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Abstract

Oka theory involves the study of deforming continuous maps between complex manifolds
into holomorphic maps. Gromov (1989) introduced the class of elliptic manifolds, which
satisfy the property that every continuous map from a Stein source into an elliptic target
is homotopic to a holomorphic map. Kutzschebauch, Lárusson, and Schwarz (2021) have
generalised this theory to the equivariant setting.

Winkelmann (1993) provided a full classification of the pairs of Riemann surfaces for
which every continuous map is homotopic to a holomorphic map. Due to the simplicity of
the one-dimensional setting, Winkelmann’s methods are much more accessible than the
techniques introduced by Gromov. Continuing this theme, we generalise Winkelmann’s
results to the equivariant setting for Riemann surfaces in the case of a Stein source and
an elliptic target, avoiding the higher-dimensional techniques used by Kutzschebauch,
Lárusson, and Schwarz.

Specifically we show that if G is a finite group acting holomorphically on a noncompact
Riemann surface X and Y = C,C∗,C/Γ for any lattice Γ ⊂ C, then every G-equivariant
continuous map X → Y is equivariantly homotopic to an equivariant holomorphic map
X → Y . We present only partial results for Y = P1. We show that if G acts effectively
on X and A ⊂ X is the set of points with nontrivial isotropy, then for each equivariant
map f : A → P1, the set [X,P1]fG of G-homotopy classes of extensions X → P1 of f
is a singleton. The problem of whether each G-map A → P1 admits an equivariant
holomorphic extension is left open.
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Chapter 1

Introduction

1.1 Context

This thesis is concerned with Winkelmann’s [Win93] classification of pairs of Riemann
surfaces (X, Y ) for which mappings X → Y satisfy the homotopy principle, and its
extension to the equivariant setting. This problem fits into the more general area of
research known as Oka theory, and is motivated by recent progress in the equivariant
setting due to Kutzschebauch, Lárusson, and Schwarz [KLS18, KLS21].

For a detailed historical overview of the Oka principle and Oka theory, we refer to
the monograph of Forstnerič [For17]. We begin our discussion with the work of Gro-
mov [Gro89]. Gromov was interested in studying the homotopy principle for holomorphic
maps, henceforth shortened to the h-principle. More precisely, let X and Y be complex
analytic manifolds. Holomorphic maps X → Y satisfy the h-principle if every continuous
map X → Y is homotopic to a holomorphic map. Gromov’s main h-principle, which he
interpreted as a manifestation of the earlier known Oka principle, was that if X is Stein
and Y is elliptic, a property introduced by Gromov, then every continuous map X → Y
is homotopic to a holomorphic map. Following Gromov’s reinterpretation, we will use the
term Oka principle to refer to the holomorphic h-principle when X is Stein.

Related to the Oka principle is the basic Oka property. A complex manifold Y satis-
fies the basic Oka property if every continuous map X → Y from a reduced Stein space
X is homotopic to a holomorphic map. There are stronger Oka properties incorporat-
ing approximation and interpolation, motivated by two classical theorems from complex
analysis: the Runge approximation theorem, and Weierstrass’ theorem on holomorphic
functions with prescribed zeros. The various Oka properties involving approximation and
interpolation were shown to all be equivalent [For17, Proposition 5.15.1], and collectively
are known as the Oka property.

A manifold satisfying the Oka property is called an Oka manifold. The basic Oka
property is not among the equivalent Oka properties: for example, the unit disk ∆ satisfies

1



2 Chapter 1. Introduction

the basic Oka property but is not an Oka manifold. If a complex manifold is elliptic in the
sense of Gromov, then it is Oka. The question of whether all Oka manifolds are elliptic
was settled in the negative only recently by Kusakabe [Kus20, Corollary 1.4].

Oka theory has also been considered in the equivariant setting. This thesis was origi-
nally motivated by the works of Kutzschebauch, Lárusson, and Schwarz [KLS18, KLS21].
In the second paper, Kutzschebauch, Lárusson, and Schwarz introduced the notion of a
G-Oka manifold for a reductive complex Lie group G acting holomorphically, and showed
that for a finite group G, a Stein G-manifold X, and a G-Oka manifold Y , every con-
tinuous G-map X → Y is G-homotopic to a holomorphic G-map [KLS21, Theorem 4.1].
A similar result was proved for homogeneous spaces Y using different methods in their
earlier paper [KLS18].

One of the key assumptions of the main theorem of Kutzschebauch, Lárusson, and
Schwarz [KLS21] is that the stabilisers of the G-action on the Stein G-manifold X are all
finite. A special case is when G is itself finite. In line with this, we will only consider
finite group actions.

We now turn our attention to the one-dimensional setting of Riemann surfaces, which
is the main focus of this thesis. We note that a Riemann surface is Stein if and only if
it is noncompact (see Forster [For81, Corollary 26.8] for the nontrivial direction), and a
Riemann surface is Oka if and only if it is not hyperbolic. In this context, a Riemann
surface is hyperbolic if it is holomorphically covered by the unit disk. Hence there are
only four types of Oka Riemann surfaces: the complex plane C, the punctured plane C∗,
any complex torus C/Γ where Γ ⊂ C is a lattice, and the Riemann sphere P1. Also, in
the case of Riemann surfaces, the notions of a G-Oka manifold and an Oka G-manifold
coincide. This is not true in general [KLS21, Example 2.7].

Winkelmann [Win93] was interested in finding all pairs of Riemann surfaces satisfying
the h-principle, beyond the scope of Gromov’s main h-principle considering only Stein
sources. We state Winkelmann’s main result.

Theorem ([Win93, Theorem 1]). Let M and N be Riemann surfaces. Then every con-
tinuous map from M to N is homotopic to a holomorphic map in the following cases:

(i) M or N is isomorphic to C or ∆ = {z ∈ C : |z| < 1}, or M ' P1 6' N .

(ii) M is noncompact and N is isomorphic to P1, C∗, or a torus.

(iii) N is isomorphic to ∆∗ = ∆ \ {0} and M ' M0 \
⊔n
i=1Ki, where M0 is a compact

Riemann surface and each Ki is isomorphic to a nondegenerate closed disk in some
local coordinate chart; i.e. M is noncompact, finite type, and without punctures.

In all other cases there exists a continuous map from M to N which is not homotopic to
any holomorphic map.
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Case (i) holds due to contractibility arguments. Case (ii) falls under the general
framework of Oka theory with the source being Stein and the target being Oka. Case (iii)
consists of the exceptions.

While Case (ii) is covered by general Oka theory, Winkelmann provides simple proofs
exploiting special features of the explicit manifolds in question. For example, every non-
compact Riemann surface M has the homotopy type of a wedge of circles. The Riemann
sphere P1 is simply connected. Hence every continuous map M → P1 is homotopic to a
constant map for purely topological reasons.

The goal of this thesis is to extend Winkelmann’s classification to the equivariant
setting. In line with the general framework of Oka theory, we restrict ourselves to the
Stein-Oka pairings of Case (ii). On the equivariant side, we remind the reader that we only
consider finite group actions. While the equivariant h-principle for Stein-Oka pairings is
not a new result because it is covered by the theorems of Kutzschebauch, Lárusson, and
Schwarz [KLS18, KLS21], the original contributions of this thesis are instead new and
simple proofs primarily using algebraic topology and the theory of Riemann surfaces. We
will avoid relying on the heavy machinery of Kutzschebauch, Lárusson, and Schwarz.

More explicitly, first consider the equivariant h-principle for Stein-Oka pairings.

Theorem. Let X be a noncompact Riemann surface and let Y be an Oka manifold.
Suppose that G is a finite group acting holomorphically on X and Y . Suppose further
that G acts effectively on X. Every continuous G-map X → Y is G-homotopic to a
holomorphic map.

Proof (Sketch). Let π : X → X/G be the orbit space projection. The set A ⊂ X of
points with nontrivial isotropy is closed and discrete. Let Q0 = A/G and S = X/G \Q0.
The projection map q : (X × Y )/G→ X/G sending [x, y] to [x] is an elliptic submersion
over S because q−1S = (π−1S × Y )/G is a holomorphic fibre bundle over S with Oka
fibres Y . The closed subvariety Q0 ⊂ X/G contains all points of X/G over which q fails
to be a submersion and the image of the singular locus of (X × Y )/G because q−1S is
a manifold. Thus by a theorem of Forstnerič [For03, Theorem 2.1], for every continuous
section F : X/G→ (X × Y )/G of q that is holomorphic on a neighbourhood of Q0, there
is a homotopy Ft : X/G → (X × Y )/G of sections of q agreeing with F on Q0 for all t,
such that F0 = F and F1 is holomorphic.

Let I(X, Y ) = {(x, y) ∈ X × Y | Gx ⊂ Gy}. Let M(X, Y ) = I(X, Y )/G. As
explained by tom Dieck [tom87, Chapter I, Section 7], continuous G-maps X → Y are
in natural correspondence with sections of the projection M(X, Y )→ X/G. Hence given
a continuous G-map f : X → Y , we obtain a section F0 of M(X, Y ) → X/G. In
the setting of Riemann surfaces, we may safely assume that f is locally constant in
some neighbourhood of Q0. Forstnerič’s theorem gives a homotopy Ft of sections of
(X×Y )/G→ X/G, which are in fact sections of M(X, Y )→ X/G because the homotopy
is fixed on Q0. The holomorphic map g corresponding to F1 is G-homotopic to f .
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The proof sketch we have given is in the style of Kutzschebauch, Lárusson, and
Schwarz [KLS21, Theorem 4.1], adapted to the simplified setting of Riemann surfaces.
Assuming that X is a Riemann surface gives two important simplifications. The first is
the low dimensionality. In the general setting, Kutzschebauch, Lárusson, and Schwarz
induct over the dimension of certain subvarieties of X/G. A Riemann surface is one-
dimensional, so we do not need to deal with the general induction process. The second
simplification is that we can always equivariantly deform a continuous G-map X → Y
from a Riemann surface X to be locally constant on a neighbourhood of a discrete set.
This allows us to meet the holomorphicity condition required to use Forstnerič’s theorem
for sections of ramified mappings.

Thus the main black box in our proof sketch is Forstnerič’s theorem [For03, Theo-
rem 2.1]; see also the monograph of Forstnerič [For17, Theorem 6.14.6] for an alternative
formulation. Forstnerič’s theorem is particularly deep, with its proof largely based on
a preceding paper by Forstnerič and Prezelj [FP01, Theorem 1.4], which in turn builds
on their previous1 work [FP02]. The origin of this chain of results goes back to Gro-
mov [Gro89, 4.5. Main Theorem], though Gromov’s formulation did not have full gen-
erality. Further details on this matter can be found in Forstnerič’s monograph [For17,
Theorem 6.2.2]. We end our discussion of Forstnerič’s theorem for ramified mappings by
noting that it is the only known Oka principle that does not require the map in question,
in our case q : (X × Y )/G→ X/G, to be a submersion.

The point of our proof sketch and its subsequent discussion was to identify the heavy
machinery we wished to avoid. Our methods will instead be based on algebraic topology
and the theory of Riemann surfaces. We describe the structure of this thesis and our
main results in the next section.

1.2 Main results and thesis structure

As we have briefly mentioned, the original contributions of this thesis are mainly new
and simple proofs of the equivariant Oka principle for Riemann surfaces. We prove the
following equivariant Oka principle.

Theorem. Let X be a noncompact Riemann surface and let Y be C, C∗ or C/Γ for
some lattice Γ ⊂ C. Let G be a finite group acting holomorphically on X and Y . Every
continuous G-map X → Y is G-homotopic to a holomorphic map.

We prove a full equivariant Oka principle for all Oka Riemann surfaces except P1. The
case of C is covered by Corollary 4.3.2 and is due to C being equivariantly contractible
with respect to any holomorphic finite group action. The case of C∗ and C/Γ are covered
by Theorem 4.3.8.

1The apparent inconsistency with the dates is explained by an addendum in the paper [FP02].
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The story for the Riemann sphere P1 is different. The two main problems are that
every nontrivial holomorphic finite group action on P1 is not free, and P1 does not have
a group structure like C, C∗ and C/Γ. We only establish the following partial result.

Theorem. Let X be a noncompact Riemann surface. Suppose that a finite group G acts
holomorphically and effectively on X and holomorphically on P1. Let A ⊂ X be the set
of points with nontrivial isotropy. If f0, f1 : X → P1 are two continuous G-maps agreeing
on A, then f0 and f1 are G-homotopic relative A.

In other words, the equivariant Oka principle for P1 will hold provided that every
equivariant map A→ P1 extends to a holomorphic equivariant map X → P1. Since A is
always closed and discrete, we may view this theorem as a reduction from an equivariant
Oka principle to an equivariant interpolation theorem.

Other than this reduction theorem, we can establish a full equivariant Oka principle
for P1 when G acts freely on the source. Here and throughout this thesis, given topological
spaces X and Y , we let C (X, Y ) be the set of continuous maps X → Y equipped with
the compact open topology. If G is a topological group acting continuously on X and Y ,
we let CG(X, Y ) be the space of continuous G-maps X → Y . We analogously define the
spaces O(X, Y ) and OG(X, Y ) of holomorphic maps for complex manifolds X, Y and G.

Theorem. Let G be a finite group acting holomorphically on a noncompact Riemann
surface X and P1. Let Q0 ⊂ X/G be the set of orbits containing points with nontrivial
isotropy. Let S = X/G \ Q0. There exists a homeomorphism CG(π−1S,P1) ' C (S,P1)
with respect to the compact open topology restricting to a homeomorphism OG(π−1S,P1) '
O(S,P1). In particular, if G acts freely on X, then OG(X,P1) ' O(X/G,P1).

One may notice the similarity in notation with our earlier proof sketch involving
Forstnerič’s theorem. In the proof sketch, we stated that (π−1S × Y )/G → S is a holo-
morphic fibre bundle with Oka fibres Y . If Y = P1, then this is a projective bundle over
a noncompact Riemann surface and is thus trivial. We only need Forstnerič’s theorem to
deal with the ramification locus of the orbit space projection X → X/G. If the action on
X is free, then there is no ramification and the Oka principle can be deduced from the
theory of principal G-bundles.

We now explain the structure of this thesis in more detail. In Chapter 2, we present
background material from algebraic topology and Riemann surface theory. The purpose is
to introduce the main objects and results required by proofs in the latter chapters. On the
algebraic topology side, we introduce relative homotopy groups and the relative Hurewicz
theorem for use in equivariant obstruction theory. Covering spaces, fibre bundles and
principal bundles are introduced since they are involved with both the plain h-principle,
which we review in Chapter 3, and the equivariant Oka principle which we discuss in
Chapter 4. On the Riemann surface side, we state some important classification theorems
and vanishing theorems. Examples include the classification of Riemann surfaces by their
universal covering, and the vanishing of cohomology for a noncompact Riemann surface.
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Chapter 3 is our review of Winkelmann’s [Win93] classification of the h-principle for
Riemann surfaces. The goal of this chapter is to provide a detailed exposition of Winkel-
mann’s arguments. In his paper, after establishing the Oka principle for C∗, Winkelmann
observes that for any complex torus T , there is a projection τ : C∗×C∗ → T that is both
a holomorphic map and a homotopy equivalence. Since this is the extent of Winkelmann’s
argument, we devote a section to investigating such a map. Supposing that T ' C/Γ for
some lattice Γ ⊂ C, we construct a diagram

C2 C

C∗ × C∗ C2/Γ C/Γ

E×E

α

p π

(E×E)# α#

such that α# : C2/Γ→ C/Γ is a holomorphic fibre bundle with contractible fibre C. We
call this fibre bundle the Winkelmann bundle. The map (E × E)# is a biholomorphism,
so we interpret τ to be obtained from the bottom row of this diagram.

Chapter 3 then continues with background material specifically required for Winkel-
mann’s negative cases, which we now state.

Proposition ([Win93, Proposition 1]). For each of the following pairs of Riemann sur-
faces M and N , there exists a continuous map from M to N not homotopic to any
holomorphic map.

(i) M is compact and N ' P1.

(ii) M is compact and both N and M are not simply connected.

(iii) M is noncompact and not simply connected, and N is hyperbolic, excluding ∆,∆∗.

(iv) M 'M1 \ {p} for some Riemann surface M1 with π1(M) 6= 0 and N ' ∆∗.

(v) π1(M) is not finitely generated and N ' ∆∗.

Case (i) is a degree argument. For variety, we follow Saito’s [Sai20] novel approach
of considering the projective limit Hq(X||A) = lim←−U Hq(U \ A) with U ⊂ X varying
over all open sets in X containing the closed set A. We prove a local degree formula in
Proposition 3.2.6 which was not provided by Saito.

The following section on hyperbolic geometry is required for Case (iii) and Case (v).
We discuss the hyperbolic distance on the upper half plane, and hyperbolic geodesics.
Rather than following Winkelmann’s original argument for Case (iii), we instead adapt
an argument due to Gromov [Gro89] involving the lengths of hyperbolic geodesics. For
Case (v), we were unable to complete Winkelmann’s original argument because there
was difficulty in determining whether a claimed positive uniform lower bound was in fact
positive. We reconcile the issue by using the following original result.
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Lemma. Let z0 ∈ H. Let d be the hyperbolic distance in H. There exists a positive
constant λ > 0 such that 0 < λ ≤ d(z0, z0 + t)/ log |t| for all t ∈ R with |t| > 1.

This is Lemma 3.3.8, and Remark 3.4.15 explains its relevance in more detail. Fol-
lowing Winkelmann’s original argument, given a sequence (nj) of positive integers sat-
isfying a certain property, we would need to determine whether the sequence given by
d(z0, z0 + nj)/nj has a positive uniform lower bound. The critical finding is observing
that the logarithm resolves this problem unambiguously in the affirmative.

Chapter 4 is concerned with the equivariant Oka principle. Rather than relying on
Forstnerič’s theorem, we exploit the fact that there are only four types of Oka Riemann
surfaces: the complex plane C, the punctured plane C∗, any complex torus C/Γ, and the
Riemann sphere P1.

We first determine the holomorphic automorphism groups of C, C∗, and C/Γ. These
are standard exercises in complex analysis and Riemann surface theory, but we include
their proofs for completeness. At the same time, we determine the finite subgroups
of AutC and AutC∗ up to conjugacy, as these finite subgroups represent the possible
holomorphic finite group actions that can occur. For C, this allows us to show that C is
G-contractible for any holomorphic action by a finite group G.

We then turn our attention to the complex structure on the orbit space X/G. For
a Riemann surface X equipped with the holomorphic action of a finite group G, there
exists a unique complex structure on X/G such that the projection π : X → X/G is
holomorphic. Our treatment mainly follows Miranda [Mir95] in the construction of the
maps which eventually become coordinate charts for X/G. Diverging from Miranda’s
chart compatibility argument, we define the structure sheaf OX/G by letting OX/G(U) be
the ring of continuous functions f : U → C such that fπ : π−1U → C is holomorphic. We
show that (X/G,OX/G) is locally isomorphic as a locally ringed space to a domain in C.

The fact that X/G is noncompact if X is noncompact allows us to reduce the equiv-
ariant Oka principle to the plain Oka principle in combination with a homotopy lifting
argument. Section 4.3 contains the precise details of how this is achieved, and ends with
our previously mentioned equivariant Oka principle for C∗ and C/Γ.

We conclude the thesis with Section 4.4, which contains our partial results regarding
the equivariant Oka principle for P1. We give a detailed exposition of the equivariant
obstruction theory of tom Dieck [tom87], which is necessary for our theorem reducing
the equivariant Oka principle for P1 to an equivariant holomorphic interpolation theorem.
This reduction theorem uses methods only from algebraic topology.

The main object in tom Dieck’s equivariant obstruction theory is the equivariant
cohomology group Hn

G(X,A; πnY ). Fix a G-map f : A→ Y and let [X, Y ]fG be the set of
G-homotopy classes of G-map extensions X → Y of f . Under certain assumptions, tom
Dieck’s main result is that there is a bijection of sets [X, Y ]fG ' Hn

G(X,A; πnY ).
When G is a finite group acting holomorphically and effectively on a noncompact

Riemann surface X and holomorphically on Y = P1, we can construct an isomorphism
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H2
G(X,A; π2P1) ' H2(X/G,A/G) with the latter group being ordinary singular coho-

mology. Since H2(X/G,A/G) = 0 for noncompact X, tom Dieck’s theorem implies
[X,P1]fG ' pt. Hence we only need an injection, and our exposition of tom Dieck is
simplified to account for this.

Our reduction theorem yields two simple cases where we can prove an equivariant Oka
principle. The first is for maps C∗ → P1 where G acts dihedrally on C∗ and P1, and the
second is when G acts on P1 by rotations.

We end the chapter and the thesis with Section 4.4.6. Here we prove the equivariant
Oka principle for maps X → P1 when G acts freely on X. The proof relies only on the
theory of principal G-bundles and their associated bundles, along with the triviality of
projective bundles over noncompact Riemann surfaces.

1.3 Further directions

We conclude our introduction by discussing three open problems.

Problem 1. Let X be a noncompact Riemann surface. Let G be a finite group acting
holomorphically and effectively on X and holomorphically on P1. Let A ⊂ X be the
set of points with nontrivial isotropy. For each G-map F0 : A → P1, does there exist a
holomorphic G-map F : X → P1 such that F |A = F0?

This is the equivariant holomorphic interpolation theorem which would enable us to
establish an equivariant Oka principle for P1. The most natural first step is to consider
the induced map on quotients, as shown in the diagram

A P1

A/G P1/G.

F0

f0

Note that P1/G ' P1 for any finite group G acting holomorphically on P1. Choose
x ∈ (P1/G) \ f0(A/G) and identify (P1/G) \ {x} ' C. Use Weierstrass’ interpolation
theorem to produce a nonconstant holomorphic map f : X/G→ (P1/G) \ {x} such that
f |A/G = f0. We then need to deal with the lifting problem

X P1

X/G P1/G.

F

π q

f

The difficulty is that q : P1 → P1/G always has ramification, and consequently is never
a covering map. If we let B ⊂ P1/G be the set of branch points of q : P1 → P1/G, then
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π−1f−1B ⊂ X is discrete because fπ : X → P1/G is holomorphic and nonconstant. So
we can attempt to find conditions on f for which the covering map lifting condition

(fπ)∗π1(X \ π−1f−1B, x0) ⊂ q∗π1(P1 \ q−1B, y0)

is satisfied, for appropriately chosen base points x0 ∈ X \ π−1f−1B and y0 ∈ P1 \ q−1B.

Problem 2. Let G be a finite group acting holomorphically and effectively on a noncom-
pact Riemann surface X and holomorphically on P1. Let Q0 ⊂ X/G be the set of orbits
containing points with nontrivial isotropy. Let S = X/G \Q0. What conditions enable a
G-homotopy π−1S × I → P1 to be extended to a homotopy X × I → P1?

This is a completely different way to tackle the Oka principle for P1. While Forstnerič’s
theorem resolves this question, it is worthwhile trying to find a simpler approach. Our
problem involves attempting to extend maps π−1S → P1 over the closed discrete set
π−1Q0. Any continuous extension will consequently be holomorphic and equivariant.

To illustrate the stark difference between CG(π−1S,P1) and CG(X,P1), consider the
case when G acts effectively but not freely on both X and P1. We show in Theorem 4.4.26
that [X,P1]G ' MapG(A,P1). However [π−1S,P1]G = pt.

Problem 3. Extend Winkelmann’s classification of the h-principle for Riemann surfaces
to the equivariant setting beyond the Stein-Oka pairings.

On the affirmative side, the pair M ' P1 6' N seems the most difficult to extend
because the covering space contractibility argument used in Proposition 3.4.1 does not
seem to easily extend to the equivariant setting. Case (iii) of Winkelmann’s affirmative
cases is interesting. Loosely speaking, the source M is noncompact, of finite type, and
without punctures. If we can prove that the noncompact space M/G is also of finite type
and without punctures, then we can extend Case (iii) to the equivariant setting.

