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SEMI-RIEMANNIAN CONES

THOMAS LEISTNER

Abstract. Due to a result by Gallot a Riemannian cone over a complete Riemannian
manifold is either flat or has an irreducible holonomy representation. This is false in
general for indefinite cones but the structures induced on the cone by holonomy invariant
subspaces can be used to study the geometry on the base of the cone. The purpose of this
paper is twofold: first we will give a survey of general results about semi-Riemannian cones
with non irreducible holonomy representation and then, as the main result, we will derive
improved versions of these general statements in the case when the cone admits a parallel
vector field. We will show that if the base manifold is complete and the fibre of the cone
and the parallel vector field have the same causal character, then the cone is flat, and that
otherwise, the base manifold admits a certain global warped product structure. We will
use these results to give a new proof of the classification results for Riemannian manifolds
with imaginary Killing spinors and Lorentzian manifolds with real Killing spinors which
are due to Baum and Bohle.
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1. Introduction

Given a semi-Riemannian manifold pM,gq, the (space-like or time-like) semi-Riemannian

cone over pM,gq is the manifold xM “ Rą0 ˆM together with the metric

(1.1) pgǫ “ ǫ dr2 ` r2g,

where ǫ “ 1 in case of a space-like cone and ǫ “ ´1 in case of a time-like cone. The
original manifold pM,gq is then called the base of the cone. One reason for considering
semi-Riemannian cones is that some systems of PDE on the base correspond to PDE on
the cone where they sometimes are easier to study. The key example is the equation for
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2 THOMAS LEISTNER

a Killing spinor field, which is an overdetermined system of PDE. A solution to this PDE
corresponds to a spinor field on the cone that is parallel for the Levi-Civita connection of the
cone metric, which is a closed system of PDE that can be understood as the prolongation of
the original PDE and that is easier to analyse, for example, by using tools from holonomy
theory. Another example is the existence of a Sasaki structure on the base, which correspond
to a Kähler structure on the cone and hence to a holonomy reduction to the unitary group.
Semi-Riemannian cones play also an important role in conformal geometry as conformal
ambient metrics for conformal structures containing an Einstein metric.

As mentioned, the most prominent application is the classification of complete Riemann-
ian manifolds with real Killing spinors by C. Bär in [3]. He showed that the cone over such
manifold admits a parallel spinor. By a fundamental theorem of Gallot, the cone is either
irreducible or flat. With Gallot’s result, the holonomy of the cone is one of the irreducible
holonomy groups from Berger’s list [8] that admit invariant spinors [13]. This leads to a
short list of structures on the cone which correspond to certain structures on the base, all
of which had been shown to admit Killing spinors [7].

In an attempt to apply this method to Killing spinor (and related) equations on manifolds
with indefinite metrics, in [1, 2] possible generalisations of Gallot’s theorem in the semi-
Riemannian context were studied, yielding a comprehensive analysis of the case when the
cone admits an invariant subspace under its holonomy representation. In the first part of
this paper, in Section 3 we will give a brief survey of these results, including a result from
[12]. However instead of providing all the details, we will then focus on the special case when
the cone admits a parallel vector field. The focus to this this case enables us to show the
essential steps in the proofs of the general result without too much technical detail and at
the same time give self contained proofs. More importantly, we will be able to improve some
of the general results in this special case, in particular in regards to their global character.
In Section 4 we will prove the main result of the paper:

Theorem 1.1. Let pM,gq be a geodesically complete semi-Riemannian manifold and let

pxM, pgǫq be the (time-like or space-like) cone over pM,gq. Assume that pxM, pgǫq admits a
parallel vector field V .

(1) If pgpV, V q “ ǫ, then the cone is flat and pM,gq is of constant curvature ǫ.
(2) If pgpV, V q “ ´ǫ, then pM,gq is globally isometric to

pR ˆN,´ǫds2 ` cosh2psq gN q,

where pN, gN q is a complete semi-Riemannian manifold.
(3) If pgpV, V q “ 0, then M is a disjoint union M “ M´ YM0 YM` with M˘ open and

such that M0 is either empty (in which case one of M˘ is also empty) or a smooth
totally geodesic hypersurface and pM˘, gq is globally isometric to

pR ˆN˘,´ǫds
2 ` e2sgN˘

q,

where pN˘, gN˘
q are complete semi-Riemannian manifolds. Moreover, M0 “ H if

and only if pM,gq is Riemannian or negative definite.

Note that the cases (2) and (3) also include the possibility that pM,gq has constant
curvature: in (2) gN has constant curvature ǫ if and only if g also has constant curvature ǫ,
whereas in (3), gN is flat, if and only if g has constant curvature ǫ (see [1, Section 2]).
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The improvements in this theorem over the of the general result will allow us to give
an alternative proof of the classification of complete Riemannian manifolds with imaginary
Killing spinors by Baum [5] and of Lorentzian manifolds with real Killing spinors [9]. In
both cases, the parallel spinor on the cone induces a parallel vector field on the Lorentzian
cone. In fact, the results in this paper will be applicable to the classification of Killing
spinors whenever the parallel spinor on the cone induces a parallel vector field. Working
out the detail of this is however beyond the scope of this paper.

Acknowledgements. This paper originated from a talk given at the Abel Symposium
“Geometry, Lie Theory and Applications” in June 2019. The author would like to thank
the organisers for their hospitality and the Niels Henrik Abel Memorial Fund for financial
support.

2. Preliminaries

2.1. Curvature and geodesics of semi-Riemannian cones. Let pgǫ “ ǫdr2 ` r2g with

ǫ “ ˘1 be the cone metric on xM “ Rą0ˆM , where pM,gq is a pseudo-Riemannian manifold.
The cone is called space-like if ǫ “ 1 and time-like if ǫ “ ´1. We denote by Br “ B

Br the

radial unit vector field. The Levi-Civita connection of the cone pxM, pgǫq is given by

(2.1) p∇BrBr “ 0, p∇XBr “
1

r
X, p∇XY “ ∇XY ´ ǫgpX,Y qBr,

for all vector fields X,Y P ΓpT xMq orthogonal to Br. The curvature pR of the cone is given
by the following formulas including the curvature R of the base metric g:

(2.2) Br pR “ 0, pRpX,Y qZ “ RpX,Y qZ ´ ǫ pgpY,ZqX ´ gpX,ZqY q ,

for X,Y,Z, U P TM . This implies that if pM,gq is a space of constant curvature κ, i.e.,

RpX,Y,Z,Uq “ κ pgpX,UqgpY,Zq ´ gpX,ZqgpY,Uqq ,

then the cone has the curvature r2 pκ´ ǫq pgpX,UqgpY,Zq ´ gpX,ZqgpY,Uqq. In particular,
if κ “ ǫ, then the cone is flat, as it is the case for the ǫ “ 1 cone over the standard sphere
of radius 1 or the ǫ “ ´1 cone over the hyperbolic space.

Let pγ “ pρ, γq : I Ñ xM “ Rą0 ˆ M be a geodesic of pxM, pgǫq starting at p̂ and with
pγ1p0q “ aBr `X. The geodesic equations are easily checked to be

(2.3) 0 “ ρ2ptq ´ ǫrptqg
`
γ1ptq, γ1ptq

˘
, 0 “ 2 ρ1ptqγ1ptq ` ρptq∇γ1ptqγ

1ptq.

Let γ be a reparametrisation of a geodesic β of pM,gq,

(2.4) γptq “ βpfptqq, with βp0q “ p and β1p0q “ X,

implying the initial conditions fp0q “ 0 and f 1p0q “ 1 for f .
Now let gpX,Xq “ cL2 with c P t0,˘1u and L ą 0. Hence, from (2.3) we get

(2.5) 0 “ ρ2ptq ´ cǫρptqf 1ptq2L2, 0 “ 2 ρ1ptqf 1ptq ` ρptqf2ptq

with initial conditions

ρp0q “ r, fp0q “ 0, ρ1p0q “ a, f 1p0q “ 1.
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If the initial speed X satisfies cL2 “ gpX,Xq “ 0, i.e., if it is zero or light-like, then the
equations become

0 “ ρ2ptq, 0 “ 2 ρf 1ptq ` pρt` ρqf2ptq,

i.e., with solutions

(2.6) ρptq “ at` r, fptq “
rt

at` r
.

