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Closure of the Proterozoic Mozambique Ocean was
instigated by a late Tonian plate reorganization
event
Alan S. Collins 1✉, Morgan L. Blades1, Andrew S. Merdith2 & John D. Foden 1

Plate reorganization events involve fundamental changes in lithospheric plate-motions and

can influence the lithosphere-mantle system as well as both ocean and atmospheric circu-

lation through bathymetric and topographic changes. Here, we compile published data to

interpret the geological record of the Neoproterozoic Arabian-Nubian Shield and integrate

this with a full-plate tectonic reconstruction. Our model reveals a plate reorganization event

in the late Tonian period about 720 million years ago that changed plate-movement

directions in the Mozambique Ocean. After the reorganization, Neoproterozoic India

moved towards both the African cratons and Australia-Mawson and instigated the future

amalgamation of central Gondwana about 200 million years later. This plate kinematic

change is coeval with the breakup of the core of Rodinia between Australia-Mawson and

Laurentia and Kalahari and Congo. We suggest the plate reorganization event caused the

long-term shift of continents to the southern hemisphere and created a pan-northern

hemisphere ocean in the Ediacaran.

https://doi.org/10.1038/s43247-021-00149-z OPEN

1 Tectonics and Earth Systems (TES), Department of Earth Sciences, The University of Adelaide, Adelaide, SA, Australia. 2 UnivLyon, Universite ́ Lyon 1, Ens de
Lyon, CNRS, UMR 5276 LGL-TPE, Villeurbanne, France. ✉email: alan.collins@adelaide.edu.au

COMMUNICATIONS EARTH & ENVIRONMENT |            (2021) 2:75 | https://doi.org/10.1038/s43247-021-00149-z | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00149-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00149-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00149-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00149-z&domain=pdf
http://orcid.org/0000-0002-3408-5474
http://orcid.org/0000-0002-3408-5474
http://orcid.org/0000-0002-3408-5474
http://orcid.org/0000-0002-3408-5474
http://orcid.org/0000-0002-3408-5474
http://orcid.org/0000-0003-3564-7253
http://orcid.org/0000-0003-3564-7253
http://orcid.org/0000-0003-3564-7253
http://orcid.org/0000-0003-3564-7253
http://orcid.org/0000-0003-3564-7253
mailto:alan.collins@adelaide.edu.au
www.nature.com/commsenv
www.nature.com/commsenv


P late tectonics is characterized by periods of gradual, broadly
continuous, plate movement that are punctuated by rela-
tively short times of plate reorganization1,2. These are due

to the consumption of an oceanic plate, the collision of two
continents, the cessation of subduction, or the breakup of a
(super)continent3,4. These events disturb the plate kinematic
status quo and force adjustments over the planet surface that
affect ocean and atmospheric circulation and have been linked to
perturbations in the carbon cycle5, amongst other things. Iden-
tifying and understanding plate reorganization events in deep
time is only possible with full-plate topological reconstructions.
These are well developed for the Mesozoic and younger6, but have
only recently been proposed for the Paleozoic7,8 and now Neo-
proterozoic eras9,10. These allow regional plate tectonic induced
phenomena to be understood in a global context.

Here we present an updated GPlates (www.gplates.org) model
that uses recently published geological data from the terranes of
the Arabian-Nubian Shield (ANS). By adding in geological data
from relic volcanic arcs into these full-plate topological recon-
structions of the ancient earth, we provide a new interpretation of
the oceanic plate kinematic and dynamic evolution of the Neo-
proterozoic Mozambique Ocean. This led to the southward
journey of Neoproterozoic India to collide against African
Gondwana and the Australia-Mawson continent11 to form the
kernel of Gondwana. This plate reorganization is coeval with the
opening of the Pacific Basin12,13 and directly precedes the cata-
clysmic climatic perturbations of the Cryogenian.

