
Xing et al., Sci. Adv. 2018; 4 : eaat5042     18 July 2018

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 8

P A L E O N T O L O G Y

A mid-Cretaceous embryonic-to-neonate snake in 
amber from Myanmar
Lida Xing1,2, Michael W. Caldwell3*, Rui Chen4, Randall L. Nydam5, Alessandro Palci6,7,  
Tiago R. Simões3, Ryan C. McKellar8,9, Michael S. Y. Lee6,7, Ye Liu4,10, Hongliang Shi11,  
Kuan Wang10, Ming Bai4

We present the first known fossilized snake embryo/neonate preserved in early Late Cretaceous (Early Cenomanian) 
amber from Myanmar, which at the time, was an island arc including terranes from Austral Gondwana. This unique 
and very tiny snake fossil is an articulated postcranial skeleton, which includes posterior precloacal, cloacal, and 
caudal vertebrae, and details of squamation and body shape; a second specimen preserves a fragment of shed 
skin interpreted as a snake. Important details of skeletal ontogeny, including the stage at which snake zygosphene-
zygantral joints began to form along with the neural arch lamina, are preserved. The vertebrae show similarities 
to those of fossil Gondwanan snakes, suggesting a dispersal route of Gondwanan faunas to Laurasia. Finally, the 
new species is the first Mesozoic snake to be found in a forested environment, indicating greater ecological diversity 
among early snakes than previously thought.

INTRODUCTION
By the early Late Cretaceous [~100 to 95 million years (Ma) ago], 
snakes had achieved their initial global distribution with skeletal 
remains known from Africa (1), North America (2), the Middle East 
(3–5), South America (6–10), and Southern Europe (11), all compris-
ing skeletally mature specimens occurring in marine and/or fluvial 
sediments. We report here on the first known fossilized remains of 
an embryonic/neonate snake, including preserved integument, from 
Lower Cenomanian (98.8 ± 0.6 Ma ago) (12) amber from Myanmar. 
A skull is not preserved, but the postcranium shows important 
similarities to other Cretaceous Gondwanan snakes, for example, 
Najash rionegrina and Dinilysia patagonica (6–8). We also describe 
a second amber specimen containing a large fragment of integument, 
possibly a piece of shed skin, considered here to be a snake and from 
a much larger animal. These new snake remains add a significant 
biological component to an already diverse fauna of rare, small-
bodied vertebrate fossils from the amber deposits of northeastern 
Myanmar (13, 14), which includes the remains of lizards, neonate 
birds, and neonate nonavian dinosaurs (15–19). The new snake 
fossils are exceptional as one of them is clearly an embryo/neonate, 
while the second appears to preserve dark and light patterns in 
the squamation. In addition, as with the other amber fossils from 
Myanmar, they are part of the fauna and flora from an indisputably 
forested environment (13–19), thriving in an island arc system sourced 
from Austral Gondwana that became a part of the eastern margin of 
Laurasia. The new fossil snake materials also indicate a greater eco-
logical diversity and global distribution of Late Mesozoic snakes, 

and more specifically, Cretaceous snakes, than was previously 
understood. And finally, the articulated postcranial skeleton provides 
unprecedented data on the early ontogeny of snakes during the later 
part of their Mesozoic radiation.

Systematic paleontology
Squamata Oppel, 1811

Serpentes Linnaeus, 1758
Xiaophis myanmarensis gen. et sp. nov.

