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ABSTRACT

Students might have preconceptions about programming when
enrolling in an Introductory Programming (CS1) course. These pre-
conceptions might influence their expectations about programming
assignments. Understanding these preconceptions could help give
students a voice in their learning experience. This paper reports
on a study for CS1 programming assignments. This study uses an
assignment design activity as an instrument to collect student voice,
asking students to design a programming assignment they expect
to accomplish at the end of a CS1 course. A mixed-methods ap-
proach was used to analyse the subject matter and course learning
outcomes of the students’ assignment designs. The results show
students applying prior knowledge, a process known as transfer
of training, to design their assignments, predominately focused on
math and gaming. The results also show that students with no prior
programming experience had lower expectations from the program-
ming assignments, which might have influenced their study effort
in the course. We discuss integrating the results into CS1 assign-
ments, helping students transition to new roles as programmers,
and adjust their study expectations early to recognise when more
effort is needed to successfully complete a course.
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1 INTRODUCTION

Students who enroll in Introductory Programming (CS1) courses
might have preconceptions about programming. The preconcep-
tions might differ based on prior experiences and interests in Com-
puter Science (CS). Collecting students’ diverse preconceptions on
programming could give them a voice in their learning [7]. On a
related theme, bringing student voice into the learning design can
give students a “legitimate perspective and opinion, being present
and taking part, and/or having an active role” [6, p. 362] in their
learning. Students’ input could aid in the design of programming as-
signments, potentially helping them better understand the problem
and motivating them to successfully complete the assignment.

The goal of this study is to evaluate an assignment design activity
as an instrument for collecting student voice. Our motivation is to
use the voice to help to identify an instrument that could improve
students’ learning experience with CS1 programming assignments.
Our work is guided by the following research questions:

e RQ1: How can an assignment design activity facilitate student
voice for CS1 courses?
o RQ2: How does student voice align with the CS1 learning outcomes?

In designing this study, we wanted students to get involved in
the assignment design process before being influenced by existing
assignments, so we applied the instrument early in their learning
and asked them to design a programming assignment they believe
they could achieve by the end of the course. We examined the
assignment designs for subject matter, to identify: topics the stu-
dents found interesting and motivating; and learning outcomes, to
identify the programming expectations for the course. We used a
mixed-methods approach to evaluate the assignment designs. This
paper reports on a study evaluating those designs.

The results show students applying prior knowledge to their de-
signs, using maths, games, and daily living activities as the subject
matter. Applying prior knowledge to a new task is a process known
as transfer of training, which can help the learner prepare for a new
role [21]. To support transfer of training, educators can integrate
identified subject matter into CS1 programming assignments, to
help students transition to new roles as programmers. The results
from this study show that students with no prior programming
experience have lower expectations from the CS1 course. These
findings raise future research opportunities for using interventions
to potentially adjust students’ expectations, to help them success-
fully complete the course.

2 BACKGROUND ON STUDENT VOICE

Student voice gives students an active role in their educational de-
velopment, enabling them to contribute in the learning and teach-
ing practices used in the classroom [20, 30]. Through students’
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involvement in processes, such as the development and redesign
of educational materials [35], educators can gain insight into the
students’ educational experiences, making them “active agents in
their own development who benefit from a nurturing and enabling
learning environment” [36, p. 6].

Education governance, such as the UK’s 2002 Education Act [39],
includes statutory requirements focusing on student voice. The
requirements enable students to contribute to the decision-making
processes that affect their learning [38]. Education governance en-
courages student voice by providing guidelines that help educators
apply the voice into designing educational materials [22]. Although
policy exists, helping educators to facilitate student voice and stu-
dents to understand how their voice is being heard can strengthen
the impact that student voice has on instructional materials [19].

Student voice has been previously used in CS curriculum design
[37], where students’ contributions through interviews influenced
change. However, student voice was not fully realised in the cur-
riculum development due to students’ reservations in participating,
and educators perceiving difficulties in integrating student voice
into the design process. In another student voice study [15], stu-
dents were interviewed to collect their feedback on the presentation
of programming assignments, identifying design treatments that
helped them better understand the problem description. That study
showed certain design treatments, such as listed subgoals, helping
CS1 students better identify programming requirements and vali-
date their solutions. Another project, Researching Equity, Access,
and Learning in CS Education (REAL-CS), focused on student voice
for underrepresented high school CS students [31]. The REAL-CS
project was conducted in regions of the United States, using pre-
post surveys and interviews with students to help shape educational
materials that interest and motivate their learning.