This implies that f and thus γ̂ is defined for t P r0,´ r
a

q if a ă 0, and for t ě 0 otherwise.

If cL2 ­“ 0, the solutions to equations (2.5) are then given by

(2.7)

ρptq “
a

pat ` rq2 ` cǫL2r2t2,

fptq “

$
&
%

1
L
artan

´
Lrt
at`r

¯
, if cǫ “ 1,

1
L
artanh

´
Lrt
at`r

¯
, if cǫ “ ´1,

This gives us the maximal domain of the cone geodesics under the assumption that pM,gq is
complete: in case of cǫ “ 1, in particular if the cone is Riemannian, all geodesics are defined
on R if a ě 0 and on t P r0,´ r

a
q if a ă 0. Otherwise, if the functions ρ and f are defined on

an interval r0, T q, where T is the first positive zero of the polynomial
´

Lrt
at`r

´ 1
¯ ´

Lrt
at`r

` 1
¯

pat ` rq2 “ L2r2t2 ´ pat` rq2 “ ppLr ´ aqt´ rqppLr ` aqt ` rq,

or T “ 8 if the polynomial has no positive zero. More explicitly, T “ r
Lr´a

if a ă Lr and
T “ 8 if a ě Lr. We summarise this:

Proposition 2.1. Let pM,gq be a complete semi-Riemannian manifold and pxM, pgǫq be the

cone. Let p̂ “ pr, pq P xM and pX “ aBr|p̂ ` X P Tp̂ xM with gpX,Xq “ cL2 with c P t0,˘1u

and L ą 0. Then there is a geodesic pγ : r0, T q Ñ xM of pxM, pgq starting at p̂ with pγ1p0q “ pX
and where

(2.8) T “

$
’’&
’’%

8, if cǫ P t0, 1u and a ě 0, or if cǫ “ ´1 and a ě Lr,

´ r
a
, if cǫ P t0, 1u and a ă 0,

r
Lr´a

, if cǫ “ ´1 and a ă Lr.

This geodesic is given by (2.4) together with (2.6) or (2.7).

2.2. Completeness of certain warped products. In this section we are going to study
the completeness of warped products of the form

pM “ R ˆN, g “ ´ǫds2 ` f2psqgN q,

where pN, gN q is a semi-Riemannian manifold, f is a positive function on N and ǫ “ ˘1.
We will need these results in Section 4. The Levi-Civita connection of such metrics is given
by

(2.9)

∇BsBs “ 0,

∇XBs “ f 1psq
fpsq X,

∇XY “ ∇N
XY ` ǫf 1psqfpsqgN pX,Y qBs,
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Proposition 2.2. Let f : R Ñ Rą0 be a smooth function and pN, gN q be a semi-Riemannian
manifold and define pM “ R ˆN, g “ ´ǫds2 ` f2psqgN q.

(1) If all geodesics of pM,gq with initial velocity tangent to N are defined on R, then
pN, gN q is complete. In particular, if pM,gq is complete, then pN, gN q is complete.

(2) If f “ cosh, then pM,gq is complete if pN, gN q is complete.
(3) If fpsq “ es, then pM,gq is complete if and only if pN, gN q is complete and pM,gq

is definite, i.e., if ´ǫgN is a complete Riemannian metric.

Proof. (1) Let pσ, γq : R Ñ be a geodesic of pM,gq with σ1p0q “ 0. Then the geodesic
equations are

(2.10) σ2 ` ǫf 1pσqfpσqgpγ1, γ1q “ 0, ∇
N
γ1γ1 ` 2

f 1pσq

fpσq
σ1γ1 “ 0,

in particular, γ is a pre-geodesic for gN . The first equation shows that, if γ1pt0q “ 0 for
some t0, then σptq “ at ` b and γptq ” γpt0q constant. Hence, if γ1p0q ­“ 0, then γ1ptq ­“ 0
for all t, and so we can parametrise γ by arc-length. The second geodesic equation shows
that the reparametrised curve is a geodesic for gN . Hence, pN, gN q is complete.

(2) Assume that pM,gq is incomplete. Hence there is a maximal geodesic pσ, γq : pa, bq Ñ
M with b P R. Then the first geodesic equation in (2.10) and the equation that the geodesic
is of constant length,

´ǫpσ1q2 ` f2pσqgpγ1, γ1q “ c,

for a constant c, imply that

coshpσqσ2 ` sinhpσqpσ1q2 ` ǫc sinhpσq “ 0.

Then, with substituting ξ “ sinhpσq, this equation becomes

ξ2 ` ǫcξ “ 0.

This is a linear ODE for ξ and hence we can extend ξ and also σ beyond b and in fact to
R. Moreover, the second geodesic equation in (2.10) implies that γ “ β ˝ τ , where β is a
geodesic equation and σ and τ satisfy the equations

τ2 ` 2σ1τ 1 tanhpσq “ 0.

With σ : R Ñ R, this is a linear ODE for τ and hence can be extended beyond b. This
yields a contradiction to the incompleteness of pM,gq.

(3) Assume that g is complete but indefinite. With g indefinite we can consider a light-like
geodesic pσ, γq, i.e., with

0 “ ´ǫpσ1q2 ` e2σgN pγ1, γ1q.

Moreover, from the first geodesic equation we obtain

0 “
`
pσ1q2 ` σ2˘

“ ξ´1ξ2,

where we substitute ξ “ eσ ą 0. This however yields the equation ξ2 “ 0, so ξ is affine and,
since pM,gq is complete, defined on R. This contradicts ξ “ eσ ą 0, so pM,gq cannot have
light-like geodesics and hence g is definite.

Conversely, assume that pN, gN q is a complete Riemannian manifold. If pM,gq is not
complete, there is a maximal geodesic γ “ pσ, βq : r0, bq Ñ M that leaves every compact set
in M . For such a geodesic we have

1 “ pσ1q2 ` e2σgN pβ1, β1q.
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Hence, with gN Riemannian, we have 0 ď pσ1q2 ď 1 and hence that σ is bounded on r0, bq.
This implies that σ remains in a compact set, which implies that β leaves every compact
set in N . It also implies that eσ is bounded away from zero and so gN pβ1, β1q is bounded
on r0, bq say by c2. Then we have that βptq is contained in the geodesic ball around βp0q of
radius bc since

distgN pβp0q, βptqq ď lengthgN pβ|r0,tsq ď bc.

Since pN, gN q is complete, its geodesic balls are compact, which gives a contradiction. Hence
pM,gq is complete. �

3. Survey of general results

3.1. Holonomy groups and Gallot’s Theorem. Let pM,gq be a semi-Riemannian con-
nected manifold. The holonomy group HolppM,gq of pM,gq at p P M is defined as the
group of parallel transports, with respect to the Levi-Civita connection of g, along piecewise
smooth loops that are closed at p. Since the Levi-Civita connection preserves the metric,
the holonomy group is a subgroup of the orthogonal groupp OpTpM,g|pq acting on TpM .
By fixing a basis of TpM , it can be identified with a subgroup of Opr, sq, where pr, sq is the
signature of pM,gq. The holonomy groups at different points in M are conjugated within
Opr, sq. Hence the holonomy group as a subgroup in Opr, sq is well defined up to conjugation
and we refer to this as the holonomy group HolpM,gq. If G Ă Opr, sq is a subgroup and
Holpr, sq Ă G we say that the holonomy reduces to G.

The holonomy group is a Lie group. Its connected component is given by parallel transport
along contractible loops. Its Lie algebra is denoted by holppM,gq, the holonomy algebra. One
can show that the holonomy algebra contains all curvature endomorphisms R|ppX,Y q at p,
with X,Y P TpM and all derivatives of curvature endomorphisms. Moreover, the Ambrose-
Singer holonomy Theorem states that the holonomy algebra at p is spanned as a vector
space by the following linear maps,

P´1
γ ˝R|qpX,Y q ˝ Pγ ,

where q P M , γ is a path from p to q, Pγ the parallel transport along γ and X,Y P TqM .
The importance of the holonomy group arises from the well-known holonomy principles.