Holotype
DIP-S-0907 [Dexu Institute of Palaeontology (DIP)] (Figs. 1, A to 
C, and 2, A to K; and figs. S1 to S4A and S5, A and B), articulated 
postcranial skeleton (Total Length = 47.5 mm), ~97 vertebrae and 
ribs, and integument.
Type locality/horizon
Angbamo site, Tanai Township, Myitkyina District, Kachin Province, 
Myanmar (98.8 ± 0.6 Ma ago; earliest Cenomanian).
Etymology
“Xiaophis”—Xiao from the Chinese word for “dawn” and in honor 
of Xiao Jia, the amber specialist who donated the specimens to the 
DIP, Chaozhou, China; ophis, Greek for snake; and “myanmarensis” 
in recognition of Myanmar.
Diagnosis
Precloacal vertebral centrum roughly triangular in ventral aspect with 
strong ventral keels and large, paired, subcentral foramina; anterior 
precloacals have large paired fossae on posterodorsal surface of 
postzygapophyseal lamina; horizontal pre- and postzygapophyses 
with small accessory processes on prezygapophyses; elongate, 
posteriorly directed neural spines, present from anterior vertebrae 
to caudals; caudals with strongly reduced neural spines, anteriorly 
directed and horizontal transverse processes, and small spatulate artic-
ulating chevrons; potentially three sacral ribs/modified cloacal ribs/
lymphapophyses; two to three scale rows per vertebra-rib complex; 
and body scales small but imbricated and strongly overlapping.

RESULTS
The articulated snake postcranial skeleton is 47.5 mm in total length 
(Figs. 1, A to C, and 2, A to K; and figs. S1 to S4A and S5, A and B). 
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Individual vertebrae are extremely small (anterior precloacals, 
~0.5 mm in centrum length; caudals, ~0.35 mm in total length), 
comparable in size and morphology to those of a neonate Asian 
pipe snake, Cylindrophis ruffus (Figs. 2, A to Q, and 3, A to D). 
There are 97 observable vertebrae, with the anteriormost 87 being 
articulated, including associated ribs, followed by 10 caudal verte-
brae (Figs. 1, 2, A to K, and 3, B and D). Three radio-opaque “masses” 
partially obscure postcranial osteology and likely represent miner-
alized remnants of decayed tissues.

The large anteriormost vertebrae are likely mid-precloacal ele-
ments. The first vertebra breaches the amber surface, suggesting that 
many vertebrae were lost (Fig. 1, A to C, and figs. S1 to 4A and 5, 
A and B). Although an exact count is not possible, reference to 
the contemporaneous simoliophiid snake Haasiophis terrasanctus 
(155 precloacals; largest precloacal at 70th to 80th vertebra) (5) would 
suggest that DIP-S-0907 is missing 70 or more precloacal vertebrae 
plus the skull.

Xiaophis can be identified as a snake based on the following fea-
tures. The 87 observed, and ~160 inferred, precloacal vertebrae ex-
ceed counts in all elongate squamates apart from amphisbaenians 
and dibamids (for example, 55 precloacal vertebrae in the legless 
anguid Pseudopus apodus and 72 in the acontine skink Acontias 
meleagris) (20). However, amphisbaenian and dibamid vertebrae 
differ from Xiaophis as follows: (i) complete absence of zygosphenes 
and zygantra (see discussion below); (ii) dorsolaterally oriented pre- 
and postzygapophyseal articulations (horizontal in rhineurids); (iii) 
fusion of diapophyses-parapophyses forming short, circular synapophyses 
rather than sinuous, complex articulations; (iv) prezygapophyses not 
connected to synapophyses; (v) ventrally flattened rather than keeled 
centra; (vi) subparallel rather than posteriorly converging lateral 
margins of centra; and (vii) neural spines absent or low (cf. Xiaophis 
and Dinilysia with Amphisbaena or Dibamus; fig. S4) (21).

In the dorsal view, precloacals appear shorter than wide (Fig. 2, 
A and B, and figs. S1 and S2), with a tall and steep posterior angle to 
the neural spine [differentiating Xiaophis from other extremely 
small-bodied snakes, such as scolecophidians (22) or Coniophis (23)], 
distinct epiphyseal pits on the neural spine tip, subhorizontal pre- 