Background
Plate tectonics has been causally linked to the Cryogenian
climate instability14–16, to the coeval Neoproterozoic Oxygenation

Event17,18, to the biosphere tumult that included the ecological
takeover of eukaryote cells19,20 and, ultimately, to the evolution of
metazoans21,22. The veracity of these hypotheses requires knowl-
edge of the plate tectonic configuration and kinematics through
the Neoproterozoic, which is missing, as most attempted recon-
structions are “continental-drift” models with no full-plate circuit
attempted11,23. A first attempt at a full-plate topological model for
1000–520Ma was recently published9. However, this model
focused predominantly on cratonic crust that had available
palaeomagnetic data, and consequently simplified many complex
areas around Neoproterozoic active margins. Mallard et al.24

demonstrated that active margins control plate size and number,
therefore also control many of the parameters needed to under-
stand the role of plate tectonics on broader earth systems. The
ANS was an active margin and one of these areas simplified in
Merdith et al.9, yet, it is one of the most critical for Neoproterozoic
plate reconstructions as it is one of the most extensive areas of new
Neoproterozoic crust on the planet25 (Fig. 1) and preserves evi-
dence of subduction from pre-1 Ga until the Ediacaran26.

The end of the Proterozoic eon is marked by some of the most
dramatic events in Earth’s history, with this period of time being
characterized by extensive changes in seawater chemistry
demonstrated through the strontium, sulfur and carbon isotope
records, large climatic extremes, and preservation of the Edia-
caran faunal assemblage and the explosion of Cambrian fauna27.
These global variations are concurrent with the amalgamation of
Gondwana, and the closure of the Mozambique Ocean; repre-
senting one of the major and final Gondwana forming collisional
zones28. As no in situ oceanic crust exists before ca. 200Ma, the
remnants of this major ocean gateway are only preserved in relic
arc–arc, arc–continent, and continent–continent collisional
zones, within the East African Orogen (EAO). The EAO is one of
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Fig. 1 Map of present northern Indian Ocean region. Showing the distribution of juvenile Stenian–Ediacaran crust, pre-Stenian exposed crust, pre-Stenian
exposed crust reworked thermally and structurally during the Neoproterozoic, and Proterozoic sedimentary basins in NE Africa, Arabia, and the Indian
subcontinent. The late Tonian plate reconfiguration is represented by the notable change from pre-720Ma, approximately NE–SW sutures to post-720Ma,
approximately NNW–SSE striking sutures. MB Mozambique Belt, NED Northern Eastern Desert, CED Central Eastern Desert, SED South Eastern Desert.
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the largest orogens of the last billion years, which, in a recon-
structed Gondwana, extends from Turkey and the Levant, in the
north to Mozambique, Madagascar, Sri Lanka, and East Antarc-
tica in the south29. Along strike, the orogen is divided into two.
The Mozambique Belt lies in the south and is a tract of largely
older continental crust, extensively deformed and metamor-
phosed in the Neoproterozoic/Cambrian30. The ANS makes up
the north of the orogen26. The ANS, and adjacent Gondwanan
rocks in North Africa and from east Arabia to NW India preserve
the evidence we use to reconstruct the plate tectonic circuit as
Neoproterozoic India converged and finally collided with the
African parts of Gondwana26.

Results and Discussion
Model contraints. In this paper, we use previously published
geological data to constrain our full-plate topological model for
the evolution and closure of the Mozambique Ocean and the
amalgamation of central Gondwana. The full-plate model is based
on geological and paleomagnetic data and is part of the first
published self-consistent model of global plate tectonics over the
last billion years10. We emphasize that this is a model, and
although we argue that it best represents the geological and
paleomagnetic data available in 2021, it is not a unique solution
and is subject to improvement with more data and better inter-
pretations. The model, however, does present interesting impli-
cations for the progression of plate tectonics over this time, the
distribution of plates, of continents and oceans and leads to
hypotheses for plate tectonic influence of earth-surface systems
that we begin to explore in this paper.

