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ABSTRACT 

As a robust analytical method, spectrofluorometric analysis with machine learning modelling 
has recently been used to authenticate wine from different regions, vintages and varieties.  
This preliminary study investigated whether the molecular fingerprint obtained with this 
approach is maintained throughout the winemaking process, along with assessing different 
percentages of wine in a blend. Monovarietal wine samples were collected at different stages 
of the winemaking process and analysed with the absorbance-transmission and fluorescence 
excitation-emission matrix (A-TEEM) technique. Wines were clustered tightly according to 
origin for the different winemaking stages, with some clear separation of different regions 
and varieties based on principal component analysis. In addition, wines were classified with  
100 % accuracy according to varietal origin using extreme gradient boosting (XGB) 
discriminant analysis. The sensitivity of the A-TEEM technique was such that it allowed 
for accurate modelling of wine blends containing as little as 1 % of Cabernet-Sauvignon or 
Grenache in Shiraz wine when employing XGB regression, which performed better than partial 
least squares regression. The overall results indicated the potential for applying A-TEEM  
and machine learning modelling to wine chemical traceability through production to guarantee 
the provenance of wine or identify the composition of a blend.
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INTRODUCTION

Wine is an attractive target for fraud because it is a luxury 
product in a high-value industry worth hundreds of billion 
dollars globally. Wine fraud can occur in different forms,  
such as dilution, substitution, illegal addition and mislabelling 
(Ranaweera et al., 2021). To ensure the provenance of wine 
and to combat wine fraud, it is important to verify the origin 
and identity of the product by applying proper authentication 
and traceability techniques. Even though several analytical 
methods have been developed for wine authentication, 
it is challenging to find a technique to verify the original 
fingerprint of the product that has been maintained throughout 
production due to the complexity of the winemaking process 
(Aceto et al., 2013).

At the very least, winemaking involves alcoholic fermentation 
but can encompass other processes such as malolactic 
fermentation, use of permitted additives or maturation 
techniques and blending of different varietals. Each of these 
processes imparts alterations to wine composition: alcoholic 
fermentation produces compounds such as higher alcohols, 
esters, glycerol, acetaldehyde and acids (Styger et al., 2011); 
malolactic fermentation involves changes that impact wine 
aroma and flavour profiles beyond the conversion of malic 
acid into lactic acid (Lonvaud-Funel, 2010); and interactions 
of wine macromolecules such as polysaccharides with 
proteins, tannins and aroma compounds also affect the 
wine matrix (Jones-Moore et al., 2022). Some components 
in wine do not change significantly during the vinification 
process, which offers the opportunity to identify chemical 
markers that could be applied for authentication purposes 
(Catalano et al., 2016; Versari et al., 2014).

Few studies have been conducted to verify the possibility 
of tracing chemical markers during winemaking.  
Analysis of metal composition throughout the winemaking 
process revealed that only a few elements maintained 
constant concentrations (Castiñeira  et  al.,  2004). In their 
study, Almeida and Vasconcelos (2004) showed that 87Sr/86Sr 
isotope values were statistically identical and can be applied 
to the provenance of soil and respective grape juice and 
wine. A study of phenolic profile during winemaking using 
Fourier-transform infrared spectroscopy identified that the 
total phenolic content did not change significantly after 
primary and malolactic fermentation (Preserova et al., 2015). 
However, the blending process used to produce a finished wine 
affects polyphenols and colour (Li et al., 2020) and bentonite 
used for protein stabilisation can influence the distribution of 
various metals (Aceto  et  al.,  2013). Furthermore, although 
blending is an important step for producing wine with 
appealing sensory properties (Dooley et al., 2012) that may 
underpin the reputation of a designated origin (DO), such as 
Bordeaux blends involving Cabernet and Merlot or Australian 
Shiraz and Cabernet blends (Souza Gonzaga  et  al.,  2021;  
Wine Australia,  2017), it can introduce uncertainty for 
confirming authenticity. For example, there could be 
unauthorised blending of DO wine with a small percentage of 
non-DO wine to increase total volume, or there may be a need 

to identify blending proportions for labelling requirements, 
such as having 85 % or more of the variety or geographical 
indication stated on the bottle label in accordance with the label 
integrity programme in Australia (Wine Australia,  2018). 
Imparato  et  al.  (2011) applied nuclear magnetic resonance 
(NMR) profiling to a range of red wine varieties and achieved 
a precision of about 10 % when differentiating wine blends.  
However, for authentication purposes, a robust (and preferably 
rapid) method with high accuracy was still required to verify 
the blends of different grape varieties.

