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Innovative use of spatial regression models to predict the effects of 1 

green infrastructure on land surface temperatures 2 

 3 

Abstract 4 

Understanding the complex and dynamic interplay and cumulative effects of green infrastructure (GI) and urban form on 5 

land surface temperatures (LST) is important to design and implement heat mitigation strategies. Past research has mostly 6 

employed two-dimensional (2D) indicators, simple correlations and conventional regression models using coarse-level 7 

analytical approaches that obviate spatial autocorrelation effects. For the first time, this study applies a holistic approach 8 

to evaluate GI and urban settings as complex dynamic systems. The objectives of this paper are to: (1) develop novel 9 

‘spatially-based’ predictive models that account for spatial dependencies; (2) implement a fine-scale analytical unit (<50m) 10 

for a more precise and accurate analysis; (3) incorporate the ‘multi-temporal’ diurnal and seasonal variations into 11 

predictions; and (4) propose the novel combination of 2D and 3D morphological, compositional and configurational 12 

parameters of GI and urban form derived from very high resolution (VHR) remotely-sensed data (<2m), using Sydney 13 

metropolitan region as case study. Results show a strong spatial association of LST at fine scale (<50m) and spatial 14 

autocorrelation among residuals in traditional models. Spatial error model (SEM) exhibits a superior performance over 15 

conventional multivariate regression, however, results presented significant heteroscedasticity caused by the large 16 

temperature variability in certain areas, although this problem was partially solved. Future studies should incorporate 17 

unmeasured factors related to material-specific properties (i.e. albedo, emissivity), and capture the thermal variation within 18 

urban areas by segmenting datasets into zones with relatively homogenous thermal and physical properties. Overall, 19 

ground imperviousness mostly defines the LST profile of a place, with a relative warming effect of 0.23°C and 0.61°C 20 

during day; and 0.18°C and 0.41°C at night per 10% of area increment in winter and summer, respectively. The same 21 

increment in the proportion of water and trees contributes to a maximum LST reduction of 0.42-0.85°C in summer, and 22 

0.25-1.17°C in winter; however, this causes an increase of nocturnal LST between 0.12°C and 0.30°C throughout the 23 

year. In general, the cooling effects from GI do not outweigh the warming effects from man-made surfaces. Compared to 24 

abundance, the spatial configuration of trees is less influential on LST. Ground sky view factor (GSVF), altitude and 25 

distance to coast are of relative importance in defining LST profiles. These results used to numerically simulate different 26 

greening scenarios at neighbourhood scale for Sydney; illustrating the potential of spatial models to define heat mitigation 27 

scenarios to inform urban design and planning policies. 28 

 29 

Keywords: Surface Urban Heat Island; Predictive modelling; Mitigation Strategies; Land Surface 30 

temperature; Spatial Error Model; Multivariate Regression; Ordinary Least Square Regressions. 31 
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Table of Nomenclature 38 

AEDT  Australian Eastern Daylight Time 39 

AIC   Akaike information criterion 40 

BP  Breusch-Pagan 41 

CBD  Central business district 42 

CIRCLE_AM        Related circumscribing circle area weighted 43 

D_Coast  Distance to the coast 44 

DEM  Digital elevation model 45 

DSM  Digital surface model 46 

DW  Durbin-Watson 47 

Fr_High_Veg Fraction of high vegetation 48 

Fr_Imp_Bld Fraction of impervious building 49 

Fr_Imp_Gr  Fraction of impervious ground 50 

Fr_Low_NIR Fraction of non-irrigated low vegetation 51 

Fr_Low_IRR  Fraction of irrigated low vegetation 52 

Fr_Med_Veg Fraction of medium vegetation 53 

Fr_Tot_Wat Fraction of total water 54 

GI  Green infrastructure 55 

GLM  Generalised linear models 56 

GSVF  Ground sky view factor 57 

GWR  Geographically weighted regressions 58 

H/W  Aspect ratio 59 

JB  Jarque-Bera 60 

KB  Koenker-Bassett 61 

LAI  Leaf area index 62 

LGA  Local government area 63 

LiDAR  Light detection and ranging 64 

LISA   Local Indicators of Spatial Association 65 

LM  Lagrange Multiplier 66 

Log-L  Log likelihood 67 

LST  Land surface temperature 68 

LULC  Land-use Land-cover 69 

MCN  Multicollineatiy condition numbers 70 

MLR   Multivariate linear regression  71 

nDSM  Normalised digital surface model 72 

NDVI  Normalised difference vegetation index 73 

NEM  Normalised emissivity method 74 

NIR   Near infrared 75 

nLSI  Normalised landscape shape index 76 

NN  Neural network 77 

OLS  Ordinary least square 78 

PCI  Park cool island 79 

RNN  Recurrent neural network 80 

RSVF  Roof sky view factor 81 

SC  Schwarz criterion 82 

S.E.  Standard error 83 

SEM  Spatial error model 84 

SLM  Spatial lag model 85 

SRM  Spatial regression model 86 

SUHI  Surface urban heat island 87 

SVF  Sky view factor 88 

TIR  Thermal infrared 89 

UAV  Unmanned aerial vehicles 90 

UCI  Urban cool island 91 

UHI  Urban heat island 92 

VHR  Very high resolution 93 

VIF  Variance Inflation Factor 94 
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1 Introduction 121 

Cities over the last century have experienced an unprecedented urbanisation process which has led to the radical territorial 122 

expansion of urban settlements [1]. This so-called urban sprawl is causing a significant loss of natural and agricultural 123 

landscapes, biodiversity and permeable soils which are replaced by impervious surfaces, buildings and roads [2, 3]. This 124 

land transformation can cause substantial variations in the surface energy balance, and consequently the rise of land 125 

surface temperatures (LST) [2]. This can be attributed to limited surface evaporation and moisture, increased solar 126 

absorption, increments of sensible heat fluxes, entrapment of long-wave radiation and abatement of air ventilation, which 127 

in turn are major stimuli for the intensification of surface urban heat islands (SUHIs) [4, 5]. 128 

Among several mitigation technologies, green infrastructure (GI) has been identified as a nature-based solution capable 129 

to mitigate urban overheating [6, 7]. Recent years have witnessed a significant growth in the number of remotely sensed 130 

studies focusing on the capacity of GI to ameliorate SUHIs, mostly due to the wide availability of satellite-derived imagery 131 

and the advent of unmanned aerial vehicles (UAVs) [8]. Studies have demonstrated that an increment in the abundance 132 

of well-irrigated vegetation cover leads to lower LST [9, 10]. However, what it is less known is the precise amount, 133 

composition and configuration of GI necessary to reduce LST and mitigate SUHI in more targeted ways [11, 12]. Thus, the 134 

accurate prediction of the thermal behaviour of urban greenery is becoming a high priority target in remotely-sensed climate 135 

research.  136 

The motivation for this research is the apparent gap in knowledge regarding the complex interplay and cumulative effects 137 

of GI and urban form on the thermal environment. Earlier research has mostly implemented conventional regression 138 

models and simple correlations to analyse the relationships between GI and LST, without considering the non-stationary 139 

nature of these phenomena [13]. This implies a spatial dependence that compromises the reliability and predictive power 140 

of traditional models. Recent studies implementing spatially-based models have highlighted the importance of using finer 141 

analytical units (<100m), so a better theoretical basis for future urban regulations and landscape design can be provided 142 

[14].  143 

For the first time, the present study applies a holistic approach to evaluate GI and urban areas as complex adaptive systems 144 

and proposes the innovative use of spatial regression models to address the dynamic nature of these phenomena and the 145 

issue of spatial autocorrelation. The objectives of this study are to: (1) specify and estimate novel ‘spatially-based’ 146 

predictive models that account for both the spatial neighbourhood effects and the simultaneous effects of various GI and 147 

urban morphology characteristics on LST; (2) implement a fine-scale analytical unit (<50m) for a more precise and accurate 148 

analysis; (3) incorporate the ‘multi-temporal’ diurnal and seasonal variations into predictions; and (4) propose the novel 149 
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combination of multiple morphological, compositional and configurational urban parameters derived from 2D (i.e. thermal 150 

and spectral imagery) and 3D (i.e. LiDAR – light detection and ranging) very high resolution (VHR) (<2m) airborne-based 151 

data. The best produced models are then used to numerically simulate different SUHI mitigation scenarios at 152 

neighbourhood scale for the entire study area. This illustrates the potential of this integrated approach to better understand 153 

the fine-scale, complex and unique SUHI conditions across the Sydney metropolitan region, and to better inform greening 154 

interventions, urban design and planning policies in future.  155 

2 Literature review 156 

A large number of statistically-based forecasting approaches have been proposed to quantify and project the cooling effects 157 

of GI in the built environment. Most conventional quantitative analyses have implemented a two-dimensional (2D) 158 

approach. Numerous studies have explained and quantified the associations (correlations) between vegetation-derived 159 

characteristics and LST using Pearson’s correlation, Spearman correlation, scattergrams, and curve fittings [15]. A set of 160 

studies have extensively compared biophysical parameters and indices – such as the normalised difference vegetation 161 

index (NDVI), or leaf area index (LAI) – and ‘spectral-derived’ surface or land characteristics (e.g. albedo, emissivity, land-162 

use/land-covers – LULC, pervious surface fraction, percent of canopy cover, etc.) against the LST of a variety of analytical 163 

units such as pixel (or sub-pixel), regular grids, city blocks, or self-defined polygons. Furthermore, conventional regression 164 

approaches have focused on predicting LST based on one or multiple greenery-related variables by employing ordinary 165 

least square (OLS) [16, 17], multivariate linear regression (MLR) [18],  multiple stepwise regression [19], generalised linear 166 

models (GLM) [12], elastic net regression [20], or principal component regression models [21].  167 

On the other hand, studies applying a three-dimensional (3D) approach are scant, mostly because of limited data and 168 

technical challenges for their collection and processing [8]. These studies include urban morphology/geometry parameters 169 

such as sky view factor (SVF), aspect ratio (H/W), building and tree height, vegetation structure or stratification, orientation, 170 

altitude, and distance from coast [22, 23]. These aspects play an important role in the thermal performance of greenery as 171 

they affect air circulation, heat dissipation, and thermal energy absorption in open spaces and urban canyons [24, 25].  172 

Other studies have employed spatial metrics such as FRAGSTATS [26] to examine the impact of morphology (e.g. shape, 173 

size, complexity), composition  (variety, relative abundance) and configuration (arrangement, position, orientation, 174 

aggregation) of greenspaces and LULC types on the spatial variability of LST [27, 28]. Numerous studies have 175 

concentrated on the pattern and extent of urban/park cool islands (UCI/PCI) at large scales using space-borne thermal 176 

and spectral imagery [29–32]. It is consistently acknowledged that the morphology and composition of green patches are 177 

more influential on LST than their spatial configuration, and these relationships are scale-dependent [19, 33].  178 
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Several shortcomings have been identified in previous research. First, as noted before, remotely sensed research mostly 179 

relies on 2D information, putting aside many 3D morphological aspects of urban landscapes. Many studies have 180 

concentrated on a limited set of variables and investigations have been conducted within specific topics (e.g. studies using 181 

spatial metrics have excluded other variables); with notable exemptions [8, 12, 14, 18, 19, 34]. Therefore, there is an urgent 182 

need to implement a more holistic approach and protocols to evaluate the cumulative effects resulting from the interplay 183 

between natural and artificial features [35] by considering the built environment as a complex adaptive system [36, 37].  184 

A very challenging situation occurs when temperatures are not only governed by ‘internal’ factors, but also by ‘external’ 185 

synoptic conditions to the site [38]. This is the case for Sydney, Australia, a coastal city that is affected by cool sea breezes 186 

that constantly compete against warm air advection from nearby desert landforms; causing a consistent gradient in LST 187 

across the entire city [39]. Approaches based on Artificial Intelligence (AI) are capable of dealing with this high complexity 188 

and variability, as well as with large number of input parameters and nonlinear relationships; aspects that are typically 189 

challenging for conventional prediction analysis. Examples of AI-based models employed for thermal prediction include 190 

Neural Network (NNs) [40–42], their recurrent variant (RNNs) [13] and hybrid models) [43]. Machine learning is a cutting-191 

edge data-driven approach that requires specialised knowledge, otherwise results are prone to extensive criticism (i.e. 192 

hyper-sensitivity to weights, over-manipulation of parameters and overfitting) [13]. Although AI-based models are gaining 193 

ground in the field of urban heat island (UHI) forecasting, these models primarily concentrate on the accuracy of predictions 194 

(or outcomes) by relying on historical temperature trends, and tend to put aside the estimation of the specific contribution 195 

of each parameter to the overall thermal profile of the site investigated. 196 

Second, multi-scale [8, 14, 27, 30, 44], multi-temporal [27], and fine-scale investigations [7, 12] are scarce. Due to the free 197 

accessibility to space-borne imagery, most remote sensing research has focused on medium and coarse resolutions (30-198 

1000m) and daytime conditions. However, this is not suitable for describing the fine-scale characteristics and dynamic 199 

spatio-temporal thermal behaviour of urban greenery [45, 46]. This greatly limits the predictive capacity of models at the 200 

local-scale as relationships between LST and vegetation parameters highly vary in space and time [12]. In fact, prediction 201 

of the effect of greenery at the neighbourhood level (and nighttime) are urgently required as this is the scale that is more 202 

pertinent to city planners, urban designers and developers [47, 48]. 203 

Third, in relation to the above, conventional regression models are suited when the mutual relationships between LST and 204 

predictors are fairly constant or show a persistent pattern over space and time [13]; hence, they are limited in their ability 205 

to capture non-stationary phenomena as they exclude the spatial effects from nearby areas. This is also known as spatial 206 

dependence; observations from one particular place are related to the characteristics of adjacent places [49]. Moreover, 207 

LSTs are spatially autocorrelated or mutually dependent due to continuous surface heat fluxes [30]. Since spatial 208 
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autocorrelation violates the assumption of ‘independence’ of conventional statistical methods, some recent studies have 209 

implemented geographically weighted regressions (GWR) [50, 51] and spatial regression models (SRM) [8, 14, 30, 34, 44, 210 

52, 53] with promising results. Moreover, spatially-based statistical approaches tend to be less data-intensive and 211 

computationally-complex than NN-based algorithms, so they are worth further exploration in future. 212 

