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ABSTRACT 

Probabilistic predictions describe the uncertainty in modelled streamflow, which is a critical 
input for many environmental modelling applications.  A residual error model typically 
produces the probabilistic predictions in tandem with a hydrological model that predicts the 
deterministic streamflow. However, many objective functions that are commonly used to 
calibrate the parameters of the hydrological model make (implicit) assumptions about the 
errors that do not match the properties (e.g. of heteroscedasticity and skewness) of those 
errors. The consequence of these assumptions is often low-quality probabilistic predictions of 
errors, which reduces the practical utility of probabilistic modelling. Our study has two aims: 

Firstly, to evaluate the impact of objective function inconsistency on the quality of 
probabilistic predictions; 

Secondly, to demonstrate how a simple enhancement to a residual error model can rectify the 
issues identified with inconsistent objective functions in Aim 1, and thereby improve 
probabilistic predictions in a wide range of scenarios. 

Our findings show that the enhanced error model enables high-quality probabilistic 
predictions to be obtained for a range of catchments and objective functions, without 
requiring any changes to the hydrological modelling or calibration process. This advance 
has practical benefits that are aimed at increasing the uptake of probabilistic predictions in 
real-world applications, in that the methods are applicable to existing hydrological models 
that are already calibrated, simple to implement, easy to use and fast. Finally, these methods 
are available as an open-source R-shiny application and an R-package function. 
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1 INTRODUCTION 

Daily streamflow predictions produced by hydrological models are widely used in practical 
environmental and water resource applications, but contain inherent uncertainties as a consequence of 
simplifying natural systems (Beven 1989; Oreskes et al. 1994). Increasingly, hydrologists are 
expected to report the uncertainty in the streamflow predictions along with the predictions themselves 
(Welsh et al. 2013; Ball et al. 2016), which can pose a difficulty in that a majority of existing 
hydrological models provide only determinstic ‘point’ predictions of streamflow and do not describe 
the predictive uncertainty (see Moore 1985; Perrin et al. 2003; Brunner & Simmons 2012 for 
examples of well-known  hydrological models that do not directly consider uncertainty). Probabilistic 
predictions from residual error models can describe predictive uncertainty, e.g. by providing more 
information on the likely range of streamflow, and can thereby avoid the false sense of security 
associated with point streamflow predictions (Biondi et al. 2010; Farmer & Vogel 2016). 

However, there are several current barriers to the routine inclusion of probabilistic predictions in 
practical streamflow modelling, such as a perceived complexity in their generation and difficulties in 
their interpretation (Pappenberger & Beven 2006). One such barrier investigated in this study is the 
impact of the objective function used to calibrate the hydrological model on the quality of the 
probabilistic predictions. Objective functions for calibrating deterministic predictions are typically 
chosen for reasons other than facilitating high-quality probabilistic predictions, and many common 
objective functions leave the model residuals poorly-described. 

A common approach for probabilistic uncertainty quantification is the residual error model approach, 
where a probabilistic error model (the residual error model) is added to the deterministic predictions 
of a hydrological model to represent the combined contribution of multiple sources of errors 
(Sorooshian et al. 1983; Schoups & Vrugt 2010; Evin et al. 2014). Practical implementations of the 
residual error model approach typically follow the 'post-processor' strategy, where the hydrological 
model parameters are estimated first using an objective function, followed by a separate estimation of 
residual error model parameters (Engeland et al. 2010; Evin et al. 2014; Li et al. 2016; McInerney et 
al. 2018). This post-processor approach is particularly attractive for practical applications because, at 
least in principle, it enables probabilistic predictions to be generated using hydrological models 
calibrated with user-specified objective functions. The post-processor approach is interesting because 
the quality of probabilistic predictions using this methodology depends on both the residual error 
model and the objective function as two separate processes. The objective function produces residuals 
with specific structures and patterns (i.e. makes ‘assumptions’ about the residuals) that are separately 
interpreted by the residual error model.  