For the negative cases, the recurring theme in proving the plain h-principle is to
first produce a homomorphism between the fundamental groups involved satisfying some
property that cannot be achieved by the induced homomorphism of a holomorphic map,
then use the property of Eilenberg-Mac Lane spaces to produce a continuous map inducing
the initial homomorphism. By homotopy invariance this continuous map is not homotopic
to any holomorphic map. Since we discard many continuous maps when we restrict to the
equivariant category, it is not clear to what extent the negative cases remain negative.



10 Chapter 1. Introduction



Chapter 2

Background material

The goal of this chapter is to collect and present some well-known results which form
the general background and language required for the subsequent chapters. The two
overarching themes of this chapter are algebraic topology and Riemann surface theory.

2.1 Homotopy and homology theory

Many of the established results in algebraic topology are proved for a wide class of spaces
known as CW-complexes. These are spaces that are constructed by inductively attaching
closed n-balls along their boundary. More precisely, set Dn = {x ∈ Rn : ‖x‖ ≤ 1} and
Sn−1 = {x ∈ Rn : ‖x‖ = 1}. Define D0 = pt and S−1 = ∅. Let (X,A) be a pair of
topological spaces. For a family of continuous maps

ϕj : Sn−1 → A, j ∈ J,

if X is a pushout in the diagram ∐
j∈J S

n−1 A

∐
j∈J D

n X,
φ

then we say that X is obtained from A by attaching the family of n-cells (Dn)j∈J . The
map φ is called a characteristic map. A pair (X,A) is called a relative CW-complex if
there exists a filtration (Xn)n∈Z of X such that the following properties hold.

1. A ⊂ X0;A = Xn for n < 0; X =
⋃
n∈ZXn.

2. For each n ≥ 0, the space Xn is obtained from Xn−1 by attaching n-cells.

11
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3. X carries the colimit topology with respect to (Xn)n∈Z.

If A = ∅, then we say that X is a CW-complex. We say that Xn is the n-skeleton of X.
One nice property of CW-complexes is that maps from a CW-complex into a space Y

can be constructed cell by cell, and obstructions to extending a map over each n-cell are
given by the nth homotopy group of Y . This will become relevant in Section 4.4, except
at that point we will also consider group actions. For now, we will develop the language
of homotopy groups.

2.1.1 Long exact sequence in homotopy

The first object one usually encounters in homotopy theory is the fundamental group
π1(X, x0) of a pointed space (X, x0). Let I = [0, 1] be the closed unit interval. Elements
of π1(X, x0) are equivalence classes of loops (I, {0, 1}) → (X, x0) at x0 up to homotopy
fixed on {0, 1}. Given two paths γ1 : I → X and γ2 : I → X such that γ1(1) = γ2(0), we
can form a new path γ1 ∗ γ2 by concatenation. Explicitly we define

(γ1 ∗ γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2,

γ2(2t− 1) if 1/2 ≤ t ≤ 1.

In particular loops can be concatenated. Up to homotopy relative {0, 1}, concatenation
is associative. Identity is the constant map cx0 : I → X sending the interval to x0. Given
a loop γ : I → X at x0, the inverse γ− : I → X is defined γ−(t) = γ(1− t).

By identifying endpoints of I, we can instead define π1(X, x0) as the set [S1, ∗;X, x0] of
homotopy classes of maps S1 → X sending the base point ∗ ∈ S1 to x0 ∈ X. This suggests
defining πn(X, x0) = [Sn, ∗;X, x0] as a set. In fact there is a more general definition for
pairs of spaces which we now introduce.

Definition 2.1.1. Let (X,A, a0) be a pair of spaces with base point a0 ∈ A. Define, for
n ≥ 0, the relative homotopy group πn+1(X,A, a0) to be the set [Dn+1, Sn, ∗;X,A, a0].

Remark 2.1.2. If A = a0, then every map (Dn+1, Sn, ∗) → (X,A, a0) sends Sn to a
point. There is a unique induced map from the quotient Dn+1/Sn ' Sn+1, generalising
the definition πn+1(X, x0) = [Sn+1, ∗;X, x0].

Remark 2.1.3. For ease of notation, we will often omit base points from our notation
and simply write πn(X) or πn(X,A).

The motivation for this definition stems from the desire to have a long exact sequence

. . . πn+1(X,A) πn(A) πn(X) πn(X,A) . . .∂ i∗ j∗
(2.1)

where i : A → X and j : (X, ∗) → (X,A) are inclusions, and ∂ is to be determined. If
i∗[f ] = 0, then f : Sn → A is null homotopic when viewed as a map into X. Hence there
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exists a continuous map g : Dn+1 → X such that g|Sn = f . This suggests the definition
of πn+1(X,A) given, and also suggests that ∂ should be defined ∂[g] = [g|Sn].

For any map f : Sn → X of pointed spaces, we precompose by the composition
q : Dn → Dn/Sn−1 ' Sn and compose with j to obtain a map Dn → (X,A) sending Sn−1

to ∗ ∈ A; i.e. we define j∗[f ] = [jfq].
Let Ωn(X,A) be the space of maps (Dn, Sn−1) → (X,A). It can be shown that

elements of πn+1(X,A) are in one-to-one correspondence with elements of π1(Ωn(X,A)),
and we use this bijection to define a group structure on πn+1(X,A) for n ≥ 1. We consider
π1(X,A) as a pointed set without a group structure.

Under these conditions, the sequence in (2.1) becomes exact. For a full exposition, we
refer to Whitehead [Whi78, Chapter IV] or tom Dieck [tom08, Chapter 6].

2.1.2 Homotopy lifting and homotopy extension

Two important concepts in homotopy theory are homotopy lifting and homotopy exten-
sion. A continuous map p : Y → X satisfies the homotopy lifting property with respect to
a space Z if for each homotopy h : Z × I → X and each map f : Z → Y lifting h(−, 0),
there exists a lift H : Z × I → Y of h such that H(−, 0) = f . In other words there exists
H such that the diagram

Z Y

Z × I X

f

i0 p

h

H

commutes, where i0 : Z → Z × I is defined i0(z) = (z, 0).
If a continuous map p : Y → X satisfies the homotopy lifting property for all spaces Z,

then p is called a Hurewicz fibration, or simply a fibration. If p satisfies the homotopy lifting
property with respect to unit cubes In for all n, then p is called a Serre fibration. Examples
of Serre fibrations include covering spaces and fibre bundles. These will be discussed in
Section 2.2 and Section 2.3. The distinction between the two types of fibrations is not
important since we only consider homotopy lifting with respect to CW-complexes.

Dually, a continuous map i : A → X satisfies the homotopy extension property with
respect to a space Y if for each homotopy h : A × I → Y and each map f : X → Y
extending h(−, 0), there exists an extension H : X × I → Y of h with H(−, 0) = f . In
other words there exists H such that the diagram

A Y I

X Y

h

i p0

f

H
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commutes, where Y I = C (I, Y ) is the set of continuous maps I → Y and p0 : Y I → Y
is defined p0(γ) = γ(0). We note that some conditions are required for there to be a
homeomorphism C (X × I, Y ) ' C (X, Y I) with respect to the compact open topology.
The most common sufficient condition is that all spaces are locally compact Hausdorff.

If a continuous map i : A → X satisfies the homotopy extension property for all
spaces Y , then i is called a cofibration. The inclusions ∗ ↪→ Sn ↪→ Dn+1 are cofibrations,
and this allows us to discuss the action of π1(A) on the homotopy sequence of (X,A).

2.1.3 Action of π1(A) on the homotopy sequence of (X,A)

Let v : I → X be a path and let f : (Sn, ∗) → (X, v(0)) be a continuous map. Since
∗ ↪→ Sn is a cofibration, the homotopy extension property gives Vt : Sn → X with V0 = f
and V−(∗) = v. This leads to an action of π1 on higher homotopy via transport.

Proposition 2.1.4. Let v : I → X be a loop at x0 ∈ X, and let f : (Sn, ∗) → (X, x0)
be a continuous map. Let Vt : Sn → X be any homotopy extension of f through v. The
assignment [V0] 7→ [V1] depends only on the homotopy class of v, and defines a right group
action of π1(X, x0) on πn(X, x0).

Proof. See tom Dieck [tom08, Proposition 6.2.1].

A similar result holds in the relative case because the inclusions ∗ ↪→ Sn ↪→ Dn+1

are cofibrations. Fix a0 ∈ A ⊂ X. Let f : (Dn+1, Sn, ∗) → (X,A, a0) represent an
element of πn+1(X,A, a0), and let α : ∗ × I → A be a loop in A at a0; i.e. the map α
represents an element of π1(A, a0). We first obtain a homotopy h : Sn× I → X satisfying
h(−, 0) = f and h(∗,−) = α. Since f |Sn → A extends to f : Dn+1 → X, we then
obtain a homotopy H : Dn+1 × I → X satisfying H|Sn × I = h and H(−, 0) = f . Define
α# : πn+1(X,A, a0) → πn+1(X,A, a0) by α#[f ] = [H(−, 1)]. We omit the proof that α#

depends only on the homotopy class of α and f , and that the assignment is in fact a
group action of π1(A, a0) on πn+1(X,A, a0). We refer to tom Dieck [tom08, Section 6.2]
for a full exposition.

A space X is called n-simple if for each x ∈ X, the fundamental group π1(X, x) acts
trivially on πn(X, x). The next proposition provides the relevance of this property.

Proposition 2.1.5. Suppose that X is n-simple and path connected. For each x0 ∈ X,
the map πn(X, x0)→ [Sn, X] forgetting the base point is a well-defined bijection.

Proof. The forgetful map is well defined because if two maps f, g : (Sn, ∗)→ (X, x0) are
homotopic relative ∗, then they are homotopic. Let f, g : (Sn, ∗) → (X, x0) represent
elements of πn(X, x0) that have the same image in [Sn, X]. Then there exists a homotopy
H : Sn×I → X such that H(−, 0) = f and H(−, 1) = g. Since H(∗,−) : I → X is a loop
at x0, it represents an element of π1(X, x0). But H is a homotopy extension of f through
H(∗,−) and the transport action is trivial, so [f ] = [H(∗,−)].[f ] = [g] in πn(X, x0).
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Let g : Sn → X represent an element of [Sn, X]. Since X is path connected, there
exists a path v : I → X from g(∗) to x0. Use the homotopy extension property to produce
a homotopy H : Sn × I → X such that H(−, 0) = g and H(∗,−) = v. Then H(−, 1)
represents an element of πn(X, x0) such that [g] = [H(−, 1)] in [Sn, X].

Proposition 2.1.6. The transport action of π1(A, a0) on πn(X,A, a0) commutes with the
boundary map ∂ : πn(X,A, a0)→ πn(A, a0).

Proof. Let α : I → A be a loop at a0, let f : (Dn+1, Sn, ∗) → (X,A, a0) represent an
element of πn(X,A, a0), let h : Sn × I → X satisfy h(−, 0) = f |Sn and h(∗,−) = α,
and let H : Dn+1 × I → X be a homotopy satisfying H|Sn × I = h and H(−, 0) = f .
Since H(−, 1)|Sn = h(−, 1), we have α#[f |Sn] = [H(−, 1)|Sn] viewing α# as an action of
π1(A, a0) on πn(A, a0). Hence ∂α#[f ] = [H(−, 1)|Sn] = α#∂[f ].

Proposition 2.1.7. Let f : (X,A)→ (Y,B) be a map of pointed spaces. Let α : I → X
be a based loop. Then f∗α# = (fα)#f∗.

Proof. Let [ξ] ∈ πn+1(X,A). Let h : Sn × I → X satisfy h(−, 0) = ξ|Sn and h(∗,−) = α.
Let H : Dn+1 × I → X satisfy H|Sn × I = h and H(−, 0) = ξ. Then fh : Sn × I → Y
satisfies fh(−, 0) = (f |Sn)∗[ξ|Sn] = f∗(ξ)|Sn and fh(∗,−) = fα while fH : Dn × I → Y
satisfies fH(−, 0) = f∗(ξ) and fH|Sn × I = fh. Therefore α#[ξ] = [H(−, 1)] and
(fα)#f∗[ξ] = [fH(−, 1)] = f∗α#[ξ].

2.1.4 Hurewicz homomorphism

The Hurewicz homomorphisms link homotopy groups and homology groups. We state
the necessary results without proof. A complete and elementary exposition can be found
in tom Dieck [tom08, Chapter 20].

Recall that Hn(Sn) ' Z ' Hn(Dn, Sn−1). Let q : Dn → Dn/Sn−1 ' Sn be the
quotient map, and ∂ : Hn(X,A) → Hn−1(A) be the boundary map from the long exact
sequence of (X,A). Choose a generator z1 ∈ H1(S1), then inductively define zn ∈ Hn(Sn)
and z̃n ∈ Hn(Dn, Sn−1) by ∂z̃n = zn−1 and q∗z̃n = zn.

Definition 2.1.8. For n ≥ 1, the absolute Hurewicz morphism

% : πn(X, a0)→ Hn(X)

is defined by %(ξ) = f∗(zn) for any representative f : (Sn, ∗)→ (X, a0) of ξ.
For n ≥ 2, the relative Hurewicz morphism

% : πn(X,A, a0)→ Hn(X,A)

is defined by %(ξ) = f∗(z̃n) for any representative f : (Dn, Sn−1, ∗)→ (X,A, a0) of ξ.
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When n = 1, the Hurewicz morphism induces an isomorphism π1(X, a0)ab → H1(X).
In higher degrees, we consider the quotient π#

n (X,A) of πn(X,A) by the subgroup gen-
erated by elements of the form x − x.α, where α ∈ π1(A). We then obtain the relative
Hurewicz theorem.

Theorem 2.1.9. Let (X,A) be a CW-pair with connected X and A. For n ≥ 2, let (X,A)
be (n− 1)-connected. Then %# : π#

n (X,A, ∗) ' Hn(X,A).

Proof. tom Dieck [tom08, Theorem 20.1.11].

2.2 Manifolds and covering spaces

Definition 2.2.1. Let X be a topological space. A covering space of X is a continuous
surjection p : Y → X such that for each x ∈ X, there exists a neighbourhood U of x
such that p−1U =

⋃
j∈J Vj for disjoint open sets Vj such that the restriction p|Vj → U is

a homeomorphism for each j.

Definition 2.2.2. Let X be a connected space. A covering space p : Y → X is universal
if Y is simply connected.

As previously mentioned, covering spaces are examples of fibrations: they satisfy the
homotopy lifting property for all spaces. This property is one of the main ingredients for
our equivariant Oka principle in Chapter 4 because the orbit space projection Y → Y/G
is a covering if G acts freely on Y .

While covering spaces are defined for general topological spaces, we focus on smooth
manifolds. A smooth manifold is a Hausdorff second countable space X with a family
(Ui, ψi)i∈Λ of homeomorphisms ψi : Ui → ψiUi from an open subset Ui of X onto an open
subset of Rn such that ψiψ

−1
j |ψj(Ui∩Uj)→ ψi(Ui∩Uj) is a diffeomorphism between open

subsets of Rn for all i, j ∈ Λ, and
⋃
i Ui = X. Complex manifolds are defined analogously,

and a Riemann surface is a connected complex manifold of dimension one.

Theorem 2.2.3. Every connected smooth manifold X has a universal covering space.

Proof. Forster [For81, Theorem 5.3].

More generally, the necessary and sufficient condition for a space X to have a universal
covering is that X is path connected, locally path connected and semilocally simply
connected [Hat02, Section 1.3]. Manifolds satisfy these properties.

Theorem 2.2.4. Let X be a smooth manifold. If p : Y → X is a covering space, then
there exists a unique smooth structure on Y for which p becomes a local diffeomorphism.
If X is a Riemann surface, then there exists a unique complex structure on Y for which
p becomes a local biholomorphism.
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Proof. See Napier and Ramachandran [NR12, Proposition 10.2.10] for the case of mani-
folds and Forster [For81, Theorem 4.6] for the case of Riemann surfaces.

We now list some important lifting properties of covering spaces, starting with the
homotopy lifting property.

Proposition 2.2.5. All covering spaces satisfy the homotopy lifting property.

Proof. Hatcher [Hat02, Proposition 1.30]

Covering spaces satisfy a more general lifting property with conditions relating to the
fundamental groups of the relevant spaces.

Proposition 2.2.6. Suppose that p : (Y, y0) → (X, x0) is a covering space, and f :
(Z, z0) → (X, x0) is continuous with Z path connected and locally path connected. There
exists a lift (Z, z0)→ (Y, y0) of f if and only if f∗π1(Z, z0) ⊂ p∗π1(Y, y0).

Proof. Hatcher [Hat02, Proposition 1.33].

In addition to the homotopy lifting property, which is an existence statement, covering
spaces also have uniqueness of liftings.

Proposition 2.2.7. Suppose that Y → X is a covering space and f : Z → X is a
continuous map from a connected space Z. If two lifts Z → Y of f agree at a point of Z,
then they agree on all of Z.

Proof. Hatcher [Hat02, Proposition 1.34].

Proposition 2.2.8. Let p : Y → X be a covering space. If γ, σ : I → Y are paths such
that γ(0) = σ(0) and pγ ∼ pσ relative {0, 1} in X, then γ ∼ σ relative {0, 1} in Y .

Proof. Let H : I × I → X be a homotopy from pγ to pσ relative {0, 1}. Lift to a map

H̃ : I × I → Y satisfying pH̃ = H and H̃(0, 0) = γ(0). Since pH̃(t, 0) = pγ(t) and

H̃(0, 0) = γ(0), we have H̃(t, 0) = γ(t) by uniqueness of lifts. Since pH̃(0, s) = pγ(0) and

H̃(0, 0) = γ(0), we have H̃(0, s) ≡ γ(0). Since pH̃(t, 1) = pσ(t) and H̃(0, 1) = γ(0) =

σ(0), we have H̃(t, 1) = σ(t). Finally, since pH̃(1, s) ≡ pσ(1) and H̃(1, 1) = σ(1), we have

H̃(1, s) ≡ σ(1). By assumption γ(0) = σ(0), while γ(1) = H̃(1, 1) = σ(1). Hence H̃ is a
homotopy from γ to σ relative {0, 1}.

There is also a correspondence between the subgroups of the fundamental group of a
space X and coverings of X. We state one direction of this correspondence.

Proposition 2.2.9. Suppose that X is path connected, locally path connected and semilo-
cally simply connected. For every subgroup H ⊂ π1(X, x0), there exists a covering p :
(Y, y0)→ (X, x0) such that p∗π1(Y, y0) = H for a suitably chosen base point y0 ∈ Y .

Proof. Hatcher [Hat02, Proposition 1.36].
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2.3 Fibre bundles

Definition 2.3.1. A fibre bundle with fibre F is a triple (E, p,B) consisting of a surjective
continuous map p : E → B such that for each point b ∈ B, there exists a neighbourhood
U of b and a homeomorphism h : p−1U → U × F such that the diagram

p−1U U × F

U

h

p
pr1

commutes.

Theorem 2.3.2. Let p : E → B be a fibre bundle with fibre F . Choose base points b0 ∈ B
and x0 ∈ F = p−1(b0). If B is path connected, then there exists a long exact sequence

· · · → πn(F, x0)→ πn(E, x0)
p∗−→ πn(B, b0)→ πn−1(F, x0)→ · · · → π0(E, x0)→ 0

of pointed sets.

Proof. Hatcher [Hat02, Theorem 4.41, Proposition 4.48]. Theorem 4.41 establishes the
long exact sequence on homotopy associated to a Serre fibration while Proposition 4.48
establishes that fibre bundles are Serre fibrations.

Corollary 2.3.3. If F is contractible, then the projection p : E → B induces isomor-
phisms p∗ : πn(E, x0)→ πn(B, b0) for each n ≥ 1. �

Theorem 2.3.4 (Whitehead’s theorem). If a map f : X → Y between connected CW-
complexes induces isomorphisms f∗ : πn(X)→ πn(Y ) for all n ≥ 1, then f is a homotopy
equivalence.

Proof. Hatcher [Hat02, Theorem 4.5].

Corollary 2.3.5. Suppose that E and B are connected CW-complexes. If p : E → B is
a fibre bundle with contractible fibre, then p : E → B is a homotopy equivalence. �

2.4 Principal G-bundles and associated fibre bundles

Principal G-bundles provide an alternative approach to understanding fibre bundles. For
example, the transition functions of a principal G-bundle and any associated fibre bundle
coincide. The exposition follows Husemoller [Hus94], though unlike Husemoller, we will
insist that all bundles are locally trivial and that groups always act on the left.
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Definition 2.4.1. A principal G-bundle p : X → B is a fibre bundle with fibreG such that
X is a free G-space, there exists a homeomorphism f : X/G→ B such that p = f◦π where
π : X → X/G is the quotient projection, and the local trivialisations h : p−1U → U ×G
are G-equivariant with respect to the action on U ×G defined g.(b, y) = (b, gy).

Remark 2.4.2. One obtains a holomorphic principal G-bundle by modifying the defini-
tion in the appropriate manner.

Definition 2.4.3. A principal bundle morphism (X, p,B)→ (X ′, p′, B′) is a pair of maps
(f, f#) such that f : X → X ′ is G-equivariant and f# : B → B′ satisfies f# ◦ p = p′ ◦ f .

Proposition 2.4.4. Let B × G be the trivial bundle over B. Every G-automorphism of
B ×G over B is of the form hg(b, s) = (b, sg(b)), where g : B → G is a continuous map,
and conversely, such a relation defines a G-automorphism over B.

Proof. Supposing that g : B → G is given, the map hg : B × G → B × G defined by
hg(b, s) = (b, sg(b)) is fibre-preserving and equivariant with inverse h−1

g = hg−1 , where
g−1(b) = g(b)−1 is the pointwise inverse. Conversely, let h : B × G → B × G be an
equivariant automorphism over B. Since ph = p, we have h(b, s) = (b, pr2 h(b, s)). Define
g : B → G by g(b) = pr2 h(b, 1). Then h(b, s) = hg(b, s) by equivariance of h.

Remark 2.4.5. Proposition 2.4.4 gives transition functions for general principal bundles.

Suppose that (X, p,B) is a principal G-bundle and F is a G-space. Equip X×F with
the diagonal action g(x, y) = (gx, gy). Let XF = (X ×F )/G and let pF : XF → B be the
unique map such that

X × F X

XF B

pr1

p

pF

commutes. We define (XF , pF , B) to be the fibre bundle associated with (X, p,B).

Theorem 2.4.6. The associated fibre bundle (XF , pF , B) is locally trivial.

Proof. For each b ∈ B there exists an open neighbourhood U of b and an equivariant
homeomorphism hU : p−1U → U × G such that pr1 hU = p. Then pr2 hU : p−1U → G is
equivariant where the action on G is left multiplication. Define fU : p−1U × F → U × F
by fU(x, y) = (p(x), pr2 hU(x)−1y). The map fU is open because p is open and the
group action ϕ : G× F → F is open; in fact ϕ(W1 ×W2) =

⋃
g∈W1

gW2 for any open
rectangle W1 ×W2 ⊂ G× F . If (x, y) ∼ (x′, y′) modulo G, then fU(x, y) = fU(x′, y′) by
equivariance of pr2 hU . This gives an induced quotient map f#

U : p−1
F U → U × F which

one verifies is a bijection, inheriting both continuity and openness from fU . So f#
U is a

homeomorphism.
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Remark 2.4.7. If we have local trivialisations hi : p−1Ui → Ui ×G for the principal G-
bundle (X, p,B) with corresponding transition functions gij(b) = pr2 hj ◦ h−1

i (b, 1), then

the transition functions γij obtained from f#
i ◦ (f#

j )−1 are precisely gij. Observe that
γij(b) = pr2 hi(x)−1 · pr2 hj(x) for any x ∈ p−1(b); this is well defined since p(x) = p(x′) if
and only if gx = x′ for some g ∈ G because (X, p,B) is a G-bundle. Equivariance gives
γij(b) = pr2 hj(pr2 hi(x)−1.x). But pr2 hi(x)−1.x = h−1

i (b, 1) and so γij(b) = gij(b).