3 Study area 213 

The study area is located in Sydney, Australia’s biggest city with 5.3 million inhabitants [54]. Sydney is located on the 214 

south-eastern coast of the country (33°45’S latitude) and is characterised by mixed urban form dominated by low-medium 215 

density areas interspersed with greenspaces, brownfield, industrial land, and transport corridors. Forested areas 216 

predominately concentrate in the northern region and along rivers and creeks. Compact, dense and high-rise structures 217 

are mainly located in the local government areas (LGAs) of Sydney (A), Parramatta (B), Liverpool (C), Canterbury-218 

Bankstown (D), North Sydney (E), Ryde (F), and Willoughby (G) (Figure 1).  219 

 220 

Figure 1. Sydney metropolitan region showing the differences in location and extent between the datasets derived from 221 

VHR airborne remote sensing data collected in summer and winter seasons. 222 
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Sydney exhibits a humid subtropical (Cfa) climate [55] with an annual monthly average temperature ranging from 16.4-223 

26.0°C  (data from Sydney’s CBD between 1859-2018) [56]. Inland Western suburbs tend to exhibit daily average 224 

maximum and minimum temperatures considerably higher than those of Sydney’s CBD (2°- 5°C), with an average of 45.5 225 

days/year with temperatures above 30°C [56]. This pattern is associated with two specific synoptic systems; on one hand, 226 

easterly sea breezes from the ocean mostly dominate over the eastern suburbs and gradually reduce in intensity (wind 227 

speeds) towards the west. On the other hand, westerly winds –transporting warm/hot air from the interior– heat up the 228 

westernmost parts of the city [57]. Average rainfall patterns also follow a similar east-west gradient, with higher mean 229 

annual rainfall towards the north and east shores (>1200 mm/annum) and relatively drier conditions to the west and 230 

southwest (<900 mm/annum) [56]. Accordingly, the main reasons for selecting Sydney as case study are (1) the unique 231 

dualistic climatic pattern of the region, (2) the varied morphological and spatial characteristics, and (3) the prolonged urban 232 

overheating conditions experienced in recent years. 233 

4 Methods  234 

The methodological framework used in the present study follows the holistic views proposed by [37], and is based on the 235 

workflows applied by [58] and the data collection protocols implemented by [47]. The different steps performed in this study 236 

are presented in Figure 2 and a detailed explanation is provided in the following sections.  237 

4.1 Data acquisition, processing, and computation of variables 238 

The selection of statistical indicators was guided by the literature and this includes (1) multi-temporal LST (daytime and 239 

nighttime LST in summer and winter) as dependent variables; and (2) explanatory (independent) variables divided into 240 

three categories: functional, 2D/3D morphological, and configurational. A summary of data sources and their corresponding 241 

variables for the formulation of SRM is presented in Figure 2. 242 

4.1.1 Land surface temperatures (LST) 243 

Multi-temporal LST data were derived from airborne-based thermal infrared (TIR) imagery collected in two different 244 

seasons and times of the day, as it is increasingly important to produce numerical models suitable for various boundary 245 

and microclimatic conditions [59]. Ideally, datasets collected in different seasons should share the same spatial extent; 246 

however, in this study the acquisition of VHR airborne-based data (Figure 1) mainly responded to data availability, logistic 247 

issues (adequate weather and air traffic regulations), and budgetary limitations. 248 

For summer, day TIR imagery (2.1m spatial resolution) was captured on 8 February 2013 between 1:36-2:20pm AEDT 249 

(Australian Eastern Daylight Time), while night TIR imagery (1.2m spatial resolution) was acquired between 11:24pm-250 

12:58am AEDT. Both flights employed a FLIR A615 camera with an accuracy of ±2°C. For winter, both day and night TIR 251 
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images (0.5m spatial resolution) were retrieved using a FLIR SC series camera on 6 August 2012 between 12:00-2:00pm 252 

AEDT, and on 4 August 2012 between 11:30pm-1:30am AEDT, respectively. The processing of TIR images was performed 253 

by contractors and included: (1) the ortho-rectification and geo-referencing using aerial photography; (2) the estimation of 254 

absolute LST using a normalised emissivity method (NEM) [60, 61] assuming a constant emissivity value of 0.96, (3) 255 

continuous mosaicking and resampling images to 1m pixel resolution; and (4) the creation of look-up tables with 256 

temperatures in Kelvin and Celsius (°C) degrees.  257 

4.1.2 Normalised difference vegetation index (NDVI) 258 

NDVI has been extensively employed to distinguish different surface covers (vegetated, impervious, water) and can be 259 

interpreted as a bio-physical (functional) indicator of vegetation performance (health) as it is strongly correlated to surface 260 

evapotranspiration [62–64]. Furthermore, NDVI can be associated with convective cooling and latent heat vaporisation 261 

when vegetation is under well ventilated conditions [8]. In this study, VHR NDVI raster images (1m resolution) for summer 262 

and winter were derived from the available multi- and hyper-spectral data respectively, by using the Visible (RED) and 263 

Near Infrared (NIR) reflectance bands in Eq. (1):  264 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
          (1) 265 

Multispectral imagery (4 spectral bands 450–780 nm) was captured in a flight campaign on 17 August 2013 using a 266 

SpecTerra’s HiRAM sensor while hyperspectral imagery was captured on 6 August 2012 using a Norsk Elektro Optikk 267 

(NEO) VNIR1600 HySpex Camera (160 spectral bands 400–1000 nm). The pre-processing of spectral images was 268 

performed by the contractors and included: (1) radiometric and atmospheric corrections using Altair software, (2) ortho-269 

rectification and georeferencing using ISAT software for triangulation and LPS software for ortho-photo correction; and (3) 270 

resampling all imagery to 1m pixel resolution.  271 

4.1.3 2D/3D urban composition indicators – surface covers 272 

To identify generic surface covers (vegetated, impervious, water) a NDVI threshold approach was applied: reclassifying 273 

pixel values of spectrally-derived NDVI images using thresholds predefined using the Jenks optimization method [65], and 274 

readjusted as per the literature [8, 66–68]. LiDAR point clouds were used as ancillary data to refine these spectrally-derived 275 

surface cover extractions. LiDAR data were retrieved from the ELVIS Geoscience portal (https://elevation.fsdf.org.au/) 276 

which were pre-classified according to the American Society of Photogrammetry and Remote Sensing (ASPRS) guidelines, 277 

into low vegetation or grasses (0–0.3m), medium vegetation or shrubs (0.3–2 m), high vegetation or trees (>2m), buildings, 278 

ground, and water. LiDAR data were acquired between 10 and 24 April 2013 using a Leica ALS50-II sensor scanner that 279 

generated LAS tiles of 2x2km with a nadir point density of 1.03/m2 and an average point density of 1.57/m2. 280 

https://elevation.fsdf.org.au/
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 281 

Figure 2. Holistic methodological framework showing the methods and steps applied in this study; the summary of data 282 

sources; and their corresponding dependent (response) and independent (explanatory) functional, 283 

morphological and configurational variables for the estimation of both traditional OLS models and SRM models. 284 

 285 

Raster images corresponding to trees, shrubs, grasses and buildings were derived from LiDAR data using a point cloud 286 

tracing algorithm available in LP360 software [69]. Since various water regimes and seasonal variation (presence of 287 

deciduous trees) are expected across the study area, and to improve the spatial accuracy of estimations, additional 288 

corrections were applied by cross-validating LiDAR- and NDVI-derived raster images against each other, and doing this in 289 

multiple occasions and iteratively. Cadastral data including land tenures (parcel size) and geographical features 290 

(greenspaces, water bodies, coastline) were obtained from the data.gov.au portal [54] and employed to improve and 291 

validate previous calculations. LiDAR-based building footprints were split along property boundaries (parcels) and squared-292 

up using an algorithm available in Feature Analyst® software. This process facilitated the precise discrimination between 293 

impervious ground and impervious building, water, irrigated and non-irrigated grasses, shrubs, and tree canopy. All surface 294 

covers were extracted in individual raster images of 1m pixel resolution. 295 
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4.1.4 3D urban morphology indicators – sky view factor (SVF), altitude, distance to coast 296 

The SVF (ψ), is a unitless parameter1 that can help quantifying the cooling of a space by measuring the proportion of the 297 

viewing hemisphere occupied by the sky in a specific point or over the entire area of a horizontal surface [70, 71].  SVF 298 

can be used as a 3D-based indicator of built form density and geometry that strongly influences the energy balance of 299 

urban surfaces due to potential solar exposure (and shading) influenced by natural (trees) and man-made structures 300 

(buildings) [72–74]. As suggested by [8], two types of SVF measures were computed: (1) ground SVF (GSVF) which 301 

describes the in-canyon obstructions of sky at pedestrian level which combine the actions from both buildings and trees, 302 

and (2) roof SVF (RSVF) which measures obstructions of sky on buildings’ roof that may be affected by taller natural or 303 

artificial features (Figure 3).  304 

 305 

Figure 3. Estimation of GSVF and RSVF from an nDSM using RVT software: (a) value is determined as a proportion of 306 

visible sky (Ω) above certain point (pixel), and (b) the algorithm computes the horizon angle (γ) for 'n' directions 307 

(eight in the image) in a specific search R. 308 

Several empirical, analytical, and numerical methods have been developed for the estimation of SVF [75]. In this study, a 309 

digital surface model (DSM) representing ground, built and vegetation features and a digital elevation model (DEM) 310 

representing bare earth’s elevations were generated from LiDAR data in CloudCompare software v2.12 [76] and subtracted 311 

from each other to produce a normalized digital surface model (nDSM) (1m resolution) representing the absolute height of 312 

buildings and trees. Continuous SVF raster images were computed in the Relief Visualization Toolbox v16.0 (RVT) 313 

software as per the method described in [77] and [78]. A raytracing radius of 50m and 32 directions were used for pixel-314 

                         
1 Values range between 0 and 1, where 1 represents an unobstructed horizon that is completely open to the sky. 
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based estimations as suggested by [79]. Average GSVF values were calculated for each spatial analytical unit by excluding 315 

buildings and top-of-the-canopy pixels, while average RSVF were computed by only including pixel values corresponding 316 

to roofs of buildings. 317 

Similar studies have demonstrated that the LST profile of a given location is affected by altitude and landform, as varying 318 

intensity of solar radiation and wind channelling effects may be influenced by topographic characteristics [22, 34, 51, 80]. 319 

Accordingly, the average ground surface height (or altitude above sea level) was estimated from the LiDAR-derived DEM 320 

by computing the mean of all pixel values within each spatial analytical unit. As mentioned before, Sydney exhibits singular 321 

boundary conditions resulting from dualistic synoptic systems in which cool coastal winds play an important role [13]. To 322 

consider the potential moderating effect of sea breezes, the shortest distance (geodesic method) from the geographical 323 

centre (or centroid) of each spatial analytical unit to the nearest coastline feature was computed (from cadastral data). Only 324 

the Pacific coastline was considered in calculations and Sydney Harbour was excluded. 325 

4.1.5 Spatial configuration of tree canopy – FRAGSTATS metrics 326 

There are various FRAGSTATS metrics that can be employed to characterise and quantify the spatial configuration of tree 327 

canopy [26]. This study computed two normalised landscape metrics at ‘class-level’: (1) the ‘related circumscribing circle 328 

– area weighted’ (CIRCLE_AM) to measure tree patch elongation (Eq. 2), and (2) the ‘normalised landscape shape index’ 329 

(nLSI) to measure the aggregation or clumpiness of tree patches (Eq. 3) (Table 1). These metrics were selected based on 330 

(1) previous evaluations on most optimum combinations, (2) minimum effect from patch sizes, image resolution, grid sizes 331 

and scale, and (3) practicality and interpretability [68, 81]. Both indices were calculated for each spatial analytical unit in 332 

FRAGSTATS 4.2 software [82] using a ‘8-cell neighbourhood rule.  333 

Table 1. Landscape metrics used in this study to measure the spatial pattern of trees, after [82]. 334 

Landscape metrics (Abbreviation) Description Equation Eq. No. 

Related circumscribing circle – area 
weighted (CIRCLE_AM) 

Overall elongation and narrowness of a patch in 
relation to the whole landscape or spatial analytical 
unit. 

1 − [
aij

aij
   𝑠] (2) 

Normalized Landscape Shape Index 
(nLSI) 

Level of aggregation or clumpiness of features, 
hence, it can be used to distinguish between 
scattered and clustered trees. 