Considering that fluorescence spectroscopy can offer a viable 
method for wine authentication (Ranaweera  et  al.,  2021a, 
Ranaweera  et  al.,  2021b), the present study used a 
spectrofluorometric technique (absorbance-transmission 
and fluorescence excitation-emission matrix, or A-TEEM) 
in combination with machine learning modelling to test two 
hypotheses for the first time: 1) the molecular fingerprint of 
wine as a function of origin can be traced through steps of 
the winemaking process and 2) the blending percentages of 
different wines can be detected. The effectiveness of the cross-
validated models was evaluated and compared according to 
the score probabilities in the confusion matrix and root mean 
square error of cross-validation (RMSECV) along with the 
coefficient of determination of cross-validation (R2 CV).

MATERIALS AND METHODS

1. Chemicals and solvents
HPLC gradient grade absolute ethanol and analytical grade 
37 % hydrochloric acid (HCl) were purchased from Chem-
Supply (Port Adelaide, SA, Australia). High purity water 
was obtained from a Milli-Q purification system (Millipore, 
North Ryde, NSW, Australia).

2. Wine samples
Two sets of wine samples were obtained to examine the 
stage of wine production and for blending experiments.  
For the stage of production, five different monovarietal wines 
(Grenache from Alverstoke vineyard and Coombe vineyard 
at the University of Adelaide’s Waite Campus, Mataro from 
Coombe vineyard, Shiraz from Barossa Valley, and Nebbiolo 
from Southern Flinders Ranges) were collected in 2021 from 
the research and teaching winery at the Waite Campus at 
three different processing stages: post-primary fermentation 
(PF) when glucose and fructose were less than 2 g/L; post-
malolactic fermentation (MF) when malic acid concentration 
was less than 0.1  g/L; and pre-blending (PB) from 225  L 
barrels. For the blending experiments, three different 
commercially produced but unreleased monovarietal wines 
(Shiraz from Langhorne Creek, Cabernet-Sauvignon from 
Langhorne Creek, and Grenache from Riverland) were 
obtained from a local producer in 2020. 

3. Analytical procedures for basic chemical 
parameters
Wine pH and titratable acidity (TA) were measured with 
a Mettler Toledo T50 autotitrator, and alcohol content 
(percentage by volume) was measured by densitometry after 
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distillation by Commercial Services at the Australian Wine 
Research Institute. Analyses were undertaken in duplicate.

4. Sample preparation and A-TEEM analysis 
for winemaking stages
Samples were obtained from fermentation vessels or barrels 
at PF, MF and PB stages of production and stored in plastic 
containers in a freezer at - 20 °C until required for analysis 
to inhibit fermentation. At the time of analysis, samples were 
defrosted at room temperature and prepared and analysed 
in duplicate as described by Ranaweera et  al.  (2021b), 
undertaking two  measurements of each replicate sample. 
Briefly, samples (1 mL) were centrifuged (Eppendorf 5415D, 
Adelab Scientific, Thebarton, SA, Australia) at 9300 × g 
for 10 min and an aliquot (40  μL) was diluted 1:100 with 
50 % aqueous ethanol that had been adjusted to pH 2 with 
HCl and degassed by vacuum filtration (0.45  μm PTFE 
membrane). The dilution factor of wine-to-solvent was 
determined by considering the absorbance values of samples 
according to Beer-Lambert law (Gilmore, 2014). Samples 
were mixed for 60 s using a benchtop vortex (Grant-bio, PV-
1) and degassed by sonication for 10 min with a Unisonics 
ultrasonic cleaner (Rowe Scientific, Adelaide, SA, Australia). 
A-TEEM analysis was conducted with a HORIBA Scientific 
Aqualog spectrophotometer (version  4.2, Quark Photonics, 
Adelaide, SA, Australia) using the same instrument settings 
as reported previously (Ranaweera et al., 2021b) (i.e., an 
excitation wavelength range of 240–800  nm with a 5  nm 
increment under medium gain and 0.2  s integration time; 
emission wavelength range of 242–824 nm with a 4.66 nm 
increment as set by the instrument). Samples were analysed 
in a Hellma type 1FL (1 cm path length) Macro Fluorescence 
cuvette (Sigma-Aldrich, Castle Hill, NSW, Australia). 
Absorbance spectra (240–700 nm) and EEMs were recorded 
using Origin software for data acquisition (version  8.6, 
OriginLab Corporation, Massachusetts, USA). Wine colour 
measurements comprising CIELab, hue and intensity 
were also recorded. Pre-processing of excitation-emission 
matrix (EEM) data involved normalisation according to 
the water Raman scattering units for the specified emission 
conditions and correcting for the influence of inner filter 
effects (IFE), solvent background, dark detector signals 
and Rayleigh masking to eliminate spectral distortion  
(Gilmore et al., 2017). 

