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Visual place recognition (VPR) is the task of using visual inputs to determine if mobile

robots are visiting a previously observed place or exploring new regions. To perform

convincingly, a practical VPR algorithm must be robust against appearance changes, due

to not only short-term (e.g., weather, lighting) and long-term (e.g., seasons, vegetation

growth, etc) environmental variations, but also “less cyclical” changes (construction and

roadworks, updating of signage, façades and billboards, etc). Such appearance changes

invariably occur in real life. It motivates our thesis to fill this research gap.

To this end, we firstly investigate probabilistic frameworks to effectively exploit the tem-

poral information from visual data which is in the form of videos. Inspired by Bayes

Filter, we propose two VPR methods that respectively perform filtering on discrete and

continuous domains, where the temporal information is efficiently used to improve VPR

accuracy under appearance changes. Given the fact that the appearance of operational

environments uninterruptedly and indefinitely changes, a promising solution for VPR

to deal with appearance changes is to continuously accumulate images to incorporate

new changes into the internal environmental representation. This demands a VPR tech-

nique that is scalable on an ever growing dataset. To this end, inspired by Hidden

Markov Models (HMM), we develop novel VPR techniques, that can be efficiently up-

dated and compressed, such that the recognition of new queries can exploit all available

data (including recent changes) without suffering from the linear growth in time and

space complexity. Another approach to address the scalability issue in VPR is map

summarization, which only keeps imformative 3D points in a topometric map, accord-

ing to predefined constraints. In this thesis, we define timestamp as another constraint.

Accordingly, we formulate a repeatability predictor (RP) as a regressor, that predicts the

repeatability of an interest point as a function of time. We show that the RP can be used

to significantly alleviate the degeneration of VPR accuracy from map summarization.

The contributions of this thesis not only fill the gap within current state of VPR research;

but, more importantly, also enable a wide range of applications, such as, self-driving cars,

autonomous robots, augmented reality, and so on.
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Chapter 1

Introduction

Imagine visiting a new city as a tourist and being lost at night. While you are walking

around and trying to figure out your position, you turn at a corner and see a theatre that

you visited yesterday. The moment you recognize that theatre, you not only know where

you are but also know exactly how to get back to your hotel. Your brain has successfully

matched what you are currently seeing to a place from your memory, in order to help

you locate yourself in the world. This is the process of visual place recognition (VPR):

the ability of identifying a previously seen location based solely on visual information. In

other words, VPR matches current images to images in the past. To operate effectively,

a general VPR system must have a memory to store visual information (generally called

a map) and be able to generate localization hypotheses based on current observations.

VPR is an indispensable tool for life-long robotic operation, allowing them to localize

across time.

Similar to other perception problems, VPR is a challenging problem because the appear-

ance of the operational environment changes continuously and indefinitely across time.

While the same place might look different at different times (see Fig. 1.1a), the problem

is further complicated by the fact that different places can also look similar, a problem

termed perceptual aliasing. An example of this phenomenon can be seen when different

corridors in a building share the same appearance; see Fig. 1.1b. Dealing with appear-

ance changes and visual ambiguity are two main problems that need to be addressed by

any VPR method.

This thesis presents methods that allow VPR to deal with problems arising during life-

long operation. This chapter presents an overall view of the problem, identifies research

gaps and highlights our approach towards addressing them. In Sec. 1.1, we revisit each

sub-component in VPR. Next, in Sec. 1.2, we discuss the reason why a life-long visual

1
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(a)

(b)

Fig. 1.1. (a) Images are representing a same place but under different appearance
(b) Perceptual aliasing: Two different places that share a similar visual appearance.
Courtesy: Google Streetview [66], Freiburg dataset [126], Bonn dataset [173], and
Nowakowski et al. [132].

place recognition should be scalable for long-term autonomy. Sec. 1.3 will summarize

the contributions of this thesis and finally Sec. 1.4 will outline the thesis structure.

1.1 Schematic of visual place recognition

Fig. 1.2 describes the standard VPR system, which contains four main modules:

• Image representation: This module receives the raw visual data input, pro-

cesses it, and then outputs the discriminative representation that describes the

appearance of places. The major requirement for this module is to ensure the rep-

resentation of a particular place is invariant to appearance changes; see Sec. 1.1.1.
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Fig. 1.2. The conventional pipeline of visual place recognition system. The visual data
is processed via the image representation component. The belief generation module uses
the map, output of image representation, and motion data (if available) to make the
VPR decision. The new data is optionally updated to the map if there are new changes
in the environment.

• Map: This component is the internal representation of the environment. Typi-

cally, there are three types of map, i.e., image database, topological map, and topo-

metric map; each of which has its own advantages and disadvantages. Sec. 1.1.2

provides details about different types of map.

• Belief generation: Given the processed visual input and motion data (if avail-

able), belief generation aims to determine if mobile robots are either revisiting a

specific place within the environment, or exploring a new region; see Sec. 1.1.3.

• Map update: VPR is demanded to remain accurate and robust throughout its

lifetime, thus it is necessary to continuously update the map to represent the latest

state of the environment. Sec. 1.1.4 will describe this module in greater detail.

1.1.1 Image representation

The first step of designing a VPR framework is to decide how to represent visual data.

The simplest choice is using raw images processed by image processing techniques (e.g.,

SeqSLAM [118]), which surprisingly demonstrates its capability in representing ap-

pearance under extreme natural changes, but comes with its sensitivity to viewpoint

changes [163]. To overcome this issue, other VPR methods select local features as the

backbone of their image representation because of their invariance to rotation, trans-

lation and scaling factors. For example, Churchill and Newman [28] use FAST [140]

to detect invariant local regions inside images, and then describe those by Binary Ro-

bust Independent Elementary Features (BRIEF) [22]. Se et al. [154] employ scale-

invariant feature transform (SIFT) [102] in their feature tracking. However, extracting

SIFT is computationally demanding, that is inappropriate if a VPR system requires a

real-time processing. Cummins and Newman [31] thus use speeded up robust features
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(SURF) [13]—an alternative to SIFT that is faster in computation. Recently, algo-

rithmic development of VPR witnesses the popularity of replacing hand-crafted local

features by learned ones [44, 136, 181, 36], which have shown a great potential in VPR.

As the environment becomes very large (e.g., city scale), local features are computa-

tionally expensive and memory inefficient. Large-scale VPR methods instead [31, 109,

62] employ Bag of Word (BoW) to represent every image by a single vector. The

idea of BoW is to build a vocabulary by partitioning feature space into a finite num-

ber of visual words (typically using K-means). In FAB-MAP 2.0, a vocabulary with

the size of 100,000 visual words is required to achieve a reasonable VPR accuracy on

1,000 km [31]. The improved versions of BoW include Bags of Binary Words [54] and

vector of locally aggregated descriptors (VLAD) [79], whose efficiency in VPR is also

demonstrated in literature [54, 167, 7, 41].

1.1.2 Representation of environment

In VPR, a map can be defined in three different ways:

• Image database is the simplest form of map, which only contains the appearance

information of each place in the environment. With image databases, VPR is

ordinarily performed using image retrieval techniques [54, 167, 7]. This type of

map also allows us to use computationally effective indexing methods [122, 78, 84].

For example, Schindler et al. [149] employ a vocabulary tree to develop an effective

VPR for the city-scale map, and FAB-MAP 2.0 [31] demonstrates its efficiency in

1000-km path by using an inverted index.

• Topological map defines the environment as a graph, whose nodes represent distinct

places and edges encode the topological relations between places (e.g., transition

probabilities). Representative methods for VPR using topological map include

SeqSLAM [118], network flow [127], and Bayesian filtering [40]. Another interesting

approach is based on the observation that loop closure hypotheses are naturally

sparse, Latif et al. [96] formulate VPR as a sparse L1-minimization problem using

topological information.

• Topometric map includes metric information (e.g., 6 DoF poses) on edges and

nodes, and optionally position of 3D points or objects within each node. Feature-

based visual SLAM [123, 34, 20] builds sparse 3D points from local interest points

detected in images. In some applications, with the aim of recovering 6 DoF poses

of query images, descriptors are also associated with 3D points for establishing 2D-

3D correspondences [28, 108, 154]. In contrast with feature-based methods, direct
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visual SLAM systems [129, 50, 51, 49] construct dense or semi-dense 3D point

cloud using photometric errors. Each 3D point corresponds to pixels observed

across image frames within video. By virtue of leveraging metric information, some

VPR systems, e.g., CAT-SLAM [109] and SMART [133] demonstrate a significant

boost in terms of localization accuracy.

1.1.3 Belief generation

The major task of belief generation is to provide a belief distribution or confidence score,

that determines how much the current visual input matches a particular place in the

map, given the visual input, and motion data (if available). If the place of the map and

the visual input share a similar appearance, there is a greater likelihood that they are

representing a same physical place.

However, environments with repetitive scene might cause perceptual aliasing [147], i.e.,

failure in distinguishing two distinct places due to the similarity of their appearances

(see Fig. 1.1b). Another issue is the changes of the environmental conditions might lead

to different appearances of a same place (see Fig. 1.1a). Generally, a belief generation

method is required to precisely deal with perceptual aliasing as well as correctly match

images regardless of being captured under distinct environmental conditions.

1.1.4 Map update

The robustness of VPR is challenged by the changes of appearance due to environmental

variations. The short-term changes include higher frequency environmental variability,

such as, time of day, weather fluctuations, and pedestrian density. Apart from it, long-

term aspects, e.g., seasons, growth of vegetation, also contribute toward appearance

changes. Another significant contributor to environmental variations, which is “less

cyclical”, is human activities, such as construction and roadworks, updating of signage,

façades and billboards, as well as abrupt changes to traffic rules that affect traffic flow.

Fig. 1.1a are examples of different appearances of a physical place.

The fact that environmental changes occur continuously and indefinitely demands a

map that is able to self-update to faithfully represent the latest state of environment.

Inspired by human memory system, some methods decide what information should be

remembered or forgotten [35, 93]. Their basic idea is to maintain landmarks that remain

unchanged over long time period while eliminate those that are no longer present in

the environment. The main challenge in this strategy is finding efficient mechanism in

deciding whether a landmark should be kept or not, otherwise we will “forget” landmarks
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helpful for VPR. Another approach is to store multiple representations of a place [117,

28]. Typically, they propose to always perform SLAM in parallel to other tasks to ensure

robots can constantly update the latest changes of environment. However, as the data

is continuously accumulated, the fundamental challenge which arises from this approach

demands VPR being scalable in the unboundedly growing map.

1.2 Why scalable life-long visual place recognition?

Long-term autonomy, one of the long-standing goals of robotics, is essential for mobile

robots to play a vital role in every aspect of human life. It enables robots to carry

out required actions without any human supervision, such as, helping disabled people,

taking care of elderly, assisting surgeon in operation, and so on. The first step towards

autonomy is observing and reasoning about the surrounding environment, e.g., the types

of objects in the environment, their relative distances, and motion profiles. These tasks

in turn depend on the ability of a robot to estimate its own pose in the environment,

a.k.a localization. As robots require a prior map before performing required tasks, their

typical operation starts with constructing the map, and then carrying out localization.

Alternatively, robots simultaneously build the map and localize themselves with respect

to the map, that is dubbed Simultaneous Localization and Mapping (SLAM). In both

strategies, localization occupies a key role, i.e., given a sensor input, localization identifies

if a robot is visiting a specific previously observed place or exploring an unknown area.

Because of a wide range of attractive properties, camera sensors have gained popularity

in robotic research [21, 89, 33, 59]. Firstly, cameras are a low cost and low mainte-

nance alternatives to other types of sensors (e.g, LiDAR), which can reduce the price of

robots to consumers. Secondly, compared to LiDAR, cameras provide richer informa-

tion while consuming smaller amounts of energy, that significantly benefits the tasks of

scene understanding in robotic systems. Thirdly, from the aesthetic perspective, embed-

ding small and light-weight cameras into robots does not change their outer appearance.

Therefore, localization using cameras as a primary sensor has been a popular research

topic for decades [105, 92, 59], which is referred to as visual place recognition (VPR).

A typical application of VPR is loop closure detection within SLAM systems [123, 113,

139, 151]. Specifically, the objective of SLAM is to consistently construct a global

representation of the environment. Without “loop closure”, SLAM reduces to odometry,

whose pose estimate quickly drifts after few meters [21]. Hence, it is advised that one

should often “close the loops” while exploring the environment to correct the drift of

local odometry measurement. This correction procedure is typically done via pose graph
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(a) (b)

Fig. 1.3. (a) Before closing loop, the uncertainty of pose estimate (gray eclipses)
increases with the length of traversal, leading to a drift in the pose estimate, even
though the robot revisits its starting place. This sequentially causes a large error in the
mapping phase. (b) VPR is used to detect the loop, and then pose graph optimization
or bundle adjustment are performed to produce a consistent map. Courtesy: Ho and
Newman [73]

.

optimization [91] or bundle adjustment [69, Chapter 18]; see Fig. 1.3. In this way, VPR

is an efficient approach to provide loop closure hypotheses for SLAM systems.

Unfortunately, as the appearance variability of environment occurs at vastly different

time scales, this poses a great challenge for life-long VPR. Specifically, the natural fac-

tors, including time of day, fluctuation of weathers, different seasons and the growth

of vegetation, lead to cyclical appearance variations. At another extreme, more unpre-

dictable and less “cyclical” changes are caused by human activities, such as construction

works, abrupt changes of traffic flow, updating of signage, façades and billboards. This

demands a life-long VPR that is able to accurately match two images showing a same

place under a distinct appearance; see Fig. 1.1a.

As the appearance of environment continuously and unpredictably changes, a large

amount of research effort has been aimed at developing VPR systems, that remain robust

and accurate over lifetime operation. A notable approach is performing sequence-to-

sequence matching, pioneered by SeqSLAM [118]. SeqSLAM shows that sequence-based

matching is more resilient to appearance changes but comes with its drawback, i.e.,

sensitivity to view-point changes and differences in sequence velocities [163]. The po-

tential of SeqSLAM has motivated the development of a wide range of techniques that

effectively exploit the sequence-to-sequence matching, such as flow network [126], graph

search [172], temporal filtering [40], and Hidden Markov Models [41].



Chapter 1. Introduction 8

Another paradigm is employing machine learning techniques (deep learning in partic-

ular) to either extract visual “fingerprints” [145, 166], that are robust against natural

appearance changes, or transfer the appearance of a place from a seen condition to un-

seen ones [95, 6]. In spite of showing a great potential, the robustness of this approach

against unpredictable appearance changes caused by human activities, such as updat-

ing of façades/billboards/signage, construction works, as well as the abrupt changes of

traffic flow, is unproven.

Among existing approaches, continuous data collection has been shown to be the most

promising strategy [28, 41, 46]. The basic idea is to continuously accumulate data at

high frequency (e.g., weekly) to update the VPR systems. This data collection scheme

can be done via a fleet of service vehicles (e.g., taxis [60]) or crowd-sourced services,

such as amateur mappers [176] or webcams [76]. Unfortunately, this strategy imposes a

fundamental challenge about scalability for life-long VPR

Definition 1.1 (Scalability). Once a VPR system updates new data, the time and space

complexity of update and inference processes must grow slower than the database size.

To this end, this thesis will present strategies to deal with scalability issues that arise

during life-long VPR. Specifically, our approaches aim to address the following:

• Sequence-to-sequence matching.

• Computational cost and memory usage of VPR inference with the increase in the

map size.

• Highly efficient updating or retraining the VPR algorithm on new data to respond

quickly to environmental changes.

1.3 Main contributions

We develop novel VPR algorithms for life-long operation, that not only effectively model

the temporal information of the visual input, but also satisfactorily meet the scalability

demands. Below is the summary of our contributions during the course of this thesis

1. We revisit Bayes Filter and derive two filtering methods: i) on discrete domain

with Hidden Markov Model, and ii) on continuous domain with Monte Carlo-based

visual localization. Our approaches consider each image as a noisy measurement

which is represented as a fixed (low) dimensional vector. In the experiment, a

comparison between our methods is made to gain a better understanding about
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the performance of probabilistic inference in VPR. In addition, we show that prob-

abilistic inference significantly outperforms deep learning-based regressors in the

task of recovering 6 DoF camera poses (see Chapter 3).

2. We present G2D—a software that enables capturing videos from Grand Theft

Auto V (GTA V), a popular role playing game set in an expansive virtual city.

The target users of our software are computer vision researchers who wish to collect

hyper-realistic computer-generated imagery of a city from the street level, under

controlled 6 DoF camera poses and varying environmental conditions (weather,

season, time of day, traffic density, etc.). G2D accesses/calls the native func-

tions of the game; hence users can directly interact with G2D while playing the

game. Specifically, G2D enables users to manipulate conditions of the virtual en-

vironment on the fly, while the gameplay camera is set to automatically retrace a

predetermined 6DOF camera pose trajectory within the game coordinate system.

Concurrently, automatic screen capture is executed while the virtual environment

is being explored (see Chapter 3) 1.

3. Using G2D, we collect a synthetic dataset (with accurate 6 DoF ground truth

poses) by simulating 59 vehicles which run independently in different routes and

environmental conditions. Also, those vehicles are simulated to run in different

times of day and weather conditions. The times and weathers in training sequences

are uniformly distributed from 1am to 11pm, and in 7 different weather conditions

(snowy, foggy, clear, overcast, cloudy, sunny and rainy). Five sequences in different

times and weathers are also collected for the testing phase (see Chapter 3) 2.

4. In long-term operations, mobile robots need to continuously accumulate images

to maintain adequate samples of the conditions and incorporate new changes into

the map, which demands a VPR technique scalable on an unboundedly growing

database. We propose a novel VPR technique that can be efficiently retrained and

compressed, such that the recognition of new queries can exploit all available data

(including recent changes) without suffering from visible growth in computational

cost. Underpinning our method is a novel temporal image matching technique

based on HMM (see Chapter 4).

5. We incorporate the mechanism of two-tiered memory management into HMM to

obtain a novel temporal image matching method which achieves the space-time

scalability. Our algorithm, named HM4, exploits temporal look-ahead to trans-

fer promising candidate images between passive storage and active memory when

needed. The inference process takes into account both promising images and a

1G2D and its source code are publicly available at https://github.com/dadung/G2D
2The dataset is made publicly at https://sites.google.com/view/g2d-software/home

https://github.com/dadung/G2D
https://sites.google.com/view/g2d-software/home
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coarse representations of the full database. We show that this allows constant

space-time complexity of inference for a fixed coverage area. The coarse represen-

tations can also be updated incrementally to absorb new data (see Chapter 5).

6. Even though HM4 offers a scalable solution for VPR, the computational hardware

on mobile robots are very limited whereas it also has to simultaneously process

many tasks (e.g., recognition, detection, segmentation) for the scene understand-

ing purpose. Therefore, a VPR system is also required to be lightweight, which

motivates us to derive polyVLAD—a compact image representation inspired by

Locality Sensitive Hashing [5]. Our compact image representation greatly reduces

the memory footprint of HM4. Also, with the use of inverted index, it significantly

reduces the inference time of HM4 (see Chapter 5).

7. In some robotic contexts (e.g., obstacle avoidance, planning and navigation), it is

necessary to recover full 6 DoF camera poses, hence a topometric map with 3D

points are required for this task. In large-scale environments, it is infeasible to

store a full-scale map on the onboard hardware, a compact representation of the

full context map should thus be obtained through the map summarization [45,

121, 19, 108], which performs 3D point sampling according to predefined criteria.

Different from those typical approaches, we present a novel localization pipeline

that selects 3D points likely being repeatable at the localization run-time. Our

map summarization scheme is built upon a repeatability predictor which is able

to predict the repeatability of an interest point as a function of time. Through the

experiment, localization run-time demonstrates itself as a good criterion in pre-

venting the deterioration of map summarization in VPR accuracy (see Chapter 6).

1.4 Thesis outline

The rest of this thesis is organized as follows

• Chapter 2 provides an overview about recent development of visual place recogni-

tion, mainly focusing on place recognition in life-long operation.

• Chapter 3 investigates Bayesian filtering for VPR. Concretely, we propose visual

localization with Hidden Markov Model and Monte Carlo-based visual localization,

that respectively perform filtering on discrete and continuous domains. In addi-

tion, we present G2D (from GTA to data)—an open-source software that assists

researchers in collecting synthetic data from the computer game GTA V. Using

G2D, we collect a synthetic dataset for VPR.



Chapter 1. Introduction 11

• Chapter 4 contributes a scalable VPR technique based on Hidden Markov Model,

that can be effectively retrained and compressed such that the computational cost

does not increase visibly with the growth of map size. The experiment shows a

great potential of our technique for large-scale VPR.

• Chapter 5 proposes coupling Hidden Markov Model with two-tier memory man-

agement, dubbed HM4, that allows a constant time and space inference as a new

data is updated to refine the map. In addition, a novel compact image repre-

sentation (polyVLAD) is proposed to reduce the memory footprint of HM4. The

experiment shows a lightweight and scalable VPR system when combining HM4

and polyVLAD.