𝑒𝑙̇ − min 𝑒𝑖

max 𝑒𝑖 − min 𝑒𝑖
 (3) 

 335 

4.2 Statistical analysis 336 

The following sections provide the information regarding the size of the analytical units, the data integration process and 337 

the statistical and spatial modelling techniques implemented in this study. 338 
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4.2.1 Size of spatial analytical units and data integration 339 

Given the pixel size of all processed data (1m) and the spatial scale of analysis (local scale), the entire landscape of the 340 

study area was divided using a regular grid of 50 x 50m cells. Each grid cell integrates all the computed variables (described 341 

in Section 3.1) and is considered as a spatial analytical unit or observation. The decision to use a 50m grid size was based 342 

on: (1) the capacity of small sampling sizes to better represent the detailed morphological and configurational 343 

characteristics of urban landscapes [11, 30, 83, 84], (2) the increasing need for fine-scale studies to better capture and 344 

analyse inter-cell spatial autocorrelation effects [8, 52], and (3) the necessity to produce a more accurate SRM and 345 

overcome the limitations of the spatial resolution from satellite imagery by using smaller sampling sizes (<120m) [14, 44, 346 

53].  347 

For each spatial analytical unit mean day and night LST, as response variables, were estimated using an aggregation 348 

approach [47] by averaging all pixel values within the unit extent using the zonal statistics tool in ArcGIS®. The predictor 349 

variables are the percent cover (or fraction) of surface covers, mean NDVI, GSVF, RSVF, mean altitude, distance to coast 350 

and the two landscape metrics (Figure 2). Considering the disparity between the extent and number of observations of 351 

each dataset corresponding to summer and winter (as well as day and night), the descriptive statistics for all the variables 352 

are presented in Table A1.  353 

4.2.2 Statistical modelling 354 

In this study, a number of regression models were developed to investigate the influences of various GI and urban form 355 

factors on daytime and nighttime LST in summer and winter. In order to achieve the best quality of estimations and for 356 

comparative purposes, both OLS and SRM are used. The classic OLS method was applied as it is one of the most common 357 

statistical approaches used in UHI research, with the assumption that the error terms are independent as expressed by 358 

Eq. (4):  359 

𝑦𝑖 = 𝛽0 + 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖        (4) 360 

where 𝑦𝑖  is the dependent variable (LST),  𝛽0 is the constant (or intercept) of the model, 𝛽𝑗  are the regression coefficients 361 

for j independent variables, 𝑥𝑖𝑗 are the independent variables and 𝜀𝑖 is the error term for spatial units indexed by i. Initially, 362 

four OLS models were developed namely, 1A – summer daytime, 2A – summer nighttime, 3A – winter daytime, and 4A 363 

winter nighttime. A Pearson’s correlation matrix was estimated for each model to examine the magnitude, direction and 364 

significance of the linear relationships between all variables (Tables A2-A3). Guided by the results of the Pearson’s 365 

correlation, t-statistic and Variance Inflation Factor (VIF) tests (Table A4), a new set of models (1B-4B) was developed to 366 

reduce multicollinearity between variables and to determine the best combination of variables for subsequent statistical 367 
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modelling. The variance and normality of residuals (or errors) for all OLS models was assessed by the Breusch-Pagan 368 

[85], Koenker-Bassett [86], and the Jarque-Bera tests [87] tests.. 369 

As identified by similar studies, LST is a non-stationary geographical phenomenon that gradually varies across spatial units  370 

[88], and hence it is spatially autocorrelated [8, 14, 52, 53]. This means that the LST observed at a given location (or spatial 371 

unit) is likely to be spatially correlated with the LST observed in neighbouring cells, due to continuous surface heat 372 

exchanges and atmospheric flows [30, 44]. Since the initial OLS models tested positively for spatial autocorrelation –as 373 

determined by the Durbin-Watson statistic [89]– this condition was further assessed by the global autocorrelation index 374 

Moran’s I 2 [90], and its local version known as Local Indicators of Spatial Association (LISA) or Local Moran’s I [91]. SRM 375 

can account for these spatial dependences, and there are two main types, namely the Spatial Lag Model (SLM) and Spatial 376 

Error Model (SEM) [49] (Figure 4). The SLM assumes that the values of a dependent variable y in a specific location i are 377 

directly influenced by the values of y in neighbouring locations (j,k) as well as by unmeasured independent factors [92, 93]. 378 

To deal with this issue, the model incorporates a spatially lagged term estimated through contiguity-based spatial weights 379 

(WiN) (Figure 4a) as expressed in Eq. (5): 380 

𝑦𝑖 =  𝑥𝑖𝛽 +  𝜌𝒲𝑖𝑦𝑖 + ɛ𝑖        (5) 381 

where 𝒲𝑖 is the vector (n×n) of (𝑦𝑖) spatially lagged response variables, 𝜌 is the spatial autoregressive coefficient, 𝛽 are 382 

the regression coefficients of the explanatory variables, and ɛ𝑖 are the independently distributed errors. In contrast, SEM 383 

models assume that spatial effects that are not fully explained by the explanatory variables are due to correlation between 384 

error terms across neighbouring locations [92, 93]. The model captures the effect of unknown predictor variables by 385 

introducing a spatial error term or Lambda (λ) which is calculated with the use of a contiguity-based spatial weights (WiN) 386 

(Figure 4b) as expressed in Eq. (6): 387 

𝑦𝑖 =  𝑥𝑖𝛽 +  𝜆𝒲𝑖𝜉𝑖 + ɛ𝑖        (6) 388 

where 𝒲𝑖 is the vector (n×n) of the (ξi) spatially lagged errors, 𝜆 is the spatial autoregressive coefficient, 𝛽 are the 389 

regression coefficients of the explanatory variables, and ɛ𝑖 are the independently distributed errors. A spatial weight matrix 390 

(WiN) using a first-order ‘queen’ criterion of contiguity was constructed for each dataset to identify neighbouring 391 

observations with at least one point of common boundary in a regular grid (Figure 4). To compare modelling approaches 392 

and determine the appropriate model, Lagrange Multiplier (LM) statistics [94] (Table 3) were estimated as per the decision 393 

process described in [49]. The best spatial model for each dataset was chosen based on robust LM test results (largest z-394 

                         
2 Measured between -1, indicating negative spatial autocorrelation or dispersion of like-values, and +1, signalling positive spatial autocorrelation or clustering 

of like-values; while a value of zero signifies spatial randomness. 
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values) as both the LM test for lag and the LM test for error are significant (p=0.000). Revised regressions were then 395 

produced in the GeoDA v1.14 software (Anselin et al., 2006) using the SEM approach, and the maximum likelihood method.  396 

 397 

Figure 4. Differences between the spatial lag model (SLM) (a) and the Spatial Error Model (SEM) (c); and two types of 398 

contiguity-based spatial weights (b) to be estimated before choosing any of these two spatial regression models 399 

(After [93]). 400 

5 Results  401 

The following sections describe the results of the OLS models, the spatial autocorrelation analysis and provides a detailed 402 

comparison of the reliability and predictive performance between OLS and SRM.  403 

5.1 Explaining the cooling effects of GI with OLS models 404 

Initially, four OLS models (1A-4A) were produced for the prediction of daytime and nighttime LST in summer and winter in 405 

Sydney using all explanatory variables listed in Figure 2. The total number of observations used in each model corresponds 406 

to the total number of valid grid cells available for each dataset. The resulting statistics for OLS models 1A-4A are 407 

summarised in Table 2. The results indicate that the 14 explanatory variables statistically significantly predicted daytime 408 

and nighttime LSTs in summer: adj.R2 = 0.677 (p=0.000), and adj.R2 = 0.454 (p=0.000), as well as in winter: adj.R2 = 0.621 409 

(p=0.000), and adj.R2 = 0.656 (p=0.000), respectively. Results show a weak and moderate performance for all models 410 

which is consistent with the literature.  411 

However, initial OLS models violated several statistical assumptions suggesting stability problems that compromise their 412 

reliability and predictive power. First, the assumption of normality of residuals was violated as assessed by the Jarque-413 

Bera test (p<0.001). Second, the Durbin-Watson statistic generated relatively low values (<1) which indicates a significant 414 

positive correlation between residuals (Table 2). Third, the results of the Breusch-Pagan and Koenker-Bassett tests show 415 
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there is evidence of serious heteroscedasticity (p<0.05 for all models). Fourth, the explanatory variables are significantly 416 

correlated with each other and provide insufficient separate information as demonstrated by the very large multicollinearity 417 

condition numbers (MCN) (>30) (Table 2) and VIF (>10) and tolerance (<0.01) values (Table A4).  418 

Pearson’s correlations were performed for each model to determine which variables should be omitted to reduce 419 

multicollinearity (Tables A2-A3). Results indicate a moderate to strong correlation between NDVI and most surface covers 420 

as the latter were directly derived from this index. These are particularly strong in winter due to the good quality of the 421 

hyperspectral images. Considering these results and the limited contribution of NDVI to the explanation of thermal 422 

conditions of a cell at nighttime [64], this variable will be omitted in future. Weak to moderate negative relationships were 423 

identified between Fr_Imp_Bld and Fr_Imp_Gr and pervious covers (grasses, shrubs and trees) as the increment in the 424 

proportion of one naturally results in the decreasing of the other. Similarly, GSVF and RSVF show moderate relationships 425 

with Fr_High_Veg and Fr_Imp_Bld as both indices are directly influenced by the proportion of trees and buildings. 426 

CIRCLE_AM and nLSI are mostly uncorrelated with other predictors, yet weakly correlated with each other. Altitude and 427 

D_Coast are variables that shows no significant relationships with most variables. For each spatial unit it is assumed that 428 

all surface cover fractions sum to 100%, which means that the seven variables are perfectly collinear. Therefore, in an 429 

attempt to reduce collinearity, fraction of non-irrigated grasses (Fr_Low_NIR) will be omitted in subsequent regressions 430 

and becomes the reference variable. 431 

Table 2. Summary of statistics of initial (1A-4A) and revised (1B-4B) OLS models produced for the prediction of daytime 432 

and nighttime LST in summer and winter. 433 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 1A 1B 2A 2B 3A 3B 4A 4B 

Regression Initial OLS Revised OLS Initial OLS Revised OLS Initial OLS Revised OLS Initial OLS Revised OLS 

N cases 23010 23010 23010 23010 24948 24948 23458 23458 

R 0.823 0.821 0.674 0.644 0.788 0.788 0.810 0.806 

R2 0.678 0.675 0.454 0.415 0.621 0.621 0.657 0.650 

Adj. R2 0.677 * 0.674 * 0.454 * 0.415 * 0.621 * 0.621 * 0.656 * 0.650 * 

S.E. 1.676 1.684 0.887 0.919 1.167 1.169 0.543 0.548 

Log-L -44519.7 -44629.9 -29895.2 -30696.2 -39288.2 -39289.5 -18961.3 -19184.2 

AIC 89069.4 89285.8 59820.3 61418.4 78606.5 78605.1 37952.6 38394.3 

SC 89190.1 89390.4 59941.0 61522.9 78728.3 78710.7 38073.5 38499.1 

DW 1.01 0.992 0.852 0.790 0.799 0.800 0.901 0.891 

MCN 260.26 54.9 260.26 54.9 235.62 45.7 219.32 44.1 

JB 111804.8 * 114128.0 * 206986.5 * 203406.7 * 1682.2 * 1685.9 * 4314.6 * 4070.6 * 

BP  26510.7 * 25140.7 * 43766.4 * 44304.3 * 2817.7 * 2713.1 * 7692.1 * 7889.3 * 

KB 7272.5 * 4020.6 * 5328.5 * 5440.6 * 1792.7 * 1726.7 * 3751.8 * 3904.9 * 

S.E. = Standard error, Log-L = Log likelihood, AIC = Akaike information criterion, SC = Schwarz criterion, DW = Durbin-Watson, MCN = Multicollineatiy 434 
condition numbers, JB = Jarque-Bera, BP = Breusch-Pagan, KB = Koenker-Bassett, * p=0.000 435 
 436 
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5.2 Revised OLS models and spatial autocorrelation analysis 437 

Revised versions of the initial OLS models were produced using the best combination of variables guided by the results of 438 

the MCN, the VIF and t-statistic. A summary of statistics is presented in Table 2. There is no substantive improvement in 439 

the performance of revised models; however, multicollinearity between variables improved considerably as per lower MCN 440 

(<55) and VIF values (<7.5). Despite this, heteroscedasticity is still an issue as indicated by the large and significant values 441 

of Breusch-Pagan and Koenker-Bassett statistics (p<0.05). Non-normality of residuals is also a recurrent problem as per 442 

Jarque-Bera values (p<0.001). As shown by Durbin-Watson statistics (<1.0), there is a strong evidence of autocorrelation 443 

of residuals. These issues may be associated to: (1) the small size of grid cell (50x50m), (2) the large variation of the 444 

response variable (LST) over-small spatial units, and (3) the close proximity of spatial units which increases spatial 445 

dependencies among grid cells (particularly among residuals) [8, 14]. The latter is confirmed by the Moran’s I and LM tests 446 

summarised in Table 3; which shows a statistically significant positive global spatial autocorrelation, with values >0.53 447 

(p<0.001) and z-values >150 for the four revised models. This indicates a homogeneity of residuals and hence a clustering 448 

of like-values. 449 

Table 3. Diagnostics for spatial dependence for revised OLS models (1B-4B). 450 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 
(response variable) 

1B 
(DAY_Ts) 

2B 
(NIG_Ts) 

3B 
(DAY_Ts) 

4B 
(NIG_Ts) 

Regression Revised OLS Revised OLS Revised OLS Revised OLS 

N cases 23010 23010 24948 23458 

Global Moran’s I  
(residuals) 

MI 
z-value 
(Sig.) 

0.53 
154.69   
(0.000) 

0.63 
186.96 
(0.000) 

0.60 
184.04  
(0.000) 

0.57 
168.39 
(0.000) 

LM  
(lag) 

z-value 
(Sig.) 

8854..37  
(0.000) 

20365.53 
(0.000) 

17083.78  
(0.000) 

20905.94  
(0.000) 

Robust LM 
(lag) 

z-value 
(Sig.) 

17.0.9  
(0.000) 

12.24 
(0.0005) 

1.21  
(0.272) 

323.01 
(0.000) 

LM 
(error) 

z-value 
(Sig.) 

23855.75 
(0.000) 

34851.21 
(0.000) 

33772.85 
(0.000) 

28262.77 
(0.000) 

Robust LM  
(error) 

z-value 
(Sig.) 

