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A B S T R A C T   

The topic of this paper evolves on the discourse of digital modeling in landscape design. Current design methods 
stagger to address physical forms and dynamics present in the environment. This status quo limits possibilities to 
integrate scientific evidence when developing spatial and aesthetic configurations in urban landscapes. Remote 
sensing technology such as laser scanning measures physical forms to reproduce them as geo-specific digital 3D 
models, while dynamic simulation is widely used to predict how scenarios will perform under given conditions. 
However, there is still a need for a holistic design process that is capable of integrating both the measured 
physical forms and physical dynamics. This paper presents a novel framework using point cloud modeling to 
shape design scenarios that are iteratively evaluated for their performance. 

The proposed framework is demonstrated through a case study in Singapore. New spatial configurations are 
tested for the site through an iterative and comparative analysis of the design performance. The case study 
exposes (1) a site-specific design approach by iteratively modeling a laser-scanned point cloud model, (2) a 
workflow to convert the geometric data from the point cloud models into voxels and meshes, (3) an integration of 
computational fluid dynamics (CFD) simulation during design development as per-point attributes, and (4) a 
comparison of the configurations to identify best performing scenarios. 

This design framework can support city managers, planners, urban and landscape designers to better inform 
their decision-making process by relying on accurate scientific feedback. By guiding the design process with the 
consideration of the built environment as a complex adaptive system, it will be possible to improve how open 
spaces and ecosystem services perform in cities, and to design landscapes that can mitigate dynamic events such 
as urban heat islands.   

1. Introduction 

Current practice and theory in landscape design increasingly use 
digital methods to integrate dynamic conditions of the environment 
with scientific feedback to predict how designs will perform when they 
are implemented (Grêt-Regamey et al., 2014; Walliss, 2018). The notion 
of “digital twin” has emerged to describe the simulation of physical 
assets in time and at various frequencies for monitoring and planning 
cities (Batty, 2018). When included as a framework for design, such 
dynamic simulation can be employed to test and optimize prospective 
scenarios (Cheshmehzangi, 2016; Chung & Choo, 2011; Moonen, 
Defraeye, Dorer, Blocken, & Carmeliet, 2012). In this case, the combi
nation of two main components is used to predict how design scenarios 

will perform in future and over time: (1) digital models to study the 
physical geometry of the design, and (2) dynamic simulation to investi
gate the time-varying behavior of dynamic systems that come in contact 
with the form (Girot & Urech, 2016; Oxman, 2008). 

1.1. Digital models 

In the past, digital three-dimensional (3D) city models served a 
relatively limited community of geospatial experts (Sinning-Meister, 
Gruen, & Dan, 1996). Nowadays, such models have become ubiquitous 
due to their various applications, including mapping, visualization, 
generation of digital and physical models, performance assessment, 
environmental monitoring, simulation, and more (Biljecki, Stoter, 
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Ledoux, Zlatanova, & Çöltekin, 2015; Park & Guldmann, 2019; Richter, 
Kyprianidis, & Döllner, 2013; Schrotter & Hürzeler, 2020). Significant 
improvement in detail and precision was achieved with airborne and 
terrestrial laser scanning (ALS/TLS). This remote sensing technology, 
also referred to as LiDAR (light detection and ranging), produces spatial 
data suited to reconstruct 3D city models by using methods such as 
Digital Elevation Model (DEM) generation (Kraus & Pfeifer, 1998), 
boundary tracing (Heo et al., 2013), building extraction (Park & Guld
mann, 2019), building and urban parameterization (Bonczak & Konto
kosta, 2019; Gonzalez-Aguilera, Crespo-Matellan, Hernandez-Lopez, & 
Rodriguez-Gonzalvez, 2013), etc. However, when directly visualized 
in digital space, the coordinate points of LiDAR data form models that 
offer analytical capabilities. These point cloud models can be used for 
dynamic visualization (Nebiker, Bleisch, & Christen, 2010), spatial 
change detection (Richter et al., 2013), identification of morphologic 
accumulation (Urech, 2020), and evaluation of landscape characteristics 
(Sedláček, Klepárník, & Kopřivová, 2020). 