Remark 2.4.8. Suppose that (X, p,B) is a principal G-bundle and (XF , pF , B) is an
associated fibre bundle with fibre F and G-action ϕ : G → AutF . Let (Ui, hi)i∈Λ be a
local trivialisation for (X, p,B) with corresponding transition functions gij : Ui∩Uj → G.
By Remark 2.4.7, these also serve as transition functions for (XF , pF , B) in that the
transitions ψij : Ui ∩ Uj × F → Ui ∩ Uj × F are given by ψij(b, y) = (b, ϕ(gij(b))(y)).

2.5 Riemann surfaces

We end our background chapter by presenting some key results on Riemann surfaces.

2.5.1 Classification theorems

Theorem 2.5.1. Let M be a noncompact Riemann surface. Then M is homotopy equiv-
alent to a wedge sum of circles.

Proof. Napier and Ramachandran [NR04, Theorem 2.2].

Theorem 2.5.2. Suppose that M is a Riemann surface with π1(M) finitely generated.
Then there exists a compact Riemann surface M0 and a (possibly empty) compact set
K ⊂M0 that is the union of finitely many disjoint compact sets, each of which is either a
singleton or a closed disk in some local holomorphic chart, such that M is biholomorphic
to M0 \K.

Proof. The earliest proof known to the author is by Stout [Sto65, Theorem 8.1]. Another
approach via the holomorphic attachment and removal of tubes is left as an exercise by
Napier and Ramachandran [NR12, Exercise 5.17.2].

Theorem 2.5.3 (Riemann mapping theorem). Suppose that X is a Riemann surface with
Rh1

O(X) = 0. Then X can be mapped biholomorphically onto either the Riemann sphere
P1, the complex plane C, or the unit disk ∆.

Proof. Forster [For81, Theorem 27.9].

Remark 2.5.4. Here Rh1
O(X) is the first holomorphic de Rham cohomology group. Its

vanishing means that every closed holomorphic one-form has a holomorphic primitive.
This condition holds if X is simply connected [For81, 27.1]. The converse of this statement
is the content of the Riemann mapping theorem.
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Theorem 2.5.5. (a) The Riemann sphere P1 is a holomorphic covering for only P1.

(b) The complex plane C is a holomorphic covering for C, the punctured plane C∗, and
all complex tori.

(c) Every other Riemann surface has the unit disk ∆ as a holomorphic covering.

Proof. Forster [For81, Theorem 27.12].

Remark 2.5.6. We will refer to Riemann surfaces covered by the disk as hyperbolic and
the other Riemann surfaces as Oka.

Having established the classification of Riemann surfaces by their universal covering,
we will take this opportunity to introduce Eilenberg-Mac Lane spaces. In particular we
show that every Riemann surface other than P1 is Eilenberg-Mac Lane.

Definition 2.5.7. Suppose that X is a path connected topological space such that
πn(X) ' G and πq(X) = 0 for q 6= n. Then X is said to be Eilenberg-Mac Lane,
denoted K(G, n).

Proposition 2.5.8. Let p : (Y, y0) → (X, x0) be a covering space. The induced map
p∗ : πn(Y, y0)→ πn(X, x0) is an isomorphism for all n ≥ 2.

Proof. Hatcher [Hat02, Proposition 4.1].

Corollary 2.5.9. Let X 6' P1 be a Riemann surface. Then X is K(π1(X), 1).

Proof. The Riemann mapping theorem implies that X has a contractible covering, and
so all higher homotopy groups vanish.

Proposition 2.5.10. Let X be a connected CW-complex and let Y be K(G, 1). Then
every homomorphism π1(X, x0)→ π1(Y, y0) is induced by a map (X, x0)→ (Y, y0) that is
unique up to homotopy relative x0.

Proof. Hatcher [Hat02, Proposition 1B.9].

2.5.2 Vanishing theorems

Theorem 2.5.11. Let X be a noncompact Riemann surface. Then H1(X,O) = 0.

Proof. Forster [For81, Theorem 26.1].

Theorem 2.5.12. Let X be a noncompact Riemann surface and GL(n,O) the sheaf of
invertible n×n matrices with coefficients in O. Then H1(X,GL(n,O)) = 0. Equivalently
every vector bundle over a noncompact Riemann surface is trivial.
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Proof. Forster [For81, Theorem 30.4, Corollary 30.5].

Corollary 2.5.13. Every projective bundle over a noncompact Riemann surface is trivial.

Proof. Note that H1(X,GL(n,O)) = 0 implies H1(X,SL(n,O)) = 0 since if (gij) is a
cocycle in SL(n,O) with respect to an open covering (Ui), we can first obtain a splitting
gij = gig

−1
j in GL(n,O) with 1 = det gij = det gi(det gj)

−1 on Ui ∩ Uj, and then replace
gi with gidi where di is the identity matrix with the (1,1)-entry replaced with 1/ det gi.

The short exact sequence of sheaves 0 → Z/2Z → SL(n,O) → PSL(n,O) → 0
induces a long exact sequence of cohomology which gives

H1(X,SL(n,O)) = 0→ H1(X,PSL(n,O))→ H2(X,Z/2Z).

Sheaf cohomology with coefficients in an abelian group coincides with singular cohomology
for paracompact and locally contractible spaces, in particular Riemann surfaces. Every
noncompact Riemann surface is homotopy equivalent to a wedge of circles, and singular
cohomology is a homotopy invariant. Hence H2(X,Z) '

⊕
H2(S1,Z) = 0. The ho-

motopy type of a noncompact Riemann surface also implies that H1(X,Z) is free, so a
special case of the universal coefficients theorem [tom08, Proposition 11.9.4] implies that
H2(X,Z/2Z) ' Hom(H2(X,Z),Z/2Z) = 0.



Chapter 3

Winkelmann’s classification of the
homotopy principle

Winkelmann [Win93] classified the h-principle for maps between pairs of Riemann sur-
faces. First Winkelmann establishes the pairs of Riemann surfaces for which every con-
tinuous map is homotopic to a holomorphic map.

Theorem 3.0.1 ([Win93, Theorem 1]). Let M and N be Riemann surfaces. Then every
continuous map from M to N is homotopic to a holomorphic map in the following cases:

(i) M or N is isomorphic to C or ∆ = {z ∈ C : |z| < 1}, or M ' P1 6' N .

(ii) M is noncompact and N is isomorphic to P1, C∗, or a torus.

(iii) N is isomorphic to ∆∗ = ∆ \ {0} and M ' M0 \
⊔n
i=1 Ki, where M0 is a compact

Riemann surface and each Ki is isomorphic to a nondegenerate closed disk in some
local coordinate chart; i.e. M is noncompact, finite type, and without punctures.

In all other cases there exists a continuous map from M to N which is not homotopic to
any holomorphic map.

Winkelmann then describes the negative cases.

Proposition 3.0.2 ([Win93, Proposition 1]). For each of the following pairs of Riemann
surfaces M and N , there exists a continuous map from M to N not homotopic to any
holomorphic map.

(i) M is compact and N ' P1.

(ii) M is compact and both N and M are not simply connected.

(iii) M is noncompact and not simply connected, and N is hyperbolic, excluding ∆,∆∗.

23
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(iv) M 'M1 \ {p} for some Riemann surface M1 with π1(M) 6= 0 and N ' ∆∗.

(v) π1(M) is not finitely generated and N ' ∆∗.

This is an exhaustive list of pairs, as demonstrated by the following table.

(Source; Target) Y/N Reason

Compact source

(P1;P1) N P1(i)
(P1; not P1) Y T1(i)

(Not SC;C,∆) Y T1(i)
(Not SC;P1) N P1(i)

(Not SC; Not SC) N P1(ii)
Noncompact SC source (C,∆; Anything) Y T1(i)
Excluding ∆,∆∗

from targets
(Noncompact not SC; Oka) Y T1(ii)

(Noncompact not SC; Not Oka) N P1(iii)

∆,∆∗ target
(Anything; ∆) Y T1(i)

(π1(M) not FG; ∆∗) N P1(v)

π1(M) finitely generated
(Exists puncture, not SC; ∆∗) N P1(iv)

(No puncture; ∆∗) Y T1(iii)

The abbreviation SC is short for simply connected. The abbreviation T1 refers to Theo-
rem 3.0.1, which was originally Theorem 1 of Winkelmann’s paper [Win93]. The abbrevi-
ation P1 refers to Proposition 3.0.2, which was originally Proposition 1 of Winkelmann’s
paper.

The existence of a puncture on a Riemann surface M with π1(M) finitely generated
refers to the construction in Theorem 2.5.2. The condition that a Riemann surface is Oka
is equivalent to a Riemann surface being not hyperbolic. Any simply connected compact
Riemann surface is biholomorphic to the Riemann sphere P1.

The goal of this chapter is to provide a full and detailed exposition of Winkelmann’s
arguments, or alternative approaches for the same result. While most of the author’s
contribution for this chapter is expository, Lemma 3.3.8 is an original result used to
address a discrepancy in Winkelmann’s original argument that the author was unable to
resolve; this is addressed in Remark 3.4.15.

3.1 The Winkelmann bundle

In proving the Oka principle for a complex torus T , Winkelmann1 observed that there is
a map τ : C∗ × C∗ → T which is both holomorphic and a homotopy equivalence. We
detail the calculations behind obtaining such a map.

1We thank the anonymous examiner for pointing out that similar constructions have previously ap-
peared in the literature. For example, Hartshorne [Har70, Chapter VI, Example 3.2] attributes such a
construction to Jean-Pierre Serre.
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For any complex torus T , there exists ω ∈ H such that T ' C/Γ, where Γ = Z + ωZ
is a lattice in C. The lattice acts on C by translation (m+ωn).z = z+m+ωn. Define a
Γ-action on C2 by (m+ ωn).(z, w) = (z + n,w +m). We obtain a commutative diagram

C2 C

C∗ × C∗ C2/Γ C/Γ

E×E

α

p π

(E×E)# α#

determined by the maps E : C → C∗ and α : C2 → C defined E(z) = exp(2πiz) and
α(z, w) = w + ωz. The maps p and π are the quotient projections, while (E × E)#

and α# are the induced quotient maps; notice that α is Γ-equivariant and (E × E)#

is a homeomorphism by the open mapping theorem in one complex variable. In fact
C2/Γ realises C∗ × C∗ as a quotient of its holomorphic universal covering C2 under the
holomorphic covering map E×E; this stems from E : C→ C∗ being a universal covering.
The map (E × E)# becomes a biholomorphism and α# becomes holomorphic.

Theorem 3.1.1. The map α# : C2/Γ→ C/Γ is a fibre bundle with fibre C.

Proof. Let [b0] ∈ C/Γ. Take any open neighbourhood V of b0 such that no two points
of V are equivalent modulo Γ. The set U = πV is an open neighbourhood of [b0], the
restriction π|V → U is a homeomorphism, and (α#)−1U = pα−1V . Note that α−1V has
no two points equivalent modulo Γ. Therefore p|α−1V → (α#)−1U is a homeomorphism,
and we may define a continuous map hU : (α#)−1U → U × C via

hU([z, w]) = (π(w + ωz), pr1(p|α−1V )−1([z, w]));

note that π is Γ-invariant so hU is well defined. The map U × C → (α#)−1U defined
h−1
U ([b], z) = [z, (π|V )−1([b]) − ωz] is a continuous inverse. Hence α# : C2/Γ → C/Γ is a

fibre bundle with fibre C.

We now use the theory of principal bundles to provide an alternative proof of local
trivialisation. We first observe that π : C → C/Γ is a principal Γ-bundle because it is
a covering map. We then examine an associated fibre bundle with respect to a certain
Γ-action on C, and investigate its relation to the Winkelmann bundle α# : C2/Γ→ C/Γ.
The advantage of this approach is that the local trivialisation of the Winkelmann bundle
is reduced to establishing the local trivialisation of (C, π,C/Γ), which is slightly easier.

Lemma 3.1.2. The triple (C, π,C/Γ) is a principal Γ-bundle.

Proof. For [b] ∈ C/Γ, let V be a neighbourhood of b such that no two elements of V
are equivalent modulo Γ. Set U = πV and observe that π|V → U is a homeomorphism.
Define hU : π−1U → U × Γ by hU(z) = ([z], z − (π|V )−1π(z)). Then hU is continuous and
equivariant with continuous inverse h−1

U ([z], γ) = γ + (π|V )−1([z]).
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Define a Γ-action on C by (m + ωn).v = v + n. This gives a Γ-action on C2 defined
by (m+ ωn).(u, v) = (u+m+ ωn, v + n) and induces an associated fibre bundle

C2 C

C2/Γ C/Γ.

pr1

q π

pr#1

Define ψ : C2 → C2 by ψ(z, w) = (w + ωz, z). Since ψ is an equivariant homeomorphism
with respect to the action (m+ ωn).(z, w) = (z + n,w+m) on the source and the action
(m+ ωn).(u, v) = (u+m+ ωn, v+ n) on the target, it descends to a homeomorphism on
quotients. We obtain a commuting square

C2 C2

C2/Γ C2/Γ

ψ

p q

ψ#

and observe that the next triangle

C2 C2

C

ψ

α pr1

commutes. Surjectivity of the quotient projections is enough to give an isomorphism of
fibre bundles through the commutative diagram

C2 C2

C

C2/Γ C2/Γ

C/Γ.

ψ

α

p

pr1
q

ψ#

α# pr#1

π

Corollary 3.1.3. The Winkelmann bundle is locally trivial.

Proof. Use Theorem 2.4.6 and the bundle isomorphism ψ# : C2/Γ→ C2/Γ.

Remark 3.1.4. The Winkelmann bundle is isomorphic as a bundle to an associated fibre
bundle where ϕ : Γ → AutC is defined ϕ(m + ωn)(z) = z + n. By Remark 2.4.8, the
transition functions for the Winkelmann bundle take values in Z.
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3.2 Degrees

The degree is a homotopy invariant of continuous maps between compact oriented topolog-
ical manifolds with the property that holomorphic maps always have nonnegative degree.
Thus the existence of any map with negative degree is enough to violate the h-principle
between pairs of compact Riemann surfaces. We follow the approach of Saito [Sai20] which
we found to be the most interesting. Since the degree has only a minor role in violating
the h-principle for maps from a compact Riemann surface into the Riemann sphere, we
will mainly cite results without replicating the proofs. However we do establish a local
degree formula in Proposition 3.2.6 which was not explicitly given by Saito.

Let X be a topological space and A ⊂ X a closed subset. Define M(X,A) to be the
set of open sets in X containing A. Define

Hq(X||A) = lim←−
U∈M(X,A)

Hq(U \ A).

For any U ∈ M(X,A), we have a decomposition X = U ∪ (X \ A) which gives rise to
a Mayer-Vietoris sequence with boundary maps δA,U : Hq(X) → Hq−1(U \ A). Define
δA : Hq(X) → Hq−1(X||A) as the inverse limit of these maps. If x ∈ A is isolated, then
there is a canonical map Hq(X||x) → Hq(X||A). If Y is Hausdorff and f : X → Y is a
continuous map, we have a canonical map

f∗ : Hq(X||f−1(y)) = lim←−
U∈N(X,f−1(y))

Hq(U \ f−1(y))

→ lim←−
V ∈N(Y,y)

Hq(f
−1(V ) \ f−1(y))

f∗−→ lim←−
V ∈N(Y,y)

Hq(V \ {y}) = Hq(Y ||y).

The composition of these two maps gives f∗ : Hq(X||x)→ Hq(Y ||y). If U is a neighbour-
hood of x and V a neighbourhood of y such that f(U) ⊂ V and U ∩ f−1(y) = {x}, then
we have a commutative diagram

Hq(X||x) Hq(Y ||y)

Hq(U \ {x}) Hq(V \ {y})

f∗

f∗

(3.1)

where the vertical maps are projections.

Proposition 3.2.1. Let X be a Hausdorff space and q ≥ 0.

1. Let A = {x1, . . . , xn} be a finite subset of X. The direct sum⊕
x∈A

Hq(X||x)→ Hq(X||A)
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of the canonical morphisms is an isomorphism. The map δA : Hq+1(X)→ Hq(X||A)
is a composition of this isomorphism and the direct sum of δx : Hq+1(X)→ Hq(X||x).

2. Let Y be a Hausdorff space and f : X → Y a continuous map. Let y ∈ Y and
suppose that the preimage f−1(y) consists of finitely many points x1, . . . , xn. The
diagram

Hq+1(X)
n⊕
i=1

Hq(X||xi)

Hq+1(Y ) Hq(Y ||y)

n⊕
i=1

δxi

f∗ n∑
i=1

f∗

δy

(3.2)

commutes.

Proof. Saito [Sai20, Proposition 8.3.2].

Proposition 3.2.1.2 and (3.1) essentially provide us with a local degree formula analo-
gous to Hatcher [Hat02, Proposition 2.30], which we prove in Proposition 3.2.6.

Proposition 3.2.2. Let c = (a, b) ∈ R2. Define a one-form over R2 \ {c} by

αc =
−(y − b) dx+ (x− a) dy

(x− a)2 + (y − b)2
.

The linear functional n(−, c) sending a C2 chain γ ∈ Z1(R2 \ {c})C2 to

n(γ, c) =
1

2π

�
γ

−(y − b) dx+ (x− a) dy

(x− a)2 + (y − b)2

induces an isomorphism
n(−, c) : H1(R2 \ {c})→ Z. (3.3)

Proof. Saito [Sai20, Proposition 5.6.1].

Proposition 3.2.3. Let X be an oriented surface and x ∈ X. There exists an isomor-
phism

n(−, x) : H1(X||x)→ Z (3.4)

uniquely satisfying the following condition: if p : U → V is a positively oriented coordinate
neighbourhood of x, and if H1(X||x) → H1(U \ {x}) is the projection, then n(−, x) :
H1(X||x)→ Z is the composition

H1(X||x)→ H1(U \ {x}) p∗−→ H1(V \ {p(x)}) n(−,p(x))−−−−−→ Z, (3.5)

where n(−, p(x)) is the winding number (3.3).
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Proof. Saito [Sai20, Proposition 8.5.4].

Define the linear map Tx : H2(X)
δx−→ H1(X||x)

n(−,x)−−−−→ Z. If p : U → V is a positively
oriented coordinate neighbourhood of x, then Tx is given by the composition

H2(X)
δx,U−−→ H1(U \ {x}) p∗−→ H1(V \ {c}) n(−,c)−−−→ Z.

Proposition 3.2.4. Let X be a connected oriented surface. The map Tx : H2(X) → Z
does not depend on x.

Proof. Saito [Sai20, Proposition 8.5.7].

Finally Saito defines the fundamental class of a compact oriented surface X, and the
degree of a continuous map f : X → Y between compact oriented surfaces.

Definition 3.2.5 ([Sai20, Definition 8.5.8]). Let X be a connected compact oriented
surface.

1. If H2(X) is a free group of rank 1 with basis c, and if for arbitrary x ∈ X the linear
map Tx : H2(X) → Z sends c to 1, then c is called the fundamental class of X,
denoted [X].

2. Suppose that Y is also a compact connected oriented surface and f : X → Y a
continuous map. If the fundamental classes [X] and [Y ] exist, then the integer n
determined by f∗[X] = n[Y ] is called the degree of f , denoted deg f .

By Proposition 3.2.4, we just require the existence of some x ∈ X such that Tx(c) = 1.
Unfortunately Saito does not actually prove the existence of the fundamental class. Since
Tx is given locally as the composition n(−, p(x)) ◦ p∗ ◦ δx,U with the latter two maps
being isomorphisms, it suffices to show that there exists a positively oriented coordinate
neighbourhood U of x such that δx,U is an isomorphism. If we suppose that U is a
positively oriented contractible neighbourhood of x, the Mayer-Vietoris exact sequence is

H2(X \ {x})→ H2(X)
δx,U−−→ H1(U \ {x})→ H1(X \ {x}),

where H1(U \ {x}) → H1(X \ {x}) is induced by inclusion. If X is a Riemann surface,
then X \ {x} is noncompact and has the homotopy type of a wedge of circles. Hence
H2(X \ {x}) = 0. If X is also compact, the inclusion U \ {x} → X \ {x} induces the zero
map on homology because X is compact and oriented. Take a finite oriented triangulation
of X such that x is contained in the interior of a triangle τ in U . The boundary of τ is a
generator for H1(U \ {x}) while being the boundary of the triangulation with τ omitted,
hence zero in H1(X \ {x}). By exactness δx,U is surjective and therefore an isomorphism.

On the assumption that the fundamental classes of compact Riemann surfaces X and
Y exist, Saito [Sai20, Proposition 9.3.1.1] proves that holomorphic maps f : X → Y
satisfy deg f ≥ 1.

We now prove the local degree formula.
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Proposition 3.2.6. Let X and Y be connected compact oriented smooth surfaces and
f : X → Y a continuous map. Suppose that there exists y ∈ Y with f−1(y) = {x1, . . . , xm}
finite; that (Ui, U

′
i , pi) are positively oriented disjoint coordinate neighbourhoods of xi such

that Ui is homeomorphic to a disk; that (V, V ′, q) is a positively oriented coordinate neigh-
bourhood of y such that V is homeomorphic to a disk; and that f |Ui → V is a homeomor-
phism for each Ui. Let deg fi ∈ {±1} be the integer such that the diagram

H1(Ui \ {xi}) H1(V \ {y})

H1(U ′i \ {p(x)}) H1(V ′ \ {q(y)})

Z Z

f∗

pi∗ q∗

n(−,p(xi)) n(−,q(y))

× deg fi

commutes. Then deg f =
∑m

i=1 deg fi.

Proof. By definition deg f = Ty ◦ f∗[X] and Ty = n(−, y) ◦ δy. By Proposition 3.2.3,
since (V, V ′, q) is positively oriented, a local expression for n(−, y) is n(−, q(y)) ◦ q∗ ◦prV .
Diagram (3.2) shows that δy ◦ f∗ =

∑m
i=1 f∗ ◦

⊕m
i=1 δxi . Together the expressions give

Ty ◦ f∗ =
m∑
i=1

n(−, q(y)) ◦ q∗ ◦ prV ◦f∗ ◦ δxi .

Since the Ui are disjoint, we may apply commutativity of (3.1) to get

Ty ◦ f∗ =
m∑
i=1

n(−, q(y)) ◦ q∗ ◦ f∗ ◦ prUi
◦δxi .

Linearity along with the definition of deg fi implies that

Ty ◦ f∗ =
m∑
i=1

deg fi · (n(−, p(xi)) ◦ pi∗ ◦ δxi,Ui
).

The latter expression is a local formula for Txi since the Ui are positively oriented. Hence
applying both sides to the fundamental class [X] gives deg f =

∑m
i=1 deg fi.

We now construct a map S2 → S2 of degree −1 using cubical singular homology, as
defined in Serre [Ser51], Massey [Mas91], and Saito [Sai20]. As shown by Saito [Sai20,
Proposition 8.5.9], the class [σ] ∈ H2(S2) of the parametrisation σ : I2 → S2 defined

σ(s, t) = (sinπs cos 2πt, sin πs sin 2πt, cosπs)



3.2. Degrees 31

is a fundamental class for S2, when S2 is equipped with the orientation defined by the
stereographic projection (x, y, z) 7→ (x/(1 + z), y/(1 + z)) from the south pole.

Define ω : I3 → S2 by

ω(s, t, u) =

{
σ(s, u− t) if t ≤ u,

σ(s, 0) if u ≤ t.

Applying the cubical boundary operator gives

∂3ω(s, t) = ω(1, s, t) + σ(s, t) + σ(s, 1− t)− ω(0, s, t)− σ(s, 0)− σ(s, 0).

Notice that ω(0, s, t) ≡ (0, 0, 1) and ω(1, s, t) ≡ (0, 0,−1). Hence these two maps along
with σ(s, 0) are degenerate. Thus [σ(s, 1− t)] = −[σ(s, t)] in H2(X). Define f : S2 → S2

by f(x, y, z) = (x,−y, z); then f∗[σ] = [σ(s, 1− t)] = −[σ], and hence deg f = −1.
The final step is to construct a map X → S2 with nonzero degree.

