1 transgene in white adipose tissue resulted in severe 

reduction of white adipose depots (366). Further, the expression of this transgene in ob/ob mice 

prevented morbid obesity that is typically associated with these mice (366). However, mRNA 

encoding TGFB1 is increased in the adipose tissue of ob/ob and db/db mice (337). TGFB1 is 

known to promote expansion of the preadipocyte population, while preventing their subsequent 

differentiation (367). High expression of TGFB1 in obese animal models could possibly support 

undifferentiated population of preadipocytes (368). However, when the differentiation process 

is initiated possibly by other factors, the inhibitory effect of TGFB1 on adipogenesis would be 

reduced and would allow for expansion of adipose tissue mass (369). These studies suggest that 

the lower expression of Tgfb1 in overweight ad lib bbb/bbb mice possibly promotes visceral 

adiposity. 

Overall, these findings suggest that the visceral adipose tissue microenvironment of matched 

bbb/bbb mice is different from that of overweight ad lib bbb/bbb mice. Increased visceral 

adiposity in ad lib bbb/bbb mice is associated with a proinflammatory and pro-adipogenic 
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microenvironment, which is evident by the increased infiltration of F4/80-positive macrophages 

and reduced expression of anti-adipogenesis factors such as IL4, IL6, and TGFB1. 

4.3.5 Limitations and future directions 

The expansion of adipose tissue is associated with changes to ovarian hormones estradiol and 

progesterone; and thus, future research may investigate whether these hormones play any role 

in the mammary gland density and inflammatory changes observed with obesity in these mice. 

Further, we also observed high degree of variability in the gene expression of adipokines and 

proinflammatory cytokines reported in our study which possibly highlight the contribution of 

both epithelium and stroma to affect their expression in the mammary gland. In addition, the 

differential gene expression profile of mammary glands from that of visceral adipose tissue can 

be attributed to the crosstalk of adipose tissue with the epithelium in the mammary glands. 

Contribution of epithelium in the adult mammary gland with increased mammary adiposity, is 

still not clearly understood. Our experimental design could not allow us to evaluate the role of 

the epithelium specifically in adult mammary gland development and function. Therefore, 

future studies may investigate the role of the epithelium in the adult mammary gland with 

increased mammary adiposity in mice using a mammary gland transplant approach.  

4.4 Conclusion 

Increased mammary gland adiposity in the Alms1 bbb/bbb mouse model is associated with 

decreased mammary gland density with reduced deposition of stroma and collagen around 

mammary ducts, and decreased abundance of macrophages. The significant increase in body 

weight in ad lib bbb/bbb mice in adulthood was associated with a state of chronic inflammation 

within the mammary gland. On the other hand, matched bbb/bbb mice with normal body weight 

and increased mammary gland adiposity in adulthood did not exhibit these inflammatory 

phenotypes. Overall, these findings demonstrate that increased pubertal adiposity is a causative 

factor in regulating mammary fibroglandular density in adulthood. In the following chapter, we 

investigate how these above alterations in the adult mammary gland impact mammary cancer 

development. 
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5.1 Introduction 

In Chapter four, we provided evidence that increased pubertal adiposity is causative in 

regulating mammary gland density in adulthood. However, whether there is a relationship 

between increased pubertal adiposity and development of mammary cancer in adulthood is still 

unclear. This study investigates links between adiposity during puberty and mammary cancer 

development in adulthood in a mouse model.  

The MMTV-PyMT transgenic mouse model was used in these studies. The PyMT transgene is 

an oncogene that causes hyperplasia of the mammary epithelial cells and progression to 

carcinoma. The resulting tumours spontaneously progress to metastasis and recapitulate the 

stages of human breast cancer progression (370). These mammary tumours arise with 100% 

penetrance and align with the basal epithelial subtype of human breast cancer (371, 372). Basal 

epithelial subtype of human breast cancer is associated with clinically aggressive nature and 

poor prognosis (373). For this study, the MMTV-PyMT tumour model was crossed with Alms1 

bbb/+ mice to generate female PyMT-control (PyMT-bbb/+ or PyMT-+/+) and PyMT-

bbb/bbb mice.   

The experimental design of this study is illustrated in Figure 5.1. PyMT-control and PyMT-

bbb/bbb mice were fed normal mouse diet ad libitum from weaning age to 7 weeks of age. After 

7 weeks (i.e., end of puberty), a group of PyMT-bbb/bbb mice were calorie-matched to PyMT-

control mice until 18 weeks, such that the amount of food eaten by PyMT-bbb/bbb mice was 

the same as that consumed by the PyMT-control. These mice will be referred to as ‘matched 

PyMT-bbb/bbb mice’. Due to consuming mouse chow ad libitum until puberty, matched 

PyMT-bbb/bbb mice will exhibit increased pubertal adiposity, as described in Chapter 3, but 

then they will not increasingly gain adipose tissue as adults because they are calorie-matched 

with PyMT-control mice. Another cohort of mice was used in parallel. They are PyMT-bbb/bbb 

mice that ate ad libitum throughout the study. These mice will be referred to as ‘ad lib PyMT-

bbb/bbb mice’. This cohort allowed us to specifically isolate the effect of pubertal adiposity 

and compare it to the effect of adult obesity. Ad lib PyMT-bbb/bbb mice exhibited increased 

adiposity during puberty and became obese in adulthood.    

Based on the known epidemiological association between pubertal adiposity and breast cancer 

risk, we hypothesised that matched PyMT-bbb/bbb mice would exhibit reduced mammary 

cancer development in adulthood, compared to PyMT-control mice. As ad lib PyMT-bbb/bbb 

mice would exhibit obesity in adulthood, we hypothesised that they would exhibit increased 

mammary cancer development compared to matched PyMT-bbb/bbb mice.    



Chapter 5 – Impact of increased pubertal adiposity on adult mammary cancer development 

Ghadge  128 

Mammary tumours and visceral adipose tissue were dissected from PyMT-control, matched 

PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb mice at 18 weeks. The number of mice required for 

this study was determined by power analysis for MMTV-PyMT tumour model, preformed in 

previous studies in our lab (data not shown). The MMTV-PyMT tumour model on C57BL/6 

background exhibit an average tumour latency of 14 weeks, compared to the shorter latency of 

7 weeks in MMTV-PyMT tumour model on FVB background (374). However, to account for 

C57BL/6 background, bbb/bbb mutation, and hypothesised delayed tumour development in 

matched PyMT-bbb/bbb mice, these mice were monitored till 18 weeks. Tumour latency and 

tumour development was analysed in these mice. Primary tumours were characterised based on 

histopathological grading assessment. To investigate the impact of perturbation of mammary 

gland adiposity on the mammary tumour microenvironment, we assessed gene expression of 

adipokines and proinflammatory cytokines in the mammary tumours. Results from this chapter 

suggest that increased pubertal mammary adiposity alters tumour latency and tumour 

development during adulthood. Furthermore, altered expression of adipokines and 

proinflammatory cytokines was observed within the mammary tumour microenvironment and 

this could be responsible for altered mammary cancer development in these mice.  
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Figure 5.1. Illustration of experimental design to study the impact of pubertal adiposity 

on mammary cancer development in adulthood. PyMT-control and PyMT-bbb/bbb mice 

were fed normal mouse diet ad libitum from weaning age until 7 weeks. After 7 weeks (i.e., 

end of puberty), a group of PyMT-bbb/bbb mice were calorie-matched to PyMT-control mice 

until 18 weeks (adulthood), such that the amount of food eaten by PyMT-bbb/bbb mice is same 

as that eaten by the controls. These mice will be referred to as ‘matched PyMT-bbb/bbb mice’. 

