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Abstract.  Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by 
traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new 
DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian 
discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on 
measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further 
advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant 
analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear 
building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and 
the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of 
nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model 
and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising 
damage detection technique. 
 

Keywords: nonlinear damage detection; time series analysis; linear autoregressive moving average model; vector space cosine 
similarity; classification algorithms 

 
 
1. Introduction 
 

In the last two decades, there have been considerable developments in the area of Structural Health 
Monitoring (SHM). Worden et al. (2007) stated that the fundamental problem of SHM is damage 
identification. Different damage detection and identification techniques have been developed and investigated 
in the literature, for example using modal parameters (Yin et al. 2017; Ng and Au 2018) and time domain 
vibration data (Lam et al. 2017). One of the important and rapidly evolving approaches in the area of damage 
detection using vibration data is time series analysis. Originally, it was developed to analyze regularly 
sampled long sequences data and is inherently suitable to SHM. Time series analysis has been employed to 
extract damage sensitive features from measured vibration data. The time series analysis algorithms aim at 
fitting a time series model to vibration data, and the damage features can be extracted from the constructed 
time series models for damage detection purpose. These algorithms make use of linear Auto-Regressive (AR) 
(Gul and Catbas 2009; Jayawardhana et al. 2015), Auto-Regressive models with eXogenous outputs (ARX) 
(Zhang 2007; Fasel et al. 2010), and/or Auto-Regressive moving average (ARMA) models (Carden and 
Brownjohn 2008; Bao et al. 2013; Fan et al. 2016) to provide a statistical damage detection. In general, the 
time series analysis algorithms have been used to diagnose either linear or nonlinear damage in structures. 
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d Associate Professor, E-mail: alex.ng@adelaide.edu.au 
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A number of researchers have employed traditional linear time series analysis algorithms, e.g. AR, ARX 
and ARMA models, and developed damage sensitive features (DSFs) using the coefficients of these models, 
as well as the mean square deviation of the residual errors, to detect the linear damage in structures. Noh et 
al.(2009) developed time series based damage detection algorithms using both acceleration and strain data to 
model AR processes, and the DSF was defined using the first three AR coefficients. Carden and Brownjohn 
(2008) proposed a statistical classification algorithm. In their algorithm, the structure’s time-series responses 
are fitted with ARMA models, while classifier was fed with the ARMA coefficients. Lautour and Omenzetter 
(2010) proposed an algorithm consisting of AR models and artificial neural network (ANN) for damage 
classification and estimation. The coefficients of the AR models were treated as DSF and treated as inputs of 
the ANN in damage detection. The performance of the algorithm was verified and evaluated using 
experimental data of a 3-story shear building structure from Los Alamos National Laboratory (Figueiredo et 
al. 2009). Other researchers used the residual error generated by the time series model for damage detection. 
Lu et al. (2008) used AR and ARX to determine damage in two near full-scale single-story reinforced concrete 
frames. The measure of damage was residual error calculated by the ARX model. Rao and Ratnam (2012) 
presented an AR model for health monitoring of welded structures by determining residual errors through 
Shewhart and exponentially weighted moving average control charts. Roy et al. (2015) proposed different 
DSFs based on ARX models, such as ARX model coefficients, Kolmogorov–Smirnov (KS) test statistical 
distance, and model residual error.  

In addition to detecting the existence of damage, studies have focused on determining the damage location. 
Gul and Catbas (2011) presented two approaches to extract DSFs from ARX models. The first approach is to 
quantify simple ARX models and noise free data, by which the coefficients of the ARX models are directly 
employed as the DSF. The second approach is to use the ARX model fitting ratios as the DSF, which was 
successfully applied to different cases for locating and identifying the damage based numerical and 
experimental data under noisy condition. Zheng and Mita (2007, 2008, 2009) presented a two-stage damage 
detection method for detecting and locating damage using ARMA models. Two distance measures were 
introduced using the cepstral metric and subspace angles of ARMA models, respectively.  