Lemma 3.2.7. Let Dn denote the closed unit ball in Rn and let Sn = ∂Dn+1. There
exists a homeomorphism Dn/Sn−1 → Sn.

Proof. May [May99, Chapter 13.2] provides an example of such. We verify the fact that
it is a homeomorphism by providing an explicit inverse g#. Let pN , pS denote the north
and south pole of Sn. Let y = (y1, . . . , yn) ∈ Dn. Define a map f : Dn → Sn by

f(y1, . . . , yn) = (u(‖y‖)y1, . . . , u(‖y‖)yn, 2 ‖y‖ − 1)

where u(t) =
√

1− (2t− 1)2. Since f(Sn−1) = pN , there is an induced quotient map
f# : Dn/Sn−1 → Sn. Excluding poles from Sn, define g : Sn \ {pN , pS} → Dn by

g(x1, . . . , xn+1) =

(
xn+1 + 1

2

x1√
x2

1 + · · ·+ x2
n

, . . . ,
xn+1 + 1

2

xn√
x2

1 + · · ·+ x2
n

)
.

Observe that g is an inverse to the restriction of f to Dn \ (Sn−1 ∪ {0}). Hence f# :
Dn/Sn−1 → Sn is a continuous bijection from a compact space to a Hausdorff space, and
is therefore a homeomorphism.

Lemma 3.2.8. Let X be a compact oriented surface. There exists a map X → S2 with
degree −1.

Proof. Let x0 ∈ X. Take a coordinate neighbourhood ψ : U → V centred at x0 such that
the unit disk ∆ in R2 is relatively compact in V . Define g : X → S2 by g(x) = pN for
x ∈ X \ ψ−1(∆) and g(x) = f ◦ ψ(x) for x ∈ ψ−1(∆) with f as defined in Lemma 3.2.7.
The map g is continuous by the pasting lemma since there is agreement on the overlap
ψ−1(∂∆) of the closed cover of X. For any nondegenerate disk ∆′ b ∆, the map g|ψ−1(∆′)
is a homeomorphism onto an open subset of S2. Proposition 3.2.6 implies deg g ∈ {±1}.
If necessary, we can compose with the map (x, y, z) 7→ (x,−y, z) which has degree −1,
and the composition is a map X → S2 with degree −1.
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3.3 Hyperbolic geometry

We develop hyperbolic geometry over the upper half plane H = {z ∈ C | Im z > 0} for
the purpose of violating the h-principle for maps into hyperbolic Riemann surfaces. The
main goal of this first part is to prove that every hyperbolic surface excluding ∆,∆∗ is
the quotient of H by a subgroup of deck transformations containing a hyperbolic element.

Proposition 3.3.1. The map

A =

(
a b
c d

)
7→ φA(z) =

az + b

cz + d

sending A ∈ SL(2,R) to φA ∈ Aut(H) induces an isomorphism PSL(2,R)→ Aut(H).

Proof. Napier-Ramachandran [NR12, Theorem 5.8.3].

Definition 3.3.2. An element [A] ∈ PSL(2,R) is elliptic if |TrA| < 2, parabolic if
|TrA| = 2 and hyperbolic if |TrA| > 2.

Notice that this definition is independent of representative. An automorphism φA of
H is elliptic, parabolic or hyperbolic according to its corresponding representative [A] ∈
PSL(2,R). The trace classification of automorphisms coincides with the classification of
automorphisms by the number of fixed points on the boundary.

In fact, let T =

(
a b
c d

)
∈ SL(2,R). If c = 0, then ad = 1. The fixed points are the

z satisfying a2z + ab = z. Observe that ∞ is always a fixed point in this situation. If
a = ±1 and b 6= 0, then ∞ is the only fixed point. If a = ±1 and b = 0, then T is the
identity and every point is fixed. If a 6= ±1, then z = −ab/(a2 − 1) is also a fixed point.

When c = 0, the trace is a+ 1/a. Solving the appropriate quadratic in a, one observes
that |a+ 1/a| ≥ 2 with equality if and only if a = ±1.

If c 6= 0, then fixed points are given by the quadratic formula

z =
a− d±

√
(a+ d)2 − 4

2c
.

Hence there are two fixed points on R if and only if |a+ d| > 2 and c 6= 0.
A hyperbolic surface may be considered as a quotient of the universal covering H by a

group of deck transformations G < Aut(H). Nontrivial deck transformations act without
fixed points, so the elements of G must satisfy |a + d| ≥ 2; i.e. deck transformations are
never elliptic.

Proposition 3.3.3. Suppose that G < Aut(H) is a group of deck transformations con-
taining only parabolic elements and the identity. Then H/G ' ∆ or H/G ' ∆∗.
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Proof. If G is trivial, then H/G ' H. Suppose that there exists a parabolic element
T ∈ G with fixed point x0 ∈ R. The map g(z) = 1/(x0 − z) sends x0 to ∞ and hence
gTg−1(z) = z + t for some nonzero t ∈ R. Replacing G by gGg−1, we may assume

that G contains T =

(
1 t
0 1

)
for t 6= 0. For any other parabolic S =

(
a b
c d

)
, we have

|a+cnt+d| = 2 for all n ∈ N; but |a+d| = 2 and t 6= 0 so c = 0 since n|ct|−|a+d| ≤ 2 for

all n ∈ N by the reverse triangle inequality. Hence G is represented by elements

(
1 x
0 1

)
with x ∈ R. By discreteness and nontriviality of G, there exists t0 > 0 such that the
automorphism τ(z) = z + t0 generates G. The automorphism σ(z) = z/t0 satisfies
στσ−1(z) = z + 1. But H/G ' H/σGσ−1 ' ∆∗. Hence the only hyperbolic surfaces
whose group of deck transformations have no hyperbolic elements are H ' ∆ and ∆∗.

3.3.1 The hyperbolic metric

We mainly follow the exposition of Keen and Lakic [KL07]. The result we require is that
closed geodesics on a hyperbolic surface cannot be shortened by a homotopy. This is
derived from the property that holomorphic self-maps of the unit disk, and equivalently
the upper half plane, are distance decreasing with respect to the hyperbolic metric on
those surfaces.

Semicircles orthogonal to the real axis are called geodesics of H. For any two points
p, q ∈ H, there exists a unique geodesic containing both p and q; if Re p = Re q = x0, then
we consider the geodesic {ix0t | t ∈ R ≥ 0} joining x0 to ∞. If a, b ∈ R are the points of
the geodesic meeting R, then we define the hyperbolic distance between p and q to be

d(p, q) =

∣∣∣∣log
(q − a)(p− b)
(b− q)(a− p)

∣∣∣∣ . (3.6)

If a =∞ or b =∞, then we first multiply the numerator and denominator by 1/a or 1/b.

Remark 3.3.4. Keen and Lakic define the hyperbolic distance on H to be d(p, q)/2. Their
derivation begins on the disk with the construction of a hyperbolic density ρ(z) invariant
under automorphisms A : ∆→ ∆, expressed by the equation ρ(A(z))|A′(z)| = ρ(z). They
use the normalisation condition ρ(0) = 1, while acknowledging that ρ(0) = 2 is often
found in the literature. Transporting the construction to the half plane with ρ(0) = 2
gives ρH(p) = 1/ Im p, which leads to the commonly found [Kob98, FM12] Poincaré metric

ds2 =
dx2 + dy2

y2
.

We have introduced the hyperbolic distance on the upper half plane via (3.6) since
we intend to calculate using the explicit formula. We will take for granted the following
properties of the hyperbolic distance.
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Proposition 3.3.5. The hyperbolic distance is invariant under automorphisms of H.

Proof. Keen and Lakic [KL07, p. 44]. This is due to the argument inside the logarithm,
the cross ratio, being invariant under Möbius transformations.

Theorem 3.3.6 (Schwarz-Pick lemma). If f : H → H is a holomorphic self-map of
the upper half plane, then f is distance decreasing with respect to the hyperbolic metric.
Explicitly d(f(z), f(w)) ≤ d(z, w) for all z, w ∈ H.

Proof. Keen and Lakic [KL07, Theorem 3.2.2]. Though their proof is carried out for
holomorphic self-maps of the unit disk, an analogous statement for the half plane holds
since we can map the half plane isometrically and biholomorphically onto the disk with
the Möbius transformation z 7→ (z − i)/(z + i).

Proposition 3.3.3 implies that every hyperbolic surface X excluding ∆ and ∆∗ has a
hyperbolic deck transformation. If p : H→ X is a covering and h : H→ H is a hyperbolic
deck transformation of p, then there is a unique geodesic joining the two fixed points of
h, called the geodesic axis of h.

Proposition 3.3.7. Suppose that A is a hyperbolic automorphism of H with fixed points
a, b ∈ R ∪ {∞}. Let L be the geodesic axis of A. Then infz∈H d(z, A(z)) is achieved for
all z ∈ L but not for any other z ∈ H.

Proof. Keen and Lakic [KL07, Proposition 2.4.1]. Note that L is preserved by A.

We will use the next result, due to the author, to show that maps M → ∆∗ from
Riemann surfaces M of infinite type violate the h-principle.

Lemma 3.3.8. Let z0 = x0 + iy0 ∈ H. Let d be the hyperbolic distance on H. There exists
a positive constant λ > 0 such that 0 < λ ≤ d(z0, z0 + t)/ log |t| for all t ∈ R with |t| > 1.

Proof. The geodesic joining z0 and z0 + t is defined by the equation (x−x0− t/2)2 + y2 =
t2/4 + y2

0. The points of the geodesic meeting R are (x0 + 1/2)±
√
t2/4 + y2

0. Hence the
distance between z0 and z0 + t is

d(z0, z0 + t) = 2

∣∣∣∣∣∣log

 t

2y0

+

√
1 +

(
t

2y0

)2
∣∣∣∣∣∣ .

Since x+
√

1 + x2 →∞ as x→∞ and x+
√

1 + x2 → 0 as x→ −∞, the distance satisfies
d(z0, z0 + t) → ∞ as t → ±∞. Hence the limit of d(z0, z0 + t)/ log |t| is indeterminate
as t → ±∞. The ratio d(z0, z0 + t)/ log |t| is symmetric in t for |t| > 1, so we will just
investigate the behaviour as t→∞. In this case we can ignore the absolute values.

The derivative of log(x +
√

1 + x2) is 1/
√

1 + x2 and the derivative of log x is 1/x.
Hence d(z0, z0 + t)/ log t → 2 as t → ∞ by l’Hôpital. On the other hand d(z0, z0 + t)
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is bounded and nowhere zero in a neighbourhood of t = 1 and log t → 0 from above as
t→ 1 from above, so d(z0, z0 + t)/ log t→∞ as t→ 1 from above.

Set k = 1/(2y0). For t > 1, we calculate the derivative

2
d

dt

log(kt+
√

1 + (kt)2)

log t
= 2

kt log t−
√

1 + (kt)2 log(kt+
√

1 + (kt)2)

t
√

1 + (kt)2(log t)2
.

The expression being differentiated is d(z0, z0 + t)/ log t with k = 1/(2y0). Examining the
numerator of the derivative, each local minimum of d(z0, z0 +t)/ log t occurs at t satisfying

kt log t =
√

1 + (kt)2 log(kt+
√

1 + (kt)2).

Thus local minima of d(z0, z0 + t)/ log t, if any exist, are of the form

2
log(kt+

√
1 + (kt)2)

log t
=

2√
1 + 1/(kt)2

.

The function
√

1 + 1/(kt)2 is decreasing for t ≥ 1 and hence achieves its maximum at
t = 1 on this interval. We deduce that

2
log(kt+

√
1 + (kt)2)

log t
≥ 2√

1 + 1/k2
> 0.

for all t > 1. Since k = 1/(2y0), we conclude by symmetry that λ = 2/
√

1 + 4y2
0 > 0 is a

lower bound for d(z0, z0 + t)/ log |t| for all |t| > 1.

3.3.2 Hyperbolic geodesics

Gromov [Gro89] presented an argument for why maps X → Y do not satisfy the h-
principle when Y is a hyperbolic domain of the complex plane and X is a complex analytic
manifold such that H1(X;Z) 6= 0. We wish to present this argument for the case of
Riemann surfaces. The proof makes essential use of the Schwarz-Pick lemma as well
as the result that closed geodesics on a hyperbolic surface cannot be shortened by a
homotopy. The latter result is the focus of this section.

Let d be the hyperbolic distance on H. Define the length of a path γ : I → H by

`(γ) = sup
k∑
j=1

d(γ(tj−1), γ(tj)) (3.7)

where the supremum is taken over all partitions 0 = t0 < · · · < tk = 1 of the interval
I. If γ is the concatenation of paths γ1, . . . , γk, then `(γ) =

∑k
j=1 `(γj) by the triangle

inequality. If γ is a path from a to b, then d(a, b) ≤ `(γ) by taking the trivial partition
0 = t0 < t1 = 1. From the definition, it is not immediately clear that there exist nontrivial
paths with finite length. However, it turns out that all C1 paths have finite length.
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Proposition 3.3.9. Let d be the hyperbolic distance on H. For all z0 ∈ H, we have

lim
z→0

d(z0, z0 + z)

|z|
=

1

Im z0

.

Proof. Keen and Lakic [KL07, p. 45].

This gives the integral formula for the hyperbolic length of a C1 curve γ : I → H.

Theorem 3.3.10. Let γ : I → H be C1. Then

`(γ) =

� 1

0

|γ′(t)|
Im γ(t)

dt.

In particular, the length of a C1 curve is finite.

Proof (Sketch). Combine Proposition 3.3.9 with the standard argument showing equiva-
lence between the integral formula for the arclength of a C1 curve and length by polygonal
approximation in (3.7) where d is instead taken to be the Euclidean distance.

Let X be a hyperbolic surface covered by p : H → X. Suppose that γ : I → X is
a path and γ̃ : I → H any lift. Define `(γ) = `(γ̃). This is well defined because lifts
differ by a deck transformation, and deck transformations of p are isometries with respect
to the hyperbolic metric. In particular deck transformations are length preserving. If
α : S1 → X is a closed curve onX, then `(αn) = |n|`(α). When dealing with closed curves,
we will often precompose by the universal covering E : R→ S1 defined E(t) = exp(2πit).

Definition 3.3.11. Let X be a hyperbolic surface covered by p : H→ X. A closed curve
α : S1 → X is a closed geodesic if every lift of αE : R→ X is a geodesic in H.

The condition that every lift of αE is geodesic is equivalent to the existence of a
geodesic lift of αE. This definition is not the conventional definition of closed geodesic,
but it suffices for our purposes. By this definition, the hyperbolic surfaces without closed
geodesics are precisely ∆ and ∆∗, per Proposition 3.3.3 and the next result.

Proposition 3.3.12. Let X be a hyperbolic surface and p : H→ X a covering. Suppose
that there exists a hyperbolic deck transformation h : H→ H of p. Take any point a on the
geodesic axis of h. Define γ : I → H as the segment along the geodesic axis from a to h(a).
Then the closed curve α : S1 → X identified with the loop pγ : I → X is a closed geodesic.
Conversely, if α : S1 → X is a closed curve and every lift β : R → H of αE : R → X is
a geodesic, then the deck transformation sending β(0) to β(1) is hyperbolic.

Proof. If β : R→ H is the lift determined by β(0) = a, then βτn|I = hnγ where τn : R→ R
is the translation τn(t) = t + n. So β(R) is the geodesic axis of h. If β′ : R → H is the
lift determined by β′(0) = b ∈ p−1p(a), then there exists a unique deck transformation
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j : H → H such that j(a) = b. Then jβ(0) = β′(0) and jβ = β′. Deck transformations
map geodesics to geodesics, so β′ is a geodesic. Hence every lift of α is a geodesic.

Conversely, suppose that α : S1 → X is a closed curve such that every lift β : R→ H
is a geodesic. The points β(0) and β(1) define a nontrivial deck transformation h sending
β(0) to β(1). Then hβ = βτ1 because both cover αE and hβ(0) = βτ1(0). Hence h fixes
the geodesic β(R) and so h has two fixed points on ∂H.

Remark 3.3.13. The deck transformation h determined by β(0), β(1) is the identity if
and only if β(0) = β(1). But h is nontrivial since if h was trivial, then β would have
compact image and thus would not be a geodesic.

The geodesic segment in Proposition 3.3.12 can be constructed to satisfy the additional
property that it is C1 with nowhere zero derivative. Geodesic segments parametrised in
this manner have the distance minimising property.

Proposition 3.3.14. Let a, b ∈ H. Suppose that γ : I → H is a C1 path along the
geodesic joining a to b with nowhere zero derivative. Then `(γ) = d(a, b).

Proof (Sketch). A simple calculation of the integral formula shows that if y0 > 0 and
γ0(t) = i(1 + t(y0 − 1)) is the linear path along the imaginary axis from i to iy0, then
`(γ0) = d(i, iy0). For general p, q ∈ H, there exists T ∈ Aut(H) such that T (p) = i and
ReT (q) = 0. Let γ1 be the linear path along the imaginary axis from i to T (q). Since
automorphisms of H map geodesics into geodesics, the path T−1γ1 has the same image as
γ, is C1, and has nowhere zero derivative. Since the integral arclength is independent of
parametrisation for such paths, we have d(p, q) = d(i, T (q)) = `(γ1) = `(γ).

Theorem 3.3.15. Let X be a hyperbolic surface covered by p : H→ X. Let α : S1 → X
be a C1 closed geodesic with nowhere zero derivative. If β : S1 → X is homotopic to α
via f : S1 × I → X, then `(α) ≤ `(β).

Proof. Fix a ∈ p−1(f(0, 0)). Suppose that F : R× I → X is a lift of f(E× 1) determined
by F (0, 0) = a. The point F (1, 0) determines a deck transformation hF sending a to
F (1, 0). The maps hFF (0,−) and F (1,−) both lift f(1,−) with hFF (0, 0) = F (1, 0).
Hence hFF (0, s) = F (1, s) for all s ∈ I, in particular hFF (0, 1) = F (1, 1). The deck
transformation hF is hyperbolic with geodesic axis F (R, 0) because α is a closed geodesic.
Since F (−, 1)|I is a lift of βE|I → X and is a path from F (0, 1) to F (1, 1) = hFF (0, 1),
Proposition 3.3.7 implies that

`(α) = d(a, hF (a)) = inf
z∈H

(z, hF (z)) ≤ d(F (0, 1), F (1, 1)) ≤ `(β).
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3.4 The homotopy principle for Riemann surfaces

3.4.1 Affirmative cases

Proposition 3.4.1 (Theorem 3.0.1(i)). Let M or N be isomorphic to C or ∆, or let
M ' P1 6' N . Every continuous map f : M → N is homotopic to a holomorphic map.

Proof. If M is either C or ∆, then H(x, t) = f((1 − t)x) defines a homotopy from f
to the constant map f(0). If N is either C or ∆, then H(x, t) = (1 − t)f(x) defines a

homotopy from f to the constant zero map. If N 6' P1, its universal covering p : Ñ → N
is either C or ∆. If M is P1, we have a lift f̃ : M → Ñ by simple connectivity. Then
H(x, t) = p((1 − t)f̃(x)) is a homotopy from f to the constant map p(0). In each case,
every continuous map is null homotopic, hence homotopic to a holomorphic map.

Remark 3.4.2. For the last case M ' P1 and N 6' P1, all we require from M is
simple connectivity. But there are only three simply connected Riemann surfaces up to
biholomorphism and the other two are contractible.

We consider the case M → P1, where M is noncompact. We require two well-known
results from general topology.

Lemma 3.4.3. Let (Xα)α∈Λ be a family of topological spaces and Y a topological space.
The canonical map u :

∐
α∈Λ(Xα × Y )→ (

∐
α∈ΛXα)× Y is a homeomorphism. �

Lemma 3.4.4. If ∼ is an equivalence relation on X with projection p : X → X/∼ and
F : X × I → Y is a homotopy such that x ∼ x′ implies F (x, t) = F (x′, t) for all t, then
F induces a homotopy G : X/∼× I → Y such that G(p× 1) = F .

Proof. Switzer [Swi02, Proposition 0.8].

Proposition 3.4.5 (Theorem 3.0.1(ii), Riemann sphere). Let M be noncompact. Every
continuous map M → P1 is homotopic to a holomorphic map.

Proof. Since a noncompact Riemann surface is homotopy equivalent to a wedge sum of
circles, we may equivalently consider maps from a wedge sum of circles into P1. This
consists of an arbitrary collection of loops in P1 emanating from a single point, so the
idea is that simple connectivity of P1 allows us to contract all such loops to a point.

Suppose that (Xα, xα)α∈Λ is a collection of pointed spaces. Define the wedge sum∨
α∈Λ

(Xα, xα) =
∐
α∈Λ

(Xα, xα)

/
(xα ∼ xβ)(α,β)∈Λ2 .

Let Xα ' S1 for all α. Let ια : (Xα, xα) →
∐

α∈Λ(Xα, xα) be the canonical inclusion
and π :

∐
α∈Λ(Xα, xα) →

∨
(Xα, xα) the quotient map. Suppose g :

∨
α∈Λ(Xα, xα) → P1
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is a continuous map. By definition of the final topologies on the quotient and coproduct,
we obtain a family of continuous maps gα = g ◦ π ◦ ια : (Xα, xα) → P1 for each α ∈ Λ.
Since P1 is simply connected, for each α, there exists a homotopy Fα : (Xα, xα)× I → P1

relative {xα} from gα to the constant map gα(xα) = g([xα]), with this latter constant

map independent of α. There exists a canonical map F̃ :
∐

α∈Λ((Xα, xα)× I)→ P1 such

that F̃ ◦ ια = Fα for all α. Via the inverse of the canonical homeomorphism supplied by
Lemma 3.4.3, we replace F̃ by F = F̃ ◦ u−1 : (

∐
α∈Λ(Xα, xα))× I → P1.

By Lemma 3.4.4 we get a continuous map G :
∨
α∈Λ(Xα, xα) × I → P1 defined

G([x], t) = F (x, t) since F (xα, t) = F (xβ, t) for all (α, β) ∈ Λ2 and all t ∈ I. For all
α ∈ Λ and all x ∈ Xα, we have G([x], 0) = g([x]), and G([x], 1) = g([xα]). For all t ∈ I,
we have G([xα], t) = g([xα]). Hence G :

∨
α∈Λ(Xα, xα) × I → P1 is a homotopy from g

to the constant map g([xα]) relative [xα], and every continuous map is homotopic to a
(holomorphic) constant map.

The h-principle for the punctured plane uses the vanishing theorem H1(M,O) = 0
for noncompact Riemann surfaces M . The two subsequent affirmative cases eventually
reduce to the h-principle for the punctured plane.

Proposition 3.4.6 (Theorem 3.0.1(ii), punctured plane). Let M be noncompact. Every
continuous map f : M → C∗ is homotopic to a holomorphic map.

Proof. There exists an open cover (Uj) of M such that f |Uj = exp(2πiλj) for continuous
functions λj : Uj → C∗. For example take Uj to be simply connected and obtain λj as a
continuous lifting of f |Uj to the universal covering C → C∗ defined z 7→ exp(2πiz). On
Uj ∩ Uk we have exp(2πi(λj − λk)) = 1 and hence λj − λk = cjk for continuous functions
cjk : Uj ∩ Uk → Z. Viewing (cjk) ∈ Z1(U ,Z) as a cocycle with values in O and noting
that H1(M,O) = 0 for noncompact M , we obtain a holomorphic splitting cjk = gj − gk.
Then exp(2πigk) = exp(2πigj) on Uj ∩ Uk because cjk takes values in Z. This gives a
global section g ∈ O∗(M) with g|Uj = exp(2πigj), and moreover f is homotopic to g via
F : M × I → C∗ defined F (x, t) = exp(2πi[(1− t)λj(x) + tgj(x)]) on Uj.

Proposition 3.4.7 (Theorem 3.0.1(ii), complex torus). Let M be noncompact and T a
complex torus. Every continuous map f : M → T is homotopic to a holomorphic map.