Another cohort of mice in this study are PyMT-bbb/bbb mice that ate ad libitum from 4 weeks 

to 18 weeks. These mice will be referred to as ‘ad lib PyMT-bbb/bbb mice’. Colour code: Blue 

- PyMT-control (PyMT-bbb/+ or PyMT-+/+) (n=20), Green - matched PyMT-bbb/bbb (n=18), 

Pink - ad lib PyMT-bbb/bbb (n=15). 
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5.2 Results 

5.2.1 Female matched PyMT-bbb/bbb mice exhibit greater tumour latency in 

adulthood  

To investigate the impact of increased adiposity during puberty on mammary cancer 

development in adulthood, matched PyMT-bbb/bbb, ad lib PyMT-bbb/bbb and PyMT-control 

female mice were euthanised and then weighed at 18 weeks of age. Mammary tumours and 

visceral adipose tissue were dissected from these mice. At 18 weeks, matched PyMT-bbb/bbb 

mice showed similar body weight compared to the PyMT-control mice (Figure 5.2.A). Ad lib 

PyMT-bbb/bbb mice exhibited a significant increase in body weight, compared to PyMT-

control mice (p<0.001) and matched PyMT-bbb/bbb mice (p<0.001) (Figure 5.2.A). Consistent 

with body weight, there was significant increase in the weight of visceral adipose tissue in ad 

lib PyMT-bbb/bbb mice, compared to PyMT-control (p<0.001) and matched PyMT-bbb/bbb 

mice (p<0.001) (Figure 5.2.B).  

PyMT-control and PyMT-bbb/bbb mice were monitored daily and palpated twice a week to 

check for tumours from 8 weeks of age to determine latency to mammary tumour development. 

A significant increase in tumour free survival was observed in matched PyMT-bbb/bbb mice, 

compared to PyMT-control and ad lib PyMT-bbb/bbb mice (LogRank p=0.002) (Figure 5.3.A). 

Matched PyMT-bbb/bbb mice exhibited a significant increase in tumour latency (age at the 

time of detection of the first palpable tumour) compared to PyMT-control mice (p<0.01) 

(Figure 5.3.B). 

5.2.2 Matched PyMT-bbb/bbb mice exhibit decreased mammary cancer 

development in adulthood  

The primary tumour is defined as the first palpable tumour and has the highest weight at 

dissection. There was significant reduction in the weight of the primary tumour of matched 

PyMT-bbb/bbb mice, compared to ad lib PyMT-bbb/bbb mice (p=0.019) (Figure 5.4.A). 

Further, matched PyMT-bbb/bbb mice exhibited a significant decrease in the number of 

tumours, compared to PyMT-control (p=0.006) and ad lib PyMT-bbb/bbb (p=0.018) mice 

(Figure 5.4.B). 
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Figure 5.2. Body and adipose tissue weights of female PyMT-control, matched PyMT-

bbb/bbb, and ad lib PyMT-bbb/bbb mice at adulthood. At 18 weeks, mice were weighed, and 

mammary tumours and visceral adipose tissue was dissected. (A) Total body weight. (B) 

Weight of visceral adipose tissue. Colour code: Blue - PyMT-control (PyMT-bbb/+ or PyMT-

+/+) (n=20), Green - matched PyMT-bbb/bbb (n=18), Pink - ad lib PyMT-bbb/bbb (n=15). 

Data are presented as mean+SEM and analysed using linear regression model. * indicates 

statistical significance at p<0.05. 

  



Chapter 5 – Impact of increased pubertal adiposity on adult mammary cancer development 

Ghadge  132 

 
 

 

 

 

Figure 5.3. Tumour latency in PyMT-control, matched PyMT-bbb/bbb, and ad lib PyMT-

bbb/bbb female mice at adulthood. PyMT-control and PyMT-bbb/bbb female mice were 

monitored twice a week from 8 weeks of age by palpation to determine tumour latency. Mice 

were either euthanised at 18 weeks or when tumour volume exceeded 2000mm3. (A) Kaplan-

Meier tumour-free survival plot. Statistical significance at Log Rank p<0.05. (B) Tumour 

latency. Colour code: Blue - PyMT-control (PyMT-bbb/+ or PyMT-+/+) (n=20), Green - 

matched PyMT-bbb/bbb (n=18), Pink - ad lib PyMT-bbb/bbb (n=15). Data are presented as 

mean+SEM and analysed using linear regression model. * indicates statistical significance at 

p<0.05. 
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Figure 5.4. Tumour development in PyMT-control, matched PyMT-bbb/bbb, and ad lib 

PyMT-bbb/bbb female mice at adulthood. Mammary tumours were dissected from PyMT-

control and PyMT-bbb/bbb female mice and weighed. (A) Weight of primary tumour. The first 

palpable tumour with the highest weight is presented as the primary tumour weight. (B) Total 

number of mammary tumours for each mouse was calculated. Colour code: Blue - PyMT-

control (PyMT-bbb/+ or PyMT-+/+) (n=20), Green - matched PyMT-bbb/bbb (n=18), Pink - 

ad lib PyMT-bbb/bbb (n=15). Data are presented as mean+SEM and analysed using linear 

regression model. * indicates statistical significance at p<0.05. 
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Total tumour burden was determined as the sum of weight of all tumours in each mouse. We 

observed a significant increase in total tumour burden in ad lib PyMT-bbb/bbb mice, compared 

to PyMT-control (p=0.008) and matched PyMT-bbb/bbb (p<0.01) mice (Figure 5.5.A). Percent 

tumour burden was calculated as percentage for body weight of each mouse. Matched PyMT-

bbb/bbb mice exhibited a significant decrease in percent tumour burden, compared to ad lib 

PyMT-bbb/bbb mice (p=0.006) (Figure 5.5.B).  

5.2.3 No difference in the tumour progression in PyMT-bbb/bbb mice  

To investigate the impact of pubertal mammary adiposity on tumour progression, 

haematoxylin-eosin stained sections of primary tumours from PyMT-control, matched PyMT-

bbb/bbb, and ad lib PyMT-bbb/bbb mice were assessed for tumour grade and other pathological 

markers by veterinary pathologist Dr Lucy Woolford.  

Primary tumours were classified into four tumour grades according to their morphology. Late 

carcinoma is the most advanced tumour stage. No significant difference was observed in tumour 

grade of the primary tumours in these mice (Figure 5.6). All (100%) of the primary tumours 

from PyMT-control (20 out of 20 mice) and matched PyMT-bbb/bbb mice (17 out of 17 mice) 

were at late carcinoma. Of all primary tumours dissected from ad lib PyMT-bbb/bbb mice, 

93.3% were at late carcinoma (14 out of 15 mice) and 6.7% were at early carcinoma (1 out of 

15 mice).  

Primary tumours were also assessed for cytological atypia. Cytological atypia indicates degree 

of variation in cell size, nuclear size, nuclear to cytoplasmic ratio, and in cellular and nuclear 

shape. Four classifications of cytological atypia are: none or minimal, mild, moderate, and 

marked. All primary tumours from PyMT-control, matched PyMT-bbb/bbb, and ad lib PyMT-

bbb/bbb mice exhibited same degree of cytological atypia and therefore, there was no 

significant difference between mouse genotypes (Figure 5.7). All (100%) of the primary 

tumours from PyMT-control mice (20 out of 20 mice), matched PyMT-bbb/bbb mice (17 out 

of 17 mice), and ad lib PyMT-bbb/bbb mice (15 out of 15 mice) exhibited marked cytological 

atypia. Furthermore, primary tumours of PyMT-control, matched PyMT-bbb/bbb, and ad lib 

PyMT-bbb/bbb mice were assessed for presence of necrosis. Necrosis, degeneration and death 

of neoplastic cells within the tumour are key features of malignancy and rapid tumour growth. 

Primary tumours from PyMT-control, matched PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb mice 

exhibited no significant difference in degree of necrosis (Figure 5.8).  