First, parallel sections (with respect to the Levi-Civita connection of g) of TM or of any
tensor bundle over M are in one-to-one correspondence with vectors (or tensors) that are
fixed under the holonomy representation. For example, the existence of parallel vector field
reduces the holonomy to a the stabiliser in Opr, sq of a vector in R

r,s. Another example is the
existence of a parallel complex structure, which reduces the holonomy to the unitary group
Upr{2, s{2q. The other principle is that subspaces in TpM , or in R

r,s, that are invariant
under the holonomy group are in one-to-one correspondence with vector distributions that
are invariant under parallel transport, or for short, a parallel distribution. The parallel
distribution V Ă TM is obtained from an holonomy invariant subspace E Ă TpM by
parallel transport: the fibre V|q is defined as by the parallel transport of E Ă TpM by any
curve from p to q. Because of the holonomy invariance of E, this is a well defined procedure
and V|q does not depend on the chosen loop. A parallel distribution V is involutive and
defines a foliation of M into totally geodesic leaves of V.

The holonomy group acts irreducibly if it does not admit any invariant subspace. In this
case we also say that pM,gq is irreducible. If HolpM,gq does admit an invariant subspace
E, since HolpM,gq Ă Opr, sq, the orthogonal space EK is also invariant under HolpM,gq.
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Hence, every holonomy invariant subspace defines two parallel distributions V and V
K.

If g is indefinite and E is a degenerate subspace, i.e., E X EK ­“ t0u, there is a totally
light-like distribution V X V

K with totally geodesic leaves. If E is non-degenerate, i.e.,
if TpM “ E ‘ EK, then we also have TM “ V ‘ V

K. In this case we say that the
holonomy group acts decomposably, or for short that pM,gq is decomposable. If there is no
non-degenerate subspace that is invariant under HolpM,gq we say that the holonomy acts
indecomposably, or that pM,gq is indecomposable. If g is indefinite, the holonomy group
may act indecomposably without acting irreducibly. This is the case if the holonomy group
admits a totally light-like invariant subspace, but no non-degenerate invariant subspace.

If the holonomy group acts decomposably, not just the tangent space decomposes into
holonomy invariant subspaces, but under certain global assumptions also the manifold de-
composes into a semi-Riemannian product. This is due to the splitting theorems of de
Rham [10] and Wu [14]: if pM,gq is complete and simply connected and the holonomy
group acts decomposably, then pM,gq is isometric to a global semi-Riemannian product
pM1, g1q ˆ pM2, g2q and the holonomy representation of pM,gq is isomorphic to the product
of the holonomy representations of pMi, giq. The manifolds Mi correspond to the totally
geodesic foliations of M into the leaves of the parallel complementary distributions V and
V

K.
The notions of irreducibility and (in-)decomposability can also be formulated for the

holonomy algebras holpM,gq, depending on wether the holonomy algebra admits a (non-
degenerate) invariant subspace. Note that if M is not simply connected, the holonomy
algebra acting decomposably does not imply that the holonomy group does act decompos-
ably. In particular, the existence of a non-degenerate subspace that is invariant under the
holonomy algebra does not necessarily imply the existence of a globally defined parallel
distribution.

In regards to the holonomy algebra of a Riemannian cone, Gallot proved the following
result:

Theorem 3.1 (S. Gallot, [11]). Let pM,gq be a complete Riemannian manifold of dimension

ě 2 such that the holonomy algebra of the cone pxM, pg`q does not act irreducibly. Then

pxM, pg`q is flat and hence pM,gq has constant curvature 1. If, in addition, pM,gq is simply
connected, then pM,gq is isometric to the standard sphere.

We will present Gallot’s proof of this theorem in Section 4. Here we will only explain
its first step, which is needed in order to understand possible generalisations and which is
based on the aforementioned holonomy principle: since the aim is to show that the cone
is flat, we can pass to the universal cover, which is the cone over the universal cover of
M , and assume that the holonomy group of this cone does admit an invariant subspace

E Ă Tp xM . Hence, this invariant subspace defines a vector distribution V Ă T xM that is

invariant under parallel transport. With E holonomy invariant, its orthogonal space EK is
also holonomy invariant and defines a parallel distribution V

K. If the cone is Riemannian, V
and V

K are non-degenerate and hence the tangent space splits into a direct sum of parallel
vector distributions TM “ V ‘ V

K. Both distributions are parallel and hence involutive
and define totally geodesic leaves. This splitting and the induced foliation is then used in
Gallot’s proof.

If the cone metric is indefinite, for example by considering time-like cones over Riemannian
manifolds or because already pM,gq is indefinite, a holonomy invariant subspace may be
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degenerate, i.e., E X EK ­“ 0, and hence V X V
K ­“ t0u, so that the resulting parallel

distributions are not complementary. The following example shows that Gallot’s Theorem
is false in this case.

Example 3.2. Consider the semi-Riemannian manifold

(3.1)
`
M “ R ˆN, g “ ds2 ` e´2sgN

˘
,

where pN, gN q is a semi-Riemannian manifold. Then the light-like vector field

V “ e´spBr ` 1
r
Bsq

on the time-like cone pxM, pg´q is parallel. The manifold pM,gq has constant negative curva-
ture only if gN is flat. If we now assume that pN, gN q is a complete Riemannian manifold,
then, by Proposition 2.2, pM,gq is a complete Riemannian manifold whose time-like cone

pxM, pg´q admits a parallel light-like vector field and hence has a non irreducible holonomy
group. However, unless gN is flat, the cone pg´ is not flat. This shows that Gallot’s Theorem
cannot hold when the cone has a parallel light-like vector field.

This example suggests that one has to strengthen the assumptions in Gallot’s Theorem
in the indefinite setting. To get Gallot’s proof started, instead of assuming the existence
of some holonomy invariant subspace, on should require the existence of a non-degenerate

invariant subspace, that gives complementary parallel distributions T xM “ V‘V
K. However,

the following example shows that such a modification of Gallot’s Theorem also fails.

Example 3.3. Let pN, gN q be a complete semi-Riemannian manifold of dimension at least 2
and which is not of constant curvature 1. Then the semi-Riemannian manifold

(3.2) pM “ R ˆN, g “ ds2 ` cosh 2psqgN q

is complete by Proposition 2.2. Using equation (2.9) it is easily established that the spacelike
vector field

V “ ´ sinhpsqBr `
coshpsq

r
Bs

on the time-like cone pxM, pg´q is parallel. For the curvature tensor R of pM,gq we have

RpX,Y qZ “ RN pX,Y qZ ` tanh2psq pgN pY,ZqX ´ gN pX,ZqY q ,

where X,Y,Z, U P TF and RN is the curvature tensor of pN, gN q. This shows that pM,gq
cannot have constant sectional curvature, unless N has constant curvature 1. Thus, in

general the cone pxM, pgq over the complete manifolds pM,gq is decomposable but not flat.

3.2. Decomposable cones over complete and over compact manifolds. In this sec-
tion we will review a few results that show to which extent Gallot’s Theorem generalises to
the semi-Riemannian context, having in mind the counter examples of the previous section.
We will mainly focus on space-like cones, as the corresponding results for time-like can be
obtained by multiplying the cone metric by ´1.

In this section we will review a few results that show to which extent Gallot’s Theorem
generalises to the semi-Riemannian context, having in mind the counter examples of the
previous section. First we consider cones over complete semi-Riemannian manifolds.
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Theorem 3.4 ([1]). Let pM,gq be a complete semi-Riemannian manifold of dimension ě 2

and assume that the holonomy algebra of the cone pxM, pg`q acts decomposably. Then there
exists an open dense submanifold M 1 Ă M such that each connected component of M 1 is
isometric to a pseudo-Riemannian manifold of the form

(1) a pseudo-Riemannian manifold M1 of constant sectional curvature 1, or
(2) a pseudo-Riemannian manifold M2 “ Rą0 ˆN1 ˆN2 with the metric

´ds2 ` cosh 2psqg1 ` sinh 2psqg2,

where pN1, g1q and pN2, g2q are semi-Riemannian manifolds and pN2, g2q has con-
stant sectional curvature ´1 or dimN2 ď 1.

Moreover, the cone xM2 is isometric to the open subset tr1 ą r2u in the product
of the space-like cone pRą0 ˆ N1,dr

2 ` r2g1q over pN1, g1q and the time-like cone
pRą0 ˆN2,´dr2 ` r2g2q over pN2, g2q.