Substantial previous research has identified robust residual error models that produce high-quality 
probabilistic predictions (Kuczera 1983b; Smith & Marshall 2010; Wang et al. 2012; Del Giudice et 
al. 2013; Cheng et al. 2014; McInerney et al. 2017). These robust residual error models provide a 
realistic description of the statistical properties of the errors in the deterministic predictions. Common 
statistical properties of residual errors include (but are not limited to) their mean, heteroscedasticity 
(i.e. larger errors in larger flows), asymmetry (skewness) and temporal persistence (i.e. multiple 
consecutive errors with the same sign and similar magnitude) (Sorooshian & Dracup 1980; Bates & 
Campbell 2001; Evin et al. 2013; Smith et al. 2015; Sun et al. 2017). Residual error models found to 
perform well at the daily scale include those that transform streamflow using the Box-Cox 
transformation (McInerney et al. 2017).  

This study uses the term ‘objective function inconsistency’ specifically to describe the modelling 
scenario in which the assumptions about the mean, heteroscedasticity and skewness made by the 
objective function are different from the assumptions about the mean, heteroscedasticity and skewness 
made by the residual error model. A typical example of ‘objective function inconsistency’ relevant to 
our study and broader practice arises if the hydrological model parameters are calibrated using an 
objective function without streamflow transformations, but predictive uncertainty is estimated using a 
residual error model that applies a Box-Cox transformation (which assumes that the errors are 
heteroscedastic and skewed). 

These considerations lead to the first question, ‘Do differences/inconsistencies between the 
assumptions of the objective function and the assumptions of the residual error model impact on the 
quality of the probabilistic predictions?’ This question is by no means trivial, but to our knowledge 
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there is no study that has examined this issue. However, studies have evaluated the performance of 
inconsistent objective functions without comparison (Evin et al. 2014; Li et al. 2016), or have 
examined the performance of post-processed approaches with purely consistent scenarios (McInerney 
et al. 2018).  

Previous studies provide insights into modifications to the residual error model that can assist with 
predictive quality in scenarios of objective function inconsistency. For example, the Error Reduction 
and Representation In Stages (ERRIS) approach developed by Li et al. (2016) included a flow-
dependent bias correction to the residual error model, as part of its four-stage model for day-ahead 
forecasts. In another study, Jiang et al. (2019) explored time-varying representations of the mean, 
variance and distributional form of residual errors. These two studies demonstrate that modifications 
to the mean parameter of the residual error model warrant investigation, which leads to a new 
question: 'How robust are modifications or enhancements to the residual error model across a wide 
range of catchments and a wide range of hydrological model objective functions?' 

This study has the following aims: 

1. Evaluate the impact of objective function inconsistency on the quality of probabilistic 
predictions; 

2. Demonstrate how a simple enhancement to a residual error model can rectify the issues 
identified with inconsistent objective functions in Aim 1, and thereby improve probabilistic 
predictions in a wide range of scenarios. 

A broader objective of this work is to facilitate the uptake of probabilistic predictions by researchers 
and practitioners in hydrology and water resources. Hence, there is an emphasis on simple and 
practical modelling approaches that can be incorporated with relatively minor effort into existing and 
future applications. 

The paper is organised as follows. Section 2 outlines the theory of probabilistic models used in this 
work. Section 3 describes the case study data and methods, including the selection of catchments, 
hydrological model, objective functions, performance metrics and residual error diagnostics. Section 4 
reports the case study results. Section 5 discusses the findings and provides recommendations for 
current applications and future research, and Section 6 summarises the key conclusions of the study. 

2 THEORY 

The models and methods used in this work are based on those developed in McInerney et al. (2018), 
wherein the residual error model is calibrated in a different process from the hydrological model. The 
hydrological model produces a single time-series of predictions h

tqθ  where hθ  represents the 
parameters used to calibrate the hydrological model and tq  is the streamflow predictions at time t . 
The residual error model produces multiple probabilistic predictions tQ  that represent multiple 
possible scenarios, which are formulated by adding the hydrological model predictions h

tqθ  to 
modelled residual errors t . 