5. Sample preparation and A-TEEM analysis 
for blending experiment
Wines were added into 12 mL glass vials with Teflon lined 
caps to prepare the blends as shown in Table 1 to obtain a 
final volume of 10  mL. After addition, vials were mixed 
thoroughly for 60 s using a benchtop vortex and samples were 
prepared and analysed in duplicate as described in Section 4 
of Materials and methods, but using a dilution of 1:150.

6. Statistical analysis
One-way analysis of variance (ANOVA) with Tukey’s 
honestly significant difference (HSD) post hoc test for 
pairwise comparisons (α  =  0.05) for basic chemical 
measures and wine colour parameters according to stage 
of winemaking and region was undertaken with XLSTAT 
(version 2019.03.02, Addinsoft, Boston, USA). EEM 
data were unfolded into a two-way array using transform 
unfold multiway (mode 1) in Solo software (version 8.7.1, 
Eigenvector Research, Inc., Manson, WA, USA).  
Principal component analysis (PCA) was carried out with 
singular value decomposition and autoscale pre-processing 
with four  principal components to explore variations in 
samples at different stages of winemaking using Solo 
software. Samples were labelled with their variety according 
to the winemaking stage and classified using extreme gradient 
boosting discriminant analysis (XGBDA) after partial 
least squares (PLS) compression using five  latent variables 
(LV), with mean centring pre-processing and decluttering 
with generalised least squares weighting (GLSW) at 0.2 to 
both calibrate and cross-validate (k  =  10, Venetian blinds 
procedure). According to previous studies, the model 
was evaluated using confusion matrix score probabilities 
(Ranaweera  et  al.,  2021a, Ranaweera  et  al.,  2021b).  
For the blending experiment, unfolded EEM data were 
modelled with PLS and XGB regression algorithms (Solo 
software) using blending percentage as the y-block. Root 
mean square error of cross-validation (RMSECV) (Venetian 
blinds with 10  splits) and coefficients of determination for 
both calibration and cross-validation (R2 cal, R2 CV) were 
used to evaluate the effectiveness of the models.

RESULTS AND DISCUSSION

1. Variations according to stage of 
winemaking
CIELab colour parameters and basic oenological 
measurements of wine samples obtained during the 

TABLE 1. Percentages of wine in blends of Shiraz with Cabernet-Sauvignon or Grenache.

Variety Blending percentage (v/v)

Shiraz 100 99 95 90 85 60 50 0

Cabernet-Sauvignon or Grenache 0 1 5 10 15 40 50 100
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winemaking process were assessed with one-way ANOVA 
according to different winemaking stages as well as according 
to origin (for different varieties), as shown in Table  S1 
and Table  S2, respectively, of the Supplementary data.  
When analysed according to the winemaking stage 
(Table S1), there were no significant differences (p > 0.26) 
in basic chemistry (alcohol, pH, TA) nor colour parameters 
(hue, intensity, L*, a*, b*, C*). Values for the chromatic 
characteristics at the different winemaking stages showed 
that the wines were relatively low in lightness (L*), 
moderately high in red (a*) and yellow (b*) and high in 
chroma (C*). These results generally aligned with variations 
among oenological properties and colour expression during 
winemaking (Arcena et al., 2020), depending on the stage/
time period of sampling. According to the origin of the 
samples (Table S2), alcohol % v/v and all colour parameters 
showed significant variation (p < 0.0001), whereas pH and 
TA were not significantly different.