Note that Example 3.3 shows that this theorem is sharp.
Next we consider cones over closed semi-Riemannian manifolds pM,gq, i.e., when M

compact without boundary. Recall that for indefinite metrics compactness of M does not
imply the geodesic completeness of pM,gq, so we have to assume it, in order to get a version
of Gallot’s Theorem under these strengthened assumptions.

Theorem 3.5 ([1]). Let pM,gq be a closed and geodesically complete semi-Riemannian

manifold of dimension ě 2. If the cone pxM, pg`q is decomposable, then it is flat and hence
pM,gq has constant curvature 1.

Since there is no simply connected compact indefinite pseudo-Riemannian manifold of
constant curvature 1, we obtain the following corollary.

Corollary 3.6 ([1]). If pM,gq is a simply connected compact and complete indefinite pseudo-

Riemannian manifold, then the holonomy group of the cone pxM, pgq is indecomposable.

Theorem 3.5 was strengthened by Matveev in [12].

Theorem 3.7 (V. Matveev [12]). Let M be a closed manifold.

(1) If g is a light-like complete indefinite semi-Riemannian metric on M , then the cone

pxM, pg`q is indecomposable.

(2) If g is a Riemannian metric on M , then the cone pxM, pg´q is indecomposable.

Note that (2) in the Theorem 3.7 implies that even though the time-like cone over a
compact quotient M “ H

n{Γ of hyperbolic space H
n is flat, its holonomy group acts inde-

composably.

3.3. Local structure of non irreducible cones. In this section we will review some
results about the local structure of non irreducible cones. We start with decomposable
cones.

Theorem 3.8 ([1]). Let pM,gq be a semi-Riemannian manifold such that the holonomy

algebra of the cone pxM, pg`q acts decomposably. Then there exists an open dense submanifold
M 1 Ă M such that any point p P M 1 has a neighborhood U that is isometric to a semi-
Riemannian manifold of the form pa, bq ˆN1 ˆN2 with the metric given either by

(3.3) g` “ ds2 ` cos2psqg1 ` sin2psqg2 or g´ “ ´ds2 ` cosh 2psqg1 ` sinh 2psqg2,



10 THOMAS LEISTNER

where g1 and g2 are metrics on N1 and N2 respectively.

Moreover, Rą0 ˆ U Ă xM with the metric g˘ in (3.3) is locally isometric to the product
of cone metrics

pdr21 ` r21g1q ` p˘dr22 ` r22g2q.

Note that this theorem also applies to the Riemannian context. The cone over the incom-
plete Riemannian metric g` in (3.3), with g1 and g2 Riemannian, is decomposable without
being flat.

Next we consider the case when the holonomy of the cone admits an invariant degenerate
subspace E. This implies the existence of an invariant subspace E X EK that is totally
light-like. We restrict ourselves to the case when the dimension of E XEK is 1 or 2. In this
case we have a parallel distribution of totally light-like lines or planes.

Theorem 3.9 ([2]). Let pxM, pg´q be the time-like cone over a semi-Riemannian manifold
pM,gq. If the cone admits a parallel light-like line field L, then locally there is a parallel

trivializing section of L. Moreover, on a dense open subset xMreg Ă xM , the metric pg is locally
isometric to a warped product of the form

(3.4) rg0 “ 2 dudv ` u2g0,

with a semi-Riemannian metric g0, and the metric g is locally of the form

g “ ds2 ` e2sg0.

The results in the case when E X EK is of dimenion 2 are more technical and related to
the existence of s shearfree, geodesic, light-like congruence on the base:

Theorem 3.10 ([2]). The time-like cone pxM, pgq over a semi-Riemannian manifold pM,gq
admits a parallel, totally light-like 2-plane field if and only if, locally over an open dense
subset, the base pM,gq admits two vector fields V and Z satisfying

(3.5) gpV, V q “ 0, gpZ,Zq “ 1, gpV,Zq “ 0,

and such that

∇XV “ αpXqV ` gpX,V qZ, ∇XZ “ ´X ` βpXqV ` gpX,ZqZ,(3.6)

with 1-forms α and β on M . In particular, the base pM,gq admits a geodesic, shearfree
light-like congruence defined by V .

Note that the first equation in equation (3.6) implies that V K is integrable. This allows
us to determine the local form of the metrics with vector fields V and Z satisfying equations
(3.5) and (3.6):

Proposition 3.11 ([2]). A semi-Riemannian metric pM,gq admits vector fields V and Z
with (3.5) and (3.6) if and only if pM,gq is locally of the form M “ M0 ˆ R

3 and

g “ ds2 ` e´2sg0puq ` 2 du η,

for a family of metrics g0puq on M0 depending on u and a 1-form η on M such that ηpBtq
is nowhere vanishing satisfying the following system of first order PDEs:

(3.7)
Btηt “ Bsηt “ Xηt “ BtpηpXqq “ 0,

Btηs “ 2ηt,
Bs ηpXq ´X ηs “ ´2ηpXq
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for all X P ΓpTM0q and where we denote ηt “ ηpBtq and ηs “ ηpBsq.

One can solve explicitly the system (3.7) in the following way: Let f1 “ f1puq be an
arbitrary nowhere vanishing smooth function on the real line equipped with the coordinate
u and f2 “ f2px, s, uq an arbitrary smooth function on M which does not depend on t. Let
hi “ hipx, s, uq be a (t-independent) solution of the ordinary differential equation

Bshi ` 2hi “ Bif2

for all i “ 1, . . . , n0, where Bi “ B{Bxi. Then

ηt :“ f1puq, ηs :“ 2tf1puq ` f2px, s, uq, ηpBiq :“ hipx, s, uq

solves (3.7) and every solution is of this form.
This provides us with a construction method of metrics whose cone admits a totally

light-like 2-plane.

Remark 3.12. For completeness we should mention further results in [1] for the case
when the cone admits a holonomy invariant maximal isotropic subspace V “ V

K and an
invariant maximally isotropic complement. This is equivalent to the existence of a para-
Kähler structure on the cone. In [1, Section 8] we have shown that the existence of a
para-Kähler structure on the cone over pM,gq is equivalent to the existence of a para-Sasaki
structure on pM,gq and a similar correspondence for para-hyper-Kähler structures on the
cone and para-3-Sasakian structures on pM,gq.

3.4. Holonomy of cones. In the last part of this survey section we are going to review
results about the possible holonomy groups of cones. We will consider the fundamental
cases when the holonomy group acts irreducibly or not irreducibly but indecomposably.

3.4.1. Irreducible cone holonomies. In the case when the holonomy algebra of the cone is
irreducible, we can use Berger’s list and single those out that can be cone holonomies.

They key here is to observe that Br pR “ 0 prevents cones from being Einstein with non
zero Einstein constant. This shows, for example, that cones cannot be irreducible locally
symmetric spaces. So by ruling out all holonomy groups of Einstein cones, we obtain:

Theorem 3.13 ([2]). If pxM, pgq is a time-like cone with irreducible holonomy algebra g, then
g is isomorphic to one of the following Lie algebras
(3.8)

sopt, sq, upp, qq, supp, qq Ă sop2p, 2qq, sppp, qq Ă sop4p, 4qq,
sopn,Cq Ă sopn, nq, gC2 Ă sop7, 7q, spinp7,Cq Ă sop8, 8q,

g2 Ă sop7q, spinp7q Ă sop8q,
g2p2q Ă sop3, 4q, spinp3, 4q Ă sop4, 4q.

3.4.2. Holonomy of non irreducible, indecomposable cones. In general the classification of
non irreducible, indecomposable holonomy groups is widely open and only solved in Lorentzian
and in some special cases in signature p2, nq and pn, nq. We will focus here in the case where
the invariant totally light-like subspace has dimension 1. The key here is the result in
Theorem 3.9, where it was shown that that a cone that admits a parallel light-like line
distribution is locally isometric to a metric of the form (3.4).
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Theorem 3.14 ([2]). Let pN, g0q be a semi-Riemannian manifold in dimension n and rg0
the metric defined in (3.4). If the holonomy of rg acts indecomposably, then

(3.9) holprg0q Ă holpg0q ˙ R
t,s

where holpg0q ˙ R
t,s is a subalgebra of the stabiliser algebra of Bv in sopt` 1, s` 1q, i.e., in

sopt, sq ˙ R
t,s “ sopt` 1, s ` 1qBv , and

prsopt,sqpholprg0qq “ holpg0q.