3 RELATED WORK

In this section, we review work that provides students the oppor-
tunity to develop learning activities. The first is CrowdSorcerer
[27], an open-source system for both educators and students that
contains an authoring tool for creating programming assignments.
CrowdSorcerer enables students to peer review assignments and
help them “reflect on prior tasks and content, consider how they
would themselves solve the problem they are creating and also
learn to articulate what it means for a program to be correct (or
incorrect)” [27, p. 326]. When CS1 students were asked as part of
the study to design assignments, many of the resulting designs were
suitable activities for the classroom, demonstrating self-reflection
on concepts they learned in the course.

PeerWise [11] is an online platform that houses multiple choice
(MC) questions created by students within various STEM disciplines,
such as Biology, Physics, and Computer Science. The platform pro-
vides students the opportunity to discuss, answer, and rate peers’
MC questions, allowing them to build a question repository for
their course. When PeerWise was used by CS students, the results
showed them gaining a deeper understanding of the learning con-
cepts presented in the course. Another study [13] applied rubrics
as a learning tool to support critical thinking skills. In this study,
K-12 students were asked to develop rubrics for the assessing skills
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Figure 1: Diagram of Study Method (Adapted from [10])

covered in a Music course. The activity was designed to help stu-
dents better understand the requirements needed to achieve music
skills taught in the course. The process of designing the rubric
encouraged students to think of the music skills at a higher level
and helped them better understand the stages involved to acquire
mastery of the learning concepts. While the related work surveyed
in this section promotes reflection on learning concepts, our study
has the advantage of capturing students’ reflections in the CS con-
text early in their learning. These early reflections could shape the
presentation of learning concepts.

4 STUDY METHOD

We adopted a mixed methods approach [9] using a concurrent
triangulation design [10] to interpret the collected data. Figure 1
shows the equal weight given to the quantitative and qualitative
data sources. The quantitative method interprets the students’ pro-
gramming background and potential interests for the course, while
the qualitative method interprets their assignment designs.

4.1 Context

The study was conducted in the first week of a 12-week CS1 course
(July 2020 Semester 2, 536 students) at the University of Adelaide.
The course used MATLAB for the first seven weeks and C for the
remaining five weeks to teach programming concepts. In addition
to lectures, the course had workshops that gave students the op-
portunity to ask teaching assistants (TAs) for support on learning
concepts while working on learning activities.

Students were given the assignment design activity in week 1;
this was part of a series of six activities for the students to un-
dertake during the two-hour workshop. The low-stakes activity
contributed to 1% of the overall course grade. Students were given
a week to complete the assignment design activity. Upon comple-
tion, students were instructed to upload their designs to Canvas,
the Learning Management System (LMS) used at the university
for course administration. For this study, students were also given
a non-compulsory survey designed to collect their programming
backgrounds and intended majors. Details about the survey are
described in the next section.



4.2 Survey

A survey was designed to collect students’ prior programming ex-
periences and their declared majors, to better understand students’
interests and motivations for taking the CS1 course. We wanted to
determine how their prior experiences might influence their assign-
ment designs. The survey did not collect students’ programming
expectations. Instead, we wanted the assignment design activity
to promote self-reflection on their programming expectations. The
survey was administered within Canvas LMS, giving students ten
days to complete. After the ten days, the survey responses were
exported from Canvas and imported into a spreadsheet for analysis.

The survey contained questions focusing students’ prior pro-
gramming experiences. The first question was a five-point Likert
scale question, asking students to rank their prior programming
experiences from Very Experienced (5 points) to Very Inexperienced
(1 point). Two open-text questions were provided to get more de-
tails on students’ programming experience and declared majors.
Collecting declared majors might provide insight into students’ mo-
tivations for taking the course. Students with intrinsic motivations
in CS had higher perceived programming skills [42], which could
also influence their assignment designs.

The survey responses were analysed using two methods. The
first method was analysis of means (ANOM) performed on two sur-
vey questions: a Likert scale question rating students’ programming
experience and an open-text question asking students to provide
previous years of programming experience, either self taught or
through prior programming courses. To perform ANOM on the
open-text responses, the data was numerically quantified, such as
“six months” converted to 0.5 years. Responses that could not be accu-
rately quantified, such as “less than a year”, were labelled Unknown
and not included in the results. The second analysis approach was
thematic content analysis [26] performed on the open-text ques-
tion on declared majors using NVivo to code the responses. During
coding, new nodes were created for the emerging majors. After the
coding process, a matrix table was extracted from NVivo to present
the coding frequencies for the declared majors.