1.2. Dynamic simulation 

The geometry used in digital 3D models usually provides a static 
representation of urban and natural environments (e.g. buildings, 
vegetation, streets, open spaces, water features, topography, etc.) 
(Jochem, Höfle, Wichmann, Rutzinger, & Zipf, 2012), offering a limited 
application for analytical purposes (Bonczak & Kontokosta, 2019). 
However, prospective scenarios must take into account dynamic in
teractions that occur on varying time scales and degrees depending on 
location, materials and processes at play (Pickett et al., 2017). Dynamic 
systems follow patterns that perform inseparably from the virtual and 
physical environment (M’Closkey & VanDerSys, 2017). Such systems 
call for designers to predict how designs will perform under changing 
conditions such as the action of water, weather patterns, vegetation 
growth, and anthropogenic activities (McCown & Zawarus, 2016). 
Designing with a ‘systems-thinking approach’ increases the design 
choice and enables a continuous information exchange suited to the 
management of contemporary landscapes (Picon, 2013). The dynamic 
correspondence between 3D models and the real landscape enables al
gorithms to act as design tools within the digital environment (Cantrell 
& Mekies, 2018). As such, dynamic simulation supports the decision- 
making process of prospective scenarios using dynamic spatial models 
such as agent-based modeling (Gebetsroither-Geringer, 2014; Macal, 
2016) or cellular automata (Fricker, Kotnik, & Piskorec, 2019; Santé, 
García, Miranda, & Crecente, 2010; Tong & Feng, 2019). Computer 
programs emulating dynamic systems influence how scientific knowl
edge is included in designing alternative scenarios (Ervin, 2014). In 
urban physics, simulation has been implemented for climate study in 
urban transformations (Moonen et al., 2012), wind simulation with 
photogrammetric reconstruction (Sun et al., 2021), microclimate anal
ysis (Koc, Osmond, Peters, & Irger, 2017; Kugler, Tóth, Szalay, Szagri, & 
Barsi, 2019), radiative transfer modeling (Calders et al., 2018), shadow 
effect modeling (Bohn Reckziegel, Rafael, Sheppard, Kahle, & Morhart, 
2021), and transpiration simulation (Bournez et al., 2019). Such simu
lations represent a major asset in planning future cities with climate 
scenarios (Schrotter & Hürzeler, 2020). 

1.3. Research aim 

Digital methods, as cited above, influence landscape design thinking 
and gradually replace diagrams and mapping techniques to develop and 
test projects (Herrington, 2016, 251–65; McCown & Zawarus, 2016). 
Resulting digital workflows pervade both design practice and research 
(Cantrell & Yates, 2012; Fricker et al., 2019; Walliss, Hong, Rahmann, & 
Sieweke, 2014). However, 3D models used in these workflows are 
typically geometric reconstructions that only offer indicative features of 
the landscape and differ considerably from the actual micro- and meso- 
scale environment (Nebiker et al., 2010). Moreover, the complex, 

dynamic and temporally heterogeneous interactions of urban and nat
ural systems are not fully incorporated into modeling and simulation 
workflows (Bartesaghi-Koc, Osmond, & Peters, 2020; Bishop, Pettit, 
Sheth, & Sharma, 2013; Cadenasso, Pickett, McGrath, & Marshall, 2013; 
Pickett et al., 2017). From a city modeling perspective, urban vegeta
tion, compared to buildings, has received less attention or has been even 
omitted. Therefore, current digital models offer limited information 
about trees (i.e. height, crown size, foliage distribution, etc.) hindering a 
more accurate and comprehensive microclimate analysis (Xu, Wang, 
Shen, & Zlatanova, 2021). Thus, the combination of the two components 
of digital models and dynamic simulation call for further exploration. 

To address these shortcomings, the key aim of this study is to develop 
a holistic design framework—with the consideration of the built envi
ronment as a complex adaptive system—which iterates (1) 3D modeling 
using detailed geospatial data measured by laser-scanning with (2) 
computational fluid dynamics (CFD) simulation. This integration in
troduces a design process to access complex and specific forms and 
aesthetics of urban landscapes—e.g. complex vegetation geometries and 
patterns—and accurately transform them according to their best po
tential performance. In this context, the main objectives of this paper are 
twofold. First, to present a novel design framework based on point cloud 
modeling that harnesses the physical form of a site and steers the design 
process using comprehensive feedback relying on scientific evidence. 
Second, to demonstrate and discuss the applicability of this approach 
using Singapore as case study. 

2. A holistic landscape design framework based on iterative 
point cloud modeling 

The underlying idea of the proposed framework follows a traditional 
design thinking process in which initial surveys lead to proposals that 
are prototyped and tested (Norman, 2013, 217–30), allowing for 
inductive and deductive logics (Turner, 1996, 148–53). The framework 
consists of an iterative modeling workflow that gradually and specif
ically alters visual and spatial configurations of the landscape. The 
configurations are documented by point cloud models that contain 
contextual and morphologic information and are evaluated for their 
performance. 