The ANS is laced with suture zones that represent collisions
between different terranes as subduction zones consumed the
intervening oceanic crust (Fig. 1). A dramatic feature of the region
is that pre-715Ma sutures are aligned approximately ninety degrees
from post-715Ma sutures26,31. This observation reflects a major
change in plate convergence direction and we use this as the start of
a higher-order reconstruction of this region in a full-plate context.

The Mozambique Ocean, Azania, and Afif-Abas. The Mozam-
bique Ocean closed as Neoproterozoic India converged on the
African parts of Gondwana (Kalahari, Congo, Sahara) to form
central Gondwana29. The East African Orogen resulted from the
collision between these major continents and amalgams of smaller
terranes, during the Neoproterozoic to early Cambrian. Sand-
wiched within the EAO lies a broad band of Archean to Paleo-
proterozoic crust that was identified by Collins and Windley32 as a
microcontinent (subsequently named “Azania”), whose remains
are found in southern India, central Madagascar, Somalia, eastern
Ethiopia, and Arabia (Fig. 1). In Yemen, the Al-Mafid Terrane is
correlated with Azania32 and this is separated from a second pre-
Neoproterozoic terrane called the Abas Terrane by a Neoproter-
ozoic arc terrane (the Al Bayda terrane). Because of this, Collins
and Windley32 suggested that a second microcontinent existed
that they called Afif-Abas due to the continuation of the Abas
terrane into Saudi Arabia as the Afif Terrane.

Azania, and Afif-Abas, are interpreted to have collided with the
eastern margins of the Congo craton and Saharan Metacraton by
~630Ma to form the East African Orogeny sensu stricto. A
younger orogeny (ca. 570–520Ma), was interpreted to represent
the final collision between India and the amalgamated Africa/
Arabia and called the Malagasy orogeny11.

The Eastern Margin of the EAO (NW India to Oman). The
easternmost margin of the northern East African Orogen is
the boundary between the Mesoproterozoic terranes of India and
the Stenian–Tonian crust that extents west from the Delhi-

Aravalli Orogen. This has been interpreted to be the eastern
margin of the northern East African Orogen. During the Stenian
and Tonian, progressive arc accretion of volcanic arc rocks onto
the NW margin of Neoproterozoic India occurred; extending into
the basement rocks of Pakistan and the inliers of Oman33,34. This
was later covered by an extensive Cryogenian–Ediacaran passive
margin succession, with comparable sequences continuing into
the Cambrian35.

The Arabian-Nubian Shield. The ANS is dominated by low
grade volcano-sedimentary sequences and associated plutonic
and ophiolitic remnants. The tectonic history of the ANS is
complicated and preserves a complex mix of terranes, accreted
arcs that record subduction polarity reversals that are reviewed
and summarized in a number of papers26,31. There are no reliable
paleomagnetic data available to constrain these blocks, so we have
constrained their positions by their relation to each other and
through plate kinematic constraints.

The oldest terrane in the ANS is the late Mesoproterozoic Sa’al
Metamorphic complex (1.03–1.02 Ga) in Sinai, marking the
initiation of magmatism in the northern-most ANS36,37 (Fig. 1).
The location of this Stenian terrane in the reconstruction is
uncertain, but coeval subduction-magmatism occurred within the
Saharan Metacraton (see below).

The Tonian to Cryogenian history of the ANS is marked by
formation of oceanic volcanic arcs and continental volcanic arcs
built on Azanian (or Afif-Abas) crust that amalgamated to form a
larger intra-Mozambique ocean terrane separate from both
Neoproterozoic India and African Gondwanan continents. A
number of terranes in the ANS are correlated as equivalents,
separated by the opening of the Red Sea, from south to north,
these are the Asir and Tokar/Barka terranes, the Haya and Jiddah
terranes, the Hijaz and Gabgaba/Gebeit terranes, and the Eastern
Desert and Midyan terranes26. It is unclear whether the combined
Asir-Tokar/Barka terrane and Haya-Jiddah terranes were ever on
separate plates as, in Saudi Arabia, no clear suture is seen between
them. In SE Sudan and Eritrea, the Barka suture does appear as
the site of ocean closure, so these may form a complex middle
Tonian amalgam.