4.3 Assignment Design Instrument

An assignment design activity, shown in Figure 2, was developed as
an instrument to collect student voice. A multi-level assignment ed-
ucational design pattern [23] was used to construct the instrument.
The educational design pattern provides guidelines for the assign-
ment structure, helping students to better understand the problem
description. Guidelines include giving additional information on
concepts at other knowledge levels for struggling students to under-
stand the problem. Figure 2 shows the instrument constructed with
scaffolded design treatments, such as bold-face text for emphasis
[4] and lists of subgoals to identify the activity’s requirements [40].

The instrument provides the activity’s purpose, to design a prob-
lem description for a programming assignment that can be admin-
istered at the end of the CS1 course. By asking students to design
an assignment for the end of the course, we wanted them to reflect
on their programming expectations and what they would like to
achieve in the course. The instrument also instructs the students to
only develop the problem description, and suggests their designs
can contain multimedia elements. In an effort to reduce task anxiety

during the assignment design development, the instructions state
there are no right or wrong answers, giving students the opportu-
nity to take risks in their designs. Students were given a week to
complete their designs. After the week, the students’ designs were
exported from Canvas and imported into NVivo for analysis.

Here’s your opportunity to create a programming assign-
ment that could be given to students at the end of this course.

This activity only requires you to create a problem description
for a programming assignment given at the end of this course.
You do not need to write a programming solution.

This activity is designed to be completed during the workshop.
However, if you want more time, you can turn in by the end of
the week. Please upload your solution as a file.

Additional Information:

e Think about what types of programs you would like to create
at the end of this course and what you would like to program.

e Do not dwell on providing a “correct” solution. This activity
does not have a right nor wrong answer.

e Do not overthink this activity. This activity should take no
more than an hour to do.

e Solutions can be a page in length and contain multimedia
elements, such as text, images, audio, and video.

e Remember: Have Fun!

Figure 2: Assignment Design Activity Instructions

Thematic content analysis [26] was used to interpret the stu-
dents’ assignment designs. The assignment designs were coded
with multiple nodes representing different themes and information
about the student creating the assignment design, such as gender.
Students’ survey responses were mapped to their designs to better
understand their design motivations. An example coding process
for a student’s assignment design could contain five nodes to denote
subject matter, programming background, declared major, the stu-
dent’s de-identified number, and gender. The de-identified number
enabled us to anonymously report the results.

We analysed the assignment designs for learning outcomes. The
analysis used the Australian CS1 course accreditation defined by
the Engineers Australia - Chartered Status Handbook [1], which
explained novices’ competency through high-level goals, such as
the ability to interpret and decompose problems. We also used the
existing course assignments presented at the end of the semester,
which supported the goals and learning concepts the course wanted
students to achieve by the end of the semester. To code the learning
outcomes, four nodes were added in the initial coding framework
to denote incorrect designs and designs that were above, below,
and at the course’s desired learning outcomes.

The initial coding framework contained eight nodes: gender,
de-identified student number, programming background, declared
major, and four nodes denoting the learning outcomes. Any emerg-
ing themes that arose during the coding process were assigned a
new node. To strengthen the coding validity, the authors used the
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Figure 3: Participants’ Declared Majors

inter-rater reliability process defined by Mackey and Gass [25]. The
primary author was responsible for coding all assignment designs,
while a co-author coded 10% of the students’ responses. The va-
lidity process involved negotiation by the authors on 10% of the
partially coded assignment designs. During the negotiation process,
the authors discussed and agreed upon the coding protocol, to com-
plete the coding of the remaining designs. When the coding of the
assignment designs was completed, the coding was extracted from
NVivo as a matrix table. The matrix table represented the coding
framework with the initial and emerging nodes, identifying the
common themes emerging from the students’ assignment designs
and presenting the thematic frequencies.

5 RESULTS AND DISCUSSION

5.1 Participants

From the 536 students enrolled in the course, 200 (32.13%) students
participated in the survey. Fewer (30.04%, n=161) participants com-
pleted the assignment design activity, where 26.71% (n=43) were
female and 73.29% (n=118) were male. We note the gender disparity
of our participants with a female-to-male ratio of 1:2.74. However,
we strive to find common ground in the student voice.