and postzygapophyses, small prezygapophyseal accessory processes 
[similar to Dinilysia (7, 9)], and wide fossae on the posterior mar-
gins of the postzygapophyses (Figs. 2, A to K, and 3, B and D). In the 
lateral view, the paradiapophyses are ventrally directed, with paired 
superior and inferior facets, connected to the base of the prezyg
apophysis by a crest or ridge; the pre- and postzygapophyses appear 
connected by a short crest; large lateral foramina are observed on 
many vertebrae. The cotyles/condyles are round in outline. Obser-
vations of individual vertebrae indicate that the neural arch lamina 
does not display fully developed zygosphenes (Fig. 2, A to K). How-
ever, in some vertebrae, small projections on the lateral margins of 
the lamina are interpreted here as partially formed zygosphenes 
(21). In the ventral view, the centra are triangular, with prominent 
ventral keels, ventrally directed paradiapophyses, and large subcentral 
foramina. Rib heads are complex with a double-headed facet and 
tubercles for intercostal musculature (Figs. 2, A to K, and 3, B and D); 
distal rib ends bear a distinct facet, interpreted here as the origin of 
the musculus costocutaneous inferior.

In the dorsolateral view (fig. S3) within the second trunk mass, 
anterior to the first caudal vertebrae, there are two to three straight, 
stout, nonarticulating “ribs” or transverse processes, the last of which 
bears a spatulate distal tip similar to the one recognized sacral rib of 
Pachyrhachis problematicus (3). The fossil snake N. rionegrina (6, 8) 
has shorter, stouter sacral ribs than X. myanmarensis; however, their 
ribs both display fusion to the corresponding vertebra as transverse 
processes (6, 8). These two, possibly three, unusual transverse pro-
cesses define the cloacal/pelvic region; girdle or limb elements are 
not evident. In modern limbless anguids or skinks (20), the sacral 
region is defined by two large and tuberculate transverse processes, 
unlike the gracile processes in Xiaophis.

Within and posterior to the second trunk mass (Fig. 1 and figs. 
S1 to 4A and S5, A and B) are ~10 preserved caudal vertebrae (Fig. 2, 
E and F). They are small (~0.3 to 0.4 mm) with short neural spines, 
flattened neural arches, and no zygosphenes and zygantra (21). The 
transverse processes are anteriorly directed, and there are short, 
spatulate haemal spines or chevrons preserved on two vertebrae 
(Fig. 2, E and F) (5, 6, 8). A large debris mass (~10 mm in length) 

Fig. 1. Overview of amber clast with synchrotron x-ray CT image of articulated snake skeleton (DIP-S-0907). (A) Amber clast with included skeletal material.  
(B) Dorsal view of skeleton, synchrotron x-ray micro–computed tomography (CT) image. (C) Ventral view of skeleton, synchrotron x-ray CT image. Scale bar, 10 mm.
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that is covered in poorly preserved scales obscures the posteriormost 
part of the body.

DISCUSSION
The anatomy of DIP-S-0907 shows similarities to extant embryonic-
to-neonate snakes such as the neonate of a southeast Asian pipe 
snake C. ruffus (Figs. 2, A to Q, and 3, A to D) or the embryos (head 
length, 5 mm) and neonates (head length, 8.0 mm) of the colubroid 
Natrix natrix (21): (i) The neural canal is at least twice as large as 
the centrum body (Figs. 2, A to Q, and 3, A to D); (ii) some verte-

bral centra in Xiaophis display a notochordal canal that is present 
but undergoing endochondral ossification similar to Cylindrophis 
(Fig. 3, A to D) and Natrix (21). A relatively large neural canal coupled 
with the presence of a notochordal canal can also be observed in 
juveniles of the typhlopoid Anilios (Rhamphotyplops) bicolor and 
the python Antaresia stimsoni (fig. S6); (iii) absent or weak ossifi-
cation of the zygosphenes and zygosphenial joint (zygosphene + 
zygantrum) is consistent with embryonic-to-neonate extant snakes 
[facets absent in embryonic Cylindrophis (Figs. 2, A to Q, and 3, A 
to D) but just forming, along with zygapophyses, in neonate Natrix 
(21)]. Coupled with extremely small size (estimated ≤8.0 cm in total 