Overall, these findings suggest that increased pubertal adiposity is associated with reduced 

tumour development but does not affect mammary tumour progression. 
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Figure 5.5. Tumour development in PyMT-control, matched PyMT-bbb/bbb, and ad lib 

PyMT-bbb/bbb female mice at adulthood. Mammary tumours were dissected from PyMT-

control and PyMT-bbb/bbb female mice and weighed. (A) Total tumour burden. Total tumour 

burden was determined by the sum of weight of all tumours in each mouse. (B) Percent tumour 

burden. It is determined by total tumour burden as a percentage for body weight of each mouse. 

Colour code: Blue - PyMT-control (PyMT-bbb/+ or PyMT-+/+) (n=20), Green - matched 

PyMT-bbb/bbb (n=18), Pink - ad lib PyMT-bbb/bbb (n=15). Data are presented as mean+SEM 

and analysed using linear regression model. * indicates statistical significance at p<0.05. 
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Figure 5.6. Histopathological stage of mammary tumours in PyMT-control, matched 

PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb female mice at adulthood. Primary mammary 

tumours were paraffin-fixed, sectioned, and stained with haematoxylin and eosin. The 

mammary tumours were classified into four categories – hyperplasia, adenoma, early 

carcinoma, and late carcinoma. Representative images of haematoxylin eosin-stained primary 

tumours of (A) PyMT-control, (B) matched PyMT-bbb/bbb, and (C) ad lib PyMT-bbb/bbb 

mice. Scale bars: 50 µm. (D) Percent distribution of primary tumours into four histopathological 

tumour stages. Colour code: Blue - PyMT-control (PyMT-bbb/+ or PyMT-+/+) (n=20), Green 

- matched PyMT-bbb/bbb (n=17), Pink - ad lib PyMT-bbb/bbb (n=15). Data are presented as 

percent distribution and analysed using linear regression model with statistical significance at 

p<0.05.  
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Figure 5.7. Presence of cytological atypia in mammary tumours in PyMT-control, 

matched PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb female mice at adulthood. Primary 

mammary tumours were paraffin-fixed, sectioned, and stained with haematoxylin and eosin. 

The mammary primary tumours were classified into four categories – no atypia, mild, moderate, 

and marked atypia. Representative images of cytological atypia present in haematoxylin eosin-

stained primary tumours of (A) PyMT-control, (B) matched PyMT-bbb/bbb, and (C) ad lib 

PyMT-bbb/bbb mice. Scale bars: 50 µm. (D) Percent distribution of primary tumours into four 

categories of cytological atypia. Colour code: Blue - PyMT-control (PyMT-bbb/+ or PyMT-

+/+) (n=20), Green - matched PyMT-bbb/bbb (n=17), Pink - ad lib PyMT-bbb/bbb (n=15). 

Data are presented as percent distribution and analysed using linear regression model with 

statistical significance at p<0.05. 

  



Chapter 5 – Impact of increased pubertal adiposity on adult mammary cancer development 

Ghadge  138 

 
 

 

 

 

Figure 5.8. Presence of necrosis in mammary tumours in PyMT-control, matched PyMT-

bbb/bbb, and ad lib PyMT-bbb/bbb female mice at adulthood. Primary mammary tumours 

were paraffin-fixed, sectioned, and stained with haematoxylin and eosin. The mammary 

primary tumours were assessed for presence of necrosis. Representative images of necrosis 

present in haematoxylin eosin-stained primary tumours of (A) PyMT-control, (B) matched 

PyMT-bbb/bbb, and (C) ad lib PyMT-bbb/bbb mice. Scale bars: 100 µm. (D) Percent 

distribution of primary tumours for the presence of tumour necrosis. Colour code: Blue - PyMT-

control (PyMT-bbb/+ or PyMT-+/+) (n=15), Green - matched PyMT-bbb/bbb (n=15), Pink - 

ad lib PyMT-bbb/bbb (n=4). Data are presented as percent distribution and analysed using 

linear regression model with statistical significance at p<0.05. 
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5.2.4 Altered abundance of adipokines and proinflammatory cytokines in 

PyMT-bbb/bbb mice 

To investigate the impact of perturbation of adipose tissue on the mammary tumour 

microenvironment, we assessed the gene expression of the most well characterised markers of 

obesity and tumour development including leptin, adiponectin, IL4, IL6, TNFA, TGFB1, 

CCL2, CSF1, IGF1, STAT3, and COX2 in mammary tumours by real-time PCR analysis. 

Ad lib PyMT-bbb/bbb mice exhibited increased expression of mRNA encoding leptin, 

compared to PyMT-control (p=0.002) and matched PyMT-bbb/bbb (p=0.006) mice (Figure 

5.9.A). Further, mammary tumours of ad lib PyMT-bbb/bbb mice demonstrate significantly 

increased expression of mRNA encoding IL4, compared to PyMT-control mice (p=0.029) 

(Figure 5.9.C). Interestingly, matched PyMT-bbb/bbb mice exhibited significantly increased 

expression of mRNA encoding TGFB1, compared to PyMT-control mice (p=0.037) (Figure 

5.9.F). No significant difference was observed in the expression of mRNA encoding 

adiponectin, IL6, TNFA, CCL2, CSF1, IGF1, and COX2 in these mice (Figure 5.9.B, D, E, 

5.10.A-C, E). Strikingly, ad lib PyMT-bbb/bbb mice exhibited increased expression of mRNA 

encoding STAT3 in mammary tumours, compared to PyMT-control (p=0.026) and matched 

PyMT-bbb/bbb (p=0.043) mice (Figure 5.10.D).  
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Figure 5.9. Gene expression profile of adipokines and proinflammatory cytokines in the 

mammary tumours of PyMT-control, matched PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb 

mice at adulthood. Quantification of mRNA encoding (A) leptin, (B) adiponectin, (C) IL4, 

(D) IL6, (E) TNFA, and (F) TGFB1 in mammary tumours by real-time PCR analysis using 

comparative Ct method (i.e., 2^(-∆∆Ct) method). The abundance of mRNA was normalised to 

abundance of mRNA encoding the housekeeping gene Rpl13a in each mouse. Colour code: 

Blue – PyMT-control (n=19), Green - matched PyMT-bbb/bbb (n=12-13), Pink - ad lib PyMT-

bbb/bbb (n=13). Il4: interleukin 4; Il6: interleukin 6; Tnfa: tumour necrosis factor alpha; Tgfb1: 

transforming growth factor beta 1. Data are presented as box-plots with median in between the 

first quartile and third quartile and analysed using a linear regression model. * indicates 

statistical significance at p<0.05. 
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Figure 5.10. Gene expression profile of adipokines and proinflammatory cytokines in the 

mammary tumours of PyMT-control, matched PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb 

mice at adulthood. Quantification of mRNA encoding (A) CCL2, (B) CSF1, (C) IGF1, (D) 

STAT3, and (E) COX2 in the mammary tumours by real-time PCR analysis using comparative 

Ct method (i.e., 2^(-∆∆Ct) method). The abundance of mRNA was normalised to abundance of 

mRNA encoding the housekeeping gene Rpl13a in each mouse. Colour code: Blue – PyMT-

control (n=19), Green - matched PyMT-bbb/bbb (n=13), Pink - ad lib PyMT-bbb/bbb (n=13). 