Proof. As mentioned in the introduction of this thesis and in the first section of this
chapter, there exists a map τ : C∗ × C∗ → T which is holomorphic and a homotopy
equivalence. If r : T → C∗×C∗ is a continuous map such that τr ∼ idT , then f ∼ τ(rf).
The map rf : M → C∗×C∗ can be viewed as a pair of continuous maps f1, f2 : M → C∗,
each of which is homotopic to a holomorphic map g1, g2 : M → C∗ by Proposition 3.4.6.
The map G = (g1, g2) : M → C∗ × C∗ is holomorphic and homotopic to rf . Hence
f ∼ τG, and f is homotopic to a holomorphic map.

Proposition 3.4.8 (Theorem 3.0.1(iii)). If M is noncompact, finite type, and without
punctures, then every continuous map f : M → ∆∗ is homotopic to a holomorphic map.
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Proof. By Theorem 2.5.2, there exists a compact surface M0, at least one and at most
finitely many disjoint coordinate charts ψi : Ui → C, and disks ∆ b ψi(Ui) such that
M ' M0 \

⋃
i ψ
−1
i (∆i). We construct a larger surface M ′ c M for which the inclusion

M ↪→M ′ is a homotopy equivalence.
Take disks ∆′ and ∆′′ centred at the origin such that ∆′ b ∆ b ∆′′ b ψ(Ui). Deforma-

tion retract ∆′′\∆′ and ∆′′\∆ onto ∂∆′′ in each coordinate chart and pull this back to M0.
Paste this together with the identity on M0 \

⋃
i ψ
−1
i (∆′′), noting that there is agreement

on the overlap
⋃
i ψ
−1
i (∂∆′′). Letting M ′ = M0 \

⋃
i ψ
−1
i (∆′) and M ′′ = M0 \

⋃
i ψ
−1
i (∆′′),

we observe that the topological space M ′′ is a strong deformation retract of the Riemann
surfaces M and M ′. Thus the inclusion of M into M ′ is a homotopy equivalence. Hence
any continuous map f : M → ∆∗ is homotopic to the restriction of a continuous map
F : M ′ → C∗. By Proposition 3.4.6, there exists a holomorphic map G : M ′ → C∗ such
that F ∼ G. Since G(M) is compact in C∗, there exists λ > 0 such that λG(M) ⊂ ∆∗.

3.4.2 Negative cases

The recurring theme of the negative cases is the special property of Eilenberg-Mac Lane
spaces (Proposition 2.5.10) that if M is a connected CW-complex and N is Eilenberg-
Mac Lane, then every morphism π1(M,x0) → π1(N, y0) is induced by a continuous map
f : (M,x0)→ (N, y0). This is used in all negative cases except the first when N = P1.

Lemma 3.4.9 (Proposition 3.0.2(i)). Let M be a compact Riemann surface and N = P1.
There exists a continuous map not homotopic to any holomorphic map.

Proof. By Lemma 3.2.8 there exists a map M → P1 of degree −1. But holomorphic maps
have nonnegative degree and degree is a homotopy invariant.

Lemma 3.4.10 (Proposition 3.0.2(ii)). Let M and N be Riemann surfaces such that M
is compact, and both M and N are not simply connected. There exists a continuous map
f : M → N not homotopic to any holomorphic map.

Proof. Fix base points x0 ∈M and y0 ∈ N . SinceM is compact and not simply connected,
we have H1(M) ' Z2g where g > 0 is the genus of M . Since N is not simply connected, the
fundamental group π1(N, y0) is nontrivial. So there exists a morphism H1(M)→ π1(N, y0)
sending one of the generators of H1(M) to an nontrivial element α ∈ π1(N, y0) and the rest
of the generators to zero. Precomposing by the morphism π1(M,x0) → H1(M) sending
loops to cycles gives a morphism ρ : π1(M,x0)→ π1(N, y0) with image 〈α〉 < π1(N, y0).

There exists a covering p : N1 → N such that p∗π1(N1, y1) = 〈α〉 by Proposition 2.2.9.
Since N is Eilenberg-Mac Lane, the morphism ρ : π1(M,x0) → π1(N, y0) is induced by
a continuous map f : (M,x0) → (N, y0), not homotopic to the constant map because
ρ is nontrivial. By construction f∗π1(M,x0) = 〈α〉 = p∗π1(N1, y1), so there exists a lift

f̃ : (M,x0) → (N1, y1) by Proposition 2.2.6. Since π1(N1, y1) is nontrivial and cyclic,
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the Riemann surface N1 must be noncompact. Hence holomorphic maps M → N1 are
constant because M is compact. Therefore f is not homotopic to any holomorphic map
because f is not homotopic to the constant map.

The following argument is essentially by Gromov [Gro89, Example 0.1(c)].

Lemma 3.4.11 (Proposition 3.0.2(iii)). Suppose that N is a hyperbolic Riemann surface
excluding ∆ and ∆∗. If M is a noncompact Riemann surface with π1(M) 6= 0, then there
exists a continuous map M → N not homotopic to any holomorphic map.

Proof. The noncompact Riemann surfaces M with π1(M) 6= 0 consist of the punctured
plane and noncompact hyperbolic Riemann surfaces excluding ∆. Any holomorphic map
C∗ → N is constant by lifting to universal coverings and applying Liouville’s theorem,
yet there exist continuous maps C∗ → N that are not null homotopic. So we only need to
be concerned with hyperbolic sources M . In this case, any holomorphic map f : M → N
lifts to a holomorphic map f̃ : H → H which is distance decreasing by the Schwarz-Pick
lemma. So `(fγ) ≤ `(γ) for any path γ : I →M and any holomorphic map f : M → N .

Fix base points x0 ∈ M and 1 ∈ S1. If M is noncompact, then it has the homotopy
type of a wedge of circles. If M is also not simply connected, then π1(M,x0) is a nontrivial
free group. Hence we can define a morphism π1(M,x0) → π1(S1, 1) sending a generator
representative σ : (I, 0)→ (M,x0) of π1(M,x0) to the generator of π1(S1, 1) represented
by E|I(t) = exp(2πit), and the rest of the generators of π1(M,x0) to the identity. Since
S1 is Eilenberg-Mac Lane, there exists a continuous map g : (M,x0) → (S1, 1) realising
this morphism. Since every continuous loop is homotopic to a smooth loop relative {0, 1},
we may assume that `(σ) <∞. By construction gσ ∼ E relative {0, 1}.

By the assumptions on N and by Proposition 3.3.12, there exists a closed geodesic
α : S1 → N . Take n ∈ Z such that `(αn) = |n|`(α) > `(σ) noting that `(α) > 0. We claim
that αng : M → N is a continuous map not homotopic to any holomorphic map. For if
f : M → N is any continuous map such that αng ∼ f , then αngσ ∼ fσ. But αngσ ∼ αnE
relative {0, 1} and αn is a closed geodesic, so `(αn) ≤ `(fσ) by Theorem 3.3.15. Then
`(σ) < |n|`(α) ≤ `(fσ) which implies that f is not holomorphic.

Lemma 3.4.12 (Proposition 3.0.2(iv)). Let M1 be a Riemann surface and p ∈ M1.
Suppose that M = M1\{p} and that M is not simply connected. There exists a continuous
map f : M → ∆∗ not homotopic to any holomorphic map.

Proof. Any holomorphic map g : M → ∆∗ extends to a holomorphic map g̃ : M1 → ∆
by Riemann’s removable singularities theorem. So if M1 is compact, then g is constant.
But there are continuous maps f : M → ∆∗ that are not homotopic to a constant map
because M is noncompact and not simply connected while ∆∗ is Eilenberg-Mac Lane.

Suppose that M1 is noncompact. Then H2(M1) = 0 since M1 has the homotopy type
of a wedge of circles. Let U be a neighbourhood of p biholomorphic to a disk. The
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Mayer-Vietoris exact sequence applied to the decomposition M1 = M ∪ U is

0→ H1(U \ {p})→ H1(M)→ H1(M1)→ 0.

Since H1(M1) is free, the sequence splits and we obtain a surjection

(ι∗)
∗ : Hom(H1(M), π1(∆∗, y0))→ Hom(H1(U \ {p}), π1(∆∗, y0)) (D)

given by the pullback of the pushforward of the inclusion ι : U \{p} →M ; we choose and
fix y0 ∈ ∆∗ arbitrarily. If A and B are groups with B abelian and qA : A→ Aab = A/[A,A]
the projection onto the commutator subgroup quotient, then there is a bijection

Hom(A,B)→ Hom(Aab, B) (A)

sending a map f : A → B to the induced quotient map f# : Aab → B. The inverse is
precomposition by the quotient projection qA. If Z is another group and ψ : Z → A is an
isomorphism, then there is a bijection

ψ∗ : Hom(A,B)→ Hom(Z,B). (I)

Finally if (X, x0) is a connected CW-complex and (Y, y0) is Eilenberg-Mac Lane, then
there is a bijection

[(X, x0), (Y, y0)]→ Hom(π1(X, x0), π1(Y, y0)) (EM)

sending a homotopy class [f ] of pointed maps to f∗ : π1(X, x0) → π1(Y, y0). From these
maps we can consider the diagram

Hom(H1(M), π1(∆∗, y0)) Hom(H1(U \ {p}), π1(∆∗, y0))

Hom(π1(M,x0)ab, π1(∆∗, y0)) Hom(π1(U \ {p}, x0)ab, π1(∆∗, y0))

Hom(π1(M,x0), π1(∆∗, y0)) Hom(π1(U \ {p}, x0), π1(∆∗, y0))

[(M,x0), (∆∗, y0)] [(U \ {p}, x0), (∆∗, y0)]

D

I I

A A

EM EM

(3.8)

where we choose and fix x0 ∈ U \ {p} arbitrarily. Since the diagram

π1(U \ {p}, x0) π1(M,x0)

π1(U \ {p}, x0)ab π1(M,x0)ab

H1(U \ {p}) H1(M)

ι∗

ι∗
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commutes, letting the dashed arrow in (3.8) be restriction [f ] 7→ [f ◦ ι] makes (3.8)
commute. Moreover this map is surjective and the base points can be chosen arbitrarily,
so every continuous map U \{p} → ∆∗ is homotopic to the restriction of a continuous map
f : M → ∆∗. If z : U → ∆ is a local complex coordinate centred at p, then restricting
z : U → ∆ to U \ {p} and taking f : M → ∆∗ to be any homotopic extension gives a
continuous map not homotopic to any holomorphic map.

Proposition 3.4.13 (Proposition 3.0.2(v)). Let M be a Riemann surface such that π1(M)
is not finitely generated. There exists a continuous map f : M → ∆∗ not homotopic to
any holomorphic map.

Proof. Fix x0 ∈ M . If π1(M,x0) is not finitely generated, then M is noncompact. Since
M is noncompact with π1(M,x0) not finitely generated, its universal covering is the upper
half plane H. Let p : (H, a) → (M,x0) be the universal covering with a ∈ p−1(x0) fixed.
On the other side, let q : (H, i)→ (∆∗, e−2π) be the universal covering q(z) = exp(2πiz).

The fundamental group π1(M,x0) is free because M has the homotopy type of a
wedge of circles. For j ∈ N, let γj represent distinct generators of π1(M,x0). Each curve
γj : (I, 0)→ (M,x0) lifts to a path γ̃j : (I, 0)→ (H, a) starting at a and ending at pj ∈ H.
Let dj be the hyperbolic distance between a and pj.

Let α(t) = exp(2πit) exp(−2π) be a generator of π1(∆∗, e−2π). Let µk : I → R be the
multiplication map µk(t) = kt. Any sequence (nj) in Z defines a group homomorphism
by γj 7→ αµnj

because π1(M,x0) is free. Choose nj > exp(jdj) so that dj/ log nj < 1/j.
There exists a continuous map f : (M,x0) → (∆∗, e−2π) inducing the corresponding
homomorphism π1(M,x0)→ π1(∆∗, e−2π) since ∆∗ is Eilenberg-Mac Lane.

Lift fp : (H, a)→ (∆∗, e−2π) to f̃ : (H, a)→ (H, i) satisfying fp = qf̃ . Precomposing

by γ̃j, we have q(f̃ γ̃j) = fγj ∼ αµnj
relative {0, 1} by definition of f . If we define

α̃j : I → H by α̃j(t) = i + tnj, then qα̃j = αµnj
. Hence qα̃j ∼ q(f̃ γ̃j) relative {0, 1}

and f̃ γ̃j(0) = i = α̃j(0). Therefore α̃j ∼ f̃ γ̃j relative {0, 1} by Proposition 2.2.8, which

implies that f̃(pj) = f̃(a) + nj.
Suppose that there exists a holomorphic map g : M → ∆∗ and a homotopy H :

M × I → ∆∗ such that H(x, 0) = f(x) and H(x, 1) = g(x). Lift H(p×1) : H× I → ∆∗ to
the homotopy F : H× I → H determined by F (a, 0) = i. The point F (pj, 0) determines
a deck transformation hjF of q : H→ ∆∗ sending i to F (pj, 0). The maps hjFF (a,−) and
F (pj,−) both lift H(x0,−) with hjFF (a, 0) = F (pj, 0). Hence hjFF (a, s) = F (pj, s) for all
s ∈ I. In particular hjFF (a, 1) = F (pj, 1).

Note that qF (z, 0) = H(p(z), 0) = fp(z) and qf̃(z) = fp(z) with F (a, 0) = i = f̃(a).

Hence F (z, 0) = f̃(z). By definition hjF f̃(a) = hjF (i) = F (pj, 0) = f̃(pj) = f̃(a) + nj.
Deck transformations are determined by a point, so we deduce that hjF (z) = z + nj.

Define g̃(z) = F (z, 1). Then g̃ is holomorphic because qg̃ = gp with both p and q lo-
cally biholomorphic. We have g̃(pj) = F (pj, 1) = hjFF (a, 1) = g̃(a)+nj. By Lemma 3.3.8,
there exists a positive constant λ > 0 dependent on g̃(a) and independent of j such that
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0 < λ ≤ d(g̃(a), g̃(a) + nj)/ log nj for all j ∈ N. Since holomorphic functions are distance
decreasing with respect to the hyperbolic metric, we have 0 < λ ≤ dj/ log nj < 1/j for all
j ∈ N, a contradiction. Hence there is no holomorphic map homotopic to f .

Remark 3.4.14. One might wonder why we need infinitely many generators when we
have obtained the bounds 0 < λ ≤ dj/ log nj with λ independent of j and with nj chosen
arbitrarily after the dj have already been determined; it seems as if we just need to choose
one of the nj to be large enough to undercut λ. The reason is that λ depends on g̃(a),
which depends on f , which is only determined after a sequence (nj) has been chosen.

Remark 3.4.15. Winkelmann’s proof defines λ by the equation d(g̃(a), g̃(a) +nj) = λnj
and appeals to the inequality 0 < λ ≤ dj/nj. But here λ is not independent of j since
d(g̃(a), g̃(a) + nj)/nj = λ decreases monotonically with respect to increasing nj, and in
fact goes to zero as nj goes to ∞. All we obtain is a sequence of positive numbers λj
bounded above by dj/nj. It is not clear whether there exists a positive uniform lower
bound for the λj, so we do not see how to complete Winkelmann’s original argument.

The uniform lower bound λ satisfying 0 < λ ≤ dj/ log nj produced in Lemma 3.3.8,
an original result due to the author, allows us to circumvent this problem.



Chapter 4

The equivariant Oka principle

We investigate the equivariant Oka principle for maps from a noncompact Riemann surface
to an Oka Riemann surface. There are only four types of Oka Riemann surfaces: the
complex plane C, the punctured plane C∗, any complex torus C/Γ, and the Riemann
sphere P1. The automorphism groups of these surfaces are well known, and thus we can
understand which finite group actions can occur on these surfaces.

When a group G acts freely and properly discontinuously on a space Y , the quotient
projection Y → Y/G is a covering map. A finite group always acts properly discontinu-
ously on a Hausdorff space, so the equivariant h-principle reduces to the plain h-principle
in the case of a free action. In our situation we have to deal with actions which are not
necessarily free. However, it turns out that finite group actions on C∗ and C/Γ can be
passed to a quotient on which the group acts compatibly with the group operation of C∗
and C/Γ, and for which the quotient projection is a covering map. In this case, we use
the averaging trick to produce an equivariant homotopy from a plain homotopy, then use
the homotopy lifting property to bring this back to the original surface.

For the complex plane C, we prove the stronger result that C is G-contractible with
respect to any action of a finite group G. By contrast, the Riemann sphere P1 is consid-
erably more difficult because no nontrivial group acts freely on P1. In this case we only
have partial results such as when G acts freely on the source or when the action of G on
P1 is conjugate to a rotation and effective on the source.

4.1 Finite group actions on Oka Riemann surfaces

We start by determining the possible holomorphic finite group actions on C, C∗ and
C/Γ up to conjugacy. We first determine the holomorphic automorphism groups of each
surface. The calculation is a standard exercise in complex analysis for C and C∗, and
Riemann surface theory for C/Γ. We provide proofs for completeness. By considering
the automorphism group of each surface, we then determine group actions by looking at
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finite subgroups. The simplicity of the automorphism groups allows us to extend the plain
h-principle to an equivariant h-principle.

4.1.1 The complex plane C
Proposition 4.1.1. AutC = {z 7→ az + b | a ∈ C∗, b ∈ C}.

Proof. Suppose that f : C→ C is an automorphism. Consider the automorphism g(z) =
f(z)−f(0). Then g(0) = 0 and 1/g is holomorphic on C∗. The isolated singularity at the
origin cannot be essential. If it was, then 1/gU = C for every punctured neighbourhood
U of zero by Casorati-Weierstrass. Take U to be open and bounded. Let V be an open
set such that U ∩V = ∅. Pick z0 ∈ V . By denseness we can find a sequence (zn) in U such
that 1/g(zn)→ 1/g(z0). Continuity of g−1 gives zn → z0 which contradicts our selection
of z0 ∈ V with U ∩ V = ∅. Thus 1/g has a pole of finite order at the origin, which means
that g has a zero of finite order at the origin. Since g is entire, we deduce that g is a
polynomial by taking a Taylor expansion at the origin.

If deg g > 1, then the derivative g′ is nonconstant and thus has a root w by the
fundamental theorem of algebra. This would imply that g fails to be injective in any
neighbourhood of w. But g is nonconstant so deg g > 0. Since g(0) = 0, we deduce that
g(z) = az for some a ∈ C∗. Thus f(z) = az + b where a ∈ C∗ and b = f(0) ∈ C.

Therefore every holomorphic automorphism of C is affine. Conversely any affine map
f(z) = az + b with a 6= 0 is an automorphism with inverse f−1(z) = a−1z + (−ba−1).

Remark 4.1.2. The automorphism group of C can be identified with the semidirect
product AutC ' C∗ nC.

Proposition 4.1.3. Let ϕ : G→ AutC be a holomorphic action by a finite group. There
exists n > 0 such that ϕG is conjugate to the rotation group 〈e2πi/nz〉 of order n.

Proof. We can consider the projection p : AutC→ C∗ in the split exact sequence

0 C AutC C∗ 1.
b7→z+b az+b 7→a

az← [a

The restricted projection p|K → C∗ is injective whenever K < AutC is finite. For
if g1(z) = az + b1 and g2(z) = az + b2 are two elements of K, then the composition
g1g
−1
2 = z+b1−b2 is contained in K. Since K is finite it contains no nontrivial translations.

Hence b1 = b2 and g1 = g2.
The image ϕG < AutC is finite. Hence p|ϕG→ C∗ is injective and ϕG is isomorphic

to a cyclic group because finite subgroups of C∗ are cyclic.
Assume that |ϕG| = n > 1. Let g(z) = az + b be a generator of ϕG. Then a =

exp(2πik/n) for some k such that gcd(k, n) = 1, so a 6= 1. Let σ(z) = z + b/(a − 1).
Conjugating gives σgσ−1(z) = az. Hence σϕGσ−1 is the group of 2πk/n rotations about
the origin.



4.1. Finite group actions on Oka Riemann surfaces 47

4.1.2 The punctured plane C∗

Proposition 4.1.4. AutC∗ = {z 7→ azε | a ∈ C∗, ε ∈ {±1}}.

Proof. Any automorphism f : C∗ → C∗ has an isolated singularity at the origin. This
cannot be essential by Casorati-Weierstrass. Otherwise fU = C for all punctured neigh-
bourhoods U of the origin. Take U to be open and bounded. Let V be an open set such
that U ∩ V = ∅. Pick z0 ∈ V . There exists a sequence (zn) in U such that f(zn)→ f(z0)
by denseness. Continuity of the inverse f−1 implies zn → z0, contradicting our selection
of z0 ∈ V with U ∩ V = ∅.

Hence f has either a removable singularity or a pole at the origin. If the singularity
is removable, then f extends to an automorphism f̃ of C. For this it suffices to show
that f̃(0) = 0. Take any sequence (zn) in C∗ such that zn → 0. Then f̃(zn) → f̃(0)

by continuity. If f̃(0) 6= 0, then there exists w ∈ C∗ such that f(w) = f̃(0). Since

f̃(zn) = f(zn) for all n, we get f(zn)→ f(w). Applying f−1 gives zn → w by continuity.
Uniqueness of limits implies w = 0, contradicting the selection w ∈ C∗.

Therefore f̃(z) = az for some a ∈ C∗ because f̃ is an automorphism of C satisfying

f̃(0) = 0. Thus f(z) = az when f has a removable singularity at zero. If f has a pole,
then 1/f has a removable singularity. Hence (1/f)(z) = az, and so f(z) = a−1z−1.

Remark 4.1.5. The automorphism group of C∗ can be identified with the semidirect
product AutC∗ ' C∗ o {±1}.

Proposition 4.1.6. Let ϕ : G→ AutC∗ be a holomorphic action by a finite group. There
exists n > 0 such that ϕG is conjugate to either the rotation group 〈e2πi/nz〉 of order n or
the dihedral group 〈e2πi/nz, 1/z〉 of order 2n.

Proof. There is a projection morphism p : AutC∗ → {±1}. For any finite group action
ϕ : G→ AutC∗, we can consider the kernel of the restricted projection ρ = p|ϕG→ {±1}.
Let |ker ρ| = n. Either ϕG has order n or 2n. In the former case ϕG is a rotation group
consisting of nth roots of unity. In the latter case ϕG is a dihedral group consisting of
nth roots of unity along with a reflection (a,−1) with a ∈ C∗. If b ∈ C∗ satisfies b2 = 1/a,
then (b, 1)(a,−1)(b−1, 1) = (b, 1)(a(b−1)−1, 1) = (ab2,−1) = (1,−1). Hence in this case
the action is dihedral and the reflection can be taken to be 1/z.

Remark 4.1.7. If |ker ρ| = |G| = n, then C∗/G ' C∗ via the map f(z) = zn. If |G| = 2n,
then C∗/G ' C via the map f(z) = (zn + z−n)/2. If pulled back to the universal covering
by q(z) = exp(2πiz), then we have a branched covering (f ◦ q)(z) = cos(2πnz).

Remark 4.1.8. The fixed points of the dihedral action occur when z is a 2nth root of
unity. In fact, consider the preimage zn + z−n = 2c. Now (zn)2 − 2czn + 1 = 0, and so
(zn− c)2 = −1 + c2. If c2 6= 1, then there are two branches giving n roots each, so we get
an orbit of full size 2n. Else c2 = 1, which implies c = ±1 and z2n = 1. In the case where
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zn = 1, we have f(z) = 1. When zn = −1, we have f(z) = −1. Hence to get a covering
space action with respect to the dihedral group, we need to consider C∗\W2n → C\{±1},
where W2n is the set of 2nth roots of unity.

4.1.3 Complex torus

To clarify the automorphism group of a complex torus, we begin by investigating maps
between tori.