In the CIE 1931 xyY colour space, all samples were 
congregated together in the red zone (x = 0.68 to 0.72 and  
y = 0.27 to 0.31, Figure 1A), which contrasted with the hue 
vs. intensity plot, where clear separation of Shiraz from 
Barossa Valley and Nebbiolo from Southern Flinders Ranges 
could be observed (Figure  1B). Furthermore, Grenache 
and Mataro samples from vineyards at the Waite campus  
(Alverstoke and Coombe) were clustered relatively close 
but were still somewhat differentiated. Based on this 
simple analysis, it appeared that unique information related 
particularly to the origin of samples that was not impacted 
by the processing stage could be expressed from absorbance 
data.

The observations were interesting, but the stages of 
winemaking were seemingly overshadowed. As such, 
further exploratory analysis was carried out with EEM 
data (which can be considered as a molecular fingerprint 
(Gilmore  et  al.,  2017) using PCA (Figure  2). The first 
three principal components explained 94.80  % of the total 
variance for the samples, which were perfectly clustered 
according to their origin for the different winemaking stages.  
Wines from the different regions and varieties were 
reasonably well separated along PC1 except for Mataro 
from Coombe vineyard and Shiraz from Barossa Valley. 
PC2 especially segregated Nebbiolo from Southern 
Flinders Ranges from the remainder and the Shiraz to 
an extent, whereas Waite Campus vineyard samples  
(Grenache and Mataro) overlapped. The Shiraz was well 
separated from other samples along PC3. This outcome 
indicated for the first time that the fluorescence molecular 
fingerprint according to origin could be traced (and seemingly 
preserved) during winemaking.

XGBDA was subsequently carried out as reported 
(Ranaweera  et  al.,  2021a, Ranaweera  et  al.,  2021b) for 
classification by origin. Figure  3 shows the class cross-
validation (CV, Venetian blinds method) prediction 
probability from this machine learning approach, revealing 
the probability of each sample belonging to the class it most 
closely resembles. Class CV prediction demonstrated excellent 
separation of samples according to their origin, grouping all 
stages of winemaking (i.e., post-primary fermentation, post-
malolactic fermentation, and pre-blending) together for each 
class. These results further emphasised the distinct possibility 
of tracing samples through different stages of winemaking 
according to their origin. Thus, EEM data from the A-TEEM 
technique could provide an original spectral fingerprint of 

FIGURE 1. Analysis of colour parameters according to the stage of the winemaking process (n = 15, duplicate 
samples analysed twice) showing (A) CIE 1931 plot (inset shows clustering of samples) and (B) hue vs. colour 
intensity graph. PF, post-primary fermentation; MF, post-malolactic fermentation, PB, pre-blending. 1, Grenache from 
Alverstoke vineyard; 2, Grenache from Coombe vineyard; 3, Shiraz from Barossa Valley; 4, Mataro from Coombe 
vineyard; 5, Nebbiolo from Southern Flinders Ranges.
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FIGURE  2. Scores from PCA of EEM data for samples of different variety/origin collected at three stages of 
winemaking (n = 15, duplicate samples analysed twice). Gre Alv, Grenache from Alverstoke vineyard; Gre Coo, 
Grenache from Coombe vineyard; Mat Coo, Mataro from Coombe vineyard; Neb SFR, Nebbiolo from Southern 
Flinders Ranges; Shz BV, Shiraz from Barossa Valley. PF, post-primary fermentation; MF, post-malolactic fermentation; 
PB, pre-blending.