Ccl2: C-C motif chemokine ligand 2; Csf1: colony-stimulating factor 1; Igf1: insulin-like 

growth factor 1; Stat3: signal transducer and activator of transcription 3; Cox2: cyclooxygenase 

2. Data are presented as box-plots with median in between the first quartile and third quartile 

and analysed using a linear regression model. * indicates statistical significance at p<0.05. 
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5.3 Discussion 

The experiments described in this chapter examined the impact of pubertal adiposity on 

mammary cancer development during adulthood in a mouse model. We demonstrated that 

matched PyMT-bbb/bbb mice exhibited overall better tumour-free survival and reduced tumour 

development, compared to controls. On the other hand, obese ad lib bbb/bbb mice exhibited 

worse tumour-free survival with increased total tumour burden, and increased expression of 

mRNA encoding leptin, IL4, and STAT3 in the mammary tumours. Interestingly, matched ad 

lib PyMT-bbb/bbb mice exhibited increased expression of mRNA encoding TGFB1 in the 

mammary tumours. Overall, our results suggest that increased mammary adiposity during 

puberty affects mammary cancer development in adulthood, possibly by altering the 

concentration of adipokines and cytokines in the mammary gland microenvironment in 

adulthood. 

5.3.1 Effect of increased pubertal adiposity on mammary cancer development 

during adulthood 

Matched PyMT-bbb/bbb mice with increased pubertal adiposity, compared to PyMT-control 

mice, exhibited overall better tumour-free survival. This difference was not due to the presence 

of the bbb homozygous mutation, as ad lib PyMT-bbb/bbb mice exhibited worse tumour-free 

survival. Furthermore, ad lib PyMT-bbb/bbb mice exhibited increased primary tumour weight, 

number of tumours, and total tumour burden, compared to matched PyMT-bbb/bbb mice. These 

findings suggest that in this mouse model using the PyMT transgene, which is an aggressive 

tumour model with 100% penetrance, a subtle change in pubertal adiposity plays a critical role 

in altering tumour development in adulthood.   

We observed no significant difference in histological tumour grade, cytological atypia, and 

necrosis of the primary tumours from PyMT-control, matched PyMT-bbb/bbb, and ad lib 

PyMT-bbb/bbb mice. This suggests that tumour progression was not affected by increased 

pubertal adiposity. Taken together, these findings suggest that the impact of increased pubertal 

adiposity in matched PyMT-bbb/bbb mice occurs early in tumour development. However, the 

exact mechanism of this profoundly altered mammary cancer development observed in matched 

PyMT-bbb/bbb mice is yet to be understood. 

5.3.2 Effect of increased pubertal adiposity on the mammary tumour 

microenvironment  

Increased expression of mRNA encoding leptin was observed in the tumour microenvironment 

of ad lib PyMT-bbb/bbb mice. This is consistent with previous studies that report increased 



Chapter 5 – Impact of increased pubertal adiposity on adult mammary cancer development 

Ghadge  145 

circulating leptin with increasing adiposity (322). Breast carcinoma cells express higher levels 

of leptin and its receptor, than normal mammary cells (375). Further, higher circulating leptin 

is linked to breast cancer aggressiveness and related to poor prognosis (376, 377). Moreover, 

leptin has been suggested as a biomarker associated with type, grade, stage, involvement of 

lymph node, hormone receptors, and recurrence in breast cancer through immunohistochemical 

analysis (378) Studies on leptin (ob/ob) and leptin receptor (db/db) mutant mice have 

consistently supported the role of leptin in mammary cancer development (379, 380) These 

studies support our findings of increased leptin expression in ad lib PyMT-bbb/bbb mice with 

increased incidence of mammary tumours.  

Constitutive activation of STAT3 is reported in breast cancer (381). STAT3 is known to affect 

proliferation and apoptosis (382) Further, in a human epidermal growth factor receptor 2 

(HER2) induced mouse model of mammary carcinoma, STAT3 is demonstrated to promote 

tumour progression (383). Moreover, MMTV-PyMT tumours without STAT3 exhibit impaired 

immune responses and defective metastasis (384). Interestingly, leptin signalling is reported to 

be mediated through activation of STAT3, phosphorylated extracellular signal-regulated 

kinase, and transcript activator protein 1 pathways (385-387). An in vitro study (388) 

demonstrated that leptin increased expression of phosphorylated Stat3 in the T47D human 

breast carcinoma cell line. Our findings of increased expression of mRNA encoding STAT3 in 

obese ad lib PyMT-bbb/bbb mice with increased mammary cancer development is consistent 

with previous studies. However, we did not investigate the expression of phosphorylated 

STAT3 in the tumours of these mice.  Consequently, leptin-STAT3 signalling pathway may be 

further studied to understand the impact of excess adiposity on mammary cancer development 

in obese ad lib PyMT-bbb/bbb mice.   

Increased expression of IL4 in tumours has been reported in several human malignancies, 

including breast, colon, pancreatic, ovarian, and lung cancer (389-392). It is proposed that IL4 

promotes tumorigenesis through an immunosuppressive effect on T cells (393), increased 

cancer cell proliferation (390), and resistance to apoptosis (394). In contrast, IL4 is also reported 

to have anti-tumour effects in vitro (393). Further, the role of IL4 is proposed to be highly 

context-dependent, influenced by the cytokine levels and specific population of immune cells 

in the tumour microenvironment (395). We observed a significant increase in Il4 expression in 

ad lib PyMT-bbb/bbb tumours. However, the exact role of IL4 in mammary cancer 

development in these mice is still unknown.  

TGFB1 is proposed to act as both stimulatory and inhibitory in tumour development and 

progression (396-398). The tumour-suppressive effect of TGFB1 inhibits cell proliferation, 
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induces apoptosis, and suppresses growth factors and production of cytokines and chemokines 

(396-398). However, with tumour progression, there is an increase in the abundance of TGFB1, 

which imposes pro-tumorigenic effects including impaired immune responses, promotion of 

angiogenesis, and metastasis (396-398). Our finding that matched PyMT-bbb/bbb mice with 

increased Tgfb1 expression in primary tumours, exhibit decreased tumour development, 

suggests a tumour-suppressive effect of TGFB1 in these mice. 

Overall, these findings suggest that obesity in ad lib PyMT-bbb/bbb mice creates a tumour-

promoting microenvironment that mediates tumour development and survival, possibly by 

elevating IL4 and activating leptin-STAT3 signalling pathway. On the other hand, the decreased 

mammary cancer development seen in matched PyMT-bbb/bbb mice could potentially be due 

to an unfavourable microenvironment for tumour development, which helps to protect the 

mammary gland from tumorigenesis in adulthood.  

5.3.3 Limitations and future directions 

TGFB1 targets immune cells, including macrophages (399), and macrophages play multiple 

roles in tumour development in breast cancer (Reviewed in (400)). Therefore, it would be 

interesting to investigate the impact of TGFB1 signalling on local macrophage populations in 

primary tumours of PyMT-control, matched PyMT-bbb/bbb, and ad lib PyMT-bbb/bbb mice. 

This study did not examine pulmonary metastasis in these mice, which could be investigated in 

the future. However, significant differences in pulmonary metastasis in these mice are unlikely, 

as we did not find any difference in the histopathological classification of primary tumours. 

Moreover, it is important to analyse the expression of phosphorylated STAT3 to unravel the 

role of leptin-STAT3 signalling pathway in mammary cancer development in our mouse model. 

Our study suggests that increased pubertal adiposity in matched PyMT-bbb/bbb tumour mouse 

model resulted in reduced mammary cancer development in adulthood. In future, a transplant 

study will provide further evidence of whether this relationship is the result of changes that 

have occurred specifically in the mammary gland during puberty. The mammary glands from 

PyMT-control and PyMT-bbb/bbb mice will be transplanted into wildtype female mice lacking 

the PyMT transgene. These recipient mice will be monitored for tumour latency and tumour 

development.  