All the aforementioned studies for damage identification are inherently limited to linear models and 
ignored the nonlinearities of the structural. The structure may originally act linear but subsequently behave 
nonlinear because of the inchoation of damage (Prawin and Rao 2018). One of the challenges in SHM is to 
distinguish and categorize linear and nonlinear damage, and nonlinear damage and nonlinearities in the 
healthy structures (Adams and Farrar 2002). Linear damage is defined as the situation when the initially 
linear-elastic structure remains linear-elastic after damage. Nonlinear damage is defined as the situation when 
the initially linear-elastic structure behaves in a nonlinear manner after the damage has been appeared. An 
example of nonlinear damage is the formation of a fatigue crack that subsequently opens and closes under the 
normal operation environment (Doebling et al. 1996). Therefore, the nonlinear characteristics of structural 
response need to be taken into damage detection. Sohn et al. (2003) demonstrated that although nonlinear 
responses of structures have often been overlooked in the developments of SHM, they can provide useful 
information for damage detection.  

Traditional linear time series analysis methods using AR, ARX, or ARMA models are unable to reliably det
ect nonlinear damage. Because the linear time series methods assume that the residual error gained from the m
odels follows normal distribution, and adopts standard statistical analysis. However, when nonlinear damage o
ccurs, the distribution of the responses no longer follows the normal distribution. As a result, the damage detec
tion accuracy is affected by the nonlinear effect of the responses and this may lead to false alarm in damage de
tection if the nonlinearities are neglected (Fan and Yao 2006; Farrar and Lieven 2007). 

In this study, two algorithms are proposed to detect nonlinear damage using the linear ARMA models. The 
existing residual standard deviation (RSD) employed in this study is defined as the ratio of RSD in the 
unknown state to that in the benchmark state. First, the cosine similarity of the DSF is proposed to improve 
the performance of the existing DSF in damage detection. To enhance the capability of the nonlinear damage 
detection, this advanced DSF is then combined with either cluster analysis based on K-means or Bayes 
discriminant approach to further improve the reliability of the nonlinear damage detection based on the linear 
model and a new damage index. To verify and compare the performance of the proposed algorithms, 
experimental data of a three-story shear structure is used to construct the ARMA models, and then the ARMA 
models with existing DSF is compared with the performance of the advanced DSF. The results demonstrate 
that the proposed advanced DSF proposed can effectively diagnose the nonlinear damage. 
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2. Two proposed algorithms based on linear ARMA model 

This section describes the background of the ARMA model and a damage index. The proposed DSF and 
associated classification algorithms are then presented. 
 
2.1 Description of ARMA model  

 
The equation below gives the conditional mean in a general linear ARMA model. 

                                                     (1) 

The time series to be modeled is represented with . c in the right portion is a constant. The order of the AR 
and moving average (MA) processes are expressed by  and , respectively. AR and MA coefficients are 
expressed by  and , respectively. And  is the error term. At the right-hand side of equation (1), the first 
three terms are deterministic, and can be taken as the prediction of the current state based on previous 
observations and errors. The error term ε is a random variable that stands for the random component in the 
mean of yt. Commonly, ε is taken as a variable whose mean is zero and variance is constant, i.e., (i) E(εt) = 0, 
(ii) E(εt εT) = 0 for t ≠ T, and (iii) E(εt

2) = σ2. 
 
 
2.2 Definition of RSD 

 
When any damage occurs in the structure, the previously constructed model based on the signals of the 
benchmark state would be unable to reproduce the time series acquired from damage conditions. The residual 
errors in damage or nonlinear states are assumed to be large and exhibit greater variance when it is compared 
to the benchmark model. Therefore, the standard deviation of the residual errors from the ARMA model can 
be defined as a damage factor. Chen et al. (2013, 2015) proposed the residual standard deviation (RSD), 
which is defined as the ratio of the standard deviation of residual error in the unknown condition to that in the 
benchmark condition and is given by 

                                                                              (2) 

when RSD=1, the structure is deemed as healthy. RSD>1 means damage exists in the structure. 
 

 
2.3 The proposed VSCS based on vector space cosine similarity  

 
It is ineffective if the nonlinear damage detection only relies on the existing damage index extracted using 
linear models due to the loss of nonlinear damage information. In order to enhance nonlinear damage 
detection, the advanced VSCS is proposed in this study, which is derived from the existing RSD using cosine 
similarity. Cosine similarity in the vector space is defined as a weighted sum of the similarity between two 
high order vectors. The fundamental nature of the cosine similarity is the cosine of the angle between two 
vectors. Rather than weighted distance or length, cosine similarity stands for the difference in direction 
between two vectors Thus, cosine similarity of two vectors  and is given by Zhu et al. (2011) as follow. 