    ; ;h
t t tz zz Q z q  θθ θ  (1) 

 ; ztz Q θ  and  ;h
t zz qθ θ  represent the residual model predictions tQ  and the hydrological model 

predictions h
tqθ  (respectively) that are transformed. Data transformations are commonly applied to 

streamflow prior to calibration: this helps remove heteroscedasticity and skewness from the 
predictions. In this study we use the Box-Cox data transformation (Box & Cox 1964) 
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with parameters  ,z Aθ , where  is a power parameter A  is a shift (or offset) parameter, q is 
streamflow predictions and log  is the natural logarithm function. The transformation parameters zθ  
in the residual error model are fixed prior to calibration at 0.2   and 0A , in accordance with 
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recommendations made in earlier works (McInerney et al. 2017; Jiang et al. 2019). The residual errors 

t  are modelled with a first-order autoregressive (AR1) model, which uses parameters 
 , ,   θ . The mean parameter t  may be variable in time. 

 

    2
1 1 0,t t t t N           (3) 

The residual error model in McInerney et al. (2018) assumes a zero-mean parameter, or 0  . Here 
we introduce an enhanced residual error model which uses a linear-mean parameter instead, that is 
conditioned on the simulated streamflow. We therefore compare the performance of both residual 
error models: a reference model with a zero-mean and an enhanced model with a linear mean. 
 

Reference residual error model 

The mean is assumed to be zero: that is; the uncertainty about the simulated streamflow predictions 
(in transformed space) is Gaussian and not offset. 
 
 0t   (4) 

Where t  is the mean parameter at each timestep. This is a common assumption made in residual 
error modelling (e.g. Kuczera 1983a; Evin et al. 2014; McInerney et al. 2017; Sun et al. 2017; 
McInerney et al. 2018). 
 

Enhanced residual error model 

The mean is assumed to follow a linear function that is based on the transformed streamflow 
predictions from the hydrologic model. 

 

  ;h
t t zz q     θ θ  (5) 

Where   represents the intercept, and   represents the slope. This linear mean parameter is not 
especially common, although it has been explored elsewhere as part of more complex methods in 
forecasting studies (Li et al. 2016; Jiang et al. 2019). For complete details of the models and methods 
used, including generation of the probabilistic predictions and both the enhanced and reference 
residual error models, the reader is referred to Hunter et al. (2021). 

3 CASE STUDY MATERIAL AND METHODS  

Catchments and observed data 

The case study considers 54 Australian catchments with a (relatively) diverse range of 
hydroclimatology (Figure 1). Daily rainfall, potential evapotranspiration (PET) and streamflow time 
series are obtained from the Australian Bureau of Meteorology Hydrologic Reference Stations (HRS) 
dataset (http://www.bom.gov.au/water/hrs). For each catchment, 10 years of continuous observed data 
is selected. Ephemeral catchments are excluded from this study because they require more complex 
residual error modelling methods (Smith et al. 2010; McInerney et al. 2019; Wang et al. 2020). The 
selected time periods vary between catchments, with the earliest starting in 1970 and the latest ending 
in 2012.  
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Figure 1: Locations of the 54 case study catchments in Australia. The catchment represented in 
the diagnostics of Aim 1 is circled in red. The archetypal Köppen classifications (Stern et al. 
2000) are shown. 

 

Hydrological model 

The hydrological model used in this study is GR4J, a daily conceptual rainfall-runoff model with two 
storages and four parameters (Perrin et al. 2003). GR4J has been tested under a range of hydroclimatic 
conditions and is used in the streamflow forecasting services of France and Australia (Oudin et al. 
2006; Ficchì et al. 2016; Woldemeskel et al. 2018; Lerat et al. 2020). The four parameters of GR4J 
are estimated by optimising the objective functions listed in Section 0 below, with the algorithm in the 
airGR R-package (Coron et al. 2017; Lerat et al. 2020). 