2.1. Point cloud modeling 

The applications with LiDAR data cited in the introduction are 
analytical and intrinsic to the surveyed locations. In contrast, point 
cloud modeling is a process of selectively manipulating the geometry of 
3D point cloud models. The manipulation is deduced from existing 
spatio-visual configurations and induces creative and functional in
tentions to develop new design scenarios (Urech, Dissegna, Girot, & 
Grêt-Regamey, 2020). This manipulation involves digital processing 
techniques such as classification and segmentation (e.g., Jochem et al., 
2012; Nguyen & Le, 2013, 3; Yan, Shaker, & El-Ashmawy, 2015), 
allowing to cut, filter and disassemble the geometry (Fig. 1). Terrain 
points converted into meshes are then modified in polygon modeling 
software such as Cinema 4D (Egel, Bärtels, & Schneider, 2019), while 
plants are reconfigured with cloning tools on modified topography using 
Krakatoa (Thinkbox software, 2018), and reassembled in CloudCompare 
(Girardeau-Montaut, 2021) as an altered point cloud model (Urech 
et al., 2020). The selective manipulation of point cloud models allows 
for detailed topographic and vegetation forms to be reassembled, which 
can inform scenario development with measured and scientifically 
analyzed landscape characteristics (Mitasova, Harmon, Weaver, Lyons, 
& Overton, 2012). Thus, the original laser-scanned model acts as a 
support for the design process to incorporate contextual affinities. 
However, the final design choice remains immanent to planners and 
designers, whose expertise might fall short of addressing the complexity 
of dynamic systems. This limitation calls for iterative modeling based on 
the performance of the scenario. 

P.R.W. Urech et al.                                                                                                                                                                                                                             



Computers, Environment and Urban Systems 91 (2022) 101731

3

2.2. Design performance 

The concept of performance can be integrated into design develop
ment by combining two approaches—that of testing the shape of a 
design, and iteratively adapting its shape through digital prototyping 
(Walliss & Rahmann, 2016, 220). Such a process allows for descriptive 
models designed by landscape architects to be investigated by predictive 
models of engineers (Girot & Urech, 2016). The first approach involves 
representing the form of the design with digital modeling. The digital 
models are then tested with dynamic tools (i.e. CFD simulation). This 
combination enables simulations to evaluate the performance of designs 
according to the dynamic conditions of the environment, such as floods 
(Lin & Girot, 2014) or flow of debris (Hurkxkens, Kowalewski, & Girot, 
2020). The second approach uses iteration cycles to develop a prototype. 
Each cycle enables a new evaluation of the prototype that can be 
transformed and reevaluated in the next cycle. The evaluation provides 
feedback by comparing different possible design solutions (Cantrell & 
Holzman, 2015, 34–50). 

2.3. Framework methodology 

The proposed design framework consists of four steps linked in a loop 
(Fig. 2). The design process is steered by iterative point cloud modeling 
based on the geometric documentation of a site (a). A static (geometry- 
related) and a dynamic (simulation-related) evaluation are used to 
examine urban configurations. Parameters are defined based on the 
geometry of the point cloud model using a static evaluation (b). These 
parameters are then used for dynamic evaluation simulating flows (c). 

The evaluations are compared through change detection to provide 
feedback to the modelers (d), and enable further transformation of the 
model after the simulation tests. 

2.3.1. Geometry 
A point cloud model is used as a geometric documentation of the 

study area (Georgopoulos & Stathopoulou, 2017. The geometry of the 
model is then manipulated to produce digital prototypes. These altered 
point cloud models resulting from the manipulation incorporate new 
scenarios that are evaluated according to their performance, i.e., for 
thermal comfort in this case study. Generally, evaluations feed an iter
ative design process useful during project development (Pettit et al., 
2019). Here, the design process progresses in loops between iterative 
point cloud modeling and evaluations of resulting prototypes, thereby 
gradually synthesizing creative ideas based on site-specific features and 
dynamic systems. During this process, however, it is difficult to estimate 
transformations such as displaced terrain volume and the amount of 
added or removed plants. But since altered models preserve the spatial 
structure of laser-scanned points, it is possible to measure the trans
formations, analyze their geometric properties and store them in the 
models as parameters. 

2.3.2. Parameters 
A static evaluation of point cloud models highlights morphometric 

properties (Antonarakis, Richards, & Brasington, 2008; Casas, Riaño, 
Greenberg, & Ustin, 2012; Sofia, 2020). It also reveals possible flaws in 
altered models that went unnoticed in the visual assessment during 
design development. The evaluation generates parameters that are 

Fig. 1. The laser-scanned model of Tanjong Pagar in Singapore (in light grey) is progressively transformed by point cloud modeling. Obsolete elements, i.e., the 
viaduct and port structures are selectively removed by segmenting the model. New elements are added by translation, rotation, cloning and normalization to the 
topographic context. New vegetation is modeled using tree libraries or laser-scanned clusters, while 3D meshes of new buildings are populated with points (Urech 
et al., 2020). 

GEOMETRY PARAMETERS FEEDBACKSIMULATION

CHANGE DETECTIONITERATIVE MODELING STATIC EVALUATION DYNAMIC EVALUATION

Fig. 2. Overview of the methodological approach linking iterative point cloud modeling (a), static (b) and dynamic (c) evaluations, and change detection (d) in 
a loop. 
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attached to each point of the model as scalar values, which are useful for 
data conversion and comparison. These parameters are either inherent 
to the geometry—e.g. indexes and coordinates—or computed from the 
geometry with algorithms for point cloud processing, such as the Point 
Cloud Library (Rusu & Cousins, 2011) and CloudCompare. The param
eters are values of semantic classification (Lohani & Ghosh, 2017), 
normal direction and cloud-to-cloud distance estimations (Alexa et al., 
2003; Girardeau-Montaut, Roux, Marc, & Thibault, 2005) that are used 
for segmentation by filtering during point cloud modeling. The param
eters also include metric values relevant to design development, which 
can be used to study the height-width ratio of tree crowns and buildings, 
spatial characteristics of the landscape design (Liu & Nijhuis, 2020), and 
visual aspects of the urban environment (Portman, Natapov, & Fisher- 
Gewirtzman, 2015). 