There is an equality in (3.9) whenever pN, g0q is one of the following:

(1) an irreducible locally symmetric space, or a product thereof;
(2) a Riemannian manifold;
(3) a Lorentzian manifold without a parallel light-like vector field.

4. Semi-Riemannian cones with parallel vector fields

In this section we will consider the special case when the invariant subspace under the
holonomy group of the cone is given by a parallel vector field, that is, the rank of the
invariant distribution is one and the distribution admits a global parallel section. For this
special case we will prove versions of the theorems in the previous section that are slightly
stronger and more specific, and we will prove Theorem 1.1. Before we do this we will review
Gallot’s original proof of his theorem in order to see when we can generalise it to the case
of a parallel vector field. We will see that this can be done when the radial vector field and
the parallel vector field have the same causal character.

4.1. The proof of Gallot’s Theorem. Gallot’s proof of Theorem 3.1 uses the following
fundamental observation, which holds not only for Riemannian cones.

Lemma 4.1. Let pxM, pgǫq be semi-Riemannian cone and let V Ă T xM be a non degenerate,
parallel distribution. Let p P M such that Br|p P V|p and NK|p the leaf of VK through p.

Then the image in NK
p under the exponential map restricted to V

K
p P Tp xM is flat.

Proof. Let pγ “ pρ, γq : I Ñ xM “ Rą0 ˆ M be a geodesic in pxM, pgq with pγp0q “ p and
pγ1p0q P V

K|p. It is easy to check using (2.1) that the vector field

(4.1) F ptq “ ρptqBr ´ tpγ1ptq

is parallel transported along γ̂. Then with F p0q “ rppqBr|p̂ P V|p̂ we have that F ptq P V|pγptq
for all t. Since the curvature tensor leave parallel distributions invariant and because of

Br pR “ 0, we have that

pRpX,Y qF ptq “ pRpX,Y qpγ1ptq P R ¨ V|pγptq

for all t. On the other hand we have that pγ1ptq P V
K
γ̂ptq for all t. Hence, with V X V

K “ t0u

this implies that
pRpX,Y qpγ1ptq “ 0,

for all vector fields X and Y along pγ and all t P I. From this we see that the Jacobi fields
along pγ are those of a flat manifold, which implies that N is flat. �

Using this lemma, we can now proceed with the proof of Gallot’s Theorem.
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Proof of Theorem 3.1. By passing to the universal cover of the cone, which is the cone over

the universal cover of M , we can assume that xM is simply connected. Let V be a parallel

distribution in T xM and V
K the orthogonal distribution that are induced by the subspace

that is invariant under the holonomy group. If we assume that V is non degenerate, as we

can in the case of a Riemannian manifold pM,gq, we have T xM “ V‘V
K. For a given point

p P xM denote by Np and NK
p the totally geodesic leaves of V and V

K. Moreover, denote

C “ tp P xM | Br|p P V|pu, CK “ tq P xM | Br|q P V
K|qu.

Note that p∇XBr “ 1
r
X for X P TM implies that neither C nor CK can contain an open set

and hence that xM0 “ xMzpC Y CKq is dense in xM .

Lemma 4.2. Let pxM, pgq be a Riemannian cone over a complete Riemannian manifold

pM,gq. Then for each point x P xMzpC Y CKq there is a p P C and a q P CK such that
x lies in the image of the exponential map expp restricted to V

K|p and in the image of expq
restricted to V|q.

Proof. Let x P M and assume that x R CYCK. Let Br|x “ V `W with V “ prV|xpBr|xq P V|x
and W “ prVK|xpBr|xq P V

K|x ­“ 0. Then

pgpBr,W q “ pgpV `W,W q “ pgpW,W q

and

pgpV, V q “ pgpBr ´W, Br ´W q “ 1 ´ pgpW,W q,

which implies that

(4.2) 0 ă pgpBr,W q ă 1.

Let γ̂ “ pρ, γq be the maximal geodesic starting at x with ρpxq “ r, satisfying the initial
condition

pγ1p0q “ ´rW “ ´rprVK|xpBr|xq.

Now we have a “ ρ1p0q “ ´rpgpBr,W q, and hence, by the previous section, the maximal
geodesic is defined for t ă T with

T “ ´
r

a
“

1

pgpBr,W q
ą 1,

by (4.2). Let F ptq be the parallel transported vector field defined in (4.1) along γ̂. Then

F p0q ` pγ1p0q “ rBr|x ´ rprVK|xpBr|xq P V|x.

The parallel transport of this vector up to t “ 1 is

F p1q ` γ̂p1q “ rpγ̂p1qqBr |γ̂p1q,

which is in V|γ̂p1q as V is a parallel distribution. This implies that γ̂p1q P C.
The argument for CK works completely analogously. �

Both lemmas imply that each point in xMzpC Y CKq lies in the intersection of two flat

leaves of V and V
K and hence has a flat neighbourhood. This implies that pg on xMzpCYCKq

is flat. Since xMzpC Y CKq is dense in xM , this implies that pxM, pgq is flat. This finishes the
proof of Theorem 3.1. �
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4.2. A generalisation of Gallot’s Theorem. Let pxM, pgǫq be a time-like or space-like
cone over a semi-Riemannian pM,gq. From now on we restrict to the case when V “ R ¨ V ,
where V is a parallel vector field, normalised such that

pgpV, V q “ ν P t´1, 0, 1u.

Since V is assumed to be parallel, the leaves of R ¨ V are flat, so in order to generalise
Gallot’s Theorem we would need to show that the leaves of V K are also flat. In order show
this using Gallot’s method, we need that the set

C “ tp P xM | Br|p P RV |pu

is not empty. This however can only be the case when Br and V have the same causal
character, i.e., only when ǫ “ ν, i.e.,

C ­“ H implies ǫ “ ν.

We have already seen Examples 3.2 and 3.3, which show that Gallot’s Theorem does not
generalise when this condition is not satisfied, i.e., when ǫ ­“ ν. We will deal with this case
in the next section. Here we consider the case when ν “ ǫ. In this special case we obtain a
generalisation of Gallots Theorem as a stronger version of Theorem 3.4.

Theorem 4.3. Let pM,gq be a complete semi-Riemannian manifold and let pxM, pgǫq be the

cone over pM,gq. If pxM, pgq admits a parallel vector field V with pgpV, V q “ ǫ, then the cone
is flat and pM,gq is of constant curvature ǫ.

Proof. Let V be the parallel vector field on pxM, pgǫq with pgpV, V q “ ǫ. As in the proof of

Theorem 3.1 we consider the set C “ tp P xM | Br|p “ R ¨ V |pu and show that each q P xMzC
admits a flat neighbourhood. Let Br|q “ αV `W with W P V K and, since pgpV, V q “ ǫ, with
α “ ǫpgpV, Brq. Again we have

pgpBr,W q “ pgpW,W q “ w ­“ 0,

and
α2ǫ “ pgpBr ´W, Br ´W q “ ǫ´ pgpW,W q “ ǫ´ w.

Hence we obtain

(4.3) 0 ă α2 “ 1 ´ ǫw.

On the other hand we write

W “ ǫpgpBr,W qBr `W0 “ ǫwBr `W0,

with a W0 P TqM . Hence,

pgpW,W q “ pgpW,W q2ǫ` pgpW0,W0q,

and hence

(4.4) pgpW0,W0q “ wp1 ´ ǫwq.

Now let γ̂ be a geodesic starting at q with rpqq “ r and with γ̂1p0q “ ´rW . We will show
that γ̂ is defined on r0, 1s. We have γ̂1p0q “ aBr ´ rW0 with (as in Lemma 2.1)

a “ ´ǫwr, cL2 “ r2gpW0,W0q “ pgpW0,W0q “ wp1 ´ ǫwq,

with c “ ˘1. We now consider the cases cǫ “ 1, cǫ “ ´1 and c “ 0.
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If cǫ “ 1, then

0 ă L2 “ ǫwp1 ´ ǫwq,

which, together with 4.3 implies that ǫw ą 0 and a “ ´ǫwr ă 0. By Lemma 2.1, γ̂ is
defined for t ă T with

T “ ´
r

a
“

1

ǫw
ą 1,

because of (4.3).
If cǫ “ ´1 we get

0 ă L2 “ ´ǫwp1 ´ ǫwq,

and hence that a “ ´ǫwr ą 0 and moreover

r2L2 “ apa ` rq “ a2 ` ar ą a2.