• Chapter 6 introduces a novel pipeline for VPR that examines the run-time of VPR

to perform the map summarization. Underpinning our strategy is a repeatability

predictor that is able to predict the repeatability of an interest points as a function

of time.

• Chapter 7 summarizes the main contributions of this thesis and suggests future

research directions.





Chapter 2

Literature Review

Early VPR systems assumed that the state of environment remains unchanged, which is

clearly invalid over a long time span. As alluded in chapter 1, the appearance variations

caused by natural factors and abrupt human activities lead to ever-larger uncontrolled

environment. This results in the failure of those systems and prevents its applicability in

practice. Therefore, a large research effort has been spent in developing VPR algorithms

that remain accurate and stable over a long time period, including invariant image

representations (Sec. 2.1), life-long mapping frameworks (Sec. 2.2), and robust belief

generation modules (Sec. 2.3). This chapter reviews recent advancement of VPR for

life-long operation, and then draws a conclusion in Sec. 2.4 to clarify the contribution

of this thesis to the research gap.

2.1 Image representation

It is evident that the visual appearance are vastly distinct under different conditions (see

Fig. 1.1a), hence an ideal image representation should remain invariant to the changes

of environment. In literature, there are two main approaches to achieve an invariant

image representation: hand-crafted and learning approaches.

2.1.1 Hand-crafted methods

For more than a decade, local keypoint detectors, e.g., SIFT [102], SURF [13], ORB [142],

BRISK [99], and FREAK [3] have been popular choices in VPR systems [52, 93, 28, 123,

151]. Their primary idea is to detect local keypoints within images (e.g., corners) which

remain repeatable under affine transformations and multi-scale representations. This

ensures those keypoints are invariant to translation, rotation and scaling factors. Every

13
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keypoint is then described by a descriptor [102, 13, 142], that is extracted from a local

patch sampled around the keypoint. A pair of keypoint and descriptor is typically

referred as a local feature in literature. Due to the importance of local features, their

robustness has been widely investigated [115, 116, 153, 11]. In particular, Stylianou et

al. [161] argue that environmental changes (including physical, weather, and illumination

changes) affect to the physical appearance of 3D points. Their experiment consequently

shows a decay in terms of the feature matching performance, which is crucially caused

by the deficiency of feature detectors. Similarly, Furgale and Barfoot [52] show that

under the extreme lighting changes, SURF detector fails to detect sufficient features,

leading to the failure of teach-and-repeat localization system.

Another issue of representing images by local features is scalability. Schindler et al. [149]

point out that 30,000 images generate about 100,000,000 SIFT features (≈ 12GB mem-

ory). This is infeasible for life-long operation of mobile robots because their onboard

hardware has a limited computation and memory capacity.

Therefore, Sivic and Zisserman [158] introduce BoW, followed by VLAD proposed by

Jegou et al. [79]. Their basic idea is firstly embedding local features to higher dimension

for improving their discriminativeness, and then aggregating them to obtain a single

vector for representing the image. Inspired from this idea, Gálvez-López and Tardos [54]

develop the binary version of BoW for fast VPR. Due to the efficiency of their technique,

it is widely used by many existing SLAM systems [123, 139, 23] for loop closure detection.

As shown that the performance of keypoint detectors are negatively influenced by the

illumination change [52], Torii et al. [167] densely extract SIFT features on images and

employ VLAD for the image representation. Their experiment shows the efficiency of

this approach for extreme lightning changes (day-night time).

2.1.2 Learning methods

Alternatively, recent attempts replace hand-crafted detectors and descriptors by learned

ones. Learned descriptors use triplet-based loss to train Siamese deep networks on image

patches, such as, Deepdesc [157], L2-net [165], Hardnet [119], and LogPolarDesc [48].

To further improve the performance of learned descriptors, some other works explore

geometry constraints (e.g., GeoDesc [107]) or incorporate global and geometric contexts

(e.g., ContextDesc [106]). Apart from learned descriptors, the keypoint detectors are

also formulated to learning approaches, such as, TILDE [170], Quad-networks [148], and

Key.Net [12].
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Above methods follow the detect-then-describe strategy, i.e., finding local interest points

first, then describing them. This strategy undergoes a performance degradation when

the environmental conditions severely changes. This is because illumination variations,

mainly caused by environmental changes, negatively influence to the pixel intensities,

that makes feature detection unstable. To address this issue, D2-Net [44] propose the

detect-and-describe strategy, that trains a deep network to simultaneously detect and

describe local features. Revaud et al. [136] argues interest points that are highly re-

peatable are not necessarily reliable for matching, hence they propose R2D2 network to

only extract reliable local features. D2-Net and R2D2 demonstrate a great potential of

detect-and-describe strategy in VPR.

As indicated in Sec. 2.1.1, if only using local features, developing large-scale VPR be-

comes infeasible, hence applying BoW or VLAD on learned local features is a reasonable

strategy. Gong et al. [64] extract CNN features on multi-scale patches of images, and

use VLAD to aggregate them. They demonstrate a significant improvement in terms

of accuracy in the tasks of image classification and retrieval. Similarly, Razavian et

al. [155] use off-the-shelf OverFeat network with BoW and VLAD.

Above methods still separate feature extraction with feature aggregation, thus Arand-

jelovic et al. [7] reformulate VLAD [79] to the differentiable version, which is then

plugged into CNN for the end-to-end training. The efficiency of this strategy moti-

vates its further adaptation to place recognition with LiDAR [169], and also the at-

tempts in developing a number of differentiable formulations of VLAD, such as, Ac-

tionVLAD [61], NeXtVLAD [100], Spatial Pyramid NetVLAD [182], SeqNet [57], and

Patch-NetVLAD [71].

Apart from it, another line of works also aims to achieve a robust image representa-

tion, such as, transferring image domains (e.g., from daytime appearance to nighttime

appearance) using GANs [134, 6, 95], finding latent feature maps invariant to natural

changes [160], and incorporating semantic information [58].

2.2 Life-long mapping

The endless changes of appearance demand robots that can continually adapt its map

to faithfully represent the latest state of the environment. Those changes might remain

for a long period (e.g., the update of façades and billboards) or short time span (e.g.,

pedestrian or traffic density), hence a life-long VPR system should be able to decide

what information should be remembered or forgotten. For cyclical changes (e.g., time of

day, weathers, and seasons), a feasible strategy is to maintain multiple representations
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of a particular place. This section will present the recent advancement in maintaining a

life-long map for VPR.

2.2.1 Remembering and forgetting data

Interesting works in this approach are the biologically inspired mapping techniques based

on concepts found in human memory system, i.e., sensory memory, short-term memory,

and long-term memory. Dayoub and Duckett [35] propose rehearsal and recall operations

to manage information within short- and long-term memory. In particular, the visual

input is firstly processed by the selective attention that determines what information

should be moved from sensor memory to short-term memory. The rehearsal mechanism

selects stable features to be transferred to long-term memory, while forgetting useless

features. Similarly, the recall stage in long-term memory also forget features if they are

no longer present within the environment. The idea of memory model is also used in

other VPR systems [93, 120], which show its efficiency in maintaining a life-long map.

Hafez et al. [67] propose a reliability weight for each feature. After multiple times of

exploring the environment, the reliability weights are updated according to feature cor-

respondences between query and database images. The features with low reliability

weights are eliminated while those with high reliability weights are kept in the map.

Likewise, Dymczyk et al. [47] only select stable features for updating the map. Their

criteria for being a “stable” feature include: being consistently re-detected, being repeat-

able under illumination and viewpoint changes, and having discriminative descriptors

that is easily matched.

2.2.2 Multiple representations of the environment

A notable work in this approach is RatSLAM [117]. Their argument is there is no break-

point in the changes of the environment, hence they propose to run SLAM in parallel

to other tasks to ensure robots able to constantly update the changes and maintain the

latest internal representation of the world. Glover et al. [62] present a hybrid large-scale

VPR system by coupling the mapping framework of RatSLAM and the data association

of FAB-MAP.

Works from Dymczyk et al. [47] and McManus et al. [114] collect data from multiple

traversals to discover stable features in a particular scene, which are used to train clas-

sifiers to determine stable features for localization. Churchill and Newman [28] propose

plastic map, which consists of a set of visual experiences. An experience is basically

the output of visual odometry, and there is an localizer associated with an experience.
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During the test time, their plastic map will create a new experience if it is unable to

be localized, which implicitly updates a new representation of each place. Despite ef-

fectiveness and elegance of this method, its drawback is a large number of localizers

will be accumulated in the long-term operation. To overcome that issue, Linegar et

al. [101] propose “path memory” to select relevant experiences that robots is likely to

localize against in next steps. Their method improves VPR accuracy without suffering

the growth of computational requirement.

Bürki et al. [19] update new data to the map regardless of the output of localization

component. Their motivation is if a new data is unsuccessfully localized, it certainly

represents a new appearance of environment, hence it should be updated to the map. By

contrast, even the new data is successfully localized, it likely reveals information being

helpful for future localization, thus incorporating it to the map is also necessary. How-

ever, because this strategy always accumulates new data, the map summarization [45]

must be performed after the map update to maintain a bounded-size map.

2.3 Belief generation

The simplest form of VPR is to exhaustively compare the distance between query image

and every database image, then return the best match [167, 7]. If recovering 6 DoF pose

of the query image is demanded, we can establish 2D-3D correspondences for solving

Perspective-n-Point inside RANSAC iterations [145]. If VPR returns an incorrect place,

recovering 6 DoF pose will definitely output a wrong prediction; thus a large research

effort has been spent to improve the VPR accuracy.

More advanced methods exploit the topological information to resolve the case that

visual sensor data is unable to be matched, especially due to changing environment [118,

127, 172]. Specifically, SeqSLAM [118] formulates the matching of image sequences as

dynamic time warping. [118] shows that sequence-based matching is more resilient to

appearance changes but comes with its own shortcoming (e.g., sensitivity to view-point

changes and differences in sequence velocities [163]). The variants of SeqSLAM eliminate

the assumption of constant velocity through searching on the dissimilarity matrix [83],

or using odometry as an additional input [133]. Naseer et al. [127] address the temporal

matching problem by constructing a flow network and estimating its minimum cost

flow. The starting and ending places within the traversal are respectively the source

and sink nodes, where the source node generates the flow while the sink node consumes

it. Vysotska and Stachniss [172] formulate temporal matching as the graph search, in

which the shortest path corresponds to image matches. Then, they further extend their

strategy to multi-sequence maps [171]. Also, some recent works concurrently exploit
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probabilistic frameworks for VPR. In particular, Xu et al. [180] propose a convergence

detector to determine if the posterior is converged. They also further extend their

method by adding an “off-map” state to identify whether the robot has left the map or

not [179].

2.4 Research gaps

Even though VPR has been a popular research topic for decades, there are several

existing gaps which we wish to discuss in this section, and how the research in this

thesis fill those.

• The succeed of machine learning (deep learning in particular) in challenging com-

puter vision problems motivates the development of learning approaches toward

addressing VPR, including: local features [44, 36], 2D-3D correspondences regres-

sion [156, 15], differentiable RANSAC [16, 14], and absolute pose regression [87,

17]. In spite of the fact that empirical proofs confirm state-of-the-art performance

of learning approach [166, 82], there is an existing debate that deep networks only

memorize data instead of learning useful knowledge [184, 42]. This argument is

also empirically validated by Sattler et al [146], who shows absolute pose regression

by deep networks [87, 17] is closely related to retrieval-based VPR [167].

Furthermore, recent development of deep networks focuses on point estimate, while

its uncertainty modeling is under-investigated [86]. Those drawbacks raise a ques-

tion “should deep learning be the central component within robotic systems?”. As

discussed in chapter 1, the operating environment is largely uncontrolled and the

appearance changes happen continuously and indefinitely, thus a life-long VPR

will frequently encounter out-of-distribution test samples. Compared to realistic

scenarios, benchmarks from [166, 82] mainly focus on natural changes that cycli-

cally happen, yet lack of abrupt changes caused by human activities. Hence, the

practicability of deep learning should be investigated more carefully.

In addition, due to the sensitivity in the applications of robotic systems (e.g.,

an accident caused by self-driving cars will most likely risk human lives), it is

compulsory to model uncertainty within their predictions. It motivates us to em-

ploy Bayesian framework, which is the so-called language of uncertainty [53], in

our development of VPR techniques. Chapter 3 shows that Bayesian filter and

Hidden Markov Model inference can efficiently explore temporal information, and

demonstrates their superior performance over learning techniques.
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• As indicated, recent benchmarks [145, 166] claim “long-term localization”, but

they only focus on cyclical changes (e.g., time of day, weather, season), while “less

cyclical” changes (e.g., construction and roadworks, updating of signage, facçades

and billboards) and abrupt changes (e.g., traffic density) are ignored. This pre-

vent the practicability of methods benchmarked in [145, 166] in realistic scenarios.

However, from literature, to accommodate long-term evolution in appearance, the

strategy that continuously accumulates data to refine VPR algorithms demon-

strates its greater potential [117, 47, 114, 19]. Unfortunately, this poses a new

challenge, i.e., the unbounded growth of map size, that demands a scalable so-

lution for VPR. Specifically, the computational cost and memory requirement of

inference should not increase linearly with the map size; and equally crucially,

“absorbing” new data must also be efficient.

There are several recent works that aim to addressing the scalable issue of VPR.

Le et al. [97] employ tree structure to make VPR prediction, but their training

complexity linearly increases with dataset size. Hence, they propose a compressed

training protocol which reduces their method similar to hashing techniques [38,

37, 63]. Garg and Milford [56] propose a quantization-based method to compress

image representations to compact codes. With the usage of a hash table, they can

achieve a constant querying complexity.

Even though those methods [97, 56] achieve a promising localization accuracy

in experiments, they suffer from two major drawbacks. Firstly, they require re-

training their hash functions to “absorb” new data while data collection of VPR

operates continuously, hence the scalability in their map update is not satisfied.

Secondly, their methods do not offer the theoretical guarantees of similar images

compressed to a same code—leading to a debate regarding its safety in long-term

operation, in which mobile robots likely encounter unseen data frequently. Note

that Sablayrolles et al. [144] emphasize the importance of evaluating learning-based

compression methods on a benchmark with out-of-distribution testing samples.

The approach that is inherited from a fundamental hashing theory is from Lowry

and Andreasson [104], who use Locality Sensitive Hashing (LSH) [26] to compress

VLAD vectors [79] to binary codes. However, their technique directly applies the

hyperplane LSH to VLAD vectors without further exploring the characteristics of

locally aggregated vectors on unit sphere to gain a more appropriate compression

scheme. Furthermore, as new data is accumulated, the memory complexity of their

method linearly increases with the database size, which does not meet the scalable

demand of life-long VPR.
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To resolve those existing issues, chapter 4 presents a novel temporal image match-

ing technique based on Hidden Markov Models (HMM), which is efficiently re-

trained and compressed, such that the inference of new queries can exploit all

available data (including recent appearance changes), without suffering from the

visible growth of computational cost. Coupling with the two-tiered memory man-

agement, chapter 5 presents Hidden Markov Model with Memory Management

(dubbed as HM4), that exploits temporal look-ahead to transfer promising can-

didate images between passive storage and active memory when needed. To rep-

resent the full topological map, it constructs a coarse representation of the map.

The HMM inference is adapted to take into account both promising images and

the coarse representation. We show that HM4 allows a constant time and mem-

ory needed for inference provided that the coverage area is fixed. Our method

also quickly updates new data to refine the map and its coarse representation.

To further achieve a lightweight system, inspired by LSH [5], we derive a novel

compact image representation by exploiting the characteristics of VLAD vectors

on unit sphere. This yields polyVLAD, which greatly reduces memory footprints

of image presentations while still maintaining an excellent localization accuracy.

Also, employing the inverted index structure allows a fast distance computation

between polyVLAD vectors, leading to a significant improvement in the VPR in-

ference time. Combining HM4 with polyVLAD offers us a lightweight and scalable

VPR system.

• Mobile robots are usually equipped a limited onboard hardware, thus map summa-

rization is necessary to obtain a compact map for large-scale environment. [25] for-

mulates the problem to K-cover algorithm, which selects a minimal subset of 3D

points such that each database image sees at least K number of points regardless

of its description. To address this issue, [24] uses weighted K-cover algorithm,

which considers the discriminative power of 3D point descriptors. Instead of dec-

imating points for space coverage, [45, 151] sample 3D points w.r.t observation

frequency and low uncertainty. Generally, existing works select or eliminate 3D

points according to predefined criteria, which have not regarded the time span as

a constraint in their sampling process. However, we empirically observe that in

urban area, many 3D points are easily detected in daytime, but disappear when it

comes to the nighttime. In contrast, some other 3D points becomes easier to be

detected at night because the lights from urban area are on. Based on this obser-

vation, chapter 6 proposes a novel VPR scheme that periodically invokes the map

summarization part. During the VPR session, map summarization samples highly

repeatable 3D points according to the current run-time of VPR. This sampling

process relies on a repeatability predictor that can predict the repeatability of an
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interest point as a function of time. The repeatability scores of interest points are

then used to determine if their corresponding 3D point is repeatable at the current

VPR run-time.





Chapter 3

Filtering Approaches for Visual

Localization
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3.1 Introduction and research questions

To carry out higher level tasks such as planning and navigation, a robot needs to main-

tain, at all times, an accurate estimate of its position and orientation with respect to the

environment. VPR methods normally assume that the appearance remains unchanged

from when the map is generated to the present time when the robot needs to localize

itself. However, as the operational time span of the robot increases, the appearance of

the environment inevitably changes. This poses a great challenge for VPR methods as

the underlying assumption of static appearance is violated due to continual changes of

environment, e.g., weather condition, time of day, construction sites, updating of façades

and billboards, etc.

A popular approach towards dealing with appearance change is to observe as many vari-

ations as possible of each location and carry a representation that can model them [117,

28]. Unfortunately, its bottleneck is the significant amount of time needed to capture

sufficient appearance variations. For example, recent benchmarks [145, 74, 111] have

taken years to collect data that satisfactorily covers natural variability of appearance.

An orthogonal approach to address appearance change, pioneered by SeqSLAM [118], is

to consider sequence-to-sequence matching instead of matching a single query image to

previously observed images. SeqSLAM showed that sequence-based matching is more

resilient to appearance changes but comes with its own shortcoming (e.g., sensitivity to

view-point changes and differences in sequence velocities [163]).

Another paradigm to overcome this challenge is to extract “fingerprints” which are

robust against appearance changes [167, 7]. Yet, this approach has been only shown its

efficiency in “natural” changes, e.g., weather conditions, or time of day. Another line

of works leverage deep learning for establishing 2D-3D correspondences or regressing

absolute poses [14, 87, 85]. However, the major drawback of these approaches is focusing

on the case of a single query image, while the camera, in robotics setting,is operating

continuously once the vehicle is moving and hence, it is realistic to expect a video

(sequence of images) as an input to VPR methods.

Therefore, in this chapter, we ask this following research question:

Research question 1 How to effectively model temporal information?

Even though recent algorithms [29, 17] demonstrate a potential of temporal consistency

in improving the localization accuracy, they are not supported by any fundamental the-

ory in modeling temporal information. Hence, to comprehensively answer this research

questions, we break it down into a couple of sub-questions
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RQ1.1 How should we develop probabilistic-based algorithms?

We revisit Bayes filter [164, Chapter 2] as the backbone in developing our VPR

algorithms. Specifically, Bayes filter maintains belief distributions over states

(i.e., places) conditioned on observed measurements (e.g., images). Belief dis-

tributions are recursively computed from measurement and motion data, that

consist of two steps: the motion model receives the motion information to

predict the belief at time t based on the prior belief at time t − 1, and then

observation model takes the noisy measurement to update the belief. Basi-

cally, Bayes filter is derived from Bayes rule. For more detail of mathematical

derivation, we refer readers to [164, Chapter 2].

To effectively reason over an image sequence (video), we propose two visual

localization (VL) methods:

• Visual localization with Hidden Markov Model (Sec. 3.4): the inference

is performed on image indices to retrieve place hypotheses from which

query frames are possibly captured. The 6 DoF camera poses of query

frames are then interpolated from those place hypotheses. The temporal

information is handled by a transition matrix to effectively exploit the

temporal continuity of query sequences.

• Monte Carlo-based visual localization (Sec. 3.5): the Monte Carlo principle

is leveraged to approximate the probability distribution of 6 DoF camera

poses incrementally. We show that for the case of driving on urban streets,

a simple motion model is enough to successfully track the vehicle’s pose.

The above VL methods rely on a novel observation encoder (Sec. 3.3) which

generates a fixed (low) dimensional vector representation for each image. We

experimentally show that such representation is more resilient to appearance

variations along with minor changes in the viewpoint, while being compact

in size. A comprehensive analysis about our proposed observation encoder is

presented in Sec. 3.8.3, Sec. 3.8.4, and Sec. 3.8.5.

Sec. 3.8.6 shows the comparison between visual localization with Hidden Markov

Model (discrete domain) and Monte Carlo-based visual localization (continuous

domain). Also, our methods are compared against deep learning methods in the

large-scale environment with significant appearance changes, i.e., the traversal

distance of the vehicle is about 10 km.