The older, Tonian to earliest Cryogenian, amalgamation
history of the ANS is marked by approximately NE–SW oriented
sutures (present orientation) between juvenile Neoproterozoic
ocean-arc terranes. The oldest of these sutures is between the
Jiddah-Haya and Gabgaba/Gebeit-Hijaz terranes (the Bi’r
Umq–Nakasib suture), and is dated at ca. 780–750Ma26. This
suture created the kernel of a late Tonian microcontinent. The
Midyan-Eastern Desert collided with this kernel ca. 715Ma along
the Yanbu–Sol Hamed suture31. Both of these sutures evolved
from SE-dipping subduction zones31.

The older NE–SW sutures are bound by younger NNW–SSE
Cryogenian to Ediacaran sutures and terranes that represent a
fundamental kinematic change in Mozambique Ocean subduc-
tion. The oldest of these is the 680–640Ma Nabitah suture,
which forms the eastern margin of the intra-Mozambique Ocean
island-arc terrane microcontinent (discussed above), against
Tonian–Cryogenian continental arcs built on the Afif-Abas
microcontinent. This now enlarged Cryogenian Afif-Abas
microcontinent collided with the active margin of the Sahara
Metacraton along the Sudanese Keraf Suture. This collision
occurred in late Cryogenian to early Ediacaran times (ca.
650–580Ma)38. Further to the east, in the most easterly exposed
terrane, the Saudi Ar Rayn Terrane, juvenile calc-alkaline
magmatism stretches from ca. 690 to 615Ma39. Turbiditic
sediment deposition in the Ad Dawadimi basin that separates the
Ar Rayn Terrane from the Afif-Abas microcontinent continued
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until at least 620 Ma, but was locally intruded by ca. 630 Ma
adakitic magmas40. This sequence was metamorphosed to
greenschist-facies grades at ca. 620 Ma41. Further east still, broad
N–S magnetic highs, beneath the Arabian Phanerozoic sedimen-
tary sequence42, suggest younger arc terranes now buried
beneath the Rub al-Khali Basin. The transition to post-tectonic
magmatism within the eastern terranes of the ANS begins from
605Ma39 and pull-apart basins developed along the large strike-
slip faults that cut the region43. Post-tectonic magmatism begins
in western Ethiopia at ca. 572 Ma44.

The final collision between Neoproterozoic India and the, by
then amalgamated, Azania/Congo Craton occurred at ca. 570–540
Ma, closing the final strand of the Mozambique Ocean11,28. This
suture lies beneath the Phanerozoic cover between the exposed
Saudi and Yemen basement and Mirbat in SW Oman. It appears
to be imaged by shear-wave anisotropy variations seen directly
west of Mirbat45. In western Oman, latest Ediacaran–Cambrian
deformation is seen in the subsurface, its limit is known as the
Western Deformation Front and the deformation associated with
this is known as the “Angudan event”. The sub-Rub al-Khali
suture has been traced south within reconstructed Gondwana
to Madagascar where it has been correlated with the Antsaba
shear zone of NW Madagascar46, the Betsimisaraka suture32

and into the Palghat–Cauvery Suture of southern India47. This
Palghat–Betsimisaraka–Antsaba–Western Deformation Front
suture represents the final suture of the Mozambique Ocean9,11.

The Western Margin of the EAO (the eastern Saharan Meta-
craton). The Saharan Metacraton is still very poorly known, but

extensive late Mesoproterozoic subduction-related magmatism is
found in Chad and west and north Sudan48. To the west of this,
in eastern Sudan and western Ethiopia magmatism associated
with early Neoproterozoic subduction characterizes terranes that
are thought to have formed over westward dipping subduction
zones44,49. This longevity of subduction, which also includes that
seen in the Sinai36,37, demonstrates that the EAO extends back
into the Stenian, or even earlier, when terrane accretion and
subduction-zone magmatism initiated against the Paleoproter-
ozoic kernel of the “metacraton”. The NE margin of the Congo
Craton, in Uganda, preserves orogenesis that begins with Tonian
subduction-zone magmatism in the Karamoja Belt that is coeval
with terranes in Sudan50.