                                                             (3) 

In Eq. (3), sim is used as an abbreviation for similarity, thus sim (X, Y) represents the cosine similarity 
between the vectors X and Y. The numerator is the inner product of two vectors and denominator is the 
product of the L2 norm of the two vectors. The cosine similarity always has a range of values from -1 to 1, 
where 1 means the two vectors are very similar. The value in [-1,1] means there is a certain degree of variation 
between the two vectors. 

In this study, a new DSF is proposed and it is defined as VSCS between the RSD of benchmark condition 
and test condition, which is given by 
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                                                (4) 

where is the RSD of benchmark model from the k-th component of the characteristic vector in i-th 
category, and  is the RSD of test model from the k-th component of the characteristic vector in j-th 
category. 

 
 

2.4 Classification algorithms based on K-means cluster analysis and Bayes discriminant analysis 
 

Generally, the DSF need to be used in a pattern classification framework to detect damage, which assumes the 
distribution of response data from the structures are normal. However, structural damage affects dynamic 
properties of structures, resulting a change of the extreme values in the data (Fan and Yao 2006). Thus, the 
assumption of normality imposed may lead to improper damage detection, especially when the damage is 
nonlinear. Two approaches are proposed in this study. The first approach is to use K-means cluster analysis. 
The second approach is to use Bayes discriminant analysis, which is based on the value of the posterior 
probability to distinguish between health and damage state. The following two sub-sections describe the 
details of K-means cluster analysis and Bayes discriminant analysis. 

 
2.4.1 K-means cluster analysis 

K-means cluster analysis algorithm was originally introduced by McQueen (1967), which has been one of the 
most popular and widely used cluster analysis methods. The basic idea of K-means cluster analysis algorithm 
is to group similar data points together and determine the underlying patterns. The word “means” in the name 
of the algorithm refers to averaging of the data, i.e. finding the centroid. In the K-means cluster analysis 
algorithm, K number of centroids is first identified. Each individual data point is then allocated to the nearest 
cluster according to certain similarity measure standard, while keeping the centroids as small as possible. The 
centers are re-identified as centers of mass of their assigned points. This process is repeated until it is 
stabilized or maximum number of iterations is reached. The aim of the K-means cluster analysis is to partition 
the m data in multivariate data set into K clusters, where each data in the dataset is assigned to a specific 
cluster. K-means cluster analysis is a hard-partitioning algorithm and an iterative process.  

Firstly, data are assigned to groups. After calculating the mean of each group, the data is assigned by 
allocating each datum to its nearest means cluster position (Weatherill and Burton 2009; Novianti et al. 2017). 
The process is summarized as below. 

1）The K-means method aims to determine the cluster centers  to minimize the sum of the 

squared distances, i.e. distortion, of each data point  to its nearest cluster center  as  

                                                               (5) 

where  is the center of the cluster ,  is the number of objects in the cluster ,  is the m-th object 
of the i-th cluster.  

2）To reduce the squared error, the database is put into the cluster whom represented by the nearest 
centroid. An instance  in the relocation step can change its cluster membership , if 

 for all .  

3）The centroids of the cluster  and , and the squared error is recomputed. The entire process is 
continuously repeated until no further reduction can be achieved for the squared error, when its cluster 
membership cannot be further changed by any instance. 

In the subsequent clustering analysis, K-means cluster will be chosen. The similarity of the characteristic 
vectors of benchmark and test states will be calculated compared with the center of each category (one cluster 
representing damage and the other cluster representing health), then each test state will be assigned to the 
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category with the highest similarity. 
 
2.4.2 Bayesian discrimination 

Bayesian methods take into account the structural prior information including historical data or experience of 
expert and the measured data of the structure comprehensively, and determine the posterior probability 
distribution of the structure parameter based on the optimal probability model (Yuen 2010; Xin et al. 2019). 
This means it allows to determine the probability by combining expectation based on previous experience 
(prior probability) with information from measured data. The advantages of Bayesian methods are that they 
fully utilize the prior information and update the probability distribution (posterior probability) of structural 
parameters based to the measured data. Finally, the condition of the structure can be judged based on the 
posterior probability distribution of the structural parameters. The executive process of Bayesian methods is 
consistent with the ideology of on-line structural health monitoring.  