15018.47 
(0.000) 

14497.91 
(0.000) 

116690.28 
(0.000) 

7679.85 
(0.000) 

 451 

Table 3 reports the statistics of the LM test. Both LM-Lag and LM-Error statistics are highly significant (p=0.000) for all 452 

revised OLS models. As this is commonly found in practice, robust LM values (p- and z-values) are considered to select 453 

the appropriate SRM [49]. Results favour SEM over SLM as the Robust LM-Error has a significantly higher z-value 454 

(p=0.000). Robust LM-Error results suggest that spatial clustering of LST is likely to be caused by geographic patterning 455 

(i.e. typical urban morphology) of measured explanatory variables and other unmeasured factors not in the models. Local 456 

Moran’s I test [91] was used to identify local spatial clusters (hot- and cold-spots) of like-values that may explain the 457 

observed spatial dependence of LST. As suggested by [49], first, the typical pair of cluster and significance maps were 458 
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generated using the dependent variable (LST) of each model with default permutations (n=9999) at a significance level 459 

(p=0.01) followed by a sensitivity analysis to determine the presence of spatial clusters and spatial outliers with different 460 

significance cut-off values. Second, the same LISA test was computed for residuals and results compare to those of the 461 

dependent variable. LISA values (p<0.01), maps and Moran scatterplots for models 1B-4B are reported in Tables A5-A8.  462 

The high-high (HH) and low-low (LL) locations correspond to the spatial clusters of high and low values respectively, or 463 

areas with positive local spatial autocorrelation (clustering). On the other hand, high-low (HL) and low-high (LH) are the 464 

spatial outliers and represent areas with a negative local spatial autocorrelation (dispersion). A very significant positive 465 

local spatial autocorrelation of LST and residuals is identified for all models, with no significant evidence of spatial outliers 466 

in either case. As expected, the overall pattern of clusters coincides with the typical urban form of the study area, and this 467 

is likely the main cause of the spatial dependence among residuals. Accordingly, at daytime, HH clusters (hotspots) of LST 468 

typically occurred in compact, dense, and highly impervious areas, while LL clusters (cold-spots) correspond to places with 469 

large tree canopy and water surfaces. Conversely, at nighttime, hotspots comprise water bodies, compact mid- and low-470 

rise buildings with extensive paved areas and highly forested zones; while cold-spots occur in places with extensive 471 

grasses and large low-rise buildings with light-coloured/high-albedo roofing materials. The spatial clusters from residuals 472 

occur in similar locations and follow the same pattern, however, spatial clustering of residuals is not found in areas with 473 

dense tree canopy and water surfaces. 474 

5.3 Explaining the cooling effects of GI with the SEM model 475 

In light of evidence of spatial autocorrelation and according to the results of Robust LM statistics, the SEM was chosen to 476 

predict LST using the same combination of variables selected for the revised OLS models. Four SEM models 1C-4C were 477 

produced as per Eq. (6). Results show that SEM produced higher R2 values compared to OLS; however, this measure is 478 

not entirely appropriate as the spatial term generates a so-called pseudo-R2 [49]. Instead, regression performance is 479 

assessed by log-likelihood, Akaike information criterion (AIC), and Schwarz criterion (SC) values. There is a considerable 480 

increase in the log-likelihood values and a decrease in AIC and SC estimates for all SEM models; this confirms a 481 

substantive improvement of the regressions as a result of the unmeasured variables included in the error term (λ) (Table 482 

4). The Likelihood Ratio (LR) test enables comparison between the null-model (or classic regression) and the alternative 483 

SEM. The very high values and low probability (p<0.000) for models 1C-4C confirm the significance of the spatial 484 

autoregressive coefficient; and hence, a superior performance of SEM over OLS. This can be also corroborated by the 485 

strong and highly significant (p<0.000) λ coefficient for all models (>0.8). Results of Moran’s I of residuals indicate that the 486 

introduction of the error term eliminated all spatial autocorrelation as statistics are close to zero (p=0.001).   487 
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Table A9 provides a comparison of regression coefficients (β) and significance (z- and p-values) for all variables included 488 

in SEM (1C-4C) versus revised OLS (1B-4B). There are slight differences in the magnitude and importance of most 489 

coefficients; however, the coefficients, and significance of Fr_Imp_Gr, CIRCLE_AM, nLSI, GSVF, RSVF, and Altitude have 490 

varied considerably. This illustrates the misleading effect that spatial autocorrelation has on OLS estimates and justifies 491 

the use of SRM.  492 

Table 4. Summary of statistics of initial SEM (1C-4C), aquatic (1D-4D) and terrestrial (1E-4E) SEM models produced for the 493 

prediction of daytime and nighttime LST in summer and winter. 494 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 1C 1D 1E 2C 2D 2E 3C 3D 3E 4C 4D 4E 

Regression 
Initial 
SEM 

Revised 
SEM 

Revised 
SEM 

Initial 
SEM 

Revised 
SEM 

Revised 
SEM 

Initial 
SEM 

Revised 
SEM 

Revised 
SEM 

Initial 
SEM 

Revised 
SEM 

Revised 
SEM 

Context 
Aquatic & 
Terrestrial 

Aquatic Terrestrial 
Aquatic & 
Terrestrial 

Aquatic Terrestrial 
Aquatic & 
Terrestrial 

Aquatic Terrestrial 
Aquatic & 
Terrestrial 

Aquatic Terrestrial 

N cases 23010 368 20331 23010 368 20331 24948 155 21020 23458 322 23458 

ρR2 0.844 0.867 0.861 0.799 0.915 0.802 0.841 0.640 0.850 0.870 0.904 0.883 

S.E. 1.164 0.826 0.955 0.539 0.299 0.406 0.757 0.481 0.685 0.334 0.481 0.300 

Lag coef.(λ) 
(Sig.) 

0.811 
(0.000) 

0.565 
(0.000) 

0.758 
(0.000) 

0.876 
(0.000) 

0.919 
(0.000) 

0.844 
(0.000) 

0.824 
(0.000) 

0.261 
(0.000) 

0.807 
(0.000) 

0.882 
(0.000) 

0.668 
(0.000) 

0.865 
(0.000) 

Log-L -37649.2 -473.2 -29140.4 -20324.6 -168.6 -12166.3 -30166.1 -109.1 -23411.6 -9546.0 -249.5 -6183.8 

AIC 75324.4 972.4 58306.9 40675.1 363.2 24358.5 60358.2 244.1 46849.2   19118 525.0 12393.6 

SC 75428.9 1023.2 58409.8 40779.7 413.9 24461.5 60463.8 283.7 46952.6 19222.8 574.0 12496.3 

BP  
(Sig.) 

20122.4 
(0.000) 

251.6 
(0.000) 

   4130.2 
(0.000) 

35975.9 
(0.000) 

215.5 
(0.000) 

7910.7 
(0.000) 

5471.9 
(0.000) 

  57.3 
(0.000) 

1284.0 
(0.000) 

7466.4 
(0.000) 

118.7 
(0.000) 

1004.0 
(0.000) 

LR 
(Sig.) 

13961.5 
(0.000) 

100.1 
(0.000) 

10335.3 
(0.000) 

20743.2 
(0.000) 

490.7 
(0.000) 

16654.5 
(0.000) 

18246.9 
(0.000) 

9.2 
(0.003) 

16029.4 
(0.000) 

19276.3 
(0.000) 

102.7 
(0.000) 

16212.5 
(0.000) 

MI residuals 
(p-value) 

-0.03 
(0.001) 

-0.003 
(0.18) 

-0.06 
(0.001) 

-0.04 
(0.001) 

-0.003 
(0.001) 

-0.08 
(0.001) 

-0.06 
(0.001) 

-0.003 
(0.46) 

-0.072 
(0.001) 

-0.050 
(0.001) 

0.025 
(0.259) 

-0.070 
(0.001) 

ρR2 = psedo-R2, S.E. = Standard error, Log-L = Log likelihood, AIC = Akaike information criterion, SC = Schwarz criterion, BP = Breusch-Pagan,  495 
LR = Likelihood ratio, MI = Moran’s I 496 

Despite the favourable results from SEM, the highly significant values of Breusch-Pagan indicate that heteroscedasticity 497 

persists; therefore, further refinements are necessary. By taking a close look at the models’ residuals, it is clear that LST 498 

from highly impervious contexts cannot be accurately predicted by the explanatory variables defined in this study, largely 499 

because the thermal condition is influenced by unobserved factors related to the morphology (i.e. building volume, canopy 500 

height, tree volume, etc.) and material-specific properties such as albedo, emissivity, and reflectivity. Furthermore, the 501 

distinct thermal capacity of water surfaces relative to terrestrial surfaces also partially contributed to heteroscedasticity by 502 

increasing outlying effects as suggested by similar studies [7, 52, 95]. These two conditions are captured by the spatial 503 

autocorrelation analysis described in Section 4.2 and shown in Tables A5-A8.  504 

Since a single spatial regression equation may not be suitable for all contexts, and to minimise heteroscedasticity to the 505 

maximum extent possible, datasets were partitioned into aquatic observations (grid cells with Fr_Tot_Wat ≥ 25%), and 506 

terrestrial observations (grid cells with Fr_Tot_Wat < 25%). Since the prediction of LST in grid cells with a high proportion 507 
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of impervious surfaces (Fr_Imp_Bld and Fr_Imp_Gr ≥75%) requires the introduction of material-specific predictors (i.e. 508 

albedo), these observations were also excluded from the terrestrial subset. This particular subset is subject to further 509 

investigation by including material-specific or spectral-based variables in future. SEM were recalculated to produce models 510 

1D-4D that are applicable to aquatic locations, and models 1E-4E that are applicable to terrestrial locations using the same 511 

combination of explanatory variables defined for initial SEM models.  512 

A statistical summary for revised SEM is presented in Table 4. Except for Model 3D, all revised SEMs exhibit a superior 513 

performance as demonstrated by the substantial improvement of Log-Likelihood, AIC, and SC values, as well as the 514 

reduction of standard errors (S.E.) and λ coefficients. Although heteroscedasticity is not completely eliminated, it is 515 

substantively reduced as demonstrated by the considerably smaller Breusch-Pagan values. Table 5 presents the 516 

regression coefficients (βn) and significance (z- and p-values) for all explanatory variables in revised SEM models. 517 

Confidence levels have been used to determine which variables should be omitted in the final predictive equations 518 

presented in Section 5.2. As a result of data partitions, some variables became statistically insignificant for aquatic contexts. 519 

When comparing the initial SEM models and revised terrestrial models, no significant discrepancies in the magnitude and 520 

importance of most predictors, specifically the fraction of different surface covers were observed. Nonetheless, slight 521 

variations in the sign, coefficients, and significance were detected for some morphological (GSVF, RSVF, Altitude, and 522 

D_Coast) and configurational (CIRCLE_AM, nLSI) predictors. 523 

5.3.1 Relative importance of explanatory variables on LST in terrestrial contexts 524 

In terrestrial contexts, Fr_Imp_Gr, Fr_Imp_Bld, contribute the most to mean LSTs, followed by Fr_High_Veg, Fr_Tot_Wat, 525 

and Fr_Low_IRR across all times of the day and seasons (Table 5). In both seasons, increased Fr_High_Veg, Fr_Tot_Wat, 526 

Fr_Low_IRR, and Fr_Med_Veg (in order of importance) contribute to drops in daytime LST, while Fr_Imp_Bld and 527 

Fr_Imp_Gr significantly contribute to increases in daytime LST, and these effects are greater than the cooling capacity 528 

from GI. In contrast, nighttime LST decrease with increasing Fr_Imp_Bld and Fr_Med_Veg, while an increment in 529 

Fr_Imp_Gr, Fr_High_Veg and Fr_Tot_Wat leads to a significant increase in nighttime LST in both seasons. Whereas 530 

Fr_Low_IRR has a positive influence on nighttime LSTs in summer, it has a negative influence in winter. This indicates 531 

that in summer an increase in soil moisture results in a relative increment of nocturnal thermal capacity of grassed areas. 532 

The increment in RSVF and GSVF plays a relatively important role in predicting LST in summer and winter. In both seasons, 533 

increasing RSVF contributes to higher LST at both times of the day, however, increasing GSVF has a warming effect on 534 

LST during the day while a significant cooling effect at nighttime. Furthermore, daytime and nighttime LST generally 535 

increase with increasing Altitude, except for summer conditions as Altitude shows a negative influence on nighttime LST, 536 

although this is not statistically significant (p>0.01). Distance to the coast (D_Coast) also has a relatively positive 537 
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contribution to daytime and nighttime LST in summer, while a relatively negative contribution to daytime and nighttime LST 538 

in winter.  539 

Table 5. Summary of regression coefficients (β) and significance (z- and p-values) for all variables included in the revised 540 

SEM applicable for aquatic (models 1D-4D) and terrestrial contexts (models 1E-4E) within the study area. 541 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 1D 1E 2D 2E 3D 3E 4D 4E 

Regression Revised SEM Revised SEM Revised SEM Revised SEM Revised SEM Revised SEM Revised SEM Revised SEM 

Context Aquatic Terrestrial Aquatic Terrestrial Aquatic Terrestrial Aquatic Terrestrial 

βCONSTANT 
z-value 

37.485 *** 
20.688 

29.719 *** 
107.925 

18.459 *** 
20.595 

20.124 *** 
120.821  

6.668 *** 
5.967 

10.906 *** 
94.946 

4.395 *** 
4.524 

3.376 *** 
60.718 

βFR_IMP_BLD 
z-value 

0.089 *** 
4.323 

0.061 *** 
63.704 

-0.017 * 
-2.407 

-0.014 *** 
-33.361 

-0.179 
-1.371 

0.034 *** 
50.727 

0.090 * 
2.377 

-0.009 *** 
-28.638 

βFR_IMP_GR 
z-value 

-0.029 * 
-2.139 

0.063 *** 
72.429 

0.042 *** 
8.943 

0.041 *** 
111.268 

 -0.035 
-1.290 

0.023 *** 
36.091 

-0.039 
-1.880 

0.018 *** 
60.043 

βFR_LOW_IRR 
z-value 

-0.093 *** 
-4.612   

-0.030 *** 
-24.762 

0.004 
0.495 

0.002 *** 
3.455 

 0.023 
1.944 

-0.013 *** 
-18.250 

-0.016 
-1.350 

-0.006 *** 
-17.932 

βFR_MED_VEG 
z-value 

0.011 
0.636 

-0.027 *** 
-9.768 

-0.002 
-0.276 

-0.004 *** 
-3.748 

0.009 
0.865 

-0.008 *** 
-5.676 

0.013 
1.500 

-0.008 *** 
-14.094 

βFR_HIGH_VEG 
z-value 

-0.106 *** 
-10.855 

-0.042 *** 
-43.354 

0.024 *** 
7.209 

0.011 *** 
28.256 

0.001 
0.063 

-0.025 *** 
-38.746 

-0.014 
-1.549 

0.012 *** 
42.253 

βFR_TOT_WAT 
z-value 

-0.142 *** 
-15.089 

-0.085 *** 
-23.441 

0.043 *** 
13.026 

0.027 *** 
17.522 

-0.021 * 
-2.306 

-0.117 *** 
-28.754 

0.009 
1.066 

0.030 *** 
17.676 

βCIRCLE_AM 
z-value 

0.325  
1.546 

0.213 *** 
3.689 

-0.144 
-1.951 

-0.130 *** 
-5.325 

0.556 
1.687 

-0.223 *** 
-5.268 

-0.482 ** 
-3.093 

0.096 *** 
4.913 

βNLSI 
z-value 

0.976  
0.976 

-0.215 
-1.277 

0.501 
1.528 

0.186 ** 
2.594 

3.013 
1.467 

0.613 *** 
4.836 

-1.238 
-1.461 

-0.260 *** 
-4.687 

βGSVF 
z-value 

1.983 * 
2.539 

0.746 *** 
5.685 

0.411 
1.386 

-0.856 *** 
-15.077 

1.959 *** 
3.657 

2.028 *** 
25.394 

1.231 * 
2.398 

-1.139 *** 
-33.419 

βRSVF 
z-value 

-0.619  
-1.667 

0.350 *** 
9.108 

0.634 *** 
4.882 

0.153 *** 
9.297 

1.346 *** 
4.082 

0.201 *** 
7.090 

-0.074 
-0.415 

0.056 *** 
4.351 

βALTITUDE 
z-value 

-0.001 
-0.121 

0.009 *** 
8.438 

0.026 *** 
4.078 

-0.0003 
-0.464 

-0.014 
-1.429 

0.005 *** 
6.613 

-0.006 
-0.703 

0.017 *** 
43.182 

βD_COAST 
z-value 

2.156E-005 
0.412 

0.00015 *** 
15.986 

3.676E-005 
1.168 

7.819E-005 *** 
12.876 

6.483E-005 ** 
2.753 

-1.82E-005 *** 
-3.429 

-7.76E-005 *** 
-5.716 

-6.29E-005 *** 
-21.015 

βLAMBDA 
z-value 

0.566 *** 
13.274 

0.758 *** 
127.782 

0.919 *** 
84.850 

0.844 *** 
187.976 

0.261 *** 
3.426 

0.807 *** 
162.548 

0.668 *** 
17.758 

0.866 *** 
215.132 

* p < 0.05, ** p < 0.01, *** p < 0.001. Non-significant variables are greyed-out. 542 