5.4 Conclusion 

Increased mammary gland adiposity in the PyMT-bbb/bbb mouse model is associated with 

decreased mammary cancer development with greater tumour latency, decreased tumour 

burden, and overall better tumour-free survival. The significant increase in body weight in ad 
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lib PyMT-bbb/bbb mice in adulthood was associated with shorter tumour latency and increased 

tumour burden, with a state of chronic inflammation within the tumours. On the other hand, 

matched PyMT-bbb/bbb mice exhibited increased expression of mRNA encoding TGFB1 in 

the tumours, which possibly suggests a tumour-suppressive role of TGFB1 in these mice. We 

propose that decreased mammary cancer development in mice with normal adult body weight 

and increased pubertal mammary gland adiposity, could potentially be due to an unfavourable 

microenvironment for tumour development. Overall, these findings suggest that increased 

pubertal adiposity is causative in affecting mammary cancer development in adulthood. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

  

General discussion and conclusions 

 

 

 

 

 

 

 

 

 



Chapter 6 – General discussion and conclusions 

Ghadge  149 

6.1 Introduction 

Mammographic density, one of the most significant risk factors for breast cancer, is established 

in girls during pubertal breast development. Adiposity during pubertal growth appears to be a 

significant factor that impacts adult breast health. Epidemiological studies have consistently 

shown that increased BMI in adolescence is associated with reduced adult mammographic 

density as well as reduced lifetime risk of breast cancer. However, the nature of this association 

and whether there are underlying causal mechanisms are still unknown.  

The studies described in this thesis aimed to investigate whether increased adiposity during 

puberty is causal in mammary gland density and cancer development in adulthood. We have 

used different mouse models to address this, including the Alms1 bbb/bbb model of adiposity 

and the PyMT tumour model. Results from this thesis suggest that increased mammary 

adiposity promotes pubertal mammary gland development. Further, increased pubertal 

adiposity was associated with reduced mammary gland density and cancer development in 

adulthood. These results provide strong evidence that pubertal mammary gland adiposity 

induces a long-term effect on the mammary gland microenvironment that alters mammary gland 

density in adulthood, and subsequently affects mammary cancer development.  

The results in this thesis are the first to show in mice that pubertal adiposity is causative in 

altering mammary gland density and cancer development during adulthood. In this chapter, we 

highlight the implications of our findings for a new paradigm on the developmental origins of 

mammographic density and breast cancer risk. We also present opportunities for future research 

to improve our understanding of the biological underpinning of the relationships between 

pubertal growth, adult mammographic density, and cancer risk. Finally, we propose key 

considerations required to understand what optimal adolescent growth for long-term breast 

health is, and how that can potentially reduce subsequent breast cancer risk in adulthood.  

6.2 Pubertal adiposity alters adult mammary gland density  

Puberty is a unique stage of breast development that can affect future breast health. Early onset 

of puberty and thelarche in girls is associated with increased adolescent BMI (104, 106, 108-

111). Increased adiposity during childhood and puberty is associated with reduced lifetime 

breast cancer risk (21-26, 70), whereas early menarche is associated with increased risk (401). 

The apparent contradiction in the relationship between pubertal adiposity, menarche, and breast 

cancer risk suggest that pubertal adiposity and menarche affect different biological pathways to 

alter breast cancer risk.  
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Mammographic density is proposed to mediate the association of pubertal adiposity with adult 

breast cancer risk (20, 79, 80). High BMI-percentile in girls at 18 years is associated with 

reduced mammographic density in adulthood, compared to girls with median BMI-percentile, 

when adjusted for adult BMI and timing of menarche (88). Higher BMI percentile in 

adolescence is also associated with reduced risk of breast cancer (71, 89, 90). One study 

demonstrated that mammographic density mediates the association of childhood BMI with 

breast cancer risk in premenopausal women (83). However, these studies have demonstrated 

epidemiological associations; causal relationships between pubertal adiposity with adult 

mammographic density and breast cancer risk have not been investigated at the biological level.  

Previous mouse experiments have shown that pubertal C57BL/6 mice fed high-fat diet exhibit 

increased body weight and adiposity, reduced mammary epithelial cell proliferation, and 

stunted mammary duct elongation (318). Further, pubertal C57BL/6 mice fed an obesogenic 

diet until 20 weeks of age exhibit enlarged mammary adipose tissue deposits, and a less dense 

and branched ductal tree (402). Importantly, consumption of an extremely high-fat diet is not 

the same as the normal physiological weight gain that commonly occurs during puberty.  

Therefore, we used the Alms1 bbb/bbb mouse model where mice gain weight eating normal 

mouse chow to more directly investigate this relationship. Results from this thesis suggest that 

increased adiposity promotes mammary gland development during puberty and reduces 

mammary gland density and cancer development in adulthood. This suggests that pubertal 

mammary gland adiposity induces a long-term effect on the mammary gland microenvironment 

that alters mammary gland biology in adulthood. We propose that this relationship is restricted 

to adipose tissue deposition during puberty, not weight gain during adulthood. Ad lib bbb/bbb 

mice exhibited reduced mammary gland density, similar to matched bbb/bbb mice, but 

exhibited increased adult body weight and an obesity-associated state of chronic inflammation 

within the mammary gland. Critically, this could mean that obesity in adulthood overrides the 

protective effect of pubertal adiposity on lifetime breast cancer risk.   

6.3 Pubertal adiposity is causative in mammary cancer development  

The origins of breast cancer are widely recognised to occur early in development, particularly 

during pubertal breast development (71). Diet during puberty can alter mammary gland 

development and tumour development (403-405).  It is well established that a high-fat diet 

increases mammary tumour development in rodents, depending upon types of dietary fat and 

period of exposure (Reviewed in (406)). Further, obesity was found to increase both 

spontaneous tumours and transplanted tumour burden in mice (407, 408). A high-fat diet 

increases BMI and therefore, it is usually not possible to investigate how diet and increased 
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BMI independently affect breast cancer risk (300). However, our study ensured that increased 

adiposity during puberty was derived from a healthy diet and avoided the confounding factors 

of a high-fat diet. Results from this thesis demonstrated that increased pubertal adiposity is 

associated with a greater tumour latency and delayed tumour development in adulthood. This 

suggests that pubertal mammary adiposity could potentially induce an unfavourable 

microenvironment for tumour development; and this will protect the mammary gland from 

tumorigenesis in adulthood. On the other hand, obese ad lib bbb/bbb mice exhibited shorter 

tumour latency and greater tumour burden, with increased expression of mRNA encoding 

leptin, STAT3, and IL4. We propose that excess adiposity in ad lib bbb/bbb mice induced 

obesity-associated inflammation in the mammary gland microenvironment that increased 

mammary cancer development in these mice.   

The hallmarks of cancer have been described in detail by Hanahan and Weinberg (60, 409). It 

is still not clear whether pubertal adiposity contributes to these biological hallmarks or follows 

unknown biological mechanisms to alter mammary cancer development. However, our findings 

support the epidemiological evidence that high BMI during adolescence is associated with 

reduced mammographic density and breast cancer risk. Taken together, results from this thesis 

provide strong evidence that pubertal adiposity is causative in altering mammary gland density 

and cancer development in adulthood.  

6.4 Proposed mechanism 

Using the Alms1 bbb/bbb mouse model of adiposity, we demonstrated that increased adiposity 

during puberty is associated with reduced mammary gland density in adulthood, similar to 

epidemiological studies in women. Understanding and possibly manipulating the link between 

pubertal adiposity, mammary gland density, and mammary cancer development, could lead to 

potential interventions during puberty to prevent subsequent breast cancer. 