Objective functions 

Nine hydrological objective functions are considered and are listed in Table 1. They are all (except for 
the Pearson’s correlation coefficient, which is included for demonstration purposes only) commonly-
used in hydrological practice. When referring to these objective functions (or the model that includes 
them), we generally refer to the abbreviated term in the second column of Table 1. Where the same 
objective function structure is used (e.g. NSE structure), the objective functions differ in the 
parameters of the transformation in Eq. (2) that is applied to the streamflow data prior to calibration of 
the hydrological model. This difference in transformation parameters ensures that the calibrated 
hydrological parameters are distinct, and therefore these objective functions are functionally unique.  

 
 

 



Page 6 of 14 
 

Table 1: List of objective functions used to calibrate the hydrological parameters hθ in this 

study.  

Objective function structure Abbreviation Box-Cox   

Nash-Sutcliffe Efficiency (Nash & Sutcliffe 1970) 

NSE 1 
NSE-BC02 0.2 
NSE-BC05 0.5 
NSE-Log 0 

Kling-Gupta Efficiency (Gupta et al. 2009) 
KGE 1 

KGE-BC02 0.2 
KGE-BC05 0.5 

Nash-Sutcliffe Efficiency and Bias (Vaze et al. 2010) NSE-BIAS 1 
Pearson Correlation Coefficient  R2 1 

Note that the transformation parameter   applied to the calibration data of the hydrological objective 
function in Table 1 can be different from the transformation parameter used for the residual error 
model, which is always 0.2  . 

Terminology 

We define a ‘scheme’ as a ‘combination of a hydrological model and a residual error model’ (Hunter 
et al. 2021). The term ‘model’ refers to either the ‘hydrologic model’, or ‘residual error model’ (both 
explained in more detail in Section 0).  

The schemes used in this paper can be described as either benchmark, baseline or enhanced, where: 

 Benchmark schemes make assumptions about the residuals that are consistent between the 
objective function used to calibrate the hydrological model parameters hθ  and the residual 
error model. Because all of our residual error models use a Box-Cox power parameter value 
of 0.2  , the model that uses a NSE-BC02 objective function and a zero-mean assumption 
(reference residual error model) is our benchmark scheme. 

 Baseline schemes can make inconsistent assumptions between the objective function and the 
residual error model, but still use the reference residual error model.  Therefore, all schemes 
that use the reference residual error model are considered baseline schemes, except for the 
scheme that uses the NSE-BC02 objective function (which is specifically a benchmark 
scheme). 

 Enhanced schemes make inconsistent assumptions between the objective function and 
residual error model, but are distinct from the baseline schemes in that enhanced schemes use 
the enhanced residual error model. All schemes that use the enhanced residual error model are 
enhanced schemes. 

Performance evaluation and metrics 

The quality of the probabilistic predictions are evaluated using three common goodness-of-fit metrics 
(e.g. see Renard et al. 2010; McInerney et al. 2017; Hunter et al. 2021 for details). For all metrics, a 
lower value indicates better performance.  

 Reliability indicates the likelihood that the observed data might have been drawn from the 
probabilistic predictions, and is based on a quantification of the predictive quantile-quantile 
(PQQ) plot. 

 Precision refers to the spread/width of uncertainty within the predictive distribution. 

 Volumetric bias is a measure of how well the predictions represent the long-term water 
balance. 

4 RESULTS 

Impact of inconsistency on predictive quality 

Figure 2 provides the outputs from four diagnostic tools on predictions from one example catchment 
(gauge 402204 in Yackandandah Creek, VIC). 
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Figure 2: Diagnostics that evaluate the predictive quality and behavior of two schemes: The 
benchmark scheme with consistent assumptions between the (NSE-BC02) objective functions 
and the (BC02) residual error model (top), and a baseline scheme with inconsistent assumptions 
between the (NSE) objective function and the (BC02) residual error model. 