RQ1.2 How to cost-effectively evaluate VPR methods?
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(a) Clear (b) Rain (c) Snow

(d) Clear (e) Rain (f) Snow

Fig. 3.1. Images under different conditions with the same camera pose. The first and
second rows respectively correspond to day (12:00) and night (23:00) time.

The testing of a broad range of robotic vision algorithms require datasets with

accurate 6 DoF groundtruth poses, e.g., SfM (structure from motion) [159],

visual SLAM (simultaneous localization and mapping) [34], camera pose es-

timation [98]. Furthermore, to thoroughly assess the performance of the al-

gorithms on realistic operating conditions, it is vital to use datasets captured

under varying conditions. Indeed, recent studies [153, 185] show that the ef-

ficacy of local feature detectors, which form the first input to many computer

vision algorithms, reduces significantly under different environmental conditions

(weather, time-of-day, traffic density, etc.).

Unfortunately, collecting the necessary image datasets under varying conditions

is extremely costly and time-consuming. This has been a persistent obstacle

towards developing and testing computer vision algorithms that are robust and

reliable under varying operating conditions.

To answer this research question, Sec. 3.6 presents G2D, an image simulator

software that exploits the detailed virtual environment in Grand Theft Auto

V (GTA V). G2D allows users to collect hyper-realistic computer-generated

imagery of an urban scene, under controlled 6 DoF camera poses and varying

environmental conditions (weather, season, time of day, traffic density, etc.).

Users directly interact with G2D while playing the game; specifically, users can

manipulate conditions of the virtual environment on the fly, while the gameplay

camera is set to automatically retrace a predetermined 6 DoF camera pose

trajectory within the game coordinate system. Concurrently, automatic screen

capture is executed while the virtual environment is being explored. The output
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of G2D is a set of images with 6 DoF groundtruth camera poses, captured under

varying conditions; see Fig. 3.1.

3.2 Problem definition

We define the map D = {V1, ...,Vn}, where V i = {(Ii1, si1), ..., (IiT , siT )} is an image

sequence (video) i. Every frame Iit is associated with a 6 DoF camera pose sit, which

can be attained by conducting Visual SLAM [20] or Structure from Motion [152].

For the online inference, given a query video Q = {Q1, ..., QT }, our goal is to estimate

the camera pose st for each Qt with respect to the map D.

As our both methods rely on the observation encoder which maps every image to a single

vector, we are going to describe it first in Sec. 3.3. Next, Sec. 3.4 and Sec. 3.5 respectively

detail our proposed visual localization methods using HMM and Monte Carlo principle.

In Sec. 3.6, we present G2D—a software to assist researchers in collecting data from

the computer game Grand Theft Auto V (GTA V). Using G2D, we create the synthetic

dataset, which simulates the setting of data collection by multiple vehicles under different

time of day and environmental conditions. Finally, experimental results and conclusion

are respectively presented in Sec. 3.8 and Sec. 3.9.

3.3 Observation encoder

We seek for every image I a nonlinear function τ(I) that maps I to a vector in a fixed

dimensional space. To do so, we first densely compute SIFT features: {xi ∈ Rd | i =

1, ...,m} over the image, followed by RootSIFT normalization [9]:

1. L1 normalize every SIFT vector xi = xi/||xi||1

2. square root each element xi =
√
xi

where, RootSIFT normalization makes the Euclidean distance calculation among SIFT

features equivalent to computing the Hellinger kernel.

Subsequently, we employ the embedding function VLAD [80] to embed SIFT features

into a higher dimensional vector space. In particular, given a vocabulary learned by

K-means: C = {ck ∈ Rd | i = 1, ...,K}, every SIFT feature is embedded as follows:

φV LAD(xi) = [..., 0, xi − cj , 0, ...] ∈ RD (3.1)
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where cj is the nearest visual word to xi, and D = K × d. Note that different from Bag

of Word (BoW), which embeds the feature vector as follows:

φBoW (xi) = [..., 0, 1, 0, ...] ∈ RK (3.2)

where only jth component of φBoW (xi) non-zero means that the nearest neighbor of

feature xi is visual word cj ; VLAD considers the residual between a visual word and its

nearest feature. Do et al. [39] show that VLAD is a simplified version of local coordinate

coding [183], which tries to approximate a nonlinear classification function by a linear

function.

From a set of embedded vectors: {φ(xi) ∈ RD | i = 1, ...,m}, we aggregate them by the

sum pooling to obtain a single vector representing the image I:

τ(I) =

m∑
i=1

φ(xi) (3.3)

In literature, there are several other ways for this aggregation step [81, 124], but for

simplification, we choose sum pooling and show that it can obtain good performance in

practice (see Sec. 3.8.5).

One drawback of using local features in image retrieval is that the background fea-

tures (e.g., trees, sky, road, etc) significantly outnumber features from informative ob-

jects (e.g., buildings). To alleviate this, we apply PCA projection, whitening and L2-

normalization [77], which limit the impact of background features in the vector τ(I) (see

Sec. 3.8.4).

3.4 Visual localization with HMM

Let the map D = {Ij , sj}Mj=1 be the database of M images after “unrolling” all videos

V i = {(Ii1, si1), ..., (IiT , siT )}. We regard each image index j as a “place”. If the field of

view of two images are overlap sufficiently (e.g., if they are temporally close in their

source video), we will assign a transition probability between these two image indices.

The detail of computing a full transition matrix of D will be given in Sec. 3.4.1.1.



Chapter 3. Filtering Approaches for Visual Localization 31

Observation 
encoder

Calculate
belief

Transition
matrix

0

B
el

ie
f

1 2 3 4 M-2 M-1 M

Place hypotheses

Places / 
Image indices

Fig. 3.2. The diagram of our proposed HMM for visual localization. Assume the map
D has M images after “unrolling” all videos Vi = {(Ii1, si1), ..., (IiT , s

i
T )}, where each

image indices is regarded as a physical place. Places with top highest belief probabilities
are selected as place hypotheses, which are then used for estimating 6 DoF pose (see
Sec. 3.4.2).

Given a query video Q = {Q1, ..., QT }, our goal is to find place hypotheses Ht for every

Qt (see Sec. 3.4.1). Then, the 6 DoF camera pose of every Qt will be estimated through

place hypotheses Ht (see Sec. 3.4.2)

3.4.1 Place hypotheses from HMM

To find the place hypotheses on query video Q, we model Q using a Hidden Markov

Model (HMM). We regard each image Qt as a noisy measurement of place state vt,

where vt ∈ {j}Mj=1, and as mentioned above, {j}Mj=1 is set of image indices (or places) of

database D

A Hidden Markov Model (HMM) consists of three parameters {E,O, π}, which respec-

tively are transition matrix, observation model and initial state probabilities. Size of

HMM parameters are: E ∈ RM×M , O ∈ RM×T and π ∈ RM . Specifically,

E(j1, j2) = P (vt = j2|vt−1 = j1) (3.4)

where, the value at row j1 and column j2 of matrix E represents the probability of

transitioning from place j1 to place j2.

The observation matrix is defined as follows:
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O(j, t) = P (Qt|vt = j) (3.5)

which represents the likelihood probability of the frame Ij matched against query frame

Qt. The recursive belief pt = P (vt|Q1:t) is computed in the following:

pt = η ot ◦ETpt−1 (3.6)

where, pt(j) is the belief probability of place j, given queries up to time t (i.e., Q1:t). ◦
is Hadamard product, ot is the tth column of O, η is the normalizing constant to ensure∑

pt = 1. At time t = 1, p1 = π, where π(j) = 1/M .

The place hypotheses Ht at time t are top k places with largest pt(j):

Ht = {j | top k largest pt(j)} (3.7)

3.4.1.1 Transition matrix

Given an video V i = {Ii1, ..., IiT }, a transition matrix Ei of size T×T is formed as follows:

Ei(r, c) =

1 0 ≤ c− r ≤ vmax

0 otherwise
(3.8)

where, Ei(r, c) is the element at row rth and column cth. vmax is the maximum velocity

of the vehicle. The transition matrix E of database D is then created by concatenating

every Ei in the diagonal direction:

E =


E1

E2

. . .

En

 (3.9)

Subsequently, transition matrix E is normalized to ensure the summation of every row

of E equals to 1, i.e.,
∑
c

E(r, c) = 1
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3.4.1.2 Observation model

The distance between Qt to every database image Ij ∈ D is computed in the following

D(Qt, Ij) =
∥∥∥τ(Qt)− τ(Ij)

∥∥∥2
2

(3.10)

where, τ(.) is the observation encoder (see Sec. 3.3). The observation vector ot is then

calculated:

ot = exp
(
−D
σ

)
(3.11)

3.4.2 Estimating 6 DoF pose

Due to every image in D associated with a corresponding 6 DoF camera pose, mean-

shift algorithm is employed on Ht over the translational part of their poses. The largest

cluster is then selected to calculate the mean of translation and rotation [112], which is

regarded as predicted 6 DoF pose st of the image query Qt.

3.4.3 Overall algorithm

The Algorithm 3.1 presents the method of visual localization with HMM. Given the query

Qt, we calculate its fixed high-dimensional vector representation τ(Qt). The Euclidean

distances between Qt and every database frames Ij is computed, which is then used to

estimate the observation vector ot. The belief pt is subsequently computed which is

utilized to form place hypotheses Ht. The predicted pose of Qt is finally estimated from

place hypotheses Ht.

Algorithm 3.1 Visual localization with HMM

Require: Qt, D, and E
1: Compute τ(Qt) as Sec. 3.3
2: Compute D

(
Qt, Ij

)
, ∀Ij ∈ D using equation (3.10).

3: Compute observation vector ot using equation (3.11)
4: Compute belief pt using Eq. (3.6)
5: Form place hypotheses Ht using Eq. (3.7)
6: Estimate 6 DoF pose st of Qt (Sec. 3.4.2)
7: return st
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3.5 Monte Carlo-based visual localization (MCVL)

Let the 6 DoF camera pose of Qt be given by:

st = [rt, Ωt]
T (3.12)

where, rt and Ωt represent the 3D position and Euler orientation respectively at time

t. Given motion u1:t and noisy measurement z1:t up to time t, we would like to esti-

mate probability distribution p(st|u1:t, z1:t). However, p(st|u1:t, z1:t) can be an arbitrary

distribution, thus we leverage Monte Carlo principle to address this issue.

The idea of Monte Carlo-based visual localization is to represent the probability distri-

bution P (st|u1:t, z1:t) with a set of N particles. Each particle maintains an estimate of

6 DoF pose at time t:

St = {s[1]t , s
[2]
t , ..., s

[N ]
t } (3.13)

with a set of corresponding weights:

Wt = {w[1]
t , w

[2]
t , ..., w

[N ]
t } (3.14)

The poses of particles and their corresponding weights are respectively updated accord-

ing to the motion ut (Sec. 3.5.1) and noisy measurement zt (Sec. 3.5.2) at time t. In the

Sec. 3.5.1, we also justify the use of a simple motion model. Fig. 3.3 shows an overview

of MCVL.

3.5.1 Motion model

In the autonomous driving scenario when navigating the roads of an urban area1, the

motion of the car is fairly restricted, i.e., it largely stays on a road network on an

approximately 2D plane2 [141]. While the road surface still allows significant scope for

1In more “localized” operations such as parking, where highly accurate 6 DoF estimation is required,
it is probably better to rely on the INS.

2More fundamentally, the car is a non-holonomic system [178].
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Fig. 3.3. The diagram of our proposed Monte Carlo-based visual localization (MCVL).

movement (cf. Fig. 3.7), relative to the size of the map, the motion of the car is rather

limited3. This is echoed by the recent work of [145], who observed that there is “lower

variation in viewpoints as the car follows the same road”. Hence, a Monte Carlo scheme

with a simple motion model suffices to track the 6 DoF rigid motion of the vehicle. In

many cities, the road networks are complex Euclidean graphs. In fact, it is well known

that using (visual) odometry alone, it is possible to accurately track a car on a 2D road

map [18]4. More fundamentally, this suggests that temporal continuity in the testing

sequence (which is fully exploited by our method) strongly benefits VL.

Mathematically, for each particle, we model the noisy motion consisting of linear velocity

v
[i]
t and angular velocity ψ

[i]
t as the following:

v
[i]
t ∼ N (µv, Σv)

ψ
[i]
t ∼ N (µψ, Σψ)

(3.15)

where, µv and µψ respectively represent the linear and angular velocities. The accelera-

tions are modeled by the noise covariance matrices Σv and Σψ. For each particle, their

motion in each time step is given by:

u
[i]
t = [v

[i]
t , ψ

[i]
t ]T (3.16)

In practice, the µv, µψ, Σv, and Σψ can be either manually tuned, or estimated from

training data [88].

While 3D positions can be easily updated by using simple additions, we convert two

Euler angles to the Direction Cosine Matrix (DCM), multiply two matrices and convert

3On uneven or hilly roads, accelerometers can be used to estimate the vertical motion, hence, VL
can focus on map-scale navigation.

4The method of [18] will give ambiguous results on non-informative trajectories, e.g., largely straight
routes. Hence, VL is still crucial.
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the result back to the Euler representation, to stay on the 3D manifold of valid rotations.

Let ϕ(.) be a function that maps an Euler representation to DCM and ϕ−1(.) is its inverse

mapping. Our motion model for each particle is then given by:

s
[i]
t =

 r
[i]
t−1 + v

[i]
t

ϕ−1
(
ϕ(ψ

[i]
t ).ϕ(Ω

[i]
t−1)

) (3.17)

The experimental results will show that our motion model can properly handle the

temporal evolution of camera pose in an image sequence. In case there is mismatch

between the actual motion and the one predicted by the motion model, such as during

emergency maneuvers, the discrepancy would be reflected in the enlarged covariance

estimate and resolved once motion returns to within normal bounds.

3.5.2 Estimating noisy measurements

The similarity between the query and database images is calculated using L-2 distance:

D(Qt, Ii) =
∥∥∥τ(Qt)− τ(Ii)

∥∥∥2
2

(3.18)

where, τ(.) is the observation encoder (see Sec. 3.3). Afterwards, top R database

images with smallest distances are retrieved. Next, mean-shift algorithm is applied on

R retrieved images over the translational part of their poses. We then select the largest

cluster, and calculate the mean of translation and rotation [112], which is viewed as a

noisy measurement zt from the image query It.

3.5.3 Updating particle weights and Resampling

For every particle, its weight is computed as the following:

w
[i]
t = p

(
zt|s[i]t

)
∝ e−

1
2
(zt−s[i]t )TΣ−1

o (zt−s[i]t ) (3.19)

where, Σo is a covariance matrix which describes the noise of the measurement ob-

tained by observation encoder. Then, all particle weights are normalized to ensure their

summation equal to 1:

∀i, w[i]
t =

w
[i]
t∑n

j=1w
[j]
t

(3.20)
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Fig. 3.4. An example of MCVL. 1st and 2nd rows respectively are the particle distri-
bution and query image, from 3rd to 7th rows are the retrieval results. Red bounding
boxes indicate mistakes. The color bar describes the particle weights. Red lines are
the camera pose predicted by MCVL. At the first frame, we randomly generates 1,000
particles with weight 0.001, then particles which are inconsistent with measurements
are vanished. Eventually, the ambiguity is resolved, and the particles track the move-
ment of the vehicle. It is also worth mentioning that the query and retrieved images are
from different time and weather conditions. In particular, the query images are from
6:26pm-cloudy, and the correct retrieved images are from 11:24am-rainy, 9:15pm-clear,
and 1:28pm-sunny conditions.

Finally, we resample particles based on their weights by stochastic universal sampling [177].

This resampling step prevents the degeneracy problem, which can occur in the long-term

localization scenario. Fig. 3.4 shows the filtering process performed by our proposed

method. At the first iteration, hypotheses are randomly generated. Hypotheses with

small weights vanish if they are inconsistent with the noisy measurement. Finally, the

ambiguity is resolved, and the particles successfully track the vehicle. It is worth noting

that in the example shown, the query and retrieved images are from different times and

weather conditions.

3.5.4 Overall algorithm

Algorithm 3.2 summarizes the proposed Monte Carlo-based visual localization method.

The critical benefit of maintaining a set of particles is leveraging Monte Carlo principle

to approximate the probability distribution P (st|u1:t, z1:t). As the number of particles N

are sufficiently large, this set of particles are equivalent to a representation of probability

density function. The motion model ensures the temporal smoothness of the vehicle’s

movement.



Chapter 3. Filtering Approaches for Visual Localization 38

Algorithm 3.2 Monte Carlo-based Visual Localization (MCVL)

Require: St−1, Wt−1, and Qt
1: St = St = ∅
2: Wt =Wt = ∅
3: Estimate zt from Qt (Sec. 3.5.2).
4: for i = 1 to N do
5: sample v

[i]
t and ψ

[i]
t as equation (3.15).

6: compute s
[i]
t as equation (3.17).

7: compute w
[i]
t as equation (3.19).

8: St = St+ < s
[i]
t >

9: Wt =Wt+ < w
[i]
t >

10: end for
11: normalize w

[i]
t as equation (3.20).

12: for i = 1 to n do
13: draw i with probability w

[i]
t (Sec. 3.5.3).

14: add s
[i]
t to St.

15: add w
[i]
t to Wt.

16: end for
17: return St

3.6 G2D: From GTA to Data

An intuitive summary of the functionality of G2D is given in Fig. 3.5. Overall, creating

sparse trajectory is a user-defined step with the assistance of trajectory tool. After

obtaining a sparse trajectory, a dense trajectory could be constructed in two manners:

automatic-defined or user-defined orientations. The option of user-defined orientation

gives a permission to define the image appearance as users preference. With the obtained

dense trajectory, users could retrace that one and simultaneously collect the image set

with its camera pose set. Apart from trajectory tool, condition tool could change the

conditions of the game, i.e., weather, time and traffic density. Because condition tool and

trajectory tool work independently, several image sets with a consistent camera

pose set under different conditions could be collected. More details are provided in

the rest of this document, as well as in the project page: https://sites.google.com/

view/g2d-software/home.

3.6.1 Scripthook V

G2D is based on Scripthook V 5, a library developed by Alexander Blade that provides

access to the native functions of GTA V (the usage Scripthook V distinguishes our G2D

from Richter et al. [138, 137]), a wide range of fascinating mods are available 6, e.g.,

5http://www.dev-c.com/gtav/scripthookv/
6https://www.gta5-mods.com/

https://sites.google.com/view/g2d-software/home
https://sites.google.com/view/g2d-software/home
http://www.dev-c.com/gtav/scripthookv/
https://www.gta5-mods.com/
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Fig. 3.5. An illustration of all functions of G2D. G2D contains 3 separate tools:
trajectory tool, condition tool and sparse trajectory creator. Specifically, due to the
ability of accessing to the native functions of GTA V, the condition tool enables users
to easily manipulate the time, weather and traffic density. In addition, trajectory tool
and sparse trajectory creator assist users to create a dense trajectory and finally collect
a set of images with their corresponding camera poses. It is worth to note that because
condition tool and trajectory tool are separate tools, G2D enables users to collect several
image sets with a consistent camera pose set under varying conditions.

Invisibility Cloak 7 that can make the protagonist invisible. The list of native functions

supported by Scripthook V could be found at http://www.dev-c.com/nativedb/.

3.6.2 Constructing trajectory

G2D defines two types of camera trajectories: sparse and dense trajectories. A sparse

trajectory consists of a set of vertices (a set of positions on the “top down” 2D map

of the virtual environment), and an order in which to visit the vertices. Users specify

sparse trajectories. Then, given a sparse trajectory, a dense trajectory is generated

automatically by G2D. Basically, the tool traces a continuous path along the dense

trajectory and captures the scene as observed from the gameplay camera at 60 frames

per second8, along with the 6DOF camera pose at each frame. In other words, G2D

still guarantees the normal operation of the game as well as the collected dataset is in

the standard video rate.

Fig. 3.6 shows an example, while more details are available in the following.

7https://www.gta5-mods.com/scripts/invisibility-cloak
8We measure this performance from a workstation Intel(R) Core(TM) i7-6700 @ 3.40GHz, RAM

16GB, NVIDIA GeForce GTX 1080 Ti and the maximum graphical configuration for GTA V

http://www.dev-c.com/nativedb/
https://www.gta5-mods.com/scripts/invisibility-cloak
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Fig. 3.6. Illustrating sparse and dense trajectories on a 2D map/coordinate system.
Points labelled with Roman numerals indicate the vertices of a sparse trajectory; the
order of visitation of the vertices is given by the red arrows. The sampled frames along
with the 6DOF camera pose at each frame while automatically traversing the sparse
trajectory gives rise to a dense trajectory.

3.6.2.1 Sparse Trajectory (user-defined)

The vertices {I, II, . . . } of a sparse trajectory are defined by their coordinates on a 2D

map {(xI , yI), (xII , yII), . . . }. The order of visitation is specified using an index

ORDERI = {a, b, c, . . . }

ORDERII = {x, y, z, . . . }
...

where a, b, c are integers indicating the order in which vertex I is visited in the desired

sequence (similarly x, y, z for vertex II). For the example in Fig. 3.6, the index would
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be

ORDERI =
{

1, 8
}

ORDERII =
{

2, 7
}

ORDERIII =
{

3
}

ORDERIV =
{

4
}

ORDERV =
{

5
}

ORDERV I =
{

6
}

ORDERV II =
{

9
}

In G2D, the vertex and order of visitation are specified in the files vertex.txt and

vertex order.txt respectively.