2.3.3. Simulation 
To address environmental dynamic systems, the evaluation of the 

site and subsequent design variants involves simulating dynamic con
ditions (i.e., with CFD). Existing simulation software (e.g., OpenFOAM) 
is generally unable to handle point cloud models directly. However, the 
models can be converted into the 3D geometry appropriate for simula
tion software. In this study, all geometric information is extracted from 
point cloud models, based on the classification of three main categories: 
terrain, buildings and vegetation (Fig. 3). 

Terrain points are converted and interpolated into a digital terrain 
model (DTM) using the Raster Map function in CloudCompare with 1 m 
grid distance. Existing and new buildings are reconstructed as simple 
block models (level of detail LOD1 according to CityGML) using the 
footprint extracted from classified point cloud models, and extruded 
according to the height of the point cloud model (Maragkogiannis, 
Kolokotsa, Maravelakis, & Konstantaras, 2014). The reconstruction, 
done in Rhinoceros 3D (McNeel, 2018) with a low level of detail, opti
mizes computation time for the wind simulation, and facilitates meshing 
in OpenFOAM (Mughal et al., 2021). The vegetation points are extracted 
from the point cloud model using the classification, and converted into a 
4 m voxel grid with the Distance Map function in CloudCompare, to be 
used for the CFD simulation (Kiyono, Asawa, & Oshio, 2018). A grid 
sensitivity analysis determines the appropriate voxel size for the control 
case as implemented by Mughal et al., 2021, and can be similarly con
ducted for the design variants. The grid independence study is con
ducted until the results become independent of the grid size, i.e., until a 
further improvement in the grid size no longer affects the results. 

2.3.4. Feedback 
Iterations between design development and evaluation can take 

place in short sequences of visual feedback, or adopt more elaborated 

feedback by integrating dynamic evaluation to investigate performance 
issues. The combination of detailed point cloud models and dynamic 
simulations improves the accuracy of urban microclimate studies 
(Kiyono et al., 2018; Maragkogiannis et al., 2014; Mughal et al., 2021; 
Sun et al., 2021; Xu et al., 2021). However, it is difficult to assess minute 
changes of wind regime during design development, and identify po
tential improvement of the urban configuration. In order to differentiate 
and favor one scenario among others, a numeric change detection is 
used between pairs of models to compare how the change impacts the 
performance. The comparison between the simulations highlights sig
nificant and small differences, which steers the design development and 
iterative modeling. The ensuing feedback loop progressively indicates 
optimizations in the performance of ecosystem services and urban 
spaces. 

3. Implementation 

3.1. Case study 

The framework introduced in this study was tested and implemented 
in a realistic setting located in Tanjong Pagar, Singapore (Fig. 4a). The 
site area of 225 ha (1500 m × 1500 m) is situated at the terminus of a 
former railway line (Fig. 4b). At present, the area comprises parts of a 
cargo port with large logistics buildings, the Keppel Viaduct, different 
typologies of residential buildings and the last mile of the former rail line 
crossing the island of Singapore. The railway service was discontinued in 
2011, and the rails removed subsequently. The Corridor runs along with 
major topographic features of Singapore, including the hills Bukit Batok 
and Bukit Timah in the Central Catchment Area and the Kent Ridge in 
the southern tip of the main island, and borders a range of environments, 
from dense urban infrastructure to patches of primary forest (Yee, 
Corlett, Liew, & Tan, 2011). According to the Köppen-Geiger climate 
classification, Singapore has a tropical rainforest (Af) climate with very 
humid conditions, an average temperature of 27 ◦C, and a significant 
amount of rainfall throughout the year (2380 mm/pa) (Fong & Ng, 
2012). The prevailing wind direction is north-north easterly during the 
northeast monsoon and southerly to southeasterly during the southwest 
monsoon. Stronger winds are observed during the northeast monsoon. 
The mean annual relative humidity is 83.9%. 

3.2. LiDAR data 

Data used in this study was acquired with laser-scanning technology, 
or LiDAR, through an aerial survey in 2014 using an Optech Pegasus 
HA500 sensor at a planar density of about 30 points/m2 (Fig. 4b). 
Supplementary data was collected with a terrestrial survey in 2017 using 

Point cloud model (semantically classified)

File structure: ASCII

Digital terrain model (a)

File Format: image raster (GeoTIFF)

Polygon model (b) 

File Format: Stereolithographic (STL)

Voxel model (c)

File Format: Voxel Grid (PTS)

Fig. 3. Point cloud models are converted according to classification (see Section 4.1): topography as digital terrain model (a), buildings as volume polygons (b), and 
vegetation as voxels that are then reconstructed as volumetric meshes (c). Scalar values stored in point cloud models are exported as Voxel Grids, that is, from LAZ or 
TXT to PTS file format. 
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the Riegl VZ1000. Since the site presents negligible differences between 
2014 and 2017, the datasets were combined, reclassified, and sub
sampled to 20 cm between points to produce a point cloud model rep
resenting the current situation. This model acts as the geometric 
documentation of the site and is taken as a reference for the ensuing 
design process. 