When examining the survey results, we found majority (63.00%,
n=126) of the participants claimed to have no programming back-
ground, ranking themselves as Very Inexperienced (41.00%, n=82)
and Inexperienced (30.50%, n=61). Few participants claimed prior
experience, not many ranking themselves either as Very Experi-
enced (1.00%, n=2) or Experienced (5.50%, n=11). From the 116 par-
ticipants explaining prior programming experience, 37 were self
taught, while 79 previously took a CS course. A smaller portion
(32%, n=65) of those participants provided years of prior experience,
averaging less than six months (0.47 years). Overall, the survey re-
sults show mostly novices with minimal programming experience
participating in the study. These results align with the course design,
which focuses on introducing novices to programming concepts.

Figure 3 shows the declared majors participants reported; these
predominately fell into two categories: Unknown (37.50%, n=81)
and Engineering (36.12%, n=78). The engineering category contains
multiple engineering disciplines, such as Electrical, Chemical, Civil,
and Mechanical Engineering. We isolated declared CS majors (14.8%,
n=30) to determine participants that have higher motivations for
taking the course. Three (1.39%) participants declared majors in non-
STEM fields, so the majority of the declared majors were interested
in STEM. Because of the distribution of unknown and declared
majors, we cannot generalise the participants overall motivations
for taking the course.

The rest of this section reports on the analysis of the partici-
pants’ assignment designs. Section 5.2 presents which subject mat-
ter interested the participants, while Section 5.3 discusses how their
assignment designs aligned with the CS1 course learning outcomes.

5.2 Subject Matter

Table 1 shows the subject matter found in the participants’ as-
signment designs, listing eight categories in descending order and
presenting the gender distribution for each theme. Two categories,
Programmed Solution (3.11%, n=5) and Pseudocode Solution (3.11%,
n=5), covered participants’ designs that did not provide problem
descriptions; instead they focused on a coded or pseudocode solu-
tion. These designs, focusing on the solution, are not included in
the subject matter results.

Game Development (29.19%, n=47) was the most common theme
used by both the male and female participants. For example, create
“a program that simulates a dice roll, i.e., will randomly display a
value from 1-6”. Though prior research [5] identified male students
pursuing a CS degree because of their interests in gaming, our
findings show that female students may also be influenced to study
CS because of gaming, but more analysis is needed for confirma-
tion. Assignment designs in this category assumed the reader had
prior knowledge about the games referenced, because the designs
either described the game at a high level or provided the game’s
name, such as Student08’s design stating “a program that acts as an
automated tic-tac-toe player”.

The next common theme was math related (24.84%, n=40). Simi-
lar to the gaming assignment designs, the math designs presented
the problem at a high level with limited details. For example, Stu-
dent87’s design stated “prompt the user for three numbers and print
out the sum, product and quotients of the three numbers. These num-
bers should be irrational...”. In this example, Student87 assumes the
reader understands some mathematical terms. A potential reason
students might have used math problems as their assignment de-
signs is that they were applying previous knowledge to design their
assignments. Drawing on prior knowledge to complete a new task
is known as transfer of training [21] and has been shown [3] as a
process used by students to transfer mathematical skills to real-
world situations. In our results, we observe students applying their
math skills to programming situations. Another example of transfer
of training is with Student31’s design: “these problems on the scheme
of maths are complicated and require program several steps that I am
not aware of yet”. Student31 is thinking about the math problem-
solving process, but acknowledges the lack of skills to translate
using programming concepts. Educators could incorporate math
problems into assignments, building on students prior knowledge.



Gender Distribution

Theme Responses Female Male
Game Development 29.19% (n=47) || 27.66% (n=13) | 72.34% (n=34)
Math Problem 24.84% (n=40) || 25.00% (n=10) | 75.00% (n=30)

Activities of Daily Living
Socially Relevant
Calculator

Programmed Solution
Pseudocode Solution
COVID

21.74% (n=35)

22.86% (n=8)

77.14% (n=27)

11.18% (n=18) || 50.00% (n=9) | 50.00% (n=9)
4.97% (n=8) || 25.00% (n=2) | 75.00% (n=6)
3.11% (n=5) || 20.00% (n=1) | 80.00% (n=4)
3.11% (n=5) || 40.00% (n=2) | 6.00% (n=3)
1.86% (n=3) || 66.67% (n=2) | 33.33% (n=1)

Table 1: Participants’ Assignment Designs by Subject Matter

However, to make the math problem an effective learning tool for
novel situations, the maths skills for these problems need to be
well understood by the students [16]. Additionally, students do not
always transfer their math skills to other disciplines [2]. When
integrating math problems to future assignments, educators can
scaffold the concepts to support recollection.