3.6.2.2 Dense Trajectory (generated automatically)

Given a user-specified sparse trajectory, G2D moves the protagonist of the game to

automatically follow the trajectory. The orientation (rotation) of the camera while the

movement is being executed can be specified in two modes:

• First-person view mode: G2D attaches the gameplay camera to the “eyes” of the

protagonist, and the viewing direction always points forward without the need to

handle camera orientations by the user.

• Third-person view mode: While the protagonist automatically moves along the

trajectory, the user can use the mouse to control the orientation of the camera.

While the environment is being explored, G2D calls the relevant native functions and

performs the necessary computations to obtain the 6DOF pose of the gameplay cam-

era at each frame. Every 6DOF pose is stored in line-by-line manner within the file

trajectory dense.txt. Each line within trajectory dense.txt has the following for-

mat:

<protagonist position XYZ> <camera position XYZ> <camera rotation XYZ>

It is worth noting that because the dense trajectory is simply an editable text file, users

could easily open the dense trajectory and make some manual modifications to create a

noisy version of trajectory, hence a more challenging dataset could be generated.
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3.6.3 Retracing a dense trajectory

With the obtained dense trajectory, G2D opens the file trajectory dense.txt, sequen-

tially loads each line within that file and then sets 6 DoF pose to the camera object.

With each 6 DoF value, G2D performs a screenshot of the screen rendered by the camera

object.

G2D stores all image data along with their corresponding 6 DoF pose within 6dpose list.txt

as the following format:

<image file name 1> <camera position XYZ> <camera rotation XYZ>

<image file name 2> <camera position XYZ> <camera rotation XYZ>

. . .

<image file name N> <camera position XYZ> <camera rotation XYZ>

All the images and their 6 DoF pose are automatically and fully generated from the

predetermined dense trajectory as the explanation in Sec. 3.6.2.2. Therefore, before

carrying out the function of retracing the dense trajectory, users could change the en-

vironmental conditions (i.e. weathers, time and traffic density) as their preference to

attain their desired dataset.

3.6.4 Changing the environmental conditions

G2D provides the functions that could support users to change environmental conditions.

There are three different settings regarding environmental conditions:

• Regarding the weather, G2D allows user to select between clear, rain or snow.

• In terms of the time, G2D enables users change time of day from 0:00 to 23:00.

• With regard to the traffic density, G2D assists users to increase or decrease two

types of traffic density, i.e. vehicle and pedestrian. The density value varying from

0 to 1 represents from none to normal numbers of pedestrians/vehicles on the road.

3.6.5 Unit Conversion

In the testing of some algorithms, it may be useful to conduct metric conversion of the

distances in the 2D map of the game. To this end, we perform the following trick:
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• Make the game protagonist walk in the environment, and record the positions (in

the 3D game coordinate) of the protagonist at every 2-3 steps.

• Calculate the average walking-stride length of the protagonist in unit-distances of

the 3D game coordinate (roughly 0.9 units based on the 3D game coordinate that

we used).

According to [70], the average walking stride length for a male adult is about 0.762

meters, hence 1 unit-distance in the 3D game coordinate is equal to about 0.85 meters.

3.7 Synthetic data

This section describes our synthetic dataset collected from the computer game GTV A

using our software G2D (see Sec. 3.6). Note that there is an increasing recognition of the

value of synthetic data towards building autonomous driving systems [168]. Our dataset

can be found in the project page: https://sites.google.com/view/g2d-software/

home.

Fig. 3.7. Our synthetic dataset simulates image sequences collected from multiple
vehicles under different environmental conditions. The red lines indicate the road net-
work of a part of a city, while the green lines indicate a few of the trajectories taken by
different data collection vehicles. Sample frames at similar locations are shown—note
the differences in pose and environmental conditions between the images. Testing data
will also be an image sequence recorded from a vehicle along the road network.

We simulate that there are 59 vehicles which run independently in different routes and

environmental conditions. Fig. 3.7 shows the setting of our synthetic dataset. The

https://sites.google.com/view/g2d-software/home
https://sites.google.com/view/g2d-software/home
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Fig. 3.8. Bird’s eye view and distribution of environmental conditions of our synthetic
dataset. We simulate that there are 59 vehicles running in different routes, distinct time
and weathers. Grid lines are every 100m. In training set, the coverage area is about
3.36km2, the time and weather conditions are uniformly distributed. The statistics of
testing sequences is shown in Table 3.1

Fig. 3.9. Training (1st-3rd rows) and testing samples (4th row) in our synthetic
dataset.

bird’s-eye view of our synthetic dataset is illustrated in Fig. 3.8, the coverage area is

about 3.36km2. Also, those vehicles are simulated to run in different times of day and

weather conditions. The distributions of times and weather conditions are shown in

two histograms of Fig. 3.8. The times and weathers in training sequences are uniformly

distributed from 1am to 11pm, and in 7 different weather conditions (snowy, foggy, clear,

overcast, cloudy, sunny and rainy). Five sequences in different times and weathers are

also collected for the testing phase. The statistics information and trajectory of the

testing sequences are described in Table 3.1 and Fig. 3.8 respectively. We sub-sampled

on the training sequences at 2Hz and the testing sequences at 4Hz. Examples from

training and testing sequences are shown in Fig. 3.9.

3.8 Experiments

To validate the performance of our proposed VL methods, we conduct experiments

on synthetic as well as real datasets. For quantitative results, the translation error is
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Sequences # images Time & Traversal
Weather distance

Test seq-1 1451 9:36 am, snowy 1393.03m
Test seq-2 360 10:41 pm, clear 359.74m
Test seq-3 1564 11:11 am, rainy 1566.93m
Test seq-4 805 6:26 pm, cloudy 806.56m
Test seq-5 1013 3:05 pm, overcast 1014.91m

Table 3.1: Statistics of the testing sequences in the synthetic dataset

calculated as the Euclidean distance ||cest− cgt||2. The orientation error |α| is computed

as the angular difference 2 cos(|α|) = trace(R−1gt Rest) between estimated and ground

truth camera rotation matrices Rest and Rgt.

A query frame is deemed as correctly localized if its predicted pose is within a threshold

of (Xm,Y ◦) from its ground truth pose. We define following thresholds: (1m, 5◦),

(5m, 10◦), (10m, 20◦), (15m, 30◦),(20m, 40◦), and (50m, 100◦)

3.8.1 Implementation details

In the observation encoder, we extract SIFT feature at 4 different scales with region

width of 16, 24, 32 and 40, over a grid with spacing of 2 pixels. The SIFT features are

embedded and aggregated using VLAD to obtain a single vector of length 16, 384, which

is then projected to a 4, 096 dimensional space via PCA, whitened and L2-normalized. To

train the visual vocabulary, we randomly sample 5, 000, 000 SIFT features in sequences

“28/11/2014, 12:07:13” and “02/12/2014, 15:30:08” of Oxford RobotCar [111], and train

a visual vocabulary size of K = 128.

In the visual localization with HMM, we set vmax = 5 and σ = 0.06. The number

of place hypotheses are |Ht| = 20. the initial belief p0 is uniformly initialized. This

approach is termed as HMM in following sections.

In MCVL, in case prior information of initial camera pose is unknown, ones typically

initialize particles according to uniform distribution. However, since a rough camera

pose can be inferred from image retrieval, it is reasonable to assume that high (and

small) probability for initial camera pose closer (and further) to that rough camera

pose. Therefore, particles are initialized from Gaussian distribution with the mean

from the noisy measurement in the first frame. The covariance matrices for initial-

izing 3D location r
[i]
t=1 and orientation Ω

[i]
t=1 respectively are diag([10, 10, 10]T ) and

diag([0.001, 0.001, 1]T ). The parameters of motion model are set as the following: Σo =

diag([5, 5, 5, 0.0001, 0.0001, 0.001]T ), Σv = diag([1, 1, 0.01]T ), Σψ = diag([0.0001; 0.00001;

0.01]T ), µv = [0.1, 0.1, 0.01]T , µψ = [0.001, 0.00001, 0.01]T , where diag is a function that



Chapter 3. Filtering Approaches for Visual Localization 46

Route Purpose Recorded

Alternate
route (1
km)

Training 26/6/2014, 9:24:58
Training 26/6/2014, 8:53:56
Unlabeled 14/5/2014, 13:50:20
Unlabeled 14/5/2014, 13:46:12
Query 23/6/2014, 15:41:25

Full
route (10
km)

Training 28/11/2014, 12:07:13
Training 02/12/2014, 15:30:08
Unlabeled 12/12/2014, 10:45:15
Query 09/12/2014, 13:21:02

Table 3.2: The split of training and testing sequences in Oxford RobotCar dataset.

outputs a square diagonal matrix with the elements of input vector on the main diagonal.

The number of particles are fixed to 1000. The numbers of retrieved images R = 20.

We select CNN-based 6-DoF camera pose regression approaches as our competitors:

PoseNet [87], MapNet [17] and MapNet+PGO [17]. Following suggestion of [17], PoseNet

uses ResNet-34 [72], adds a global average pooling layer, and parameterizes camera ori-

entation as logarithm of a unit quaternion. MapNet+PGO employs pose graph opti-

mization (PGO) to fuse the absolute poses (produced by MapNet) and relative odome-

try (from visual odometry) during the inference. PoseNet is implemented in Tensorflow,

MapNet and MapNet+PGO’s implementations are provided by the authors. Parameters

of PoseNet and MapNet are set as the suggestion of the authors.

3.8.2 Datasets

We conduct the experiment using our synthetic dataset (see Sec. 3.7), and Oxford Robot-

Car [111]. For Oxford RobotCar, we follow the configuration suggested by MapNet [17].

The split of training and testing sequences are summarized in Table 3.2. The training

and testing sequences are recorded in different dates, which ensure a significant differ-

ence in their appearances. The experiment is conducted on the alternate and full routes

with the length of 1 km and 10 km respectively. MapNet [17] is initially trained with

the training set, and then fine-tuned in an unlabeled dataset, PoseNet [87] is trained

with the training set, and our methods only use training set as the database D.

3.8.3 Comparison between VLAD and Bag of Word (BoW)

Fig. 3.10a compares the localization errors between VLAD and BoW. For BoW, the

visual vocabulary of size 4, 096 is trained using the 5, 000, 000 SIFT features as described

in Sec. 3.8.1. For each image, we also extract SIFT features in the same setting as
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Sec. 3.8.1, the RootSIFT normalization (Sec. 3.3) is subsequently performed. BoW

representation is formed for each image, it is then followed by the L2 normalization: xi =

xi/||xi||2. Here, since VLAD is a higher order representation than BoW, it significantly

outperforms BoW.
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Fig. 3.10. Percentage of correctly localized query frames in Oxford Robotcar. (a)
Comparison between VLAD and BoW, (b) The benefit of post-processing

3.8.4 The benefit of post-processing

Sec. 3.3 claims using PCA and whitening (post-processing) can reduce the impacts of

background features. Fig. 3.10b verifies that this post-processing indeed improves the

localization accuracy. Note that without PCA projection, the dimensionality of each

image representation is 16, 384 which also slows down the inference time.

3.8.5 Sum and democratic aggregation
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Fig. 3.11. Comparison between sum and democratic aggregations in Oxford RobotCar.
(a) Localization accuracy, (b) Time of encoding the observation with respect to number
of local SIFT features.

This section verifies the practical value of using sum aggregation over democratic aggre-

gation. For democratic aggregation, we use the implementation provided by [81]. The
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purpose of democratic aggregation is to equalize the contribution of embedded vectors,

reducing the impact of background features, since background features (e.g., tree, sky,

road, etc) usually dominate the image. Therefore, from Fig. 3.11a, democratic aggre-

gation outperforms sum aggregation. However, thanks to post-processing (PCA and

whitening), it improves sum aggregation to be comparable to democratic aggregation.

In addition, Fig. 3.11b shows that the processing time of democratic aggregation sig-

nificantly becomes slower when the number of local SIFT features increase, while the

processing time of sum aggregation combined with post processing remains also con-

stant. This is because when democratic aggregation is performed, it needs to solve an

optimization problem. By contrast, the post processing is only the matrix multiplica-

tion which can be processed efficiently in parallel. Hence, due to the computational

complexity of democratic aggregation, its practicality is limited.

3.8.6 Comparison to competitors

(a) MapNet (b) HMM (c) MCL

Fig. 3.12. Results on our synthetic dataset. Green lines represented ground truth and
predicted trajectories are given in red.

3.8.6.1 Synthetic dataset

As can be seen from Fig. 3.12, MapNet struggles to produce a reasonable result. This

is because MapNet formulates the problem as an image to pose regression, whose un-

derlying assumption of constant appearance is violated when the appearance of the

environment changes. Moreover, repeated structures such as trees, sky, and road sur-

faces can leads to ambiguities for MapNet. In contrast, our observation encoder applies

state-of-the-art normalization techniques to reduce the negative impact from repetitive

objects. Hence as shown in Fig. 3.13, HMM and MCVL significantly outperform Map-

Net. Although HMM is slightly better than MCVL regarding the percentage of correctly

localized queries, MCVL produces a more smooth trajectory than HMM (see Fig. 3.12).
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Fig. 3.13. Percentage of correctly localized query frames in our synthetic dataset.

3.8.6.2 Oxford RobotCar
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Fig. 3.14. Percentage of correctly localized query frames in Oxford Robotcar.

We compare our proposed method to state-of-the-art approaches, i.e., PoseNet [87],

MapNet and MapNet+PGO [17]. In particular, PoseNet directly regresses 6 DoF cam-

era pose from an input image. MapNet receives videos as training data, hence its loss

function minimizes absolute pose per image as well as the relative pose between consec-

utive images, it is then followed by a fine-tuning step on unlabeled data with their visual

odometry (VO). MapNet+PGO, in the inference step, fuses the prediction of MapNet

with VO by using pose graph optimization (PGO) to ensure the temporal smoothness.

Results on alternate route (1km) are shown in Fig. 3.14a. MapNet, MapNet+PGO

and MCVL share a comparable performance, which outperforms PoseNet and HMM.

However, Fig. 3.15 shows that MapNet, MapNet+PGO and PoseNet are unable to

output a smooth trajectory, while our methods (i.e., MCVL and HMM) can produce
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(a) PoseNet (b) MapNet (c) Map-
Net+PGO

(d) HMM (e) MCVL

Fig. 3.15. Results on alternate route (1km) in Oxford RobotCar dataset. The green
lines are ground truth, and red lines are predicted trajectories.

(a) MapNet (b) Map-
Net +PGO

(c) HMM (d) MCVL

Fig. 3.16. Results on full route (10km) in Oxford RobotCar dataset. The green lines
are ground truth, and red lines are predicted trajectories.

a smooth prediction. One possible reason which PGO is unable to produce a smooth

prediction is there are some existing outliers from the predictions of both MapNet and

VO which will probably make PGO stuck in a local minimum.

In the large-scale setting, which is full route (10km), PoseNet is not reported since it

can not give a reasonable result. In general, we observe the results on full route are

consistent with those on alternate route, i.e., HMM and MCVL output more smooth

predictions, compared to MapNet and MapNet+PGO. Therefore, HMM and MCVL

significantly outperform MapNet and MapNet+PGO in terms of percentage of correctly

localized queries (see Fig. 3.14b).



Chapter 3. Filtering Approaches for Visual Localization 51

3.9 Conclusion

In this chapter, we provide an empirical answer for the Research question 1 How

to effectively model temporal information? To convincingly deal with this question, we

highlight our contributions that address sub-questions posed in Sec. 3.1.

RQ1.1 How should we develop probabilistic-based algorithms?

We employ a probabilistic framework—Bayes filter [164, Chapter 2], which has a step of

motion prediction to effectively exploit the temporal information. Typically, the motion

prediction relies on control data, but we show that even a random motion model can

offer a good localization accuracy.

We propose two filtering methods: visual localization with HMM and Monte Carlo-

based visual localization, that respectively exploit the discrete and continuous domains

for VPR. Their observation models rely on a novel observation encoder that employs

local features and encoding technique to represent a noisy measurement (i.e., image) as

a fixed (low) dimensional vector.

The experiment shows that filtering on continuous domain produces a slightly better

prediction than on discrete domain. In addition, our filtering methods significantly

outperform deep learning methods in a large-scale dataset.

RQ1.2 How to cost-effectively evaluate VPR methods?

We present G2D that could be utilized to collect the dataset in Grand Theft Auto

V. By virtue of the capability of accessing to the native functions, G2D allows users

to control the various environmental conditions within the game, i.e. weather, time

and traffic density. In addition, G2D samples a set of images with their corresponding

camera poses in the game coordinate. Apart from it, G2D is open-sourced, hence users

could modify it as their preference to collect the desired dataset. Using G2D, we create

a synthetic dataset for VPR, that simulate multiple vehicles running different routes,

time of day, and weathers to build a map.
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Scalable Visual Place Recognition

This chapter is based on the content of following conference paper
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Reid. Scalable Place Recognition Under Appearance Change for Autonomous

Driving. In International Conference in Computer Vision (ICCV), 2019.
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4.1 Introduction and research questions

To perform convincingly, a practical VPR algorithm must be robust against appearance

changes in the operating environment. These can occur due to higher frequency environ-

mental variability such as weather, time of day, and pedestrian density, as well as longer

term changes such as seasons and vegetation growth. A realistic VPR system must also

contend with “less cyclical” changes, such as construction and roadworks, updating of

signage, façades and billboards, as well as abrupt changes to traffic rules that affect

traffic flow (this can have a huge impact on VPR if the database contains images seen

from only one particular flow [32, 54]). Such appearance changes invariably occur in

real life.

To meet the challenges posed by appearance variations, one paradigm is to develop VPR

algorithms that are inherently robust against the changes. Methods under this paradigm

attempt to extract the “visual essence” of a place that is independent of appearance

changes [7]. However, such methods have mostly been demonstrated on more “natural”

variations such as time of day and seasons.

Another paradigm is to equip the VPR algorithm with a large image dataset that was

acquired under different environmental conditions [28]. To accommodate long-term evo-

lution in appearance, however, it is vital to continuously accumulate data and update

the VPR algorithm. To achieve continuous data collection cost-effectively over a large

region, one could opportunistically acquire data using a fleet of service vehicles (e.g.,

taxis, delivery vehicles) and amateur mappers. Indeed, there are street imagery datasets

that grow continuously through crowdsourced videos [128, 68]. Under this approach, it

is reasonable to assume that a decent sampling of the appearance variations, including

the recent changes, is captured in the ever growing dataset.

Under continuous dataset growth, the key to consistently accurate VPR is to “assimilate”

new data quickly. This demands a VPR algorithm that is scalable. Specifically, the

computational cost of testing (i.e., performing VPR on a query input) should not increase

visibly with the increase in dataset size. Equally crucially, updating or retraining the

VPR algorithm on new data must also be highly efficient. With this motivation, in this

chapter, we ask:

Research question 2 Can we develop scalable VPR for life-long operation?

In realistic scenarios, the visual data is usually in the form of videos, and chapter 3

has shown the efficiency of Bayesian techniques in modelling the temporal information.

Therefore, in this chapter, we develop a novel VPR technique based on Hidden Markov

Models (HMMs) that is scalable in both training and testing such that it is able to
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continuously grow due to the incorporation of new sequences in the dataset. Our method

will be investigated according to four following sub-questions

RQ2.1 Can we discover missing knowledge in the map?

Mapping for large-scale environment typically requires multiple vehicles, and

the sub-maps from vehicles are aligned together to obtain a full map. However,

the alignment stage, no matter how accurate, will always produce a topological

map with missing connections between nodes. Sec. 4.4 shows that our VPR

inference can be used to “connect” nodes from different videos provided that

they are representing a same physical place.

RQ2.2 How to effectively absorb new data?

Our method includes a topologically sensitive compression procedure that can

update the system efficiently, without using GNSS positioning information or

computing visual odometry. Also, the observation model rely on a compact im-

age representation and hierarchical tree structure, that can be updated quickly

(Sec. 4.5).

Arguably, VPR algorithms based on deep learning [17, 29] can accommodate

new data by simply appending it to the dataset and fine-tuning the network

parameters. However, as we will show later, this fine-tuning process is still too

costly to be practical, and the lack of accurate labels in the testing sequence

can be a major obstacle.

The experimental results show the scalability of our method in updating new

data, compared to deep learning algorithms (Sec. 4.6.3).

RQ2.3 Can we eat a lot but never get fat?

The experiment demonstrates that our compression technique can improve ac-

curacy by continuous adaption to new data, while maintaining the computa-

tional efficiency (Sec. 4.6.1).