3.3. Simulation data 

Numerical analysis combining CFD and radiative heat transfer 
analysis can predict the thermal environment in urban settings (Tomi
naga, Sato, & Sadohara, 2015). A modified version of the OpenFOAM is 
used in the current study developed by Swiss Federal Laboratories for 
Materials Testing and Research (EMPA) (Kubilay, Derome, & Carmeliet, 
2018; Manickathan, Defraeye, Allegrini, Derome, & Carmeliet, 2018). 
Heat and moisture transport in the air, heat transport in the building 
materials and wind flow are solved in this fully integrated 3D urban 
microclimate model. 

A radiative exchange between surfaces, including the long- and 
short-wave radiation, are integrated into the model. Steady state 
Reynolds-averaged Navier-Stokes (RANS) is solved iteratively with un
steady heat transfer in building materials through a coupled mechanism 
to model transport in air and building materials. A leaf energy balance is 
used to determine the heat fluxes, and vegetation is modeled as a porous 
medium for the flow of moist air. The cooling effect of trees is studied 
with environmental factors (wind speed, air temperature, relative hu
midity and solar radiation intensity) and tree properties (leaf size, sto
matal resistance and Leaf area density -LAD). The model has been 
modified for the local conditions in Singapore to include stomatal 
resistance. 

The prevailing wind direction used in simulations is south-north with 
a magnitude of 2.3 ms− 1. The inlet conditions for the model are obtained 
from Urban Tethys-Chloris (UT&C) (Meili, Manoli, Burlando, Bou-Zeid, 
et al., 2020). UT&C has been validated in Singapore and has shown good 
agreement with the local observations in this area. The maximum 
ambient temperature obtained from the model is 33 ◦C, while the 
minimum is around 25 ◦C. The relative humidity varies between 53% 
and 86%. Common street trees in Singapore are considered with a leaf 
area index (LAI) of 2, obtained from the National Parks (NParks) data
base (National Parks Board, 2019). LAD (1 m2 m− 3) is calculated from 
LAI with a stomatal resistance of 150 sm− 1, leaf size 0.1 m and albedo 
0.15. Standard material properties such as density, thermal 

conductivity, emissivity and albedo for concrete building facades, 
asphalt (pavement) and soil are considered for simulations. 

3.4. Modeling workflow 

The point cloud model provides all geometric information of the 
initial urban scene. First, the polygon meshing process was discretized in 
each design scenario with varying meshing elements (Fig. 3), then a 
mesh density experiment was carried out for each scenario to reach 
reliable results (Mughal et al., 2021). This process was used to convert 
the model and extract the exact building height, footprint and envelope 
information. The position, shape and height of plants were also collected 
using the point cloud model and converted according the altered posi
tion of urban trees in each design scenario. The wind flow simulation 
was then performed with OpenFOAM on a duration of 24 h. For each 
loop of iterative modeling, a simulation was repeated under the same 
conditions. Finally, the simulation results were visualized on the 
respective point cloud models by interpolating wind speed values onto 
adjacent coordinate values using CloudCompare. The interpolation is 
based on the median value of the ten nearest wind speed values to 
maintain the precision of the simulation. 

4. Results 

The proposed framework was applied in a series of scenarios to 
evaluate and transform a realistic setting located in the district of Tan
jong Pagar. Scenario I consists of a geometric survey entirely based on 
laser-scanned data (Fig. 5a), and was tested for thermal comfort with a 
CFD simulation. These initial simulation results indicated possible 
design strategies for thermal comfort in Singapore (Ruefenacht & Acero, 
2017). New buildings aligned with the prevailing wind direction are 
proposed in the port area, which is planned as an extension of the central 
business district (Urban Redevelopment Authority, 2019). The scenarios 
for a new urban landscape were discussed between architects and en
gineers, resulting in two feedback loops which were implemented in 
scenarios II and III (Fig. 5b and c). 

4.1. Iterative design and static evaluations 

The point cloud model of every scenario was classified using the 
algorithms of the GIS software Global Mapper (Blue Marble, 2018) to 
identify ground points and calculate the height above ground (Fig. 6). 