Several factors work in concert to regulate the risk of mammary cancer development including 

ECM, immune cells, adipokines, and cytokines. Pubertal adiposity and obesity both possibly 

have different mechanisms to affect mammary cancer development. Adult control mice (bbb/+ 

or +/+) with normal adiposity throughout life exhibit mammary gland density with a high 

degree of stroma and collagen deposition, and increased abundance of macrophages around 

ducts, compared to mice with increased pubertal adiposity. These factors reflect the histological 

composition of high mammographic density breast tissue in women. Increased stroma and 

collagen are the major contributing factors for high mammographic density, and studies have 

shown that modifications in the stromal composition can cause epithelial cancers (217, 410-



Chapter 6 – General discussion and conclusions 

Ghadge  152 

412). ECM present in stroma is consistently shown to promote breast cancer tumorigenesis and 

progression (413-415). In addition, increased abundance of macrophages around ducts in these 

mice may also promote increased organisation of collagen around ducts, as macrophages have 

been identified as key cells in fibrillogenesis of collagen during mammary gland development 

(229). Further, PyMT-control mice with normal adiposity exhibited overall worse tumour-free 

survival with greater tumour burden. Therefore, we propose that a pro-tumour 

microenvironment exists in mammary glands of control mice with high mammary gland 

density, which subsequently increased mammary cancer development (Figure 6.1.A). 

Adult bbb/bbb mice with increased pubertal adiposity exhibited reduced mammary gland 

density, with decreased stroma and collagen deposition around ducts, and decreased abundance 

of macrophages around ducts. These factors capture the histological composition of low 

mammographic density breast tissue in women. Matched PyMT-bbb/bbb mice with increased 

pubertal adiposity and normal adult weight had reduced mammary cancer development with 

overall better tumour-free survival. Although the exact underlying biological mechanism is not 

known, we propose that the mammary gland microenvironment in these mice is less favourable 

for tumour development, which decreases mammary cancer development (Figure 6.1.B). 

However, excess adult body weight in ad lib bbb/bbb mice increased the abundance of 

inflammatory cytokines and adipokines, and increased infiltration of macrophages in the 

mammary adipose tissue; and obese ad lib PyMT-bbb/bbb mice ultimately exhibited overall 

worse tumour-free survival with reduced tumour latency. We propose that an obesity-associated 

state of chronic inflammation within the mammary gland of ad libitum fed bbb/bbb mice 

increased mammary cancer development (Figure 6.1.C). However, these proposed mechanisms 

require critical investigation to unravel the exact mechanisms underlying the relationship of 

pubertal adiposity, mammary gland density, and mammary cancer development.  

6.5 Developmental origins of breast cancer risk  

A wealth of research has demonstrated that adverse growth conditions during fetal and 

childhood development have a significant impact on risk of chronic non-communicable 

diseases including obesity, diabetes, and heart disease (416). This is known as the 

‘Developmental origins of health and disease’ (DOHaD) paradigm. We propose to adapt the 

DOHaD paradigm to breast cancer and suggest that mammographic density-associated breast 

cancer risk has origins in breast development during puberty. Breast cancer, like other 

malignancies, can be considered a chronic non-communicable disease; molecular and cellular 

changes precede clinically detectable cancer and can be present many years before a diagnosis. 

We propose that puberty is a critical developmental window that impacts lifetime breast cancer 
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risk through affecting mammographic density. We propose that interventions that modify breast 

development during puberty could have a greater impact on lifetime breast cancer risk than 

interventions that modify breast cancer risk in later life. 

Predominant risk factors have been identified in some cancers, e.g., smoking and lung cancer 

(417) and human papillomavirus and cervical cancer (418). Currently, there are no preventative 

measures that can dramatically decrease the incidence of breast cancer. Radical surgery such as 

prophylactic mastectomy can reduce breast cancer risk, however this is not appealing for the 

majority of women. The breast cancer prevention guidelines by The American Cancer Society 

suggest increasing physical activity, limiting alcohol intake, maintaining healthy body weight, 

eating healthy diet, and avoiding postmenopausal hormone use (419). However, these lifestyle 

modifications have a minor impact on breast cancer risk, and even after considering these 

factors, a significant proportion of breast cancer risk remains unexplained (420, 421). 

Prevention of breast cancer in the future could hinge on a better understanding of the 

developmental and environmental factors that individually and in combination lead to increased 

breast cancer risk. 
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Figure 6.1. Schematic illustration of proposed mechanism linking pubertal adiposity to 

mammary gland density and mammary cancer development in adulthood. (A) Normal 

pubertal adiposity resulted in increased mammary gland density and mammary cancer 

development during adulthood. Normal pubertal adiposity led to increased stroma and collagen 

around ducts, and increased abundance of macrophages around ducts in the mammary gland 

during adulthood. These factors created a pro-tumour microenvironment that subsequently 

increased mammary cancer development. (B)  High pubertal adiposity and normal adult weight 

resulted in low mammary gland density and reduced mammary cancer development in 

adulthood. (C) Obesity in adulthood increased infiltration of macrophages in the mammary 

gland adipose tissue and increased adipokines and proinflammatory cytokines. This created an 

obesity-associated inflammatory state in the mammary glands that led to increased mammary 

cancer development.  
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An early first full-term birth is shown to be effective in reducing a woman’s lifetime breast 

cancer risk (422). Compared to nulliparous women, women who had a first full-term pregnancy 

before the age of 20 had a 50% reduced breast cancer risk (423). This is especially concerning 

as the average age for a woman’s first birth has been steadily increasing over many years. The 

proportion of women in the US who had a first full-term pregnancy between the ages of 30 and 

34 rose 28% and those over 35 years of age rose 23% between 2000 and 2014 (424). Strikingly, 

women who had a first full-term pregnancy above the age of 33 years were not protected against 

breast cancer (424).  

Mammographic density is a modifiable risk factor (425-428) and contributes to 29% of all 

breast cancer cases. Breast tissue undergoes rapid changes between menarche and first full-term 

pregnancy, and risk accumulates most rapidly during this period (429, 430). This makes 

menarche-to-first pregnancy a window of susceptibility when breast tissue is particularly 

vulnerable to cancer development (431). Therefore, potential interventions as early as puberty 

hold promise as significant breast cancer prevention approaches. We have provided evidence 

that mammographic density could be modifiable during adolescent breast development by 

pubertal adiposity. We propose that interventions during puberty that reduce mammographic 

density could be more significant in their impact on adult breast cancer risk than the known 

impact of mid-term interventions such as age at first full term pregnancy, and late-term lifestyle 

modifications in adulthood (Figure 6.2).     

Nutrition is a major contributing factor for adiposity. In just a few studies, diet during puberty 

is demonstrated to be associated with mammographic density in adulthood. High intake of red 

meat at 12-17 years is shown to be associated with increased percent dense area in women 

(432). However, a clinical study (The Dietary Intervention Study in Children (DISC)) found 

that dietary intervention to high fibre and low-fat diet during childhood and adolescence is not 

associated with dense tissue volume and percent dense volume (433). Interestingly, famine 

exposure at 2-9 years of age was found to be associated with increased percent dense area and 

decreased nondense tissue area (434). The availability of only a few studies limits the inferences 

that can be drawn, and therefore further research is required to understand the role of nutrition 

during puberty in determining mammographic density.    
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Figure 6.2. Life course model for breast cancer risk. Diagram illustrating the potential 

significance of interventions during childhood and adolescence to reduce breast cancer risk. We 

propose that potential interventions targeting pubertal development could be an effective 

method to reduce mammographic density and subsequent breast cancer risk. An early first full-

term pregnancy is also shown to be effective in reducing a woman’s lifetime breast cancer risk. 

Possible interventions during the postmenopausal period include increasing physical activity, 

maintaining healthy body weight, limiting alcohol intake, and avoiding postmenopausal 

hormone replacement therapy (HRT) use. Figure inspired by (435). 

  



Chapter 6 – General discussion and conclusions 

Ghadge  158 

6.6 What is optimal adolescent growth for long-term breast health? 

It is still unknown to what extent adiposity during puberty is healthy or unhealthy. The complex 

interplay between nutrition, adiposity, and pubertal growth may involve many endocrine and 

metabolic pathways. As discussed earlier, an appropriate level of adiposity is necessary for the 

onset of puberty (121). However, too much adiposity is an unhealthy condition, and there is 

much concern worldwide on the growing problem of childhood obesity, which is known to lead 

to poor health outcomes in adulthood.  