Proposition 4.1.9. Let f : C/Γ → C/Γ′ be a nonconstant holomorphic map between
complex tori. Let π : C → C/Γ and π′ : C → C/Γ′ be the quotient projections. There

exists a lift of fπ, every lift f̃ : C → C of fπ is holomorphic, and consequently is of the
form f̃(z) = αz + β for some α ∈ C∗ satisfying αΓ ⊂ Γ′ and some β ∈ C, and α is
independent of the choice of lift.

Proof. There exists a lift of fπ because π′ : C → C/Γ′ is a covering space. Every lift

f̃ is holomorphic because π′f̃ = fπ, and π′ is a local biholomorphism. For any ω ∈ Γ,
we can consider the translation Tω(z) = z + ω. Since π′f̃Tω = fπTω = fπ = π′f̃ ,

the continuous function f̃Tω − f̃ maps into the discrete set Γ′, and is hence constant.
Therefore f̃ ′Tω − f̃ ′ = 0. This argument holds for arbitrary ω ∈ Γ, so f̃ ′ is a bounded
entire function. By Liouville f̃ ′ is constant, so f̃(z) = αz+β for some α ∈ C∗ and β ∈ C;

note that α ∈ C∗ because f is nonconstant. The equality π′f̃Tω(0) = π′f̃(0) implies
αω ∈ Γ′. Hence αΓ ⊂ Γ′.

Suppose that f̃1(z) = α1z + β1 and f̃2(z) = α2 + β2 satisfy π′f̃1 = fπ = π′f̃2. Since

π′(β1) = π′f̃1(0) = π′f̃2(0) = π′(β2), we have β1−β2 ∈ Γ′. Letting Tβ1−β2(z) = z+β1−β2

be the translation, uniqueness of lifts implies that Tβ1−β2 f̃2 = f̃1, so α1 = α2.

Corollary 4.1.10. Suppose that f : C/Γ → C/Γ′ is a nonconstant holomorphic map
between tori satisfying fπ(0) = π′(z0). Then f is a biholomorphism if and only if there

exists α ∈ C∗ such that αΓ = Γ′, and fπ = π′f̃ for f̃(z) = αz + z0.

Proof. By the assumption on f there exists unique α ∈ C∗ such that αΓ ⊂ Γ′ and
f̃(z) = αz+ z0 lifts fπ. If f is a biholomorphism, then f̃−1(z) = α−1z−α−1z0 lifts f−1π′

and satisfies f−1π′(0) = π(−α−1z0). Suppose that ω′ ∈ Γ′. Since π is a homomorphism
and π′(ω) = π′(0), the equation f−1π′(ω) = π(α−1ω − α−1z0) implies α−1Γ′ ⊂ Γ. Hence
Γ′ ⊂ αΓ ⊂ Γ′, and Γ′ = αΓ.

Conversely, suppose that f̃(z) = αz + z0 lifts fπ and αΓ = Γ′. Then Γ = (1/α)Γ′.

Since πf̃−1(z+ω′) = π(z/α−z0/α+ω′/α) = πf̃−1(z) for all ω′ ∈ Γ′ because (1/α)Γ′ = Γ,

there is an induced holomorphic map g : C/Γ′ → C/Γ satisfying gπ′ = πf̃−1. Applying f

on the left of both sides gives fgπ′ = π′. Applying g on the left of both sides of π′f̃ = fπ
gives gfπ = π. Since π and π′ are both epimorphisms, the right cancellative property
implies that gf = 1C/Γ and fg = 1C/Γ′ . Hence f is a biholomorphism with inverse g.
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We provide a converse to the preceding result.

Proposition 4.1.11. Let f : C → C be an affine map f(z) = αz + z0. For lattices
Γ,Γ′ ⊂ C, let π : C→ C/Γ and π′ : C→ C/Γ′ be the quotient projections. There exists a
unique map f# : C/Γ→ C/Γ′ making the diagram

C C

C/Γ C/Γ′

f

π π′

f#

commute if and only if αΓ ⊂ Γ′. Conversely, if f : C → C is an arbitrary holomorphic
function inducing a map f# : C/Γ→ C/Γ′ on quotients, then f is affine.

Proof. Let f(z) = αz+z0 be affine and let ω ∈ Γ. We have π′f(z+ω) = π′(αz+z0 +αω).
We claim π′f(z+ω) = π′f(z) if and only if αω ∈ Γ′. In fact, if π′f(z+ω) = π′f(z), then
π′(αz+z0+αω) = π′(αz+z0) and αω ∈ Γ′. If αω ∈ Γ′, then π′(αz+z0+αω) = π′(αz+z0).
Hence αΓ ⊂ Γ′ if and only if π′f is Γ-invariant, if and only if there exists a unique induced
map f# : C/Γ→ C/Γ′ on quotients.

Existence and uniqueness of liftings implies every holomorphic function f : C → C
which passes to the quotient is affine. In fact if f# : C/Γ → C/Γ′ satisfies f#π = π′f ,
then f#π(0) = π′f(0). Lift f# to a map g : C → C of the form g(z) = αz + f(0) with
αΓ ⊂ Γ′ using Proposition 4.1.9. Recall that g is unique with the property that π′g = f#π
and g(0) = f(0). Hence g = f and f is affine.

Every automorphism f ∈ Aut(C/Γ) is induced by a map f̃(z) = αz+z0 where αΓ = Γ,

and fπ(0) = π(z0). Let f, g ∈ Aut(C/Γ). Suppose that f̃(z) = αz+z0 and g̃(z) = βz+z1

lift f and g. Then αΓ = Γ and βΓ = Γ, so αβΓ = Γ and g̃f̃(z) = αβz + βz0 + z1 passes

to a map on the quotient with πg̃ = gπ and πf̃ = fπ. This implies πg̃f̃ = gfπ. Hence
g̃f̃ lifts gf .

In the other direction, suppose that g, f : C→ C are affine maps defined g(z) = βz+z1

and f(z) = αz + z0 with αΓ = Γ and βΓ = Γ. Then αβΓ = Γ, so gf(z) = αβz+ βz0 + z1

passes to a map (gf)# on the quotient satisfying (gf)#π = πgf = g#πf = g#f#π. Hence
(gf)# = g#f# by surjectivity of π.

We summarise the correspondence between automorphisms of C and automorphisms
of complex tori.

Proposition 4.1.12. Define Aut0(C/Γ) = {α ∈ C∗ | αΓ = Γ}. There is a group
isomorphism

χ : Aut(C/Γ)→ Aut0(C/Γ) nC/Γ

defined by χ(f) = (α, π(z0)) where f̃(z) = αz + z0 is any lift of f .
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Proof. The assignment f 7→ χ(f) is independent of the choice of lift because α is uniquely

determined, and the lifts f̃ of f all differ by an element of Γ. But π is Γ-invariant.
There is a holomorphic action of Aut0(C/Γ) on C/Γ defined by α.[z] = [αz]. Now

suppose that g ∈ Aut(C/Γ) and that g̃(z) = βz+ z1 lifts g. Then g̃f̃(z) = αβz+βz0 + z1

is a lift of gf . Hence χ(gf) = (αβ, π(βz0 + z1)) = (αβ, β.π(z0) + π(z1)) = χ(g)χ(f).
Hence χ is a homomorphism.

Suppose that χ(f) = (1, π(0)). By definition f lifts to f̃(z) = z, and πf̃ = fπ. But

f̃ = 1C, so 1C/Γπ = fπ and 1C/Γ = f since π is surjective. Therefore χ is injective. Suppose
that (α, c) ∈ Aut0(C/Γ) n C/Γ. Let c = π(z0). Define f : C → C by f(z) = αz + z0.
Then f# : C/Γ→ C/Γ is an automorphism with inverse (f#)−1 = (f−1)#. The map f#

lifts back to f , so χ(f#) = (α, π(z0)) = (α, c). Therefore χ is surjective.

Remark 4.1.13. One can consider Aut0(C/Γ) to be the set of automorphisms of C/Γ
fixing the origin. We have defined it as a subset of C∗ to point out that all such au-
tomorphisms are induced by multiplication maps. Miranda [Mir95, Chapter III, Propo-
sition 1.12] identifies the different possibilities for Aut0(C/Γ). This classification is not
relevant for our purposes.

4.2 Quotients of Riemann surfaces by holomorphic

finite group actions

Following Miranda [Mir95], we show that if X is a Riemann surface and G is a finite
group acting holomorphically and effectively on X, the orbit space X/G has a unique
complex structure for which the projection X → X/G is a holomorphic map. There is no
loss of generality in assuming that G acts effectively. If the action ϕ : G→ AutX is not
effective, then we consider the action of ϕG on X, noting that X/ϕG = X/G.

Our presentation differs slightly from Miranda in that we define a structure sheaf
OX/G on X/G first and then show that (X/G,OX/G) is locally isomorphic as a locally
ringed space to a domain in C, as opposed to producing an atlas from charts by checking
compatibility.

4.2.1 Obtaining suitable chart domains

We first cite three propositions from Miranda regarding the existence of neighbourhoods
with nice properties with respect to the group action at each point. The existence of
such neighbourhoods depends upon the result that points with nontrivial isotropy do not
accumulate, and the stabiliser subgroups are finite cyclic.

Proposition 4.2.1. Let G be a group acting holomorphically and effective on a Riemann
surface X, and fix a point p ∈ X. Suppose that the stabiliser subgroup Gp is finite. Then
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Gp is a finite cyclic group. In particular, if G is finite, then all stabiliser subgroups are
finite cyclic subgroups.

Proof. Miranda [Mir95, Chapter III, Proposition 3.1].

Proposition 4.2.2. Let G be a finite group acting holomorphically and effectively on a
Riemann surface X. The points of X with nontrivial isotropy do not accumulate.

Proof. Miranda [Mir95, Chapter III, Proposition 3.2].

Remark 4.2.3. Miranda’s statement of the proposition is just that the points with non-
trivial isotropy form a discrete set, but the proof uses the identity theorem to obtain a
contradiction in the event that there exists a sequence of points with nontrivial isotropy
converging to a point in X.

Proposition 4.2.4. Let G be a finite group acting holomorphically and effectively on a
Riemann surface X. Fix p ∈ X. There exists an open neighbourhood U of p such that:

(i) gU = U for every g ∈ Gp;

(ii) gU ∩ U = ∅ for every g /∈ Gp;

(iii) if x ∈ U fixed by some nontrivial element of Gp, then x = p.

Proof. Miranda [Mir95, Chapter III, Proposition 3.3].

Remark 4.2.5. The open neighbourhoods U can be constructed such that they lie in a
coordinate chart of p.

These open neighbourhoods are used to get coordinate charts on the orbit space X/G.
Our presentation will now slightly diverge from Miranda’s. Instead of checking compat-
ibility of the charts as Miranda does, we will instead propose a structure sheaf for the
orbit space X/G, and then show that X/G is locally isomorphic as a locally ringed space
to a domain in C. These two approaches are equivalent.

4.2.2 Structure sheaf of X/G

Let π : X → X/G be the quotient projection onto the orbit space. Since G is finite, the
orbit space X/G is Hausdorff. There is an induced morphism π∗ : CX/G → π∗CX between
sheaves of continuous complex-valued functions. Since the preimage of a subsheaf under
a sheaf morphism is a subsheaf, we define OX/G = (π∗)−1π∗OX . Explicitly, for each open
set U ⊂ X/G, there is a ring homomorphism π∗(U) : CX/G(U)→ π∗CX(U) which allows
us to set OX/G(U) = π∗(U)−1π∗OX(U).

By definition the restriction of the induced morphism π∗ : CX/G → π∗CX to OX/G

induces a morphism of subsheaves OX/G → π∗OX . Hence π : X → X/G is holomorphic



52 Chapter 4. The equivariant Oka principle

provided that (X/G,OX/G) is a Riemann surface. The holomorphic functions on U ⊂ X/G
are continuous functions f : U → C such that fπ : π−1U → C is holomorphic. Conversely,
if U ⊂ X is π-saturated, then any G-invariant holomorphic function f : U → C passes to a
continuous function f# : πU → C uniquely satisfying the property that f#π = f . Hence
every G-invariant holomorphic function corresponds uniquely to a holomorphic function
from the quotient.

4.2.3 Construction of charts

We show that (X/G,OX/G) is a Riemann surface. For this we need charts to serve as
local isomorphisms. The construction follows Miranda.

For any point p ∈ X, we take a coordinate chart (U, z) centred at p from Proposi-
tion 4.2.4. For each g ∈ Gp, we consider the holomorphic function zg : U → C. Define
h : U → C by h(x) =

∏
g∈Gp

zg(x). Applying any g ∈ Gp permutes the factors in the prod-

uct of h, so h is Gp-invariant. Also h has multiplicity m = |Gp|. Letting q : U → U/Gp

be the quotient projection, there is an induced map h# : U/Gp → C from the quotient
satisfying h#q = h. Since h has multiplicity m, there are m preimages of h(x) for each
x 6= p. These preimages get identified in U/Gp, so h# is injective. Since h is nonconstant
and holomorphic, it is an open map. Hence h# is an open map. A similar argument with
q : U → U/Gp and π|U → U/G gives an injective open map π# : U/Gp → U/G satisfying
π#q = π|U .

The composition h#(π#)−1 : πU → hU is a homeomorphism from an open subset
of X/G to an open subset of C. We will show that there is an induced isomorphism of
subsheaves OhU → (h#(π#)−1)∗(OX/G|πU); we require the following result.

Proposition 4.2.6. Let f : X → Y and g : Y → Z be functions defined on open sets
X, Y, Z ⊂ C, nonconstant on each connected component. If f and g ◦ f are holomorphic,
and g is continuous, then g is holomorphic on f(X).

Proof. Note that f(X) is open by the open mapping theorem. Let w0 = f(z0) ∈ f(X). If
f ′(z0) 6= 0, then there exists an open neighbourhood U of z0 such that f is invertible on U
and (f |U)−1 is holomorphic. Then g|f(U) = (g◦f)◦(f |U)−1 is holomorphic on f(U) by the
chain rule. If f ′(z0) = 0, then there exists a neighbourhood U of z0 such that f ′(z) 6= 0
for all z ∈ U \ {z0}. So f(U) is a neighbourhood of w0 such that g is holomorphic on
f(U) \ {w0}. Since g is continuous on f(U), Riemann’s removable singularities theorem
implies that g is holomorphic on f(U).

Remark 4.2.7. The assumption that g is continuous is not needed, but the assumption
greatly simplifies the proof since we can immediately apply Riemann’s theorem.

Proposition 4.2.8. Let X be a Riemann surface and G a finite group acting holomor-
phically and effectively on X. Let (U, z) be a coordinate neighbourhood centred at p such
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that gU ∩U = ∅ for g /∈ Gp, that gU = U for g ∈ Gp and that the only point in U fixed by

any nontrivial element of Gp is p. The map h̃ : π−1πU → C defined by h̃(x) = h(g−1x) if
x ∈ gU is well defined and holomorphic.

Proof. If x ∈ g1U ∩ g2U , then g−1
2 g1U ∩ U 6= ∅ so g−1

2 g1 ∈ Gp. Hence if x ∈ g1U ∩ g2U ,

then h(g−1
2 x) = h(g−1

2 g1g
−1
1 x) = h(g−1

1 x) because h is Gp-invariant. Hence h̃ is well
defined. The assumptions on U imply that π−1πU =

∐
g∈G/Gp

gU for some system of

coset representatives for G/Gp. The gU give a disjoint open cover for π−1πU with h̃
holomorphic on each component.

Proposition 4.2.9. Let h : U → C be defined h(x) =
∏

g∈Gp
zg(x), and let q : U → U/Gp

and π : X → X/G be quotient maps onto orbit spaces. Let h# : U/Gp → C and π# :
U/Gp → U/G be the induced maps uniquely satisfying h#q = h and π#q = π. Then h#

and π# are injective open maps, and the homeomorphism h#(π#)−1 : πU → hU induces
an isomorphism of subsheaves OhU → (h#(π#)−1)∗(OX/G|πU).

Proof. We have already established the relevant topological properties of the maps in-
volved, so we only need to prove the isomorphism of subsheaves. Also, since h#(π#)−1 :
πU → hU is a homeomorphism, the induced map ChU → (h#(π#)−1)∗(CX/G|πU) is already
an isomorphism on each open set W ⊂ hU . Thus the proof further reduces to showing
that this isomorphism restricts appropriately to the holomorphic subsheaves.

The first step is to show that restricting ChU → (h#(π#)−1)∗(CX/G|πU) to OhU gives
a map into (h#(π#)−1)∗(OX/G|πU). This amounts to showing that given a holomorphic
function f : W → C defined on an open subset W ⊂ hU , the composition f◦(h#(π#)−1) is
in (h#(π#)−1)∗(OX/G|πU)(W ), which, after unwinding all definitions, amounts to showing
that f ◦ h#(π#)−1 ◦ π ∈ OX(π−1π#(h#)−1W ). Since f is a holomorphic function between
two open subsets of C, it clearly suffices to show that h#(π#)−1 ◦ π ∈ OX(π−1πU).

Consider h#(π#)−1 ◦ π|π−1πU . If x ∈ π−1πU , then there exists g ∈ G such that

x ∈ gU . Then g−1x ∈ U , and G-invariance of π gives (h#(π#)−1 ◦ π)(x) = h̃(x). Hence
h#(π#)−1 ∈ OX/G(πU), and this implies that the induced morphism on sheaves satisfies
OhU → (h#(π#)−1)∗(OX/G|πU).

We now need to show that the inverse sends (h#(π#)−1)∗(OX/G|πU) into OhU . For
this, we need to show that for each open set W ⊂ hU and each f ∈ OX/G(π#(h#)−1W ),
the function f ◦ (π#(h#)−1|W ) : W → C is holomorphic.

Suppose that W ⊂ hU and f ∈ (h#(π#)−1)∗(OX/G|πU)(W ). By definition, this implies
f ∈ (π∗)−1π∗OX(π#(h#)−1W ), and so f ◦ (π|π−1π#(h#)−1W ) ∈ OX(π−1π#(h#)−1W ). The
intersection π−1π#(h#)−1W ∩ U is h−1W . In fact if x ∈ π−1π#(h#)−1W ∩ U , then
π(x) = (π#(h#)−1)◦h(x) ∈ π#(h#)−1W . Since π#(h#)−1 is injective, we have h(x) ∈ W ,
implying that x ∈ h−1W . Conversely, if x ∈ h−1W , then x ∈ U and the above argument
implies x ∈ π−1π#(h#)−1hh−1W ⊂ π−1π#(h#)−1W . Since W ⊂ hU , the restriction
h|h−1W is surjective onto W .
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Therefore the restriction of f ◦ (π|π−1π#(h#)−1W ) to U is

f ◦ (π|h−1W ) = (f ◦ π#(h#)−1|W ) ◦ (h|h−1W ).

Pick w ∈ W . There exists some x ∈ h−1W such that h(x) = w. Choose a coor-
dinate neighbourhood (Z, ζ) of x. Precomposing by ζ−1 gives a holomorphic function
f ◦ π ◦ ζ−1 = (f ◦ π#(h#)−1|hZ) ◦ (h ◦ ζ−1) on ζZ. Hence f ◦ π#(h#)−1|hZ is holomorphic
by Proposition 4.2.6.

Theorem 4.2.10. The pair (X/G,OX/G) is a Riemann surface.

Proof. Take a cover (Ui, zi)i∈Λ of X by coordinate neighbourhoods described in Propo-
sition 4.2.4. On each, define hi : Ui → C as in Proposition 4.2.9. The collection
(h#

i (π#)−1 : πUi → hiUi)i∈Λ defines a Riemann surface structure on (X/G,OX/G).

Proposition 4.2.11. A Riemann surface structure on X/G for which π : X → X/G
becomes holomorphic is uniquely determined.

Proof. If O ′X/G is another structure on X/G for which π : X → X/G is holomorphic, then
Proposition 4.2.6 implies that idX/G is a holomorphic map because π = idX/G ◦π.

Remark 4.2.12. Miranda [Mir95, Chapter III, Theorem 3.4] establishes chart compat-
ibility by instead considering the different cases when a chart for X/G is centred at a
point with multiplicity m = 1 or multiplicity m ≥ 2. The two-out-of-three rule (Proposi-
tion 4.2.6), which we required for Proposition 4.2.9, does not make an appearance.

4.3 The equivariant Oka principle for C, C∗, C/Γ

We are now able to establish the equivariant Oka principle for C, C∗ and C/Γ. We first
dispense with C because this case is rather simple with C being G-contractible for every
holomorphic action by a finite group G. Theorem 4.3.8 establishes the equivariant Oka
principle for C∗ and C/Γ by combining covering space theory with an averaging argument.
The interval I is always equipped with the trivial G-action.

Proposition 4.3.1. The complex plane C is G-contractible for every holomorphic action
by a finite group G.

Proof. Suppose that G is finite and ϕ : G → AutC is an action on C. Then ϕG is
cyclic, and there exists g ∈ G such that ϕ(g) generates ϕG. If ϕG is nontrivial, then
ϕ(g) = az + b for a 6= 1. There is a unique fixed point z0 = b/(1 − a) for ϕ(g). Let
σ(z) = z − z0 be the translation sending the fixed point to zero. Define the homotopy
H : C× I → C by

H(z, t) = (1− t)z + tz0 = z − tσ(z).
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Supposing that |ϕG| = n, we have σϕ(g)σ−1 = µn, where µn(z) = ωnz is multiplication
by some primitive root of unity ωn. Exploiting the linearity of µn, one may verify that
H(ϕ(g)k(z), t) = ϕ(g)k(H(z, t)), giving an equivariant homotopy from the identity to the
constant map z0.

Corollary 4.3.2. Let G be a finite group acting holomorphically on a Riemann surface
X and the complex plane C. Every continuous G-map X → C or C→ X is G-homotopic
to a holomorphic G-map. �

Remark 4.3.3. Since every finite subgroup of Aut ∆ is conjugate to a rotation group,
Proposition 4.3.1 and Corollary 4.3.2 hold with ∆ in place of C.

For the case of C∗ and C/Γ, we first require some technical results. The automorphism
groups of C∗ and C/Γ are C∗ o {±1} and Aut0(C/Γ) n C/Γ. The {±1} and Aut0(C/Γ)
automorphisms are homomorphisms with respect to the group operations of C∗ and C/Γ.
Thus we say that these automorphisms act linearly on C∗ and C/Γ in the sense that both
become G-modules with respect to these actions. While C∗ is a multiplicative group and
the term G-module is typically reserved for an additive group, the discrepancy is only
formal since (zw)ε = zεwε for ε ∈ {±1}.

We start by explaining how we can reduce an action on C∗ or C/Γ to the linear part.

Proposition 4.3.4. Suppose that X is a G-space and N C G is a normal subgroup.
The orbit space X/N is a G-space with the induced action, and the quotient projection
q : X → X/N is equivariant.

Proof. The induced action of G on X/N is defined g[x] = [gx]. If x ∼ x′, then there
exists n ∈ N such that nx = x′. Since gx′ = gnx = (gng−1)gx, normality implies
gng−1 ∈ N so gx ∼ gx′ and the action is well defined. We have e[x] = [ex] = [x] and
(gh)[x] = [ghx] = g[hx] = g(h[x]). Finally q(gx) = [gx] = g[x] = gq(x).

Corollary 4.3.5. Suppose that G is a finite group acting holomorphically on a Riemann
surface Y and that N C G is a normal subgroup such that its image in AutY acts freely
on Y . The quotient map Y → Y/N is an equivariant holomorphic covering with respect
to the induced action of G on Y/N . �

Proposition 4.3.6. Suppose that Y is C∗ or C/Γ, that G acts holomorphically on Y and
that N C G is the kernel of the action composed with the semidirect product projection.
The quotient space Y/N inherits a group operation from Y and is a G-module with respect
to the induced action.