Elevation  0  100 m or more a) Elevation  0  50 m or more b)

Fig. 4. The elevation maps of the main island (NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team 2019) (a) and of the district Tanjong 
Pagar (Singapore Land Authority, 2014) (b) show the former railway line crossing Singapore (in black) and the case study area (framed in white). 
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The settings used to classify the ground in Global Mapper were a base 
bin size of 1 m, a minimum height of 0.5 m, a maximum height delta of 
13 m or more, a terrain slope of 15 degrees, and a maximum building 
width of 200 m. The remaining points that constitute other land covers 
were then separated into subclasses using two passes of classification in 
Global Mapper with different settings. A second pass allowed to classify 
points that were discarded by the first pass, while errors of classification 
were corrected manually in CloudCompare. The scalar values of object 
classes can be generated with any classification software for LiDAR data, 
such as LAStools (Isenburg & Shewchuk, 2019) or LIS Pro (Laserdata, 
2019). The low point density on high-rise facades created significant 

classification errors (particularly on vertical surfaces) and this was 
solved with multiple passes. 

The static evaluation analyses both original and transformed geom
etry of the altered model, thus providing a comprehensive overview of 
the transformed site. Objects of the same type were analyzed, for 
example, based on the inclination of neighboring points to compute the 
roof area of buildings or to indicate terrain that has more potential of 
storing rainwater, or based on point distribution to segment the model 
for inventory (Fig. 7a). Ground points separated through the classifica
tion were used to calculate the volume of the terrain (Fig. 7b). 

Scenario I (existing) a) Scenario II (design) b) Scenario III (design) c)

Fig. 5. The point cloud model produced with laser-scanning, shown here in plan view, is used as the source model for design development (a). The source model is 
then transformed into altered point cloud models representing different design scenarios (b, c). Both design scenarios have an equivalent building volume and a 
canopy cover of 71 ha. 

Height above ground  0  60+ m a) b)

Fig. 6. Classification of the altered point cloud model that represents Scenario II (design). The ground, shown in grey, is classified first, allowing then to compute the 
height above ground of the land cover (a). Semantic information is attached to the altered point cloud model using classifiers (b). 

a) b)

Fig. 7. Static evaluation of Scenario II (design). The segmentation with connected components implemented in CloudCompare at Octree Level 12 distinguishes 
16,460 vegetation groups, most of which correspond to individual trees (a). The 2.5D volume calculation of the new terrain, computed in CloudCompare, interpolates 
areas occluded by buildings and counts 13,3 million m3 above the elevation of 0 m (b). The difference of cut and fills between the original terrain laser-scanned in 
2014 and modified terrain is of 753,130 m3. 
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4.2. Iterative design and dynamic evaluations 

Vegetation plays a beneficial role in regulating the heat for thermal 
comfort and therefore represents an important ecosystem service in 
urban environments (Gillner, Vogt, Tharang, Dettmann, & Roloff, 2015; 
Shashua-Bar, Tsiros, & Hoffman, 2012). To study thermal comfort 
(affected by air advection) in these scenarios of urban densification, the 
configuration of urban vegetation and built form was assessed through 
spatial information and dynamic simulation. Testing the performance of 
scenarios was important for understanding how the design impacted and 
contributed to the site. 

The iterative design loop focused on evaluating designs based on the 
impact of urban parks on the local thermal environment through wind 
modification. The cooling intensity of greenspaces was evaluated and 
compared in each case. Three iterations were performed; the first iter
ation (I) involved producing a source model from the survey data 
(Fig. 8a). This enabled the simulation to be validated on the existing site 
with the local climate. The second iteration (II) consisted of using point 
cloud modeling to produce a new design scenario (altered model) for 
subsequent evaluations (Fig. 8b). 

The first two evaluations (I and II) provided an analysis on how the 
design would influence the current situation. The evaluation included 
the calculation of wind flow field (Salim, Mohamed, & Grawe, 2015). 

This analysis has shown a decrease in wind speed around the historical 
train station (about − 1.5 m/s) and near the existing housing blocks 
(about − 1 m/s). These observations visually informed the decisions on 
how to adapt the model for a third iteration (III) (Fig. 8c). The altered 
model (Scenario II) was subsequently adapted by rearranging trees in 
the main park to form breezeways parallel to the prevailing wind di
rection. Also, the space between buildings was increased in some areas 
to allow greater wind flow, and reduced in other areas to provide more 
shade. The area of the canopy and the volume of the building remained 
constant in both design scenarios (II and III). 

The iterations between point cloud modeling and simulation enabled 
the feedback loop based on the geometry of the point cloud models. The 
CFD simulation was set up to determine the wind speed for the three 
scenarios. The simulation was initialized with a wind field acting in the 
predominant wind direction, from south to north. For each iteration, the 
point cloud model of the existing site was converted to volumetric ge
ometry through a polygon meshing process as detailed in Fig. 3. In order 
to offset the inconsistencies in the results, the experiment was repeated 
for mesh density around building region until the forces do not change 
and further increasing mesh density will not change the accuracy of the 
simulation. 