As the core of Bayesian theorem, the Bayes formula can be expressed as:  

                                      (6) 

where  is the posterior probability of  under the condition of . The parameter  is defined as a 
random variable represented for the condition of the structure.  is the measured data for observations.  
is the prior probability known or artificial hypothesis.  is the conditional probability of  under the 
condition of , e.g., the probability of the observations of  fall into the i-th cluster. The overall density is 

represented by . The joint probability density of  and  is expressed as .  
 
Following the Eq. (6), the essence of Bayesian inference is that under the conditions of parameter , 

 is revised continuously according to the measured data  and their conditional probability , and 
finally to get the estimated value of . Thus, Bayesian decision can assign the observations to their 
clusters of the highest posterior probability based on Bayesian formula, by which we can keep the overall 
error rate minimum when the conditional probability and priori probability are obtained (Zhang 2009). For 
instance, decision criterion of the cluster problem for structural damage detection is described in Eq. (7) as 
follow: 

If , then , otherwise,                (7) 

where  is the test state, is the cluster “Healthy”, is the cluster “Damaged”. 
 

 
2.5 Discussion and comparison of the two proposed algorithms 

 
When a structure is healthy, the time-domain responses under normal operating conditions are generally 
expected to follow stationary random process and the performance of structural characteristic is almost linear. 
Thus, the responses can be constructed as stable ARMA models, while the prediction error from ARMA 
model follows the white noise distribution. When the damage exists in the structure, the structure may still 
behave linearly with only change of geometric dimensions, but the structure may also demonstrate nonlinear 
characteristics with structural response being non-stationary and nonlinear, e.g. the cracks open and close 
under the loading condition. If the benchmark state ARMA model is used to predict the response signals that 
contain nonlinearities, the prediction errors will increase. The prediction errors may follow colored noise with 
nonlinear characteristics rather than white noise distribution (Zhu and Yu 2012; Wang 2013). 

Colored noise can be approximated by linear regression using white noise, which means that the prediction 
error from ARMA model can be expressed as a linear combination of white noises, i.e., the MA model. The 
process can only ensure the prediction error of the benchmark state follows the white noise distribution, but it 
cannot guarantee the prediction error of damage state follows the white noise distribution. Carden and 
Brownjohn (2008) used ARMA model coefficients as damage features. Although AR coefficient can reflect 
the linear features of structures when the AR model residuals follows colored noise distribution, the MA 
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coefficient may reflect some other characteristics. Unfortunately, the ARMA linear models are not applicable 
to nonlinear phenomena (Fan and Yao 2006). 

Mean and variance values are common statistical description of the white noise. Equation (4) expresses the 
DSF based on the statistical properties of white noise in residual signal. On the contrary, it could not reflect 
the structural characteristics when the residual signal does not obey the white noise distribution. Therefore, the 
traditional method can effectively detect the structural linear damage. But if there is nonlinear damage, the 
traditional method may misdiagnose due to ignoring the nonlinear characteristics of the responses and leakage 
of nonlinear damage information. 

To improve the performance of nonlinear damage detection using linear model, the proposed method is 
based on linear ARMA model and proposed damage index VSCS. Then it is classified by the K-means cluster 
analysis or Bayes discriminant analysis, respectively. Vector space cosine similarity measures the difference 
between the two individuals by comparing the cosine value of the angles between two vectors, and paying 
more attention to the difference of the two vectors in the direction rather than the distance or length. 

 
3. Identification of structural nonlinear damage using ARMA model 

 
This section presents a process for constructing the ARMA model based on the time series data of the 
acceleration response and applies the proposed DSF to identify the structure damage. The procedure using the 
ARMA model to diagnose the structural nonlinear damage is summarized below, and the procedure is shown 
in Fig 1. 

 
 

 
Fig. 1 Procedure of damage identificaiton using proposed method 

 
 
First, the ARMA model is built using the acceleration responses of the structure benchmark state. To 

eliminate the influence of environmental factors on the amplitude of the response data, all data are 
standardized as below: 
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                                                                             (8) 

where  and  is the mean and standard deviation of the j-th stream of sensor i, respectively.  is the 
original time series data and  is time series data after normalization. This standardization procedure is 
applied to all the response data in this paper. 