Proof. Suppose that Y is C∗. Define [z][w] = [zw]. If z ∼ z′ and w ∼ w′, then there
exists a, b ∈ N ⊂ C∗ such that az = z′ and bw = w′. Then z′w′ = azbw = (ab)zw
so z′w′ ∼ zw. If (a, ε) ∈ AutC∗, where (a, ε).z = azε, the induced action on C∗/N is
(a, ε).([z][w]) = [a(zw)ε] = [(zw)ε] = [zε][wε] = [azε][azε] = (a, ε).[z](a, ε).[w].
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Suppose that Y is C/Γ. Define [z] + [w] = [z + w]. If z ∼ z′ and w ∼ w′, then there
exists a, b ∈ N ⊂ C/Γ such that z+a = z′ and w+ b = w′. Then z′+w′ = z+w+ (a+ b)
so z′ + w′ ∼ z + w. If (α, c) ∈ Aut(C/Γ) where (α, c).z = α.z + c, the induced action on
(C/Γ)/N is (α, c).([z] + [w]) = [α.(z + w) + c] = [α.z + α.w] = (α, c).[z] + (α, c).[w].

The final result is that the lift of an equivariant homotopy is equivariant if the initial
map of the lift is equivariant. The proposition does not deal with existence of lifts, since
this is covered by the plain homotopy lifting property.

Proposition 4.3.7. Let X and Y be G-spaces. Suppose that p : Y → X is an equivariant
covering map. Suppose that Z is a connected G-space and H0 : Z×I → X is an equivariant
homotopy. If H1 : Z × I → Y is a lift of H0 and H1(−, 0) : Z → Y is equivariant, then
H1 : Z × I → Y is equivariant.

Proof. Consider the two maps H1g, gH1 : Z × I → Y . Since p : Y → X is equivariant
and H1 lifts H0, we have pgH1 = gpH1 = gH0 = H0g = pH1g. For any z ∈ Z, since
H1(−, 0) is equivariant, we have gH1(z, 0) = H1(gz, 0). By uniqueness of lifts, this implies
gH1 = H1g as maps Z × I → Y .

We now arrive at the main theorem.

Theorem 4.3.8. Let X be a noncompact Riemann surface and let Y be C∗ or C/Γ for
some lattice Γ ⊂ C. Let G be a finite group acting holomorphically on X and Y . Every
continuous G-map f : X → Y is G-homotopic to a holomorphic G-map.

Proof. The automorphism groups of C∗ and C/Γ are C∗ o {±1} and Aut0(C/Γ) n C/Γ.
Hence given the action G → AutY of a finite group G, there is a projection to {±1} or
Aut0(C/Γ); the kernel N of the action composed with this projection is represented by C∗
in AutC∗ or C/Γ in Aut(C/Γ). The C∗ and C/Γ part of the action, consisting of rotation
and translation, acts freely on C∗ and C/Γ. Hence in each case, there is an equivariant
covering space projection Y → Y/N by Corollary 4.3.5. If Y = C∗, then Y ' Y/N via a
power map. If Y = C/Γ, then Y/N has genus 1 by the Riemann-Hurwitz formula [Mir95,
p. 81-82]; it might be that Y 6' Y/N but this is not important. In each case Y/N is a
G-module with respect to the induced action of G by Proposition 4.3.6.

The equivariant map f : X → Y passes to an equivariant map f0 : X/N → Y/N
making the diagram

X Y

X/N Y/N

f

π q

f0

(4.1)

commute. Via the plain h-principle, since X/N is noncompact, there exists a homotopy

H0 : X/N × I → Y/N, (4.2)
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not necessarily equivariant, such that H0(−, 0) = f0 and H0(−, 1) is holomorphic. Since
Y/N is a G-module, we can apply the equivariant projection to get an equivariant homo-
topy H1 : X/N × I → Y/N ; in fact we define

H1(x, t) =


∏
g∈G

gH0(g−1x, t) if Y = C∗,∑
g∈G

gH0(g−1x, t) if Y = C/Γ.
(4.3)

The problem is that H1(−, 0) = f
|G|
0 or H1(−, 0) = |G|f0: the map is scaled incorrectly.

However in both cases, the incorrect scaling arises from a G-equivariant covering map
q′ : Y/N → Y/N defined by

q′(z) =

{
z|G| if Y = C∗,
|G|z if Y = C/Γ.

(4.4)

By the homotopy lifting property, there exists H2 : X/N × I → Y/N making the diagram

X/N × {0} Y/N

X/N × I Y/N

f0

q′

H1

H2 (4.5)

commute. Proposition 4.3.7 implies that H2 is equivariant. Since q′ : Y/N → Y/N is a
local biholomorphism, we deduce that H2(−, 1) is holomorphic. Finally, we again invoke
the homotopy lifting property and Proposition 4.3.7 to obtain an equivariant homotopy
H3 : X × I → Y making the diagram

X × {0} Y

X × I Y/N

f

q

H2◦(π×idI)

H3 (4.6)

commute. Since q : Y → Y/N is a local biholomorphism, the map H3(−, 1) is holo-
morphic. Hence every continuous G-map X → Y is G-homotopic to a holomorphic
G-map.

Remark 4.3.9. Theorem 4.3.8 is an averaging trick in two parts. Normally the aver-
aging trick takes place in a G-module where multiplication by |G| is invertible, so (4.3)
and (4.4) would be done in one step. We are not immediately able to average out the
equivariant projection in (4.3) because we need to be careful about how we take |G|th
roots of holomorphic maps or how we divide by |G| in a complex torus.



58 Chapter 4. The equivariant Oka principle

4.4 The equivariant Oka principle for P1

Our main result for P1 is a partial result that reduces the equivariant Oka principle to
an equivariant holomorphic interpolation theorem. Let X denote a noncompact Riemann
surface equipped with an effective and holomorphic action of a finite group G and let
A ⊂ X be the set of points of X with nontrivial isotropy. Recall that A is closed and
discrete by Proposition 4.2.2, and is also G-invariant. For a given G-map f : A → P1,
let [X,P1]fG be the set of equivalence classes of continuous G-map extensions X → P1 of
f : A → P1 that are G-homotopic. Using methods purely from algebraic topology, we
show that [X,P1]fG is a singleton, meaning that any two G-map extensions of f can be
equivariantly deformed into the other, such that the deformation is fixed on A. Thus the
equivariant Oka principle holds if we can show that for any equivariant map A → P1,
there exists an equivariant holomorphic extension X → P1; this problem is left open.

Independently from this reduction, we are also able to establish the equivariant Oka
principle using other methods when the action on the source is free.

4.4.1 Equivariant CW-complexes

We follow tom Dieck [tom87, Chapter II, Section 1]. Though tom Dieck considers a
compact Lie group G, we will take G to be finite. Let Dn = {x ∈ Rn : ‖x‖ ≤ 1} be
the closed unit ball in Rn and Sn−1 = {x ∈ Rn : ‖x‖ = 1} the unit sphere in Rn. Equip
these spaces with the trivial G-action. Set D0 = pt and S−1 = ∅. The basic building
blocks of an equivariant CW-complex are the G-spaces G/H × Dn, where H < G is a
subgroup, the group G acts on itself and the set G/H of left cosets by left multiplication,
and G/H ×Dn is equipped with the diagonal action.

Let A be a G-space. Fix an integer n ≥ 0. For a family (Hj)j∈J of subgroups of G,
along with G-maps

ϕj : G/Hj × Sn−1 → A, (4.7)

we consider pushout diagrams∐
j∈J G/Hj × Sn−1 A

∐
j∈J G/Hj ×Dn X.

φ

(4.8)

In this case, we say that X is obtained from A by attaching the family of equivariant
n-cells (G/Hj ×Dn)j∈J of type (G/Hj)j∈J . The map φ is called a characteristic map.

Definition 4.4.1. Let (X,A) be a pair of G-spaces. An equivariant CW-decomposition
of (X,A) consists of a filtration (Xn)n∈Z of X satisfying the following properties.
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1. A ⊂ X0; A = Xn for n < 0; X =
⋃
n∈ZXn.

2. For each n ≥ 0, the space Xn is obtained from Xn−1 by attaching equivariant n-cells.

3. X carries the colimit topology with respect to (Xn)n∈Z.

Definition 4.4.2. If (Xn) is an equivariant CW-decomposition of (X,A), then (X,A) is
called a relative equivariant CW-complex with respect to the filtration (Xn). If A = ∅,
then X is called an equivariant CW-complex. The subspace Xn is called the n-skeleton of
(X,A).

We immediately sideline this definition to work with a substitute property.

Definition 4.4.3. Let X be a G-space and a plain CW-complex. The group G acts
cellularly on X if the following properties hold.

(i) For each g ∈ G and each open cell E of X, the translation gE is an open cell of X.

(ii) If gE = E, then the map E → E defined by x 7→ gx is the identity.

The next two propositions explain how we can use the concept of a cellular action to
obtain an equivariant cell structure on a Riemann surface X equipped with a holomorphic
action by a finite group G.

Proposition 4.4.4. Suppose that X is a CW-complex with filtration (Xn)n∈Z, equipped
with a cellular G-action. Then X is an equivariant CW-complex with n-skeleton Xn.

Proof. See tom Dieck [tom87, Chapter II, Proposition 1.15].

Proposition 4.4.5. Let X be a Riemann surface equipped with the effective and holomor-
phic action of a finite group G. Let A ⊂ X be the set of points with nontrivial isotropy.
There exists an equivariant relative CW-decomposition of (X,A).

Proof. Every second countable surface admits a triangulation [AS60, Chapter I, §8]. Take
a triangulation of X/G such that A/G is contained in the set of vertices of the triangula-
tion. Lift the triangulation along the branched cover X → X/G to produce a triangulation
of X on which G acts cellularly. Applying Proposition 4.4.4 gives a filtration which can
be used to realise (X,A) as a relative equivariant CW-complex. When A is nonempty,
instead of attaching all 0-cells to the empty set to form X0, we instead attach all points
with trivial isotropy to A.

Finally we relate cellular actions to the boundary map and Hurewicz map.
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Proposition 4.4.6. Suppose that G acts cellularly on a CW-complex (Xn). For each n,
viewing g ∈ G as a homeomorphism g : (Xn+1, Xn) → (Xn+1, Xn), the boundary map
∂ : πn+1(Xn+1, Xn, ∗)→ πn(Xn, ∗) commutes with g∗ in the diagram

πn+1(Xn+1, Xn, x0) πn+1(Xn+1, Xn, gx0)

πn(Xn, x0) πn(Xn, gx0)

g∗

∂ ∂

g∗

and the Hurewicz map % : πn+1(Xn+1, Xn, ∗)→ Hn+1(Xn+1, Xn) commutes with g∗ in the
diagram

πn+1(Xn+1, Xn, x0) πn+1(Xn+1, Xn, gx0)

Hn+1(Xn+1, Xn) Hn+1(Xn+1, Xn).

g∗

% %

g∗

Proof. Let f : (Dn+1, Sn, ∗)→ (Xn+1, Xn, x0) represent an element of πn+1(Xn+1, Xn, x0).
The boundary diagram commutes since (g ◦f)|Sn = g ◦ (f |Sn). Let z̃n+1 be a generator of
Hn+1(Dn+1, Sn). The Hurewicz diagram commutes since (g◦f)∗(z̃n+1) = g∗(f∗(z̃n+1)).

4.4.2 Extending maps across cells equivariantly

Fix n ≥ 1. Let Y be n-simple and (n− 1)-connected. Let (X,A) be a relative equivariant
CW-complex with free action on X \ A. Let f : A → Y be a G-map. The main goal of
this subsection is to explain how to extend f to an equivariant map X → Y .

Lemma 4.4.7 and Lemma 4.4.8 are technical results used implicitly by tom Dieck in
his arguments. We state and prove these explicitly for completeness. Theorem 4.4.10 is
proved by tom Dieck [tom87, Chapter II, Theorem 3.15] though we make the exposition
of Theorem 4.4.10(i) more explicit.

Lemma 4.4.7. Let G be a discrete group and f : G × Sn → Y an equivariant map.
Then f restricts to a null homotopic map f |{1} × Sn → Y if and only if there exists an

equivariant extension f̃ : G×Dn+1 → Y of f .

Proof. Let H : Sn × I → Y satisfy H(x, 0) = f(1, x) and H(x, 1) = y0 for all x ∈ Sn.

Define f̃ : G×Dn+1 → Y by

f̃(g, x) =

gH
(

x

‖x‖
, 1− ‖x‖

)
if x 6= 0

gy0 if x = 0.
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Note that f̃ is clearly continuous away from (g, 0), so we just need to verify continuity
at (g, 0). Let V be a neighbourhood of gy0. For all x ∈ Sn, the set H−1g−1V is a
neighbourhood of (x, 1). So for each x, there exists Ux ⊂ Sn and 0 < εx < 1 such
that Ux × (1 − εx, 1] ⊂ H−1g−1V . By compactness of Sn, we reduce to finitely many
U1, . . . , Um covering Sn and take ε = min1≤i≤m εi. Thus Sn × (1 − ε, 1] ⊂ H−1g−1V .
Consider the open ball B(0, ε) ⊂ Dn+1. If x ∈ B(0, ε) \ {0}, then 1 − ‖x‖ > 1 − ε so

f̃(g, x) = gH(x/ ‖x‖ , 1− ‖x‖) ∈ V . By definition f̃(g, 0) = gy0 ∈ V . Since G is discrete,

the set {g} ×B(0, ε) ⊂ f̃−1V is a neighbourhood of (g, 0), and f̃ is continuous at (g, 0).

Conversely, suppose that f̃ : G ×Dn+1 → Y satisfies f̃ |G × Sn → Y = f . The map

H : Sn × I → Y defined H(x, t) = f̃(1, x(1− t)) satisfies H(x, 0) = f̃(1, x) = f(1, x) and

H(x, 1) ≡ f̃(1, 0). Thus f(1,−) : Sn → Y is null homotopic.

Lemma 4.4.8. Let Gj = {j}×G. If each map fn−1ϕj : Gj×Sn−1 → Xn−1 → Y restricts
to a null homotopic map Sn−1 → Y , then there exists a G-map extension fn : Xn → Y .

Proof. For each fn−1ϕj, we obtain a G-map extension f̃n−1,j : Gj ×Dn → Y of fn−1ϕj by
Lemma 4.4.7. Hence the diagram∐

j Gj × Sn−1 Xn−1

∐
j Gj ×Dn Y

commutes, yielding a G-map extension fn : Xn → Y of fn−1 since Xn is a pushout.

Remark 4.4.9. The group action does not play a deep role in either of the technical
lemmas given. In particular, Lemma 4.4.7 reduces the extension problem to the nonequiv-
ariant setting by solving the problem with respect to the identity of G.

We now arrive at the main extension theorem for the subsection, which can be found in
tom Dieck [tom87, Chapter II, Theorem 3.15]. Eventually we want to consider homotopy
classes of extensions, but for now we can only say that equivariant extensions to the
n-skeleton are equivariantly homotopic on the (n− 1)-skeleton.

Theorem 4.4.10. Fix n ≥ 1. Let Y be n-simple and (n− 1)-connected. Let (X,A) be a
relative equivariant CW-complex with free action on X \ A. Let f : A→ Y be a G-map.

(i) The map f : A→ Y extends to a G-map Xn → Y . Any two equivariant extensions
are G-homotopic relative A on Xn−1.

(ii) Let k : A × I → Y be a G-homotopy from f0 = k(−, 0) to f1 = k(−, 1) and let
F0, F1 : Xn → Y be equivariant extensions of f0 and f1. There exists a G-homotopy
K : Xn−1 × I → Y from F0|Xn−1 to F1|Xn−1 extending k.
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Proof. (i) Let f : A→ Y be equivariant. Suppose that the attaching maps for k = 0 are
given in the pushout diagram

A

∐
j∈J Gj X0,

(4.9)

noting that S−1 = ∅ and D0 = pt. We can define an equivariant map
∐

j∈J Gj → Y by
arbitrarily prescribing values on the identity components

∐
j∈J{1}, and this will induce

an equivariant map X0 → Y extending f : A→ Y since Diagram 4.9 is a pushout.
For the extension to X1 and X2, apply Lemma 4.4.8 to Gj × Sk−1 → Xk−1 → Y in

the cases k = 1, 2. To deduce that these compositions restrict to null homotopic maps
Sk−1 → Y , it suffices to observe that Y is 1-connected. Hence all maps S0 → Y and
S1 → Y are null homotopic.

For the homotopy relative A on Xn−1 between two maps f0, f1 : Xn → Y extending
f , we consider the relative equivariant CW-complex (Xn× I,Xn×∂I ∪A× I) along with
the map F : Xn× ∂I ∪A× I → Y defined by fi on Xn×{i} and by f × idI : A× I → Y
on A× I. The n-skeleton of (Xn × I,Xn × ∂I ∪ A× I) is Xn × ∂I ∪Xn−1 × I.

(ii) Apply (i) to (Xn−1 × I,Xn−1 × ∂I ∪ A× I).

Corollary 4.4.11. Let X be a Riemann surface and Y = P1. Suppose that G is a
finite group acting holomorphically and effectively on X, and holomorphically on Y . Let
A ⊂ X0 ⊂ X1 ⊂ X2 = X be an equivariant triangulation of X, where Xk is the k-skeleton
and A is the set of points with nontrivial isotropy. Each equivariant map f : A → Y
admits an equivariant extension to X, and any two such extensions are G-homotopic
relative A on X1.

Proof. Take Y = P1 in Theorem 4.4.10.

The ultimate goal of this section is to show that, given any G-map f : A→ P1, the set
[X,P1]fG of G-homotopy classes of G-map extensions of f is a singleton. Corollary 4.4.11
allows us to show that any two G-map extensions f0, f1 : X → P1 of any G-map A→ P1

are G-homotopic relative A on the 1-skeleton X1. The remaining task is to extend this to
a G-homotopy on the whole surface X = X2. For this, we require equivariant obstruction
theory.

4.4.3 Overview of equivariant obstruction theory

We follow tom Dieck [tom87, Chapter II, Section 3]. While tom Dieck takes G to be a
compact Lie group, we will take G to be finite so we need not consider the quotient G/G0

by the identity component G0. Let (X,A) be a relative equivariant CW-complex with a
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free G-action on X \ A; in other words Xn is obtained from Xn−1 by attaching n-cells of
type G. The filtration (Xn) gives a cellular chain complex C∗(X,A) via

· · · → Hn+1(Xn+1, Xn)
d−→ Hn(Xn, Xn−1)→ . . . (4.10)

where the homology is ordinary singular homology with coefficients in Z. The boundary
map d is the composition of Hn+1(Xn+1, Xn)→ Hn(Xn) and Hn(Xn)→ Hn(Xn, Xn−1) in
the long exact sequences of the pairs (Xn+1, Xn) and (Xn, Xn−1).

The cellular G-action on the pair (Xn, Xn−1) induces a G-action on Hn(Xn, Xn−1) by
functoriality. Then Hn(Xn, Xn−1) becomes a ZG-module and (4.10) becomes a complex
of ZG-modules. If M is another ZG-module, we can consider the cochain complex

HomZG(C∗(X,A),M) = C∗G(X,A;M). (4.11)

We are then interested in the cohomology groups of this complex, denoted

IH∗G(X,A;M). (4.12)

The specific ZG-module we are interested in is M = π2(P1, y0) ' Z. Since P1 is simply
connected, it is 2-simple. Also P1 is path connected. Hence the map π2(P1, y0)→ [S2,P1]
forgetting the base point is a bijection by Proposition 2.1.5, and there is a well-defined
action of G on π2(P1, y0). Since homotopy classes of continuous maps S2 → P1 are classi-
fied by degree, the action of G on π2(P1, y0) is trivial since G acts on P1 by holomorphic
automorphisms.

Let f0 : A→ Y be a G-map. Let [X, Y ]f0G be the set of G-homotopy classes relative A
of maps f : X → Y satisfying f |A = f0. The main theorem tom Dieck proves is:

Theorem 4.4.12. Let Y be an n-simple and (n−1)-connected space. There is a bijection
[Xn, Y ]f0G → IHn

G(X,A; πnY ).

Proof. See tom Dieck [tom87, Chapter II, Theorem 3.17].

The n-simple assumption is needed to ensure that the map πn(Y, y0)→ [Sn, Y ] forget-
ting the base point is a bijection. We specialise to Y = P1 and n = 2. When G is a finite
group acting holomorphically on Y , and X is a noncompact Riemann surface admitting
a holomorphic and effective action of G, the cohomology group H2

G(X,A; π2Y ) is known.

Proposition 4.4.13. Suppose that X is a Riemann surface equipped with an effective
and holomorphic action of a finite group G, and that G acts holomorphically on P1. Let
A ⊂ X be the set of points with nontrivial isotropy. Then

H2
G(X,A; π2P1) ' H2(X/G,A/G;Z)

as ZG-modules, where G acts trivially on H2(X/G,A/G;Z).
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Proof. We obtain an equivariant cell structure on X by first taking a triangulation of the
quotient X/G that lifts to an equivariant triangulation of X along the branched covering
X → X/G as in Proposition 4.4.5. Let (enλ)λ∈Λ be the n-cells in the triangulation of X/G.
Then for n > 0, the n-cells of X can be labelled (g, enλ)(g,λ)∈G×Λ. The n-cells (enλ)λ∈Λ

form a ZG-basis for Hn((X/G)n, (X/G)n−1) equipped with the trivial G-action and the
n-cells (1, enλ)λ∈Λ form a ZG-basis for Hn(Xn, Xn−1). Elements of Cn(X/G,A/G;Z) and
Cn
G(X,A; π2P1) are equivariant functions on these bases with values in Z.

Since G acts holomorphically on P1, the induced action on π2P1 ' Z is trivial. Identify
ϕ ∈ Cn

G(X,A;Z) with the map determined by ϕ(eλ) = ϕ(1, eλ). This assignment is
equivariant. Conversely for ϕ ∈ Cn(X/G,A/G;Z), let ϕ be the map determined by
ϕ(1, eλ) = ϕ(eλ). Since (−) : Cn

G(X,A;Z) → Cn(X/G,A/G;Z) defines a chain map on
equivariant cochains for n > 0, we get an isomorphism IH2

G(X,A;Z) ' H2(X/G,A/G;Z)
on cohomology, the latter being isomorphic to ordinary singular cohomology.

Finally this gives the reduction theorem we aim to prove.

Corollary 4.4.14. With the assumptions of Proposition 4.4.13, suppose in addition that
X is noncompact. Then [X, Y ]f0G = pt for each equivariant map f0 : A→ Y .

Proof. If X is noncompact, then H2(X/G,A/G;Z) = 0. So Theorem 4.4.12 establishes
[X, Y ]f0G = pt for each initial G-map f0 : A → Y . Continuity is a trivial consideration
since A is closed and discrete.

Remark 4.4.15. Corollary 4.4.11 allowed us to prove that any two G-map extensions
X → Y of f0 : A → Y are homotopic on the 1-skeleton X1. With the use of equivariant
obstruction theory in Corollary 4.4.14, we are now able to show that any two G-map
extensions of f0 are homotopic on the whole surface X = X2.

We will not rely fully on Theorem 4.4.12. Since H2(X/G,A/G;Z) = 0, all we need is
an injection. Therefore our approach will focus specifically on establishing the claim that
two maps X → P1 agreeing on the set A of points with nontrivial isotropy are homotopic,
and we will explain tom Dieck’s obstruction theory only to the extent required to establish
this result.

In Section 4.4.4 we examine a certain map cn+1 : [Xn, Y ]G → Cn+1
G (X,A; πnY ) sending

homotopy classes of equivariant maps to equivariant cochains, fleshing out tom Dieck’s
exposition where appropriate. While this map has made no appearance in the theorems
cited thus far, the cochain map and its properties are central to Theorem 4.4.12. We
use this cochain map in Section 4.4.5 to reduce the equivariant Oka principle for P1 to
an equivariant holomorphic interpolation theorem. Our focus is on the cochain map and
thus our exposition differs from the more general approach of tom Dieck. We end with
Section 4.4.6 wherein we prove a full equivariant Oka principle for P1 when the action is
free on the source.
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4.4.4 The cochain map

We continue following tom Dieck [tom87, Chapter II, Section 3]. Let (X,A) be a relative
equivariant CW-complex with free action on X \A, and denote its k-skeleton by Xk. Fix
an integer n ≥ 1 and assume that Y is path connected and n-simple, so that π1(Y, y) acts
trivially on πn(Y, y). The n-simple assumption means that the map πn(Y, y) → [Sn, Y ]
forgetting the base point is a bijection, so we omit the base point from our notation πnY .