The rest of the chapter is organized as follows: We respectively provide the problem

setting and map representation in Sec. 4.2 and Sec. 4.3. Next, we briefly introduce how

to perform VPR using HMM in Sec. 4.4. We provide the detail of our compression

technique when updating new data in Sec. 4.5. Finally, the experimental results are

presented in Sec. 4.6, and the conclusion of this chapter is drawn in Sec. 4.7.
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4.2 Problem setting

We first describe our adopted setting for VPR for autonomous driving. Let D ={
V1, . . . ,VM

}
be a dataset of M videos, where each video

Vi = {Ii,1, Ii,2, . . . , Ii,Ni} = {Ii,j}Nij=1 (4.1)

is a time-ordered sequence of Ni images. In the proposed VPR system, D is collected

in a distributed manner using a fleet of vehicles instrumented with cameras. Since

the vehicles could be from amateur mappers, accurately calibrated/synchronized GNSS

positioning may not be available. However, we do assume that the camera on all the

vehicles face a similar direction, e.g., front facing. The query video is represented as

Q = {Q1, Q2, . . . , QT } (4.2)

which is a temporally-ordered sequence of T query images. The query video could be

a new recording from one of the contributing vehicles (recall that our database D is

continuously expanded), or it could be the input from a “user” of the VPR system, e.g.,

an autonomous vehicle.

4.2.1 Overall aims

For each Qt ∈ Q, the goal of VPR is to retrieve an image from D that was taken from

a similar location to Qt, i.e., the FOV of the retrieved image overlaps to a large degree

with Qt. As mentioned above, what makes this challenging is the possible variations in

image appearance.

In the envisioned VPR system, when we have finished processing Q, it is appended to

the dataset

D = D ∪ {Q}, (4.3)

thus the image database could grow unboundedly. This imposes great pressure on the

VPR algorithm to efficiently “internalise” new data and compress the dataset. As an

indication of size, a video can have up to 35,000 images.
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4.3 Map representation

When navigating on a road network, the motion of the vehicle is restricted to the roads,

and the heading of the vehicle is also constrained by the traffic direction. Hence, the

variation in pose of the camera is relatively low [145, 141].

The above motivates us to represent a road network as a graph G = (N , E), which we

also call the “map”. The set of nodes N is simply the set of all images in D. To reduce

clutter, we “unroll” the image indices in D by converting an (i, j) index to a single

number k = N1 +N2 + · · ·+Ni−1 + j, hence the set of nodes are

N = {1, . . . ,K}, (4.4)

where K =
∑M

i=1Ni is the total number of images. We call an index k ∈ N a “place”

on the map.

We also maintain a corpus C that stores the images observed at each place. For now,

the corpus simply contains

C(k) = {Ik}, k = 1, . . . ,K, (4.5)

at each cell C(k). Later in Sec. 4.5, we will incrementally append images to C as the

video datatset D grows.

In G, the set of edges E connect images that overlap in their FOVs, i.e., 〈k1, k2〉 is an

edge in E if

∃I ∈ C(k1) and ∃I ′ ∈ C(k2) such that I, I ′ overlap. (4.6)

Note that two images can overlap even if they derive from different videos and/or con-

ditions. The edges are weighted by probabilities of transitioning between places, i.e.,

w(〈k1, k2〉) = P (k2 | k1) = P (k1 | k2), (4.7)

for a vehicle that traverses the road network. Trivially,

〈k1, k2〉 /∈ E iff P (k2 | k1) = P (k1 | k2) = 0. (4.8)

It is also clear from (4.7) that G is undirected. Concrete definition of the transition

probability will be given in Sec. 4.5. First, Sec. 4.4 discusses VPR of Q given a fixed D
and map.
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Fig. 4.1. An overview of our idea using HMM for place recognition. Consider dataset
D = {V1,V2} and query Q. Figure 4.1a: Because V1 and V2 are recorded in different
environmental conditions, V2 cannot be matched against V1, thus there is no connection
between V1 and V2. Query Q visits the place covered by V1 and V2, and then an
unknown place. Figure 4.1b: Query Q is firstly localized against only V1. When it
comes to the “Overlap region” at time t + 1, it localizes against both V1 and V2. The
image corresponding to MaxAP at every time step t is returned as the matching result.
Figure 4.1c: A threshold decides if the matching result should be accepted, thus when
Q̧ visits an unseen place, the MaxAPs of V1 and V2 are small, we are uncertain about
the matching result. Once Q is finished, the new place discovered by Q is added to the
map to expand the coverage area. In addition, since Q̧ is matched against both V1 and
V2, we can connect V1 and V2.

4.4 Place recognition using HMM

To perform VPR on Q = {Q1, . . . , QT } against a fixed map G = (N , E) and corpus C,
we model Q using a HMM [143]. We regard each image Qt to be a noisy observation

(image) of an latent place state st, where st ∈ N . The main reason for using HMM

for VPR is to exploit the temporal order of the images in Q, and the high correlation

between time and place due to the restricted motion (Sec. 4.3).

To assign a value to st, we estimate the belief

P (st | Q1:t), st ∈ N , (4.9)

where Q1:t is a shorthand for {Q1, . . . , Qt}. Note that the belief is a probability mass

function, hence

∑
st∈N

P (st | Q1:t) = 1. (4.10)
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Based on the structure of the HMM, the belief (4.9) can be recursively defined using

Bayes’ rule as

P (st|Q1:t) =ηP (Qt|st)∗∑
st−1∈N

P (st|st−1)P (st−1|Q1:t−1),
(4.11)

where P (Qt|st) is the observation model, P (st|st−1) is the state transition model, and

P (st−1|Q1:t−1) is the prior (the belief at the previous time step) [143]. The scalar η is a

normalizing constant to ensure that the belief sums to 1.

If we have the belief P (st | Q1:t) at time step t, we can perform VPR on Qt by assigning

s∗t = arg max
st∈N

P (st | Q1:t) (4.12)

as the place estimate of Qt. Deciding the target state in this manner is called maximum

a posteriori (MaxAP) estimation. See Fig. 4.1 for an illustration of VPR using HMM.

4.4.1 State transition model

The state transition model P (st|st−1) gives the probability of moving to place st, given

that the vehicle was at place st−1 in the previous time step. The transition probability

is simply given by the edge weights in G, i.e.,

P (st = k2|st−1 = k1) = w(〈k1, k2〉). (4.13)

Again, we defer the concrete definition of the transition probability to Sec. 4.5. For now,

the above is sufficient to continue our description of our HMM method.

4.4.2 Observation model

Our observation model is based on image retrieval. Specifically, we use SIFT fea-

tures [103] and VLAD [79] to represent every image. Priority search k-means tree [122]

is used to index the database, but it is possible to use other indexing methods [78, 43,

10].

4.4.2.1 Image representation

For every image Ik ∈ C, we seek a nonlinear function ψ(Ik) that maps the image to a

single high-dimensional vector. To do that, given a set of SIFT features densely extracted



Chapter 4. Scalable Visual Place Recognition 62

from image Ik: Xk = {xhk} ∈ Rd×Hk , where Hk is the number of SIFT features of image

Ik. K-means is used to build a codebook B = {bm ∈ Rd |m = 1, ..., M}, where M is the

size of codebook. The VLAD embedding function is defined as:

φ(xk) = [..., 0, xhk − bm, 0, ...] ∈ RD (4.14)

where, bm is the nearest visual word of feature vector xhk . To obtain a single vector, we

employ sum aggregation:

ψ(Ik) =

Hk∑
i=1

φ(xk) (4.15)

To reduce the impact of background features (e.g., trees, roads, sky) within the vector

ψ(Ik), we adopt rotation and normalization (RN) [81], followed by L-2 normalization.

In particular, we use PCA to project ψ(Ik) from D to D′, where D′ < D. In our

experiment, we set D′ = 4, 096. Power-law normalization is then applied on rotated

data:

ψ(Ik) := |ψ(Ik)|αsign(ψ(Ik)) (4.16)

where, we set α = 0.5.

Note that different from DenseVLAD [167] which uses whitening for post-processing,

performing power-law normalization on rotated data is more stable.

4.4.2.2 Computing likelihood

We adopt priority search k-means tree [122] to index every image Ik ∈ C. The idea is

to partition all data points ψ(Ik) into K clusters by using K-means, then recursively

partitioning the points in each cluster. For each query Qt, we find a set of L-nearest

neighbor L(Qt). Specifically, Qt is mapped to vector ψ(Qt). To search, we propagate

down the tree at each cluster by comparing ψ(Qt) to K cluster centers and selecting the

nearest one.

The likelihood P (Qt|st) is calculated as follows:

• Initialize P (Qt|st = k) = e
−β
σ , ∀k ∈ N , where, we set β = 2.5 and σ = 0.3 in our

experiment.

• For each Ik ∈ L(Qt)

– Find node k̂ = C−1(Ik), where C−1 is the inverse of corpus C, which finds

node k̂ storing Ik.
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– Calculate the probability: p̂ = e
−dist(Qt,Ik)

σ , where dist is the distance between

Qt and Ik.

– If p̂ > P (Qt|st = k̂), then P (Qt|st = k̂) = p̂.

4.4.3 Inference using matrix computations

4.4.3.1 Inference

The state transition model can be stored in a K × K matrix E called the transition

matrix, where the element at the k1-th row and k2-th column of E is

E(k1, k2) = P (st = k2 | st−1 = k1). (4.17)

Hence, E is also the weighted adjacency matrix of graph G. Also, each row of E sums

to one. The observation model can be encoded in a K ×K diagonal matrix Ot, where

Ot(k, k) = P (Qt | st = k). (4.18)

If the belief and prior are represented as vectors pt,pt−1 ∈ RK respectively, opera-

tion (4.11) can be summarized as

pt = ηOtE
Tpt−1, (4.19)

where p0 corresponds to uniform distribution. From this, it can be seen that the cost of

VPR is O(K2).

4.4.3.2 Computational cost

Note that E is a very sparse matrix, due to the topology of the graph G which mirrors

the road network; see Fig. 4.3 for an example E. Thus, if we assume that the max

number of non-zero values per row in E is r, the complexity for computing pt is O(rK).

Nonetheless, in the targeted scenario (Sec. 4.2), D can grow unboundedly. Thus it is

vital to avoid a proportional increase in E so that the cost of VPR can be maintained.

4.5 Scalable place recognition based on HMM

In this section, we describe a novel method that incrementally builds and compresses G
for a video dataset D that grows continuously due to the addition of new query videos.
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Fig. 4.2. An overview of our idea for scalable place recognition. Graph G = G1 ∪ G2,
where G1 = {1, 2, 3, 4, 5} and G2 = {6, 7, 8} are disjoint sub-graphs. Query video Q =
{Q1, ..., QT } is matched against G. Figure 4.2a: Qt is matched with node k = 3 and 7
(dashed green lines), due to pt(3), pt(7) > γ. Figure 4.2b: Qt is added to node 3 and 7,
new edges are created (blue lines) to maintain the connections between Qt−1, Qt+1 and
Qt. Figure 4.2c: Node 3 and 7 are combined. New edges are generated (blue lines) to
maintain the connections within the graph. Note that after matching query Q against
G, our proposed culling and combining methods connect two disjoint sub-graphs G1 and
G2 together.

We emphasize again that the proposed technique functions without using GNSS posi-

tioning or visual odometry.

4.5.1 Map intialization

Given a dataset D with one video V1 = {I1,j}N1
j=1 ≡ {Ik}Kk=1, we initialize N and C as

per (4.4) and (4.5). The edges E (specifically, the edge weights) are initialized as

w(〈k1, k2〉) =

0 if |k1 − k2| > W,

α exp
(
− |k1−k2|

2

δ2

)
otherwise,

(4.20)

where α is a normalization constant. The edges connect frames that are ≤W time steps

apart with weights based on a Gaussian on the step distances. The choice of W can be

based on the maximum velocity of a vehicle.

Note that this simple way of creating edges will ignore complex trajectories (e.g., loops).

However, the subsequent steps will rectify this issue by connecting similar places.

4.5.2 Map update and compression

Let D = {Vi}Mi=1 be the current dataset with map G = (N , E) and corpus C. Given a

query video Q = {Qt}Tt=1, using our method in Sec. 4.4 we perform VPR on Q based on

G. This produces a belief vector pt (4.19) for all t.
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We now wish to append Q to D, and update G to maintain computational scalability of

future VPR queries. First, create a subgraph G′ = (N ′, E ′) for Q, where

N ′ = {K + 1,K + 2, . . . ,K + T}, (4.21)

(recall that there are a total of K places in G), and E ′ simply follows Sec. 4.5.1 for Q.

In preparation for map compression, we first concatenate the graphs and extend the

corpus

N = N ∪N ′, E = E ∪ E ′, and C(K + t) = {Qt} (4.22)

for t = 1, . . . , T . There are two main subsequent steps: culling new places, and combining

old places.

4.5.2.1 Culling new places

For each t, construct

M(t) = {k ∈ {1, . . . ,K} | pt(k) ≥ γ}, (4.23)

where γ with 0 ≤ γ ≤ 1 is a threshold on the belief. There are two possibilities:

• If M(t) = ∅, then Qt is the image of a new (unseen before) place since the VPR

did not match a dataset image to Qt with sufficient confidence. No culling is done.

• If M(t) 6= ∅, then for each k1 ∈M(t),

– For each k2 such that 〈K + t, k2〉 ∈ E :

∗ Create new edge 〈k1, k2〉 with weight w(〈k1, k2〉) = w(〈K + t, k2〉).

∗ Delete edge 〈K + t, k2〉 from E .

– C(k1) = C(k1) ∪ C(K + t).

Once the above is done for all t, for those t whereM(t) 6= ∅, we delete the node K+ t in

N and cell C(K + t) in C, both with the requisite adjustment in the remaining indices.

See Figs. 4.2a and 4.2b for an illustration of culling.

4.5.2.2 Combining old places

Performing VPR on Q also provides a chance to connect places in G that were not

previously connected. For example, two dataset videos V1 and V2 could have traversed

a common subpath under very different conditions. If Q travels through the subpath
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under a condition that is simultaneously close to the conditions of V1 and V2, this can

be exploited for compression.

To this end, for each t where M(t) is non-empty,

• k1 = minM(t).

• For each k2 ∈M(t) where k2 6= k1 and 〈k1, k2〉 /∈ E :

– For each k3 such that 〈k2, k3〉 ∈ E , 〈k1, k3〉 /∈ E :

∗ Create edge 〈k1, k3〉 with weight w(〈k1, k3〉) = w(〈k2, k3〉).

∗ Delete edge 〈k2, k3〉 from E .

– C(k1) = C(k1) ∪ C(k2).

Again, once the above is done for all t for which M(t) 6= ∅, we remove all unconnected

nodes from G and delete the relevant cells in C, with the corresponding index adjust-

ments. Figs. 4.2c, 4.1a and 4.1c illustrate this combination step.

4.5.3 Updating the observation model

When Q is appended to the dataset, i.e., D = D∪Q, all vector ψ(Qt) need to be indexed

to the k-means tree. In particular, we find the nearest leaf node that ψ(Qt) belongs to.

Assume the tree is balanced, the height of tree is (log N/logK), where N =
∑
Ni, thus

each ψ(Qt) needs to check (log N/logK) internal nodes and one leaf node. In each

node, it needs to find the closest cluster center by computing distances to all centers,

the complexity of which is O(KD′). Therefore, the cost for adding the query video Q is

O
(
TKD′(log N/logK + 1)

)
, where T = |Q|. Assume it is a complete tree, every leaf

node contains K points, thus it has N/K leaf nodes. For each point ψ(Qt), instead of

exhaustedly scanning N/K leaf nodes, it only needs to check log N/logK + 1 nodes.

Hence, it is a scalable operation.

4.5.4 Overall algorithm

Algorithm 4.1 summarizes the proposed scalable method for VPR. A crucial benefit of

performing VPR with our method is that map G does not grow unboundedly with the

inclusion of new videos. Moreover, the map update technique is simple and efficient,

which permits it to be conducted for every new video addition. This enables scalable

VPR on an ever growing video dataset. In Sec. 4.6.3, we will compare our technique

with state-of-the-art VPR methods.
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4.6 Experiments

We use a dataset sourced from Mapillary [128] which consists of street-level geo-tagged

imagery; see supplementary material for examples. Benchmarking was carried out on

the Oxford RobotCar [111], from which we use 8 different sequences along the same

route; details are provided in supplementary material, and the sequences are abbreviated

as Seq-1 to Seq-8. The initial database D is populated with Seq-1 and Seq-2 from the

Oxford RobotCar dataset. Seq-3 to Seq-8 are then sequentially used as the query videos.

To report the 6-DoF pose for a query image, we inherit the pose of the image matched

using the MaxAP estimation. Following [145], the translation error is computed as

the Euclidean distance ||cest − cgt||2. Orientation errors |θ|, measured in degree, is the

angular difference 2 cos(|θ|) = trace(R−1gt Rest)− 1 between estimated and ground truth

camera rotation matrices Rest and Rgt. Following [87, 85, 17, 175], we compare mean

and median errors.

4.6.1 Performance with and without updating the database

Algorithm 4.1 Scalable algorithm for large-scale VPR.

Require: Threshold W for transition probability, threshold γ for VPR, initial dataset
D = {V1} with one video.

1: Initialize map G = (N , E) and corpus C (Sec. 4.5.1).
2: Create observation model (Sec. 4.4.2)
3: while there is a new query video Q do
4: Perform VPR on Q using map G, then append Q to D.
5: Create subgraph G′ for Q (Sec. 4.5.2).
6: Concatenate G′ to G, extend C with Q (Sec. 4.5.2).
7: Reduce G by culling new places (Sec. 4.5.2).
8: Reduce G by combining old places (Sec. 4.5.2).
9: Update observation model (Sec. 4.5.3).

10: end while
11: return Dataset D with map G and corpus C.

We investigate the effects of updating database on localization accuracy and inference

time. After each query sequence finishes, we consider three strategies: i) No update:

D always contains just the initial 2 sequences, ii) Cull: Update D with the query and

perform culling, and iii) Cull+Combine: Full update with both culling and combining

nodes. Mean and median 6-DoF pose errors are reported in Table 4.1. In general,

Cull improves the localization accuracy over No update, since culling adds appearance

variations to the map. In fact, there are several cases, in which Cull+Combine produces

better results over Cull. This is because we consolidate useful information in the map

(combining nodes which represent the same place), and also enrich the map topology

(connecting nodes close to each other through culling). Inference times per query with
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No update Cull Cull+combine

Seq-3 6.59m, 3.28◦

Seq-4 7.42m, 4.64◦ 5.80m, 3.24◦ 6.01m, 3.11◦

Seq-5 16.21m, 5.97◦ 15.07m, 5.89◦ 15.88m, 5.91◦

Seq-6 26.02m, 9.02◦ 18.88m, 6.24◦ 19.28m, 6.28◦

Seq-7 31.83m, 17.99◦ 30.06m, 17.12◦ 30.03m, 17.05◦

Seq-8 25.62m, 22.38◦ 24.28m, 21.99◦ 24.26m, 21.54◦

No update Cull Cull+combine

Seq-3 6.06m, 1.65◦

Seq-4 5.80m, 1.40◦ 5.54m, 1.39◦ 5.65m, 1.33◦

Seq-5 13.70m, 1.56◦ 13.12m, 1.52◦ 13.05m, 1.55◦

Seq-6 6.65m, 1.87◦ 5.76m, 1.75◦ 6.60m, 1.85◦

Seq-7 13.58m, 3.52◦ 11.80m, 2.81◦ 10.87m, 2.60◦

Seq-8 13.28m, 4.93◦ 7.13m, 2.31◦ 7.15m, 2.47◦

Table 4.1: Comparison between 3 different settings of our technique. Mean (top) and
median (bottom) errors of 6-DoF pose on Oxford RobotCar are reported.

Sequences No update Cull Cull+Combine

Seq-3 4.03

Seq-4 4.56 5.05 4.82

Seq-5 4.24 5.06 4.87

Seq-6 3.81 4.03 3.72

Seq-7 3.82 4.18 3.78

Seq-8 3.77 3.91 3.68

Table 4.2: Inference time (ms) on Oxford RobotCar. Cull+Combine has comparable
inference time while giving better accuracy (see Table 4.1) over No update.

different update strategies are given in Table 4.2. Without updating, the inference

time is stable at (∼ 4ms/query) between sequences, since the size of graph and the

database do not change. In contrast, culling operation increases the inference time by

about 1ms/query, and Cull+Combine makes it comparable to the No update case. This

shows that the proposed method is able to compress the database to an extent that the

query time after assimilation of new information remains comparable to the case of not

updating the database at all.

4.6.2 Map maintenance and visiting unknown regions

Figure 4.3 shows the results on map maintenance with and without compression. With-

out compression, size of map G (specifically, adjacency matrix E) grows continuously

when appending a new query video Q. In contrast, using our compression scheme,

known places in Q are culled, and redundant nodes in G (i.e., nodes representing a same

place) are combined. As a result, the graph is compressed.
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Training
se-
quences

VidLoc MapNet
Our
method

Seq-1,2 14.1h 11.6h 98.9s

Seq-3 - 6.2h 256.3s

Seq-4 - 6.3h 232.3s

Seq-5 - 6.8h 155.1s

Seq-6 - 5.7h 176.5s

Seq-7 - 6.0h 195.4s

Table 4.3: Training/updating time on the Oxford RobotCar.