Another significant design theme in the results is Activities of
Daily Living (21.74%, n=35) (ADLs), where participants applied com-
mon situations that occur in daily life. Participants applied a variety
of ADLs, such as banking, school calendar, and address books. For
example, Student2’s design asked students to “design code that can
identify the amount of power that electrical appliances and machines
require over periods of time. For example, the amount of power that
will be needed to power a microwave for 2 hours”. Related to ADLs
are the designs building on socially-relevant (11.18%, n=18) themes
that focus on social problems that benefit the community. For exam-
ple, Student142 designed an assignment addressing obesity, which
calculates “the number of calories that need to be eaten for a person,
given their amount of exercise and previous diet”. The presence of
socially relevant assignment designs continues to show current stu-
dents seeking meaningful projects with societal impact, mirroring
the interests identified by Layman et al. [24] for female, minority,
and millennial students. Future programming assignments using
socially relevant contexts could help current students recognise
the contributions CS provides to society, potentially giving them
additional motivation to continue their studies in the discipline.

5.3 Learning Outcomes

From the 161 submitted assignment designs, 143 were analysed
for learning outcomes; see Table 2. There were 18 (11.18%) designs
that could not be included these results because the participants
did not correctly answer the activity or did not provide enough

information to classify. The remaining designs were classified into
three categories: Below, At, and Above the Course Learning Outcomes.
Table 2 organises these categories in descending order according to
the participants’ designs. We discuss the assignment designs within
the learning outcomes further in this section.

During the analysis process, we noted some (18.01%, n=29) par-
ticipants reflecting on what they would like to achieve in the course,
but felt they did not have the programming knowledge to express
in an assignment. For example, Student124 stated ‘T don’t really
know the scope of what programming can do as of yet, so I'm not
sure what ... things you can program”. Some participants’ concerns
related to their lack of programming knowledge. For example, Stu-
dent32 stated ‘T do not really know specifically how those steps should
be done to lines of code, but I guess I would learn them in a future
study” and Student30 acknowledged they do not know enough
programming concepts to provide game details, stating “my coding
knowledge is not deep enough to know how to code the actual part of
the game.”. When designing their assignments, these students were
concerned about language constructs above other design consid-
erations, a software design approach known as bottom-up design
strategy [12]. Though the activity did not ask for a coded solution,
these exemplars demonstrate the students applying the software
design strategy outside the scope of program production.

In addition to classifying the assignment designs by learning
outcomes, Table 2 also aligns the learning outcome results with
the participants’ prior programming and declared major responses
from the survey. We applied Pearson’s chi-square (y?) tests to these
results, and performed a statistical analysis using the R software
environment [28]. The results showed the learning outcomes had
a higher association with prior programming experiences, y? (2,
N=74)=3.160, p=0.697, than with the participants’ declared major
responses, y° (2, N=74)=0.691, p=0.708. We report non-significant

Programming Major
X2 (2, N=74)=3.160, p=0.697 x? (2, N=74)=0.691, p=0.708
Category Response Experience | No Experience Declared Unknown

37.27% (n=60

Below Course Learning Outcomes )
33.54% (n=54)
)

At Course Learning Outcomes
Above Course Learning Outcomes

26.47% (n=9)
37.04% (n=10)
53.85% (n=7)

73.53% (n=25)
62.96% (n=17)
46.15% (n=6)

41.18% (n=14)
51.85% (n=14)
46.15% (n=6)

58.82% (n=20)
48.15% (n=13)
53.85% (n=7)

11.18% (n=18)

(
18.01% (n=29
Did Not Answer Correctly (

Table 2: Assignment Designs Categorised by Course Learning Objectives



p values, which suggest the results are not unusual and consistent
with the model assumptions [18].