Hence, we are in the case a ă rL in Lemma 2.1, and γ̂ is defined for t ă T with with
T “ r

Lr´a
. We show now that T ą 1. For this note that by the previous displayed equation

we have

L2r2 ´ pr ` aq2 “ a2 ` ra´ pr ` aq2 “ ´rpr ` aq ă 0

since a ą 0. This shows that Lr ă r ` a and therefore T “ r
Lr´a

ą 1.

Finally, in the case c “ 0 we must have w “ 0 and hence a “ 0, so γ̂ is defined on r0,8q.
Now we proceed in the proof of Theorem 3.1: the vector field F ptq along γ̂ satisfies

F p0q ` γ̂p0q “ rαV |q whose parallel transport is given by F p1q ´ γ̂p1q “ rpγ̂p1qqBr|γ̂p1q. This
implies that γ̂p1q P C and by Lemma 4.1 the leaf of V K though q is flat. Since V is a parallel

vector field, this implies that q has a flat neighbourhood and hence, since xMzC is dense,

that pxM, pgq is flat. �

4.3. Non flat cones with parallel vector field. Recall the two Examples 3.2 and 3.3. We
will now show that cone with parallel vector fields satisfying the condition pgpV, V q ­“ ǫ are
always of the form as in these examples and thus obtain a stronger version of Theorem 3.4
in the case of a parallel vector field on the cone.

First we define the function u “ pgpV, Brq and observe:

Lemma 4.4. Let V be a parallel vector field on the cone pxM, pgǫq over a (not necessarily
complete) semi-Riemannian manifold pM,gq. Then u “ pgpV, Brq is a smooth function on
M , u P C8pMq, that satisfies

(4.5) V “ ǫuBr `
1

r
∇u,

where ∇u is the gradient of u with respect to g, that satisfies

(4.6) ∇du “ ´ǫug.

Proof. With u “ pgpV, Brq, we split V as V “ ´uBr `W where W is a section of TM Ñ xM .

Since V is parallel, we use (reflem1) to get 0 “ ∇̂BrV which implies that Brpuq “ 0 and
rBr,W s ` 1

r
W “ 0. The latter implies that W “ 1

r
U with U P ΓpTMq is a vector field on

M . The equation ∇V |TM “ 0 implies that ∇u “ U , where ∇u denotes the gradient of u
with respect to g, and ∇∇u “ ´ǫuId, i.e., that ∇du “ ǫug. �



16 THOMAS LEISTNER

Recall that in the case when ν “ pgpV, V q “ 0 or ν “ ´ǫ we have that

C “ tp P xM | Br|p P R ¨ V |pu “ H

and also that the set of critical points of u is empty,

(4.7) C0 “ tp P M | ∇u|p “ 0u “ H.

Moreover we have

(4.8) gp∇u,∇uq “

"
´ǫu2, if ν “ 0,
´ǫp1 ` u2q, if ν “ ´ǫ.

Then we can show:

Theorem 4.5. Let pM,gq be a complete semi-Riemannian manifold and pxM, pgǫq be the cone

over pM,gq. If pxM, pgq admits a parallel vector field V with pgpV, V q “ ´ǫ, then pM,gq is
globally isometric to

pR ˆN,´ǫds2 ` cosh2psqgN q,

where pN, gN q is a complete semi-Riemannian manifold.

Proof. The idea is to rescale the gradient ∇u in a way that the rescaled vector field is a
geodesic gradient vector field. To this end consider the function s “ ´ǫ arcsinh ˝u on M ,
i.e., uppq “ sinhp´ǫsppqq, for which we write u “ sinhp´ǫsq. Then we have

∇u|p “ ´ǫ coshpsppqq∇s|p,

and hence

gp∇u,∇uq “ cosh2psqgp∇s,∇sq “ p1 ` sinh2psqqgp∇s,∇sq “ p1 ` u2qgp∇s,∇sq.

Hence, from (4.8) we get gp∇s,∇sq “ ´ǫ, so S “ ∇s is a unit gradient vector field.
Moreover, from (4.6) we get

´ǫ sinhp´ǫsqX “ ∇X∇u “ sinhpsqgpX,SqS ´ ǫ coshpsq∇XS,

and hence

(4.9) ∇XS “ tanhp´ǫsq pX ` ǫgpX,SqSq .

This implies that S is a geodesic vector field. Since pM,gq is assumed to be complete, the
flow φ of S is defined on RˆM . By the above observation (4.7) we have ∇u ­“ 0 and hence
all level sets are smooth hypersurfaces. Moreover the Lie derivative of ds in direction of S
vanishes,

LSdspXq “ d2spXq `XpdspSqq “ XpgpS, Sqq “ 0.

This implies that the flow of S maps each level set of s to a level set of s.
For a fixed p P M we define the function σptq “ spφtppq. Since S “ ∇s is complete, σ is

defined on R and satisfies the differential equation

σ1ptq “ ds|φtppqpSq “ gφtppqpS, Sq ” ´ǫ.

Hence σptq “ ´ǫt` sppq, which shows that

(4.10) φtpNcq “ N´ǫt`c,
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where Nc “ s´1pcq denotes the level set of s, Now set N “ N0 “ tu “ 0u “ ts “ 0u, which
is a smooth hypersurface and denote by gN the restriction of g to N . We define a smooth
map

Φ : R ˆN Q pt, pq ÞÑ φtppq P M.

which, because of (4.10), has the inverse

Φ´1pqq “
`
spqq, φ´spqqpqq

˘
P R ˆN.

This shows that φ is a diffeomorphism.
Finally, equation (4.9) implies that

LSgpX,Y q “ 2 tanhp´ǫsqgpX,Y q,

for all X,Y P SK, i.e., al X,Y tangent to the level sets of s. This shows that

Φ˚g “ ´ǫds2 ` pcoshpsqq2 gN .

Since pM,gq was assumed to be complete pN, gN q has to be complete by Proposition 2.2. �

Now, let pM,gq be a semi-Riemannian manifold and pxM, pgǫq be the cone over pM,gq. We
consider the case that V is a parallel light-like vector field. Recall that in this case we have,
in addition to Lemma 4.4, that gp∇u,∇uq “ ´ǫu2. In this situation we observe:

Lemma 4.6. If γ : I Ñ M is a geodesic on pM,gq with gpγ1p0q, γ1p0qq “ ´ǫ and f “ u ˝ γ,
then f2 “ f , i.e.,

(4.11) fptq “ upγp0qq coshptq ` gp∇u|γp0q, γ
1p0qq sinhptq.

In particular, if pM,gq is complete, then the image of u contains p0,8q if tu ą 0u ­“ H and
p´8, 0q if tu ă 0u ­“ H.

Proof. With f “ u ˝ γ we have f 1 “ g|γp∇u|γ , γ
1q and hence by Lemma 4.4,

f2 “ g|γp∇γ1∇u, γ1q “ ´ǫfg|γpγ1, γ1q “ f.

The general solution to this equation is given by (4.11). If pM,gq is complete, the maximal
geodesics through a point with uppq ­“ 0 are defined on R and hence, by choosing a geodesic
with γ1p0q “ 1

uppq∇u|p, i.e., with gp∇u, γ1p0qq “ ´ǫuppq, we get

(4.12) fptq “
uppq

2

`
p1 ´ ǫqet ` p1 ` ǫqe´t

˘
“ uppqe´ǫt.

This implies the statement about the image of u. �

Theorem 4.7. Let pM,gq be a complete semi-Riemannian manifold and pxM, pgǫq be the

cone over pM,gq. If pxM, pgq admits a parallel light-like vector field V , then M is a disjoint
union M “ M´ YM0 YM` with M˘ open and such that M0 is either empty (in which case
one of M˘ is also empty) or a smooth totally geodesic hypersurface and pM˘, gq is globally
isometric to

pR ˆN˘,´ǫds
2 ` e2sgN˘

q,

where pN˘, gN˘
q are complete semi-Riemannian manifolds. Moreover, M0 “ H if and only

if pM,gq is Riemannian.
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Proof. Recall that for in the case of V being light-like we have that gp∇u,∇uq “ ´ǫu2. The
proof is analogous to the previous proof, with a difficulty arising from the possibility that
the set

M0 “ tp P M | gp∇u|p,∇u|pq “ 0u “ tp P M | uppq “ 0u

may be non empty, so that the geodesic gradient vector field S from the previous proof
may not be defined on all of M . However, since V is light-like, we have ∇u ­“ 0, and so
M0 is either empty or a smooth hypersurface. In fact, if M0 ­“ H, it is totally geodesic:
if X P TM0 “ ∇uK|M0

, then Lemma 4.6 shows that fptq ” 0, so the geodesics starting in
direction of M0 remain in M0.