FIGURE 3. Class CV predicted for wine origin from XGBDA analysis of EEM data for samples collected at three stages 
of winemaking (n = 15, duplicate samples analysed twice). Gre Alv, Grenache from Alverstoke vineyard; Gre Coo, 
Grenache from Coombe vineyard; Mat Coo, Mataro from Coombe vineyard; Neb SFR, Nebbiolo from Southern 
Flinders Ranges; Shz BV, Shiraz from Barossa Valley. PF, post-primary fermentation; MF, post-malolactic fermentation; 
PB, pre-blending.
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the product that can be maintained during wine production, 
thereby opening up avenues for this being used as a chemical 
signature for traceability.

2. Modelling to identify blend proportions
Testing the A-TEEM approach for sensitivity in terms of 
changes in matrix from introducing a blending component 
was another important consideration regarding potential 
fraud detection. To evaluate the possibility of identifying the 
blending percentage of each sample, regression methods were 
applied to EEM data for Shiraz wine containing proportions 
of Cabernet-Sauvignon or Grenache. As a common method, 
PLS regression (PLSR) was applied for the two sets of wines 
blended according to the amounts in Table 1. The correlation 
between the actual blends and predicted percentages were 
evaluated, with R2 CV and RMSECV values for Shiraz 
and Cabernet-Sauvignon blends (0.996, 2.17) and Shiraz 
and Grenache blends (0.992, 3.12) as shown in Figure S1.  
The accuracy of the models was good, with R2 CV 
values  >  0.990 for both sets of blends, but the RMSECV 
values were slightly high, at 2–3  %. PLSR uses latent 
variables (components) that explain as much of the 
covariance as possible between a set of predictor X-variables 
and response Y-variables (Ghanem  et  al.,  2015). A study 
by Gilmore  et  al.  (2020) identified that XGB regression 
(XGBR) yielded more precise fits for the prediction of 
phenolic compound and anthocyanin concentrations 
from A-TEEM data compared to PLSR. Therefore, XGB 
regression was applied to the blending experiment data to 
seek improvements in the regression models. Figure 4 shows 
the results, with the XGBR models having a perfect R2 CV 
of 1.000 and exceedingly low RMSECV of 0.00028 for both 
sets of Shiraz blends.

XGBR can clearly predict the blend percentage for each 
sample, notably with a clear distinction between 0 % blend 
and 1  % blend for both Shiraz/Cabernet-Sauvignon and 
Shiraz/Grenache. This was a striking result, highlighting that 
XGBR modelling of EEM data could be a successful option 
for detecting the addition of small proportions of different 
varietal wines. With further development and ultimately the 
production of databases, it is conceivable that this approach 
could be applied for robust prediction of the composition 
of unknown sample blends. In addition, the approach is 
simple and rapid compared to sensitive DNA techniques  
(e.g., based on cultivar genotype to determine wine 
blends), which suffer from reproducibility problems 
when authenticating experimental or commercial wines 
(Boccacci et al., 2020).

CONCLUSIONS

The A-TEEM approach with machine learning modelling 
continued to show promise as an indispensable tool for 
wine authentication. In this preliminary work, A-TEEM 
was applied to monovarietal unfinished wine samples 
collected from different stages of the winemaking process  
(i.e., post-primary fermentation, post-malolactic 
fermentation and pre-blending) to investigate the possibility 

of tracing molecular fingerprints during wine production. 
PCA separated samples from different origins based on EEM 
data and subsequent XGBDA modelling could differentiate 
the samples with 100 % accuracy. Further highlighting the 
power of the A-TEEM technique, two  sets of wine blends  
(Shiraz/Cabernet-Sauvignon and Shiraz/Grenache) were 
analysed to model the proportions of wine in the blend 
(beginning as low as 1 %). Regression models built with PLSR 
and XGBR were evaluated in terms of correlation coefficient 
and cross-validation error, with unrivalled accuracy achieved 
for the XGBR model with R2 CV equal to 1.000 and small 
RMSECV for both sets of wine blends. Given the possibility 
of tracing a wine’s origin through production in conjunction 
with identifying small additions of other wine in a blend, 
this approach could foreseeably be developed into a robust 
method and applied in the industry not only for validating the 
origin of wine but also detecting other aspects of wine fraud.
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