With map 
compression 

(culling + combining)

No map 
compression 

Fig. 4.3. Illustrating map maintenance w and w/o compression. After each query
video Q finishes, we compress the map by culling known places in Q and combining old
places on the map which represent the same place. Thus, the size of transition matrix
is shrunk gradually. In contrast, if compression is not conducted, the size of transition
matrix will continue increasing.

Methods Seq-3 Seq-4 Seq-5 Seq-6 Seq-7 Seq-8

VidLoc 38.86m, 9.34◦ 38.29m, 8.47◦ 36.05m, 6.81◦ 51.09m, 10.75◦ 54.70m, 18.74◦ 47.64m, 23.21◦

MapNet
9.31m, 4.37◦

8.92m, 4.09◦ 17.19m, 5.72◦ 26.31m, 9.78◦ 33.68m, 18.04◦ 26.55m, 21.97◦

MapNet
(update+
retrain)

8.71m, 3.31◦ 18.44m, 6.94◦ 28.69m, 10.02◦ 36.68m, 19.34◦ 29.64m, 22.86◦

Our method 6.59m, 3.28◦ 6.01m, 3.11◦ 15.88m, 5.91◦ 19.28m, 6.28◦ 30.03m, 17.05◦ 24.26m, 21.54◦

Methods Seq-3 Seq-4 Seq-5 Seq-6 Seq-7 Seq-8

VidLoc 29.63m, 1.59◦ 29.86m, 1.57◦ 31.33m, 1.39◦ 47.75m, 1.70◦ 48.53m, 2.40◦ 42.26m, 1.94◦

MapNet
4.69m, 1.67◦

4.53m, 1.54◦ 13.89m, 1.17◦ 8.69m, 2.42◦ 12.49m, 1.71◦ 8.08m, 2.02◦

MapNet
(update+
retrain)

5.15m, 1.44◦ 17.39m, 1.87◦ 11.45m, 3.42◦ 20.88m, 4.02◦ 11.01m, 5.21◦

Our method 6.06m, 1.65◦ 5.65m, 1.33◦ 13.05m, 1.55◦ 6.60m, 1.85◦ 10.87m, 2.60◦ 7.15m, 2.47◦

Table 4.4: Comparison between our method, MapNet and VidLoc. Mean (top) and
median (bottom) 6-DoF pose errors on the Oxford RobotCar dataset are reported.

Visiting unexplored area allows us to expand the coverage of our map, as we demonstrate

using Mapillary data. We set γ = 0.3, i.e., we only accept the query frame which has

the MaxAP belief ≥ 0.3. When the vehicle explores unknown roads, the probability of

MaxAP is small and no localization results are accepted. Once the query sequence ends,

the map coverage is also extended; see Fig. 4.4.
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Fig. 4.4. Expanding coverage by updating the map. Locations are plotted using
ground-truth GPS for visualization only.

Fig. 4.5. Qualitative results on the RobotCar dataset.

4.6.3 Comparison against state of the art

Our method is compared against state-of-the-art localization methods: MapNet [17]

and VidLoc [29]. We use the original authors’ implementation of MapNet. VidLoc

implementation from MapNet is used by the recommendation of VidLoc authors. All

parameters are set according to suggestion of authors 1.

For map update in our method, Cull+Combine steps are used. MapNet is retrained on

the new query video with the ground truth from previous predictions. Since VidLoc

does not produce sufficiently accurate predictions, we do not retrain the network for

subsequent query videos.

Our method outperforms MapNet and VidLoc in terms of the mean errors (see Table

4.4), and also has a smoother predicted trajectory than MapNet (see Fig. 4.5). In

addition, while our method improves localization accuracy after updating the database

(See Table 4.1), MapNet’s results is worse after retraining (See Table 4.4). This is

because MapNet is retrained on a noisy ground truth. However, though our method is

1Comparisons against [28] are not presented due to the lack of publicly available implementation.
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qualitatively better than MapNet, differences in median error is not obvious: this shows

that median error is not a good criterion for VL, since gross errors are ignored.

Note that our method mainly performs VPR; here, comparisons to VL methods are

to show that a correct VPR paired with simple pose inheritance can outperform VL

methods in presence of appearance change. The localization error of our method can

likely be improved by performing SfM on a set of images corresponding to the highest

belief.

Table 4.3 reports training/updating time for our method and MapNet and VidLoc.

Particularly, for Seq-1 and Seq-2, our method needs around 1.65 minute to construct

the k-means tree and build the graph, while MapNet and VidLoc respectively require

11.6 and 14.1 hours for training. For updating a new query sequence, MapNet needs

about 6 hours of retraining the network, whilst our method culls the database and

combine graph nodes in less than 5 minutes. This makes our method more practical in

a realistic scenario, in which the training data is acquired continuously.

4.7 Conclusion

This chapter has answered the Research question 2 Can we develop scalable VPR

for life-long operation? The results from chapter 3 show the efficiency of probabilistic

frameworks in modelling the temporal information, that inspires us to develop a scalable

VPR technique based on Hidden Markov Model. To this end, we explore our technique

according to following sub-questions

RQ2.1 Can we discover missing knowledge in the map?

We show that exploring belief provides us information useful for connecting nodes that

might be missed due to imperfect mapping frameworks.

RQ2.2 How to effectively absorb new data?

The update stage has the complexity in proportion to the logarithm of the dataset size,

which ensures a scalable update operation. The experiment shows our our accumulation

process is much faster than that of deep learning methods.

RQ2.3 Can we eat a lot but never get fat?

We empirically show that our compression technique maintains a scalable map. It not

only improves the accuracy localization as a result of continuous adaption to new data,

but also ensures the computational cost does not grow visibly with the database size.
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5.1 Introduction and research questions

Visual place recognition needs to be robust against appearance variability due to natural

and man-made causes. The data collection should thus be an ongoing process to allow

continuous appearance changes to be recorded. To build a data-driven VPR system that

is robust against continuous appearance changes, a promising solution is to continuously

accumulate data to refine the system [28, 41, 46]. While continuous data collection can

be achieved via opportunistic or crowdsourced services (e.g., using taxi fleets), the ever-

growing database demands a VPR algorithm scalable, i.e., the computational effort and

memory usage (to be distinguished from long-term storage) for training and inference

must grow slowly with the database size. With this above motivation, here we ask:

Research question 3 Can we design a lightweight and scalable VPR system?

In the context of autonomous driving, chapter 4 presents a promising VPR solution

based on Hidden Markov Model (HMM). The basic idea is to exploit temporal continuity

in the trajectory of the car to guide image matching. A key innovation is the usage

of a state space model (a topological map) and an observation model (which uses an

image indexing structure) that can be iteratively updated to efficiently “absorb” new

information from newly appended images. This enables sublinear growth in inference

time w.r.t. database size. Chapter 4 also shows that its updating procedure is much

faster than the refinement process in end-to-end learning-based methods [17].

Those characteristics demonstrate a great potential of the HMM-based framework in

achieving a completely scalable solution for VPR, hence we investigate this direction

according to two following sub-questions:

RQ3.1 Can we achieve sub-linear space-time complexity?

It is apparent that the fundamental weakness of chapter 4 is the linear memory

complexity of the observation model w.r.t. the database size. Specifically, while

the image indexing structure [122] that underpins the observation model can be

queried and updated efficiently, the whole indexing structure must be loaded in

the main memory to support querying—this is equivalent to storing all database

images in the main memory, which is infeasible in a lifelong operation.

A possible solution is to aggregate images (e.g., [131]) to remove redundancy

and maintain a fixed-size database. However, image aggregation methods are

imperfect and since the errors will be cumulated over time, the aggregated

images will contain serious artefacts that affect localization accuracy.
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A more direct solution is to progressively delete older images since they do

not contain up-to-date appearance. However, devising an effective deletion

scheme is nontrivial, since the images of different places could be refreshed at

different rates (e.g., densely- versus sparsely-populated places), thus requiring

careful tuning of place-dependent forgetting factors. More importantly, even if

an effective deletion scheme can be built, the resulting database could still be

too big to fit in memory—clearly a more fundamental treatment is required.

This chapter proposes a novel HMM-based VPR system called HM4 (HMM

with Memory Management), which employs a two-tiered memory concept—

active memory (AM) and passive storage (PS)—to allow scalable operation;

see Fig. 5.1, AM corresponds to fast main memory whose size is limited, while

PS represents slower long-term memory storing the full image database.

Periodic
update
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Matched image
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Active Memory (AM)

HMM
filter

Full database
(image representations 

& topological map)

Passive Storage (PS)
(Slow but unlimited)

Update

Coarse representation
of full database

Coarse representation
of full database

Update to the database after finishing VPR

Promising images
(50-100 images)

Fig. 5.1. HM4 system for lifelong VPR, where, →→→: online inference, →→→: real-time
update, and→→→: periodic update

Given a query video Q, HM4 compute the probability of matches between the

current query image Qt ∈ Q and the full database. For scalability, tempo-

ral reasoning and image search are tightly coupled, and the probabilities are

computed in a layered manner:

• Forward temporal propagation is used to identify most promising database

images to load to AM in real-time at each HMM iteration to replace the

least promising ones. Typically, only a small number of promising images

(50-100) are stored in AM at any time.

• A coarse representation of the full database in the form of feature space

centroids and a topological submap (e.g., 7000 centroids and vertices for

17km traversal distance) are also loaded into AM, but these are updated

at a lower frequency (e.g., daily) in PS to account for newly added image

sequences to the database.
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• The (posterior) probability of matches are recursively computed by the

HMM filter, with transition and observation models that are evaluated

exactly using the promising images, and approximately with bounded error

using the coarse representations of the full database.

In effect, the data stored in AM is of constant size (provided the coverage area

does not grow) thus ensuring HMM inference in constant time and memory, as

well as robustness against appearance changes. Sec. 5.3 will provide the details.

In practice, we can implement AM on client side (e.g., self-driving cars) and PS

on cloud whose storage can be seen as nearly infinite. The update operation is

conducted via a stable and high-speed connection (e.g., 5G).

Our two-tiered memory concept for HMM-based VPR was inspired by RTAB-

Map [93] – a loop closure detection for SLAM. RTAB-Map evaluates loop-

closure hypotheses on images stored in AM (called “working memory” in [93]),

which is a subset of the full image database judged to be the most promising

by a heuristic. However, RTAB-Map does not maintain matching probabilities

over the full database, thus, when none of the images in AM are good matches to

the current query, the algorithm is lost and a hard reset is required. In contrast,

HM4 always maintains a probability distribution over the full database, thus

allowing recognition of places not in the AM.

However, the strategy of memory management can only provide the scalable capability,

while we empirically observe that the image representation of chapter 4 is the dominant

factor in the memory requirement for VPR. Hence, we investigate the following sub-

question

RQ3.2 Can we find a compact yet informative image representation?

Since efficiency of VLAD [79] has been shown in chapters 3 and 4, we derive

its compact version called polytope VLAD (polyVLAD), which greatly reduces

the memory footprint of HM4. Specifically, to avoid the burstiness problem,

locally aggregated vectors are L2-normalized, which allows us to use a cross-

polytope to partition the unit sphere. Inspired by LSH [5], the compression

scheme is conducted through random rotation matrices, which theoretically

guarantees a small distance between two similar images (see [5, Theorem 1]).

Also, we propose to employ inverted index for effectively computing distances

between polyVLAD vectors, leading to a significant improvement in terms of

the inference time.
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The experiments show HM4 offers a scalability solution for VPR. Combined with polyVLAD,

a lightweight system is obtained while localization accuracy is not influenced.

This chapter is organized as follows: The HMM-based VPR is briefly reviewed in Sec. 5.2.

Next, we provide the details of HM4 and polyVLAD in Sec. 5.3 and Sec. 5.4 respectively.

The experiments is presented in Sec. 5.5. Finally, we conclude the chapter in Sec 5.6.

5.2 Background: HMM for VPR

Let D = {Ii}Ni=1 be a dataset of images (e.g., video frames of street recordings from

multiple vehicles). Following chapter 4, we regard each Ii as a “place” and define a

topological map G over D, where each Ii is a vertex of G. Two vertices are connected

by an edge in G if their FOVs overlap sufficiently (e.g., if they are temporally close in

their source video, or if they are matched in previous iterations). Details on computing

G in our method will be provided in Sec. 5.3.

Given a query video Q = {Q1, Q2, . . . , QT }, our goal is to match each frame Qt ∈ Q
with an image from D that corresponds to the same place. To this end, we define

an HMM {E,O, π}, where E ∈ RN×N is the transition matrix, O ∈ RN×T is the

observation matrix, and π ∈ {0, 1}N , with
∑

i πi = 1 is the initial matching probabilities

(assumed to be uniform). The place associated to Qt is regarded as the random variable

st ∈ {1, . . . , N}. Element E(i, j) encodes the probability of moving from Ii to Ij between

adjacent time steps t− 1 and t

E(i, j) = P (st = j | st−1 = i), (5.1)

while element O(i, t) encodes the probability of observing Qt given the place Ii

O(i, t) = P (Qt | st = i). (5.2)

Details on computing E and O in our method will be provided in Sec. 5.3.

Given the input sequence up to time t, i.e., Q1:t = {Q1, Q2, . . . , Qt}, the aim is to calcu-

late the posterior probabilities P (st | Q1:t), for st = 1, . . . , N , which can be represented

as a vector

pt =
[
P (1 | Q1:t) P (2 | Q1:t) . . . P (N | Q1:t)

]
. (5.3)

The posterior probabilities are recursively computed as

pt = η ot ◦ETpt−1, (5.4)
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where ◦ is the element-wise product, ot is the t-th column of O and η is a normalizing

constant to ensure
∑

i pt(i) = 1; for initialization, p0 = π. The VPR decision at time t

is taken as the maximum a posteriori result

s∗t = argmax
i∈{1,...,N}

pt(i) (5.5)

For more details of the basic idea of HMM for VPR, see chapter 4.

From equation (5.4), it is clear that the time complexity of each HMM iteration is

O(Nr) (r is the maximum number of non-zero values in each column of E), and memory

complexity is O(ND) (D is dimensionality of image representation), where, N increases

unboundedly in lifelong operation.

5.3 Achieving scalability with HM4

An overview of HM4 was provided in Sec. 5.1 and Fig. 5.1. This section will describe

the proposed VPR system in detail.

5.3.1 Compact image representation

Our system employs a new compact image representation called polytope VLAD, which

converts each image to a feature vector encoded by 8192 bit. This provides a constant

factor reduction in the computation and memory required. We postpone the description

of polytope VLAD to Sec. 5.4; henceforth in this section, when we refer to an image, we

mean specifically it is polytope VLAD vector.

5.3.2 Coarse respresentation of full database

To avoid loading the full database D = {Ii}Ni=1 into AM, we extract a summary of the

database in the form of a topological map and feature space centroids.

5.3.2.1 Topological map

A topological map is built overD to summarize the “physical” connectivity of the images:

in autonomous driving, the topological map reflects the road network of the coverage

area. In HM4, the topological map is equivalent to the transition matrix E (equa-

tion (5.1)) of the HMM. Moreover, E is built incrementally (sequence-by-sequence) as
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Fig. 5.2. Coarse representation of full database. The disjoint clusters are built on im-
age feature space. Topological submap are created to coarsely represent the topological
map.

new videos are appended to D, using results of HMM inference. We will describe the

initialization and updating of E later in Sec. 5.3.4. For now, assume E is available.

5.3.2.2 Feature space clustering

While E summarizes the physical connectivity of D, the images are also clustered in the

feature space to summarize their appearance. We partition D (in feature space) into K

disjoint clusters {C1, ..., CK}, where each cluster Ck is a subset of the images in D; for

brevity, we also take

Ck ⊂ {1, . . . , N} (5.6)

when we wish to refer to the indices of images that lie in each cluster. Each Ck contains a

centroid Bk as a representative feature vector. We will be using the centroids to compute

approximate distances between Qt and the images in D. If the chosen distance d is a
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metric, it then holds that

∀Ii ∈ Ck, |d(Qt, Ii)− d(Qt, Bk)| < d(Ii, Bk). (5.7)

We then take d(Qt, Ii) ≈ d(Qt, Bk) for all Ii ∈ Ck. To minimize the approximation error,

we should find clusters {Ck}Kk=1 and centroids {Bk}Kk=1 that minimize

1
N

∑K
k=1

∑
Ii∈Ck d(Ii, Bk). (5.8)

For continuous feature spaces (e.g., Ii is a NetVLAD [7] vector) where d is the Euclidean

distance, K-means algorithm can be used to perform the clustering. The proposed

polytope VLAD, however, yields discrete feature vectors; we will discuss the appropriate

metric in Sec. 5.4.

Also, similar to the construction of E, the feature space clusters are computed incre-

mentally as new videos are appended to D, which we will describe in Sec. 5.3.4.

5.3.2.3 Topological submap

Note that the centroids {Bk}Kk=1 do not generally correspond to feature vectors of actual

images. To associate an image to each Bk, we seek the image in Ck that has the highest

degree in E, i.e.,

pk = arg maxi∈Ck
∑

j I(E(i, j) > 0). (5.9)

We call Ipk the support place of Ck. Given the clusters and associated support places,

we construct the topological submap of D as

Esm =
[
E(:, p1) E(:, p2) . . . E(:, pK)

]
. (5.10)

In words, Esm are the columns of E corresponding to the support places. See Fig. 5.2

for a high-level idea of the coarse representation of D.

5.3.3 Two-tiered HMM inference

Our aim in this subsection is to perform HMM inference to obtain the posterior pt

(over the full database) for the current time t. Fig. 5.3 illustrates the data available to

perform the inference in HM4. Specifically, only the coarse representations of the full

database—specifically, {Bk}Kk=1 and Esm—are stored in AM, whereas the full database

D and topological map E are stored in PS.
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Fig. 5.3. Data available in AM to perform VPR inference, where,→→→: online inference,
→→→: real-time update, and →→→: periodic update. Note that “Inverted index”, which is
used for polytope VLAD, will be described in Sec. 5.4. Before Sec. 5.4, we can ignore
this component, and assume centroids are the input of observation model.

Noting that HMM inference is a recursive process, using the posterior probability pt−1

from the previous iteration, we identify a set of promising places:

Pt = P(1)
t ∪ P

(2)
t , (5.11)

where, P(1)
t = {i ∈ {1, . . . , N} | pt−1(i) ≥ ζ}, P(2)

t = {j ∈ {1, . . . , N} | E(i, j) > 0, i ∈
P(1)
t }, and ζ ∈ [0, 1] is a preselected threshold (see Sec. 5.3.5 on setting ζ). Intuitively, Pt

consists of the set of places that Qt likely corresponds to according to HMM propagation

(before considering the appearance of Qt), and the images that are adjacent to the likely

places according to the topological map. It is vital to highlight that Pt is a tiny subset

(e.g., |Pt| ≤ 100) of the full database D.

We then obtain the active transition matrix as

Eac =
[
E(:,Pt,1) E(:,Pt,2) . . . E(:,Pt,M )

]
∈ RN×M , (5.12)

where Pt,m is the m-th item of Pt, and M = |Pt|. In words, Eac are the columns of E

corresponding to the promising places. Since E resides in PS, Eac is transferred to the

AM at every HMM iteration. Also, while the size of Eac depends on N , the matrix is

very sparse, thus the transfer is cheap.

Given the current query image Qt, our HMM observation model is based on computing

the observation likelihood

L(Qt, Ii) = exp
(
−d(Qt,Ii)

σ

)
, (5.13)

where Ii is an arbitrary database image, d is the feature space metric, and σ is a

bandwidth parameter (see Sec. 5.3.5 for its setting). To avoid computing the likelihood
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over the full database, we define the active observation vector

ot,ac =
[
L(Qt, IPt,1

), L(Qt, IPt,2
), . . . , L(Qt, IPt,M

)
]T
∈ RM , (5.14)

which requires only the promising images, and the background observation vector

ot,bg =
[
L(Qt, B1), L(Qt, B2), . . . , L(Qt, BK)

]T
∈ RK , (5.15)

which uses the feature space centroids of the full image database. As in the case of

obtaining the active transition matrix, the feature vectors of the promising places will

be transferred to AM at each HMM iteration.

We can now perform the inference: we modify the standard HMM update (5.4) to use

only the available information in AM to obtain the matching confidence:

• Matching confidence in promising places Pt:

qt(Pt,m) = ot,ac(m).Eac(:,m)T .pt−1, (5.16)

• Matching confidence in other places computed from coarse representation:

qt(i) = ot,bg(k).Esm(:, k)T .pt−1, if i /∈ Pt & i ∈ Ck, (5.17)

The posterior pt is then obtained by normalizing:

pt =
qt∑
qt
, (5.18)

The VPR decision is finally made by equation (5.5).

5.3.4 Updating database representation

Given a query video Q = {Qt}Tt=1 localized by VPR.