Once the pre-processing of the initial data is completed, the optimal ARMA order can be determined using 
the Akaike Information Criteria (AIC) (Chen and Yu 2013), and its parameters are estimated based on the 
prediction error method in The Mathworks (2014). ARMA(14,15) in Chen and Yu (2013), which was chosen 
based on the AIC plots for the same damage detection problem, is adopted in this study. After that, 
substituting this into the benchmark ARMA model using standardized  obtained from unknown state 
according to Eq. (1), we can get 

                                               (9) 

If the test state is a healthy state, time series data  from the unknown state will satisfy the benchmark 

model, and hence, there is no significant difference between  and . However,  cannot satisfy the 
benchmark model when the unknown state has damage in the structure, which leads to significant difference 
between  and .  

 
 

4. Application to three-story shear building structure 
 

In this section, the experimental data of a three-story shear building from Los Alamos National Laboratory 
(Figueiredo et al. 2009) is employed to validate the proposed methods. 
 

 
4.1 Description of the shear building structure 

 
The three-story shear building structure shown in Fig. 2 is composed of aluminum columns and plates 
assembled by bolted joints, which only allow sliding on rails in the x-direction. A center column (15.0 × 2.5 × 
2.5 cm3) is suspended from the top floor when it contacts a bumper mounted on the next floor, and this is the 
source of nonlinear damage. The bumper’s position can be adjusted to vary the extent of impact for a 
particular excitation level. The purpose of this is to simulate the effect of fatigue crack that opens and closes 
under operational and environmental conditions. (Figueiredo et al. 2009). The environmental and operational 
uncertainties were simulated by reducing stiffness and adding mass at several locations of the shear building 
structure. The time domain data of force and acceleration are recorded.  

In the experiment, ten tests were carried out for each case in order to take into account the variability of the 
measured data. A Hanning window was employed in the time-domain data for the purpose of leakage 
reduction and five averages were used to decrease the influence of random effect. The measured real-world 
data always contains measurement noise that can obscure the actual state condition of the structure. The 
reliability of identification results may be influenced if the real data measured from the structures contains 
measurement noise. Thus, the robustness of the proposed method against the measurement noise effect is very 
important (Ding et al. 2019). 

As listed in Table.1, various structural conditions are considered in this study and they are classified into 
four groups. The first group (Stated #1) is taken as the baseline condition. States #2-#9 can be taken as the 
second group, in which different mass and stiffness conditions were tested to simulate the variation of 
environmental and operational condition. An example can be found in Fig.1a, “Sated #4” in Table. 1 stands for 
the case that the stiffness of the columns located between the base and 1st floor was reduced to 87.5% of its 
original value. Sated #4 is abbreviated as 1BD since these columns are at the intersection of planes B and D, 
and they can be abbreviated in similar way. To perform the stiffness reduction, cross-section thickness of the 
column in the direction of excitation is reduced to half. Nonlinear damage States #10-#14 formed the third 
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group. Nonlinearities was introduced into this group by using a bumper and a suspended column. The 
nonlinearity is variable since gaps between the bumper and suspended column is changeable. Other than the 
nonlinear damage as in the third group, the fourth group (States #15-#17) additionally involves variation of 
the mass and stiffness, as in the second group. 

 

 

 
(a) 

 
(b) 

Fig. 2 (a) Details of the shear building structure and (b) experiment setup (Figueiredo et al. 2009)  
 
 
 

Channel 1 

Channel 5 

Channel 4 

Channel 3 

Channel 2 

x 
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Table 1 Cases and their corresponding structural state conditions (Figueiredo et al. 2009)  

 State# Cases Condition 
Configuration 

Perturbation Damage 
Content Magnitude Location Content Magnitude 

Benchmark 1 1-9 Healthy / / / / / 

Operating 
conditions 

2 10-19 Healthy Mass 1.2 kg Base / / 
3 20-29 Healthy Mass 1.2 kg 1st floor / / 
4 30-39 Healthy Stiffness -87.50% Column 1BD / / 
5 40-49 Healthy Stiffness -87.50% Column 1AD and 1BD / / 
6 50-59 Healthy Stiffness -87.50% Column 2BD / / 
7 60-69 Healthy Stiffness -87.50% Column 2AD and 2BD / / 
8 70-79 Healthy Stiffness -87.50% Column 3BD / / 
9 80-89 Healthy Stiffness -87.50% Column 3AD and 3BD / / 