Fig. 2. Details of skeletal elements of Xiaophis myanmarensis (DIP-S-0907) and vertebral element of neonate of extant Cylindrophis ruffus (colorized light yellow 
for contrast with fossil material in gray). (A to K) X. myanmarensis. (L to Q) C. ruffus. (A) CT image of dorsal view of mid-precloacal vertebrae, anterior to left. (A) Light 
photograph of the dorsal view of mid-precloacal vertebrae, anterior to left. (C) CT image of left lateral view of mid-precloacal vertebrae, anterior to left. (D) CT image of 
the ventral view of mid-precloacal vertebrae, anterior to left. (E) CT image of the left lateral view showing the articulating haemal spine. (F) CT image of the right lateral 
view of caudal vertebrae showing the articulating haemal spine. (G to K) CT renderings of isolated precloacal vertebrae of X. myanmarensis (DIP-S-0907) in dorsal view (G), 
left lateral view (H), ventral view (I), anterior view (J), and posterior view (K). (L to Q) CT renderings of isolated precloacal vertebrae of neonate C. ruffus. (L) Dorsal view. 
(M) Left lateral view. (N) Ventral view. (O) Anterior view. (P) Right dorsolateral view. (Q) Posterodorsal view. ac, accessory process; cn, condyle; ct, cotyle; hk, haemal keel; 
h-sp, haemal spine; na-g, neural arch groove; ns-ep, neural spine epiphyseal pit; sf, subcentral formina; zyg?, incipient zygantrum; zys?, incipient zygosphene.
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body length), these features indicate that DIP-S-0907 is the first 
known fossil embryonic-to-neonate snake. Xiaophis provides direct 
evidence that many aspects of snake vertebral ontogeny have re-
mained conservative for nearly 100 Ma, such as delayed development 
of the zygosphene-zygantra system and late closure of the notochord-
al canal.

The preserved integumentary details of DIP-S-0907 indicate 
that the scales are imbricated, diamond-shaped, and thin (fig. S5, A 
and B). Large, rectangular, ventral scales (paired or unpaired), typical 
of most modern snakes, are not observed, nor are the annular scales of 
amphisbaenians. DIP-V-15104 appears to represent a shed skin of 
a larger individual, but the limited material precludes referral to 
Xiaophis (Fig. 4, A to C, and fig. S5C), although it appears to be the 
skin of a snake. The scales of DIP-V-15104 are diamond-shaped or 

ovoid diamond–shaped, with deep lines formed by integument be-
tween each scale. Some rows converge as observed ventrally in 
extant snakes (that is, the bifurcations of the scale rows point ventrally). 
No enlarged ventral scales (gastrosteges) can be observed. Light and 
dark areas distributed across the shed skin reveal color patterning, 
but original color is not preserved. There is an irregular zone with 
circles or rings of dark patterning (Fig. 4, A to C, and fig. S5C).

The new remains of a Cenomanian-aged embryonic-to-neonate 
snake from the eastern margin of Laurasia, together with the skin frag-
ment, are important new data points in our understanding of the 
patterns and processes of ancient snake evolution, ontogeny, radia-
tion, and diversification (fig. S7; see also the Supplementary Mate-
rials). As with other vertebrate fossils from Myanmar amber (15–19), 
the quality of preservation of such a small individual, as represented by 