It is also observed that morphology-related explanatory variables (particularly composition of surface covers) are more 543 

influential in daytime and nighttime LST than the spatial configuration of trees. Despite this, an increasing elongation of 544 

tree patches (CIRCLE_AM) causes a relative increment of daytime LST and a reduction of LST in summer. An inverse 545 

pattern occurs in winter, when increasing linearity of tree patches contributes to lower daytime LST and higher nighttime 546 

LST. Dispersion of tree patches (nLSI) is a statistically significant predictor at nighttime in summer and both day and night 547 

in winter. In summer, scattered trees can be associated with higher nighttime LST; conversely, in winter increasing 548 

dispersion of trees contributes to higher daytime LST and lower nighttime LST.  549 
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5.3.2 Relative importance of explanatory variables on LST in aquatic contexts 550 

In aquatic contexts, Fr_Tot_Wat has a significantly negative effect on LST during daytime and significantly positive effects 551 

on LST during the night and became the most important predictor of LST across all times of day and seasons (Table 5). In 552 

summer, Fr_Tot_Wat contributes most to the reduction of daytime LST, followed by Fr_High_Veg, Fr_Low_IRR and 553 

Fr_Imp_Gr; while Fr_Imp_Bld and GSVF contribute to increase LST during the day. At nighttime, LST increases with 554 

increasing Fr_Tot_Wat, Fr_Imp_Gr, Fr_High_Veg as well as with increasing RSVF and Altitude, while LST decreases by 555 

increasing Fr_Imp_Bld. In winter, Fr_Tot_Wat was the only significant variable contributing to decrease daytime LST; while 556 

RSVF, GSVF and D_Coast (in order of importance) contribute to the increment of LST. During the night, LST decreases 557 

with increasing D_Coast and elongation of tree patches (CIRCLE_AM), and LST increases with increasing Fr_Imp_Bld 558 

and GSVF values. 559 

6 Discussion 560 

6.1 The methodological implications: the importance of selecting the appropriate statistical 561 

approach, scale and data resolution 562 

Results in this study highlight the necessity of selecting the appropriate statistical approach to predict LST from various GI- 563 

and urban form-related factors. After several attempts to produce reliable OLS models, it was clear that there was a strong 564 

spatial autocorrelation among residuals for the initial models that was quantified by global and local Moran’s I indices. As 565 

suggested by similar studies, our results confirm the need to incorporate the effect of spatial dependency into traditional 566 

MLR models, otherwise autocorrelation leads to model instability and misleading interpretation of estimates [30, 53]. In this 567 

regard, the use of SRM was advantageous as it increased substantially the overall goodness-of-fit of models by capturing 568 

the effect of unobserved predictors and incorporating the spatial autocorrelation as an additional explanatory variable (λ). 569 

Furthermore, as independence between observations is not required for SRM, parameter estimates are generally more 570 

reliable [30]. 571 

However, higher model performance does not necessarily imply a better understanding of the relationships between 572 

independent and dependent variables as the explanatory power of the spatial error term can be affected by a myriad of 573 

factors [30], such as the scale of observation, the size of spatial units, and the resolution of raw data, and so on. Evidence 574 

presented in this paper supports previous research which indicates that finer operational scales and analytical units 575 

contribute to an increased spatial autocorrelation as LST are more likely to be affected by adjacent locations [53]. 576 

Accordingly, higher model fitness may result from the powerful explanatory capacity of the spatial (error or lag) term. 577 

However, a past study has shown that increasing the size of grid cells may contribute to stronger relationships between 578 
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spatial predictors and LST [53]. Since spatial dependency is weaker at a coarser scale, LST is less likely to be impacted 579 

by neighbouring locations [14]; therefore, OLS modelling may be more appropriate at coarser levels [52, 53]. Owing to 580 

limited data, time and resources, a multi-scale or multi-resolution evaluation on model performance was not conducted in 581 

this study, so these scale-related aspects could be incorporated into future work. 582 

The resolution of raw imagery generally determines the size of the analytical unit. This is particularly true for satellite-based 583 

studies as the minimum analytical unit mostly coincides with the smallest resolution from image data (i.e. a Landsat ETM+ 584 

image of 30m produces a minimum analytical unit of 30m), so any information finer than this raw scale is missing [44]. 585 

However, this is not always the case for studies employing airborne-based imagery. This study focused on the need to 586 

implement SRM at finer scales, using VHR imagery [14]. A 50x50m grid cell was applied as analytical unit in order to 587 

capture the structure and variation of thermal conditions within a smaller spatial extent as suggested by [83]. Although this 588 

produced superior model performance –at the expense of increasing the power of the spatial error term– the results should 589 

be interpreted with caution as thermal and some physical conditions were averaged for the totality of each grid cell 590 

regardless of specific location and distribution. This applies to the estimation of LST, GSVF, RSVF, Altitude and NDVI as 591 

mean values result from averaging all the available pixels within each grid cell obtained from the VHR (1m) image data. 592 

Choosing the appropriate SRM and spatial weight matrix is equally important. [30] has indicated that increasing the 593 

‘contiguity order’ of the spatial weight considerably decreases the model performance. Accordingly, this research applied 594 

a first-order queen contiguity matrix for all models so spatial dependencies in each cell were estimated from the eight 595 

immediately adjacent neighbours. In accordance with earlier findings, the spatial association of LST at local level (LISA) 596 

induced the spatial autocorrelation among residuals in OLS models [30]. This was confirmed by the results of robust LM 597 

tests that showed that SEM is more suitable than SLM in dealing with such spatial dependencies. However, this may differ 598 

for other contexts (or studies) as the results of robust LM tests are occasionally contradictory. For instance, work similar to 599 

that presented here has preferred the use of SLM models [30] or a more general form of the spatial model (GSM) [8, 14, 600 

44] to capture the effects of multiple autocorrelation components. These discrepancies may arise because of differences 601 

in the operational scale, the spatial resolution of imagery, the methods for retrieving LST, and the set of predictors 602 

employed. 603 

6.2 Predicting the spatio-temporal impacts of GI and urban form on LST 604 

This research has examined the exact contribution (or influence) of various GI- and urban form variables on daytime and 605 

nighttime LST in summer and winter. In accordance with previous studies, our results indicate that land cover composition 606 

affects LST more than spatial configuration does [14, 30, 81]. Based on the equation of SEM (Eq. 4), the relationship 607 
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between daytime and nighttime LST and relevant predictors (as per Table 5) at the local scale can be explained through 608 

the following general equation (Eq. 7): 609 

𝑇𝑠 =  𝛽0 + 𝛽1𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
+ 𝛽2𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑

+ 𝛽3𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅
+ 𝛽3𝐹𝑟𝑀𝑒𝑑𝑉𝑒𝑔

+ 𝛽4𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔
+ 𝛽5𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡

+610 

𝛽6𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀 + 𝛽7𝑛𝐿𝑆𝐼 + 𝛽8𝐺𝑆𝑉𝐹 + 𝛽9𝑅𝑆𝑉𝐹 + 𝛽10𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 + 𝛽11𝐷𝐶𝑜𝑎𝑠𝑡 + 𝜆 + ɛ𝑖                         (7) 611 

where 𝑇𝑠 corresponds to the daytime and nighttime LST in a given location and season, 𝛽0 is the model constant, 𝛽𝑛 612 

represents the regression coefficients of each explanatory variable, 𝜆 is the autoregressive coefficient (spatial error term), 613 

and ɛ𝑖 refers to the spatially uncorrelated error term of the regression. Values in Eq. 7 can be replaced by the statistically 614 

significant regression coefficients of SEMs listed in Table 5 to derive specific equations for the prediction of LST for aquatic 615 

and terrestrial contexts across Sydney metropolitan area. The coefficient βn of a variable n in the equations indicates that 616 

if the variable increases by one unit, while other variables are held constant, the predicted LST wil l also increase (or 617 

decrease) in βn units. Since the fraction of non-irrigated grasses (Fr_Low_NIR) was excluded to avoid perfect collinearity 618 

(Section 4.1), this variable functions as reference to which other selected variables are compared. Accordingly, the increase 619 

of a surface cover fraction by a given amount will result in the decrease in Fr_Low_NIR by the same amount and vice 620 

versa. Taking this into consideration, Table 6 provides an estimation of the ‘relative’ effect that the change in each 621 

explanatory variable has on mean LST of a spatial unit in °C degrees for a specific context, time of the day and season, 622 

when all other variables are held constant. 623 

In terrestrial locations, impervious surfaces contributed the most to increase mean daytime LST in both seasons. 624 

Accordingly, increasing by 10% the area of buildings (Fr_Imp_Bld) leads to mean LST increases of 0.61°C and 0.34°C in 625 

summer and winter, respectively; while an increment in impervious ground surfaces (Fr_Imp_Gr) by the same amount 626 

results in an increase of 0.63°C and 0.23°C in summer and winter, respectively. During the night, the same increase of 627 

Fr_Imp_Gr causes an increment in 0.41°C in summer and 0.18°C in winter. At night, many rooftops exhibited below 628 

average LST, resulting in a reduction of mean LST by 0.14°C in summer and 0.09°C in winter. The fact that buildings 629 

contributed to a general reduction of nighttime LST reflects the effect of material-specific properties such as emissivity, 630 

albedo, and thermal capacity/inertia as demonstrated in previous studies [96]. Indeed, this thermal variation can also be 631 

explained by the over-proportional abundance of light-coloured, high previous, or low thermal inertia roofing materials (i.e. 632 

corrugated metal roofs) which release heat more rapidly than typical ground-level materials (i.e. tiles, asphalt, bricks) that 633 

possess higher heat storage capacity and contribute to an enhanced surface warming during the night. 634 



24 
 

Furthermore, the distortion of recorded LST and significant warming conditions in certain areas may be attributed to (1) the 635 

large number of moving and stationary vehicles, –whose surfaces tend to be significantly hotter than other materials– and 636 

(2) the large proportion of asphalt and concrete, (i.e. highways, carparks, driveways and footpaths). This effect seems to 637 

be amplified in summer due to prevalent heatwave conditions experienced over the course of the data collection. This 638 

occurs because heatwaves exacerbate the magnitude and intensity of SUHIs by enhancing the thermal storage capacity 639 

of materials due to reduced evaporation and wind speeds [97, 98]. On the other hand, the accuracy of LST might be 640 

compromised by the application of a bulk emissivity value. In either case, the accuracy of predicted LST could be improved 641 

by identifying the individual thermal contribution of certain materials (i.e. bricks, metal, concrete, asphalt, etc.) and the 642 

estimation of corresponding material-specific emissivity/albedo values as implemented by [47], if such data become 643 

routinely available in future. 644 

Table 6. Relative effect of each explanatory variable on mean daytime and nighttime LST (at local scale) in Sydney in 645 

summer and winter. 646 

  
Relative effect on mean LST in summer Relative effect on mean LST in winter 

Day Night Day Night 

Variable Change Aquatic Terrestrial Aquatic Terrestrial Aquatic Terrestrial Aquatic Terrestrial 

Fr_Imp_Bld + 10% + 0.89 °C + 0.61 °C – 0.17 °C – 0.14 °C Insignif. + 0.34 °C + 0.90 °C – 0.09 °C 

Fr_Imp_Gr + 10% – 0.29 °C + 0.63 °C + 0.42 °C + 0.41 °C Insignif. + 0.23 °C Insignif. + 0.18 °C 

Fr_Low_IRR + 10% – 0.93 °C – 0.30 °C Insignif. + 0.02 °C Insignif. – 0.13 °C Insignif. – 0.06 °C 

Fr_Med_Veg + 10% Insignif. – 0.27 °C Insignif. – 0.04 °C Insignif. – 0.08 °C Insignif. – 0.08 °C 

Fr_High_Veg + 10% – 1.06 °C – 0.42 °C + 0.24 °C + 0.11 °C Insignif. – 0.25 °C Insignif. + 0.12 °C 

Fr_Tot_Wat + 10% – 1.42 °C – 0.85 °C + 0.43 °C + 0.27 °C – 0.21 °C – 1.17 °C Insignif. + 0.30 °C 

CIRCLE_AM + 0.1 Insignif.  + 0.02 °C Insignif. – 0.01 °C Insignif. – 0.02 °C – 0.05 °C + 0.01 °C 

nLSI + 0.1 Insignif. Insignif. Insignif. + 0.02 °C Insignif. + 0.06 °C Insignif. – 0.03 °C 

GSVF + 0.1 + 0.20 °C + 0.08 °C Insignif. – 0.09 °C + 0.20 °C + 0.20 °C + 0.12 °C – 0.11 °C 

RSVF + 0.1 Insignif. + 0.04 °C + 0.06 °C + 0.02 °C + 0.14 °C + 0.02 °C Insignif. + 0.01 °C 

Altitude + 10m Insignif. + 0.09 °C + 0.26 °C Insignif. Insignif. + 0.05 °C Insignif. + 0.17 °C 

D_Coast + 1000m Insignif. + 0.15 °C Insignif. + 0.08 °C + 0.06 °C – 0.02 °C – 0.08 °C – 0.06 °C 

Insignif. = Statistically insignificant (p>0.05) 647 

Also, in terrestrial contexts, the presence of water features (i.e. fountains) and tree canopy (Fr_High_Veg) contributed the 648 

most to reducing the mean LST during the day, where an increase of 10% in area results in a drop of 0.85°C and 0.42°C 649 

in summer, and 1.17°C and 0.25°C in winter, respectively. Surprisingly, at nighttime the magnitude of the warming effect 650 

of water and trees appears to be the same in both seasons, causing a similar increase in mean nighttime LST of 0.27-651 