5.3.4.1 Updating topological map

We create its topological map

EQ(i, j) =

α exp (j−i)2
δ2 0 ≤ j − i ≤ Vmax

0 otherwise
(5.19)

where, α is normalization constant to ensure the summation of every row of EQ equals

to one, Vmax is the maximum velocity of the vehicle, and δ is preselected scale value
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(a)

(b)

Fig. 5.4. (a) Matching results for Q = {Qi}5i=1. (b) Updating video Q to the
database.

(see Sec. 5.3.5 for their settings). After that, the topological map E is expanded in the

diagonal direction

E =

[
E 0N×T

0T×N EQ

]
. (5.20)

We create new edges for every localized query Qt ∈ Q with its matched place i:

E(t+N, i) = E(t+N, t+N)

E(i, t+N) = E(i, i).
(5.21)

E is then normalized to ensure the summation of each row equals to 1.

5.3.4.2 Updating coarse representation

For each Qt ∈ Q, we add it to its matched cluster, then compute new centroids:

Bk = arg min
Bk

∑
Ii∈Ck d(Ii, Bk) (5.22)

For continuous feature space, where d is Euclidean distance, Bk = 1
|Ck|
∑

Ii∈Ck Ii. For

polytope VLAD, Sec. 5.4 will discuss how to compute Bk.
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Algorithm 5.1 VPR with HM4

Require: Unlimited query videos {Qi}∞i=1, topological map E, database D, parameters Vmax,
δ, σ, ζ

1: Build clusters {C}Kk=1, centroids {B}Kk=1, and topological submap Esm (Sec. 5.3.2)
2: Copy centroids {B}Kk=1, and topological submap Esm from PS to AM
3: for each Q ∈ {Qi}∞i=1 do
4: Initialize P0 = ∅
5: for each frame Qt ∈ Q do
6: if t = 1 then
7: Compute ot,bg using Eq. (5.15)
8: Compute matching confidence q1 using Eq. (5.17)
9: else

10: Seek Pt using Eq. (5.11)
11: Build Eac using Eq. (5.12)
12: Copy images {Ii | i ∈ Pt, i /∈ Pt−1} from PS to AM
13: Delete images {Ii | i /∈ Pt, i ∈ Pt−1} in AM
14: Compute ot,ac using Eq. (5.14), and ot,bg using Eq. (5.15)
15: Compute matching confidence qt using (5.16) and (5.17)
16: end if
17: Compute belief pt using Eq. (5.18)
18: Find matched place/image i∗ using Eq. (5.5)
19: end for
20: Store localized Q in PS for updating.
21: if (On map update) then
22: Update topological map E, clusters {C}Kk=1, centroids {B}Kk=1, and topological submap

Esm (Sec. 5.3.4)
23: Copy new centroids {B}Kk=1, new topological submap Esm from PS to AM
24: end if
25: end for

With new centroids and new topological map E expanded by EQ, we build a new

topological submap Esm as described in Sec. 5.3.2.

Fig. 5.4 shows the high-level idea of the updating process. Note that this updating

process also allows us to start with database D containing a single video first, then

incrementally build topological map and coarse representation (sequence by sequence)

using HMM inference.

5.3.5 Overall algorithm

The proposed algorithm for VPR is presented in Algorithm 5.1, and its high-level idea is

shown in Fig 5.1. At the first frame (t = 1), p0 is uniformly distributed, hence we only

use ot,bg for computing belief p1. In our experiment, we set Vmax = 10, δ = 3, σ = 0.03,

and ζ = 0.00015.
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5.3.6 Complexity analysis:

In standard HMM implementation, at each HMM iteration (each Qt), the memory com-

plexity is O(ND), and time complexity of computing ot is O(ND), that of computing

pt is O(Nr) (r is the numbers of non-zero values in each column of E, which can be seen

as a constant). In the context of sequentially updating new sequences, N grows linearly

and unboundedly.

By contrast, our VPR algorithm hasO
(

(K + |Pt|)D
)

memory complexity, O
(

(K + |Pt|)D
)

time complexity of computing ot (ot,bg and ot,ac), and O
(

(K + |Pt|)r
)

time complexity

of computing pt (note K+ |Pt| � N). We experimentally show K+ |Pt| remains almost

constant when updating new sequences. In Sec. 5.4, with polytope VLAD, the time

complexity of computing ot can be slashed by a constant factor, i.e., O
(
KD
const + |Pt|D

)

5.4 Polytope VLAD

This section will describe polytope VLAD in details (Sec. 5.4.2), and the usage of inverted

index for efficiently computing observation model (Sec. 5.4.3).

5.4.1 Background: VLAD

VLAD [79] is a feature aggregations scheme that given a set of local image features

{fi}Ni=1 (either hand-crafted [167] or deep learning [64] features), it assigns each local

feature fi to the closest cluster cl of a vocabulary of size L, and accumulates residuals

via: xl =
∑

fi∈NN(cl)
fi − cl

To avoid burstiness problem, before concatenating all xl to form a VLAD vector, xl is

L2-normalized [8], thus each xl is located on the unit sphere Sd−1. Adapted the idea

of LSH [5], we derive the “polytope VLAD” (polyVLAD) to compress vectors xl into

compact codes via a cross-polytope.

5.4.2 Polytope VLAD

Given a set of vectors X = [x1, ..., xL] on a unit sphere Sd−1, we employ a cross-

polytope to partition the unit sphere Sd−1. A cross-polytope is defined by a set of

vertices: V = {vi | i = 0, ..., 2d− 1} that are all the permutations of (±1, 0, ..., 0), where

vi is a d-dimensional vector. Let R ∈ Rd×d be a random rotation matrix. We firstly

rotate X by R: X̃ = RX = [x̃1, ..., x̃L], then each rotated vector x̃l is encoded by the
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(a) polyVLAD idea

index

(b) An example of inverted index

Fig. 5.5. (a) A polytope (dashed red) with vertices v0, v1, v2, v3 is used to partition
a unit sphere (dashed blue). (b) The size of inverted index is D × 2d (D = 3, d = 2).
Centroid B1 is indexed to I3, I4 and I10 using equation (5.26).

nearest vertex of the polytope V . The idea is illustrated in Fig. 5.5a and the encoding

function is:

hl = argmax
i

(x̃Tl .vi) ,∀vi ∈ V. (5.23)

Rearranging all the vertex vectors vi in a matrix: Vd×2d =
[
Id×d −Id×d

]
where, Id×d

is identity matrix of size d× d, the product of V T .x̃l is vector

ul =[x̃
[1]
l , . . . , x̃

[d]
l ,−x̃[1]l , . . . ,−x̃

[d]
l ]T = [x̃Tl ,−x̃Tl ]T (5.24)

Due to the symmetric characteristic of ul, we rewrite the encoding function (5.23):

hl =

m∗ − 1 x̃
[m∗]
l ≥ 0

m∗ + d− 1 x̃
[m∗]
l < 0

(5.25)

where m∗ = arg max
m∈{1,...,d}

(|x̃[m]
l |) and hl is the index of the closest vertex to x̃l.

Algorithm 5.2 concretely describes the polyVLAD encoding scheme. With M different

rotation matrices, M polyVLAD vectors are generated and then concatenated to obtain

single polyVLAD vector I. The number of bits required to encode vector I is: (log2d +

1).L.M . Rotation matrices are randomly sampled using Algorithm 5.3, which is based

on Gram-Schmidt orthogonalization (line 4).

5.4.2.1 Clustering polyVLAD

As polyVLAD vectors are in discrete space, Jaccard distance (also metric) [90] is used.

To build clusters {C}Kk=1 for coarse representation of HM4, we use K-modes algorithm [75]
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Algorithm 5.2 polyVLAD encoding

Require: Set of vectors X on a unit sphere Sd−1, set of M rotation matrices R =
{R1, ..., RM}

1: Initialize polyVLAD vector I = [ ]
2: for r = 1 to M do
3: Rotate vectors X̃ = RrX
4: for each x̃l ∈ X̃ do
5: m∗ = argmax

m∈{1,...,d}
(|x̃[m]

l |).

6: Estimate hl using equation (5.25)
7: Concatenate I = [I , hl]
8: end for
9: end for

10: return polyVLAD vector I

Algorithm 5.3 Randomly sampling rotation matrix

Require: feature dimension d
1: for i=1 to d do
2: Sample vector ri from d-dimensional Gaussian distribution
3: for j = 1 to i -1 do

4: ri = ri −
(rTi .rj).rj
||rj ||2

5: end for
6: ri = ri

||ri||2
7: end for
8: return Rotation matrix R = [r1, ..., rd]

to minimize cost function (5.8). In updating process (Sec. 5.3.4), new centroids (equation

(5.22)) are computed using Theorem 1 of [75].

5.4.3 Inverted index for efficient distance computation

In algorithm 5.1, computing ot,bg (equation (5.15)) is most costly, as numbers of clusters

are much larger than numbers of promising images (K � |Pt|). Therefore, inverted

index is used to index centroids {Bk}Kk=1 (see Fig. 5.3).

Given a set of centroids {Bk}Kk=1 and a query Qt =
[
q[1], ..., q[D]

]
(note: q[m] is a scalar)

represented by polyVLAD, we aim to calculate Jaccard distance from Qt to every cen-

troid Bk. We use an inverted index: {I0, ..., IW−1}, whose size is W = 2dLM = 2dD.

Each Bk =
[
b
[1]
k , ..., b

[D]
k

]
(note: b

[m]
k is a scalar) is indexed:

∀m = {1, ..., D}, I
2d(m−1)+b[m]

k

= I
2d(m−1)+b[m]

k

∪ k (5.26)

Fig. 5.5b is an example of inverted index. In the online inference, given a query:

Qt =
[
q[1], ..., q[D]

]
. We first calculate similarity score between Qt to every Bk:
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• Initialize similarity score S(Qt, Bk) = 0 for every Bk

• For each m ∈ {1, ..., D}: S(Qt, Bk)← S(Qt, Bk) + 1, for every k ∈ I2d(m−1)+q[m]

Jaccard distances are then computed: d(Q,Bk) = 1− S(Q,Bk)
D for every Bk. Finally, ot,bg

is calculated from (5.13) and (5.15).

5.4.4 Complexity analysis

Assume that polytope vertex indices from {0, ..., 2d − 1} are distributed uniformly in

each dimension m of {Bk}Kk=1. The complexity of computing distance from Qt to every

Bk is O(KD2d ), i.e., 2d times faster than linear scan O(KD). For some common local

features, d is usually larger than 100 (e.g., d = 128 for SIFT feature).

5.5 Experiments

5.5.1 Datasets

2 datasets are used:

• Oxford RobotCar [111]: 4 sequences (“26/06/2014, 09:24:58”, “26/06/2014, 08:53:56”,

“23/06/ 2014, 15:41:25”, and “23/06/2014, 15:36:04”) are used and briefly referred

to S1, S2, S3 and S4. The traversal distance in each sequence is about 1km.

• St Lucia [62]: 5 sequences (“10/09/2009, 08:45”, “10/09/2009,10:00”, “19/08/2009,

08:45”, “21/08/2009, 10:10”, and “21/08/2009, 12:10”) are used and briefly re-

ferred to A1, A2, A3, A4 and A5. The traversal distance in each sequence is about

17km.

5.5.2 Implementation

We densely extract SIFT features at 4 scales with 16, 24, 32, 40-pixel region width,

over a grid of 2-pixel spacing, and use vocabulary of size 128 for polyVLAD. 8 rotation

matrices are sampled, resulting in each image being encoded by 8192 bits. We set

number of clusters K = 700 and 7000 respectively for Oxford RobotCar and St Lucia.

Other parameters are set as in Sec. 5.3.5. All experiments are conducted on a computer

with Intel Core i7@3.4GHz (8 cores) and 16GB RAM, where we simulate PS as the hard

disk and AM as the RAM.
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5.5.3 Evaluation

Our method (denoted as polyVLAD+HM4) is compared against baseline, i.e., SPR (de-

scribed in chapter 4), DenseVLAD [167] and NetVLAD [7] incorporated to HMM frame-

work (denoted as DenseVLAD+HMM and NetVLAD+HMM). A query image is regarded cor-

rectly localized if the distance from the matched place to the ground truth position is

less than a threshold varied from 1m to 25m. We also measure memory (RAM) needed

to store topological map and database for inference, as well as the inference time.

To simulate the scenario of continuously accumulating image data. In Oxford Robotcar,

S1 forms the initial database; S2, S3 and S4 are sequentially used as the query sequences.

In St Lucia, A1 is selected as initial database; A2, A3, A4 and A5 are sequentially used as

the query sequences. After each query sequence finishes, we update to the database based

on VPR decision. For DenseVLAD+HMM and NetVLAD+HMM, we update the topological map

as described in Sec. 5.3.4, and append image representations to database.

5.5.4 Ablation study

This experiment investigates the contribution of HM4 and polyVLAD to the system.

To this end, we use DenseVLAD incorporated with HM4 (denoted as DenseVLAD+HM4),

which is then compared to DenseVLAD+HMM and polyVLAD+HM4. Dataset St Lucia is used

in this experiment

Fig. 5.6a demonstrates a comparable localization accuracy among these methods. More

importantly, as shown in Fig. 5.6b, regardless the image representation method, HM4

offers the scalability in terms of both memory usage and inference time (i.e., sublinear

growth), while HMM shows a linear growth. With the use of polyVLAD, the memory

usage and inference time is significantly reduced by a constant factor. This experimental

result is also consistent to the complexity analysis in section 5.3.6.

In practice, if 1 sequence is collected every day to update the map, with only 5 sequences

(∼ operations in 5 days), the memory footprint & inference time of HMM increase about

3× and 4× respectively. Hence, the algorithms with linear complexity prevent their

applicability in embedded systems with a small hardware capability (e.g., self-driving

cars), which also must concurrently process many other tasks. Therefore, optimizing

the memory & time complexity (as shown by polyVLAD+HM4) in every task is crucial.
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Fig. 5.6. Ablation study: (a) localization accuracy (b) growth in memory usage (in
MB) & inference time (millisecond/image)
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Fig. 5.7. Localization accuracy on Oxford RobotCar (top) and St Lucia (bottom)
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5.5.5 Comparison to baseline

The growth in memory consumption and inference time is shown in Fig. 5.8, where the

average value is reported, and the deviation is insignificant. The result is consistent

in both Oxford RobotCar and St Lucia. Specifically, the memory usage and inference

time of NetVLAD+HMM and DenseVLAD+HMM linearly grows when we update the new im-

age sequences (Figs. 5.8a and 5.8b). For SPR, although its inference time is scalable

(Fig. 5.8b), its memory usage still linearly grows (Fig. 5.8a) (Note that SPR requires

more memory than NetVLAD+HMM and DenseVLAD+HMM because it also stores K-means

tree for retrieval). By contrast, polyVLAD+HM4 shows a sublinear growth in both memory

usage and inference time (Fig. 5.8)

Regarding the localization accuracy (Fig. 5.7), all methods share a comparable per-

formance in general. polyVLAD+HM4 is slightly better than other methods in Oxford

RobotCar.

5.6 Conclusion

In reality, robots must concurrently process many tasks (e.g., segmentation, recognition,

localization, etc). Due to the limitation of embedded hardware, it requires those tasks

must have the scalable capability. In VPR, as robots continuously move and accumulate

data, the memory needed for VPR increases unboundedly. This motivates us to examine

Research question 3 Can we design a lightweight and scalable VPR system? To

address this research question, the two following sub-question are concretely addressed

RQ3.1 Can we achieve sub-linear space-time complexity?

We propose HM4 (HMM with Memory Management) handles the scalable problem

through looking into the future and fetching just the right amount data needed to

make VPR decisions. A coarse representation that summarizes the topological map is

periodically updated (e.g., weekly or monthly) to be adapted for new changes of en-

vironment. We show that the size of coarse representation remains constant provided

that the coverage area does not change. Those mechanisms ensure a scalable time and

memory needed for inference.

RQ3.2 Can we find a compact yet informative image representation?

Inspired from LSH [5], polytope VLAD (polyVLAD) is derived to inherit theoretical

guarantee of LSH that close data points have high probability to be hashed into a same

code. This characteristic is important in robotic scenarios because robots frequently
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encounter unseen samples (see Sec. 2.4), while the learning methods do not ensure to

reliably work in this case.

The combination between HM4 and polyVLAD yields a lightweight and scalable VPR

method for the life-long operation, i.e., sequentially and continuously updating the map

with new image sequences. In practice, our method can be deployed locally on an

embedded hardware, in which the passive storage needs to be updated after few years.

Another option is to implement our approach on a server-client architecture, in which

the VPR task is shared between client and server. Also, this option leverages the nearly

infinite storage of cloud and high-speed connection to transmit data between server and

client.





Chapter 6

Learning to Predict Repeatability

of Interest Points

This chapter is based on the content of following conference paper

• Anh-Dzung Doan, Daniyar Turmukhambetov, Yasir Latif, Tat-Jun Chin, and

Soohyun Bae. Learning to Predict Repeatability of Interest Points. In Inter-

national Conference on Robotics and Automation (ICRA), 2021.

(accepted)
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6.1 Introduction and research questions

Chapter 5 has shown that it is vital to coarsely represent the full map to prevent HMM

inference from getting lost. If VPR task requires to recover 6 DoF pose, it will need

the topometric map with 3D points available. Coarsely representing a full map, which

is so-called map summarization [45, 121, 19, 108], also allows the compressed map can

be stored on the onboard hardware. A general strategy of existing map summarization

techniques is to sample 3D points that are likely helpful for VPR as claimed by pre-

defined criteria, that include: being re-detected frequently [46, 45, 25], low descriptor

variance [45], discriminative descriptor that easily gets matched [47, 24], stable physical

appearance over long period of time [47]. However, none of existing criteria take into

account the run-time of VPR as a constraint for summarizing the map. This motivates

us to ask:

Research question 4 Can we summarize the map according to the run-time of VPR?

It is well-known 3D points are triangulated from interest points detected from images. A

criterion, namely repeatability, was introduced by Schmid et al. [150] to characterize local

interest points. Since then, a considerable effort has been made to find a local interest

point detector robust against appearance changes [103, 136, 44], whose basic strategy

is to detect interest points with high repeatability scores. However, these approaches

make a strong assumption, i.e., the interest points must be repeatable regardless of envi-

ronmental changes w.r.t time span. In practice, according to [161], this assumption does

not hold because environmental changes (including physical, weather, and illumination

changes) affect to the physical appearance of 3D points. Consequently, the experiment

in [161] shows a decay in terms of the feature matching performance, which is crucially

caused by the degradation of repeatability.

Another strategy is to maintain only interest points stable for visual localization (VL),

and eliminates interest points unable to be re-detected [47]. Nevertheless, these interest

points likely disappear in a period of time but reappear after that. Hence, eliminating

them can be seen as an extreme operation. Another issue is treating interest points

frequently re-detected as stable features introduces a failure point, e.g., interest points

on trees and road can be regularly re-detected but those are ambiguous points for VL.

Therefore, instead of finding permanently repeatable interest points for mapping, we

investigate two following sub-questions

RQ4.1 Can we predict if an interest point is repeatable at a particular time period?
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Fig. 6.1. Given a particular interest point detector, we wish to predict the repeatability
of interest points (denoted as ) as a function of time.

The idea is illustrated in Fig. 6.1, where given a set of interest points detected

by a feature detector (e.g., SIFT [103], D2-Net [44] or R2D2 [136]), we pre-

dict the repeatability of interest points as functions of time. To this end, a

repeatability predictor (RP) is formulated as a deep neural network regressor,

which receives an interest point as the input, and outputs a vector of repeata-

bility scores approximating the repeatability function. The ground truth data

is built from images periodically captured at several viewpoints (e.g., building,

house) over time. Because the number of repeatable interest points are the up-

per bound of number of correspondences found via feature matching, we derive

the repeatability score at a particular timestamp from the matchability.

RQ4.2 How to use the RP for map summarization?

The main challenge in map summarization for VPR is which 3D points should

be sampled. If this issue is not addressed properly, it will lead to a severe

degradation of VPR accuracy. As the RP is capable of predicting which 3D

points are potentially repeatable at a specific timestamp. It motives us to

leverage its characteristics to the map summarization, i.e., selecting 3D points

likely useful for VPR with respect to the time constraint—this, as a result, can

alleviate the accuracy deterioration from the map summarization.

From the experiment, we observe that regressing repeatability function of unseen interest

points is feasible, and gain more insight about the problem. Additionally, RP shows

its great potential in VL through its superior to a standard competitor in the map

summarization.

The rest of the chapter is organized as follows: Sec. 6.2 presents our learning process to

train the RP. Next, the application of the RP is described in Sec. 6.3. The experimental
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Fig. 6.2. The proposed system for learning the repeatability of the interest points.

results, that demonstrate the great potential of VPR and its application, are provided

in Sec. 6.4. Finally, the conclusion of this chapter is drawn in Sec. 6.5.