Panels (A) and (E) show part of the predictive time series, of the benchmark scheme (top) and the 
baseline scheme (bottom) for catchment 402204. The predictive bounds of the baseline time series 
(Panel E) are unneccessarily large: bounds that are much larger than the observed data risks over-
estimating the model uncertainty. This behaviour translates into higher values of the reliability and 
precision in Panel (E) as opposed to Panel (A): recalling that lower values of both metrics indicate 
better predictions. 

Panels (B) and (F) are the predictive quantile-quantile (PQQ) plots for both benchmark (top) and 
baseline (bottom) schemes. A reliable scheme will have the observed data on the uniform 1:1 line (i.e. 
like Panel B). Panel (F) indicates a consistant underestimation of observed data, in that the 1:1 line 
falls below the observed data for almost all data points. 

Panels (C) and (G) represent the probability density function of the standardised residuals. The 
residual error model assumes a Guassian distribution of the residuals (from transformed streamflow 
quantities), so ideally the standardised residuals (empirical distribution) will fit to the assumed 
Guassian distribution. This is largely the case for Panel (C), the benchmark scheme with consistent 
assumptions between the hydrologic model and the residual error model, but is less so for Panel (G) 
where the assumptions are inconsistent. 

Finally, Panels (D) and (H) plot the standardised residuals (from transformed streamflow quantities) 
against the standardised (transformed) streamflow predictions. Recalling that both benchmark and 
baseline scheme assume a residual mean of zero, we can surmise that an ideal trendline would lie 
horizontal at zero. It is horizontal for neither panel (i.e. there is some systematic linear behaviour in 
the residuals), but this linear trend is far more pronounced in the inconsistent scheme, in Panel (H) 
than in Panel (D).  

Analysis of these diagnostics therefore indicate that: 

 The predictive performance of the baseline schemes are worse than the predictive 
performance of the benchmark scheme, because of the inconsistency in assumptions. 
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 There is a systematic issue with the predictive performance of the baseline schemes (e.g. 
Panels (F) and (H)). 

 There is a linear trend in the residuals, that becomes more pronounced in the inconsistent 
scheme (Panel (H)). 

Enhanced scheme demonstration 

This section compares the predictive performance of the baseline, benchmark and enhanced schemes, 
thus addressing Study Aim 2. 
 

 
Figure 3: Comparative timeseries between (A) the benchmark scheme, (B) a baseline scheme 
with the NSE objective function, and (C) an enhanced scheme with the NSE objective function. 
Example catchment is gauge 402204 at Yackandandah Creek in VIC. 

Panels (A) and (B) of Figure 3 match Panels (A) and (E) of Figure 2; and exhibit the same trend of the 
inconsistent baseline scheme over-estimating the observed data and thereby providing predictions that 
are less reliable and less precise than the benchmark scheme in Panel (A). We stress that the 
difference between Panels (A) and (B) are solely the objective function: Panel (A) uses a NSE-BC02 
objective function with assumptions that are consistent with the BC02 residual error model, while 
Panel (B) uses an NSE objective function with assumptions that are different from the assumptions of 
the BC02 residual error model. 

Panel (C) uses the same objective function as Panel (B), but is able to resolve the issues of precision 
and reliability Panel (B) because it uses a linear mean parameter rather than a zero-mean parameter. 
The reliability, precision and bias of Panel (C) is similar to the same metrics of Panel (A), the 
benchmark scheme – despite Panel (C) still having inconsistent assumptions between the objective 
function and the residual error model. Visually, the predictions in Panel (C) are closer to the observed 
streamflow predictions and do not overestimate the model uncertainty as much as the baseline scheme 
does. 

Metrics for all catchments 
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Reliability, precision and bias are calculated for all 54 case-study catchments and objective functions, 
and plotted in boxplots. 

 
Figure 4: Metrics for 54 case-study catchments for the benchmark and baseline schemes (Panels 
A, C, E) and the enhanced schemes (Panels B, D, F). 