0.30°C, and 0.11-0.12°C, respectively. Given the similar nocturnal temperature moderating effect observed for water and 652 

trees, thermal differences across the study area confirm the significant role that the abundance of impervious surfaces 653 

played in defining the thermal profile of a place, particularly at night. 654 
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The cooling effect of shrubs (Fr_Med_Veg) on mean LST is relatively the same throughout the day in winter, with a 655 

decrease of 0.08°C per an increase of 10% in area. The cooling effects in summer, however, are more pronounced during 656 

the day (0.27°C) than during the night (0.04°C). The cooling effects of irrigated grasses (Fr_Low_IRR) are quite distinctive 657 

at different times of the day and seasons. In summer, a 10% increase in area results in a cooling effect of 0.30°C during 658 

the day, but a warming effect of 0.02°C at night. In contrasting, in winter an increment of the same proportion decreases 659 

daytime LST by 0.13°C and nighttime LST by 0.06°C. This behaviour is reported in the literature, so at daytime increasing 660 

surface wetness reduces LST as the evaporation of water converts sensible into latent heat, causing a cooling effect [99–661 

101]. However, in prolonged warming conditions such as in summer (or during heatwaves), an increasing soil moisture 662 

results in an enhanced thermal capacity and higher thermal admittance, so watered surfaces may not cool as rapidly as 663 

dry plants and bare soils at night [102, 103].  664 

As mentioned earlier, spatial predictors (CIRCLE_AM, nLSI) contributed the least to an explanation of the thermal condition 665 

of grid cells. This may be explained by the methodological approach implemented in this study as the LST depends on 666 

areal estimates and thermal conditions that were averaged for the totality of the spatial unit; hence, estimations are highly 667 

dependent on abundance rather than configuration [53]. This assumption, however, might be different for air temperature 668 

observations, particularly if air movement is considered. In winter, increasing tree dispersion (nLSI) by 0.1 units causes a 669 

slight increment in LST of 0.06°C during the day and a small decrease in LST of 0.03°C at night. In comparison, in summer 670 

no significant changes are registered during the day, with a nearly negligible warming effect at night (0.02°C). However, 671 

these findings should be interpreted with caution as TIR imagery typically represents top-of-canopy LST instead of 672 

conditions in the understory. Furthermore, it is also true that at night a compact arrangement of trees tend to trap more 673 

heat and reduce advection, which slows the liberation of the energy stored in surfaces to the open atmosphere [8]. Counter-674 

intuitively, an increment in the elongation of tree patches (CIRCLE_AM) by 0.1 units provides a slight warming effect of 675 

0.02°C during the day and an almost negligible cooling effect of 0.01°C during the night in summer. Conversely, in winter 676 

the same change results in a drop in daytime LST of 0.02°C and a rise in nighttime LST of 0.01°C. This may be attributed 677 

to the nature of the FRAGSTAT index, since CIRCLE_AM estimates the narrowness of a patch irrespective of its size or 678 

area, and it is not representative of the abundance of vegetation, and consequently the amount of shade provided by trees; 679 

therefore, it can hardly explain the LST of a specific area. 680 

As suggested by [8], the effects of GSVF and RSVF on LST are analysed separately. An increment in GSVF by 0.1 unit 681 

causes a warming effect of 0.08°C and 0.20°C during the day, and a cooling effect of 0.09°C and 0.11°C during the night 682 

in summer and winter, respectively. Since GSVF represents the amount of in-canyon visible open sky at ground-level, 683 

daytime LST tend to be higher in open areas (>GSVF) due to increased solar exposure and limited shading from buildings 684 
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and trees. Conversely, at night, LST are usually lower in open areas (>GSVF) due to enhanced heat dissipation through 685 

air circulation while heat entrapment is enhanced in narrow urban canyons (<GSVF) due to overriding effects [8]. On the 686 

other hand, an increment in RSVF by 0.1 unit results in a slight increase of daytime and nighttime LST between 0.01-687 

0.04°C in both seasons. This can be attributed to increased solar exposure of roofed materials (irrespective of albedo or 688 

emissivity) that may cause a consistent warming effect throughout the day. Despite this, RSVF has shown to be less 689 

influential than GSVF on mean LST. This may be related to the fact that rooftops from mid- and high-rise buildings tend to 690 

be better ventilated, and rooftops from low-rise buildings may be overshadowed by surrounding trees and other buildings 691 

[23]. 692 

Increasing the average Altitude of a given area by 10m results in a warming effect of 0.09°C and 0.05°C during the day in 693 

summer and winter, respectively. However, at nighttime the same change in altitude causes an increment of 0.17°C in 694 

winter, while this effect is statistically insignificant in summer. Generally, higher daytime LST correspond to elevated 695 

locations due to exposure to higher solar irradiance and less overshadowing. In winter, however, lower nighttime LSTs are 696 

associated with low-lying locations (especially in hilly conditions) as solar penetration is limited during the day due to lower 697 

solar angles. As reported in similar studies, the distance to the coast (D_Coast) proved to play a relatively important role 698 

in defining the LST profile of a given place in Sydney [13, 22, 39, 57]. The present study found that in summer an increment 699 

of 1km from the coastline results in an increase of 0.15°C and 0.08°C in daytime and nighttime LST, respectively. 700 

Conversely, in winter, the same increment in distance to the coast causes a drop of 0.02°C and 0.06°C in daytime and 701 

nighttime LST, respectively. These results can be explained by the sustained heatwave conditions experienced during the 702 

summer data collection so westerly warm air advection from the country’s interior mostly dominated over coastal breezes. 703 

Conversely, easterly cool breezes mostly dominated the period of the data collection in winter.   704 

In aquatic locations, the contributions of predictors are different as many factors are irrelevant (statistically insignificant) for 705 

this context. In summer, a 10% increase in area of Fr_Imp_Bld results in an increase of 0.89°C in daytime LST, and a 706 

decrease of 0.17°C at night; while Fr_Imp_Gr shows an inverse effect causing a decrease of 0.29°C during the day and 707 

increment of 0.42°C at night. A similar pattern is observed for Fr_Tot_Wat and Fr_High_Veg which cause a cooling effect 708 

of 1.42°C and 1.06°C during the day, and warming effect of 0.43°C and 0.24°C at night, respectively. An increase of 10% 709 

in area of Fr_Low_IRR causes a considerable temperature drop of 0.93°C at daytime, while the effects are insignificant at 710 

nighttime. Furthermore, increasing GSVF by 0.1 unit results in an increment of 0.20°C during the day, but effects are 711 

insignificant at night. Elevating water surfaces (Altitude) by 10m raises mean nighttime LST by 0.26°C, although the effect 712 

of altitude is insignificant at daytime. The effect of D_Coast on LST is insignificant either at day or night in summer. 713 



27 
 

In winter, for a 10% increase Fr_Tot_Wat, there is a reduction in LST of 0.21°C during the day, surprisingly, at nighttime 714 

the effect of Fr_Tot_Wat is insignificant. The same increment in Fr_Imp_Bld contributes to an increase in nighttime LST of 715 

0.90°C; while increased elongated tree patches (CIRCLE_AM) causes a temperature reduction of 0.05°C at night. An 716 

increase of GSVF by 0.1 units causes a warming effect of 0.20 and 0.12 at day and night, respectively. An increment of 717 

1km in the distance from the coastline results in an increase in daytime LST of 0.06°C and a drop in nighttime LST of 718 

0.08°C. As most aquatic locations in the winter dataset are low-lying or located at sea level, changes in elevation are not 719 

statistically significant at any time of the day. 720 

Despite the excellent performance of SEM models for aquatic locations, the reduction in the number of predictors is 721 

accompanied by an increase in the coefficient, magnitude and significance of the spatial error term (λ), which indicates 722 

that LST are in fact better explained by unknown factors (Table 5). Moreover, relative effects and patterns estimated for 723 

aquatic contexts (Table 6) are not consistent between summer and winter. Of particular concern is the fact that nighttime 724 

LST cannot be explained by Fr_Tot_Wat. These issues may be attributed to: (1) the small number of observations used in 725 

aquatic models (155 to 368), (2) the significant thermal mixing resulting from other surfaces identified within grid cells, and 726 

(3) the small proportion of water surfaces (25-50%) available in many grid cells. Consequently, the interpretation of 727 

coefficient estimates for aquatic locations should be treated with caution. Forthcoming research should focus on developing 728 

predictive models exclusively for aquatic settings using a different set of predictors and a larger number of observations.  729 

Interpretations of the relative thermal effects of each explanatory variable presented in Table 6 can be used to prescribe 730 

different SUHI mitigation strategies (or greening scenarios) for the reduction of average LST at local (neighbourhood) scale 731 

by modifying the proportion of surfaces and natural and man-made features. Figure 5 provides an example of the potential 732 

synergies and trade-offs between different heat mitigation strategies for a randomly selected spatial unit. This illustrates 733 

the capacity of predictive spatial modelling to test different possible climatic scenarios to inform policy and provide general 734 

directions and recommendations on the best selection, planning, design and management of suitable urban vegetation 735 

and artificial features to effectively ameliorate urban warming. Accordingly, the largest potential LST reduction at both day 736 

and night in summer are centred on replacing impervious ground and non-irrigated grasses with trees as well as greening 737 

building rooftops (scenarios 1 and 5). The provision of adequate irrigation and water features can be also beneficial during 738 

the day (scenarios 2, 3, 6 and 7), however, this may cause a relative heating effect during the night.  739 
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 740 

Figure 5. Example of SUHI mitigation scenarios and the potential individual and cumulative effect of various greening 741 

strategies on mean daytime and nighttime LST for a randomly selected grid in summer. Note: Colour gradation 742 

in arrows indicates the intensity of the effect. 743 

7 Conclusions 744 

Under a holistic approach, this paper has successfully provided novel spatially-based and multi-temporal predictive models 745 

to project the synergistic effects of GI and urban morphology characteristics on LST by accounting for spatial dependency 746 

issues at a local-scale using Sydney as case study. Results have demonstrated a superior performance of spatial 747 

regressions over traditional statistical approaches; this highlights the importance of implementing more integrated spatially-748 

explicit approaches for the study of the impacts of greenery on the built environment.  749 

This study has employed VHR (<2m) airborne remote sensing data to estimate LST and several spatial, morphological 750 

and functional parameters. The integration of multiple datasets represents an advance over past research as it provided a 751 

larger set of highly accurate 2D and 3D urban characteristics. Although the proposed methodology shows considerable 752 

advantages in terms of quality and accuracy of results, this study was constrained by availability, relatively high costs, and 753 

complex logistics necessary for the acquisition and processing of data. This problem is inherent to airborne remote sensing 754 

research as surveyed areas cannot always be revisited over longer periods. To tackle this issue and minimise any potential 755 

bias from confounding meteorological factors, remotely-sensed imagery was captured under the following protocols: (1) 756 

data were retrieved during the best times of the day, around noon to minimise shading effects and midnight when surfaces 757 

have lost the maximum amount of radiative energy, and for two representative seasons, summer and winter; and (2) the 758 
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flight campaigns were performed under clear skies, (3) low or no wind speeds (< 2 m/s), and (4) no rainfall 72 h prior to 759 

flights. Despite these efforts, results in this study present a snapshot of specific diurnal and seasonal conditions and might 760 

not be representative for all times of the year, therefore equations should be interpreted with caution.  761 

The interpretation of the multi-step statistical analysis and predictive modelling provided the following findings. First, the 762 

spatial association of LST at local scale (<50m) induced the spatial autocorrelation among residuals in OLS models. This 763 

confirms the need of incorporating the effect of spatial dependency into classic regression models for a reliable and 764 

accurate prediction of LST at finer scales. In this study, spatial autocorrelation analysis favoured SEM over SLM; however, 765 

this may differ for other contexts or datasets. Second, both SEM and OLS models showed significant heteroscedasticity –766 

which is not commonly reported by other studies– that was mainly caused by: (1) the large temperature variability in areas 767 

with a very large proportion of impervious surfaces and lack of greenery –in those cases thermal conditions are influenced 768 

by unmeasured factors related to material-specific properties–, and (2) the distinct thermal behaviour of water bodies 769 

relative to terrestrial surfaces. These issues were partially solved by partitioning datasets and excluding observations 770 

corresponding to highly impervious areas (>75%). Models could be improved by incorporating albedo values of rooftop 771 

and ground-level surfaces (which is quite challenging to provide in most airborne-based studies), with particular attention 772 

to the contrasting temperatures between light-coloured and dark-coloured materials. Future research could capture the 773 

thermal variation within urban areas by segmenting datasets (or observations) into zones or classes with relatively 774 

homogenous thermal and bio-physical characteristics (to perform a comparative analysis). This can be achieved by 775 

replicating the proposed methodology using site-specific and climate-based classification schemes such as the local 776 

climate zones (LCZ) [52, 83] and its modified version the local thermal zones (LTZ) [18], the urban vegetation structure 777 

types (UVST) [104], or the green infrastructure types (GIT) [68]. 778 

Third, in terrestrial locations, imperviousness has a significant contribution in increasing mean daytime LST in both 779 

seasons. Conversely, at night, an increment of the proportion of buildings results in a reduction of mean LST, particularly 780 

in areas with mid- and high-rise buildings. This can be attributed to overshadowing from tall structures with the result that 781 

limited solar radiation penetrates the urban canyon throughout the day. The presence of water features and trees contribute 782 

the most to reduce mean LST during the day, however, the magnitude of these cooling effects does not outweigh those 783 

from impervious surfaces. At night, the increment in the proportion of water and trees causes a slight increment in mean 784 

LST in both seasons. The cooling effect of irrigated grasses is quite distinctive at different times of the day and year; for 785 

instance, in summer, increasing soil wetness resulted in an enhanced thermal capacity as watered surfaces release heat 786 

more slowly than dry plants or bare soils during the night. Thus, the effect of soil moisture deserves more attention in future 787 

models. Compared to abundance, the spatial configuration of trees has a minimal contribution to define the LST profile of 788 
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a place. This may occur because the selected spatial metrics are not necessarily representative of the amount of tree 789 

cover, and hence of the amount of shade and evapotranspirative cooling.  790 

GSVF is more influential on mean LST than RSVF. This may occur because thermal absorption and dissipation in rooftops 791 

is also affected by air advection at greater height or by overshadowing from taller trees and buildings. Another 792 

methodological aspect to consider is the way that SVF was computed. Accordingly, grid cells completely lacking roofed 793 

areas and completely covered by tree canopy were removed from RSVF and GSVF computations, respectively. In some 794 

grid cells; null values were assigned to both indicators (i.e. very dense forested areas with no buildings). Although this 795 

could have influenced regression estimates, the likelihood is a minimal impact due to the small number of cases (<1%). 796 