Pubertal girls with excess adiposity have lower circulating concentration of IGF1 (193, 194). 

IGF1 slows energy expenditure and may induce protein-sparing effects during feeding by 

indirectly affecting energy metabolism (436-438). This pathway is possibly exaggerated in the 

condition of excess adiposity, which creates a loop between nutrition and body adiposity. Leptin 

is suggested to be a crucial link between body adiposity and onset of puberty. Decreased leptin 

levels are associated with caloric restriction and weight loss (439, 440). Thus, low 

concentrations of leptin in condition of food deprivation can explain the starvation-induced 

suppression of HPG axis (441). Further, Kisspeptins and the G-protein coupled receptor-54 

system are the recently identified gatekeepers of pubertal development. In the condition of 

undernutrition, there is marked reduction in central KISS1 tone, which in turn, inhibits the HPG 

axis (442). Based on these studies, we propose that there exists a crucial link between body 

adiposity, energy homeostasis, and HPG axis to drive the normal pubertal growth.  

The relationship between obesity and pubertal development are quite widely explored. 

However, the impact of malnutrition or undernutrition is not well studied in this context. 

Anorexia nervosa is an eating disorder with self-induced food restriction. During puberty, 

anorexia nervosa causes stunting of growth, arrest of pubertal development, and amenorrhea 

(443-445). Growth failure in girls with anorexia nervosa has been shown to be related to GH 

resistance, low serum levels of GH-binding protein, IGF1 and IGFBP3 (446). However, these 

changes are demonstrated to be reversible with weight gain, a decrease in GH and cortisol 

levels, and a gradual increase in the levels of thyroid hormones, gonadotropins, and IGF1 (447, 

448).  

These studies thus, suggest the link between nutrition, adiposity, and pubertal growth. However, 

the mechanisms through which nutrition, adiposity, and pubertal development interact to 

determine mammographic density still remains unexplored. 
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6.7 Future studies 

Our experiments suggested a causative role for pubertal adiposity in mammary gland density 

and cancer development in adulthood. However, the precise molecular mechanisms through 

which pubertal adiposity affects mammary gland density and cancer development are still far 

from clear. There are several aspects of the crosstalk between mammary adipose tissue, 

epithelium, and macrophages in the mammary gland that need to be explored. We found that 

increased pubertal adiposity altered the abundance of proinflammatory cytokines and 

adipokines in the mammary gland microenvironment. However, the exact role of these 

proinflammatory cytokines and adipokines in mammary gland development is still not known. 

Further, we did not investigate the ovarian hormones, estradiol and progesterone, in pubertal 

and adult mice. The whole organ culture of mouse mammary gland provides an excellent model 

to study the effects of hormones on growth, differentiation, and regression of the mammary 

gland (449). In future studies, whole organ culture of the mouse mammary gland can be 

employed to study the role of proinflammatory cytokines and adipokines in mammary gland 

development during puberty and adulthood. Moreover, transgenic and knockout mouse models 

can be used to investigate the interplay between ovarian hormones, proinflammatory cytokines 

and adipokines in the mammary gland and their influence on mammary cancer development. 

High throughput sequencing would be more beneficial to determine entire mechanistic 

pathways rather than analysis of individual factors mediating the causal mechanism of pubertal 

adiposity, mammary gland density, and mammary cancer development.  

Due to the experimental design of the studies in this thesis, we could not investigate the source 

of each cytokine in the mammary gland. In future, mammary gland adipose tissue can be 

isolated from epithelium by laser capture microdissection and levels of proinflammatory 

cytokines can be analysed in each of these tissue compartments. This will allow us to better 

understand the intercellular roles of these proinflammatory cytokines in the link between 

pubertal adiposity, mammary gland density and mammary cancer development.  

We have demonstrated that increased pubertal adiposity reduces mammary cancer development 

in adulthood. However, in future, a transplant study will be key in providing evidence of 

whether this relationship is the result of changes that have occurred specifically in the mammary 

gland during puberty. It is also part of our future study to transplant mammary glands from 

PyMT-control and PyMT-bbb/bbb mice into wildtype female mice lacking the PyMT 

transgene. These recipient mice will be monitored for tumour latency and tumour development. 

The tumours collected from these mice will be further characterised on the basis of 

histopathology. Based on the results from chapter five, we hypothesise that the tumours arising 
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from PyMT-bbb/bbb transplanted mammary glands would exhibit delayed tumour development 

compared to transplanted mammary glands from PyMT-control mice.   

Another important future study is to investigate relationships between pubertal BMI and human 

breast biology. Our laboratory has a unique tissue bank comprised of human non-neoplastic 

breast tissue from patients undergoing reduction mammoplasty, mastectomy for breast cancer 

removal, or prophylactic mastectomy. This tissue collection is approved by Human Ethics 

Committee at the University of Adelaide and The Queen Elizabeth Hospital. The participating 

patients were asked to complete a comprehensive medical and personal history questionnaire 

following their breast surgery. This questionnaire included their recalled height and weight at 

18 years of age and their current adult BMI. It will be interesting to use this tissue bank to 

investigate the abundance of CD68-positive and CD206-positive macrophages, expression of 

Ki67, aromatase, and hormone receptors in the breast tissue collected from women with high 

BMI at 18 years and normal adult BMI, compared to that collected from women with normal 

BMI at 18 years and adulthood. Further, these factors can also be analysed in the breast tissue 

collected from women with high BMI at 18 years and at adulthood. These experiments will 

enable us to explore the biological differences in breast tissue collected from women who had 

high adolescent BMI versus low adolescent BMI.  

6.8 Conclusions  

Our study in a preclinical model is the first to show that breast cancer risk may indeed be 

modifiable during pubertal breast development. It is the crucial first step in showing that there 

is a causative link between teenage weight and adult breast cancer risk. Together with 

epidemiological studies, this research provides the foundation for a new paradigm for the 

origins of mammographic density and breast cancer risk during pubertal mammary gland 

development. These studies suggest that there may be an opportunity to prevent breast cancer 

through manipulating pubertal adiposity (or its associated cellular factors) to modify 

mammographic density. Future studies are needed to unravel the molecular mechanisms 

underlying the link between pubertal adiposity, mammary gland density, and mammary cancer 

development. The knowledge generated will provide fundamental information that will assist 

in development of novel early life interventions to prevent breast cancer. 
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APPENDIX A 

Journal articles 

Ghadge AG, Dasari P, Stone J, Thompson EW, Robker RL and Ingman WV (2021). Pubertal 

mammary gland development is a key determinant of adult mammographic density. Semin Cell 

Dev Biol. 114:143-158. doi.org/10.1016/j.semcdb.2020.11.011.  
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z7)# -* '* (&-($(%&+ ()8(7 B #),+ '%$#(,#$-%&*&%6(./FOC/Fx2C($'7($-(

A� $-%(%&--" (7 B #),-(%5 � (&-(%5 (,)% '%&$#(8)�( 'B&�)'+ '%$#($'7(#&8 H

-%6# ( @,)-"� -(%)(5$B ($(-&!'&�*$'%(&'�" '* ()'(8"%"� (A� $-%(*$'* �(

�&-�3(M"A �%$#($7&,)-&%6C(%&+&'!()8(+ '$�*5 C($'7(%&+&'!()8(%5 #$�*5 ($� (

$##(7 +)'-%�$% 7(%)($88 *%(+$++)!�$,5&*(7 '-&%6C($'(&+,)�%$'%(�&-�(

�j�j?��pt;l?lo?pqj??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????