Reliability 

Figure 4(A) and (B) compares the reliability of 54 catchments and 9 objective functions. The 
benchmark scheme is one of four schemes with the best reliability, indicated by a low median 
reliability metric of 0.05. The baseline NSE-Log, KGE-BC02 and KGE-BC05 schemes achieve a 
similar reliability, whereas the baseline NSE, KGE, NSE-BIAS and R2 schemes are far less reliable 
(i.e. they have higher values of reliability). 

In contrast to the worst-performing baseline schemes (i.e. R2, NSE-BIAS, KGE, NSE), the enhanced 
schemes show a large improvement in reliability. The median reliabilities for the enhanced schemes 
are similar to the median reliability of the benchmark scheme and range from 0.04 to 0.05 across all 
objective functions and case study catchments. The enhanced scheme outputs seem independent of the 
objective function: that is, the reliability is relatively uniform across all enhanced schemes. 

Precision 

Figure 4(C) and (D) compares the precision for the same 54 study catchments and 9 objective 
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functions. The benchmark scheme is one of two schemes with the best precision, with a median 
precision metric value of 0.35. The precision values for the remaining baseline schemes vary widely 
from 0.35 (NSE-Log) to 0.93 (R2). The enhanced schemes demonstrate less variability and are 
approximately as precise as the benchmark scheme.  

Volumetric Bias 

Figure 4(E) and (F) reports the volumetric bias. The benchmark scheme is, once again, one of the top 
performers, with a median bias metric of 0.03. The baseline schemes perform generally worse, with 
median bias metrics that range from 0.04 (NSE and KGE-BC02 schemes) to 0.08 (KGE scheme), and 
up to 0.28 for the R2 schemes. The enhanced schemes achieve large improvements in the bias metric 
(relative to the baseline schemes with the same objective function), and perform similar to the 
benchmark scheme.  

Summary of case study results 

These results from all the case-study catchments reinforce the findings from the example catchment 
diagnostics. That is; 

 The baseline schemes, with inconsistent objective functions and a zero-mean assumption, 
generally shows a degredation of predictive performance from the benchmark scheme with a 
consistent objective function. 

 This issue in performance is resolved when the enhanced residual error model, with a linear-
mean assumption, is used – despite there still being inconsistent assumptions between the 
objective function and the residual error model. 

 

5 DISCUSSION 

Most of the baseline schemes exhibit poor performance relative to the benchmark scheme. The only 
difference between baseline and benchmark schemes is the objective function: Therefore, the 
deterioration in quality must be due to this influence. The residual diagnostics indicate that the change 
in streamflow transformation between the objective function and the residual error model, which is 
done to treat residual heteroscedasticity and skewness, introduces a linear structure into the model 
residuals (Figure 2H). Empirically, this behaviour is systematic across all catchments and objective 
functions. 

A valuable finding is that the enhanced schemes produce results that are equitable with the consistent 
benchmark scheme, and also with each other regardless of objective function. Each objective function 
produces residuals with different structures and assumptions: This finding indicates that the linear 
mean is sufficiently flexible to describe sets of residuals that are structurally diverse.  

Practical benefits  

The study findings indicate that an enhanced residual error model can be used with a wide range of 
objective functions to provide a high quality probabilistic predictions. This achievement offers three 
major practical benefits:  

Benefit 1: Method can be applied to existing hydrological models that are already calibrated 

This saves time and effort for practioners, because there is no need to recalibrate the hydrological 
model to facilitate high-quality probabilistic predictions. Changing or re-calibrating the objective 
function to one that is consistent in assumptions with a residual error model is often impractically 
time-consuming, especially with more complex distributed models that are slower to calibrate. More 
generally, practitioners may favour certain objective functions, or even develop their own, based on 
previous experience with their specific hydrological models, catchments and/or operational 
objectives, while researchers may be interested in specific objective functions as part of their study 
scope. 