We set M˘ “ t˘u ą 0u. Without loss of generality, we assume that M` ­“ H, in which
case we get that N` “ tu “ 1u ­“ H by the previous lemma.

We consider the function s “ ´ǫ ln ˝p˘uq on M˘, i.e., u “ ˘e´ǫs. Then we have

∇u “ ¯ǫe´ǫs
∇s,

and hence, for S “ ∇s,

gp∇u,∇uq “ e´2ǫsgpS, Sq “ u2gpS, Sq,

and so gp∇s,∇sq “ ´ǫ by (4.8). Next we get from (4.6) that

¯ǫe´ǫsX “ ∇X∇u “ ¯ǫe´ǫs p´ǫgpX,SqS ` ∇XSq ,

and hence

(4.13) ∇XS “ pX ` ǫgpX,SqSq .

Again, this shows that S is a geodesic vector field on M˘. Equation 4.12 in the proof of
Lemma 4.6 then shows that the geodesics with initial speed given by S|p for p P M˘ remain
inM˘ for all t P R. Hence S is a complete vector field onM˘ with its flow defined on RˆM˘,
so we can continue with the proof as for the previous theorem yielding a diffeomorphism

Φ˘ : R ˆN˘ Q pt, pq ÞÑ φtppq P M,

where N˘ “ tp P M | uppq “ ˘1u “ tp P M˘ | sppq “ 0u, with the inverse

Φ´1
˘ pqq “

`
spqq, φ´spqqpqq

˘
P R ˆN˘.

Now equation (4.13) implies that

LSgpX,Y q “ 2gpX,Y q,

for all X,Y P SK, i.e., al X,Y tangent to the level sets of s. This shows that

Φ˚
˘g “ ´ǫds2 ` e2sgN˘

with a semi-Riemannian manifold pN˘, gN˘
q. In order to conclude that pN˘, gN˘

q are
complete, we observe that (4.11) in Lemma 4.6 shows that geodesics of pM,gq with initial
speed tangent to N˘, i.e., with initial speed orthogonal to ∇u|N˘

, remain in M˘ and hence,
because pM,gq is complete, are defined on R. With this, Proposition 2.2 implies that
pN˘, gN˘

q are complete.
For the last statement, first note that if pM,gq is Riemannian, then, since ∇u ­“ 0, we

get that M0 “ H. On the other hand assume that M0 “ H and without loss of generality
that M` “ M , so that globally pM “ R ˆN, g “ ´ǫds2 ` e2sgN qq. By Proposition 2.2, the
metric g is only complete if it is definite and gN is complete. �
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As a corollary we obtain a global version of Theorem 3.9.

Corollary 4.8. Let pM,gq be a complete semi-Riemannian manifold and pxM, pgǫq be the

cone over pM,gq. If pxM, pgq admits a parallel light-like vector field V , then xM is a disjoint

union xM “ xM´ Y xM0 Y xM` with

xM˘ “ tp P xM | ˘pgpV, Brq ą 0u, xM0 “ tp P xM | pgpV, Brq “ 0u “ Rą0 ˆM0

and such that pxM˘, pgq is globally isometric to

pR` ˆ Rǫ ˆN˘, rg “ 2dudv ` u2gN˘
q,

where pN˘, gN˘
q are a complete semi-Riemannian manifolds and where R˘ “ tx P R | ˘x ą

0u. The isometry is given by

Ψ˘ : xM Q pr, s, pq ÞÑ pu “ res, v “
ǫ

2
re´s, pq P pR` ˆ Rǫ ˆN˘q.

Proof. We have u2 “ r2e2s and

2dudv “ ǫ pesdr ˘ resdsq
`
e´sdr ¯ re´sds

˘
“ ǫpdr2 ´ r2ds2q.

Hence, by the previous theorem, Ψ˚
˘rg “ pg. �

5. Lorentzian cones and applications to Killing spinors

5.1. Parallel spinors and Killing spinors. Let pM,gq be a semi-Riemannian spin ma-
nifold, i.e., a space and time oriented semi-Riemannian manifold with a spin structure, and
let Σ its complex spinor bundle. This is a complex vector bundle that is equipped with the
following structures:

(1) the Clifford multiplication

TM b Σ Q X b ϕ ÞÑ X ¨ ϕ P Σ,

(2) a hermitian bundle metric x., .y P ΓpΣ˚ b Σ
˚
q on Σ, conjugate-linear in the second

component, that is positive definite if g is Riemannian and of neutral signature if g
is indefinite,

(3) the lift ∇Σ of the Levi-Civita connection to Σ,

that satisfy the following properties, where r is the number of negative eigenvalues of g,

(5.1)

pX ¨ Y ` Y ¨ Xq ¨ ϕ “ ´2 gpX,Y qϕ,
xX ¨ ϕ,ψyΣ “ p´1qr`1xϕ,X ¨ ψyΣ,
∇Σ

Y pX ¨ ϕq “ p∇YXq ¨ ϕ`X ¨ ∇Σ
Y ϕ,

Xpxϕ,ψyΣq “ x∇Σ
Xϕ,ψyΣ ` xϕ,∇Σ

XψyΣ.

The second of these relations together with x., .y being Hermitian shows that to each spinor
field ϕ one can assign a (real) vector field Vϕ P ΓpTMq

gpVϕ,Xq :“ ir`1xϕ,X ¨ ϕyΣ for all X P TM.

This vector field is sometimes called the Dirac current of ϕ. The above relations also show
that ∇Vϕ “ 0 if ϕ is a parallel a parallel spinor field, i.e., if ∇Σϕ “ 0. However, Vϕ be
identically zero even if ϕ is not. This happens for example for parallel spinors on Riemannian
manifolds.
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Moreover, the Ricci tensor of a semi-Riemannian manifold with parallel spinor satisfies
gpRicpXq, RicpXqq “ 0. In particular, Riemannian manifolds with parallel spinors are
Ricci-flat.

A Killing spinor with Killing number z P C is a spinor field ϕ P ΓpΣq that satisfies the
equation

∇
Σ
Xϕ “ z X ¨ ϕ.

Using the above formula one can show that the scalar curvature of a semi-Riemannian
manifold with a Killing spinor is equal to 4npn ´ 1qz2. This implies that z is either real
or imaginary and hence the scalar curvature is a positive or negative constant. A Killing
spinor with Killing number z “ ˘1

2
is called real Killing spinor and with z “ ˘ i

2
, ϕ an

imaginary Killing spinor. Moreover, Riemannian manifolds with Killing spinor are Einstein,
so Riemannian manifolds with real/imaginary Killing spinor provide examples of Einstein
manifolds with positive/negative scalar curvature. The question which Einstein manifolds
(or constant scalar curvature manifolds) can be constructed in this way lead to the problem
of classifying manifolds with Killing spinors. The fundamental observation for solving this
problem is the relation to semi-Riemannian cones:

Theorem 5.1 ([3, 9]). Let pM,gq be a semi-Riemannian spin manifold that admits a Killing

spinor with Killing number ˘
?
ǫ
2

if and only if the semi-Riemannian cone pxM, pgǫq admits a
parallel spinor field.

Remark 5.2 ([9]). In [9] Bohle proved a more general result: Let pM,gq be a semi-
Riemannian spin manifold and f : I Ñ R be a smooth function. Then the warped product
metric

gǫ,f “ ǫds2 ` f2psqg

on I ˆM admits a Killing spinor with Killing number λ̂ P t0,˘1
2
,˘ i

2
u if and only if

(1) The warping function satisfies the ODE f2 “ ´4ǫλ̂2f , and

(2) pM,gq admits a Killing spinor with Killing number ˘λ, where λ2 “ λ̂2f2 ` ǫ
4
pf 1q2.