������������		��
����	������	��	������������������

���

 !"#$%& $%&'%(!)#&"!*"(%+&,"#-.!#-$*&$ &/01$#/!2!3-"41-#5-#!%0&!6()&

75%-*8&15'(%#09&8(*(#-"&!*7&(1-8(*(#-"&3$2("52!%&7(#(%3-*!*#)9&

#$8(#/(%&:-#/&)#%$3!2&;'%$'2!)#)9&(6#%!"(2252!%&3!#%-69&!*7&-335*(&

)-8*!22-*8& !"#$%)&-*&#/(&3!33!%0&82!*7&!%(&2-<(20&#$&!"#&-*&"$*"(%#&#$&

7%-.(&'%(!)#&7(.(2$13(*#&!*7&52#-3!#(20&#/(&/-)#$2$8-"!2&)#%5"#5%(&$ &#/(&

!752#&'%(!)#&=>-8+&?@+&

A/(&-*#(%!"#-$*&'(#:((*&()#!'2-)/(7&%-)<& !"#$%)& $%&'%(!)#&"!*"(%&!*7&

3!33$8%!1/-"&7(*)-#0&-)&"5%%(*#20&)$3(:/!#&1!%!7$6-"!29&!*7& 5%#/(%&

%()(!%"/&-)&%(B5-%(7&#$&!77%())&#/()(&"$312(6-#-()+&>$%&(6!312(9&(1-7(4

3-$2$8-"!2&)#57-()&)588()#&#/!#&(!%2-(%&3(*!%"/(9&:/-"/&-)&!*&()#!'2-)/(7&

'%(!)#&"!*"(%&%-)<& !"#$%9&-)&!))$"-!#(7&:-#/&%(75"(7&3!33$8%!1/-"&

7(*)-#09&:/-"/&-)&1%$#("#-.(&!8!-*)#&'%(!)#&"!*"(%+&A/-)&"$312-"!#(7&

%(2!#-$*)/-1&'(#:((*&!8(&!#&$*)(#&$ &3(*!%"/(9&3!33$8%!1/-"&7(*)-#09&

!*7&'%(!)#&"!*"(%&%-)<&/!)&*$#&'((*&)5 ;"-(*#20&(612$%(7&-*&#/(&15'2-)/(7&

2-#(%!#5%(+&C$:(.(%9&-#&-)&1$))-'2(&#/!#&!8(&!#&3(*)#%5!2&$*)(#&!  ("#)&

'%(!)#&7(.(2$13(*#&!*7&()#!'2-)/3(*#&$ &3!33$8%!1/-"&7(*)-#0&.-!&#/(&

)-352#!*($5)&-*"%(!)(&-*&!7-1$)-#09&:/-2(&-*7(1(*7(*#20&-*"%(!)-*8&

'%(!)#&"!*"(%&%-)<&#/%$58/&2$*8(%&#(%3&(61$)5%(&#$&$.!%-!*&/$%3$*()&

$()#%$8(*&!*7&1%$8()#(%$*(&:-#/&3(*)#%5!2&"0"2-*8+&

,*$#/(%&1!%!7$6&2-()&-*&#/(&%(2!#-$*)/-1&'(#:((*&!7-1$)(&#-))5(&!#&

7-  (%(*#&)#!8()&$ &#/(&2- (&"$5%)(&!*7&'%(!)#&"!*"(%&%-)<+&D'()-#0&-)&!&%-)<&

 !"#$%& $%&'%(!)#&"!*"(%&-*&1$)#3(*$1!5)!2&:$3(*9&'5#&3-8/#&'(&1%$4

#("#-.(&75%-*8&!7$2()"(*"(+&,&<(0&5*"(%#!-*#0&%()-7()&-*&#/(&!))())3(*#&

$ &15'(%#!2&'$70&)-E(&!*7&)/!1(9&3!<-*8&-#&7- ;"52#&#$&7-)"%-3-*!#(&'(4

#:((*&/(!2#/0&!7$2()"(*#&:(-8/#&8!-*&!*7&(6"())-.(&:(-8/#&8!-*+&F/-2)#&

!7-1$)(&#-))5(&7(1$)-#-$*&-)&!&<(0&7%-.(%&$ &15'(%#0&$*)(#9&-#&"!*&'(&

7- ;"52#&#$&7-)#-*85-)/&/(!2#/0&15'(%#!2&:(-8/#&8!-*& %$3&$.(%:(-8/#G&

$'()-#0&-*&#/(&15'2-)/(7&2-#(%!#5%(+&>$%&-*)#!*"(9&#/(&3!))&"$31$*(*#&$ &

HIJ&%(K("#)&#/(&!""5352!#-$*&$ &!7-1$)(&#-))5(9&'5#&7$()&*$#&7-)#-*85-)/&

'(#:((*&2$"!2-)(7&7(1$)-#-$*&-*&825#($ (3$%!2&$%&'%(!)#&7(1$#)9&:/-"/&-)&

-*7-"!#-.(&$ &/(!2#/0&15'(%#!2&:(-8/#&8!-*9&.(%)5)&!'7$3-*!2&!*7&)5'4

"5#!*($5)&7(1$#)9&:/-"/&"/!%!"#(%-)(&$'()-#0+&A/5)9&.!%-(7&)#570&!14

1%$!"/()&5)-*8&7-  (%(*#&8%$:#/&3(!)5%()&%(3!-*&!&'!%%-(%&-*&

)0*#/()-)-*8&!&"2(!%&5*7(%)#!*7-*8&$ &#/(&%(2!#-$*)/-1&'(#:((*&!7-1$)(&

#-))5(&7(1$)-#-$*&!*7&3!33$8%!1/-"&7(*)-#0+&>5%#/(%&%()(!%"/&#/!#&

)1("-;"!220&-*.()#-8!#()&#/(&!))$"-!#-$*&'(#:((*&15'(%#!2&!7-1$)(&#-))5(&

7(1$)-#-$*&!#&2$"!2-)(7&7(1$#)&!*7&!752#&3!33$8%!1/-"&7(*)-#0&-)&

%(B5-%(7&#$&!77%())&#/-)&5*"(%#!-*#0+&

H(0$*7&#/()(&"$312(6-#-()9&!&"%-#-"!2&%()(!%"/&B5()#-$*&0(#&#$&'(&

!77%())(7&-)&:/(#/(%&-*#(%.(*#-$*)&#/!#&3$7- 0&'$70&!7-1$)-#0&75%-*8&

15'(%#0&!2#(%&!752#&'%(!)#&"!*"(%&%-)<+&L-.(*&#/(&2-3-#!#-$*)&$ &/53!*&

)#57-()9&"$*#%$22(7&!*-3!2&(61(%-3(*#)&"!*&1%$.-7(&"25()&%(8!%7-*8&

1$))-'2(&'-$2$8-"!2&3("/!*-)3)&#/%$58/&:/-"/&15'(%#!2&7(.(2$13(*#&

3-8/#&!  ("#&!752#&3!33$8%!1/-"&7(*)-#0&!*7&2$*84#(%3&"/!*8()&-*&%-)<&

$ &'%(!)#&"!*"(%+&>5#5%(&%()(!%"/&-*&5*7(%)#!*7-*8&/$:&15'(%#!2&3!34

3!%0&82!*7&7(.(2$13(*#&3-8/#&7(#(%3-*(&!752#&'%(!)#&"$31$)-#-$*&!*7&

3!33$8%!1/-"&7(*)-#0&"$527&'(&!&*(:&<(0&#$&%(75"-*8&#/(&-*"-7(*"(&$ &

'%(!)#&"!*"(%+&

MNOPQRQSTUVWUXWYUZ[NSTV\W]VSNRN̂SW

_$*(+&
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,*V64*56F(45(5+3145D(,0B1-(AC5)*BE&(UCE&(Y08&(R54B&('64&(dd(JIK(J!LLMK(MIOMM&(
 !II$]&(AC@8*3)-(/&(/6.033F-(?&(Si\*4@@-(\&(Y**-(%&(Y**-(]*63*01*,(14>*(05,(1+3H4H0@(Cc(
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