Replacing the residual error model with one that makes assumptions that are the same as the 
hydrological objective function (i.e. use a scheme similar to the benchmark scheme that we have used 
in this study) might appear to be a reasonable option, but doing this is often ill-advised, for a few 
reasons:  
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 The statistical assumptions underlying an objective function can be opaque and/or unknown, 
especially for composite objective functions that combine several other objective functions, 
e.g. NSE-BIAS.  

 Creating and testing customised residual error models for such objective functions can be 
challenging and risks producing low-quality probabilistic predictions. 

 Many residual error models that have consistent assumptions with common objective 
functions are known to produce poor-quality probabilistic predictions. For example, the 
standard least-squares residual error model is consistent with the NSE objective function with 
no data transformation, but cannot manage data heteroscedasticity or skewness so produces 
poor-quality predictions (Sorooshian & Dracup 1980; Kuczera 1983a; Schoups & Vrugt 
2010; Cheng et al. 2014; McInerney et al. 2017). 

Benefit 2: Approach is simple to implement, easy to use and fast  

The method proposed in this work are considered simple to implement because it only uses two 
inputs: the time series of observed streamflow, and the time series of the hydrological model 
predictions. This takes advantage of the post-processor strategy for residual error modelling, where 
the paramters for the residual error model are calibrated in an entirely separate stage from the 
parameters of the hydrologic model. The post-processor approach is generally more flexible than 
traditional joint approaches where the parameters of both the hydrological model and residual error 
model are estimated simultaneously. Post-processor strategies also enable a wider range of parameter 
estimation methods for residual error modelling: the Method-of-Moments is used here, but Maximum 
Likelihood and full Bayesian methods can also be used (Evin et al. 2014; Li et al. 2016; Jiang et al. 
2019).  

The calibration of the residual error model uses the Method-of-Moments for parameter estimation, 
which is both fast and easy to use while still providing parameter estimates and predictive quality 
similar to more complex statistical inference methods (McInerney et al. 2018). The Method-of-
Moments does not require a likelihood function or optimisation, and therefore requires less 
specialised statistical knowledge and fewer computational tools. 

Benefit 3: Algorithms are available in R-shiny Web app and R Functions  

As a demonstration of the simpliticy of use, the methods presented in this paper are available on 
github as open-source software (https://github.com/Jasenter/Probabilistic_App), where they can be 
interfaced as either an R-function or an R-shiny application (both of these interfaces are provided in 
the github repository). 

Future work 

The following research questions are noted for further investigation: 

 Generality of findings across broader applications. The conclusions of this study are derived 
empirically from the catchments, hydrological model and objective functions tested: this 
research could benefit from experimentation with a more diverse set of catchments (including 
those affected by ephemerality or snowmelt), and more hydrological models or objective 
functions. 

 Further development of residual error models and/or objective functions. The applicability of 
the flow-dependent mean enhancement to more complex residual error models and/or 
objective functions, such as those that account for seasonality, zero flows or extreme flows 
(Wang & Robertson 2011; Li et al. 2013; Liu et al. 2020), warrants investigation.  

6 CONCLUSIONS 

High-quality probabilistic predictions of streamflow are useful in practice and in research. Our work 
has demonstrated that there is an issue in the predictive quality of probabilistic predictions when the 
assumptions of the objective function used to calibrate the hydrological model are inconsistent with 
the assumptions of the residual error model. There is limited scope to adjust the residual error model, 
because it must be able to account for residual heteroscedasticity and skewness and not every residual 
error model can perform this task equally. Our work addresses a research gap related to combining 
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residual error models with inconsistent objective functions in a post-processor context, where the two 
processes are separated and therefore can hold inconsistent assumptions about the residuals. We show 
that there is an issue with predictive quality when the assumptions are inconsistent, and that this issue 
can be resolved with an enhanced residual model that replaces the traditional zero-mean parameter 
with a linear mean. We demonstrate the efficacy of our enhanced residual error model on 54 
catchments and 9 objective functions, and provide complete details of the model construction in 
Hunter et al. (2021).    
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