6.2 Learning repeatability predictor

The proposed system for learning the repeatability of the interest points is shown in

Fig. 6.2. Given an image, a feature detector extracts its interest points, each interest

point is fed to the RP. During the predictor training, the RP is supervised by the ground

truth repeatability function. The trained model is then utilized to predict the repeata-

bility function of every interest point for the given test images. In the following sections,

we will describe how we parameterize repeatability functions (Sec. 6.2.1), formulate RP

as a deep neural network (Sec. 6.2.2), define training loss (Sec. 6.2.3), and build the

ground truth (Sec. 6.2.4).

6.2.1 Parameterizing repeatability functions

As shown in Fig. 6.3, we represent a repeatability function over time with a discrete set

of line segments. So, time is discretized into timestamps, then line segments are used

to approximate the function between two consecutive timestamps. At each timestamp

tj , a repeatability score is stored as one element of a vector. Finally, we obtain the

repeatability vector which approximates the repeatability function for the given time

window.

Let 4t be the interval between two consecutive timestamps and T be the number of

timestamps. We can define T as one of
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t1 t2 t3 t4 t5 t6

Repeatability

Fig. 6.3. Approximating repeatability function.

• T = 24 hours/day, 4t = 1 hour, then: t1 = 0:00, t2 = 1:00, . . . , t24 = 23:00.

• T = 365 days/year, 4t = 1 day, then: t1 = January 01, t2 = January 02, . . . , t365

= December 31.

• T = 8760 (= 24×365) hours/year, 4t = 1 hour, then: t1 = 0:00, January 01, t2

= 1:00, January 02, . . . , t8760 = 23:00, December 31.

6.2.2 Repeatability predictor

Fig. 6.4. Constructing repeatability vector for the interest point : the repeatability
score at timestamp tj is computed as number of inliers

number of images within the corresponding block
of tj .

A deep neural network architecture, as described in Fig. 6.5, is used to construct the

repeatability predictor (RP). For each interest point x in an image, the input of RP

consists of the interest point’s coordinate (∈ R2), local patch (R64×64×3) centered at the

interest point, and the time (Rd) in which the image is captured, where:

• d = 2 if we represent times of day (hour and minute) or days of year (date and

month)
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Fig. 6.5. Architecture of repeatability predictor.

• d = 4 if we represent hours of year (hour, minute, date and month).

The information of fully connected layers are: fc1 (64, relu), fc2 (32, relu), fc3 (64,

relu), fc4 (32, relu), fc5 (64, relu), fc6 (D, sigmoid), where D is the dimensionality of

repeatability vector. Outputs of fc1, fc3, and fc5 (denoted as z1, z2, and z3) are pooled

by the generalized mean pooling [135]:

z =
[
1
3

(
zp1 + zp2 + zp3

)] 1
p
, (6.1)

where p is a learnable parameter. If p → ∞, it will become the max pooling; if p = 1,

it will become the mean pooling.

6.2.3 Training loss

Given N interest points
{
xi, yi

}N
i=1

and T timestamps, for a given interest point xi,

yi =
[
y1i , y

2
i , . . . , y

T
i

]
denotes its corresponding ground truth, where yji ∈ R is the re-

peatability score at timestamp tj . Similarly, ŷi =
[
ŷ1i , ŷ

2
i , . . . , ŷ

T
i

]
denotes the corre-

sponding prediction using RP. The neural network is trained by mean squared error:
1
N

∑N
i=1 ||yi − ŷi||22

6.2.4 Constructing ground truth

The network with the aforementioned loss function is trained with the ground truth y

for the interest point x. Fig. 6.4 illustrates the way of generating y. For a given set of
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images viewing the local area (e.g., building, house) captured at t1, t2, . . . , tT , the images

are grouped into difference cycles c1, c2, . . . , cM , where one cycle corresponds to one day

(for T=24 hours/day) or one year (for T=365 days/year or T=8760 hours/year). Each

image Ii is associated with a camera pose pk,ji at cycle ck and timestamp tj . We also

denote mk,j as the number of camera poses (images) at cycle ck and timestamp tj .

For each interest point x, we conduct feature matching to each remaining image as

follows:

1. Find the closest interest point using Euclidean distance between feature descriptors

2. Verify if the closest interest point satisfies ratio test [103]

3. Conduct geometric verification to check if the matching pair is an outlier

4. Perform Structure from motion (SfM) and accept the matching pair if it can form

a 3D point.

After obtaining set of inlier correspondences, the repeatability score yj at timestamp tj

is calculated as follows:

yj =
# of inliers

m1,j +m2,j + · · ·+mM,j
. (6.2)

Note that if the interest point x belongs to the image captured at timestamp tj , we

count itself to the number of inliers.

Also, our representation in the repeatability function can be seen as time difference,

e.g., in Fig. 6.4, let T = 24 hours/day and 4t = 1 hour, interest point x (green point)

belongs to the timestamp t2 (= 1:00am), hence the repeatability scores at y1 and yT are

respectively 4t (= 1 hour) before 1:00am and (T − 2)4 t (= 22 hours) after 1:00am.

6.3 Application in map summarization

One of the potential applications that benefits from the trained repeatability predictor

is map summarization for visual localization (VL). The pipeline is described in Fig. 6.6.

Specifically, a full 3D map built by SfM is stored in the server. Given the current

timestamp, using RP, the map summarization is performed to obtain a summary map,

which is then transmitted to the client and used for online localization. If we set T = 24

hours/day and 4t = 1 hour, the summary map is updated on the hourly basis.
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Fig. 6.6. Our proposed VL pipeline, where →→→ is the online operation, and →→→ is the
periodic operation, which will be in hourly basis if number of timestamps are T = 24
hours/day, and 4t = 1 hour.

6.3.1 Map summarization

6.3.1.1 3D point representation

For every 3D point, we predict the repeatability functions for all interest points corre-

sponding to the 3D point. Now, the repeatability of the 3D point is computed by the

mean of all the repeatability functions for the interest points. Similarly, the mean of

feature descriptors of 2D interest points is also used to represent the descriptor of the

3D point. This representation offers a compact way of storing the 3D map by cutting

down the memory consumption on the descriptors and repeatabilities of interest points.

6.3.1.2 Sampling 3D points

Firstly, we partition the 3D map into several parts, and then individually prune 3D

points in each part. This step prevents us from over-pruning 3D points in a particular

part of the map, which would impair the localization accuracy in that part. So, for

each part of the map, we compute repeatability score yji of every 3D point pi at the

query timestamp tj . Finally, we can remove 3D points with lowest repeatability score

according to the pruning ratio.

6.3.2 Online visual localization

Given a query image, we firstly retrieve K-nearest images in the database. Note that

all images are represented by NetVLAD [7], and the database images are indexed by

KD-tree. From the summary map, we select 3D points observed by retrieved images as

candidate 3D points. Then, 2D-3D correspondences between interest points of query im-

age and candidate 3D points are established through comparing their feature descriptors
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(a)

(b)

Fig. 6.7. Samples from (a) Webcam Clip Art and (b) Extended CMU Seasons datasets.
Testing viewpoints are denoted as .

and the ratio test [103] (Note that candidate 3D points are also indexed by KD-tree).

Finally, the 6 DoF camera pose of query image is estimated via solving Perspective-n-

Point with RANSAC.

6.4 Experiments

6.4.1 Predicting repeatability function

This section investigates the performance of our algorithm on several datasets, including

Webcam Clip Art dataset [94] and Extended CMU Seasons dataset [145]. We use SIFT

detector & descriptor [103] for the experiments.
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Fig. 6.8. Average repeatability over all testing samples on (a) Webcam Clip Art and
(b) Extended CMU Seasons.

6.4.1.1 Datasets

Two datasets are used:

• Webcam Clip Art [94] has 54 difference viewpoints captured by webcam cameras

during several years, and each viewpoint has about 10,000 images. Among the

urban viewpoints, we manually select 8 viewpoints of buildings or houses, which

are split to 7 training and 1 testing viewpoints (see samples in Fig. 6.7a).

We set the number of timestamps to T = 21 hours/day and 4t = 30 minute

between every consecutive timestamps, i.e., t1 = 8:00, t2 = 8:30, . . . , t21 = 18:00.

The number of cycles is M = 4 days. Because the webcam cameras are almost

static, we make a minor change in the matching procedure (see Sec. 6.2.4): in the

last step, if the absolute difference between two pixel coordinates is < 5 pixel, the

matching pair is accepted as an inlier correspondence. Finally, we obtain 72,160

training and 4,217 testing interest points.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.9. Examples of RP predictions on testing set of Webcam Clip Art, where is
the interest point.

• Extended CMU Seasons dataset [145] is split to 25 separate regions with available

ground truth 6 DoF camera poses from SfM. As the dataset is collected in the

form of continuous trajectory, we group the images seeing the same viewpoint

using available ground truth camera poses. In particular, region numbers 6, 7 and

9 are used for training; region 8 is used for testing. After grouping viewpoints, we

have 73 training viewpoints and 17 testing viewpoint (see samples in Fig. 6.7b).

We set the number of timestamps to T = 12 days/year and 4t varies from 1 to

13 weeks, i.e., t1 = March 04, t2 = April 21, t3 = July 28, t4 = September 01,

t5 = September 15 , t6 = October 01, t7 = October 19, t8 = October 26, t9 =

November 03, t10 = November 12, t11 = November 22, and t12 = December 21.

The number of cycle is M=1 year. In the feature matching in Sec. 6.2.4, due to

ground truth camera poses available, we simply perform triangulation instead of

the full SfM, resulting in 45,870 training and 15,856 testing interest points.

6.4.1.2 Results

Fig. 6.8a shows the average repeatability function over all testing samples on Webcam

Clip Art. Generally, in both ground truth and prediction curves, the repeatability score

increases from the morning to noon, and gradually decreases as it gets close to the

night time. This trend can also be seen in individual testing samples (see Fig. 6.9a-e).

However, for testing sample with unclear ground truth trend (see Fig. 6.9f), RP struggles

to learn its repeatability.

Fig. 6.8b shows the average repeatability function over all testing samples on Extended

CMU Seasons. It is clear that the ground truth and the prediction curves share a similar

trend, i.e., the repeatability score is high in spring, summer and autumn while it is low

during winter. This trend mainly comes from interest points of discriminative objects,
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(a) (b) (c)

(d) (e) (f)

Fig. 6.10. Examples of RP predictions on testing set of Extended CMU Seasons,
where is the interest point.

e.g., buildings, houses (see Fig. 6.11), which RP can perform prediction reasonably. The

concrete good examples are shown in Fig. 6.10a-b, but RP also fails in few examples

(e.g., Fig. 6.10c).

For tree interest points, the basic trend is their repeatability drastically drops after

winter (due to no leaves after winter), which RP often fails in predicting (see Fig. 6.11).

Fig. 6.10d and Fig. 6.10e show the good and bad particular examples.

Interest points of dynamic objects (e.g., cars) are mostly repeatable at the capture time,

i.e., the input timestamp (see Fig. 6.10f), yielding a good prediction in general (see

Fig. 6.11).

For background interest points (e.g., road, sky), their repeatability shows an unclear

trend, thus RP struggles to perform a reasonable performance (see Fig. 6.11).
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Fig. 6.11. Average repeatability in each category over all testing samples on Extended
CMU Seasons.

Based on the comprehensive experiment, we empirically observe several challenges in this

setup: 1) as shown in [161], sun direction is an important factor affecting the appearance

of physical 3D points, which should be considered as an input, 2) Fig. 6.11 shows the

performance of RP varies according to types of interest points. It suggests that the
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Table 6.1: Sequences in Oxford RobotCar used to train RP.

Sequence Timestamp

2015-02-13-09-16-26 t1 = 9:00
2015-07-10-10-01-59 t2 = 10:00
2015-03-17-11-08-44 t3 = 11:00
2014-11-28-12-07-13 t4 = 12:00
2014-11-18-13-20-12 t5 = 13:00
2015-07-29-13-09-26 t6 = 14:00
2015-05-19-14-06-38 t7 = 15:00
2015-08-13-16-02-58 t8 = 16:00
2015-07-14-16-17-39 t9 = 17:00

predictor may benefit from semantics, and 3) another factor which greatly influences to

the prediction result is the weather at the query time, e.g., at 12pm with a rainy and

cloudy condition, the appearance might be darker than that at 5pm with a sunny and

clear condition.

6.4.2 Map summarization for VL

6.4.2.1 Datasets

Oxford RobotCar dataset [111] is used to train the proposed network. Specifically, we

set number of timestamps to T = 9 hours/day (from 9:00 to 17:00), 4t = 1 hour, and

number of cycle M = 1. More detailed information of the Oxford RobotCar sequences

is described in Table 6.1. To generate separate viewpoints, we manually select 23 view-

points by taking the latitude and longitude, and the yaw angle of the vehicle seeing them,

which, for convenience, are now denoted as viewpoint latitude-longitude, and viewpoint

yaw angle. Afterward, using the exact ground truth pose of the Oxford RobotCar [110],

we find images close to each viewpoint latitude-longitude ≤ 5m. To ensure images ob-

serving the same viewpoint, we only keep images whose yaw angle close to viewpoint

yaw angle ≤ 45◦. Finally, SfM is conducted in each viewpoint; and only 18 viewpoints

which have all images registered are retained for training RP.

For VL dataset, we select region 8 of Extended CMU Seasons [145]. Its 3D point cloud

is used as the 3D map, and query images are captured at 04 March 2011.

6.4.2.2 Results

In Extended CMU Seasons, there is a capture timestamp associated with every query

image. Utilizing that timestamp and RP trained on Oxford RobotCar, we summarize
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Fig. 6.12. Comparison of localization accuracy over the percentage of pruned 3D
points

the 3D map as described in Sec. 6.3.1. In Fig. 6.12, where the localization accuracy is the

percentage of query images localized < 5m, 10◦, our method shows a superior accuracy

to Minimal scene [25] in every pruned 3D point ratio. The reason is Minimal scene [25]

does not consider the matching potential of 3D points in VL when selecting them, while

our method regards the query time to sample highly repeatable 3D points, leading to a

better performance.

6.5 Conclusion

In this chapter, we propose a novel map summarization scheme for VPR through an-

swering

Research question 4 Can we summarize the map according to the run-time of VPR?

Existing map summarization methods rely on criteria derived from repeatability and

matchability characteristics of interest points, while time span should be seriously con-

sidered as an additional constraint in the process of sampling useful 3D points for VPR.

Specifically, this chapter explores following sub-questions

RQ4.1 Can we predict if an interest point is repeatable at a particular time period?

We propose a learning procedure that trains a repeatability predictor (RP) with the

aim of predicting the repeatability of interest points as a function of time. Through

a comprehensive experiment, we show that the RP is able to predict the repeatability
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of an unseen interest point, also provide an insight analysis regarding this problem. It

further suggests future works for this approach

RQ4.2 How to use the RP for map summarization?

The application of RP in summarizing topometric map for VPR is presented. The map

summarization is periodically invoked to select 3D points that are likely repeatable at

the VPR testing time. The experimental results demonstrate its great potential in the

large-scale VPR.





Chapter 7

Conclusions

In this final chapter, we summarize our key contributions and also suggest possible

research directions for future works.

7.1 Contributions

As mobile robots continuously operate in the environment, the visual input is usually

in the form of videos. Chapter 3 revisits Bayes Filter to effectively exploit the tempo-

ral smoothness of image sequences. Also, G2D—an open-source software that assists

researchers in collecting synthetic data for VPR is presented. As alluded in chapters 1

and 2, the continuous data collection is necessary for the life-long operation, which

ensures the VPR system is able to observe as many appearance variations as possi-

ble. This strategy demands a VPR that is scalable, i.e., the computational effort and

memory consumption must grow slowly or even remain constant with database size.

Chapter 4 presents an HMM-based technique, whose map can be efficiently updated

and compressed when “absorbing” new data. However, its observation model suffers

from a linear increase in the space complexity, thus Chapter 5 proposes to couple HMM

inference and two-tiered memory management—active memory (AM) and passive stor-

age (PS). The basic idea is to use the forward temporal propagation to determine most

promising places that will be transferred from PS to AM each HMM iteration. To avoid

from getting lost, a coarse representation of the full map is stored on AM to approximate

the belief on remaining places. In addition, inspired from LSH [5], chapter 4 proposes

polytope VLAD (polyVLAD) that compresses the image representation to the compact

code. The combination of HM4 and polyVLAD offer a lightweight and scalable VPR

system. In VPR with topometric map, the most expensive memory footprint is from

storing 3D points, hence Chapter 6 presents a novel map summarization scheme, which

115
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uses a repeatability predictor to predict the repeatability of an interest point as a func-

tion of time. Our technique will sample 3D points that are potentially repeatable at

the VPR run-time. The experiment demonstrates that considering time constraint can

alleviate the degradation of VPR accuracy from the map summarization.

7.2 Future directions

Based on answers provided to address the research questions in this thesis, we identify

three possible research directions

1. Investigating the robustness of Bayesian techniques against adversarial attacks.

In some robotic applications, a failure of operation might lead to a very serious

consequence, for example, if a self-driving car makes an accident, it will risk many

human lives. It is well-known that current state-of-the-art artificial intelligent (AI)

technology is highly sensitive to adversarial attacks [4, 2]. It introduces a “Achilles

heel” that can possibly be exploited by hackers. This is because most of existing

AI technology rely on deep neural networks, which perform the point estimate in

their inference, hence they are easily fooled by samples out of their training set [65,

130]. On the other hand, Bayesian techniques model every factors via probabilistic

distributions, which can be used to quantify the uncertainty in their prediction.

This characteristic makes the Bayesian framework become a potential approach

in dealing with adversarial attacks [162]. Investigating VPR methods proposed in

chapter 4 and chapter 5 in this direction will be a very interesting future work.

2. Bridging the gap between simulation and reality.

Recently, deep learning methods significantly improves the performance of VPR [7,

27, 182]. However, it takes years and a considerable effort to collect sufficient train-

ing data for deep neural networks [111, 94, 145]. Fortunately, the development of

graphic technology offers a feasibility in cost-effectively collecting hyper-realistic

computer-generated imagery as well as a significant advancement in domain adap-

tation [30, 174, 55] has been made in literature. It suggests an interesting direction

that we can completely train deep networks on simulation while effortlessly trans-

ferring its usage to real scenarios. This, as a result, can possibly reduce the cost of

training and we can extensively test the VPR system before deploying it in reality.

3. Investigating VPR in space

These days, space industry starts to pay attention to the development of AI tech-

nology through a number of competitions [1, 125]. Deploying robotic agents on
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Moon or Mars needs to satisfy many constraints, e.g., the limitation in energy and

computational resources, which clearly demand a VPR method that is scalable.

In addition, as VPR system can only be tested on simulation, we need to ensure

its performance does not change if deploying it in space. This challenge poses an

attractive direction for future works.
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“Concrete problems in AI safety”. In: arXiv preprint arXiv:1606.06565 (2016).

[5] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. “Practi-

cal and optimal LSH for angular distance”. In: Advances in Neural Information

Processing Systems 28 (2015), pp. 1225–1233.

[6] A. Anoosheh, T. Sattler, R. Timofte, M. Pollefeys, and L. Van Gool. “Night-

to-day image translation for retrieval-based localization”. In: IEEE International

Conference on Robotics and Automation. 2019, pp. 5958–5964.

[7] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. “NetVLAD: CNN

architecture for weakly supervised place recognition”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2016, pp. 5297–5307.

[8] R. Arandjelovic and A. Zisserman. “All about VLAD”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 1578–

1585.

[9] R. Arandjelovic and A. Zisserman. “Three things everyone should know to im-

prove object retrieval”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2012, pp. 2911–2918.

[10] A. Babenko and V. Lempitsky. “Tree quantization for large-scale similarity search

and classification”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2015, pp. 4240–4248.

119

https://kelvins.esa.int/
https://kelvins.esa.int/


Bibliography 120

[11] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. “HPatches: A benchmark

and evaluation of handcrafted and learned local descriptors”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,

pp. 5173–5182.

[12] A. Barroso-Laguna, E. Riba, D. Ponsa, and K. Mikolajczyk. “Key. net: Key-

point detection by handcrafted and learned cnn filters”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. 2019, pp. 5836–5844.

[13] H. Bay, T. Tuytelaars, and L. Van Gool. “Surf: Speeded up robust features”. In:

European Conference on Computer Vision. Springer. 2006, pp. 404–417.

[14] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and

C. Rother. “Dsac-differentiable ransac for camera localization”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,

pp. 6684–6692.

[15] E. Brachmann and C. Rother. “Learning less is more-6d camera localization via

3d surface regression”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2018, pp. 4654–4662.

[16] E. Brachmann and C. Rother. “Neural-guided RANSAC: Learning where to sam-

ple model hypotheses”. In: Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision. 2019, pp. 4322–4331.

[17] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz. “Geometry-aware learning

of maps for camera localization”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018, pp. 2616–2625.

[18] M. A. Brubaker, A. Geiger, and R. Urtasun. “Lost! leveraging the crowd for

probabilistic visual self-localization”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2013, pp. 3057–3064.

[19] M. Bürki, C. Cadena, I. Gilitschenski, R. Siegwart, and J. I. Nieto. “Appearance-

based landmark selection for visual localization”. In: Journal of Field Robotics

36.6 (2019), pp. 1041–1073.
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