Damage 
conditions 

10 90-99 Damaged / / / Gap 0.20 mm 
11 100-109 Damaged / / / Gap 0.15 mm 
12 110-119 Damaged / / / Gap 0.13 mm 
13 120-129 Damaged / / / Gap 0.10 mm 
14 130-139 Damaged / / / Gap 0.05 mm 

Operating+ 
Damaged 

15 140-149 Damaged mass 1.2 kg Base Gap 0.20 mm 
16 150-159 Damaged mass 1.2 kg 1st floor Gap 0.20 mm 
17 160-169 Damaged mass 1.2 kg 1st floor Gap 0.10 mm 

 
 
4.2 Damage detection results of the proposed DSF based on ARMA model 

 
In this section, the results using the existing DSF and the proposed DSF based on ARMA model are compared 
and discussed.  

 
4.2.1 Results of nonlinear damage detection based on linear ARMA model and the existing RSD 

 
Fig. 2 shows the existing RSD based on linear ARMA model for nonlinear damage detection in the three-story 
shear building structure. When RSD=1, the test state is determined as a healthy condition. When RSD>1, 
indicating the structure is in damage condition. The following conclusions are drawn from the results 
presented in Fig. 3. 

1) The location of the damaged potion is determined between Channel 4 and Channel 5. State #1-#9 are 
identified as health states, while States #10-#17 are assumed to be damage states. 

2) States #5 and States #9 are obviously misjudged in Channel 2 for health states; States #6 and States #7 
are obviously misjudged in Channel 3 for health states, and four significant misjudgments (States #13-#14, 
States #15 and States #17) for damage states. It indicates that the RSD based on this algorithm are sensitive to 
environmental and operational condition changes. 

3) State #10 and State #16 are easily misjudged in Channels 4 and 5 for damage states. The results show 
that this method and RSD are not sensitive to small damage. 
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Fig. 3 The existing RSD based on linear ARMA model for States #1-#17 from Channels 2 – 5. 

 
 

4.2.2. Approach I: Improvement of nonlinear damage detection by combining the proposed VSCS 
and K-means cluster analysis 

 
Taking the advantage of K-means cluster analysis, the RSD’s cosine similarity in vector space is computed 

and compared, subsequently. Fig. 4 illustrates the cosine similarity of test case for each cluster using K-means 
cluster analysis. As can be seen, in Fig. 4, values of similarity all fall between -1 and 1. It’s worthy mention 
that the algorithm used in K-means cluster analysis sorts the structural states with data set. And, in the K-
means cluster analysis, all data are configured in groups. This mechanism benefits the classification by 
eliminate the necessity of providing the threshold value to distinguish between healthy and damaged states. 

 
 

 
Fig. 4 The cosine similarity of test case for each cluster using K-means cluster analysis 
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Table 2 Damage identification results with the cosine similarity 
                              State 
Damage  Index      #1 #2 #3 #4 #5 #6 #7 #8 #9 False 

Positive 
Cluster 1  ( */# ) 0/9 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/89 

                              State                    
Damage  Index                                                      #10 #11 #12 #13 #14 #15 #16 #17 / False 

Negative 
Cluster 2  ( */# ) 0/10 1/10 0/10 0/10 0/10 0/10 0/10 0/10 / 1/80 

Note: 
False Positive manifests misjudged health state from damage. 
False Negative manifests misjudged damage state from health. 
*/# manifests that there are * cases misjudgment among # cases. 

 
The procedure, which is based on the ratio of the standard deviation of residual errors for ARMA model 

due to the loss of nonlinear damage information, has lower reliability in nonlinear damage detection. The 
proposed VSCS on account of linear time series analysis combined cosine similarity with K-means cluster 
analysis improves the reliability of the nonlinear damage detection and this is evidenced by only one case of 
State #11 is misjudged. 

 
4.2.3 Approach II: Improvement of nonlinear damage detection by combining the advanced DSF 

and Bayesian discrimination 
 
The analysis results in Section 4.2.2 uses 90 as condensation point. The data of the advanced VSCS fall into 
two categories, such as “Healthy” and “Damaged” using the Bayes discriminant analysis. The obtained sort 
results are listed in Table 3. 