In this subsection, we are mainly concerned with properties of the cochain map
cn+1 : [Xn, Y ]G → Cn+1

G (X,A; πnY ) detailed in the following proposition. Recall from
Section 2.1 that for a pair (X,A), there is a right action of π1(A) on πn(X,A) commuting
with the boundary map. Letting π#

n (X,A) be the quotient of πn(X,A) by the subgroup
generated by elements of the form x − x.α with α ∈ π1(A), the relative Hurewicz theo-
rem (Theorem 2.1.9) states that the Hurewicz map πn(X,A, ∗) → Hn(X,A) induces an
isomorphism π#

n (X,A) ' Hn(X,A).

Proposition 4.4.16. Suppose that (Xn+1, Xn) is n-connected. Let % : πn+1(Xn+1, Xn)→
Hn+1(Xn+1, Xn) be the Hurewicz map. Let h : Xn → Y be a continuous G-map. The map
cn+1 : [Xn, Y ]G → Cn+1

G (X,A; πnY ) given by the assignment cn+1(h) = (h∗∂)#(%#)−1 is
well defined.

Proof. Since (Xn+1, Xn) is n-connected, we may apply the relative Hurewicz theorem.
Since the action of π1Y on higher homotopy is trivial by the n-simple assumption, Propo-
sition 2.1.6 and Proposition 2.1.7 imply that the quotient map q : πn+1(Xn+1, Xn) →
π#
n+1(Xn+1, Xn) satisfies ker q ⊂ kerh∗∂ for any h : Xn → Y . In particular we obtain a

map (h∗∂)#(%#)−1 : Hn+1(Xn+1, Xn) → πn(Y ) with the relevant maps as defined in the
commuting diagram

Hn+1(Xn+1, Xn) πn+1(Xn+1, Xn) πn(Xn) πn(Y )

π#
n+1(Xn+1, Xn),

%

%#
q

∂ h∗

(h∗∂)#
(4.13)

noting that %# is an isomorphism by the relative Hurewicz theorem.

Since G acts cellularly on X, the boundary map and Hurewicz map are equivariant in
the sense of Proposition 4.4.6. Also h is equivariant. Since (%#)−1% = q, we observe that

(h∗∂)#(%#)−1g∗% = h∗∂g∗ = g∗(h∗∂)#(%#)−1%. (4.14)

By the right cancellative property of the surjective map %, Equation (4.14) implies that
cn+1(h) = (h∗∂)#(%#)−1 is equivariant. Moreover cn+1(h) is independent of homotopy
class because the induced map h∗ : πn(Xn)→ πn(Y ) is independent of homotopy class.
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Proposition 4.4.17. The sequence

[Xn+1, Y ]G → [Xn, Y ]G
cn+1

−−→ Cn+1
G (X,A; πnY )

is exact: a G-map h : Xn → Y extends equivariantly to Xn+1 if and only if cn+1(h) = 0.

Proof. Let Φ = (Φj) :
∐

j G× (Dn+1, Sn)→ (Xn+1, Xn) be a characteristic map. Set φj =

Φj(1,−). Letting z̃n+1 be a generator of Hn+1(Dn+1, Sn), each (φj)∗z̃n+1 is a basis element
of Hn+1(Xn+1, Xn) viewed as a G-module. The Hurewicz map sends φj to (φj)∗z̃n+1, so
(%#)−1(φj)∗z̃n+1 = [φj]. Hence cn+1(h)((φj)∗z̃n+1) = hφj|Sn.

If h admits an equivariant extension H : Xn+1 → Y , then hΦj|G × Sn → Y ex-
tends equivariantly to HΦj : G × Dn+1 → Y . Hence hφj|Sn → Y is null homotopic by
Lemma 4.4.7. This implies cn+1(h)((φj)∗z̃n+1) = hφj|Sn is zero in πn(Y ) for each j and
hence cn+1(h) = 0. Conversely if cn+1(h) = 0, then each hφj|Sn is null homotopic, and so
h admits an extension to Xn+1 by Lemma 4.4.8.

Remark 4.4.18. Proposition 4.4.17 deals with extensions of maps Xn → Y to the (n+1)-
skeleton Xn+1. The reason we care about the (n+1)-skeleton is because we are concerned
with homotopy classes of maps. We start with a space (X,A) admitting a relative equiv-
ariant CW-decomposition with X = Xn. To discuss homotopy, we pass to the relative
complex (Xn× I,Xn×∂I ∪A× I). The (n+1)-skeleton of this cylinder is X̂n+1 = Xn× I
while the n-skeleton is X̂n = Xn × ∂I ∪Xn−1 × I.

Remark 4.4.19. Theorem 4.4.10 tells us under certain conditions on (X,A) and Y that
given a G-map f : A → Y , any two G-map extensions f0, f1 : Xn → Y are G-homotopic
on the (n− 1)-skeleton Xn−1. A G-homotopy on Xn−1 from f0 to f1 is precisely a G-map

from X̂n = Xn×∂I∪Xn−1×I to Y . A G-map extension X̂n+1 → Y to the (n+1)-skeleton
is then a G-homotopy from f0 to f1, and this is our principal concern.

Lemma 4.4.20. For each [h] ∈ [Xn, Y ]G, the cochain cn+1(h) is a cocycle.

Proof. The differential map dn+1 : Hn+1(Xn+1, Xn) → Hn(Xn, Xn−1) is given by the
composition of the boundary map ∂n+1 : Hn+1(Xn+1, Xn) → Hn(Xn) with the map pn :
Hn(Xn) → Hn(Xn, Xn−1) induced from the quotient map Cn(Xn) → Cn(Xn)/Cn(Xn−1).
The differential δn : Cn

G(X,A; πnY ) → Cn+1
G (X,A; πnY ) is defined by precomposition,

and so δn+1(cn+1(h)) = (h∗∂n+1)#(%#
n+1)−1pn+1∂n+2.

Commutativity of the diagram

Hn+2(Xn+2, Xn+1) πn+2(Xn+2, Xn+1)

Hn+1(Xn+1) πn+1(Xn+1)

Hn+1(Xn+1, Xn) πn+1(Xn+1, Xn) πn(Xn) πn(Y )

%n+2

∂n+2 ∂n+2

%n+1

pn+1 jn+1

%n+1 ∂n+1 h∗
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implies that δn+1(cn+1(h)) ◦ %n+2 = h∗∂n+1jn+1∂n+2 = 0, noting that ∂n+1jn+1∂n+2 = 0.
Since %n+2 is surjective, we have δn+1(cn+1(h)) = 0.

Remark 4.4.21. Having established that cn+1(h) is a cocycle, we can understand it up
to coboundary via the cohomology group Hn+1

G (X,A; πnY ).

Let f0, f1 : Xn → Y be G-maps and let k : Xn−1 × I → Y be a G-homotopy from f0

to f1 on Xn−1. Consider the relative G-CW-complex (X̂, Â) = (Xn× I,Xn× ∂I ∪A× I)

with n-skeleton X̂n = Xn × ∂I ∪ Xn−1 × I and (n + 1)-skeleton X̂n+1 = Xn × I. The

attaching maps φ̂j : G × (Dm+1, Sm) → (X̂m+1, X̂m) for m ≤ n are obtained from the
attaching maps φj : G × (Dm, Sm−1) → (Xm, Xm−1) by fixing a homeomorphism ψ :

(Dm+1, Sm)→ (Dm×I,Dm×∂I∪Sm−1×I) and setting φ̂j = (φj×idI)(idG×ψ). Explicitly

φ̂j(g, x) = (φj(g, pr1 ψ(x)), pr2 ψ(x)). The maps f0, k, f1 define a map F : X̂n → Y . This
gives an obstruction cocycle

cn+1(F ) ∈ HomZG(Hn+1(X̂n+1, X̂n), πnY )

There is an equivariant isomorphism σz̃1 : Hn(Xn, Xn−1)→ Hn+1(X̂n+1, X̂n) that induces

an isomorphism Hn
G(X,A; πnY ) ' Hn+1

G (X̂, Â; πnY ) on cohomology, both of which are
referred to as the suspension isomorphism. The map σz̃1 arises from the external homol-
ogy product as detailed in Dold [Dol72, Chapter VII, Section 2] and tom Dieck [tom08,
Section 9.8], while a full exposition of the induced map on cohomology can be found in
tom Dieck [tom87, Chapter II, (3.5)-(3.9)].

Composing with the suspension isomorphism σz̃1 : Hn(Xn, Xn−1) → Hn+1(X̂n+1, X̂n)
gives an element

cn+1(F ) ◦ σz̃1 =: d(f0, k, f1) ∈ HomZG(Hn(Xn, Xn−1), πnY )

called the equivariant difference cochain.
We will now cite an important result relating cn+1(f0) and cn+1(f1). The proof is given

in full detail by tom Dieck, and comes down to diagram chases involving the suspension
isomorphism.

Proposition 4.4.22. Suppose that f0, f1 : Xn → Y are G-maps that are G-homotopic on
Xn−1 via k : Xn−1 × I → Y . Then δnd(f0, k, f1) = cn+1(f0)− cn+1(f1).

Proof. See tom Dieck [tom87, Chapter II, Lemma 3.14].

There are four parts to the equivariant difference cochain: the initial G-map f0, the
G-homotopy k on Xn−1, the final G-map f1, and the equivariant cochain ξ = d(f0, k, f1).
Normally we start with the first three as input data and end up with the cochain as output.
The next proposition, which acts as the final ingredient for our reduction argument, takes
the initial G-map f0, the G-homotopy k, and the equivariant cochain ξ as input, then
produces a final G-map f1 for which d(f0, k, f1) = ξ.
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Proposition 4.4.23. For each G-map f0 : Xn → Y , each G-homotopy k : Xn−1× I → Y
on Xn−1 satisfying k(−, 0) = f0|Xn−1, and each equivariant cochain ξ ∈ Cn

G(X,A; πnY ),
there exists a G-map f1 : Xn → Y such that f1|Xn−1 = k(−, 1) and d(f0, k, f1) = ξ.

Proof. We adapt Whitehead [Whi78, Chapter V, Lemma 5.10, Lemma 5.12] to the equiv-
ariant setting. Let E0 = Dn × 0 ∪ Sn−1 × I ' Dn and E1 = Dn. Glue these together
by identifying ∂E1 with Sn−1 × 1 ⊂ E0. Then E0 ∪ E1 ' Sn, and E0 ↪→ E0 ∪ E1 is a
cofibration. Let ξ ∈ Cn

G(X,A; πnY ) be an equivariant cochain. For each attaching map
φj : G × (Dn, Sn−1) → (Xn, Xn−1), we obtain a basis element ej ∈ Hn(Xn, Xn−1). Then
ξ(ej) ∈ πnY . For each j, take any representative h0j : E0 ∪ E1 → Y of ξ(ej).

The maps f 1
0j(x) = f0φj(1, x) for x ∈ Dn and k1

j (x, t) = k(φj(1, x), t) for x ∈ Sn−1

together define a map F0j : E0 → Y such that F0j|E0 ∩ E1 = k1
j (−, 1). Since E0 is

contractible and Y is path connected, there exists a homotopy E0 × I → Y from h0j|E0

to F0j. Extending to E0 ∪ E1 × 0 via h0j and applying the homotopy extension property
of the cofibration E0 ↪→ E0 ∪ E1 to the diagram

E0 ∪ E1 × 0 ∪ E0 × I Y

E0 ∪ E1 × I

Hj

gives a homotopy Hj : E0 ∪E1× I → Y such that Hj(−, 0) = h0j and Hj(−, 1)|E0 = F0j.
Define f1j : G × Dn → Y by setting f1j(g, x) = gHj(x, 1), viewing (E1, E1 ∩ E0) as
(Dn, Sn−1). If x ∈ Sn−1 = E1 ∩ E0, then f1j(g, x) = gF0j(x) because x ∈ E0. Now
observe that gF0j(x) = gk1

j (x, 1) because x ∈ E1. Finally, equivariance of k and φj
give gk1

j (x, 1) = k(φj(g, x), 1). We conclude that f1j(g, x) = k(φj(g, x), 1) for each j if
x ∈ Sn−1, which implies that the diagram∐

j G× Sn−1 Xn−1

∐
j G×Dn Y

(φj)

k(−,1)

(f1j)

commutes. Since Xn is a pushout, we obtain a G-map f1 : Xn → Y uniquely deter-
mined by the equations f1|Xn−1 = k(−, 1) and f1φj = f1j for all j. By construction
Hj(−, 0) = h0j and Hj(−, 1) = d(f0, k, f1)(ej). In fact Hj(−, 1)|E0 = F0j, which is defined
by f0φj(1,−) and k(φj(1,−)× idI). Then Hj(−, 1)|E1 = f1j(1,−) = f1φj(1,−). Thus Hj

is a homotopy that establishes d(f0, k, f1)(ej) = ξ(ej) in πnY . Hence d(f0, k, f1) = ξ.
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4.4.5 Reduction to interpolation

Our main result regarding the equivariant Oka principle for P1 is a reduction to a holo-
morphic interpolation theorem.

Theorem 4.4.24. Let X be a noncompact Riemann surface. Suppose that a finite group
G acts holomorphically and effectively on X and holomorphically on Y = P1. Let A ⊂ X
be the set of points with nontrivial isotropy. If f0, f1 : X → Y are two continuous G-maps
agreeing on A, then f0 and f1 are G-homotopic relative A.

Proof. By Proposition 4.4.5, the pair (X,A) admits a relative G-CW structure. Now

consider the relativeG-CW-complex (X̂, Â) = (X×I,X×∂I∪A×I). Since f0 and f1 agree
on A, there exists aG-homotopyXn−1×I → Y relative A from f0 to f1 by Corollary 4.4.11.
View this as a G-map F0 : X̂2 → Y on the 2-skeleton X̂2 = X2 × ∂I ∪X1 × I.

Apply the cochain map c3 : [X̂2, Y ] → C3
G(X̂, Â; π2Y ), recalling that c3(F0) = 0 if

and only if F0 admits a G-map extension to X̂3 = X × I. As it turns out, in general,
we can only guarantee that c3(F0) = 0 in H3

G(X̂, Â; π2Y ), which is to say that c3(F0) is a
coboundary. This result follows from the isomorphisms

H3
G(X̂, Â; π2Y ) ' H2

G(X,A; π2Y ) ' H2(X/G,A/G;Z) = 0.

The first isomorphism is the suspension isomorphism while the second isomorphism is
proved in Proposition 4.4.13. From this isomorphism, there exists ξ ∈ C2

G(X̂, Â; π2Y )

such that c3(F0) = δ2ξ. Now we use Proposition 4.4.23 to produce a G-map F1 : X̂2 → Y

such that d(F0, k, F1) = ξ, where k : X̂1 × I → Y is the constant G-homotopy.
Proposition 4.4.22 gives δ2d(F0, k, F1) = c3(F0) − c3(F1). Since δ2ξ = c3(F0), we

deduce that c3(F1) = 0. Hence Proposition 4.4.17 implies that F1 extends equivariantly

to X̂3 = X̂ = X × I, yielding a G-homotopy from f0 to f1.

Corollary 4.4.25. If every G-map A → Y extends to a holomorphic G-map X → Y ,
then every continuous G-map X → Y is G-homotopic to a holomorphic map.

Proof. Let f : X → Y be a continuous G-map. Take a holomorphic G-map g : X → Y
agreeing with f on A. Theorem 4.4.24 establishes that f is G-homotopic to g.

The structure can be further specified if we insist that G acts effectively on the source
and the target.

Theorem 4.4.26. Let X be a noncompact Riemann surface. Let G be a finite group
acting holomorphically and effectively on X and P1. Let A ⊂ X be the set of points of X
with nontrivial isotropy. There exists a bijection of sets

[X, Y ]G = [X, Y ]AG ' MapG(A, Y )

between equivariant homotopy classes of maps [X, Y ]AG relative A and equivariant maps
MapG(A, Y ). Furthermore, every equivariant homotopy of maps X → Y is fixed on A.
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Proof. Any two G-maps agreeing on A are G-homotopic relative A by Theorem 4.4.24. So
the assignment [X, Y ]AG → MapG(A, Y ) given by [f ] 7→ f |A is injective. Surjectivity comes
from being able to extend any G-map A→ Y to X equivariantly via Theorem 4.4.10.

When G acts effectively on the target, the set of y ∈ Y such that |Gy| > 1 is discrete.
Suppose that a ∈ A so |Ga| > 1. Let H : X × I → Y be any equivariant homotopy. Fix
t0 ∈ I. Take a neighbourhood V of H(a, t0) such that H(a, t0) ∈ V is the only point in
V with nontrivial isotropy. The preimage U = H(a,−)−1V is a neighbourhood of t0 such
that |GH(a,t)| ≥ |Ga| > 1 for all t ∈ U . Since the only point in V with nontrivial isotropy is
H(a, t0), we deduce that H(a, t) = H(a, t0) for all t ∈ U . Thus H(a,−) : I → Y is locally
constant and hence constant. Therefore H is fixed on A, and [X, Y ]G = [X, Y ]AG.

The assumption that G acts effectively on X is required to ensure that G acts freely
on X \ A, which is the main assumption underpinning all of the equivariant obstruction
theory established thus far. If we do not assume that G acts effectively on the source,
then we can produce trivial examples where CG(X,P1) = ∅.

Proposition 4.4.27. Let Dn act dihedrally on P1 via the automorphisms z 7→ exp(2πi/n)z
and z 7→ 1/z. Let X be any noncompact Riemann surface equipped with the trivial action
of Dn. Then CG(X,P1) = ∅.

Proof. An equivariant map φ must satisfy φ(x) = φ(gx) = gφ(x) for all g ∈ Dn. So the
existence of an equivariant map implies the existence of a point of P1 fixed by all of Dn.
No such point exists: the only points fixed by z 7→ exp(2πi/n) are 0 and ∞, but these
are swapped by z 7→ 1/z.

Remark 4.4.28. More generally, suppose that X and Y are G-spaces. If X has the
trivial G-action and no point of Y is fixed by G, then CG(X, Y ) = ∅.

Remark 4.4.29. Theorem 4.4.26 also includes interpolation on the discrete set A as a
necessity due to equivariance. In the nonequivariant setting, an elementary proof of the
Oka principle with interpolation for Stein-Oka pairings of Riemann surfaces was given by
Crawford [Cra14, Theorem 3.1.5]. The method of proof is similar. First Crawford shows
that maps X → P1 agreeing on a discrete set A are homotopic relative A, a similar result
to our Theorem 4.4.24. However, in the nonequivariant setting, there is a holomorphic
interpolation theorem for maps X → P1 with X noncompact. Let f : X → P1 be
continuous. Since the restriction f |A → P1 always fails to be surjective because A is
countable, Crawford takes x ∈ P1 \ fA and invokes the Weierstrass interpolation theorem
to obtain a holomorphic map g : X → C ' (P1 \ {x}) ↪→ P1 agreeing with f on A.

We end the section with two special situations where we can establish an equivariant
interpolation result, and hence an equivariant Oka principle by Theorem 4.4.24.



4.4. The equivariant Oka principle for P1 71

Proposition 4.4.30. Set ωn = exp(2πi/n). Let G = 〈ωnz, 1/z〉 act on C∗ and P1 =
C∪{∞}. Let A =W2n be the 2nth roots of unity, the points of C∗ with nontrivial isotropy.
For every G-map A → P1, there exists a holomorphic G-map extension C∗ → P1. Thus
every continuous G-map C∗ → P1 is G-homotopic to a holomorphic map.

Proof. An equivariant map f : A → P1 is determined by f(1) and f(ω2n) because W2n

splits into the even and odd 2nth roots of unity when we quotient by G. Also, since f is
equivariant, we must have Gx ⊂ Gf(x). Observe that, for 0 ≤ k < n, the stabiliser of ±ωk2n
is {z, ωkn/z}. Conversely the group {z, ωkn/z} fixes only ±ωk2n. Hence f sends {±ωk2n} into
itself. So there are four equivariant maps A→ P1, determined by the assignments

(1, ω2n) 7→ (1, ω2n)

(1, ω2n) 7→ (1,−ω2n)

(1, ω2n) 7→ (−1, ω2n)

(1, ω2n) 7→ (−1,−ω2n).

These assignments are realised by the equivariant holomorphic maps

z 7→ z

z 7→ 1/zn−1

z 7→ −1/zn−1

z 7→ −z.
Proposition 4.4.31. Let G be a finite group acting holomorphically on a noncompact
Riemann surface X and the Riemann sphere P1, such that G fixes exactly two points
z1, z2 ∈ P1. Let A ⊂ X be a closed discrete G-invariant subset and f0 : A → P1 a
nonconstant G-map. There exists an equivariant holomorphic map X → P1 extending f0.

Proof. When G fixes exactly two points of P1, it is conjugate to a rotation group and the
action can be linearised. In this setting, we may use the averaging trick combined with
the plain Weierstrass theorem for maps into P1.

Let s ∈ Aut(P1) be a transformation sending z1 to 0 and z2 to ∞. The image of the
conjugate group sGs−1 is generated by ωnz, where ωn = exp(2πi/n). Let f : X → P1

be a holomorphic map such that f |A = s ◦ f0. In particular f is nonconstant, so we
can consider it as an element of the C-algebra M (X) of meromorphic functions over X.
Define F : X → P1 by

F =
1

|G|
∑
g∈G

(sgs−1)−1 ◦ f ◦ g.

The map s−1 ◦ F : X → P1 is holomorphic and G-equivariant, restricting to f0 on A.

Remark 4.4.32. The nonconstant assumption is no real loss of generality. If f0 : A→ P1

is constant, then there exists y0 ∈ P1 such that gy0 = gf0(x) = f0(gx) = y0 for all g ∈ G
and all x ∈ A. So the constant map cy0 : X → P1 is an equivariant holomorphic map
restricting to f0 on A.
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4.4.6 Free action on the source

When G acts freely on the source, the equivariant Oka principle follows from the theory
of principal G-bundles.

Theorem 4.4.33. Let X be a noncompact Riemann surface. Let G be a finite group
acting holomorphically on X and P1. Let Q0 ⊂ X/G be the set of orbits contain-
ing points with nontrivial isotropy. Let S = X/G \ Q0. There exists a homeomor-
phism CG(π−1S,P1) ' C (S,P1) with respect to the compact open topology restricting to
a homeomorphism OG(π−1S,P1) ' O(S,P1). In particular, if G acts freely on X, then
OG(X,P1) ' O(X/G,P1).

Proof. The covering space π−1S → S is a principal G-bundle, so we may construct the
associated bundle E = (π−1S × P1)/G → S with fibre P1. Supposing that (Ui, li) is
a holomorphic local trivialisation of π−1S → S, we obtain a holomorphic local trivi-
alisation (Ui, hi) of (π−1S × P1)/G → S with hi[x, y] = ([x], pr2 li(x)−1y). Since the
trivialisations pr2 li : π−1Ui → G are equivariant, each transition (pr2 li)

−1 · (pr2 lj) is
G-invariant and induces a map Ui ∩ Uj → G from the quotient. Since every projective
bundle over a noncompact Riemann surface is trivial by Corollary 2.5.13, we obtain a
holomorphic splitting ti : Ui → PSL(2,C) of (pr2 li)

−1 · (pr2 lj) : Ui ∩ Uj → G. The maps
(pr2 li) · tiπ : π−1Ui → PSL(2,C) glue to form a global map T : π−1S → PSL(2,C)
equivariant with respect to G acting on PSL(2,C) by left multiplication. The homeo-
morphism CG(π−1S,P1) ' C (S,P1) is defined as follows. We send F ∈ CG(π−1S,P1) to
the map S → P1 induced by T (x)−1(F (x)). In the other direction, we send f ∈ C (S,P1)
to the map π−1S → P1 defined by T (x)(f [x]).
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