The effect of altitude should be interpreted in terms of topographic undulation rather than absolute elevation. Hence, higher 797 

daytime LST in summer correspond to elevated locations as there is less overshadowing, while in winter lower nighttime 798 

LST correspond to low-lying locations due to limited solar penetration. Distance to coast proved to play a relatively 799 

important role in defining the LST profile of a given place in Sydney. 800 

Fourth, in aquatic locations, the contributions of explanatory variables are considerably different as daytime and nighttime 801 

LST mostly depend on the proportion of water, trees and unobserved factors. This is corroborated by the reduction in the 802 

number of predictors and an increase in the magnitude and significance of the spatial error term. Due to some 803 

inconsistencies in the results, it is recommended further investigations using a different set of predictors (i.e. material-804 

specific properties) and larger number of aquatic observations. 805 

This research has provided a better understanding of the effects of GI and urban form factors on LST at different times of 806 

the day and seasons. This is crucial to plan, design and implement more sustainable, liveable, and climate-adapted 807 

communities, especially in the context of climate change and global warming. With the hope of informing policy and 808 

assisting governments and practitioners, the results from spatial models can be interpreted as potential SUHI mitigation 809 

strategies at the local scale. However, this approach has limitations. For instance, the focus of this research has been on 810 

LST; however, GI as an urban living system, should be assessed holistically by considering the impacts and interactions 811 

on air temperature, thermal comfort, pollution control, and health simultaneously. Moreover, our results are not universal 812 

as estimates are based on empirical observations; therefore, future studies should consider particular climate drivers, 813 

defined by geography (i.e. topographic situations, latitude, hydrological conditions, and existing urban form), background 814 

climate, and regional weather. Therefore, there is no single solution that can satisfy to all possible climatic demands. 815 

Despite the attempt to consider the multi-temporal effects of GI on LST, the remote sensing methodology employed is 816 

inherently static in nature. Thus, the estimation of potential mitigation effects should consider aspects such as plant 817 

physiology, vegetation phenology, expected growing times (i.e. trees requiring 20-30 years to reach maturity), development 818 
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of plant species resistant to higher temperatures, and future climatic conditions. Dynamic predictive approaches should be 819 

further explored (i.e. new advances in AI or machine learning) to deal with such level of complexities. 820 
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Appendix A. Statistical results 1052 

Table A1. Descriptive statistics for all variables estimated for each dataset in summer and winter, day and night. 1053 

Dataset Variable*  Mean S.D. Minimum Maximum S.E. Unit 

Summer - 
Day & Night 
(n=23010) 

DAY_Ts 35.8 2.95 21.2 49.4 0.20 °C 

NIG_Ts 22.6 1.20 10.5 27.7 0.01 °C 

Fr_Imp_Bld 20.0 17.66 0.0 100.0 0.12 % 

Fr_Imp_Gr 26.5 17.08 0.0 100.0 0.11 % 

Fr_Low_IRR 10.7 8.95 0.0 100.0 0.06 % 

Fr_Low_NIR 17.5 13.88 0.0 100.0 0.09 % 

Fr_Med_Veg 2.3 3.02 0.0 46.9 0.02 % 

Fr_High_Veg 22.7 19.94 0.0 100.0 0.13 % 

Fr_Tot_Wat 1.7 9.12 0.0 100.0 0.06 % 

CIRCLE_AM 0.6 0.16 0.0 1.0 0.02 N/A 

nLSI 0.1 0.06 0.0 1.0 0.00 N/A 

NDVI -0.02 0.12 -0.7 0.6 0.00 N/A 

GSVF 0.6 0.14 0.0 0.99 0.00 N/A 

RSVF 0.6 0.31 0.0 1.0 0.00 N/A 

Altitude 34.0 27.08 0.0 131.9 0.18 m 

D_Coast 24662.9 2956.59 18952.8 31305.7 19.49 m 

Winter - Day 
(n=24948) 

DAY_Ts 12.8 1.90 6.0 21.8 0.01 °C 

Fr_Imp_Bld 22.6 18.01 0.0 100.0 0.11 % 

Fr_Imp_Gr 25.2 18.94 0.0 100.0 0.12 % 

Fr_Low_IRR 10.4 12.26 0.0 99.8 0.08 % 

Fr_Low_NIR 19.3 13.95 0.0 100.0 0.09 % 

Fr_Med_Veg 3.1 4.70 0.0 73.9 0.03 % 

Fr_High_Veg 20.3 23.27 0.0 100.0 0.15 % 

Fr_Tot_Wat 0.8 4.46 0.0 94.3 0.03 % 

CIRCLE_AM 0.6 0.19 0.0 0.9 0.00 N/A 

nLSI 0.1 0.05 0.0 1.0 0.00 N/A 

NDVI 0.4 0.20 -0.5 0.9 0.00 N/A 

GSVF 0.6 0.15 0.0 1.0 0.00 N/A 

RSVF 0.6 0.31 0.0 1.0 0.00 N/A 

Altitude 39.9 26.97 0.0 137.5 0.17 m 

D_Coast 13869.3 4644.3 4358.1 21951.5 29.4 m 

Winter – Night 
(n= 23458) 

NIG_Ts 3.2 0.93 -1.0 7.1 0.01 °C 

Fr_Imp_Bld 21.1 17.99 0.0 100.0 0.12 % 

Fr_Imp_Gr 23.2 18.97 0.0 100.0 0.12 % 

Fr_Low_IRR 10.9 12.49 0.0 100.0 0.08 % 

Fr_Low_NIR 18.6 13.88 0.0 100.0 0.09 % 

Fr_Med_Veg 3.4 5.14 0.0 74.0 0.03 % 

Fr_High_Veg 23.2 25.39 0.0 100.0 0.17 % 

Fr_Tot_Wat 1.4 9.06 0.0 100.0 0.06 % 

CIRCLE_AM 0.6 0.19 0.0 0.9 0.00 N/A 

nLSI 0.1 0.05 0.0 1.0 0.00 N/A 

NDVI 0.4 0.22 -0.7 0.9 0.00 N/A 

GSVF 0.6 0.16 0.0 1.0 0.00 N/A 

RSVF 0.6 0.32 0.0 1.0 0.00 N/A 

Altitude 51.1 39.78 0.0 193.0 0.26 m 

D_Coast 14826.5 5551.83 4018.5 28245.4 36.2 m 

*See Figure 2 for explanations of abbreviations. n = Number of observations; S.D. = Standard deviation; S.E. = Standard error  1054 
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Table A2. Pearson's correlation coefficients of variables of OLS models 1A and 2A with daytime and nighttime LST in 1063 

summer as dependent variable, respectively. 1064 
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** 
1              
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.480 

** 
-.128 

** 
1             
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** 
-.132 

** 
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** 
1            
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** 
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** 
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** 
.118 

** 
1           
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** 
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** 
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** 
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** 
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1          
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** 
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-.461 

** 
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** 
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** 
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1         

Fr_Tot_Wat 
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** 
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** 
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** 
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** 
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** 
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.000 
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CIRCLE_AM 
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** 
-.009 

* 
.009 

* 
-.058 

** 
.055 

** 
.034 

** 
-.070 

** 
1       

nLSI 
.222 

** 
.243 

** 
.154 

** 
-.057 

** 
-.071 

** 
.029 

** 
-.221 

** 
-.113 

** 
.187 

** 
1      

NDVI 
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** 
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** 
-.587 

** 
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-.011 
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** 
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** 
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** 
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** 
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** 
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** 
-.120 

** 
.071 

** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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** 
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1  
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** 
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** 
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** 
.092 

** 
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** 
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** 
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** 
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** 
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2A - Nighttime 
(n=23010) 
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1             

Fr_Low_IRR 
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** 
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** 
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** 
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** 
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** 
-.112 

** 
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** 
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** 
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** 
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** 
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** 
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** 
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.011 
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-.385 

** 
-.461 

** 
-.164 

** 
-.274 

** 
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** 
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Fr_Tot_Wat 
.166 

** 
-.156 

** 
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** 
-.111 

** 
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** 
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.154 
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1      

NDVI 
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** 
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** 
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** 
.348 
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-.011 

* 
.338 

** 
.792 

** 
-.131 

** 
.049 

** 
-.250 

** 
1     

GSVF 
.096 

** 
-.166 

** 
.404 

** 
.237 

** 
.419 

** 
-.176 

** 
-.671 

** 
.144 

** 
-.120 

** 
.071 

** 
-.425 

** 
1    

RSVF 
-.026 

** 
.577 

** 
.181 

** 
.038 

** 
-.184 

** 
-.123 

** 
-.428 

** 
-.267 

** 
.186 

** 
.213 

** 
-.361 

** 
.046 

** 
1   

Altitude 
-.078 

** 
-.021 

** 
-.146 

** 
.169 

** 
-.082 

** 
.122 

** 
.173 

** 
-.122 

** 
.130 

** 
-.030 

** 
.222 

** 
-.162 

** 
.104 

** 
1  

D_Coast 
.174 

** 
.034 

** 
.004 

 
.020 

** 
.092 

** 
.031 

** 
-.082 

** 
-.068 

** 
.034 

** 
.038 

** 
-.043 

** 
.031 

** 
.067 

** 
-.200 

** 
1 

* p < 0.05 level (1-tailed), ** p< 0.01 level (1-tailed), Darker cells indicate a stronger correlation between variables. 1065 
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Table A3. Pearson's correlation coefficients of variables of OLS models 3A and 4A with daytime and nighttime LST in winter 1066 

as dependent variable, respectively. 1067 
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DAY_Ts 1               

Fr_Imp_Bld 
.531 

** 
1              

Fr_Imp_Gr 
.467 

** 
.030 

** 
1             

Fr_Low_IRR 
-.240 

** 
-.333 

** 
-.372 

** 
1            

Fr_Low_NIR 
.088 

** 
-.291 

** 
-.104 

** 
.107 

** 
1           

Fr_Med_Veg 
-.372 

** 
-.233 

** 
-.316 

** 
-.072 

** 
-.200 

** 
1          

Fr_High_Veg 
-.678 

** 
-.428 

** 
-.563 

** 
-.027 

** 
-.325 

** 
.546 

** 
1         

Fr_Tot_Wat 
-.197 

** 
-.074 

** 
-.046 

** 
-.040 

** 
-.120 

** 
-.004 

 
.000 

 
1        

CIRCLE_AM 
-.030 

** 
.081 

** 
-.151 

** 
.109 

** 
-.110 

** 
.036 

** 
.052 

** 
.002 

 
1       

nLSI 
.164 

** 
.180 

** 
.085 

** 
-.076 

** 
-.050 

** 
.092 

** 
-.140 

** 
-.065 

** 
.347 

** 
1      

NDVI 
-.676 

** 
-.609 

** 
-.726 

** 
.466 

** 
.058 

** 
.443 

** 
.800 

** 
-.138 

** 
.116 

** 
-.138 

** 
1     

GSVF 
.382 

** 
-.130 

** 
.399 

** 
.187 

** 
.527 

** 
-.314 

** 
-.643 

** 
.000 

 
-.252 

** 
.014 

* 
-.344 

** 
1    

RSVF 
.503 

** 
.633 

** 
.222 

** 
-.215 

** 
-.116 

** 
-.254 

** 
-.468 

** 
-.136 

** 
.282 

** 
.265 

** 
-.511 

** 
-.015 

** 
1   

Altitude 
-.078 

** 
-.036 

** 
-.191 

** 
.063 

** 
-.069 

** 
.082 

** 
.209 

** 
-.125 

** 
.231 

** 
-.019 

** 
.243 

** 
-.250 

** 
.051 

** 
1  

D_Coast 
-.071 

** 
-.214 

** 
-.050 

** 
.165 

** 
.242 

** 
.030 

** 
-.029 

** 
-.035 

** 
-.105 

** 
.000 

 
.134 

** 
.234 

** 
-.105 

** 
.038 

** 
1 

2A - Nighttime 
(n=23010) 

               

NIG_Ts 1               

Fr_Imp_Bld 
-.096 

** 
1              

Fr_Imp_Gr 
.068 

** 
.089 

** 
1             

Fr_Low_IRR 
-.199 

** 
-.310 

** 
-.345 

** 
1            

Fr_Low_NIR 
-.293 

** 
-.226 

** 
-.030 

** 
.110 

** 
1           

Fr_Med_Veg 
-.053 

** 
-.248 

** 
-.324 

** 
-.077 

** 
-.222 

** 
1          

Fr_High_Veg 
.199 

** 
-.448 

** 
-.577 

** 
-.052 

** 
-.368 

** 
.541 

** 
1         

Fr_Tot_Wat 
.237 

** 
-.122 

** 
-.112 

** 
-.083 

** 
-.151 

** 
-.036 

** 
-.060 

** 
1        

CIRCLE_AM 
.139 

** 
.091 

** 
-.104 

** 
.140 

** 
-.063 

** 
.023 

** 
.013 

* 
-.143 

** 
1       

nLSI 
-.098 

** 
.175 

** 
.101 

** 
-.084 

** 
-.038 

** 
.102 

** 
-.110 

** 
-.110 

** 
.321 

** 
1      

NDVI 
.007 

 
-.579 

** 
-.690 

** 
.426 

** 
.000 

 
.448 

** 
.807 

** 
-.278 

** 
.122 

** 
-.106 

** 
1     

GSVF 
-.340 

** 
-.078 

** 
.407 

** 
.174 

** 
.509 

** 
-.324 

** 
-.674 

** 
.158 

** 
-.212 

** 
.014 

** 
-.432 

* 
1    

RSVF 
.011 

** 
.646 

** 
.279 

** 
-.188 

** 
-.037 

** 
-.270 

** 
-.491 

** 
-.192 

** 
.310 

** 
.248 

** 
-.483 

** 
.040 

** 
1   

Altitude 
.506 

** 
-.071 

** 
-.230 

** 
.118 

** 
-.072 

** 
.092 

** 
.248 

** 
-.151 

** 
.230 

** 
-.039 

** 
.321 

** 
-.299 

** 
.012 

* 
1  

D_Coast 
-.107 

** 
-.205 

** 
-.126 

** 
.153 

** 
.154 

** 
.064 

** 
.110 

** 
-.112 

** 
-.015 

** 
-.027 

** 
.239 

** 
.009 

 
-.116 

** 
.411 

** 
1 

* p < 0.05 level (1-tailed), ** p< 0.01 level (1-tailed), Darker cells indicate a stronger correlation between variables. 1068 
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Table A4. Summary of t- and collinearity statistics generated for the initial (1A-4A) and revised (1B-4B) OLS models for the 1069 

prediction of daytime and nighttime LST in summer and winter using all explanatory variables. 1070 
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S
u

m
m

er
 

1A 
(Day) 

VIF 
(Tolerance) 

163.4 
(.006) 

158.5 
(.006) 

45.9 
(.022) 

104.4 
(.010) 

3.2 
(.316) 

202.5 
(.005) 

46.1 
(.022) 

1.1 
(.889) 

1.2 
(.844) 

10.6 
(.094) 

3.2 
(.317) 

1.9 
(.508) 

1.2 
(.831) 

1.1 
(.928) 

t  
(Sig.) 