4.3. Numeric change detection on point cloud models 

The change of wind speed at street level was investigated by inter
polating the simulation values of both Iterations II and III onto the same 
model in CloudCompare. There, the wind speed values resulting from 
Iteration II were subtracted from the values of Iteration III, giving a 
precise indication on how and where the wind flow has changed (Fig. 9). 

By freeing a block-wide opening in the new built area (circle 1 in 
Fig. 9), the wind flow became more distributed in the second design 
scenario, decreasing the wind speed at the previously narrow passage, 

)aInoitaretI

)bIInoitaretI

)cIIInoitaretI

Wind speed   0  2 m/s

Fig. 8. The CFD simulation of wind currents matches the predominant wind 
direction in Tanjong Pagar. The buildings are included in the simulation, 
although shown here in white to clarify the illustration. For computational 
optimization of Iteration I, the Keppel Viaduct and Port are excluded from the 
CFD simulation (shown in grey), being scheduled for complete removal. 

Change of wind speed:

-1.5  +1.5 m/s or more

Fig. 9. The change of wind speed is visualized on the 3D point cloud model by 
comparing the values resulting from the simulation of iteration II and III. The 
change of configuration of the urban landscape results in an increase (in blue), a 
decrease (in red), or an invariance (in white) of the wind speed. Shifted 
building volumes are excluded from the comparison (colored in grey). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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but increasing the speed behind the tower that was projecting a wind 
shadow. The narrowing of some streets created wind blockage triggering 
a decrease of wind speed by 1,5 m/s (circle 2 in Fig. 9), while the ensuing 
widening of the main spaces in the main wind direction triggered an 
increase in perpendicular streets (circle 3 in Fig. 9). 

Although the vegetation area and building volume remained con
stant between the two design scenarios, the configuration of iteration III 
enabled more continuous airflow and thus a more effective dissipation of 
urban heat. In consequence, the iterative design process implemented 
here demonstrates that different dragged features can alter the wind 
regime completely, as seen in the top left corner of the image which 
shows a general increase in wind speed (circle 4 in Fig. 9). Eventually, 
this might result in an improved thermal sensation across the entire area 
due to forced advection (Bartesaghi-Koc et al., 2021). Other factors in 
addition to wind speed also play a part in improving thermal sensation 
namely shading, mean radiant temperature, evapotranspiration by trees, 
time of the day etc. Further analysis involving thermal comfort indices 
such as Universal Thermal Comfort Index (UTCI) or Physiological 
Equivalent Temperature (PET) can additionally support the comparison 
of the scenarios in terms of thermal comfort. 

5. Discussion and conclusions 

Landscape architects, planners and designers are required to justify 
proposals not only from an aesthetic or visual point of view, but also in 
terms of the contribution they make to the overall performance of en
vironments. Under this holistic approach, urban and natural landscapes 
are the result of complex, dynamic and evolving phenomena that vary in 
space and time; hence this should be examined and visualized as dy
namic factors in constant process of adaptation and self-organization 
(Cadenasso et al., 2013). 

Including traits of the landscape and forecasting the impact of 
change or adaptation has therefore become a primary requisite for 
developing planning and design scenarios (Pettit et al. ., 2019; Srivas
tava, Scott, & Rosier, 2021). This attitude can be traced back to the 
principles of biologist and pioneering town planner Patrick Geddes, who 
conducted comprehensive surveys to support planning tasks (Goist, 
1974, 33). His approach of including surveys in the planning process 
underpinned the ecological method, which was theorized by Ian McHarg 
– and later applied by Michael Hough (1994) –, who pioneered the 
integration of the ‘systems-thinking’ approach into landscape architec
ture and planning (McHarg, 1969, 35; Hough, 1995). With frameworks 
such as Geographic Information Systems (GIS) and Geodesign (Afrooz, 
Ballal, & Pettit, 2018; Srivastava et al., 2021; Steinitz, 2012), these 
ecological methods currently provide normative tools, network-based 
collaborative governance techniques and decision support for de
signers and planners (Pettit et al. ., 2019). In this view, the design de
velops primarily as a consequence of analysis rather than a creative 
intention. This creative capability is necessary to approach the land
scape not as a problem to be solved, but rather as a system to be 
incrementally developed (Davies & Shakespeare, 1993). 

The novel methodological framework presented, tested and dis
cussed here is the first attempt to incorporate a holistic approach into 
landscape planning and design by integrating detailed digital modeling 
and iterative performance assessments using emerging data-driven 
technologies and methods capable of dealing with complex-dynamic 
problems (i.e. urban overheating, flooding, droughts, etc.). This frame
work has been successfully applied in a case study in Tanjong Pagar, 
Singapore, with particular focus on thermal comfort, and it is antici
pated that this can be equally implemented by geospatial scientists, 
researchers and design practitioners if equivalent data and software are 
available. The availability of open LiDAR data is increasing, while 
portable-device technologies are becoming more affordable and acces
sible to users (i.e. smartphones, handheld laser scanners). If equivalent 
data is not available, point cloud models can be equally derived from 
photogrammetry-based models collected by unmanned aerial vehicles 

(UAVs) at relatively lower costs. It is also expected that this method can 
bring together human-informed ideas for the creation of different 
landscape and planning scenarios (or iterations) to negotiate design 
solutions based on defensible scientific evidence (i.e. results from 
simulations). 