Fig. 3. High-definition CT images of neonate vertebral column of C. ruffus (colorized light yellow for contrast with fossil material in gray) compared to 
X. myanmarensis. Cross-sectional views through precloacal vertebrae of (A) C. ruffus, anterolateral view (note the incipient formation of zygosphenial joint as small 
nubs on neural arch lamina facing into small facets of posterior arch portion of more anterior vertebra in partial section) and (B) X. myanmarensis at level of zygosphene 
tectum, anterolateral view. Sagittal sections through precloacal vertebral series of (C) C. ruffus, anterior to right [note the presence of soft but distinct zygantral facets on 
posterior and internal surface of neural arch, and open notochordal canals (no-ca) and distinct ossification of cotyle-condyle (ct-cn) portions of bony centra at joints] 
and (D) X. myanmarensis, anterior to right [note that neural canal (nc) and notochordal canals are infilled with permineralized material of similar density, although spaces 
are obvious in both canals; density and histology of bone at cotyle-condyle joints differs from permineralized infilling material; cotyle-condyle bone–forming joints are 
similar to that observed in neonate of C. ruffus (C)].
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this snake skeletal specimen, provides unique osteological and soft 
tissue data on a previously unseen stage of ancient snake ontogeny 
that compares well to ontogenetic stages in modern snakes. Both the 
skeletal and shed-skin specimens, from the amber clasts they are 
preserved in, present new data on a formerly unknown ancient 
snake ecology—a terrestrial (possibly arboreal) ecosystem marginal 
to inland and coastal fluvial environments (24). The amber inclu-
sions provide taphonomic support for a forested ecosystem, as both 
DIP-S-0907 and DIP-V-15104 contain abundant insects, carbonized 
insect feces, and fragmentary plant materials, which are usually as-
sociated with “litter amber” or resin produced near the forest floor 
(25). Almost all other known Cenomanian snakes show aquatic adap-
tations (3–5) or are found in fluvially deposited sediments (2) and 
cannot be conclusively linked to terrestrial habits [cf. oldest known 
snakes (26)]. The only exception is N. rionegrina from mesic-xeric 
ecosystems in the Cenomanian of Gondwanan Argentina (6, 8).

X. myanmarensis (DIP-S-0907) and DIP-V-15104 are a new 
and important data point in the Mesozoic fossil record of eastern 
Laurasian snakes (excluding Gondwanan India, which became a part 
of Eurasia only in the Cenozoic) and demonstrate that snakes had 
achieved a circumglobal distribution at least 100 Ma ago (fig. S7; see 
also the Supplementary Materials). Adding X. myanmarensis to a 
phylogenetic analysis of early snakes (26) reconstructs it between 
basal Gondwanan taxa, such as Najash, Dinilysia, and Sanajeh, and 
modern (crown) snakes (fig. S8). The morphological resemblance 
of Xiaophis to these basal Gondwanan fossil snakes (6–9, 27–29), 
coupled with its position between the latter snakes and crown 
snakes, is consistent with a Gondwanan ancestry for crown snakes. 
Osteological similarities between Xiaophis and Gondawanan snakes 
also expand our knowledge of Cretaceous madtsoiid-like snake dis-

tributions. This is particularly important because southeast Asian 
exotic terranes were sourced from northern Australia during the 
Late Triassic to Late Jurassic (fig. S7; see also the Supplementary 
Materials) (30). A complex series of paleobiogeographic scenarios 
arise from these new data. As an example, one hypothesis, among 
many, could be that the Myanmar amber faunal and floral elements, 
including Xiaophis, were dispersed from Austral-Gondwana to 
Laurasia as relicts carried on this island arc for tens of millions of 
years (30). It is also possible that many of these faunal elements 
were sourced from Laurasia only when the terranes and island arc 
were in some proximity to eastern Laurasia; a future step for other 
faunal and floral elements is to link them to their sister taxa within 
Laurasian or Gondwanan clades (15–19). An alternative scenario, 
specific to Xiaophis, is that its kind descended from aquatic or am-
phibious snakes that had secondarily colonized terrestrial environ-
ments on the islands of these allochthonous terranes; the broad 
distribution and surprising diversity of Cenomanian-aged marine 
snakes found throughout the Tethys (3–5) and most recently in the 
Cenomanian of South America (10) hint at unexpected snake diver-
sity in both terrestrial and aquatic realms (fig. S7; see also the Supple-
mentary Materials). Finally, X. myanmarensis offers unprecedented 
opportunities to observe aspects of skeletal ontogeny in a fossil 
snake, providing exceptional and unexpected insights into the evolu-
tion of one of nature’s most successful and iconic animal groups.