 
 

Table 3 Square matrix (CLMat) of two categories 
                                 Observations    

Predicted results                                 State #1-State #9 State #10- State #17 

State #1-State #9 89 0 
State #10- State #17 0 80 

Condition Healthy Damaged 
 
As can be noticed from above, CLMat is a square matrix whose size equals the number of categories. This 

is a count of observations known to be in category i but it is predicted to be in category j. Diagonal elements 
of CLMat is the correct classified categories number. Diagonal elements in CLMat stands for the correct 
classified categories number. As can be seen in Table.1, health states are numbered into Cases 1–89 (States #1-
#9), while damage states are numbered into 90–169 (States #10-#17).The classification results show that all 
discriminations for the structure states are correctly determined using the Bayesian discrimination. Table 4 
shows the results that classify every state into a category.  

 
 

Table 4 Square matrix (CLMat) with size equal to the total number of categories 
Observations  

      
Predicted  
results               

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 

#1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
#2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
#3 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
#4 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 
#5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 
#6 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 
#7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 
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#8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 
#9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 
#10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 
#11 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 
#12 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 0 
#13 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 0 0 
#14 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 
#15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 
#16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 
#17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 

Condition Healthy Damaged 
Note:  
#1-#17 represent State #1-State #17. 
 

States#1-#9 are “health” and States #10-#17 are “damage”. It shows that one case of State #1 is incorrectly 
sort into State #2; two cases in State #2 are incorrectly sort into State #1; one case in State #12 is incorrectly 
sort into State #11; and two cases in State#13 are incorrectly sort into State #15. But the cases from State #1-
#9 are all classified as “health” and the cases from State #10-#17 are all classified as “damage” correctly. 

According to Bayesian decision theory, when the class conditional density and priori probability are 
obtained (or estimated), it can assign the sample to its cluster with the highest posterior probability. Thus, we 
can take the posterior probability distribution into consideration. 

 
 

 
Fig. 5 Posterior probability distribution of each category based on Bayesian discrimination  

 
 
It should be noted that  indicates the posterior probability of j-th test sample belonging to 

Category 1 (health) and  indicates the posterior probability of j-th test sample belonging to 
Category 2 (damage). The j-th sample will be grouped into the category, in which the j-th sample carries the 
highest posterior probability. It is shown in Fig. 5 that ,

 and . 
As mentioned above, combining the VSCS with K-means cluster analysis and Bayes discriminant analysis 

provides effective approach for nonlinear damage estimation and classification, meanwhile reduces the 
computational cost. Only one case of State #11 is misjudged using Approach I, and all cases are correctly 
classified by using Approach II. This study has analyzed the existing damage index RSD based on linear 
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ARMA model, and has demonstrated that the reliability of the nonlinear identification results is influenced by 
the leakage of the damage information. Thus, this study has developed the advanced VSCS and classified 
algorithms, K-means cluster analysis or Bayesian discrimination, based on linear ARMA model. The results 
have shown that the proposed approaches improve the efficiency and reliability in identifying nonlinear 
damage over the existing methods in the literature. 

 
 

5 Conclusions 
 

This study has presented two algorithms for improving nonlinear damage detection using linear ARMA 
model. As an improved detection methodology of nonlinear damage, DSF is extracted using linear time series 
analysis. An approach that combines cosine similarity with K-means cluster analysis and Bayes discriminant 
analysis has been proposed in this study. The performance of the algorithms has been verified and evaluated 
using the experimental data of a three-story shear building structure. The current study demonstrated that by 
combine linear ARMA model and the advanced DSF with cluster analysis or Bayes discriminant analysis, 
effective approaches can thus be formed for damage detection in nonlinear situation. Furthermore, the 
accuracy is improved and the computational cost is reduced in the proposed two approaches.  
Main advantages of the proposed two approaches are that no sophisticated finite element is required, and the 
complicated nonlinear damage detection can be complicated with simple linear time series model. Knowledge 
gained from the two approaches and with VSCS is that, rather than the distance or length, majority of the 
nonlinear damage information lies in direction of the feature vectors. When Bayesian discrimination is utilized 
to calculate the posterior probability of the structural parameters from different state conditions, the results of 
this algorithm have indicated that the information of the structural states can be distinguished through the 
posterior probability. The proposed algorithms have to implement the structural damage identification by 
evading extreme values that are related to imposed noise or singular values, which indicates the 
methodologies put forward in this paper has better robustness to noise. 

The study has mainly focused on determining damage existence. Further work can extend the proposed 
methods to determine the location and severity of the damage. 
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