5.3.1 Below Course Learning Outcomes. The results show 37.27%
(n=60) of the assignment designs represent learning outcomes be-
low these meant for the curriculum, unsuitable to present at the
end of the CS1 course. When mapping the learning outcomes with
survey responses, as shown in Table 2, we noticed participants
with no prior programming experience (73.53%, n=25) contributed
more to assignment designs in this category. For example, an as-
signment design asked and printed out a user’s “name and favourite
country to travel”. Because students begin to form mental models
early their learning [34], this activity might be demonstrating the
imprecise models formed early in students’ learning process, which
influence the simplistic assignment designs. A potential reason for
these designs might be due to defensive pessimism, “unrealistically
low expectations for ever succeeding or discount the importance
of an assignment” [8, p. 182]. Because the activity was low stakes,
participants might have perceived the effort to complete the ac-
tivity outweighed its contribution to their overall grade for the
course. Another potential reason for these simple designs might be
a reaction to self-efficacy moments experienced while solving the
activity, such as not understanding the problem or not knowing
how to begin solving the activity [17]. The self-efficacy moments
might have generated feelings of failure. To reduce these negative
feelings, participants might have applied failure-avoiding tactics
[8], potentially designing assignments they believed they could
achieve. Though we provide plausible reasons for these designs,
more research is required to draw conclusive explanations.

Assignment designs in this category could be perceived as un-
ambitious, potentially designed by at-risk students needing help
understanding how to solve the activity. We were interested in the
voice of at-risk students, so we examined the designs from students
that withdrew from the course. From the 20 students that withdrew,
three participated in the activity. Because of the low participation
rate from the at-risk students, we could not draw any conclusions
about their voice. However, the low-participation results align with
previous findings [14], showing poor performance in early assign-
ments as an early indicator for identifying at-risk students. Any
other assignment could also serve as a predictor, but the assign-
ment design activity provided an additional layer that encouraged
students to reflect on their learning goals. Because learning goals
contribute to higher retention [33], the activity might help identify
students without learning goals, giving educators the opportunity
to intervene earlier in their learning.

5.3.2 At Course Learning Outcomes. Assignment designs (33.54%,
n=>54) in the At Course Learning Outcomes category required con-
cepts and language constructs expected at the end of the CS1 course.
The assignment designs were more involved, using familiar themes
that required algorithms and planning for solving the problem.
For example, Student154 developed an assignment averaging and
sorting people’s heights in descending order. Mapping the survey
responses (See Table 2) to the results in this category does not show
prior programming experience nor declared majors influencing the
participants’ assignment designs. More research is required to un-
derstand how students design appropriate assignments, especially
those with no prior programming experience.

5.3.3 Above Course Learning Outcomes. Assignment designs (18.01%,
n=29) classified in the Above Course Learning Outcomes category re-
veal participants applying problems they previously encountered in
other STEM disciplines. For example, Student146 applied a robotic
problem in their design, stating “there are 5 objects in different color,
shape and mass, student needs to design the structure and program
that allow the simu-robotic arm to grasp the objects and put them
in the circle that have corresponding color”. Table 2 shows having a
declared major or prior programming experience did not influence
these assignment designs. Instead, these designs might be influ-
enced by problems the participants encountered in other courses,
which they then applied in the CS1 context; but additional research
is required to support this theory.

6 THREATS TO VALIDITY

There are limitations to this study. First, 37.31% (n=200) of the cohort
completed the survey, while fewer (30.04%, n=161) completed the
assignment design activity. The low participation rate could be due
to unmotivated students who do not value low-stakes assessments
[41]. Volunteer bias is another threat to validity. Participants might
have designed solutions because of their intrinsic motivations for
taking the course, and wanting to share their interests in CS. To
promote higher participation that better represents a CS1 cohort,
future studies can make the study’s instruments compulsory, giving
the activities more weight in the final course grade.

7 CONCLUSION

This paper reports on a study that evaluates an assignment design
activity as an instrument to collect student voice. The instrument
gives students the opportunity to reflect on what they would like
to achieve in CS1 courses through programming. The main contri-
butions are identifying the subject matter that interests students
in programming assignments and their programming expectations
when starting the course. Participants drew on prior knowledge
and experiences to create their designs, demonstrating transfer of
training that can support the transition to the role of programmer.
Educators can support transfer of training by blending subject mat-
ter, such as maths, games, and socially relevant activities, into CS1
programming assignments that are familiar to students.

Using participants’ assignment designs to identify their range
of learning expectations opens up future research opportunities.
Though the range of expectations is not surprising, the results
show students with no prior programming experience having lower
learning expectations, which could impact their time and effort
studying, and potentially influence their performance in the course.
Helping students understand the faculty’s expectations might raise
students’ awareness of what is required from them to successfully
complete the course [32]. Future research can evaluate interventions
to help students better understand the effort required to succeed in
CS1 courses [29]. For example, educators could demonstrate early
in the semester what students will accomplish by the end of the
course. Future research can report on how students react to such
demonstrations, to determine whether they are helpful in adjusting
students’ studying efforts.
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