MATERIALS AND METHODS
Material and photography
Two specimens were obtained from an amber deposit in the Angbamo 
area, Tanai Village, Hukawng Valley of Myanmar. Age was estimated 

Fig. 4. Light photographs of probable snake shed skin (DIP-V-15104). (A) Overall view of the complete specimen. Scale bar, 5 mm. (B) Close-up of the left portion of 
the specimen showing converging scale rows (center top). Scale bar, 1 mm. (C) Close-up of the right mid-region of the specimen. Scale bar, 1 mm.
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at 99 Ma ago (98.8 ± 0.6 Ma ago; earliest Cenomanian) based on 
U-Pb dating of zircons from the volcaniclastic matrix containing 
the amber (12). Two specimens were cataloged as DIP-V-15104 and 
DIP-S-0907. DIP-V-15104 was 44.5 by 46.8 mm and 8.61 g in weight; 
DIP-S-0907 was 17.1 by 24.8 by 39.0 mm and 9.30 g in weight. The 
original specimens are housed in the DIP, Chaozhou, China.

The pieces of amber were examined with a Leica MZ 12.5 dissecting 
microscope with a drawing tube attachment. Photographs were taken 
using a Canon digital camera (5D Mark III, MP-E 65mm f/2.8 1-5X) 
fitted to a macro rail (Cognisys) and processed in Helicon Focus 5.1. 
Final figures were prepared with Photoshop CS5 (Adobe) and Illus-
trator CS5 (Adobe).

CT scanning and three-dimensional reconstruction
Specimen DIP-S-0907 was scanned with a MicroXCT 400 (Carl Zeiss 
X-ray Microscopy Inc.) at the Institute of Zoology, Chinese Academy 
of Sciences. The entire animal (Fig. 1) was divided into seven scans 
that were combined to create a single model, and the scans were 
conducted with a beam strength of 60 kV, 8 W, and absorption con-
trast and a spatial resolution of 2.5464 m. In addition, specimen 
DIP-S-0907 was imaged using propagation phase-contrast synchro-
tron radiation microtomography on the beamline 13W at the 
Shanghai Synchrotron Radiation Facility. The isotropic voxel size 
was 2.25 m.

On the basis of the obtained image stacks, structures of the 
specimen were reconstructed and separated with Amira 5.4 (Visage 
Imaging). The subsequent volume rendering was performed with 
Avizo 9.0 (Thermo Fisher Scientific) and VG Studiomax 2.1 
(Volume Graphics). The neonate C. ruffus was loaned from the 
Western Australian Museum (WAM R49553) and scanned with 
a SkyScan 1076 (Bruker MicroCT) at Adelaide Microscopy, Univer-
sity of Adelaide, Australia. The scan settings were 65 kV, 153 A, 
no filter, and an isotropic voxel size of 8.7 m. The reconstruction 
was carried out using the software NRecon (Bruker MicroCT), 
and the volume renderings were created in the software Avizo 9.0 
(Thermo Fisher Scientific).

Phylogenetic analysis
The phylogenetic relationships of X. myanmarensis were tested 
using a previously published data matrix of extant and fossil snake 
species (26). X. myanmarensis could be scored for 17 of 237 char-
acters (see the Supplemental Materials for details), and the data set 
was analyzed in PAUP* 4.0b (31) using parsimony optimization, 
heuristic search, 1000 random addition replicates, tree-bisection-
reconnection branch swapping, and characters unordered and with 
equal weights. Bootstrap support values were obtained in the phylo-
genetic program TNT v.1.5 (32) using 10,000 replicates and default 
settings.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/7/eaat5042/DC1
Supplementary Text
Fig. S1. High-definition x-ray CT image of holotype skeleton (DIP-S-0907).
Fig. S2. High-definition x-ray CT images of holotype skeleton (DIP-S-0907).
Fig. S3. Probable sacral ribs, right dorsolateral view, x-ray CT image of holotype.
Fig. S4. Precloacal vertebrae of X. myanmarensis and other snakes.
Fig. S5. Scales of and second-scale specimen.
Fig. S6. Mid-sagittal sections through posterior precloacal vertebrae of two juvenile 
snakes.

Fig. S7. Distribution of Late Jurassic (Barremian)–Late Cretaceous (Maastrichtian) snakes 
represented on a map of Cenomanian arrangement of land masses.
Fig. S8. Strict consensus of 2040 equally parsimonious trees.
Data file S1. Data matrix for phylogenetic analysis: Nexus file format.
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