Theorem 5.1 together with Gallot’s Theorem 3.1 was used by Bär [3] to derive a classifi-
cation of complete Riemannian manifolds with real Killing spinors: if pM,gq admits a real
Killing spinor, the cone admits a parallel spinor and under the assumption of completeness,
by Gallot’s theorem, the cone is irreducible. Then by Berger’s classification of irreducible
holonomy groups [8], Wangs classification of those admitting an invariant spinor [13] under
their spin representation, and the correspondence between holonomy groups and geometric
structures, Bär arrived at the following classification:

Theorem 5.3 (C. Bär [3]). Let M be a complete, simply connected Riemannian spin ma-
nifold with a real Killing spinor. Then M is isometric to round sphere, or ta a compact
Einstein space with one of the following structures: Sasaki, 3-Sasaki, 6-dimensional nearly-
Kähler, or nearly parallel G2.

Baum gave a classification of Riemannian manifolds with imaginary Killing spinors [5].
Baum’s proof does not use the cone construction of Theorem 5.1 explicitly. In other signa-
tures the classification of semi-Riemannian manifolds with Killing spinors is only known in
special cases: for example, Bohle and Baum classified Lorentzian manifolds with real Killing
spinors [9, Section 5], with an addition made in [6, Proposition 7.1], again without using the



SEMI-RIEMANNIAN CONES 21

cone construction explicitly. In the next section we will use our results from the previous
section to obtain Baum’s and Bohle’s classification results.

5.2. Lorentzian cones and Killing spinors. In this section we will use our results of
Section 4 to derive the classification of complete Riemannian manifolds with imaginary
Killing spinors and of complete Lorentzian manifolds with real Killing spinors. In both
cases Theorem 5.1 yields a parallel spinor on a Lorentzian cone and hence a parallel Dirac
current by the observations in Section 5.1. In Lorentzian signature one can show that the
Dirac current is a causal vector field:

Lemma 5.4. Let ϕ be a parallel spinor field on a spin Lorentzian manifold pM,gq. Then
Vϕ is a causal parallel vector field, i.e, Vϕ ­“ 0, ∇Vϕ “ 0 and gpVϕ, Vϕq ď 0.

Proof. We have already seen that Vϕ is parallel, so it is either identically zero or non van-
ishing and we have to verify its causal character. Since pM,gq is time orientable we fix a
time-like unit vector field T and split Vϕ ­“ 0 as

Vϕ “ ´gpT, VϕqT ` gpN,VϕqN,

where N is a spacelike unit normal field orthogonal to T . Then we have by (5.1) that

gpVϕ, Vϕq “ ´gpT, Vϕq2 ` gpN,Vϕq2 “ ´xT ¨ ϕ,ϕy2 ` xN ¨ ϕ,ϕy2,

and we have to show that this is not positive. For this observe that the endomorphism T ¨N
on Σ squares to the identity by the defining relation for the Clifford algebra in (5.1),

T ¨N ¨ T ¨N “ ´N ¨ T ¨ T ¨ N “ ´N ¨N “ 1.

Hence T ¨ N has eigenvalues ˘1 and we can split ϕ “ ϕ` ` ϕ´ into its components in the
corresponding eigenspaces. Note that

T ¨ ϕ˘ “ ˘N ¨ ϕ˘,

which, together with (5.1), implies that

xT ¨ ϕ`, ϕ´y “ xϕ`, T ¨ ϕ´y “ ´xϕ`, N ¨ ϕ´y “ ´xN ¨ ϕ`, ϕ´y “ ´xT ¨ ϕ`, ϕ´y,

so that xT ¨ ϕ`, ϕ´y “ 0. Then we use the fact (see [4] for a proof) that the hermitian
form pφ,ψqT “ xT ¨ φ,ψy on Σ is positive definite. The last equation then shows that
pϕ`, ϕ´qT “ 0 and we get

gpVϕ, Vϕq “ ´pϕ,ϕq2T ` pT ¨ N ¨ ϕ,ϕq2T “ ´4pϕ`, ϕ`qT pϕ´, ϕ´qT ď 0.

This shows that Vϕ is either time-like or light-like. �

In fact, on a Lorentzian manifold the Dirac current of spinor field is always causal even if
the spinor is not parallel, but it may change its causal character from light-like to time-like.
The proof of this has to take into account that Vϕ may have zeros so that N may not be
well defined.

The following theorem gives a classification of Riemannian manifolds with imaginary
Killing spinors.

Theorem 5.5 ([5]). Let pM,gq be a complete Riemannian manifold with an imaginary
Killing spinor. Then pM,gq is globally isometric to hyperbolic space or to a warped product
of the form

(5.2)
`
R ˆN,ds2 ` e2sgN

˘
,
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where pN, gN q is a complete Riemannian manifold with a parallel spinor field.

Proof. Let pM,gq be a complete Riemannian manifold with an imaginary Killing spinor field.

Then, by Theorem 5.1, the Lorentzian cone pxM,g´q admits a parallel spinor field ϕ, which
by Lemma 5.4 provides us with a parallel vector field Vϕ that is either light-like or time-like.
In case it is time-like, Theorem 4.3 yields that pM,gq has constant sectional curvature ´1
and hence is isometric to hyperbolic space. If Vϕ is light-like, we can apply Theorem 4.7 to
get the desired warped product in (5.2) with a complete Riemannian manifold pN, gN q. To
get that pN, gN q admits a parallel spinor field we can either use the result in Remark 5.2

or recall Corollary 4.8 and Theorem 3.14 to obtain that the holonomy algebra of pxM, pg´q is

equal to holpN, gN q ˙R
dimpNq. This is an indecomposable holonomy algebra that admits an

invariant spinor under its spin representation if and only if holpN, gN q admits an invariant
spinor. �

The next theorem provides a classification of Lorentzian manifolds with real Killing
spinors.

Theorem 5.6 ([9, 6]). Let pM,gq be a complete Lorentzian manifold with a real Killing
spinor. Then

(1) either pM,gq is globally isometric to de Sitter space or space or to a warped product
of the form

(5.3)
`
R ˆN,´ds2 ` cosh2psqgN

˘
,

where pN, gN q is a complete Riemannian manifold with a real Killing spinor (i.e.,
with one of the structures in Theorem 5.3), or

(2) M is a disjoint union M “ M´ Y M0 Y M` with M0 a smooth totally geodesic
hypersurface and M˘ and such that pM˘, gq are globally isometric to

pR ˆN˘,´ds2 ` e2sgN˘
q,

where pN˘, gN˘
q are complete Riemannian manifolds with parallel spinors.

Proof. If pM,gq admits a real Killing spinor, then the cone pxM, pg`q admits a parallel spinor
and hence a parallel causal vector field V .

If V is time-like, then we apply Theorem 4.5, to get that pM,gq is isometric to the
Lorentzian manifolds in (5.3) with a complete Riemannian manifold pN, gN q. If pN, gN q is
the round metric on the sphere then pM,gq is de Sitter space. The result in Remark 5.2
shows that pM,gq admits a real Killing spinor if and only if pN, gN q does.

If V is light-like, Theorem 4.7 shows that (2) holds with complete Riemannian manifolds
pN˘, gN˘

q. To obtain that pN, gN q admits a parallel spinor, we use again Remark 5.2 or
recall Corollary 4.8 and Theorem 3.14, as for the proof of Theorem 5.5. �

References

[1] D. Alekseevsky, V. Cortés, A. Galaev, and T. Leistner. Cones over pseudo-Riemannian manifolds and
their holonomy. J. Reine Angew. Math., 635:23–69, 2009.

[2] D. Alekseevsky, V. Cortés, and T. Leistner. Geometry and holonomy of indecomposable cones, Feb
2019. Preprint arXiv:1902.02493.

[3] C. Bär. Real Killing spinors and holonomy. Commun. Math. Phys., 154(3):509–521, 1993.
[4] H. Baum. Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, vol-

ume 41 of Teubner-Texte zur Mathematik. Teubner-Verlagsgesellschaft, Leipzig, 1981.



SEMI-RIEMANNIAN CONES 23

[5] H. Baum. Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom.,
7(3):205–226, 1989.

[6] H. Baum. Twistor and Killing spinors in Lorentzian geometry. In Global analysis and harmonic analysis
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