A Late Tonian Plate Reconfigurationn
The model presented here (Fig. 2) is developed from the recon-
struction of Merdith et al.9. Details of both geological and
paleomagnetic data used to constrain cratonic configurations,
positions, and motions are provided therein. Here, data and
observations discussed above for the terranes of northern Africa,
Arabia, and NW India have been integrated10. These define a
marked change in Mozambique Ocean subduction kinematics at
ca. 720Ma, from a predominately N–S to E–W striking sub-
duction system (Fig. 2). The timing of these observed changes are
broadly coeval with the start of Neoproterozoic India’s southern
progression from polar regions to lower latitudes29,51,52 and we
suggest that they represent a plate reorganization in this hemi-
sphere. This kinematic shift is coeval with sedimentological and
kinematic estimates for the breakup of the core of Rodinia. The
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ancestral Pacific basin is constrained to open before 725Ma based
on kinematic constraints12 and separation of the Kalahari and
Congo continents is also consistent with voluminous magmatism
along the southern Congo margin at ca. 750Ma53. This late
Tonian plate reorganization heralds the start of a shift of con-
tinental crust away from the northern hemisphere into the
southern hemisphere (Figs. 2 and 3). This narrows, then even-
tually closes the equatorial Mozambique Ocean. The model
implies that most continental blocks were concentrated in the
southern hemisphere in the Late Neoproterozoic (Fig. 3). If this
reflects the real distribution, then it would have interesting con-
sequences for ocean/atmosphere circulation. One possible effect
would be to compartmentalize ocean gyres in the southern
hemisphere, while removing obstacles for hemispherical circula-
tion in the northern hemisphere (Fig. 2). This shift from bi-
hemisphere continent distribution towards a world with a pan-
northern hemisphere ocean and continents concentrated in the
southern hemisphere coincides with end of whole-earth glacia-
tions that characterize the middle Neoproterozoic. In contrast to
the Sturtian and Marinoan whole-earth glaciations, Ediacaran
glaciations, such as the Gaskiers glaciation, appear more regional
in scale15,54. Williams and Schmidt55 hypothesized that the mid-
Ediacaran Shuram/Wonoka negative carbon isotope anomaly
represents an unprecedented perturbation of the world ocean. We
speculate that the plate tectonic driven bifurcation of the planet
into continent and ocean latitudinal hemispheres may be a major
control on this oceanic perturbation and climate switch—a con-
sequence of the late Tonian plate reorganization.

Methods
This manuscript is based on a full-plate tectonic reconstruction of the last billion
years that has been developed on the open access software GPlates (www.gplates.

org). All GPlates files needed to reconstruct the model are available here—https://
zenodo.org/record/3647901. The methodology for constructing full-plate tectonic
reconstructions are detailed in Merdith et al.10 and also in Domeier and Torsvik56.
Computation of latitudinal surface area was done using pyGplates (www.pygplates.
org). To extract the latitudinal distribution of continent area, we first created a
global equal-area mesh. We then used a grid-intersection between the nodes of the
mesh and the polygons of the plate model that represent continental crust to
estimate the area of crust at each latitude. These were summed for each timestep to
create an array from 1000–520Ma of the latitudinal distribution of crust on
the earth.

Data availability
Data derived from the full-plate reconstructions used here to evaluate the latitudinal
distribution of continental crust through time are publically available at https://github.
com/amer7632/Collins_2021_Geology_palaeolat

Code availability
The code used to calculate and construct Fig. 3 it is available here: https://github.com/
amer7632/Collins_2021_Geology_palaeolat
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