18.0 
(.000) 

18.4 
(.000) 

6.1 
(.000) 

11.7 
(.000) 

3.9 
(.000) 

4.6 
(.000) 

2.2 
(.029) 

15.8 
(.000) 

-8.7 
(.000) 

9.4 
(.000) 

-0.3 
(.799) 

25.2 
(.000) 

16.3 
(.000) 

41.0 
(.000) 

1B 
(Night) 

VIF 
(Tolerance) 

3.4 
(.292) 

2.6 
(.382) 

1.8 
(.569) 

 
1.2 

(.872) 
5.2 

(.191) 
1.4 

(.733) 
1.1 

(.893) 
1.2 

(.856) 
 

3.1 
(.325) 

2.0 
(.514) 

1.2 
(.835) 

1.1 
(.929) 

t  
(Sig.) 

40.8 
(.000) 

47.7 
(.000) 

-19.2 
(.000) 

 
-7.6 

(.000) 
-33.3 

(.000) 
-58.5 

(.000) 
16.3 

(.000) 
-8.5 

(.000) 
 

1.9 
(.049) 

25.8 
(.000) 

15.6 
(.000) 

40.6 
(.000) 

2A 
(Day) 

VIF 
(Tolerance) 

162.4 
(.006) 

158.5 
(.006) 

45.9 
(.022) 

104.4 
(.010) 

3.2 
(.316) 

202.5 
(.005) 

46.1 
(.022) 

1.1 
(.889) 

1.2 
(.844) 

10.6 
(.094) 

3.2 
(.317) 

1.9 
(.508) 

1.2 
(.831) 

1.1 
(.928) 

t  
(Sig.) 

9.9 
(.000) 

23.9 
(.000) 

6.3 
(.000) 

12.5 
(.000) 

2.8 
(.005) 

8.7 
(.029) 

24.9 
(.000) 

17.8 
(.000) 

1.9 
(.063) 

39.1 
(.000) 

-17.9 
(.000) 

19.7 
(.000) 

2.2 
(.031) 

41.6 
(.000) 

2B 
(Night) 

VIF 
(Tolerance) 

3.4 
(.292) 

2.6 
(.382) 

1.8 
(.569) 

 
1.2 

(.872) 
5.2 

(.191) 
1.4 

(.733) 
1.1 

(.893) 
1.2 

(.856) 
 

3.1 
(.325) 

2.0 
(.514) 

1.2 
(.835) 

1.1 
(.929) 

t  
(Sig.) 

-29.3 
(.000) 

66.9 
(.000) 

1.8 
(.063) 

 
-6.1 

(.000) 
15.9 

(.000) 
52.0 

(.000) 
19.8 

(.000) 
-0.5 

(.615) 
 

-11.5 
(.000) 

22.8 
(.000) 

-0.5 
(.643) 

39.3 
(.000) 

W
in

te
r 

3A 
(Night) 

VIF 
(Tolerance) 

132.6 
(.008) 

149.1 
(.007) 

61.9 
(.016) 

77.9 
(.013) 

2.7 
(.369) 

203.3 
(.005) 

10.1 
(.099) 

1.6 
(.636) 

1.3 
(.776) 

41.4 
(.024) 

3.2 
(.316) 

2.3 
(.435) 

1.2 
(.838) 

1.2 
(.866) 

t  
(Sig.) 

7.9 
(.000) 

3.6 
(.000) 

-3.9 
(.000) 

0.2 
(.873) 

-3.5 
(.001) 

-5.1 
(.000) 

-11.7 
(.000) 

1.5 
(.128) 

2.9 
(.004) 

1.6 
(.107) 

33.1 
(.000) 

11.8 
(.000) 

14.7 
(.000) 

-8.4 
(.000) 

3B 
(Day) 

VIF 
(Tolerance) 

3.7 
(.273) 

3.1 
(.326) 

2.2 
(.458) 

 
1.5 

(.658) 
6.7 

(.149) 
1.1 

(.907) 
1.5 

(.672) 
1.3 

(.780) 
 

3.1 
(.323) 

2.2 
(.449) 

1.2 
(.858) 

1.2 
(.869) 

t  
(Sig.) 

44.3 
(.000) 

21.5 
(.000) 

-20.2 
(.000) 

 
-4.6 

(.001) 
-27.3 

(.000) 
-37.6 

(.000) 
1.8 

(.069) 
3.0 

(.003) 
 

33.7 
(.000) 

12.2 
(.000) 

15.1 
(.000) 

-8.3 
(.000) 

4A 
(Night) 

VIF 
(Tolerance) 

115.1 
(.009) 

130.5 
(.008) 

56.1 
(.018) 

67.2 
(.015) 

2.7 
(.375) 

209.7 
(.005) 

33.9 
(.029) 

1.5 
(.651) 

1.3 
(.803) 

41.0 
(.024) 

3.3 
(.307) 

2.4 
(.416) 

1.5 
(.663) 

1.3 
(.753) 

t  
(Sig.) 

-3.5 
(.000) 

8.7 
(.000) 

-9.6 
(.000) 

-3.4 
(.001) 

-29.1 
(.000) 

-5.6 
(.000) 

20.6 
(.000) 

2.9 
(.004) 

-10.7 
(.000) 

20.8 
(.000) 

-48.2 
(.000) 

8.8 
(.000) 

133.5 
(.000) 

-68.9 
(.000) 

4B 
(Night) 

VIF 
(Tolerance) 

3.7 
(.267) 

3.3 
(.307) 

2.3 
(.438) 

 
1.5 

(.668) 
7.5 

(.134) 
1.4 

(.731) 
1.5 

(.679) 
1.2 

(.806) 
 

3.2 
(.313) 

2.4 
(.426) 

1.5 
(.690) 

1.3 
(.756) 

t  
(Sig.) 

-24.6 
(.000) 

46.9 
(.000) 

-15.3 
(.000) 

 
 

-33.8 
(.000) 

-9.4 
(.000) 

81.9 
(.000) 

6.4 
(.004) 

-10.2 
(.000) 

 
-45.5 

(.000) 
11.7 

(.000) 
139.0 
(.000) 

-68.6 
(.000) 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 
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Table A5. LISA results for the dependent variable (LST) of revised OLS models 1B and 2B showing the presence of spatial 1085 

clusters (hot-/cold-spots) in summer. 1086 

 Season SUMMER 

Time of day Day Night 

Model 1B 2B 

Regression Revised OLS Revised OLS 

N cases 23010 23010 

L
IS

A
 -

 L
S

T
 

Local Moran’s I 
z-value 
(pseudo p-value) 

0.61 
179.80   
(0.000) 

0.53 
158.83 
(0.000) 

Moran Scatterplot 

  

Cluster Map 
HH in red 
LL in blue 

  

Significance Map 
(p<0.01) 
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Table A6. LISA results for the residuals of revised OLS models 1B and 2B showing the presence of spatial clusters (hot-1087 

/cold-spots) in summer. 1088 

 Season SUMMER 

Time of day Day Night 

Model 1B 2B 

Regression Revised OLS Revised OLS 

N cases 23010 23010 

L
IS

A
 -

 R
E

S
ID

U
A

L
S

 

Local Moran’s I 
z-value 
(pseudo p-value) 

0.53 
153.69 
(0.000) 

0.63 
187.60 
(0.000) 

Moran Scatterplot 

  

Cluster Map 
HH in red 
LL in blue 

  

Significance Map 
(p<0.01) 
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Table A7. LISA results for the dependent variable (LST) of revised OLS models 3B and 4B showing the presence of spatial 1089 

clusters (hot-/cold-spots) in winter. 1090 

 Season WINTER 

Time of day Day Night 

Model 3B 4B 

Regression Revised OLS Revised OLS 

N cases 24948 23458 

L
IS

A
 -

 L
S

T
 

Local Moran’s I 
z-value 
(pseudo p-value) 

0.68 
210.67  
(0.000) 

0.74 
222.86 
(0.000) 

Moran Scatterplot 

  

Cluster Map 
HH in red 
LL in blue 

  

Significance Map 
(p<0.01) 
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Table A8. LISA results for the residuals of revised OLS models 3B and 4B showing the presence of spatial clusters (hot-1091 

/cold-spots) in winter. 1092 

 Season WINTER 

Time of day Day Night 

Model 3B 4B 

Regression Revised OLS Revised OLS 

N cases 24948 23458 

L
IS

A
 -

 L
S

T
 

Local Moran’s I 
z-value 
(pseudo p-value) 

0.59 
185.32  
(0.000) 

0.57 
169.44 
(0.000) 

Moran Scatterplot 

  

Cluster Map 
HH in red 
LL in blue 

  

Significance Map 
(p<0.01) 
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Table A9. Comparison of regression coefficients (β) and significance (z- and p-values) for all variables included in the 1093 

revised OLS models (1B-4B) and initial SEM models (1C-4C) applicable to the entire study area. 1094 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 1B 1C 2B 2C 3B 3C 4B 4C 

Regression Revised OLS Initial SEM Revised OLS Initial SEM Revised OLS Initial SEM Revised OLS Initial SEM 

βCONSTANT 
z-value 

29.291 *** 
161.331 

29.559 *** 
77.282 

19.311*** 
194.882 

19.565 *** 
75.732 

10.171 *** 
99.812 

10.835 *** 
90.151 

3.957 *** 
82.442 

3.373 *** 
53.396 

βFR_IMP_BLD 
z-value 

0.048 *** 
40.818 

0.052 *** 
53.231 

-0.019 *** 
-29.268 

-0.019 *** 
-41.732 

0.035 *** 
44.304 

0.037 *** 
60.751 

-0.009 *** 
-24.589 

-0.010 *** 
-37.147 

βFR_IMP_GR 
z-value 

0.050 *** 
47.672 

0.056 *** 
56.751 

0.038 *** 
66.949 

0.039 *** 
85.603 

0.015 *** 
21.511 

0.022 *** 
36.649 

0.016 *** 
46.871 

0.016 *** 
56.345 

βFR_LOW_IRR 
z-value 

-0.032 *** 
-19.164 

-0.032 *** 
-22.188 

0.002 
1.862 

0.002 ** 
2.951 

-0.018 *** 
-20.165 

-0.013 *** 
-17.470 

-0.007 *** 
-15.250 

-0.006 *** 
-17.796 

βFR_MED_VEG 
z-value 

-0.030 *** 
-7.596 

-0.022 *** 
-6.714 

-0.013 *** 
-6.091 

-0.002 *** 
-1.477 

-0.009 *** 
-4.636 

-0.008 *** 
-5.359 

-0.029 *** 
-33.751 

-0.008 *** 
-12.028 

βFR_HIGH_VEG 
z-value 

-0.042 *** 
-33.338 

-0.046 *** 
-43.354 

0.011 *** 
15.891 

0.013 *** 
26.861 

-0.023 *** 
-27.266 

-0.025 *** 
-37.506 

0.004 *** 
9.382 

0.011 *** 
39.863 

βFR_TOT_WAT 
z-value 

-0.083 *** 
-58.479 

-0.086 *** 
-56.156 

0.040 *** 
52.031 

0.034 *** 
47.240 

-0.065 *** 
-37.548 

-0.061 *** 
-43.517 

0.038 *** 
81.874 

0.029 *** 
53.842 

βCIRCLE_AM 
z-value 

1.217 *** 
16.318 

0.323 *** 
5.754 

0.804 *** 
19.751 

0.125 *** 
4.832 

0.087 
1.821 

-0.271 *** 
-7.508 

0.146 *** 
6.394 

0.119 *** 
7.164 

βNLSI 
z-value 

-1.641 *** 
-8.537 

-0.672 *** 
-4.606 

-0.052 
-0.503 

0.079 
1.173 

0.505 ** 
2.966 

0.370 ** 
3.094 

-0.828 *** 
-10.233 

-0.219 *** 
-4.075 

βGSVF 
z-value 

0.282 * 
1.973 

0.607 *** 
4.757 

-0.896 *** 
-11.469 

-0.419 *** 
-7.027 

3.020 *** 
33.657 

2.009 *** 
25.720 

-1.874 *** 
-45.496 

-0.998 *** 
-29.505 

βRSVF 
z-value 

1.280 *** 
25.822 

0.439 *** 
10.045 

0.617 *** 
22.797 

0.233 *** 
11.426 

0.430 *** 
12.151 

0.155 *** 
5.284 

0.200 *** 
11.725 

0.063 *** 
4.700 

βALTITUDE 
z-value 

0.007 *** 
15.640 

0.011 *** 
7.612 

-0.00011 
-0.464 

0.0006 
0.618 

0.005 *** 
15.111 

0.005 *** 
5.456 

0.015 *** 
138.998 

0.017 *** 
36.634 

βD_COAST 
z-value 

0.00015 *** 
40.657 

0.00017 *** 
12.010 

8.361E-005 *** 
39.324 

8.360E-005 *** 
8.530 

-1.42E-005 *** 
-8.304 

1.006E-005 
-1.702 

-5.086E-005 *** 
-68.564 

-6.55E-005 *** 
-18.153 

βLAMBDA 
z-value 

N/A 
 

0.811 *** 
157.566 

N/A 
 

0.876 *** 
218.611 

N/A 
 

0.824 
173.38 

N/A  
 

0.882 *** 
231.998 

* p < 0.05, ** p < 0.01, *** p < 0.001. Non-significant variables are greyed-out. 1095 