5.1. Evidence from physical forms 

Although the iterative design method presented in this paper aligns 
with the principles of survey and analysis, it contrasts with the deter
minism of the ecological method by combining analytical and creative 
design approaches (Turner, 1996, 141–53). This method does not point 
towards a particular design hypothesis, nor does it influence the trans
formation towards a particular design outcome. The transformation of a 
source point cloud model provides evidence about the existing land
scape form. The creativity of designers results from interpreting the site 
with the source model, rather than being prescribed by an analytical 
outcome. The measured evidence provided by the source model estab
lishes a close relation with the design and interrelates a variety of con
siderations. The parameters retrieved from laser-scanned data on 
topographic and vegetation structures influence how spatial configura
tions are imagined and developed during design. 

5.2. Evidence from simulation 

The evaluation of point cloud models provides a base of information 
to advance the design iteratively. The iterations harness the existing 
situation as a stepping-stone for improvement. But while the source 
model provides evidence about existing conditions, the evaluation phase 
provides evidence on how the design might perform in the future. At the 
beginning of the design process, design intentions may be faulty or 
incompatible with site conditions, but with the evidence obtained from 
point cloud-based simulation results, decisions can be taken to progress 
towards a final proposal. The evidence from simulations informed on 
how to improve the performance of current and transformed situations, 
and develop cooling spaces in the hot urban environment of Singapore. 

5.3. Calibrating a design for the site 

The iterative process with evidence from both form and simulation 
contributes to shaping the landscape through both empirical observa
tions and creative intentions. The iterations enhanced the reciprocal 
influence between the existing site and prospective design ideas. This 
calibration between the existing and envisioned landscape is pursued 
with computer-based 3D modeling to establish a dynamic exchange 
between parameters and design decisions (Walliss & Rahmann, 2016). 
Computational design is based on iterative approaches that allow the 
site to be addressed within a more complex and adaptable workflow 
with local variables (Cantrell & Mekies, 2018, 28–33). With the method 
proposed in this paper, the point cloud model provides the parameters 
while the simulations progressively adapt the design decisions. The 
reciprocal influence between existing and envisioned landscape leads to 
treating the built environment as a perpetually evolving construct that 
could accumulate locally in more permanent and characteristic forms. 

5.4. Final remarks 

The research presented in this paper aims at extending the use of 
digital models in urban landscape design. The combination of iterative 
point cloud modeling and simulation introduced here is a step forward 
in shaping the physical environment both creatively and scientifically. 
The concluding remarks summarize potential improvements of (1) the 
workflow, (2) the computation, and (3) the application described in this 
study. 
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1) The proposed framework uses point cloud modeling to include site- 
specific qualities for aesthetic development, and to perform precise 
simulations of the physical environment via CFD software, different 
to existing approaches using geometric reconstructions and param
eterizations. The entire 3D modeling process occurs within point 
cloud models; the data conversion only applies to the simulation step 
and is due to a limitation of the digital formats supported by the 
simulation software. A workflow improvement would require the 
support of point cloud models without a need for geometry 
conversion.  

2) Extensive geometric simplification was necessary to reduce 
computing time, and involved flattening the topography, normal
izing the vegetation, and discretizing the building geometry. Such a 
geometric simplification is questionable, considering that the anal
ysis of thermal comfort occurs at human height, which is easily 
exceeded by topographic variations influencing near-ground airflow. 
In this study, the computing time for a 24 h simulation was 156 h, in 
a parallel run using 36 processors on a single processing node. The 
computation time could be optimized from hours to minutes, either 
by changing inflow boundary conditions tested by a surrogate model, 
by approximating simulations using deep learning (Kochkov et al., 
2021; Sanchez-Gonzalez et al., 2020), or by implementing quantum 
computing in fluid dynamics (Bharadwaj & Sreenivasan, 2020; Lu, 
Hu, Xie, & Zhang, 2021).  

3) The change detection analysis enables the comparison of multiple 
scenarios and derives observations for optimizing the spatial 
configuration according to the existing site. Therefore, the iterative 
workflow should be fast in alternating between design development 
and feedback. In this study, however, the iterative workflow in 
Tanjong Pagar required a long process for set-up, data conversion 
and simulation of every design scenario. This time lag resulted in 
developing design scenarios with broad differences instead of 
refining the scenarios iteratively, as the analysis-modeling- 
simulation-feedback workflow would allow. 

Urban environments encompass many dynamic factors that require 
appropriate simulation models. An improved integration between 
physical form and performance is needed to address these dynamic 
systems at play on large-scale landscapes. Supporting the design process 
with iterative point cloud modeling offers a significant advantage for 
synthesizing adaptive solutions, for transcalar design, and for creative 
and aesthetic integration. 
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